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Introduction 

The discussers read with interest the recent paper by Zhang et al. (2018), which reports on the 

investigation of the effects of 0–12% lignin additive on some index and shear strength 

properties of a silty soil material. The use of the fall-cone device to study undrained shear 

strength variation with moisture content is pleasing to see and shows how the approach is 

useful for this purpose: namely the study of undrained strength variation. We wish to make 

the following comments regarding some of the underlying assumptions in the paper by way 

of offering some other explanations and interpretations for the results obtained. 

Atterberg Limits 

The value of liquid limit (wL) can be determined using standard percussion cup or fall cone 

devices and is notionally understood as the moisture content corresponding to the transition 

from liquid to plastic behavior, though this distinction is arbitrarily defined. The international 

standard method for the determination of the plastic limit (wP) value, understood as the 

moisture content corresponding to the brittle transition point for the soil thread investigated, 

is the rolling of threads method originally described in Atterberg (1911a, 1911b). These 

standard tests are performed on the fraction of the remolded soil passing the 425 µm sieve 

(see e.g., BSI, 1990).  
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In the authors’ investigation for the 7 d cured lignin-stabilized soil specimens, 

established strength-based approaches were used to estimate the specimens’ moisture content 

values for two assigned fall-cone penetration depth (h) values, with the authors reporting 

these moisture content values as wL and wP. Irrespective of the code of fall-cone practice 

employed, these values do not correspond to the standard liquid and plastic limit values as 

described above (O’Kelly et al. 2018), since they do not correspond to the remolded soil state 

(having been allowed to cure over a 7 day period before being tested undisturbed using the 

fall cone device) and there are also a number of inconsistencies in the underlying assumptions 

and methodologies employed by the authors for their determinations, which are discussed in 

the following paragraphs. 

Cone Factor and Fall-Cone Undrained Shear Strength 

In their experimental investigation, the authors utilized a greased fall cone of 76 g mass and 

30 apex angle that was allowed to penetrate into the 7-d cured test specimens contained in 

50 mm diameter by 30 mm high sample cups. For this set up, the authors defined the liquid 

limit wL value as corresponding to h = 17 mm and purport to have followed the British 

Standard (BS) fall-cone test method (BSI 1990). However, the BS fall-cone test method 

specifies an 80g–30 cone, 55 mm diameter by 40 mm high sample cups, with the wL value 

defined as the moisture content at which this cone penetrates a depth of 20 mm into remolded 

test specimens. Koester (1992) reported the use of a 76g–30o cone to determine wL as the 

water content at 17 mm penetration of the said cone as being specified in the 1989 Chinese 

code. This procedure is used in MWRPRC (1999) (with a greased cone) which also 

recommends that plastic limit be taken at the moisture content where the cone penetrates 

2mm. Further, the BSI (1990) approach does not involve coating the cone-tip surface with a 

thin layer of grease or lubricant, which would have the effect of altering the cone 

characteristics, significantly increasing the value of the cone factor (K) (as defined by Eq. (1) 
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in the paper under discussion) for the purposes of undrained shear strength determinations 

(Koumoto and Houlsby 2001), as elaborated in the next paragraph. 

With different values of h assigned for the wL condition as well as different fall-cone 

weight (W) and K values, these two fall-cone setups might produce different values of wL for 

the same remolded test material. Ignoring the effect on the K value of greasing the cone, the 

undrained shear strength at the ‘liquid limit’ would have increased by a factor of 

approximately 1.31 owing to the lighter cone and lower penetration relative to the BS fall-

cone setup. This would have an effect on the values of the liquid limit thus calculated. Could 

the authors clarify which testing standard or methodology was followed during the work? 

Undrained shear strength values, measured using the fall-cone device, are as accurate 

as the cone factor (K) value used in any back-analysis to estimate a strength value. From 

Eq. (1), the value of K can be linked to the assumed undrained shear strength at liquid limit if 

this is associated with a specific value of penetration depth for a cone having particular 

weight and cone apex angle values (cf. Vardanega and Haigh 2014). In determining the fall-

cone undrained shear strength, the authors employed a K value of 1.33 in applying the 

reported Eq. (1). Referring to their theoretical analysis of the fall-cone test, Koumoto and 

Houlsby (2001) calculated K values of 2.00, 1.33 and 1.03 for 30 fall cones with fully 

smooth (i.e. zero shear stress:  = 0), partially rough ( = 0.5) and fully rough ( = 1.0) 

cone-tip surfaces, respectively: where  is the cone adhesion factor. In other words, as an 

initial observation, there is a discrepancy between the K value of the greased cone-tip surface 

used by the authors and the theoretical value for the equivalent smooth cone reported in 

Koumoto and Houlsby (2001). 

In practice, however, experimentally derived K values (often calibrated against vane-

shear undrained strength) are consistently lower than these theoretical K values. For instance, 

experimental K values for a 30 cone of either 0.8 or 1.0 were reported for (nominally) 
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undisturbed clay samples in Hansbo (1957). An average K value of about 0.79 (for a 30o 

cone) from the work reported in Karlsson (1961) can be stated, noting that Koumoto and 

Houlsby (2001) point out that the actual K values reported in Karlsson (1961) are ‘too low by 

a factor of 10.0’. Wood (1985) gives an average value of 0.85 for a 30o cone used to test 

some clayey soils. Only independent experimental strength measurements can validate fall-

cone derived su values; such measurements were not reported by the authors in the paper 

under discussion. Consequently, all values of su quoted in the paper are as accurate as the K 

value assumed. 

In the absence of calibration strength measurements, one approach is to examine the 

predicted fall-cone undrained strength value at the wL which is generally understood as 

corresponding to an average value of 1.7 kPa (Wroth and Wood 1978). Using Eq. (1) and 

taking K = 1.33, the undrained shear strength value at the liquid limit value for the 76g–30 

fall-cone setup (with h = 17 mm assigned at liquid limit) employed by the authors is 

predicted as 3.43 kPa. Also Eq. (1), as given in the paper, is said by the authors to have su in 

kilopascal and h in millimeters, but in reality it is su in Pascals and h in meters together with 

W (being the cone weight not mass) in Newtons. If one takes the undrained shear strength at 

liquid limit to be equal to 1.7 kPa instead, one can compute from Eq. (1) a revised value for K 

of 0.659 (about a factor of two smaller than the theoretical value of 1.33) for use in undrained 

shear strength calculations for the authors’ fall-cone set up.  

Determination of Plastic Limit 

In using the reported Eq. (3) after Feng (2000) in their analysis, the authors employed a log–

log representation of fall cone data (previously suggested by Kodikara et al. (1986, 2006), 

Feng (2000, 2004) and Chen et al. (2013)). Eq. (3) is constructed from Eq. (2) on the basis 

that h = 2.0 mm at the wP value and h = 20.0 mm at the wL value, with this factor of 10 

difference when squared leading to the assumption of a 100-fold increase in the su value over 
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the plastic range (e.g., Wroth and Wood 1978). Hence, with h = 17.0 mm assigned to the wL 

for the authors’ investigation, the wP values reported in their paper are the moisture content 

values that produced approximately a 72 fold increase in the undrained shear strength 

deduced for their fall cone wL values (i.e., corresponding to an 𝑠௨ value of 3.43  72 ≈ 

247kPa). For clarity, the discussers introduce the notation wP72 to identify their derived 

‘plastic limit’ values. 

While the assumption of a 100-fold increase in undrained shear strength over the 

plastic range is a soil mechanics fallacy (Haigh et al. 2013; O’Kelly 2013a), nevertheless, the 

designation of a strength-based plastic limit is potentially useful (Stone and Phan 1995; 

Haigh et al. 2013; O’Kelly et al. 2018) and in recent literature has been termed the plastic 

strength limit, wP100 (Haigh et al. 2013), to distinguish it from the international standard 

thread-rolling plastic limit after Atterberg (1911a, 1911b).  

However, it is important to emphasize that any expected agreement between the wP 100 

(or any similarly defined strength based plastic limit values) and the thread-rolling plastic 

limit values is purely coincidental (Haigh et al. 2013; Sivakumar et al. 2016; O’Kelly et al. 

2018). The thread-rolling plastic limit corresponds to the remolded state, as emphasized 

earlier, whereas the values deduced in the authors’ investigation are for 7 d cured soil 

specimens. 

Referring to the values presented in Table 2; the authors observed that both wL and wP 

values of the 12% lignin-stabilized silty soil mixture are approximately 20% higher than 

those obtained for the natural silty soil (0% lignin content), or expressed in absolute terms as 

percentage point differences of 8.8% and 4.3% for wL and wP, respectively, with the deduced 

plasticity index increasing in value from 10.1% to 14.6% for the 0% and 12% lignin contents, 

respectively. Given the sizable amount of lignin additive, the reported values would suggest 

that the changes in the plastic range for increasing lignin content are considered markedly 
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small. However, it is worth repeating that the wL and wP values deduced by the authors do not 

define the range of plasticity for the remolded materials (at least that defined by the BSI 

standard they quote), but define instead a range of moisture contents corresponding to h 

values of 17.0 and 2.0 mm, respectively, for the 7 d cured specimens tested using the authors’ 

76g–30 fall-cone setup.  

Moisture content determination 

For their moisture content determinations, the authors adopted an oven drying temperature (t) 

of 30C, rather than the standard t range of 105±5C (ASTM, 2014), to ensure the integrity of 

lignin during the oven-drying process, which is understandable. However, residual pore water 

remaining in the dried specimens for t < 100C results in an underestimation of their actual 

moisture content value since it is included with the specimen dry masses for the purposes of 

performing the moisture content calculations (O’Kelly 2004; O'Kelly and Sivakumar 2014). 

The authors’ adopted t value of 30C is grossly below the ASTM oven-drying temperature 

range and the resulting effect is compounded in the cases of lignin-stabilized soils and other 

organic soils, including peats, since a sizable fraction of the free water is contained in the 

intra-aggregate pores (Locat et al. 1996; Horpibulsuk et al. 2004; O’Kelly and Pichan 2013). 

In terms of su – w correlations, the effect of employing lower values of t in performing 

the moisture content determinations is to translate the experimental su – w correlation to the 

left, when presented in an su versus w plot, as demonstrated in O’Kelly (2014) and (O’Kelly 

and Sivakumar 2014) for different organic soils. For this reason, these researchers 

recommended a standardized t = 105C for routine moisture content determinations on such 

materials, thereby allowing valid comparisons between experimental su – w correlations 

proposed by different researchers and (or) different soil materials. Two experimental 

approaches are given in O’Kelly (2004, 2005) for comparison of w values measured for the 

same organic soil, based on the use of different t values. 
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Undrained shear strength variation with changes in moisture content 

The authors give Eq. (5) in the paper to explain the variation in fall cone su with a liquidity 

index (IL) parameter for the materials tested. Since the IL parameter was computed on the 

basis of the values of wL and wP72 deduced for the undisturbed 7-d cured lignin-stabilized soil 

specimens using the 76g–30 fall cone setup, it is different to the traditional liquidity index 

parameter, which is defined in terms of the fall cone or percussion cup wL value and the 

thread rolling wP value (see BSI 1990). 

 In Fig. 7, the authors compared their computed fall cone su values deduced for the 0–

12% lignin-stabilized silty soil mixtures investigated with those values calculated from three 

su – w correlations reported in the papers by Federico (1983), Berilgen et al. (2007) and 

Chen et al. (2013). It should be pointed out that one of these correlations was derived for 

remolded soil (Federico 1983) and a second for reconstituted soil (Berilgen et al. 2007). 

There are a myriad of other empirical correlations proposed to relate su with w, wL or IL, some 

of which are summarized and compared in O’Kelly (2013a). Based on comparisons of the 

relative performances of these three correlations in predicting their fall cone su values, the 

authors concluded that, in general, none of them could predict the fall cone su values of the 

7 d cured lignin-stabilized silty soil mixtures very well, motivating them to propose their new 

su – IL relationship given by Eq. (5) in the paper under discussion. 

Since the mobilized su value depends on the soil mineralogical composition and 

material characteristics, the strength measurement approach employed, the t value adopted 

for moisture content determinations on temperature-sensitive geomaterials, and the 

definitions and measurement approaches employed for wL, wP and IL determinations (e.g., 

O’Kelly 2013b), it is not surprising that great variability often exists between su predictions 

made using various correlations proposed by different researchers. The empirical Eq. (5) 

proposed by the authors for estimating the fall cone su values relates specifically to the lignin-
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stabilized silty soil material investigated using the 76g–30 greased cone setup, with the wP 

and wL values defined for h = 2 and 17 mm, respectively, and the t value of 30C employed 

for moisture content determinations. Caution is urged in applying Eq. (5) more widely for 

other lignin-stabilized soils and for geomaterials in general. 
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Notation 

The following symbols are used in this discussion: 

h = fall cone penetration depth; 

IL = liquidity index 

K = cone factor;  

su = undrained shear strength; 

t = oven drying temperature; 

w = moisture content; 

wL
 = liquid limit; 

wP = plastic limit determined by the thread rolling method;  

wP72 = plastic strength limit corresponding to a 72 fold increase in undrained shear 

strength from liquid to plastic limit; 

wP100 = plastic strength limit corresponding to a 100 fold increase in undrained shear 

strength from liquid to plastic limit; 

W = fall cone weight;  

= cone roughness factor. 
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