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We introduce the resource quantifier of weight of resource for convex quantum resource theories of states and
measurements with arbitrary resources. We show that it captures the advantage that a resourceful state (mea-
surement) offers over all possible free states (measurements), in the operational task of exclusion of subchannels
(states). Furthermore, we introduce information-theoretic quantities related to exclusion for quantum channels,
and find a connection between the weight of resource of a measurement, and the exclusion-type information of
quantum-to-classical channels. The results found in this article apply to the resource theory of entanglement, in
which the weight of resource is known as the best-separable approximation or Lewenstein-Sanpera decomposi-
tion, introduced in 1998. Consequently, the results found here provide an operational interpretation to this 21
year-old entanglement quantifier.

The 21st-century is currently witnessing a second quantum
revolution which, broadly speaking, aims at harnessing dif-
ferent quantum phenomena for the development of quantum
technologies. Quantum phenomena can then be seen as re-
sources for fuelling quantum information protocols. In this
regard, the framework of Quantum Resource Theories (QRTs)
has been put forward in order to address these phenomena
within a common unifying framework, see the recent review
[1]. There are several QRTs of different quantum ‘objects’ ad-
dressing different properties (of the object) as a resource. We
can then broadly classify QRTs by first specifying the objects
of the theory, followed by the property to be harnessed as a re-
source. In this broad classification there are QRTs addressing
quantum objects like: states [2, 3], addressing resources such
as entanglement [2, 3], coherence [4, 5], asymmetry [4], and
athermality [6], among many others [7–10]; measurement, ad-
dressing resources such as as projective simulability [11, 12]
and informativeness [13, 14] among others [15]; correlations
[16–19], steering assemblages [20], and channels [21–23].

One of the main goals within the framework of QRTs is
to define resource quantifiers for abstract QRTs, so that re-
sources of different objects can be quantified and compared in
a fair manner. There are different measures for quantifying re-
sources, depending on the type of QRT being considered [1].
In particular, when considering convex QRTs, well-studied
geometric quantifiers include the so-called robustness-based
[24–31] and weight-based [32–37] quantifiers, both of which
can be defined for general convex QRTs. This has allowed
for the cross-fertilisation across QRTs, in which results and
insights from a particular QRT with an specific resource are
being extended to additional resources and families of QRTs
[1, 38, 39].

In addition to quantifying the amount of resource present in
a quantum object, it is also of interest to develop practical ap-
plications in the form of operational tasks that explicitly take

advantage of specific given resources, as well as to identify ad-
equate resources and quantifiers characterising already exist-
ing operational tasks. In this regard, a general correspondence
between robustness-based measures and discrimination-based
operational tasks has recently been established: steering for
subchannel discrimination [26], incompatibility for ensem-
ble discrimination [40–42], coherence for unitary discrimina-
tion [27] and informativeness for state discrimination [13].
This correspondence initially considered for specific QRTs
and resources, has been extended to QRT of states, measure-
ments and channels with arbitrary resources [38, 39]. Fur-
thermore, it turns out that when considering QRTs of measure-
ments there exists an additional correspondence to single-shot
information-theoretic quantities [13]. This three-way corre-
spondence, initially considered for the resource of informa-
tiveness [13], has been extended to convex QRTs of measure-
ments with arbitrary resources [39].

It is then natural to ask whether operational tasks exist in
which, weight-based quantifiers play the relevant role. Sur-
prisingly, in this work we prove that if one studies situations
where excluding possibilities is the relevant goal – which we
refer to as exclusion-based tasks – then this is precisely re-
lated to weight-based quantifiers. Furthermore, we prove that
weight-based quantifiers for the QRTs of measurements also
happen to satisfy a stronger three-way correspondence, estab-
lishing a link to single-shot information-theoretic quantities
associated to information exclusion.

This parallel three-way correspondence establishes that, in
addition to robustness-based quantifiers, weight-based quan-
tifiers also play a relevant role in the characterisation of op-
erational tasks. This raises questions regarding whether there
is a much more general connection to be uncovered, linking
resource quantifiers and operational tasks by focusing on dif-
ferent forms of information.

Convex quantum resource theories and resource
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quantifiers.—A general resource theory consists of: a
set of objects O, the identification of a property of these
objects to be considered as a resource, and a consequent
bipartition of the set of objects into resourceful and free
objects. If the set of free objects forms a convex set, we
say that we have a convex resource theory. In this work we
focus on the convex QRTs of states and measurements with
arbitrary resources.

Definition 1: (Convex QRTs of states and measurements)
Consider the set of quantum states in a finite dimensional
Hilbert space of dimension d. Consider a property of these
states defining a closed convex set which we will call the set
of free states and denote as F. We say a state ρ ∈ F is a free
state, and ρ /∈ F is a resourceful state. Consider also the set
of Positive-Operator Valued Measures (POVMs) acting on a
finite dimensional Hilbert space. A POVM M is a collection
of POVM elements M = {Ma} with a ∈ {1, ..., o} satisfy-
ing Ma ≥ 0 ∀a and

∑
aMa = 1. Similarly, we consider a

property of measurements defining a closed convex set of free
measurements and denote it as F. We say a POVM M ∈ F is
a free measurement and it is resourceful otherwise.

It will be useful to introduce the notion of simulability of
measurements.

Definition 2: (Simulability of measurements [43]) We say
that a measurement N = {Nx}, x ∈ {1, ..., k} is simulable
by the measurement M = {Ma}, a ∈ {1, ..., o} when there
exists a conditional probability distribution {q(x|a)} such that
Nx =

∑
a q(x|a)Ma. One can check that the simulability of

measurements defines a partial order for the set of measure-
ments and therefore we use the notation N � M, meaning
that N is simulable by M. Simulability as defined here can be
understood as a post-processing of the measurement.

We now define a weight-based quantifier for arbitrary re-
sources of states and measurements. The idea is to geometri-
cally quantify the amount of resource contained in an object.
This quantifier was originally introduced in [32] in the context
of nonlocality and it was later independently rediscovered in
[33] in the context of entanglement. This quantifier has sev-
eral different names such as: part, content, cost and weight. In
order to keep consistency with recent notation in the literature,
we adopt weight in this work.

Definition 3: (Weight of resource for states and measure-
ments) The weight of resource of a state and a measurement
are given by:

WF (ρ) =

min
w ≥ 0
σ ∈ F

ρG

{
w

∣∣∣∣ ρ = wρG + (1− w)σ

}
, (1)

WF (M) =

min
w ≥ 0
N ∈ F
MG

{
w

∣∣∣∣Ma = wMG
a + (1− w)Na

}
. (2)

The weight quantifies the minimal amount with which some
resourceful state ρG (measurement MG) needs to be used in
order to reproduce the state ρ (measurement M). Evaluating
the weight of resource is a convex optimisation problem [44]
and hence it can in general be solved efficiently numerically.

Exclusion-based operational tasks.—We consider a game
first formalised in [45] for analysing the Pusey-Barrett-
Rudolph (PBR) theorem [46]. The property considered by
PBR has been addressed under different names like antidis-
tinguishability [47] or not-Post-Peierls compatibility (Post-
Peierls incompatibility) [48, 49]. It has been studied in a
number of contexts, e.g. under noisy channels [47], and its
communication complexity properties [50, 51].

Game 1: (State exclusion [45]) A referee has a collection
of states {ρx}, x ∈ {1, ..., k}, and promises to send a player
the state ρx with probability p(x). The goal is for the player
to output a guess g ∈ {1, ..., k} of a state that was not sent.
That is, the player succeeds at the game if g 6= x and fails
when g = x. This game can be seen as being opposite of state
discrimination, in which the goal is to correctly identify the
state that was sent. Since the goal is to guess the state that
was not sent, this game is referred to as excluding, rather than
discriminating.

A given state exclusion game is fully specified by an ensem-
ble E = {ρx, p(x)}. When the player uses the measurement
M to play the game, we take as our figure of merit the aver-
age error probability, i.e. the total probability of incorrectly
guessing g = x,

PQ
err(E ,M) = min

N�M

∑
x

p(x)Tr[Nxρx], (3)

Note that given only the measurement M, the player can still
simulate any measurement N �M, and we assume the use the
best such simulable measurement in order to minimise their
error probability.

We will be interested in comparing a fixed resourceful mea-
surement M to the best free measurement. We can thus define
the “classical” error probability as the error probability of this
best free measurement, i.e.

PC
err(E) = min

N∈F

∑
x

p(x)Tr[Nxρx], (4)

Note that we don’t need the minimisation over simulations
here, since this is automatically encompassed in the minimi-
sation over all free measurements.

We will also consider a closely related game, that of sub-
channel exclusion.

Game 2: (Subchannel exclusion) The player sends a quan-
tum state ρ to the referee who has a collection of subchan-
nels Ψ = {Ψx}, x ∈ {1, ..., k}. The subchannels Ψx are
completely-positive (CP) trace-nonincreasing maps such that
Λ =

∑
x Ψx forms a completely-positive trace-preserving

(CPTP) map. The referee promises to apply one of these sub-
channels on the state ρ and the transformed state is then sent
back to the player. The player then has access to the ensemble
EΨ = {ρx, p(x)} with p(x) = Tr[Ψx(ρ)], ρx = Ψx(ρ)/p(x).
The goal is for the player to output a guess g ∈ {1, ..., k} for
a subchannel that did not take place.

Using a fixed state ρ and fixed measurement M, the average
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error probability of the player is given by

PQ
err(Ψ,M, ρ) =

∑
x

Tr
[
MxΨx(ρ)

]
, (5)

If we allow for the optimisation over all measurements, in or-
der to understand how well the state ρ performs, we can also
define PQ

err(Ψ, ρ) = minM
∑
x Tr

[
MxΨx(ρ)]. We will again

be interested in comparing how a fixed resourceful state ρ per-
forms at subchannel exclusion compared to the best resource-
less state. The error probability with a fixed measurement in
this case is

PC
err(Ψ,M) = min

σ∈F

∑
x

Tr
[
MxΨx(σ)

]
, (6)

and, as above, if we optimise over all measurements we can
define PC

err(Ψ) = minM P
C
err(Ψ,M).

For both games, in general one expects the player
should not have a larger error probability when using a re-
sourceful object (state or measurement) compared to a re-
sourceless one, and hence PQ

err(E ,M)/PC
err(E) ≤ 1 and

PQ
err(Ψ, ρ)/PC

err(Ψ) ≤ 1. We will be interested in the optimal
advantage that can be obtained in each game when compar-
ing resourceful and resourceless objects, e.g. in how small the
ratio between quantum and classical error probabilities can be
made. In the next section we will show that this is precisely
characterised by the weight of informativeness.

All quantum resources are useful for an exclusion task.—
Before proving our main result, we first show a preliminary
result, which formalises the above intuition.

Result 1: For any resourceful state ρ /∈ F (measurement
M /∈ F), there exists a subchannel exclusion game Ψρ (state
exclusion game EM) for which playing with the state ρ (mea-
surement M) has small error probability when compared with
any free state (measurement). These two statements are rep-
resented by the strict inequalities:

PQ
err(Ψ

ρ, ρ) < PC
err(Ψ

ρ), (7)

PQ
err(EM,M) < PC

err(EM). (8)

The proof of these results can be found in the supplementary
material, with both based around the hyperplane separation
theorem. These results shows that every resourceful state (or
measurement) is better that any possible free state (or mea-
surement) when playing a tailored exclusion game. We now
address how to quantify the performance of a resourceful ob-
ject using exclusion games.

Weight of resource as the advantage in exclusion games.—
We are now interested in quantifying the performance of a re-
sourceful state (measurement) in comparison to all free states
(measurements) when playing subchannel exclusion (state ex-
clusion) games. Our main result is the following:

Result 2:

min
Ψ,M

Perr(Ψ,M, ρ)

PC
err(Ψ,M)

= 1−WF(ρ), (9)

min
E

PQ
err(E ,M)

PC
err(E)

= 1−WF(M). (10)

The proof, given in the Supplemental Material [52], is similar
in each case, and consists of two parts. First we prove that
the weight lower bounds the advantage for all tasks. We then
prove that this lower bound can be achieved, by extracting
an optimal game out of the relevant dual formulation of the
weight.

This theorem shows two things: that for all exclusion games
the weight bounds the decrease in error probability that can
be obtained; and that there exists a game where this decrease
is given precisely by the weight. This theorem establishes
for the first time an operational interpretation of weight-based
quantifiers, making a link to exclusion tasks, and thus estab-
lishing a connection between these two previously unrelated
concepts. In particular, we remark that concerning states, our
result holds for the weight of entanglement, a. k. a. the best
separable approximation or Lewenstein-Sanpera decomposi-
tion [33], and for the weight of asymmetry [37].

Relaxing the measurement constraint.— In the subchannel
game in (9), both the quantum and classical players are re-
quired to use the same measurement. The measurement is
thus more like part of the game than part of the strategy of
the player. It is therefore natural to allow the measurements
to be chosen independently by the different players. Although
in general this does not seem to lead to an operational inter-
pretation, for a subset of resource theories, we can obtain the
following result:

Result 3: Consider a state ρ and the associated op-
timal dual variable Y ρ =

∑
yi |ei〉〈ei| from the weight

WF(ρ). If there exist a set of unitaries {Ux} satisfying: (i)∑
x Ux |ej〉〈ej |U†x = 1,∀j; (ii) UiσU

†
i = UjσU

†
j ∀σ ∈ F,

∀i, j, then, the weight quantifies the advantage of the state ρ
over all free states in quantum subchannel exclusion games
with independent measurements:

min
Ψ

PQ
err(Ψ, ρ)

P c
err(Ψ)

= 1−WF(ρ). (11)

Importantly, the resource theories of coherence and asymme-
try satisfy the conditions of Result 3.

Weight of resource and single-shot information theory.—
We now introduce an exclusion-based quantity closely related
to the accessible information of a channel, and show that it
too relates to the weight of resource of a measurement. We
are interested in the ability of a channel Λ to be useful for
sending exclusion-type information. This is a type of informa-
tion where identifying is not the relevant task, but excluding,
e.g. the information of the statement ‘do not cut the blue wire’
in a bomb-defusing situation. Two possibilities for convey-
ing this information are either to communicate the wire to be
avoided, or to communicate a wire that should be cut. If there
is a noisy communication channel, it could be advantageous
to use one type of encoding over the other.

Formally, we assume that the information to be excluded
is represented by a random variable X , with probability dis-
tribution p(x). This is encoded into a quantum ensemble as
E = {ρx, p(x)}. The quantum state is sent through a channel
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Λ, and then an optimal decoding measurement D = {Dg}g is
performed, in order to make the best prediction for a value
x′ 6= x, which will always be arg minx p(x|g), i.e. the
least likely value of x given the observed g, where p(x, g) =
p(x) Tr[DgΛ(ρx)]. The error probability is Perr(X|G) =
minD

∑
g minx p(x, g) and the associated conditional en-

tropy, which we call the ‘exclusion conditional entropy’ is

H−∞(X|G)E,Λ = − logPerr(X|G), (12)

which is the order minus-infinity conditional Rényi entropy,
and where we have explicitly denoted the dependence on the
quantum encoding E and the channel Λ.

We are now interested in comparing how different channels
perform with the same quantum encoding. In particular, we
are interested in how much larger the exclusion conditional
entropy is for a given fixed channel Λ compared to a set of
free channels F for sending the exclusion information stored
in E . Note that since the exclusion entropy is associated to an
error probability, having a larger exclusion entropy signifies
having a smaller average error probability. We thus define the
gain in exclusion conditional entropy as

Gexc
−∞(E ,Λ) = H−∞(X|G)E,Λ−max

Ω∈F
H−∞(X|G)E,Ω (13)

We think of this quantity as being a generalisation of the
accessible information of a channel, in two ways: first we
consider here exclusion-type information, instead of standard
‘discrimination-type’ information; second, we compare to a
general set of free channels, rather than relative to a single
free channel – the completely noisy channel. In the latter
case, the second term would become simply H−∞(X)E =
− logPerr(X), the ‘exclusion entropy’ associated with the
random variable X , and the definition would reduce to a mu-
tual information-type quantity.

We now focus on quantum-to-classical channels which
arise by the action of a measurement. In particular, to any
measurement M we can define the associated channel ΛM
such that ΛM(ρ) =

∑
a Tr[Maρ] |a〉 〈a|, where {|a〉} forms

an orthonormal basis, and records the measurement outcome.
The conditional probability distribution that this channel leads
to is p(g|x) =

∑
a Tr[Maρx] 〈a|Dg |a〉.

We will then compare the fixed channel ΛM associated with
the measurement M with all of the channels ΛN that can arise
from a free measurement N ∈ F. We find the following result:

Result 4: The weight of resource of a measurement M
quantifies the biggest gain in exclusion information of the as-
sociated measurement channel ΛM relative to the set of free
measurement channels F = {ΛN|N ∈ F}

max
E

Gexc
−∞(E ,ΛM) = − log

[
1−WF(M)

]
(14)

with the maximisation over all quantum encodings E =
{ρx, p(x)} of X .

The proof of this result is in the Supplementary Mate-
rial. This result, which mirrors the results found in [39],

establishes, for the QRT of measurements with arbitrary re-
sources, a new three-way correspondence between weight-
based resource quantifiers, exclusion-based tasks, and single-
shot information-theoretic quantities. This supports the con-
jecture that we make here, that whenever there is a robustness-
discrimination correspondence, there is a weight-exclusion
correspondence.

Complete set of monotones.—As a final result, we show that
for QRTs of measurements, the error probability in all exclu-
sion games forms a complete set of monotones for the partial
order of measurement simulation:

Result 5: For any two measurements M and N, M can sim-
ulate the measurement N, M � N if and only if

PQ
err(E ,M) ≤ PQ

err(E ,N) ∀ E = {p(x), ρx}. (15)

That is, a measurement M can simulate a measurement N if
and only if it is never worse in any state exclusion game E .
The proof of this result is in the Supplementary Material.

This result shows then that the error probabilities over all
state exclusion games form a complete set of (decreasing)
monotones for the partial order of measurement simulation.
It is interesting to note that it was previously shown that the
probability of succeeding in state discrimination also forms a
complete set of (increasing) monotones for measurement sim-
ulation [13, 39]. Hence, we now have a second, independent,
complete set of monotones.

Conclusions.— In this work we have uncovered an inti-
mate connection between weight-based quantifiers and ex-
clusion tasks, which intimately parallels the connection be-
tween robustness-based quantifiers and discrimination tasks.
We have shown that this connection holds both for convex re-
source theories of states and of measurements. For the latter,
we have also shown a connection to single-shot information
theory, and shown that the error probability in all exclusion
games constitute a complete set of monotones for measure-
ment simulation.

What is remarkable about these results is just how closely
they parallel the corresponding results for robustness and dis-
crimination. Previously this was the only known connection
of its type. Now, we have uncovered a second connection, re-
lating a second type of a very well known geometrical quanti-
fier – the weight – and an interesting task in information the-
ory – exclusion. Moreover, given that these two quantifiers
are related to two limiting Renyi entropies (the order ∞ and
−∞ respectively), through the guessing probability and the
error probability, the results presented here raise a fascinat-
ing possibility that there is a full spectrum of connections be-
tween resource quantifiers and tasks, with only the two ends
currently uncovered. We believe this is an exciting line of
enquiry for future research, which could lead to far-reaching
insight into quantum information theory and in particular the
fruitful resource-theory approach to quantum physics.

Note added.— During the development of this work we be-
came aware of a complementary work by R. Uola et. al. [53].
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