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Abstract—In this paper, ultrasonic phased arrays are deployed
as an imaging tool for industrial process analysis. Such arrays are
typically used for sonar, medical diagnosis and non-destructive
testing, however, they have not yet been applied to industrial
process analysis. The precise positioning of array elements
and high frequencies possible with this technology mean that
highly focused images can be generated that cannot currently
be achieved using ultrasound tomography. This paper aims to
highlight the potential of this technology for measurement of
bubble size distribution (BSD) and to demonstrate its applica-
tion to both intrusive and non-invasive process measurement.
Ultrasound images of bubble reflectors are generated using the
total focusing method deployed using a 32 element, 5 MHz
linear phased array and an image processing algorithm for
BSD determination is presented and evaluated under stationary
and dynamic acquisition conditions. It is found that the sizing
accuracy is within 10% for stationary reflectors larger than 4λ
in diameter and that the algorithm is stable across the expected
spatial variation of reflectors. The phased array is coupled to
a six-axis robotic arm to scan a solid sample containing bubble
reflectors at velocities up to 500 mms−1. The sizing accuracy
is within 45% for bubbles larger than 4λ in diameter and
at velocities up to 300 mms−1. However, above this velocity
the algorithm breaks down for reflectors smaller than 9λ in
diameter. The ultrasound system is applied to a stream of air
bubbles rising through water that is verified via photographic
analysis. Images were generated both intrusive and non-invasive,
via a 10 mm Perspex barrier, to the process stream. The high
bubble density in the process stream introduced scattering,
limiting the measurement repeatability and the sample size in the
measured distribution. Notwithstanding, this result demonstrates
the potential of this technology to size bubbles for intrusive and
non-invasive process analysis.

Index Terms—ultrasound array imaging, total focusing
method, industrial process analysis, bubble size distribution, non-
invasive imaging

I. INTRODUCTION

This paper presents a novel methodology for the determi-
nation of the bubble size distribution (BSD) in a two-phase
industrial flow. The BSD is determined from highly focused
images of the process generated using an ultrasonic phased
array. An algorithm to process these images is presented that
determines the diameter of bubble reflectors captured in each
image frame, whereupon the BSD can be estimated using
multiple image frames.

Engineering and Physical Sciences Research Council (grant number
EPM5076471)

Recent technological advances in multiple-channel phased
array controllers (PAC) and general purpose graphics process-
ing units (GPGPU) have accelerated ultrasonic data acquisition
and image construction algorithms [1]. Together, these have
created the opportunity to apply phased array imaging towards
dynamic industrial processes that require data to be quickly
recorded and interpreted for real-time process analysis [2].

Ultrasonic phased arrays are typically deployed for imag-
ing into optically opaque materials, for example, tissue in
medicine and steel in non-destructive testing [3]. Ultrasonic
phased array hardware is relatively cheap to maintain and it
provides a safe, non-ionising methodology for imaging [4].
Ultrasound imaging has a significant advantage over optical
based imaging techniques because it does not require an opti-
cal path to exist between the sensor and the image target. This
means ultrasound measurement is not necessarily confined to
optically transparent processes or vessel materials [5]. This
is because ultrasound wave propagation is dependent on the
mechanical properties of the propagating medium [6].

Ultrasonic spectroscopy is an active measurement technique
used for particle sizing in process analysis [7]. This involves
quantification of the scattering parameters of the propagating
medium, for example, the attenuation and backscatter coef-
ficients [7]. As such, the technique requires a good under-
standing of the physical constants relating to the measured
system, for example, its thermal conductivity, density and
elastic modulus [7]. Due to the wide frequency range feasible,
from 20 kHz to 200 MHz, particle sizing between 10 nm and 1
mm is possible [8]. This makes ultrasonic spectroscopy highly
suitable for typical colloidal and emulsion processes [9]. On
the other hand, at the boundary between a gas and a liquid, any
ultrasound energy injected into the system is strongly reflected
back towards the transducer due to the large difference in
acoustic impedance. This means that gas-liquid systems are
well-suited for pulse-echo ultrasound imaging.

Gas-liquid two-phase systems are found in a wide variety
of industrial processes. For example, solvent sublation is used
for waste water treatment whereby hydrophobic organic com-
pounds adsorb at the bubble-fluid interface removing organic
pollutants [10]. In the petrochemical industry, the Fischer-
Tropsch process is used to convert natural gas into commercial
products like fuels [11]. During this process syngas bubbles
are contacted with liquid slurries containing catalyst particles.
These bubbles can be on the millimetre length scale and
travel at low superficial gas velocities within the fluid to
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maximise the interfacial contact time [11]. Coal liquefaction is
also used by the petrochemical industry; hydrogenation of the
hydrocarbon is performed by supplying hydrogen bubbles to a
coal slurry [12]. Bubbles passing through a fluid are also used
in separation processes, for example, in flotation cells [13].
Suspended molecules adsorb to bubbles rising to the surface of
a fluid and characterisation of the froth provides an indication
of the drainage and coalescence behaviour inside the flotation
cell [14].

Measurement of the BSD is key to the characterisation
of these processes. The BSD provides an indication of the
total surface area of bubbles in a two-phase flow [15]. To
characterise the efficiency of mass transfer between two phases
requires a strong understanding of this interfacial area [15].
However, in the context of a typical industrial process en-
vironment there are several challenges associated with its
measurement. Current technologies for the determination of
BSD are often intrusive or disruptive to the process flow, for
example, using wire-meshes to measure the fluid conductivity
to infer the BSD [16] [17]. On the other hand, non-invasive
techniques, such as photographic analysis, require a clear
optical path to exist between the measurement sensor and the
process [18].

To extract spatial information from process images, it is
necessary to convert the dimensions of identified objects from
units of pixels to millimetres. For optical images acquired with
a digital camera, the image construction process is intrinsic to
the camera device. This means the end-user does not define the
pixel dimension and this must be determined experimentally
[19]. For example, a calibration grid can be positioned in the
test cell and images acquired under identical experimental
conditions can be used to determine the pixel dimension
[2]. This has been specifically highlighted as a drawback
to using optical images for industrial process analysis [15].
On the contrary, ultrasonic image construction is not limited
in this sense as the pixel dimension is user-defined prior
to image construction, for example, when using the total
focusing method (TFM) [20]. Therefore, square pixels of
known dimension can be used, greatly reducing experimental
uncertainty associated with the conversion of object sizes from
pixels to millimetres. Another technical challenge associated
with optical images is that objects of interest can be out-
of-focus. This reduces the accuracy of object edge detection
leading to inaccurate bubble sizing [21]. This presents another
advantage of using ultrasound imaging for process analysis;
images generated using the TFM are, by definition, focused at
every pixel.

Currently, the extent of ultrasound imaging for process
analysis is limited to ultrasound transmission tomography [5].
This involves pitch-catch ultrasound imaging, whereby the
ultrasound path length is determined by the diameter of the
process vessel and the density of reflectors within the process.
Therefore, ultrasound transmission tomography typically uses
low megahertz frequency signals to avoid significant signal
attenuation [22], however, this is at the cost of reduced
lateral resolution. An advantage of ultrasound transmission
tomography over pulse-echo phased array imaging is that the
received signals contain contributions from both reflection

and transmission events within the process instead of relying
purely on the reflected signal amplitude. For this reason,
pulse-echo imaging is more suited for imaging close to the
transducer or at the periphery of the process and ultrasound
transmission tomography is more suitable for imaging of
the centre of the process vessel. The reduced path length
means higher frequencies can be deployed using phased arrays,
increasing the lateral resolution of the ultrasound images.
Overall, the two technologies exhibit the same advantages with
respect to non-invasive process measurement; they should be
considered as complementary technologies.

Given the recent technological advancements, it is the aim of
this paper to demonstrate the application of ultrasonic phased
array imaging for industrial process analysis. To highlight
their potential applicability, it is also the aim to show how
these images can be used to determine the BSD of a dynamic
process. In doing so, the accuracy of the process measurement
is discussed and the challenges associated with extending this
technology to an industrial plant are presented.

The paper is organised as follows. In Section II the ul-
trasound system is described and the experimental materials
are presented. In Section III, the ultrasound image processing
algorithm is demonstrated for the determination of bubble
diameter from ultrasound images. Following this, in Section
IV, a second image processing algorithm is briefly described
using photographic images as the input. This second image
processing algorithm is used to verify the findings from the
ultrasonic image analysis. Section V presents the results from
the application of the ultrasound image processing algorithm
to images of bubble reflectors acquired under stationary and
dynamic conditions. A discussion on the potential of this
technology for industrial process analysis is presented in
Section VI and finally the paper ends with conclusions in
Section VII.

II. EXPERIMENTAL APPARATUS AND METHODS

A. Ultrasound Hardware and Software

The ultrasonic hardware consisted of a 128-element linear
phased array with a 5 MHz centre frequency (Vermon SA,
France) and an FIToolbox PAC (Diagnostic Sonar Ltd, UK).
The phased array had an element pitch of 0.7 mm corre-
sponding to approximately one wavelength in Perspex. As a
result, beam steering and focussing capabilities were reduced,
however, the sensitivity of the probe was enhanced by the
larger element width.

In this paper, the phased array is deployed using full
matrix capture (FMC) [20]. By transmitting each element in
the aperture individually and receiving on all elements, this
procedure records every transmit-receive combination for each
element location, corresponding to the maximum quantity of
information about the image scene. The FMC dataset can be
reconstructed into a highly focused image using the TFM [20].
The image construction time is a function of the number of
pixels in the image scene and this is user-defined. The TFM
script used in this paper takes advantage of GPGPU technology
(GeForce GTX 750 Ti, NVIDIA, USA) to enable faster
image construction [23]. In addition to the enhanced image
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TABLE I: FMC acquisition rate when fired 20 mm into water
at the maximum pulse repetition frequency.

Active Aperture [Elements] FMC Acquisition Rate [Hz]

32 145
64 37

128 9

construction rate, this algorithm can incorporate refraction at
an acoustic boundary, for example, between the process vessel
wall and fluid, by specifying the acoustic velocity in the two
media and the thickness of the first layer. The refracted time-
of-flight between the array elements and the focal point is
determined using a classical minimum search with respect to
Fermat’s principle to find the shortest path length [23]. These
specific advantages of the GPGPU TFM imaging algorithm
and the beamforming constraints imposed by the phased array
design led to the application of FMC for the array deployment.

The PAC consisted of 32 transmit-receive channels such
that multiplexing across the channels was required to deploy
an active aperture greater than 32 elements. The time required
to perform multiplexing significantly reduced the acquisition
rate for a given image depth, shown in Table I. Therefore,
given the dynamic nature of the image target, a 32 element
aperture was selected to maximise the FMC acquisition rate.

All FMC data in this paper have been filtered to reduce noise
artefacts using a zero-phase Butterworth band-pass filter prior
to TFM image construction. The lower and upper bandstop
frequencies were set to ± 2 MHz of the probe’s designed
centre frequency. It was important not to introduce phase shifts
during the filter process because the time domain response is
used for the TFM image construction. This was achieved by
applying the filter, reversing the order of the time samples,
reapplying the filter and reversing the time domain samples
back to their initial order to recover the filtered amplitude but
with the original phase.

To reduce the impact of spatial side-lobe activity on the
TFM images, the 32 element aperture has been apodised
with respect to the transmitting element during TFM image
construction using a Hamming window. The window was
designed using the number of elements in the aperture as
its input, where each index of the window corresponds to
a transmitting element. Next, for a given transmit, all the
received signals were weighted with respect to the value of
the Hamming window at the index position corresponding
to the transmitting element. Time-gain compensation has not
been applied during image construction because the samples
investigated in this work were not highly scattering, so signal
attenuation was not considered significant. Also, envelope
detection has not been applied because this led to spurious
segmentation of the TFM images in Section III.

All TFM images in this work were generated using square
pixels with a length of approximately 39 µm in each di-
mension. This corresponds to approximately 14 pixels per
wavelength in Perspex or 8 pixels per wavelength in water.
These values are both greater than the minimum guideline
of 6 pixels per wavelength within the non-destructive testing
community [24]. Note, all images in this paper are orientated

with the array parallel to the y-axis and the image depth along
the z-axis.

B. Calibration and Test Samples

To simplify the imaging system, two solid cylindrical Per-
spex samples were acquired with dimensions of 300 mm
length and a 40 mm diameter. The specific acoustic impedance,
Z, of Perspex is 3.5 MPa·s·m−1 and its speed of sound is
ν = 2720 ms−1, therefore Perspex exhibits similar acoustic
properties to water (Z = 1.5 MPa·s·m−1 and ν = 1500 ms−1)
and so can be used to model the acoustic interaction observed
in water. Note that since the ultrasonic wavelength in Perspex
is approximately twice that in water, the results corresponding
to the Perspex samples show a conservative estimate of the
sizing accuracy expected in a water load. A flat surface was
machined onto the Perspex samples so the phased array could
be directly coupled, where the distance from the flat edge to
the back wall was 30 mm. One sample was used for calibration
purposes, hereafter named the Perspex calibration sample,
that was initially defect-free while the second contained an
assortment of suspended bubbles that were used for testing
purposes, hereafter named the Perspex test sample.

The Perspex calibration sample was modified by drilling five
holes, shown in Fig. 1, ranging from 1 to 5 mm in diameter
with 1 mm increments, into an edge perpendicular to the flat
edge at a depth of 15 mm. The side-drilled holes (SDH) were
spaced 75 mm apart to mitigate interference due to scattering
from adjacent SDHs. When the phased array was mounted
to this Perspex sample, the SDHs were equivalent to two-
dimensional bubbles relative to the image plane. The Perspex
test sample had identical acoustic properties to the Perspex
calibration sample except it contained bubbles suspended
within. The size distribution of these bubbles was not known
and needed to be determined experimentally. This procedure
is described in detail in Section IV.

300 mm

30 mm

Phased Array

5 mm

75 mm

15 mm

Fig. 1: Schematic of the Perspex calibration sample.

C. Assessment of Reflector Spatial Variation

When the array aperture is centred over the SDHs of the
Perspex calibration sample, this represents the ideal reflector
position because it creates a line of symmetry through the
aperture such that spatial variations in the data used to con-
struct the image are minimised. However, when imaging a
dynamic industrial process, these reflectors will be positioned
randomly throughout the image scene. Therefore, it was im-
portant to assess the sizing accuracy as a function of the spatial
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Fig. 2: Schematic of the reflector angle, θ.

orientation of the object relative to the array. To quantify this
spatial variation, the reflector angle, θ, has been defined as the
angle between the normal to the front face of the array and
the line intersecting the centre of the aperture and the centre
of the SDH, shown in Fig. 2.

In the calibration setup, the full 128 elements available
were used and three FMC data sets were acquired of each
SDH of the Perspex calibration sample. These FMC data
were sub-sampled using the A-Scan time domain signals
corresponding to 32 element apertures. This was achieved
using signals corresponding to elements 1 - 32, then 2 - 33
and so on resulting in 97 (128 − 32 + 1) individual FMC
data sets, each representing a discrete reflector angle. This
provided the maximum number of possible reflector angles to
be investigated using a 32 element aperture. These FMC data
sets were then constructed into TFM images under the same
conditions except the image scene was shifted along the y-axis
to ensure the object was kept within the image.

D. Modelling the Dynamic System

To model the dynamic nature of the image target it was
proposed to move the phased array relative to the position of
stationary reflectors. This provided a feasible way to control
the relative movement of the reflector with respect to the
transducer and enhanced its repeatability. To do this, the
phased array was mounted to a six-axis programmable robotic
arm (KR 6 R900 sixx, Kuka, Germany), shown in Fig. 3,
that scanned both Perspex samples at speeds of 50, 100,
200, 300, 400 and 500 mms−1. The path of the robotic arm
was programmed prior to scanning the Perspex samples to
maintain consistency between measurements, where the FMC
acquisition was programmed to coincide with the movement
of the robot.

When performing FMC, the elements in the aperture are
transmitted sequentially but the TFM image scene (the spatial
position of the pixels) is set relative to the position of the
array elements during the first transmit event. The TFM

Robot arm

Array

Perspex calibration sample

Fig. 3: Robotic arm used to scan Perspex samples at set speeds.

algorithm assumes that the image scene does not change
between transmit events such that the temporal resolution of
the FMC data set is aligned with the first transmit event.

When the robotic arm was used to scan the Perspex sam-
ples, the spatial position of the elements were not constant
throughout the acquisition time of an FMC data set. This
introduced error into the construction of the TFM images
from data acquired under these conditions. Note, this source of
error was not applicable when the reflector target was dynamic
relative to a stationary array because the spatial position of the
elements relative to the image pixels is constant for all transmit
events.

If the PAC acquires FMC data at the maximum pulse
repetition frequency and it is assumed there is no time delay
between transmit events, the total time to acquire an FMC data
set tFMC is

tFMC =
2L · nTx

ν
, (1)

where L is the furthest path length in the image scene
and nTx represents the number of transmit events. For a
32 element aperture, transmitting to a depth of 30 mm in
Perspex, tFMC = 0.7 ms. If the robot scans the array
across the sample at 50 mms−1, the position of the array
will have moved approximately 35 µm or 0.15% of the 32
element active aperture from its initial position during one
FMC acquisition. This spatial offset was not considered to
be significant because even at the highest speed investigated,
500 mms−1, the array will have only moved approximately
1.6% of the active aperture from its initial position during
one FMC acquisition. This error could not be removed from
the TFM imaging algorithm without redesigning the imaging
algorithm to account for this spatial offset. Moreover, for the
images generated in this paper, the largest array movement
corresponds to less than one pixel between transmit events.

Similarly, if the array is stationary relative to a bubble that
moves at a velocity of 500 mms−1, parallel to the front face
of the array, the distance the bubble will have moved during
one FMC acquisition would be 0.64 mm or 2.9% of the
active aperture. Therefore, it is not foreseen that the bubble or
robotic arm movement compromise the image quality severely.
In addition, given the similar degree of image uncertainty
between these two scenarios; using the robotic arm provided a
good indication of the response from a moving bubble reflector
while facilitating repeatable measurements.
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E. Experimental Verification

The ultrasound system described in this paper was also
tested using a dynamic bubble stream. A schematic of the
experimental apparatus is shown in Fig. 4. The linear phased
array was positioned in a water tank with a bubble diffuser at
its base. Air was pumped to the bubble diffuser via a rotameter
to ensure a consistent gas flow rate of 800 mL·min−1. The
array was positioned in-situ to the bubble stream and both
intrusive and non-invasive data acquisitions were performed.
Non-invasive data acquisition was undertaken by attaching a
10 mm thick Perspex block to the front face of the array,
the Perspex was coupled to the array in the water to ensure
no air gaps existed between the two. Since the array is
designed to be acoustically matched to Perspex, this facilitated
non-invasive measurement. Note, the water supplied did not
undergo degassing or any other treatment process prior to be
used in these experiments and was approximately 20◦C.

A photograph of the bubble stream is shown in Fig. 5.
It was observed that bubbles close to the diffuser and the
surface of the water were more coalesced than those in the
centre of the bubble stream. Therefore, when acquiring FMC
data of this system the array aperture was aligned with the
area shown in red in Fig. 5 and the front face of the array
was positioned within the bubble stream itself, minimising the
path length to reflectors and maximising the signal strength
reflected from the bubbles. Since the distribution of bubble
sizes in this experimental setup could not be easily controlled
or precisely repeated, the photographic image processing algo-
rithm described in Section IV was also applied to this system.

III. ULTRASOUND IMAGE PROCESSING ALGORITHM

A. Image Upload and Segmentation

An example of an input TFM image and the segmented
TFM image are demonstrated in Fig. 6(a) and (b) respectively.
The input TFM image must have square pixels and it must be
orientated such that the phased array is parallel to the y-axis.

Water
tank

Linear
array

Non-invasive
barrier

Air pump

Rotameter

Phased
Array

Controller
PC

Bubble
diffuser

z

y

Fig. 4: Schematic representing experimental apparatus to ac-
quire in-situ ultrasonic data of dynamic bubble stream.

Fig. 5: Photograph of dynamic bubble column, the region of
interest is highlighted in red.

The reason for this is that the algorithm expects the movement
of bubble objects to be from the base to the top of the image
scene.

Image segmentation was used to separate bubble objects
located in the foreground of the image scene from the back-
ground signal. A global threshold value was determined for
each image frame to reduce the computation time of the
segmentation process. Yen’s method [25] was selected for
determination of the segmentation threshold because it is
stable for images with a low foreground signal. This is because
the method takes the total signal into consideration rather than
the inter-class variation, as is the case using Otsu’s method
[26] for example, that would lead to interference from the
high background signal exhibited in these images.

B. Key-point Identification

The second step of the algorithm is the identification of three
key-points on the perimeter of each bubble object in the image.
Three key-points are used because this is the minimum number
required to model a circular shape. First the coordinates of the
perimeter of each object in the binary image are determined.
If no contours are found, the image frame is marked as
invalid and the algorithm begins processing the next image.
The remainder of the algorithm is applied to each individual
object in the segmented TFM image. If the coordinates of the
object cross the edges of the image frame, the object is not
completely within the image frame so this object is marked
as invalid and the algorithm begins processing the next bubble
object.

The first two key-points are set at the upper and lower
bounds of the bubble objects and a third point on the outer
circumference between the first two. These key-points are
shown in Fig. 6(b) for a 3 mm diameter SDH in the Perspex
calibration sample.
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Fig. 6: Images outlining image upload and segmentation
processes of the image processing algorithm (a) linear scale
TFM image (b) segmented TFM image showing three key-
point positions.

Selection of key-points 1 and 2 requires the algorithm to
identify a group of candidate boundary coordinates in the
lower and upper halves of the object respectively. The reason
for doing this is that the TFM will map the shape of the object
depending on its location relative to the centre of the array.
In Fig. 6(b), the object is perfectly centred with respect to the
centre of the phased array. Whereas, if the object is located
at the base or top of the image scene, its curvature could lead
to misidentification of the corresponding key-point position.
From this group of candidate coordinates the algorithm then
determines the correct one, as outlined below, and assigns this
as the corresponding key-point.

Key-point 1, shown by the green point in Fig. 6(b), is
determined by assessing the boundary coordinates in the lower

half of the object. Boundary coordinates on the two right-most
column indices of the object are initially selected, shown as
the red candidate coordinates in Fig. 7(a) zoomed to the region
of interest. From this first group of candidate coordinates, the
coordinate with the lowest row index is selected. Next, all
boundary coordinates with this same row index are identified,
shown as the red coordinates in Fig. 7(b). From this second
group of candidate coordinates, the left-most column index is
selected as the coordinate position of key-point 1. The same
process is repeated for boundary coordinates in the upper half
of the object to determine the coordinate of key-point 2.

To identify key-point 3, shown by the blue point in Fig.
6(b), the midpoint between key-point 1 and key-point 2 is
first determined. Then the equation of the line that passes
through key-points 1, 2 and their midpoint is determined,
with a gradient, m1. The gradient, m2, perpendicular to
m1 was determined from m2 = −1/m1. Key-point 3 is
then determined from boundary coordinates that intersect this
perpendicular line, where the coordinate with the left-most
column index is selected to be key-point 3. If the gradient,
m1 is not defined, then key-point 3 is determined from the
line intersecting the midpoint that is parallel to the z-axis.

C. Projection of Circles onto Bubble Objects

The third step of the algorithm is to fit a circular shape
through the three key-points of each bubble object. The
procedure to identify the centroid and radius of this circle
is shown in Fig. 8. The procedure is to determine the bisector
between key-points 1 and 3 and between key-points 2 and
3. The centroid of the circle is determined from the intersect
of their perpendicular bisectors. The radius is then calculated
using the distance between the centroid and any one of the
key-points.

In Fig. 8 a smaller secondary object can be observed
behind the larger object. This is an artefact of the ultrasound
image and does not represent the location of a real reflector.
Therefore, following identification and sizing of all objects
in the image, any objects corresponding to these artefacts are
identified and marked as invalid. The procedure for this is to
determine the Euclidean distance between the centroids of all
sized objects. Then where an object is located within the area
of second object, if the sum of its radius and the Euclidean
distance to the second object is smaller than the radius of the
second object, the second object is marked as invalid. Finally,
individual objects can be marked as invalid if they have a
radius outwith user-defined limits.

IV. PHOTOGRAPHIC VERIFICATION ALGORITHM

Alongside the image processing algorithm in Section III,
a second image processing algorithm was created to deter-
mine the BSD from photographs. Photographic analysis was
selected to verify the ultrasonic image analysis because it is
already well-established within the process analysis commu-
nity and it provides comparable spatial information about the
system. In addition, given that the BSD in the Perspex test
sample and in the dynamic bubble stream were not known,
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(a)

Object Perimeter

Group 1 Candidate Coordinates

Lowest Row Index of Group 1

(b)

Object Perimeter

Group 2 Candidate Coordinates

Key-point 1

Fig. 7: Key-point identification procedure for key-point 1
showing segmented image zoomed to region of interest (a)
group 1 candidate coordinates and lowest row index from this
group and (b) group 2 candidate coordinates and location of
key-point 1.

this analysis provides ground truth for the ultrasound image
processing algorithm.

Photographs were captured using a digital camera (Nikon,
Japan) with a 20.7 mega pixel resolution. The pixel dimension

r

Bisector

Perpendicular Bisector

Estimated Bubble Shape

Key-point 1

Key-point 2

Key-point 3

Fig. 8: Technical diagram showing properties used to deter-
mine centre of circle and radius, r, from three points.

was estimated by positioning a ruler behind the Perspex
test sample and gridded paper behind the dynamic bubble
stream. The region of interest was illuminated using an LED
lamp with an illuminated area of 200 × 210 mm2 and an
illumination intensity of 10 klx, positioned behind the image
target. Photographs were exported in .jpg format to a PC to
be read into the image processing algorithm.

The three-channel RGB images were converted to greyscale
using skimage.color.rgb2grey [27] and cropped to reveal just
the bubbles relating to the region of interest, shown in Fig.
9(a). Image segmentation is then performed using a global
threshold value determined by Otsu’s method [26]. The image
segmentation resulted in several regions not being closed or
well-defined, so binary dilation was applied using an arbitrarily
chosen 16 × 16 pixel structure to close gaps within objects.
This was followed by binary hole filling and binary erosion
using the same pixel structure where the result is recorded in
Fig. 9(b).

The Watershed algorithm [28] was used to segment the
individual bubble objects in the photographs. The Watershed
algorithm first identifies markers in the binary image cor-
responding to local maxima relative to the distance to the
background of the image. These markers represent the basins
to be filled by the Watershed algorithm. The second stage
of the Watershed algorithm is equivalent to filling the image
from these marker positions, where the edge of a region is
defined as the position where the watershed to a neighbouring
region is reached. The result of application of the Watershed
algorithm was recorded in Fig. 9(c), where the perimeters of
the identified objects have been recorded by the red lines.

The area of the individual regions were converted into
circles with the same area and the equivalent diameter (mm) of
these circles was used as the estimate of the bubble diameter.
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(a)

(b)

(c)

Fig. 9: Photographic image processing stages of Perspex test
sample (a) greyscale image including millimetre scale (b)
segmented image, scale has now been cropped from image (c)
corresponding image after Watershed segmentation, regions of
interest are highlighted by red contours.

User-defined diameter limits were determined from manual
inspection of small and large bubbles in the images that were
clearly separated from other bubbles.

Three photographs were captured along the length of the
Perspex test sample to ensure maximum coverage of the bub-
ble reflectors. The lower and upper diameter limits measured
from manual inspection were approximately 2.0 mm and 5.5
mm respectively. The equivalent diameters were collated into a
single array and recorded as a histogram in Fig. 10. It was ob-
served from the empirical data that the BSD was described by
a Normal distribution, where the mean and standard deviation
of the distribution were 3.4 ± 0.8 mm respectively (sample
size n = 276 bubbles) and its probability density function
(PDF) has been superimposed onto the histogram.

Five photographs were captured of the dynamic bubble
stream and these were cropped to the red region in Fig. 5.
From these the lower and upper diameter limits were measured
to be approximately 0.5 mm and 4.5 mm respectively. The
equivalent diameters of the bubbles within these limits were
recorded in the histogram in Fig. 11, where the mean and
standard deviation were 1.8 ± 0.8 mm (n = 597 bubbles)
and the corresponding PDF has been superimposed onto the
histogram. Note, there were fewer bubbles recorded in the
photographs of the Perspex test sample than in the dynamic
bubble stream, meaning there is increased certainty in the
distribution of the dynamic bubble stream than the Perspex
test sample.

V. RESULTS

A. Impact of Image Quality

TFM images of the five SDHs in the Perspex calibration
sample were passed to the ultrasound image processing algo-
rithm. When the estimated shape and position of the SDHs is
superimposed onto the segmented TFM image, for example
the red dashed circle in Fig. 12, it was observed that using
three key-points was sufficient to model the curvature of the
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Fig. 10: BSD estimated from photographs of Perspex test
sample (n = 276 sized bubbles) with the Normal PDF fitted
to the empirical data.
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Fig. 11: BSD estimated from photographs of dynamic bubble
column (n = 597 sized bubbles) with the Normal PDF fitted
to the empirical data.

reflectors. In addition, when the true diameter and position of
the SDH were superimposed onto the same image, shown by
the green solid circle in Fig. 12, the predicted shape is shown
to closely represent the true shape. However, this also high-
lights that the sizing error depends on the representativeness
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Estimated SDH Shape

True SDH Shape

Fig. 12: Segmented TFM image of a 2 mm diameter SDH
in Perspex where the red dashed line represents the shape of
the SDH estimated by the image processing algorithm and the
green solid line represents the shape of the SDH corresponding
to its know radius.

of the segmented TFM image rather than the robustness of the
image processing algorithm.

B. Sizing Accuracy of Stationary Reflectors

The predicted diameter of each SDH in the Perspex cali-
bration sample was recorded as a percentage error of the true
value in Fig. 13. These have been recorded as a mean and
standard deviation value for each SDH where the error bars
represent one standard deviation across the three TFM image
replicates.

The error bars in Fig. 13 indicate that as the reflector
diameter increases, the SDHs are more consistently mapped
onto the TFM image, therefore enabling more precise diameter
prediction for larger reflectors. Similarly, it is observed that
the average error of the five SDHs decreases as the diameter
increases. This is because larger reflectors generate a stronger
reflection at the Perspex-air acoustic boundary such that the
corresponding segmented TFM image more closely represents
the true shape of the reflector.

From Fig. 13 it is observed that the algorithm breaks down
for reflectors smaller than four wavelengths in diameter. How-
ever, given that typical industrial processes such as solvent
sublation or coal liquefaction require bubbles to have a diam-
eter larger than this threshold, this is not foreseen to present
a problem for practical deployment of the sizing algorithm
[10] [12]. Indeed, the SDHs with diameters greater than four
wavelengths exhibited a relative error within 10%. Objects
below the four-wavelength threshold were still successfully
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Fig. 13: Relative error of predicted SDH diameters from three
TFM images of each SDH in Perspex calibration sample with
the aperture centered over each SDH that is stationary relative
to the reflector positions.

segmented from the TFM images, however, the reduced sizing
accuracy was due to elongation of the segmented objects
resulting from the TFM not adequately mapping the curvature
of these objects onto the image scene.

C. Impact of Reflector Spatial Variation

The TFM images generated from 32 element sub-apertures
of the 128 element FMC data sets were passed to the sizing
algorithm and the results were recorded as a mean and
standard deviation at each angle in Fig. 14. For the TFM
image dimensions considered in this work, the maximum
reflector angle possible is approximately ± 25◦ relative to the
centre of the aperture, therefore, only the image frames with
reflectors within this range have been recorded. The results
were consistent with those in Fig. 13; the larger the SDH
diameter the greater the accuracy of the diameter prediction
and the more precise the result, indicated by the decreasing
size of the error bars. Note, the points at 0◦ in Fig. 14 are
the same values shown in Fig. 13. For SDHs larger than four
wavelengths in diameter it was found that the reflector angle
does not generate spurious results and the average accuracy
across all angles was within 10%. Therefore, the algorithm
was shown to be robust enough to cope with spatial variations
for large reflectors.

D. Modelling Dynamic Reflectors

The robotic arm was used to scan the Perspex calibration
sample at the velocities recorded in Section II-D while con-
tinuously acquiring FMC data. Upon sizing of the SDHs in
each TFM image, the relative error was recorded as a mean
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Fig. 14: Relative error of predicted SDH diameters from three
TFM images of each SDH in Perspex calibration sample ac-
quired at range of reflector angles under stationary conditions.

and standard deviation at each velocity in Fig. 15, where the
error bars correspond to one standard deviation. Note, there
were fewer FMC data sets recorded at faster velocities, so the
mean value has a lower sample size at faster velocities.

The results from the dynamic system in Fig. 15 are con-
sistent with those from the stationary system in Figs. 13 &
14; the larger the SDH diameter the greater the accuracy and
precision of the diameter prediction. Indeed, for the largest
SDH diameter investigated, the algorithm was robust enough
to size the SDH within 10% at a speed of 500 mms−1. This
shows that the acquisition rate of the ultrasonic data was
high enough to generate images that were representative of
the shape of the reflector. Also, for SDHs greater than 4λ in
diameter, the algorithm was able to estimate the SDH diameter
within 45% for velocities up to 300 mms−1. Overall, these
results indicate, in agreement with the stationary acquisition,
that the sizing algorithm is robust under controlled dynamic
conditions for reflectors larger than 4λ in diameter.

Following this, the sizing algorithm was applied to TFM
images of the Perspex test sample acquired under dynamic
conditions. As recorded in Section IV, the Perspex test sample
contained bubble reflectors ranging from 2.0 (3.7λ) to 5.5 mm
(10.1λ) in diameter. Also, from Fig. 15 it is observed that for
diameters greater than 3.7λ, the sizing accuracy deteriorates
above 300 mms−1. Therefore, the robotic arm was used to
scan the Perspex test sample at 300 mms−1 and a total of 100
FMC data sets were recorded. An example of a segmented
and annotated TFM image generated under these dynamic
conditions is recorded in Fig. 16. Reflectors not sized in Fig.
16 were either outwith the size limits or too close to the
edge of the image so were marked as invalid. Given that
Fig. 16 corresponds to the array moving at 300 mms−1 it
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Fig. 15: Relative error of predicted SDH diameters from TFM
images, acquired with the array mounted to robotic arm and
scanning the Perspex calibration sample at different velocities.
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Fig. 16: Example segmented and annotated TFM image of
Perspex test sample scanned using the robotic arm at 300
mms−1.

is clear the data acquisition rate is high enough to prevent
image distortion, however, this movement is only parallel to
the array. When measuring the bubble stream in water, there
is interaction between adjacent bubbles and the bubble path is
not linear, so the dynamic nature of the result shown in Fig.
16 pertains to a simplified bubble movement.

There were n = 270 valid bubble reflectors sized in the 100
TFM images of the Perspex test sample. These were recorded
as a histogram in Fig. 17, where the size limits were set to
the same values in Section IV and a Normal PDF has been
fitted to the empirical data. This result is in close agreement
with that of the photographic analysis of the Perspex test
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Fig. 17: Histogram of BSD recorded from TFM images of
Perspex test sample scanned with the robotic arm at 300
mms−1 (n = 270 sized bubbles) with the Normal PDF fitted
to the empirical data.

sample. In Fig. 10, the empirical mean and standard deviation
of the BSD in the Perspex test sample were 3.4 ± 0.8 mm.
Similarly, Fig. 17 shows the empirical mean and standard
deviation were 3.5 ± 0.7 mm. This provided certainty that the
BSD recorded from the ultrasound image processing algorithm
provided a relatively accurate measure, especially given the
sample sizes from the two workflows were within 3% of each
other. However, given that the exact diameter of each bubble
suspended in the Perspex test sample was not known, it was
not possible to provide an absolute measure of the certainty
of the ultrasound image processing algorithm.

E. Application to Dynamic Process Stream

One hundred FMC data sets were acquired of the bubble
stream in water with the array positioned intrusive to the pro-
cess and non-invasively via a 10 mm Perspex barrier mounted
to the front face of the array. Examples of a segmented and
annotated TFM image acquired under these two conditions
were recorded in Fig. 18. In both examples, the reflectors are
much smaller than those in Fig. 16. Although the bubbles are
larger with respect to the ultrasonic wavelength in water, the
signals appear weaker due to increased bubble density leading
to scattering and masking of the ultrasonic energy. In addition,
given that the acoustic impedance mismatch between Perspex
and air is greater than between water and air, the total energy
reflected back to the transducer was less.

A study by Aybers and Tapucu [29] has shown millimetre
length-scale bubbles rising through a stagnant fluid from a low
initial velocity exhibit a rectilinear velocity of approximately

300 mms−1 and this is reached within the first 10 mm from
bubble evolution. Here, the bubble velocity was not known
and they were generated under pressure from the air pump
so it is likely that the bubbles were travelling much faster
than 300 mms−1 and their velocities were outwith the scope
of this investigation. Indeed, as the bubble velocity increases
relative to tFMC , the object would become elongated as it
is mapped onto the TFM image, reducing its representative-
ness. Given this complex dynamic nature and the interaction
between bubbles, the results obtained could not be easily
repeated or verified. Note, the non-invasive image in Fig. 18(b)
corresponds to a particularly good image result, with several
reflectors in the image scene. However, across the 100 image
frames the average number of reflectors per TFM image was
approximately 0.62 when acquired non-invasively and 2.86
when acquired intrusively. Therefore, a high number of FMC
acquisitions are required to establish an accurate distribution
of the bubbles sizes.

The estimated bubble sizes from the intrusive and non-
invasive imaging were recorded in Figs. 19(a) and (b) respec-
tively. From the previous analyses of stationary and dynamic
reflectors, it can only be said that objects greater than approx-
imately 4λ can be sized within 10% certainty. In water, this
corresponds to bubbles with a diameter greater than 1 mm,
therefore, the lower size limit of the diameters recorded in the
BSD histogram is set to 1 mm rather than 0.5 mm used for
the photographic analysis.

The histograms in Fig. 19 both show a mostly uniform
distribution across the sample bins, however, from Fig. 11
it was shown to follow a Normal distribution. Given that the
sample size in Fig. 19(b) is only 62, about 10% of that relating
to Fig. 11, the ‘true’ PDF relating to ultrasound imaging
system is unclear due to under sampling. The reason for this
discrepancy is the lower image quality due to the complexity
of the bubble stream. However, these results do indicate that
the image processing algorithm presented in this paper can be
deployed to generate a measure of the BSD both invasively
and non-invasively.

VI. DISCUSSION

In this paper, an algorithm for the estimation of BSD is
presented and evaluated under stationary and dynamic imaging
conditions. The accuracy of bubble diameter prediction is
found to be sensitive to the accuracy of input images to
represent the true shape of the reflectors. In light of these
results, this discussion will focus on how the ultrasound system
could be modified to enhance the quality of the input images
and therefore the accuracy of BSD determination.

The first aspect to consider is the array transmission se-
quence deployed, where a compromise exists between the
frame rate and the signal-to-noise ratio (SNR). This has
been specifically addressed in the medical community for
cardiac imaging, where high temporal resolution is required to
monitor acute conditions [1]. High frame rate imaging is often
achieved using parallel beamforming whereby multiple foci
are generated in a single transmission event or diverging waves
are used that insonify a larger area in a single transmit event



12

(a)

ID:0

ID:1

ID:2

ID:3

ID:4

ID:5

ID:6 ID:7

ID:8

(b)

ID:0
ID:1 ID:2

ID:3

ID:4

ID:5
ID:6

ID:7
ID:8

Fig. 18: Example of segmented and annotated TFM images of
dynamic bubble stream acquired (a) intrusive to the process
and (b) non-invasive to the process via 10 mm of Perspex.

[4]. A consequence of both approaches is a lower energy in the
focal region with respect to using the full aperture to generate
a single focus. On the other hand, with respect to FMC, where
only a single element is fired during a given transmit event,
the energy injected into the load medium is much greater
whilst this facilitates frame rates greater than 100 Hz [4].
Therefore, using alternative transmission sequences such as
parallel beamforming and diverging wave compounding could
enhance the image SNR and therefore the accuracy of BSD

(a)

(b)

Fig. 19: Histograms of BSD of bubbles rising to surface of
water (a) intrusive to the process (n = 286 sized bubbles) and
(b) non-invasive to the process (n = 62 sized bubbles) through
Perspex.

determination.
Given the system presented in this paper, increasing the

aperture above 32 elements would increase the total infor-
mation captured within a given TFM image. It is expected
that this would lead to better representation of the bubble
curvature in the TFM images, enhancing the accuracy of BSD
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determination. However, the active aperture was limited by
the number of channels available on the PAC so could not be
increased here.

Within the context of industrial process analysis, an advan-
tage of using ultrasonic phased array imaging over ultrasonic
tomography is that the path length of the ultrasonic wave is not
set by the diameter of the process vessel but instead is user-
defined corresponding to the desired image depth. This means
that frequency dependent attenuation is no longer a limiting
factor in the experimental design, such that higher frequencies
can be deployed. Using high-frequency phased array imaging
leads to greater lateral resolution creating the possibility for
ultrasound imaging of individual reflectors as demonstrated
in this paper rather than the bulk system. An implication
of reducing the depth-of-field is that the bulk process may
be positioned relatively far from the vessel wall, increasing
the ultrasonic path length, leading to image deterioration.
However, phased array imaging could be deployed alongside
ultrasonic tomography to provide complementary information
relating to the bulk and peripheral process conditions.

In this paper, phased array imaging was applied to a stream
of air bubbles rising through water where it was found that
the bubble density reduced the signal intensity and therefore
the SNR of the TFM images was low. It should be noted that
during the development of the ultrasound image processing
algorithm it was assumed that the fluid process medium does
not contain scattering particles. If scatterers are present in the
process fluid, this leads to image deterioration, compromising
the accuracy of BSD determination. The presence of scatterers
is typical of biomedical ultrasound imaging where techniques
such as phase coherence imaging can be deployed to weight
the pixel values corresponding to the energy ratio between
the main lobe and side lobe artefacts [30]. This has the
impact of reducing the intensity of signals corresponding to
scatterers while maintaining the signal intensity from main-
beam reflections, so could be used to overcome this issue.

A specific challenge to perform ultrasound array imaging of
industrial processes is the transmission of ultrasound energy
through the vessel wall into the process. This has been
addressed in this paper using a Perspex non-invasive material
to facilitate the transmission of ultrasound energy. However,
a typical industrial plant environment contains steel vessels
creating a large acoustic impedance mismatch between the
transducer and the process. The presence of such an acoustic
barrier reduces the quantity of ultrasound energy reaching the
process and introduces reverberation into the received signals.
Removing these reverberations can be performed using post-
processing of the received data [31], however, the intensity of
the transmitted signal must be large to cope with the signal
attenuation.

Overall, there are several challenges associated with the
practical deployment of ultrasonic phased arrays for imag-
ing in industrial process analysis. However, addressing these
should not present a significant burden to overcome thanks
to the breadth of innovation already present within of the
ultrasound community. In this context, ultrasonic phased arrays
are well-poised as a potential tool within the next generation
of process analytical technologies.

VII. CONCLUSION

An image processing algorithm has been presented for
the determination of bubble size distribution in two-phase
industrial flows. This algorithm was tested using total focusing
method ultrasound images generated using a 32 element, 5
MHz linear phased array. A solid Perspex sample containing
reflectors of known diameter was tested under stationary and
dynamic conditions by coupling the phased array to a six-axis
robotic arm to scan the sample at known velocities. It was
found that for reflectors larger than 4λ in diameter the sizing
accuracy was within 10% when images were acquired under
stationary conditions. This was also true across the expected
spatial variation of reflectors. For reflectors larger than 4λ in
diameter, the sizing accuracy was within 45% at velocities up
to 300 mms−1. However, above this velocity the algorithm
deteriorated for reflectors smaller than 9λ in diameter. When
the ultrasound system was applied to a stream of bubbles
rising through water, the system was capable of imaging these
reflectors both intrusively and non-invasively, via a 10 mm
Perspex barrier. Upon application of the image processing
algorithm to these images, it was found that the high bubble
density reduced the signal-to-noise ratio, limiting the sample
size in the measured distribution. The bubble sizing accuracy
was found to be sensitive to the input image provided. Where
the signal-to-noise ratio of these images is dependent on the
ultrasonic energy injected into the system and on the scatterer
density in the load medium. Overall, this paper shows the high
potential for ultrasonic phased array imaging and sizing of
two-phase industrial flows both intrusively and non-invasively.
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