
                          Song, Y., Kube, C., Zhang, J., & Li, X. (2020). Higher-order spatial
correlation coefficients of ultrasonic backscattering signals using
partial cross-correlation analysis. Journal of the Acoustical Society of
America, 147(2), 757-768. [757 (2020)].
https://doi.org/10.1121/10.0000615

Publisher's PDF, also known as Version of record

Link to published version (if available):
10.1121/10.0000615

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via AIP Publishing at
https://asa.scitation.org/doi/10.1121/10.0000615. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/user-guides/explore-bristol-research/ebr-terms/

https://doi.org/10.1121/10.0000615
https://doi.org/10.1121/10.0000615
https://research-information.bris.ac.uk/en/publications/higherorder-spatial-correlation-coefficients-of-ultrasonic-backscattering-signals-using-partial-crosscorrelation-analysis(c9f38301-a6d4-4a55-ad6f-0808dafbaa88).html
https://research-information.bris.ac.uk/en/publications/higherorder-spatial-correlation-coefficients-of-ultrasonic-backscattering-signals-using-partial-crosscorrelation-analysis(c9f38301-a6d4-4a55-ad6f-0808dafbaa88).html


Higher-order spatial correlation coefficients of ultrasonic backscattering signals using
partial cross-correlation analysis
Yongfeng Song, Christopher M. Kube, Jie Zhang, and Xiongbing Li

Citation: The Journal of the Acoustical Society of America 147, 757 (2020); doi: 10.1121/10.0000615
View online: https://doi.org/10.1121/10.0000615
View Table of Contents: https://asa.scitation.org/toc/jas/147/2
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

Ultrasonic diffraction by a circular transducer: Isogeometric analysis sensitivity to full Gauss quadrature points
The Journal of the Acoustical Society of America 147, EL74 (2020); https://doi.org/10.1121/10.0000591

Tracking of multiple surface vessels based on passive acoustic underwater arrays
The Journal of the Acoustical Society of America 147, EL87 (2020); https://doi.org/10.1121/10.0000598

Robust far-field subwavelength imaging of scatterers by an acoustic superlens
The Journal of the Acoustical Society of America 146, 4131 (2019); https://doi.org/10.1121/1.5134780

 Cross-linguistic f0 differences in bilingual speakers of English and Korean
The Journal of the Acoustical Society of America 147, EL67 (2020); https://doi.org/10.1121/10.0000498

Superposition method for modelling boundaries between media in viscoelastic finite difference time domain
simulations
The Journal of the Acoustical Society of America 146, 4382 (2019); https://doi.org/10.1121/1.5139221

Green's function approach for the transmission loss of concentrically multi-layered circular dissipative chamber
The Journal of the Acoustical Society of America 147, 867 (2020); https://doi.org/10.1121/10.0000675

https://images.scitation.org/redirect.spark?MID=176720&plid=1087188&setID=407059&channelID=0&CID=358669&banID=519827888&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=3fec0cade19d9774f94c9600358b8bfe1c7f6f1d&location=
https://asa.scitation.org/author/Song%2C+Yongfeng
https://asa.scitation.org/author/Kube%2C+Christopher+M
https://asa.scitation.org/author/Zhang%2C+Jie
https://asa.scitation.org/author/Li%2C+Xiongbing
/loi/jas
https://doi.org/10.1121/10.0000615
https://asa.scitation.org/toc/jas/147/2
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/10.0000591
https://doi.org/10.1121/10.0000591
https://asa.scitation.org/doi/10.1121/10.0000598
https://doi.org/10.1121/10.0000598
https://asa.scitation.org/doi/10.1121/1.5134780
https://doi.org/10.1121/1.5134780
https://asa.scitation.org/doi/10.1121/10.0000498
https://doi.org/10.1121/10.0000498
https://asa.scitation.org/doi/10.1121/1.5139221
https://asa.scitation.org/doi/10.1121/1.5139221
https://doi.org/10.1121/1.5139221
https://asa.scitation.org/doi/10.1121/10.0000675
https://doi.org/10.1121/10.0000675


Higher-order spatial correlation coefficients of ultrasonic
backscattering signals using partial cross-correlation analysis

Yongfeng Song,1 Christopher M. Kube,2 Jie Zhang,3 and Xiongbing Li1,a)

1School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China
2Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, USA
3Department of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, United Kingdom

ABSTRACT:
The spatial correlation properties of ultrasonic backscattering signals in random media have important implications.

For example, they can be used for microstructural characterization and flaw detection in engineering materials.

However, the traditional spatial correlation coefficient (SCC) is only a leading order quantity that does not capture

the true spatial correlations of random media. This is caused by neglecting confounding variables such as non-zero

means or other non-zero odd-order moments. Here, the SCC is generalized from zeroth- to general-order through

partial cross-correlation analysis. A series of indicators are defined to quantify the SCC curve at zero time lag, and

the maximum time shift curve, which are both functions of lateral separation between two sensor positions. A

stainless-steel specimen and a focused ultrasonic transducer are used to verify the method. Scattering measurements

show that the higher-order SCC can consistently capture spatial correlations whereas the zeroth-order SCC is

inadequate. The zeroth-order SCC is shown to predict a step size that can be more than six times too large. Thus, the

present method can provide better understanding of statistical correlations and conditions to measure uncorrelated

backscattering signals. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0000615

(Received 2 August 2019; revised 4 December 2019; accepted 3 January 2020; published online 5 February 2020)

[Editor: Agnes Maurel] Pages: 757–768

I. INTRODUCTION

Scattering of ultrasound from grain boundaries in met-

als, often referred to as ultrasonic backscattering, has been

widely used in microstructural characterization1–3 and

microscale flaw detection.4–6 A backscattering signal typi-

cally has a spatially dependent random character stemming

from randomness on the microscale, e.g., random grain ori-

entations. However, spatial correlations do exist. For exam-

ple, backscattering measurements captured at two spatial

locations can appear nearly identical if the two spatial loca-

tions are close enough. The notion of close enough depends

on a spatial length characteristic related to the heterogene-

ity.7,8 Thus, measurements of the spatial correlations in

backscattering signals could provide important insight into

the degree of material heterogeneity or mechanical property

fluctuations. The spatial correlations then have many poten-

tial applications including detecting multiple-scattering

behavior,9,10 evaluating material microstructure,8,11 and

testing for flaws within the volume of a part.12–14 The key to

applying spatial correlations of backscattering signals in

practical scenarios is to assess their degree of similarity.

The measurement of spatial correlation of backscatter-

ing signals is closely related to the problem of coherence in

optics. Research on optical coherence stems back to the late

19th century.15,16 In the early 20th century, Van Cittert17,18

and Zernike19 built the basics for the coherence of optical

waves, which explains the increase of coherence area with

propagation distance from the source. Their contributions

formed the foundation of the Van Cittert–Zernike theo-

rem.20 Then, Wolf developed a mutual coherence function

to simultaneously calculate the degree of temporal and

spatial coherence.21,22 In fact, Wolf’s mutual coherence

function is known as the cross-correlation analysis of optical

waves. In the late 20th century, Derode and Fink introduced

the notion of coherence into acoustics. They used a phase

array ultrasonic transducer to perform experimental mea-

surements of coherence via the spatial correlation coefficient

(SCC) of backscattered signals.23

Later, Fink and his co-workers provided many advances

to the topic.9–12,23–25 For instance, anisotropic materials,

such as cross-ply composites, were characterized by SCC

curves.9,24 Additionally, they developed a backscatter tensor

imaging method for evaluating anisotropic soft tissues with

SCC curves.25 In these cases,24,25 a complete measurement

model that incorporated material effects and the experimen-

tal apparatus was not given. In the area of ultrasonics,

Thompson et al.7,8 modeled the combined effects of the

measurement system and polycrystalline microstructure and

predicted SCC curves of ultrasonic backscattering. This

model showed the SCC curve can be strongly influenced by

the measurement system, the specimen’s microstructural

statistics, and an overlap integral of the sound field.8 In

applications, Thompson’s SCC model can be used to fit

experimental measurements of SCC and obtain microstruc-

tural information such as the average grain size.a)Electronic mail: lixb_ex@163.com
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An impediment to Thompson’s method was the inability

to account for backscattering measurements that have non-

zero odd-order moments, which is common in measurements

involving low-frequency Rayleigh scattering. Neglecting

non-zero odd-order moments when they are present can

cause one to unnecessarily increase the separation distance

between the sensors, which sacrifices spatial resolution. To

remedy this issue, partial correlation analysis can be used,

which can quantify the correlation between two variables

under conditioning on one or more variables and can provide

higher-order correlation coefficients.26,27 For example, Stark

et al.28 has extended a partial cross-correlation analysis

method to estimate linear correlations between neural activ-

ity and several other interdependent features at multiple time

lags in neuroscience. However, to the best of authors’ knowl-

edge, the partial correlation analysis method has not been

applied to ultrasonic backscattering yet.

In this work, the zeroth-order SCC is extended to

higher-order to correctly assess the SCC of ultrasonic back-

scattered signals in polycrystalline materials. First, the con-

cepts of partial cross-correlation analysis will be introduced

into spatial correlation statistics by considering the non-zero

odd-order moments belonging to the ensemble of ultrasonic

signals. Then, the higher-order SCC curve without time lag

and the maximum time shift curve are defined as functions

of lateral separation between two transducer positions.

Several indicators are given to quantify these two kinds of

curves, which help to choose a proper separation distance in

scattering measurements. The present method is verified by

the ultrasonic scattering measurements performed on a

stainless-steel specimen. The higher-order SCC is analyzed

with and without time lag and the effects of the measure-

ment system is discussed. Last, analysis of the high-order

SCC curve is used to determine optimal indicators to esti-

mate the minimal separation distance for resolving uncorre-

lated backscattering signals.

II. METHOD

A. Partial cross-correlation analysis

Suppose a set of N time-amplitude (voltage) ultrasonic

waveforms is acquired using a typical ultrasonic scanning

procedure, as described in Ref. 3. Contained within each sig-

nal is a contribution caused by scattering from the polycrys-

talline microstructure along with any coherent reflections

from sample surfaces. The microstructure is assumed to be

locally heterogeneous, but homogeneous on average (an

assumption of statistical homogeneity). Let VxðtÞ and Vx0 ðtÞ
be two signals contained in the set that were acquired at posi-

tion x and x0. The spatial cross-correlation of the microstruc-

tural scattering within a time gate from t0 to t1 as14

SCC sjVx;Vx0ð Þ¼

ðt1

t0

Vx tð Þ�Vx0 t�s�jxx0ð Þdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðt1

t0

Vx tð Þ½ �2dt�
ðt1

t0

Vx0 t�jxx0ð Þ½ �2dt

s ; (1)

where s is the time lag and jxx0 is an alignment factor that

accounts for possible misalignment in the experimental con-

figuration. When there is no time lag (s ¼ 0), Eq. (1) is the

form defined by Thompson et al.7 and Yu et al.8 The time

lag s is employed to account for phase variations in the

backscattering signal. In an application similar to that of

Ref. 29 on seismic data, the alignment factor jxx0 provides

an adjustment when the travel path between the transducer

and sample varies, for example, when the specimen has a

curved surface. In a normal incident setup, jxx0 can be mea-

sured from analyzing the arrival times of front-wall echoes.

In practice, Eq. (1) is calculated using its discrete form.

The spatial average or first-order raw moment of the set

of signals is denoted hVðtÞi. More generally, the odd-order

raw moments of the signals are explicitly

hV2n�1 tð Þi ¼ 1

N

XN

i¼1

V2n�1
i tð Þ

� �
; (2)

where n ¼ 1; 2; 3;… and i ¼ 1; 2;…;N. The odd-order raw

moments are important to the SCC because the traditional

SCC model as that given in Eq. (1) is only appropriate when

hV2n�1ðtÞi ¼ 0. Thus, the SCC in Eq. (1) is referred to as the

zeroth-order spatial correlation coefficient and the higher-

order SCC has not be defined or applied to scattering

signals. Thus, our goal is to quantify and eliminate adverse

effects of the non-zero odd-order raw moments, i.e.,

hV2n�1ðtÞi 6¼ 0, on the spatial correlations using a partial

cross-correlation analysis.

In the area of statistics, it is well-known that using the

zeroth-order correlation coefficient will give misleading

results when one or more confounding variables associ-

ated with the variables of interest exist.27 Here, the con-

founding variable is understood as an extraneous variable

that influences both the dependent variable and indepen-

dent variable, causing a spurious association. Thus, taking

the first moment hVðtÞi into account, the first-order SCC

can be found as

SCC sjVx;Vx0 ; hVið Þ

¼ SCC sjVx;Vx0ð Þ � SCC sjVx; hVið ÞSCC 0jVx0 ; hVið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SCC sjVx; hVið Þ½ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SCC 0jVx0 ; hVið Þ½ �2

q ;

(3)

where SCCðsjVx; hViÞ and SCCð0jVx0 ; hViÞ are calculated

from Eq. (1). This equation is based on Eq. (8) of Ref. 28

(with the two-dimensional time delays reduced into one

with s1 ¼ s2 ¼ s). If hVðtÞi ¼ 0, then SCCðsjVx; hViÞ
¼ SCCð0jVx0 ; hViÞ ¼ 0, so that SCCðsjVx;Vx0 ; hViÞ recovers

the traditional or zeroth-order form of SCCðsjVx;Vx0 Þ. Thus,

SCCðsjVx;Vx0 ; hViÞ is a more general expression of

SCCðsjVx;Vx0 Þ for the case when hVðtÞi 6¼ 0. Note that the

physical meaning of the spatial correlation goes unchanged.

Another form of first-order SCC can also be defined. For

example, SCCðsjVx;Vx0 ; hV3iÞ is formed by replacing hVi
with hV3i in Eq. (3).

758 J. Acoust. Soc. Am. 147 (2), February 2020 Song et al.

https://doi.org/10.1121/10.0000615

https://doi.org/10.1121/10.0000615


Additionally, the present method, based on the partial

cross-correlation analysis, is able to account for effects of

additional confounding variables on the correlation

coefficient. For example, the influence of the confound-

ing variables hVi and hV3i results in the second-order

SCC are

SCC sjVx;Vx0 ; hVi; hV3i
� �

¼ SCC sjVx;Vx0 ; hVið Þ � SCC sjVx; hV3i; hVi
� �

SCC 0jVx0 ; hV3i; hVi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SCC sjVx; hV3i; hVið Þ½ �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SCC 0jVx0 ; hV3i; hVið Þ½ �2

q : (4)

Note that Eq. (4) is rather cumbersome as it contains three

first-order SCCs, and six zeroth-order SCCs. Similarly,

higher-order SCC can be calculated to eliminate the con-

founding effects from combinations of hVi, hV3i, …,

hV2n�1ðtÞi, by using the recursive formula of partial cross-

correlation analysis.26,28 In some cases, the higher-order

corrections are small and can be neglected. The need to

extend to a certain order and the convergence of SCC are

discussed in Secs. III B and III C.

B. Indicator analysis of SCC

In the present work, indicators will be defined to give

characteristic length scales related to the general-order SCC.

The first indicator is the noise spatial correlation length

(NSCL) as defined by Thompson et al.7 and Yu et al.8

Supposing the lateral separation between transducer position

Vx and Vx0 is jx� x0j, the average SCCðs ¼ 0jjx� x0jÞ can

be calculated using many pairs of Vx and Vx0 with the same

jx� x0j. The NSCL is obtained by the following equation as

SCC 0jjx� x0j ¼ NSCL
� �

¼ 1=e; (5)

which denotes the point where the SCC drops by the fraction

SCC ¼ 1=e. The NSCL can be regarded as a shape factor or

scaling factor of the SCC curve.

The NSCL cannot provide a minimum lateral separation

distance to guarantee a pair of backscattering signals to be

uncorrelated, which is important when designing an ultra-

sonic scattering measurement.6 Rather, the Student’s t-test

is used as such a criterion.30 The null hypothesis H0 is VxðtÞ
and Vx0 ðtÞ are uncorrelated; and the alternate hypothesis H1

is VxðtÞ and Vx0 ðtÞ are correlated. Accept H0 when the test

statistic satisfies

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ta M� 2ð Þ½ �2

M� 2ð Þþ ta M� 2ð Þ½ �2

s

� SCC 0jjx� x0j
� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ta M� 2ð Þ½ �2

M� 2ð Þþ ta M� 2ð Þ½ �2

s
; (6)

where taðM � 2Þ is the Student’s t-distribution30 with the

significance level a. The M � 2 is the degrees of freedom,

and M is the number of independent sampling points of the

waveforms, which will be used to calculate the SCC with

the discrete form of Eq. (1). This independent data assump-

tion will fail if an excessive sampling rate is used. The

effects of sampling rate on the SCC will be discussed in

Sec. III D. Oppositely, accept H1 if the test statistic falls out-

side of the bounds in Eq. (6). The second indicator is defined

as the upper bound in Eq. (6) and denotes it as the uncorre-

lated transducer distance (UTD), i.e.,

SCC 0jjx� x0j ¼ UTD
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ta M � 2ð Þ½ �2

M � 2ð Þ þ ta M � 2ð Þ½ �2

s
:

(7)

It should be noted that, if a is too high, the type II error

of hypothesis testing is inevitable. Further, uncorrelation

is only a necessary condition of independence. Yet,

UTD remains a valuable indicator in applications to

provide the smallest scanning step in ultrasonic

measurements.

The third indicator for SCCð0jjx� x0jÞ is the first zero

point (FZP). It can be given by the inverse function of SCC

as

SCC 0jjx� x0j ¼ FZP
� �

¼ 0: (8)

However, FZP is always too large to be used as the

scanning step as to be shown in Sec. III E. The indica-

tors NSCL, UTD, and FZP are both the spatial indicators

about the lateral separation jx� x0j. Thus, the number of

pairs of VxðtÞ and Vx0 ðtÞ for averaging SCCð0jjx� x0jÞ
will affect the estimated accuracy of the three indicators.

For brevity, this point is not included in this paper, but

we suggest using as many pairs of waveforms as

possible.

Additional three indicators can be defined for the

higher-order SCC with time lag. The maximum time lag can

be defined as

smax Vx;Vx0ð Þ ¼ arg max
s
jSCC sjVx;Vx0ð Þj ;

smax Vx;Vx0 ; hVið Þ ¼ arg max
s
jSCC sjVx;Vx0 ; hVið Þj ;

smax Vx;Vx0 ; hVi; hV3i
� �
¼ arg max

s
jSCC sjVx;Vx0 ; hVi; hV3i

� �
j: (9)
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Again, one can replace smaxðVx;Vx0 ; hViÞ with smaxðVx;Vx0 ;
hV3iÞ similar to Eq. (3). Note that although there are abso-

lute value signs in Eq. (9), some results from the argmax

function could be negative, and their absolute values give

the corresponding maximum time shift. Considering the lat-

eral separation jx� x0j, the average maximum time shift

(MTS) curve jsmaxðjx� x0jÞj can be given by using many

pairs of Vx and Vx0 . Then, a sigmoid function can be utilized

to fit the MTS curve as

min k jsmax jx� x0j
� �

j � s jx� x0j
� �

k2 ;

s xð Þ ¼ 1= aþ b � x�Lð Þ ;
s:t: a > 0; b > 0; L > 0; a; b; Lð Þ 2 R; (10)

where a, b, and L are the fitting coefficients, and k•k2 means

the calculation of the l2 norm, i.e., the square root of the

sum of squared errors. The third derivative of the sigmoid

function sðxÞ can be given as

d3s

dx3
¼ bLxL�3 a2ðLþ 1ÞðLþ 2Þx2L � 4ab L2 � 1ð ÞxL þ b2ðL� 2ÞðL� 1Þ

� �
axL þ bð Þ4

: (11)

The third derivative of sðxÞ has three extremums, which are

found through a numerical search algorithm. These three

indicators are named as the first, second, and third extremum

of derivative function, and notated as EODF1, EODF2, and

EODF3, respectively. They are not only spatial indicators

about the lateral separation jx� x0j, but also temporal indi-

cators about the time shift s.

In the present application, we will use these six indica-

tors to help answer the question in Ref. 12 related to how

far apart must two positions be to receive uncorrelated infor-

mation using a single ultrasonic focused transducer.

Experimental results for different indicators are given in

Sec. III E. The higher-order SCC model developed

above will be utilized to fit the experimental curves of

SCCð0jjx� x0jÞ and jsmaxðjx� x0jÞj to extract these indica-

tors for practical applications.

III. EXPERIMENTAL RESULTS

A. Data acquisition

In this section, ultrasonic scattering measurements are

performed to compare the various orders of SCC. A 304

stainless steel specimen is used because of its relatively sim-

ple microstructure, which was found to contain untextured

and equiaxed single phase grains on average. The dimen-

sions of the specimen are 100 mm� 40 mm� 15 mm. Based

on ASTM metallurgical standard E112,5 the average grain

diameter was measured as �d ¼ 44.2 6 2.8 lm using optical

microscopy.

The scattering measurements were performed with a

single focused immersion style transducer. Without loss of

generality to the various modes of scattering, the longitudi-

nal-to-longitudinal scattering is measured using a pulse-

echo configuration at normal incidence to the top surface of

the specimen. The immersion ultrasonic scanning system,

shown in Fig. 1, consists of a water tank, a computer-

controlled micropositioning system, a JSR DPR-300 pulser/

receiver, and an ADLink 200 MHz data acquisition card

(digitizer). The longitudinal wave velocities of the water

and the specimen are assumed to be 1486 m/s and 5750 m/s,

respectively. The pertinent transducer properties are given

in Table I.

The spot sizes of the focused transducers are included in

Table I, for comparison between the spot sizes (�6 dB beam

diameter) and the indicators in Sec. III E. A normalized wave-

number is defined as kL
�d to indicate the dependence on the

wave number or grain size.31 Table I also shows kL
�d for each

frequency. The scattering mean free paths are measured as

1=ð2aLÞ, where aL are the longitudinal attenuation coeffi-

cients at central frequencies from the different trans-

ducers.31,32 Since the longitudinal attenuation is proportional

to kL
�d , the mean free path is inversely proportional to kL

�d .

The mean free paths give an indication of possible multiple

scattering effects in the signals.31,32 Multiple scattering is pre-

sumed to be weak for the present configurations since the

mean free paths are more than an order of magnitude greater

than the spot size in the material. Furthermore, for transducers

C and D, the mean free paths are greater than the travel dis-

tance 30 mm (back and forth) within the specimen.

B-scans are conducted by using each transducer and a

scanning step of 0.1 mm. The material paths (focal depth

below the interface) are kept fixed at 7 mm, which is smaller

FIG. 1. (Color online) The immersion scanning system with a configuration

for normally incident longitudinal-to-longitudinal scattering measurement.
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than each of the mean free paths to reduce the impacts of

multiple scattering further. An offset distance of 20 mm

from the specimen edge was kept to avoid spurious edge

effects. Figure 2 shows the B-scan images and the corre-

sponding spatial average curves hVðtÞi and third-order

moment curves hV3ðtÞi for each transducer used (A–D). It is

emphasized that the operators jxx0 are used, so that the

waveforms are aligned as seen in Fig. 2. The numbers of

vertical stripes increase because of the longer temporal pulse

duration for the lower-frequency transducers. The time gates

used for calculating SCC curves are shown in red and have

lengths of 3 ls. The backscattering signal found near the red

gated region is seen to be highly dependent on the trans-

ducer (frequency) used. The grain noise appears more regu-

lar (less random) for successively smaller frequencies.

The spatial average of the backscattering signals hVðtÞi
grow with the decrease of kL

�d . The reason why there is non-

zero hVðtÞi resulting from reflections from non-stochastic

features, however, it is difficult to discern exactly what is

contributing. It may come from the transducer bias, the mac-

roscopic anisotropy, or the microstructure that is not statisti-

cally uniform over the region scanned. However, these

reasons cannot explain the frequency dependency well. As

0:1 < kL
�d < 1, the scattering events are located within the

transition between low-frequency Rayleigh and stochastic

scattering. The cause of hVðtÞi is likely associated with the

scattering regime, but it is beyond the scope of this paper.

The shapes of hV3ðtÞi are different from those of hVðtÞi. The

higher-order hV2n�1ðtÞi have similar behaviors to hVðtÞi and

hV3ðtÞi.

B. SCC without time lag

The SCC values without Time Lag can be calculated

based on the aligned waveforms. Figures 3(a1)–3(d1) are

the zeroth-order matrices SCCðs ¼ 0jVx;Vx0 Þ, showing the

relationship between each pair of the backscattering signal

within the time gate. The SCC matrix is symmetric, and it is

TABLE I. The parameters for focused transducers and the corresponding

dimensionless longitudinal wavenumbers and the scattering mean free path.

The spot size or �6 dB beam diameter is estimated as BD(�6 dB)¼ 1.02Fc/

fD, where F is the focal length in water, c is the wave speed in material, fc is

the central frequency, and D is the element diameter (Ref. 33).

No.

Central

frequency

(MHz)

Focal length

in water

(mm)

Element

diameter

(mm)

Spot size

in material

(mm) kL
�d

Mean free

path (mm)

A 14.04 77.01 12.70 0.65 0.68 7.21 6 0.29

B 10.20 77.22 12.70 0.90 0.49 19.93 6 0.99

C 7.11 75.79 12.70 1.27 0.34 69.84 6 3.26

D 4.83 75.51 12.70 1.87 0.23 294.3 6 12.6

FIG. 2. (Color online) B-scan images and the corresponding spatial average

and third-order moment curves after the alignment operation. (a1)–(d1) The

B-scan images using transducer A to D. (a2)–(d2) The spatial average

curves using transducer A to D. The red lines indicate the time gate used for

calculating SCC. Note that the amplitude ranges of (a1)–(b2) are different

from those of (c1)–(d2).

FIG. 3. (Color online) The zeroth- and

first-order SCC matrices. (a1)–(d1)

zeroth-order matrices SCC(0jVx,Vx0)

using transducer A to D. (a2)–(d2)

first-order matrices SCC(0jVx,Vx0,hVi)
using transducer A to D.
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a band matrix whose main diagonal corresponds to identical

waveforms at x¼ x0 and, thus, equal to 1. Even when the

separation distance between waveforms is 60 mm, Fig. 3(d1)

indicates a strong correlation with SCC above 0.9. The

strong correlation at large separation distance indicates that

the spatial average is dominating the correlation over the

microstructural heterogeneity. Thus, it is demonstrated that

the traditional zeroth-order SCC includes more than micro-

structural effects on the signals. However, the calculation of

the first-order matrices SCCð0jVx;Vx0 ; hViÞ seen in Figs.

3(a2)–3(d2) does show a decrease in correlation as a func-

tion of separation distance even when hVðtÞi is dominant.

Comparisons from the results in Fig. 3 are highly qualita-

tive. Next step is to quantify the effects of hVðtÞi and the

resultant correlation estimates.

To illustrate the role of high-order SCC quantitatively,

the SCC curves at s ¼ 0 can be calculated as a function of

lateral separation jx� x0j. At a specific lateral separation

jx� x0j, there are many pairs of signals as shown in Fig. 3.

Therefore, to minimize error, the average value of SCC is

calculated from 150 random pairs of signals for each lateral

separation. The results for the traditional and present SCC

curves are shown in Fig. 4. One zeroth-order SCC [Eq. (1)],

two first-order SCC [Eq. (3)], and one second-order SCC

[Eq. (4)] are compared.

For the high frequency transducer A, there is hVðtÞi � 0,

so that the zeroth-order SCC is close to the higher-order SCC

curves. However, with the decease of frequency for trans-

ducers B–D, the zeroth-order SCC tends to significantly devi-

ate from the others. When hVðtÞi displays a large value as

seen in Fig. 2(d2), the variation of SCC curves is dramatic as

seen in Fig. 4(d). The effect of hV3i on SCCð0jjx� x0j; hV3iÞ
are weaker than those of hVi on SCCð0jjx� x0j; hViÞ. This is

supported by the closeness between SCCð0jjx� x0j; hViÞ and

SCCð0jjx� x0j; hVi; hV3iÞ. Even though the first- and second-

order SCC curves closely agree, it is believed to be important

to check the second-order curve before deciding to truncate at

the first-order. The differences between two SCC curves are

given by the average ‘1-norm �‘1ðA;BÞ ¼ ð1=nÞ
Pn

i¼1 jAi

�Bij where A and B are two different. Good convergence per-

formances of first-order SCC are shown in Table II. There are

minimal deviations between the first- and second- order SCC

as seen in the last column of Table II. Thus, the first-order

SCC without time lag appears promising for application.

C. SCC with time lag

Equations (1), (3), and (4) are spatial correlation coeffi-

cients defined in a cross-correlation form, which permits

observing temporal or phase effects on the SCC. Moreover,

the influences of partial correlation analysis on the time lag

should be considered. For example, Fig. 5 shows a compari-

son between SCCðsjVx;Vx0 Þ and SCCðsjVx;Vx0 ; hViÞ using

transducer D. In this example, a pair of waveforms denoted

as Vx and Vx0 is used with separation jx� x0j chosen as

30 mm. The strong correlations present in SCCðsjVx;Vx0 Þ
result from non-random effects in the signals, the hVðtÞi
influence. Including the effects of hVðtÞi in the correlation

SCCðsjVx;Vx0 ; hViÞ produces an SCC that contains weaker

correlations, which more closely resemble what one would

expect from a random microstructure.

Matrices of the maximum time lag smax from the

zeroth-order SCC are shown in Figs. 6(a1)–6(d1) and from

the first-order SCC in Figs. 6(a2)–6(d2). The matrices of

smaxðVx;Vx0 Þ and smaxðVx;Vx0 ; hViÞ are skew-symmetric

with zeros on the main diagonal. The skew-symmetric fea-

tures are caused by the relativity of time lag and time lead.

In Figs. 6(a1)–6(d1), the fluctuation decreases as the central

frequency of transducer decreases. The standard deviation

FIG. 4. (Color online) The relationships between the traditional SCC curves

and present SCC curves (a)–(d) using transducer A to D.

TABLE II. The average ‘1-norm between SCC curves without time lag (30

realities for each transducer). The units are both 1.

No.

SCC(0jjx-x0j) vs

SCC(0jjx-x0j,hVi,hV3i)
SCC(0jjx-x0j,hV3i) vs

SCC(0jjx-x0j,hVi,hV3i)
SCC(0jjx-x0j,hVi) vs

SCC(0jjx-x0j,hVi,hV3i)

A 0.04572 6 0.00011 0.00805 6 0.00005 0.00132 6 0.00004

B 0.36116 6 0.00021 0.10376 6 0.00015 0.00133 6 0.00002

C 0.76006 6 0.00052 0.55937 6 0.00044 0.00097 6 0.00002

D 0.97589 6 0.00055 0.91210 6 0.00052 0.00362 6 0.00006

FIG. 5. (Color online) Comparison between the zeroth- and first-order spa-

tial cross-correlation (transducer D).
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values of Figs. 6(a1)–6(d1) are 0.6150, 0.1492, 0.0071, and

0.0039 ls, respectively. This suggests the signals have a

fixed phase when using smaxðVx;Vx0 Þ. However, in Figs.

6(a2)–6(d2), the standard deviation values are 0.6163,

0.6438, 0.5815, and 0.3739 ls, respectively. The random-

ness of phase increases significantly when considering

smaxðVx;Vx0 ; hViÞ. This result is a reasonable expectation

because it follows the “white noise” assumption of the ran-

dom mirror approach from Fink and his co-workers,12,23,24

and the “random phase” assumption of the independent scat-

tering model from Thompson and his co-workers.1,8,34

Since the matrix of smax is skew-symmetric, the magni-

tude of the time shift is observed, which is the absolute value

of either the time lag or lead time. Similarly, the MTS curve is

a function of lateral separation jx� x0j. Figure 7 shows the

MTS curves, including jsmaxðjx� x0jÞj, jsmaxðjx� x0j; hV3iÞj,
jsmaxðjx� x0j; hViÞj, and jsmaxðjx� x0j; hVi; hV3iÞj. The

results show that the MTS curves resemble sigmoid func-

tions. Thus, they are divided in stage I, II, and III, where the

curves are nearly stable at stage III and stage I as seen in the

insets of Figs. 7(b) and 7(c), and a sharp transition stage II is

generally present between the initial and final stages. When

the central frequency decreases, the stage I lengthens, the

slope of stage II decreases, and the arrival of stage III post-

pones consequently. Meanwhile, the stable value of stage III

decreases. For the zeroth-order case, the jsmaxðjx �x0jÞj is a

sigmoid function when transducer A or even B is used.

However, the initial stage tends to be reduced at low fre-

quency. The first- and second-order curves always keep the

feature of Stage I well. The convergence properties are

given in Table III, using the average l1-norm between the

MTS curves. The first- and second-order MTS curves

matches with each other as expected (<0.02 ls).

D. Effects of experimental conditions on SCC

The experimental conditions can affect the statistics of

spatial cross-correlation in many aspects. Here, concern the

effects of signal alignment and the sampling rate on the

SCC. First, Figs. 8(a)–8(c) show the B-scan images of trans-

ducer D under different alignment conditions. Set the align-

ment operator as jxx0 , 0, and �3jxx0 , respectively. It can be

seen in Fig. 8(b) that the signals are slightly unaligned

without using jxx0 , but this happens naturally. The top and

bottom surfaces of the specimen might be rough and non-

parallel, and the transducer might not be perfectly normal.

By contrast, there is an artificial nonalignment in Fig. 8(c).

The maximum offsets of the front-wall echo in Figs.

8(a)–8(c) are 0.00, 0.08, and 0.20 ls, respectively. Then,

Fig. 8(d) shows the spatial average curves hVðtÞi under these

three conditions. The spatial average curves are degenerated

in the case without using jxx0 and using �3jxx0 .

The zeroth- and first-order curves SCCð0jjx� x0jÞ and

SCCð0jjx� x0j; hViÞ, and the MTS curves jsmaxðjx� x0jÞj
and jsmaxðjx� x0j; hViÞj under different alignment

FIG. 6. (Color online) The matrices of

the zeroth- and first-order maximum

time lag. (a1)–(d1) Zeroth-order, using

transducer A to D. (a2)–(d2) First-

order, using transducer A to D.

FIG. 7. (Color online) The relationships between the traditional MTS curves

and present MTS curves (a)–(d) using transducer A to D.

TABLE III. The average ‘1-norm between the MTS curves (30 realities for

each transducer). The units are both ls.

No.

jsmax(jx-x0j)j vs

jsmax(jx-x0j,hVi,hV3i)j
jsmax(jx-x0j,hV3i)j vs

jsmax(jx-x0j,hVi,hV3i)j
jsmax(jx-x0j,hVi)j vs

jsmax(jx-x0j,hVi,hV3i)j

A 0.0204 6 0.0007 0.0127 6 0.0005 0.0109 6 0.0006

B 0.4185 6 0.0016 0.0825 6 0.0012 0.0113 6 0.0004

C 0.3866 6 0.0018 0.3773 6 0.0018 0.0156 6 0.0005

D 0.1861 6 0.0012 0.1859 6 0.0012 0.0145 6 0.0004
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conditions are shown in Fig. 9. When signals become

unaligned, the zeroth-order SCC curves decrease and the

zeroth-order jsmaxj curves become greater, since the back-

scattering signals now have additional incongruences. The

fluctuation levels also become increased and several humps

appear. However, our specimen just has one length scale.

Thus, the humps should correspond to the level of misalign-

ment. Unfortunately, higher-order SCC and jsmaxj does not

overcome the misalignment. One of the reasons is that

higher-order statistics are sensitive to the spatial average

curves. Thus, the alignment operator for in Eq. (1) is crucial

for the spatial average curve and the statistics of high-order

SCC.

It is also interesting to show the effects of the sampling

rate on measured correlations. Consider the waveform data

from transducer D after signal alignment. An excessive sam-

pling rate of 200 MHz for a 4.83 MHz (nominally 5 MHz)

transducer will produce redundant data in time domain. Let

Fs be the sampling rate of the discrete acquisition. Thus,

each waveform is resampled at Fs¼ 50, 20, and 10 MHz

sampling rate, respectively. The time gates used in the anal-

ysis remain 3 ls. Consequently, the number of discrete sam-

pling points within the gate are reduced from 600 to 150,

60, and 30 sampling points, respectively.

In Fig. 10, a comparison between SCCð0jjx� x0jÞ,
jsmaxðjx� x0jÞj, SCCð0jjx� x0j; hViÞ, and jsmaxðjx
�x0j; hViÞj for the different sampling rates is given. When

the sampling rate is greater than 20 MHz, the SCC curves

agree with each other. However, when the sampling rate is

10 MHz, discrepancies appear. The discrepancy results from

the sampling rates inability to cover the bandwidth of trans-

ducer D, whose �6 dB bandwidth is from 3.03 to 6.62 MHz

(74.3% bandwidth). However, the zero-order MTS curves are

deeply dependent on the sampling rate as shown in Fig. 10(b)

and its inset. When the sampling rate is 10 or 20 MHz,

jsmaxðjx� x0jÞj are almost zero. The reason might be that the

fluctuations of jsmaxðjx� x0jÞj is much smaller than the sampling

interval Dts ¼ 1=Fs, when using transducer D and there are non-

zero hVðtÞi. Actually, the fluctuations are only �0.003 ls, but

the sampling intervals are Dts¼ 0.020, 0.050, 0.100 ls

when Fs¼ 50, 20, and 10 MHz, respectively. Therefore,

when using low sampling rate, the temporal resolutions

are not enough to measure these fluctuations. Contrarily,

the first-order MTS curves that have the magnitudes

�0.300 ls are nearly not affected by the sampling rate

until it is lower than 20 MHz as shown in Fig. 10(d).

From Fig. 10, it is evident that the 200 MHz sampling

rate does produce redundant data points, especially for cal-

culating the first-order SCC curves and MTS curves. The

reason why taking the sampling rate into account is that the

redundancy influences the independent data assumption in

Eq. (6). Thus, the degrees of freedom in the time domain

should be reduced. This reduction in degrees of freedom

impacts the Student’s t-test when calculating the UTD

FIG. 8. (Color online) B-scan images

of transducer D under different align-

ment conditions. (a) With jxx0, (b)

without jxx0, (c) with �3jxx0, (d) corre-

sponding spatial average curves of

panels (a) to (c).

FIG. 9. (Color online) The effects of signal alignment on zeroth- and first-

order SCC curves and MTS curves. (a) SCC(0jjx-x0j), (b) jsmax(jx-x0j)j, (c)

SCC(0jjx-x0j,hVi), (d) jsmax(jx-x0j,hVi)j.

FIG. 10. (Color online) The influences of the sampling rate on the zero- and

first-order SCC and MTS curves. (a) SCC(0jjx-x0j), (b) jsmax(jx-x0j)j, (c)

SCC(0jjx-x0j,hVi), (d) jsmax(jx-x0j,hVi)j.
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indicator. In terms of Fig. 10, a factor of 4 compared to the

central frequency of each transducer is applied to choose the

sampling rate.

E. Indicator analysis for application

A total of six indicators in four categories are proposed

to evaluate the first-order SCC curve and the MTS curve.

Considering the backscattering data from transducer B as an

example, SCCð0jjx� x0j; hViÞ and the least square fitting of

jsmaxðjx� x0j; hViÞj are shown in Fig. 11, and the indicators

of these two kinds of curve are also shown. The NSCL value

is determined by the intersection of the first-order SCC

curve and the line SCC ¼ 1=e ¼ 0:368. To obtain the UTD

value, a¼ 95% is set to calculate the upper bound, and the

intersection of the first-order SCC curve and the upper

bound gives the UTD. In the same way, the first intersection

of the first-order SCC curve and the positive axis give the

FZP. Their exact values are given by the spline interpola-

tion. Note that the NSCL, UTD, and FZP values are

extracted from the experimental curve, whereas the EODFs

are extracted from the fitting curve using the Eq. (11).

Furthermore, the results of indicators analysis are

shown in Table IV. The indicators of SCCð0jjx� x0j; hViÞ
and jsmaxðjx� x0j; hViÞj work well even when the spatial

average curves are dominant. It can be seen that the NSCLs

are comparable to the �6 dB beam diameter (in Table I,

except for the case using transducer D.

The UTDs are almost twice the NSCLs, as a¼ 95%.

The FZPs are the longest, but they are all less than the ele-

ment diameters of the transducer, not to mention the mean

free paths (in Table I. The first EODFs are the smallest, and

second EODFs and third EODFs are comparable to the

NSCLs and UTDs, which shows the self-consistency of this

paper. Meanwhile, the indicators analysis of the zeroth-

order SCC curves and the MTS curves are also shown in

Table IV. However, the indicators analysis of SCCð0jjx
�x0jÞ and jsmaxðjx� x0jÞj fail in most of the cases. For trans-

ducer B, NSCL is the remaining indicator that can be

obtained from zeroth-order SCC, but it is 6.79 times larger

than the one from first-order SCC.

To this point, a set of quantitative indicators have been

given to analyze the SCC curve and MTS curve. Now, they

are compared in a practical application. As an example,

these indicators can be utilized to help guide experimental

backscattering measurements based on spatial variance

curves. Such measurements have been used previously to

evaluate the grain size1–3 and detect microflaws.4–6 A spatial

variance curve can be given by

U tð Þ ¼ 1

N

XN

i¼1

V2
i tð Þ

� �
� 1

N

XN

i¼1

Vi tð Þ
" #2

: (12)

Different spatial variance curves are calculated with the lat-

eral separations that come from the rounded-off values of

FIG. 11. (Color online) The first-order

SCC curve and the least square fitting

of MTS curve (using transducer B) and

different kinds of indicators. (a)

SCC(0jjx-x0j,hVi), (b) jsmax(jx-

x0j,hVi)j.

TABLE IV. The results indices analyses. The sign “—” in the table means that this computation fails. Zeroth-order means SCC(0kx � x0j) and first-order

means SCC(0kx � x0j, hVi). The upper bounds are 0.123, 0.151, 0.174, and 0.214, for transducer A to D, respectively.

No.

NSCL (mm) UTD (mm) FZP (mm)

Zeroth-order First-order Zeroth-order First-order Zeroth-order First-order

A 0.633 0.601 1.483 1.094 5.327 3.878

B 5.663 0.834 — 1.523 — 5.791

C — 1.348 — 2.430 — 6.508

D — 2.916 — 4.687 — 8.926

No.

First EODF (mm) Second EODF (mm) Third EODF (mm)

Zeroth-order First-order Zeroth-order First-order Zeroth-order First-order

A 0.426 0.383 0.732 0.657 1.100 0.988

B — 0.618 — 1.060 — 1.593

C — 0.893 — 1.532 — 2.302

D — 1.834 — 3.148 — 4.730
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NSCL, UTD, FZP, EODF1, EODF2, and EODF3, and they

are denoted as UNSCLðtÞ, UUTDðtÞ, UFZPðtÞ, UEODF1ðtÞ,
UEODF2ðtÞ, and UEODF3ðtÞ, respectively. Transducer B is still

used for the comparation here, and each spatial variance

curve is given by 11 waveforms (limited by the size of the

specimen and a largest lateral separation as 5.8 mm). To

evaluate the equivalency of two variance curves, the F-test

for the ratio curve of variance is recommend.35 The upper

bound and lower bound of the ratio curve in Figs.

12(a2)–12(e2) are given by the F-test. When the following

condition is true, the F-test is passed

Pr

(
F1�a0

2
NA � 1;NB � 1ð Þ < UA tð Þ

UB tð Þ

� F1þa0
2

NA � 1;NB � 1ð Þjt0 < t � t1

)
	 a0; (13)

where the superscripts A and B are the kinds of the lateral sepa-

rations, and NA and NB are the corresponding number of wave-

forms. a0 is the confidence level of the F-test. Equation (13)

means when the probability that the ratio curve selected by

the time gate comes within the bounds is larger than the

confidence level, one can judge that UAðtÞ () UBðtÞ in a

statistical sense. Two additional points are highlighted, (1)

the precondition for the F-test is that the waveforms used to

calculate these two variance curves are independent; (2)

UAðtÞ and UBðtÞ approach to the same value of population

variance when NA !1 and NB !1, because the speci-

men is assumed statistically homogeneous and has a consis-

tent grain size. Therefore, when NA and NB are not

sufficiently large, the difference between UAðtÞ and UBðtÞ
can be ascribed to the dependence of the data.

The confidence level a0 of the F-test is set as 95%, and

the numbers of waveforms are NA ¼ NB ¼ 11. The largest

lateral separation FZP is used as the reference by setting the

denominator as UBðtÞ ¼ UFZPðtÞ. Figure 12 shows the spatial

variance curves UðtÞ with different kinds of lateral separations

and their ratios. There are no intuitive deviations between two

spatial variance curves in Figs. 12(a1)–12(e1). However, the

probabilities about the ratio curve in Eq. (13) are measured as

94.3%, 96.2%, 92.8%, 94.8%, and 98.0% under the lateral

separation conditions using NSCL, UTD, EODF1, EODF2,

and EODF3, respectively. Thus, the F-tests are passed when

using UTD or EODF3 as the lateral separation. Then, we have

UUTDðtÞ () UFZPðtÞ and UEODF3ðtÞ () UFZPðtÞ. In other

words, if the scanning step is larger than a limit, the finally

obtained UðtÞ are always equivalent and using larger scanning

step cannot supply more information for calculating UðtÞ.
Since UTD and EODF3 are nearly smaller than half of FZP, it

is more convenient to measure UUTDðtÞ and UEODF3ðtÞ than

UFZPðtÞ, particularly when the size of specimen is small.

Thus, the UTD and EODF3 are good estimations for the

smallest scanning step in the ultrasonic scattering measure-

ment to get uncorrelated backscattering signal. Notice also

that since the NSCL from zero-order SCC (�5.7 mm) is close

to the FZP from first-order SCC (�5.8 mm) in our case, the

zeroth-order SCC overestimates the scanning step obviously.

Additionally, to illustrate the relationship between the

loss of correlation and the lateral separation given by the

rounded-off values of the indicators, the backscattering sig-

nals from transducer B are shown in Fig. 13(a). The refer-

ence signal in blue is from transducer position x, and the

signal in red is from varying transducer position x0 based on

different indicators. The dotted line in black is the spatial

average curve hVðtÞi. It can be seen that there is an average

tendency before 69.5 ls, and the all signals follow this ten-

dency. However, taking the average curve as a middle line,

the variations are significant when using UTD, or EODF3,

FIG. 12. (Color online) The spatial variance curves with different kinds of

lateral separations and their ratios. The red lines are the gates. The green

dashed lines and the purple dashed-dotted lines are corresponding to the

upper bounds F0.975(10,10) and the lower bounds F0.025(10,10). (a1, a2)

UNSCL and UFZP, and their ratio (b1, b2) UUTD and UFZP, and their ratio (c1,

c2) UEODF1 and UFZP, and their ratio (d1, d2) UEODF3 and UFZP, and their

ratio (e1, e2) UEODF3 and UFZP, and their ratio.
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or FZP. Especially, for FZP, two signals are almost ortho-

metric compared with the average curve as SCCð0jVx;Vx0 ;
hViÞ ¼ �0:039. But Fig. 12 shows it is enough to say two

signals are statistically uncorrelated when using UTD and

EODF3.

Figure 13(b) shows the effects of time shift on the cor-

relations based on transducer B and FZP. Not only the red

line is shifted, but also the black line is shifted to get the par-

tial cross-correlation coefficient. With a �0.2 ls time lag,

two signals are negatively correlated and the zero-order

SCC meets its maximum amplitude; with a �0.4 ls time

lag, two signals are positively correlated and the first-order

SCC meets it maximum amplitude.

IV. SUMMARY

In this paper, the partial cross-correlation analysis in

statistics is introduced to calculate the spatial correlation

coefficient of ultrasonic backscattering signals. The SCC is

generalized from zeroth-order to any higher-order case to

include the effects of confounding variables. Moreover,

several indicators are defined to quantify the SCC curve

without time lag and the maximum time shift (MTS) curve.

They are used in ultrasonic applications to reveal the small-

est spatial scanning step during scattering measurements

that leads to uncorrelated backscattering signals.

For the experimental configuration considered, the

results show that the first-order SCC converges to the

second-order SCC well. Thus, the spatial average curve is

the leading order of the odd-order moments. However, it is

recommended that, in general, the higher-order SCC should

be checked before deciding to truncate. The effects of exper-

imental conditions on the SCC are also shown. To get a

valid measure of the SCC, the waveforms should be aligned.

The SCC and MTS curves broke down even for a variation

of the front-wall echo as small as 0.08 ls. Additionally, the

required sampling rate is modest to measure the SCC and

MTS curves. In the investigated cases, sampling rates as low

as 4� the central frequency were able to resolve accurate

SCC and MTS curves.

Finally, the indicator analysis shows that the values of

UTD, from Eq. (7), and EODF3, from Eq. (11), are

FIG. 13. (Color online) The relation-

ship between the loss of correlation

and the lateral separations (a), and the

effect of time shift on the correlation

(b). The dashed line in black is the spa-

tial average curve hVi.
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approximately equal. However, the UTD is impacted by the

confidence level of the Student’s t-test. In contrast, EODF3

represents the MTS curve that approaches a stable value

after this lateral separation. Both the indicator UTD or

EODF3 can answer the fundamental problem of how far two

transducer positions should be to receive statistically uncor-

related backscattering signals.

In the future, the smallest size of specimen for micro-

structural characterization is going to be determined by

using the first-order SCC and the indicator UTD or EODF3.

In addition, it should be noted that the zeroth-order SCC is

of value. The zeroth-order SCC and higher-order SCC can

supplement each other to accomplish the same task like

microstructural characterization or microflaw detection in

the future. The speckle noise within an ultrasonic image36

may also be interpreted as well.
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