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ABSTRACT 

 

Compartmentation of proteins and processes is a defining feature of eukaryotic cells. The 

growth and development of organisms is critically dependent on the accurate sorting of proteins 

within cells. The mechanisms by which cytosol-synthesized proteins are delivered to the 

membranes and membrane compartments have been extensively characterised.  However, the 

protein complement of any given compartment is not precisely fixed and some proteins can 

move between compartments in response to metabolic or environmental triggers. The 

mechanisms and processes that mediate such relocation events are largely uncharacterized. 

Many proteins can in addition perform multiple functions, catalyzing alternative reactions or 

performing structural, non-enzymatic functions. These alternative functions can be equally 

important functions in each cellular compartment. Such proteins are generally not dual targeted 

proteins in the classic sense of having targeting sequences that direct de novo synthesised 

proteins to specific cellular locations. We propose that redox post-translational modifications 

(PTMs) can control the compartmentation of many such proteins, including antioxidant and/or 

redox associated enzymes. 

  



 

 

INTRODUCTION 

Metabolic regulation is shaped by compartmentalization in all cells. Compartmentalization is 

required to achieve the stable metabolic states that underpin different cell fates (Harrington et 

al., 2013). Within this context, many proteins perform multiple apparently unrelated functions, 

often in different locations. These are often called moonlighting proteins, the classic definition 

of which is proteins with two or more different functions, excluding those arising from gene 

fusion, homologous non identical proteins, splice variants, proteins with different post 

translational modifications (PTMs)  and those with a single function but active in different 

locations or on different substrates (Jeffery, 1999). However, the number and diversity of 

proteins that either can have different functions in the same intracellular compartment or that 

can move from one compartment to another to fulfil different functions has increased 

enormously in recent years, aided by development and application of bioinformatic (Chapple 

et al., 2015) proteomic and cell imaging techniques (Chong et al., 2015; Thul et al., 2017).  

Such studies have revealed that up to 50% of cellular proteins exist in multiple subcellular 

localisations, which can change in response to appropriate triggers (Chong et al., 2015), such 

as disease states like cancers in animals (Min et al., 2016) and stress responses in plants (Sun 

et al. 2018) . Several metabolic enzymes are known to move into the nucleus affecting 

epigenetic modifications (Boukouris et al., 2016) and histone expression (He et al., 2013) 

providing a link between metabolism and gene expression. Plant organellar proteins such as 

MUTS HOMOLOG1 (MSH) 1, which is a DNA-binding nucleoid protein, function in the 

creation of epigenetic stress memories in plants that are associated with organellar redox 

changes (Virdi et al., 2015; Xu et al., 2012). Whilst many studies have been conducted on yeast 

and mammalian cells, there is also incontrovertible evidence for proteins with multiple, largely 

unrelated functions in plants (Table I). For example, recent studies have identified a number 

of metabolic enzymes as members of the RNA binding protein repertoire (Marondedze et al., 

2016).  

It is important to note that not all proteins that move compartments exhibit moonlighting 

functions, and not all proteins with such properties move compartments. For example, L-

galactono-1, 4-lactone dehydrogenase has dual functions in plant mitochondria. As an enzyme 

it is responsible for the synthesis of ascorbic acid, and as a chaperone it is essential for the 

assembly of respiratory complex I (Schimmeyer et al., 2016). Similarly plastid NAD dependent 

malate dehydrogenase has a non-enzymatic function stabilising the FtsH12 component of the 

inner envelope AAA ATPase (Schreier et al., 2018). Proteins such as peroxiredoxins (PRX) 



 

 

that readily undergo redox PTMS in their roles as ROS scavengers and oxidases have evolved 

to support multiple functions (acting as peroxidases, signalling proteins and chaperones) under 

optimal and stress conditions (Chen et al., 2018). Like other redox proteins, whose functions 

are supported by thiol-based biochemistry, PRX can interact with multiple cellular partners in 

animals and plants, from thioredoxins (TRX) to transcription factors (Liebthal et al., 2018).   

 

Regulated protein relocation between the different compartments of the cell provides a robust 

and flexible mechanism for metabolic, genetic and epigenetic regulation in response to 

metabolic stimuli and environmental cues. Such responses often entail shifts in cellular redox 

homeostasis that lead to both oxidative and reductive events that shift protein functions and 

compartmentation.  One important paradigm for such redox-related changes in plants is Non-

expresser of pathogenesis related proteins (NPR)1, which is a master regulator of salicylic acid 

(SA)-mediated systemic acquired resistance (SAR) leading to broad-spectrum disease 

resistance in plants (Mou et al., 2003). NPR1 is similar to the immune co-factor I k B and the 

transcription factor NF-k B in mammals, suggesting that there is conservation  of  immune 

responses (Sun et al., 2018).  In the cytosol, NPR1 exists in a large disulfide-bonded oligomeric 

complex. Stress-induced SA accumulation leads to reduction of the intermolecular disulfide 

bonds within the complex by TRX (Tada et al., 2008) and release of the NPR1 monomers. 

These are then phosphorylated in the cytosol and imported into the nucleus (Mou et al., 2003). 

Further phosphorylation of NPR1 in the nucleus promotes interactions with transcription 

factors such as WRKY and TGA in a redox-dependant manner leading to the expression of PR 

genes. Other proteins that move from the cytosol to the nucleus upon perturbation of redox 

homeostasis are known in yeast. The AP-1-like transcription factor (YAP1), which a member 

of the basic leucine zipper protein family (bZIP), translocates when oxidized from the cytosol 

to the nucleus, where it activates genes encoding oxidative stress tolerance proteins (Kuge et 

al., 1997), while the enzyme Superoxide Dismutase, SOD1, move to the nucleus to moonlight 

as a transcription factor (Tsang et al., 2014). Examples from mammalian cells include NRF2, 

CLK-1, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) reviewed in (Min et al., 

2016; Monaghan and Whitmarsh, 2015). 

A second paradigm is organelle-to-nucleus retrograde signalling pathways that allow cells to 

adapt to changes in metabolic state, often in a redox-dependent manner (Boukouris et al., 2016; 

Monaghan and Whitmarsh, 2015).  In this Expert View, we discuss plant proteins that are 



 

 

known or suspected to move location in the cell to perform alternative activities. We also 

present evidence in support of the hypothesis that redox cues and resulting PTMs not only alter 

the interactome of redox-sensitive proteins but also central to mechanisms that facilitate the 

movement of proteins between compartments.  

 

MECHANISMS OF PROTEIN MOVEMENT IN PLANTS 

ROS triggered post translational modifications (PTMS) 

Reduction-oxidation (redox) processes not only drive cellular energy metabolism but they are 

crucial to cell signalling and communication (Foyer and Allen, 2003). A vast wealth of 

molecular genetic evidence supports the concept that reactive oxygen species (ROS) produced 

by photosynthesis, respiration and other metabolic processes, and by specific enzymes such as 

NADPH oxidases are essential signalling molecules that control plant growth and stress 

responses (Foyer, 2018) (Mhamdi and Van Breusegem, 2018; Schmidt and Schippers, 2015).  

This is achieved by redox-mediated PTMs of the cysteines residues on key proteins involved 

in multiple pathways such as primary and secondary metabolism, cell cycle phytohormone 

metabolism and signalling, gene expression, translation and protein production and transport. 

Chloroplasts, mitochondria and peroxisomes are thus not only the essential sites of metabolic 

energy production and utilization, but also important sources of ROS and other redox regulators 

that influence nearly every aspect of cell biology (Noctor and Foyer, 2016). While cells 

regulate redox processes in a compartment-specific manner, redox PTMs may also be used to 

regulate the movement of proteins between compartments, as described for NPR1 above (Tada 

et al., 2008).  Assessing the protein-protein interactions that are involved in the functions of 

NPR1 and other redox regulated proteins is not only technically challenging but also entails 

considerations of the inter-dependent facets of redox state and oligomeric structure. Moreover, 

ROS and redox cues modify microtubule orientation and behaviour within plant cells (Dang et 

al., 2018), as well as the operation of protein import machineries (reviewed in (Bolter et al., 

2015; Ling and Jarvis, 2015).  

 

Redox PTMs on protein cysteines are formed enzymatically or non-enzymatically via 

promiscuous reactive species, including ROS, reactive nitrogen species (RNS), and other 

radicals or electrophilic lipids. There is growing appreciation that redox PTMs are site-specific, 



 

 

governed by the microenvironment of the cysteine residues, and that they are subject to 

temporal and spatial control. Studies using small molecule and protein-based fluorescent 

sensors have shown that eukaryotic cells tightly control the location of reactive species, 

proteins and redox state across compartments (Kaludercic et al., 2014). However, rather than 

being fixed, this balance is flexible and responsive to metabolic and environmental controls. 

For example, it is shifted during the ageing processes in the model organism C. elegans 

(Kirstein et al., 2015). As in other organisms, redox PTMs control the activities and binding 

partners and probably also the compartmentation of many plant proteins, including antioxidant 

and/or redox associated enzymes (Box I), as discussed in detail below. 

 

Protein Import and Export 

The molecular mechanisms of protein import into mitochondria, chloroplasts and peroxisomes 

have now been established and the importance of the accuracy of these processes underscored 

by the realization that defects result in human disease. Recent work has revealed that protein 

import can be regulated at several levels; from modification of individual precursor proteins to 

prevent or alter their targeting, to regulated interaction with binding partners, and modification 

of the import apparatus by phosphorylation or ubiquitination to alter its activity (Bolter et al., 

2015; Harbauer et al., 2014; Ling et al., 2012) (Figure 1). Such processes allow the location 

of proteins to change in response to changes in cellular state. For example, in C. elegans the 

transcription factor ATF1 is imported into mitochondria and degraded by a Lon protease but, 

when import is decreased, ATF1 relocates to the nucleus and induces an unfolded protein 

response (Nargund et al., 2012). In mammals, import of the protein catalase into the 

peroxisome is redox regulated and under stress conditions the peroxisome import receptor 

PEX5, retains catalase in the cytosol (Walton et al., 2017). Intriguingly, an old observation that 

NADPH but not NADH inhibits protein import hints at the importance of redox balance for 

protein import into plant peroxisomes as well (Pool et al., 1998). Retrograde signalling from 

organelles to the nucleus to integrate cellular activities is well established, and modulation of 

chloroplast import activity is important in response to biotic and abiotic stress (de Torres 

Zabala et al., 2015; Ling and Jarvis, 2015). 

Proteins are exported from mitochondria, chloroplasts and peroxisomes and the endoplasmic 

reticulum (ER) (Figure 1). The best characterised mechanisms of protein export are involved 



 

 

in protein degradation and in organelle quality control via the cytosolic Ubiquitin-proteasome 

system (UPSl (Bragoszewski et al., 2017; Kao et al., 2018; Ling and Jarvis, 2016). In 

peroxisomes, for example, an ER associated degradation (ERAD)-like system exports the 

import receptor PEX5 from the peroxisome membrane to perform further rounds of import.  

PEX5 cycling between peroxisome and cytosol is regulated by ubiquitination of a conserved 

Cys, and in mammalian cells reduced glutathione can de-ubiquitinate the receptor (Grou et al., 

2009). Although not shown experimentally, this Cys is conserved in plant PEX5 proteins 

suggestive of a similar mechanism operating.  Mutants in this PEX 5 re-export system in 

Arabidopsis also fail to degrade some peroxisome matrix proteins suggesting they are exported 

for degradation  (Burkhart et al., 2013). The release of transcription factors from cellular 

membranes by regulated proteolysis is also a well-known response to stress in both animals 

and plants (Seo et al., 2008; Sun et al., 2011). Potentially, protein export from organelles and 

retargeting (rather than degradation) could provide a means of signalling and genetic 

regulation. To date this has only been proposed/described for a handful of proteins and the 

mechanism(s) by which this occurs and is regulated are still obscure (Foyer et al., 2014). The 

next section presents proteins which are candidates for regulated relocation. 

 

Candidates as a paradigm for redox regulated movement in plants 

 

GAPDH is a quintessential example of a moonlighting protein (Sirover, 2012, 2014). Several 

GAPDH isoforms exist in different subcellular localizations in plants (Holtgrefe et al., 2008).  

In animals, it has multiple functions in addition to its classic role in glycolysis, such as DNA 

stability and control of gene expression, autophagy and apoptosis. Both the activity and 

localization of the plant cytosolic GAPDH isoform (GapC) are controlled by cellular redox 

state  (Bedhomme et al., 2012).  Redox PTMs on the cytosolic GAPDH protein in animals 

block enzyme activity and promote novel cell signalling and transcription functions in the 

nucleus (Yang and Zhai, 2017) (Zaffagnini et al., 2013). The functions of GAPDH in the nuclei 

of plant cells are not clear, but nuclear GAPDH may have a role as a coactivator for gene 

expression (Hildebrandt et al., 2015). Since GapC is also localized in the nucleus, it is 

suggested that redox modification facilitates transfer to the nucleus in plants as it does in 

animals (Ortiz-Ortiz et al., 2010).  However, the mechanism of nuclear translocation of GapC 

is unknown although it is thought to involve S-sulfhydration, a process that reversibly regulates 

the function of this protein, in a manner similar to that described in mammalian systems (Aroca 



 

 

et al., 2015) . However, GapC undergoes S-nitrosylation, S-glutathionylation, S-sulfhydration, 

S-sulfenylation as well as other modifications that all occur on the same cysteine residue (Aroca 

et al., 2017; Bedhomme et al., 2012; Lindermayr et al., 2005; Waszczak et al., 2014). Thus, 

how each type of PTM modifies GapC to shift location and/or alternative instigate non-

metabolic functions remains to be determined.  

Catalase (CAT) is a peroxisomal enzyme whose import in mammals is redox-regulated 

(Walton et al., 2017) and in yeast is dependent on carbon source (Horiguchi et al., 2001). In 

plants it is classically known as a peroxisomal enzyme but recent evidence suggests that the 

compartmentation of this central antioxidant enzyme may be more dynamic than the literature 

acknowledges. The role of CAT as a central ‘redox guardian’ is well established (Mhamdi et 

al., 2012). Plant catalases have been shown to interact with a variety of cytosolic proteins 

including calmodulin (Yang and Poovaiah, 2002), calcium-dependent protein kinase 8 

(CDPK8) (Zou et al., 2015), salt overly sensitive 2 (SOS2) (Verslues et al., 2007), lesion 

stimulating disease1 (LSD1) (Li et al., 2013), receptor like cytoplasmic kinase STRK1 (Zhou 

et al., 2018) and no catalase activity 1 (NCA1) (Hackenberg et al., 2013; Li et al., 2015) 

(Figure 2). All are integral stress signalling proteins. The nca1 mutants, which lack a functional 

CAT, are hypersensitive to abiotic stresses. Similarly, the cat2 mutant of Arabidopsis, which 

lacks the predominant leaf isoform that is essential for the metabolism of H2O2 produced by 

photorespiration, activates a wide range of salicylic acid (SA) and jasmonic acid (JA)-

dependent responses and displays day-length dependent localised programed cell death (PCD) 

and resistance to pathogens (Queval et al., 2010). CAT can also be a target for pathogen 

encoded-effector proteins (Mathioudakis et al., 2013; Murota et al., 2017). The fungal effectors 

PsCRN115 and PsCRN63 both traffic CAT to the nucleus but have opposite biochemical and 

physiological effects. PsCRN115 stabilises catalase, decreases H2O2 and reduces PCD, 

whereas PsCRN63 destabilises catalase increases H2O2 and increases PCD (Zhang et al., 2015). 

How can the interaction of peroxisomal catalase with such a wide variety of cytosolic proteins 

be explained? Some interactions may be occurring during biosynthesis in the cyotsol before 

import into peroixisomes. However the evidence that catalase interacts with different stress 

signalling and PCD proteins potentially provides a mechanism for protein retention and/or 

relocation. We speculate that the location of cytosolically-synthesised CAT is determined by 

competition among different potential-binding partners as a consequence of reduced import 

into peroxisomes and/or increased retention of CAT in the cytosol. While sensitivity of 

peroxisomal protein import to redox status is likely to impact import of all peroxisome proteins, 



 

 

CAT which has a non-canonical targeting signal (Mhamdi et al., 2012) (Rymer et al., 2018) 

may be more sensitive and indeed PEX5, the major peroxisome import receptor, has been 

proposed to specifically retain mammalian catalase in the cytosol under conditions of oxidative 

stress (Walton et al., 2017). This property, combined with the potential to interact with an array 

of cytosolic proteins as shown in Figure 2 could allow swift control of catalase localisation 

between compartments in such a way as to influence various redox signalling pathways. 

WHIRLY1 (WHY1) is a member of a small family of ssDNA binding proteins that are specific 

to the plant kingdom (Desveaux et al., 2005; Desveaux et al., 2004). WHY1 protein is encoded 

in the nuclei and targeted to chloroplasts and the nuclei, the nuclear and processed chloroplast 

forms having the same molecular mass (Grabowski et al., 2008).  Studies using epitope tagged, 

transplastomically-expressed WHY1 provided evidence that WHY1 can move directly from 

the chloroplasts in the nuclei (Isemer et al., 2012): (Foyer et al., 2014). However, the factors 

that trigger and regulate this apparently direct movement of this protein from the chloroplasts 

to the nuclei are unknown. Posttranslational modification of WHY1 in the cytosol can also 

regulate the partitioning between the chloroplasts and nuclei. This change in partitioning is 

regulated by phosphorylation of WHY1 in the cytosol by a serine/threonine SNF1-related 

protein kinase called calcineurin B-Like-Interacting Protein Kinase14 (CIPK14). 

Phosphorylation of WHY1 results in transport to the nucleus (Ren et al., 2017). The 

phosphorylation of WHY1 in the cytosol regulates the intracellular localization with respect to 

leaf development. WHY1 being predominantly in the chloroplasts of young leaves, while in 

senescing leaves the protein is localized mainly in the nucleus (Ren et al., 2017). It is perhaps 

not surprising therefore that WHY1 is a multifunctional protein, with DNA binding properties 

that are relevant in both cellular compartments. WHY1 is important in the regulation of 

chloroplast development, plastome copy number and plastome gene expression, chloroplast 

ribosome formation and chloroplast to nucleus signaling (Comadira et al., 2015; (Comadira et 

al., 2015; Prikryl et al., 2008).  WHY1 promotes ribosomal RNA splicing that is catalysed by 

other factors within plastids (Prikryl et al., 2008). Nuclear WHY1 is involved in the expression 

of senescence and defence genes as well as in the maintenance of telomeres (Yoo et al., 2007).   

ROXY proteins. The glutaredoxins ROXY1 and ROXY2 are found in both the nuclei and 

cytosol (Delorme-Hinoux et al., 2016). ROXY1 interacts with the TGA transcription factor 

called TOPLESS in the nuclei, in a redox-dependent manner, and with four other TGA 

transcription factors. While there is as yet no direct evidence of the redox-regulated movement 



 

 

of ROXY1 between the nucleus and cytosol, there is no other explanation for the dual 

compartmentation of this protein.  

Heat shock factor (HSF) A8: Like other HSFs, HSFA8: is retained in the cytosol in an inactive 

form by interaction with heat shock proteins (HSP)s, which mask the nuclear location signal 

and the oligomerisation domain. In response to oxidative and other stresses HSFs oligomerize 

and are translocated into the nucleus, where they modulate the expression of target genes 

(Scharf et al., 2012). Redox-mediated nucleocytoplasmic shuttling has been characterised 

HSFA8 in Arabidopsis thaliana (Giesguth et al., 2015) Cys24, which is located in the DNA 

binding domain of AtHSFA8 and Cys269, which is located in the C-terminal part of the protein 

act as redox sensors Disulphide bond formation between Cys24 and Cys269 is thought to 

induce release from multi-heteromeric complexes and translocation into the nucleus (Giesguth 

et al., 2015) 

Membrane bound transcription factors. Membrane located proteins can be cleaved from 

their membrane anchor in response to an appropriate signal to release a soluble domain that 

can be relocated (Figure 1). Often these proteins function as transcription factors once liberated 

from the membrane. ANAC013 and ANAC017 encode Arabidopsis transcription factors 

belonging to the NON APICAL MERISTEM/ARABIDOPSIS TRANCRIPTION ACTIVATION 

FACTOR/CUP SHAPED COTYLEDON (NAC) family. These transcription factors mediate 

ROS-related retrograde signalling originating from mitochondrial complex III. Both proteins 

are anchored to the endoplasmic reticulum membrane. They were identified via one hybrid 

assays as binding to a conserved cis acting regulatory sequence termed the mitochondrial 

dysfunction motif (MDM) which mediates mitochondrial retrograde regulation (MRR) during 

oxidative stress (De Clercq et al., 2013). GFP-ANAC013 was partially processed and nuclear 

localised, but while difficult to detect there was a suggestion that the full length protein is ER 

targeted (De Clercq et al., 2013).  ANAC017 was also identified in a screen for loss of response 

to mitochondrial dysfunction (Ng et al., 2013). It is targeted to the ER and dual tagging 

experiments showed it is cleaved upon antimycin A treatment which inhibits the mitochondrial 

electron transport chain at complex III. The N terminal part of ANAC017 locates to the nucleus 

whilst the C terminal part remained ER associated. ANAC017 function was essential for 

hydrogen peroxide mediated stress signalling (Ng et al., 2013). Upon perception of redox 

signals, ANAC013 and ANAC017 are released from the ER and translocated to the nucleus, 

where they activate MDS genes such as alternative oxidases (AOXs), SOT12, and ANAC013. 



 

 

The latter provides positive feedback regulation of the signalling pathway with enhancement 

of the signal. The ROS-dependent signalling pathways from chloroplasts and mitochondria 

merge at RADICAL-INDUCED CELL DEATH1 (RCD1), a nuclear protein that is suggested 

to suppress the activities of the ANAC013 and ANAC017 transcription factors (Shapiguzov et 

al., 2019).  Another member of the family, ANAC089, is an ER and TGN localised membrane 

protein. Upon treatment with reducing agents the N terminal domain of ANAC089 localises to 

nuclei where it partially supresses chloroplast stromal ascorbate peroxidase gene expression. 

(Klein et al., 2012). 

The chloroplast bound plant homeodomain transcription factor PTM was proposed to play a 

crucial role in chloroplast signalling to the nucleus. Full length PTM is located to the 

chloroplast outer envelope where as a truncated form lacking the TM domain was nuclear. 

Treatments such as high light and Norfluazon were reported to result in cleavage of PTM and 

localisation of the N terminal domain to the nucleus. Processed PTM was shown to activate 

ABI4 transcription (Sun et al., 2011). Mutants defective in this gene show aberrant responses 

to treatments such as Norfluazon, high light dibromothymoquonine and Rose Bengal that affect 

different ROS and the level of reduction of the plastoquinione pool (Sun et al., 2011), although 

these results were not observed in a subsequent study (Page et al., 2017) leaving the role of 

PTM in chloroplast signalling questionable. 

PEX2 is a peroxisome membrane protein with a cytosolically exposed RING domain E3 ligase 

that regulates the recycling and turnover of the PEX5 import receptor through ubiquitination 

(Burkhart et al., 2014). Interestingly a mutant of Arabidopsis PEX2 (ted3) was recovered as a 

suppressor of the photomorphogenesis mutant det1 (Hu et al., 2002). The mechanism of this 

remains unknown but an artificially expressed RING domain was found in the nucleus where 

it interacted with the transcription factor HY5 (Desai et al., 2014). Possible mechanisms could 

be cleavage of the RING domain and relocation to the nucleus, alternative 

transcription/translation sites or direct movement between peroxisome and nuclear membrane. 

Since peroxisomes are important nodes in the cell’s antioxidant network and import is under 

redox control we speculate that PEX2 relocation could represent a potential mechanism for 

sensing the redox state of peroxisomes and relaying this information to the nucleus. 

 The above list is not exhaustive and it may in fact be the tip of the iceberg because there are 

many proteins in the literature that are suggested to undergo inter-compartmental switching in 

response to appropriate triggers. Arabidopsis hexokinase 1, for example, which is located at 



 

 

the outer mitochondrial membrane, has been suggested to translocate between mitochondrion 

and nucleus, upon perception of sugar signals or methyl-jasmonate, in a manner that is linked 

to mitochondrial ROS production (Claeyssen and Rivoal, 2007; Xiang et al., 2011).  

Organelle movement and contact as a mechanism of protein movement  

Apart from release of proteins from membranes, prevention of import into or promotion of 

export from organelles, direct transfer of proteins between membrane bound compartments via 

membrane extensions and contact sites can occur (Pérez-Sancho et al., 2016) (Figure 3). The 

cytoplasm in plant cells is densely packed and mainly constrained by the vacuole and ER to a 

narrow cortical zone. Protein transfer between organelles requires regulated release and 

redirection. Redirection through the cytosol may be slow and prevent bulk delivery. Emerging 

evidence suggests that the physical interaction between organelles is a requirement for the 

exchange of small molecules, lipids and proteins in plants as well as in mammals and yeast 

(Cohen et al., 2018). Coordinated re-arrangement of organelle positioning within the cell could 

provide a mechanism for shuttling moonlighting proteins between compartments. Targeted 

‘protected’ delivery from degradation, or potential reversal of the PTM, could be provided 

through the formation of a micro-environment between organelles that allows for exchanging 

proteins through a narrow 10-40nm cytoplasmic zone at the membrane contact site interface. 

Repositioning of organelles could also allow neighbouring organelles to signal to one another 

to regulate protein exchange.  

 

Redox-dependent formation of stromules, matrixules and peroxules 

Chloroplasts, mitochondria and peroxisomes are pleomorphic, dynamic organelles that 

produce tubules upon stress. Like membrane contact sites (MCS) these tubules allow 

positioning of the organelles in relation to each other within the cell and might be involved in 

the exchange of metabolites or macromolecules. For example, stroma-filled tubules called 

stromules (Figure 4) extend from the envelope of all plastid types. ROS increase peroxisome 

speed, resulting in membrane extensions (peroxules), which could facilitate contact with other 

organelles including chloroplasts (Gao et al., 2016; Rodriguez-Serrano et al., 2016; Rodriguez-

Serrano et al., 2009). However, the cargo of the tubular structures and the nature of the potential 

signals (metabolic or proteinaceous) that are released is largely unknown (Hanson and Hines, 

2018). Dynamin-type proteins are thought to be involve in stromule formation, as well as in 

the formation of vesicles that are shed from the stromule tips (Hanson and Hines, 2018). At 



 

 

least some of the plastid-derived vesicles are found in the vacuole, where they fulfil a role in 

chloroplast degradation. 

Stromules allow actin-mediated anchoring of chloroplasts at different locations within the cell 

to facilitate specific functions. For example, they can extend along microtubules to guide 

chloroplast movement to the nucleus during innate immunity responses. The application of 

hydrogen peroxide (H2O2) resulted in rapid stromule formation in Arabidopsis leaves (Caplan 

et al., 2015). The accumulation of ROS, like other pro-defense molecules, is sufficient to 

induce stromule formation leading to the development of direct contact points between the 

chloroplasts and nuclei (Caplan et al., 2015). In addition, other direct contact sites between 

chloroplasts and nuclei that are induced by high light have been suggested to allow movement 

of H2O2 to the nucleus from attached chloroplasts (Exposito-Rodriguez et al., 2017). Arogenate 

dehydratase (ADT) 2 which catalyzes  the final step in phenylalanine biosynthesis localizes to 

stromules and also helps in dividing chloroplasts, whilst ADT5 is proposed to traffic to nuclei 

via stromules, (Bross et al., 2017). Another interesting example of possible organelle to 

organelle transport of proteins via membrane extensions is the triacyl glycerol lipase SDP1 

which is proposed to move from peroxisomes to oil bodies in a tubule- and retromer- dependent 

process (Thazar-Poulot et al., 2015). 

 Mitochondria produce structures that are partly homologous to the chloroplast stromules, in 

response to light and other stimuli in an endoplasmic reticulum (ER)-mediated manner 

(Schmidt et al., 2016). The protrusion-driven movement and positioning is considered to 

promote the inter-compartmental trafficking of metabolites and proteins but there remains a 

paucity of data on which proteins are trafficked and the mechanisms involved. ROS and redox 

cues modify microtubule orientation and behaviour within cells, as well as the operation of 

protein import and export machineries (Schmidt et al., 2016). So far, it remains to be 

determined if these organelle-derived tubular structures are involved in direct exchange of 

metabolites or macromolecules between compartments, or might rather have a supportive 

function in the communication between organelles by acting as an cellular anchor to temporary 

fix their relative position to each other.  

 

Conclusions and Perspectives 

Our understanding of ROS functions has been entirely revised in recent decades. Initially 

confined to oxidative stress and associated cellular damage ROS are now recognised as signals 



 

 

released from the plasma membrane and organelles to orchestrate plant growth and stress 

tolerance. Moreover, the same oxidative changes to proteins such as irreversible oxidation, 

nitrosylation of glutahionylation of cysteine residues that were once regarded as damage are 

now recognised as being instrumental in regulating protein-protein interactions and signalling. 

Little is known about how protein carbonylation functions as a PTM in response the cellular 

redox changes.  Literature evidence supports the concept that changes in ROS production alter 

the redox status of plant cells, exerting a strong influence on metabolism and gene expression. 

Redox-related posttranslational modifications may have important effects on chromatin 

structure and function, opening up a new area of redox epigenetics (García-Giménez et al., 

2012). Histone PTMs have a direct impact on chromatin conformation, controlling important 

cellular events such as cell proliferation and differentiation. The carbonylation of specific 

histones (H1, H10, and H3.1 dimers) has been described during DNA synthesis in proliferating 

in NIH3T3 fibroblasts was found to decrease when nuclear proteasome activity was activated. 

suggesting that this PTM prevent excessive histone accumulation during DNA synthesis 

(García-Giménez et al., 2012). 

Until recently the paucity of experimental data on subcellular protein distribution has limited 

our understanding of the capacity and ability of proteins to move between different intracellular 

compartments. There has been a step change in our knowledge of proteins that perform more 

than one cellular function. The term given to such proteins is ‘moonlighting’, but this 

description is limited as we have discussed above because it does not apply to all proteins that 

move between different cellular compartments.  Moreover, it has become increasingly apparent 

that protein localisation is not fixed and a high proportion of cellular proteins have the potential 

to move between compartments in response to specific triggers. In some cases this movement 

is the basis for an alternative cellular function. At present however we have only a fragmented 

picture with relatively few well characterised examples of proteins in plants that change 

compartment in order to moonlight, and the mechanisms by which they do so are largely 

unexplored. Here we have presented evidence in support of an extension to existing concepts 

suggesting that redox PTMs are likely to be a key driver for inter-compartmental shifts of 

antioxidant and redox-regulated proteins. Redox cues and associated PTMs are fundamental 

regulators of alternative protein functions and localization. However, the extent of this 

phenomenon, what makes proteins move and the mechanisms by which they do so remains 

largely obscure.  Redox-regulated PTMs that drive intercompartmental protein relocation have 

the potential to integrate metabolic processes and influence genetic and epigenetic controls of 



 

 

plant growth and stress tolerance. This prospect is already opening a new intriguing and 

technically-challenging area of research.  

Although it is widely recognised that ROS act as a signals through the redox processing of 

other molecules particularly proteins.  Reactively little is known about the network of proteins 

that are undergo redox-mediated PTMs, highlighting the need for improved redox proteomics 

approaches. Moreover, a larger tool box of molecular and cell biology techniques is required 

to fully understand the redox-mediated movement of organelles and the 

associations/dissociations between different cellular compartments, as well as if and how 

redox-mediated structural changes facilitate direct movement of proteins from one 

compartment to another, particularly between chloroplasts, mitochondria, peroxisomes and 

nuclei without the need to transverse the cytosol in-between. 
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FIGURE LEGENDS 

Figure 1 Potential mechanisms of protein relocation 

Proteins can potentially change their cellular localisation by a number of mechanisms. Proteins 

which have been inserted into an organelle membrane can be released by regulated proteolysis 

as described for the chloroplast envelope localised PTM1 and ER membrane localised 

ANAC013 and ANAC017. All organelles appear to have an ER associated degradation 

(ERAD)-like pathway which exports proteins in an ubiquitin dependent manner for degradation 

by the proteasome. Whether proteins can be exported and escape degradation to be retargeted 

elsewhere in the cell is currently unknown. Ubquitination on membrane components can also 

lead to organelle turnover. Transport by direct organelle contacts is also a possible mechanism. 

Proteins normally targeted to an organelle can be prevented from import through either 

modification of the import machinery or modification of the cyctosolic precursor form of the 

protein. This can include post translational modifications (PTMs) which can modify the 

targeting signal or affect interactions with other binding partners. See text for further details. 

Figure 2 Switching partners: model for regulation of catalase localisation through 

interaction with different binding proteins. 

Several cytosolic proteins have been reported to interact with plant catalases. Redox mediated 

PTMs could alter the affinity of catalase for different binding partners leading to a change in 

distribution between peroxisomes, cytosol and nucleus. See text for further details. 

Figure 3 Organelle interactions through protrusions and membrane contact sites 

 

Organelle-organelle interactions in cells occurs by either the formation of membrane contact 

sites (MCS) between organelles or by the formation of tubular structures by one organelle. 

MCSs are known to occur between mitochondria and plastids, mitochondria and the ER, and 

plastids and the ER. In addition, mitochondria, plastids and peroxisomes form tubular 

structures. In the case of plastids stromules are formed especially in the direction of the nucleus. 

Mitochondria form matrixules within ER structures and peroxisomes form peroxules in the 

vicinity of plastids, mitochondria and the nucleus. Both MCS and the tubular structures will 

mediate communications between organelles by exchanging signaling molecules, metabolites 

or potentially even proteins. 
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Figure 4. Stromule formation in N. benthamiana leaves upon transient over-expression of 

GFP-tagged plastid outer membrane protein AtLACS9 (At1g77560). 

A. tumefaciens carrying AtLACS9-GFP (Breuers et al., 2012) and a second strain carrying the 

P19 silencing suppressor construct (Takeda et al., 2002) were co-infiltrated at 0.4 OD each into 

7-week-old N. benthamiana leaves. Fluorescence imaging was done at 72 hrs. post infiltration 

with a Zeiss LSM710 confocal microscope. Image is a maximum projection of 10 optical 

sections. GFP (green); chlorophyll autofluorescence (red). 

 

Figure 5. Methods to identify the sulfenome. A. Protein-based probe YAP1C. B. Small 

molecule-based probe DYn-2. See Box I text for detail. 
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Box I - key developments to help understand reversible oxidative modifications in plants. 

1. Genetically-encoded protein-based tools to trap sulfenylated proteins in situ. 

S-Sulfenylation (protein-SOH) is a reversible oxidative PTM that acts as regulatory switch in 

signal transduction pathways. However the global “sulfenome” is particularly challenging to 

detect as this PTM is transient, unstable, and prone to over-oxidation even during cell lysis. 

Recently a genetically-encoded tool to capture S-sulfenylated proteins was developed 

(Waszczak et al., 2014). The cysteine-rich domain of the yeast transcription factor YAP1 forms 

disulfides with S-sulfenic acid modifications on its cognate signalling protein; fusion of this 

domain with an affinity tag creates a tool to capture and enrich S-sulfenylated proteins in vivo 

(Figure 5, A). YAP1 can be expressed in cells, with control cells expressing a catalytically 

inactive version (YAP1A), and, following cell lysis, downstream affinity purification used to 

identify disulfide linked proteins. The authors detected ∼100 sulfenylated proteins in 

Arabidopsis cell suspensions exposed to H2O2 oxidative stress (Waszczak et al., 2014).  

2. Small molecule-based probes to detect the sulfenome. 

A complementary approach exploits the chemoselective reaction of small molecules based on 

dimedone with sulfenic acid. Whilst YAP1C recognition of sulfenic acids is dependent on 

protein-protein interactions, a small molecule is in principle more general and able to access 

more sulfenylation sites. The Carroll group have pioneered the use of DYn-2, a dimedone probe 

that is small yet ready appended to affinity tags such as biotin by click chemistry for enrichment 

of sulfenylated proteins (Figure 5, B) (Paulsen et al., 2011). Akter et al. applied DYn-2 is 

Arabidopsis cultures (Akter et al., 2015), identifying 226 sulfenylation events in response to 

oxidative stress, and, more recently, in plants (Akter et al., 2017). 
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Table 1 Moonlighting proteins in plants 

 
Protein  Function Location Moonlighting function Reference 

PUMPKIN Plastid UMP kinase plastid RNA binding Plastid transcript introns (Schmid et al., 2019) 

WHIRLY1 Nuclear encoded 
transcription factor 
involved in pathogen 
response 

Nucleus/ 
plastid 

RNA processing in the plastid (Foyer et al., 2014; 
Isemer et al., 2012) 

PEX2 Ubiquitin E3 ligase Peroxisome 
membrane/ 
nucleus? 

ted3 gain of function mutant suppresses 
photomorphogenesis mutant det1 and evidence for 
interaction with Hy5 TF in nucleus but 
mechanism/function unknown 

(Desai et al., 2014; Hu 
et al., 2002) 

Catalase Antioxidant enzyme Peroxisome 
matrix, cytosol 

Hijacked to nucleus by plant pathogens to 
modulate cell death but mechanism unknown 

(Zhang et al., 2015) 

MSH1 Required for organelle 
genome stability 

Plastid and 
mitochondrial 
targeted 

Alteration in nuclear DNA methylation (Virdi et al., 2015) 

pdNAD-MDH NAD-dependent 
malate 
dehydrogenase 

Plastid Activity independent stabilisation of FtsH12 
component of inner envelope membrane protease 
AAA-ATPase complex. Essential for viability 

(Schreier et al., 2018) 

AROGENATE 
DEHYDRATASE2/5 

Phenyl alanine 
Biosynthesis 

Stroma and 
stromules 

Interaction with chloroplast division machinery. 
ADT5 isoform located in nucleus 

(Bross et al., 2017) 

GAPDH isoforms 
 

Glycolysis 
Calvin cycle 

cytosol Redox sensitive protein accumulating in the 
nucleus under stress conditions 

(Zaffagnini et al., 
2013) (Yang and Zhai, 
2017). 

LSD1 Forms redox 
dependent interaction 
with a suite of proteins 
affecting cell division 
vs cell death 

Cytosol 
nucleus 

Transcriptional activator (Czarnocka et al., 
2017) 

ACO1, aconitase Citrate metabolism, 
mRNA binding 

Cytosol TCA cycle enzyme and  mRNA binding protein to 
promote translation of CSD2 

(Moeder et al., 2007)  

 


