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d prey, enhanced conspicuousness due to bilaterally sym-
ion increases predation risk. The ubiquity of symmetrical
nature is therefore paradoxical, perhaps explicable through
ntal constraints. Placing patterns that would be salient when
. high contrast markings) away from the axis of symmetry is
tegy to reduce the predation cost of symmetrical coloration.
flaged prey with symmetrical patterns placed at different
the axis were used in both visual search tasks with
vival experiments with wild avian predators. Targets were
when symmetrical patterning was placed outside a ‘critical
e experiments, the saliency of features at different distances
e was measured in the cryptically coloured forewings of 36
ecies. Salience, both in absolute terms and relative to wing
st away from the axis of symmetry. Our work, therefore,
at prey morphologies may have evolved to exploit a
ability of mammalian and avian visual systems to spot
terns.

biquitous visual defence strategy in the animal kingdom [1–3],
paradoxical feature of concealing coloration is the presence of
[4]. Experiments with avian predators in the field and labora-

that symmetrically patterned camouflaged targets have lower
lus salience in humans [8,9]. This is because most substrates
might rest are asymmetrical, particularly at the spatial scale
king symmetry a salient Gestalt cue to a predator [10,11].
arch on Lepidoptera suggests significant genetic and develop-
s on the evolution of asymmetrical body patterns in this taxon
thy exceptions in other insects demonstrate that these con-
bsolute (e.g. [15]), but decoupling surface patterning from
the underlying morphology may require many mutations.
enetic and developmental constraints are the main factor
volution of asymmetrical coloration, one might ask whether
volved ways of optimizing their surface patterning to
ctability costs of symmetrical appearance. One suggestion is
ng of body pattern elements relative to the axis of symmetry
ance [6,7].
systems are particularly sensitive to features within a narrow
ymmetry axis [8,9,16,17], presumably due to increased recei-
e point of fixation: symmetry is more likely to be detected if a
to alight on the axis of symmetry [7,8,17,18]. To date, there
dies to test the biological relevance of this phenomenon in
als in the wild, but previous work on captive great tits,
tterns, has indicated that this can affect detection [7]. For a
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cryptic animal with left and right elements visible simul-
taneously to the receiver, e.g. a moth on a substrate, one
would expect camouflage elements, such as high-contrast dis-
ruptive markings, that might attract a saccade [19], to be
placed away from the axis of symmetry [7]. This would con-
stitute an evolutionary compromise, enhancing crypsis while
retaining bilateral symmetry.

We investigated whether such a critical region about the
axis of symmetry exists in camouflaged, artificial, moth-like
prey, using human visual search and wild bird predation
experiments. We also tested whether salient elements on the
wings of real Lepidopteran species are, on average, positioned
away from this critical region about the symmetry axis.

2. Material and methods
(a) Experiment 1: human visual search
(i) Stimuli
Artificial outlines were created based on the North American
genus Melanolophia (family: Geometridae), a group with a typical
moth shape when in their resting position [20], usually in forest
habitats. Photographs of the bark of 180 oak trees (Quercus robor),
were taken with a calibrated Nikon D80 (Nikon Corporation,
Tokyo, Japan) at Leigh Woods National Nature Reserve (North
Somerset, UK, 2°38.60 W, 51°27.80 N) to provide the surface
patterning of the artificial prey and the backgrounds against
which they would ‘rest’.

To create the experimental treatments, each moth was
divided into sixths: three each side of the midline [8]. Divisions
were made by both equal area and equal width because moth
shapes are not uniform in area along their width, and both
area and distance from the midline could affect detectability.
Five treatment groups (figure 1), for both division variants,
were created by manipulating the mirror symmetry of the bark
between the complementary sixths on each half of the target.
The treatments were: S: Complete symmetry; I: Inner sixths sym-
metrical only; M: Middle sixths symmetrical only; O: Outer
sixths symmetrical only; A: Complete asymmetry.

There were 18 replicates of each treatment × division combi-
nation, giving a total of 180 stimuli. The targets were then
placed, in the same vertical orientation, at random locations on
their corresponding bark background, although never in the
location where the background for the target was extracted.
When displayed in the experiment, the visual angle occupied by
the targets was 4.18°.

(ii) Procedure
The experiment was a visual search task programmed in MATLAB
[21] using the Psychophysics Toolbox Version three extensions
[22,23]. Twenty-five participants (52% female, aged 18–30) with
normal or corrected-to-normal vision, and naive to the purpose
of the experiment were briefed in line with the Declaration of Hel-
sinki. The display was a linearized, 2200, 1024 × 768 pixel LaCie

(a)

(b)

Figure 1. A selection of artificial targets created from one of the Melanolophi
area (a) and equal width (b). From left to right: all-symmetrical (S), inside
all-asymmetrical (A). (Online version in colour.)
RSPB20192664—20/12/19—12:45–Copy Edited by: Not Mentioned
Electron 22Blue CRT monitor (LaCie Ltd., London) (as in [24]).
Subjects sat with their head level and within 1 m of the screen.
They clicked on the moth in each of the images using a computer
touchpad (MacBook Pro; Apple Inc., Cupertino, CA, USA). Five
practice trials preceded the experiment.

The 180 stimuli were displayed in a different random order
for each participant, with a black fixation cross on a mid-grey
background shown for 0.5 s before each trial. There were six
30-image blocks, with the participant able to take a break after
each block. Trials timed out after 30 s when the next image
would be shown. Response time (RT), mouse click location and
time-outs were recorded.

(iii) Analyses
RTs and residuals from fitted models were inspected visually and
an inverse transform of the time (effectively response rate) was
found to normalize residuals. Inverse RTs were analysed with a

ens, showing the five treatment groups when divisions were made by equal
ymmetrical (I), middle-only symmetrical (M), outside-only symmetrical (O),
in R [25,26]. Symmetry treatment (five levels) and division variant
(two levels) were treated as fixed effects, while subject, particular
target and background were fitted as random effects.

A miss was defined as any click outside an invisible rectangle
centred on the target which had dimensions that were 5% greater
than those of the targets. Analyses of errors and time-outs were
attempted using Generalized Linear Mixed Models with binomial
errors (function glmer in lme4). However, owing to the low fre-
quency of misses (5.9% of trials) and time-outs (0.8%), the fitted
models did not converge (the maximum likelihood could not
reliably be found). Because all the variation in participant perform-
ance is captured in RT, speed-accuracy trade-offs are not a concern.

(b) Experiment 2: avian predation in the field
(i) Procedure
The same 180 artificial prey from Experiment 1 were calibrated for
passerine vision (using the techniques described in [24]) and
printed onto waterproof paper (Rite-in-the-Rain, Tacoma WA,
USA) to be used in the field experiment, which took place from
February to March 2018. The targets were 3.5 cm by 2 cm and
the experimental procedure followed similar previous work (e.g.
[27]). Targets were pinned on to the bark of mature oak trees at
the site the bark textures had been photographed (Leigh Woods
National Nature Reserve). A dead mealworm (Tenebrio molitor
larvae frozen at −80°C then thawed) was pinned underneath
each target as bait. A total of 1350 individual targets were put
out in 15 blocks of 90, giving eight repeats of moth shape repli-
cates 1–9 and seven repeats of replicates 10–18. Each block of
stimuli was placed in a different area of the wood, on different
dates, in order to reduce the likelihood of predation by the same
individual predators. Fresh targets were printed for each block.

Once an individual tree was selected, individual targets were
chosen at random by blindly selecting from a bag. Checks were
then made at 24, 48 and 72 h intervals. The ‘survival’ of each arti-
ficial moth was determined by the presence or absence of the
mealworm, with the target still intact and attached to the tree.



Targets were marked as ‘censored’ in the survival analysis if they
were lost, if they survived until the end of the trial (72 h) or if
there was evidence of non-avian predation [24].

(ii) Analyses
A mixed-effects Cox regression was used to perform a survival
analysis using the coxme function from the coxme R package
[25,28]. Symmetry treatment and division variant were treated
as fixed effects, with experimental block a random effect. The
effect of treatment was tested using an analysis of deviance com-
paring the unexplained variation of a model with and without
the factor in question, tested against a χ2 distribution.

Experiments 1 and 2 investigate how the presence and pos-
ition of bilateral symmetry affect the detectability of cryptic prey
if all competing biological constraints which might preserve sym-
metrical coloration are removed. The following natural pattern
analysis uses real, bilaterally symmetrical Lepidoptera specimens
to ask whether real animals have evolved to follow the trends
suggested by these human and avian predation experiments.

(c) Natural pattern analysis
(i) Photographing, editing and categorization of specimens
Dead British moth species were acquired from collections at the
Bristol City Museum and Art Gallery (UK) and photographed
under controlled lighting conditions (see electronic supplemen-
tary material). Scans were also taken from Sterry et al. [29], a
photographic field guide which shows species in their natural
resting positions. Museum and field guide specimens were
then identified to family, genus and species level. Unlike the
photographs taken personally, the colours in the field guide
cannot be taken as accurate (even for human vision), but the
rationale was that the within-wing distribution of salient fea-
tures, with most of the pattern variation being in intensity not
hue, would be correlated between uncalibrated photograph
and avian-perceived colour. Because they are always visible
when the moths are at rest, only the forewings (left and right)
of the moth specimens were selected for the analysis. These
were then cropped and edited on GIMP 2 (The GIMP Team,
www.gimp.org) (see electronic supplementary material).

Moth species of interest were those with cryptic, discrete, high-
contrast markings relative to the average colour and pattern of the
wing. These criteria could include high-contrast disruptive mark-
ings, but with the exception of horizontal markings that transected
the entire wing. To confirm whether a moth’s coloration was cryp-
tic, albeit subjectively, multiple photographs of the animal against
its natural background were compared using Google Images.
Only moths with such discrete markings would have had the
evolutionary freedom to position pattern elements further or
nearer from the axis of symmetry. Species with patterns conform-
ing to these criteria were selected by an unbiased group of 20
human participants (electronic supplementary material). A phylo-
genetically diverse spread of moths was selected for the analysis

salience as a function of distance from the midline was obtained
by summing values of each column of pixels from left to right
(for a right forewing) or right to left (for a left forewing). In
the absence of any data on the perceptual weightings of achro-
matic intensity, colour and edge orientations for birds, the
empirically derived values for humans were used with the
rationale that this should not affect within-wing differences in
salience. Tests of the robustness of this assumption, and of
whether the use of both museum specimens and book-sourced
images affect the conclusions, are provided in the electronic sup-
plementary material. Because wings are not equal in area across
their width, we calculated relative salience which controlled for
the width of the wing at a particular point (figure 2). Further
details on the computer program and how salience was calculated
are provided in the electronic supplementary material.

(iii) Statistical analysis
Thirds of equal width were created and the summed salience and
wing area within each third was calculated. Wing area was used to
determine the relative salience (absolute salience/wing area) of
each third. Within-wing differences between the inner, middle
and outer thirds were analysed with linear mixed models in R
[25], using the modified lmer function from the lmerTest package
[33]. Side and species were both treated as random effects, the
null hypothesis being that the mean difference between wing
thirds is zero.

There is no complete phylogeny of the species in our study
but, to assess whether phylogeny could be a potential confound-
ing factor, we reran analyses with moth family as an additional
random effect.

3. Results
(a) Experiment 1
For the inverse response times, the symmetry treatment × div-
ision variant interaction was significant (χ2 = 13.69, d.f. = 4, p =
0.0084). The data were therefore split by stimuli divided by
equal area or width, with linear mixed model analyses per-
formed separately for each. A limited set of a priori custom
contrasts was applied using the glht function in the multcomp
package [34] using a Tukey-style procedure where treatments
S and A were contrasted with all other treatment groups.

When the targets were divided into sixths by equal area,
the effect of treatment was significant [χ2 = 256.82, d.f. = 4,
p < 0.0001; figure 3a(i)]. There was no significant difference
comparing S with I (z =−0.361, p = 0.9880). However, treatment
S evoked a lower average RT than M (z = 12.797, p < 0.0001), O
(z = 3.404, p = 0.0035) and A (z = 12.813, p < 0.0001). Treatment
A had a significantly greater RT than I (z =−4.345, p < 0.001).
No significant differences were found between A and M
(z =−1.343, p = 0.5259) or O (z =−0.587, p = 0.9422).

I (z = 0.816, p = 0.8494). Again, S had a significantly lower RT
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with the sample size consisting of 36 species, 31 genera and
seven families. Of the 36 moths chosen, 9 were from the
museum, while the remaining 27 were from the field guide.

(ii) Image analysis
A computer program for analysing the visual salience of the
edited right and left forewings was written using MATLAB
[21]. Saliency maps were generated by applying an avian-
vision adaptation of a model created by Rosenholtz et al.
[30,31]. This is a model, used previously for investigating other
aspects of animal camouflage [32], which analyses variation in
three features based on low-level visual perception: luminance,
colour and orientation contrast. These are then summed to get
an overall measure of visual salience. A combined measure of
RSPB20192664—20/12/19—12:45–Copy Edited by: Not Mentioned
When the targets were divided into sixths by equal width,
the effect of treatment was also significant [χ2 = 124.65, d.f. =
4.0, p < 0.0001; figure 3a(ii)]. As with targets divided by
equal area, there was no significant difference between S and
than M (z = 9.705, p < 0.0001), O (z = 2.672, p = 0.0330), and A
(z = 8.007, p < 0.0001). No significant differences were found
between A and I (z =−1.526, p = 0.4072), M (z = 0.936, p =
0.7851) and O (z = 0.337, p = 0.9902).

Overall, all-symmetrical and inside-only symmetrical
patterns weremost easily detected. Although therewas an inter-
action between treatment and division variant, the treatment
effects were the same, just slightly stronger in the width variant.

http://www.gimp.org
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Figure 2. An example of the output from the wing salience computer program
the file with background set to the median colour of the wing, a salience map
based on orientation contrast, a combined salience map, a transect along the
wing area (blue line) in each vertical column when moving from left to right
when moving from left to right along the wing. (Online version in colour.)

3.0

(a) (ii)(i)

m
ea

n 
R

T
 (

s)
 ±

 9
5%

 c
.i.

m
ea

n 
R

T
 (

s)
 ±

 9
5%

 c
.i.

1.5
allsym allsyminnersym innemidsym

area

outersym asym

2.0

2.5

3.0

1.5

2.0

2.5

Figure 3. Experiment 1 (a) and 2 (b) results. (a) The mean response times wit
width (ii). Error bars represent 95% confidence intervals. (b) Odds of survival r

Values and 95% confidence intervals are from the fitted survival model. (Online ve
(b) Experiment 2
In the mixed-effects Cox regression, the symmetry treat-
ment × division variant interaction (χ2 = 4.8441, d.f. = 4, p =
0.3037) and the main effect of division variant were not sig-
nificant (χ2 = 0.9559, d.f. = 1, p = 0.3282), but the effect of
symmetry treatment was significant (χ2 = 25.626, d.f. = 4,
p < 0.0001; figure 3). A limited set of custom contrasts was
then calculated, as in Experiment 1. There was no significant
difference between S and I (z = 0.438, p = 0.9889). However,
the survival rate was significantly lower for treatment S
compared to M (z = 2.994, p = 0.0168), and A (z = 4.259, p <
0.0001). The difference between S and O was similar, but
RSPB20192664—20/12/19—12:45–Copy Edited by: Not Mentioned
not significant (z = 2.576, p = 0.0567). Treatment A had a sig-
nificantly higher survival rate than I (z =−3.831, p < 0.0001),
but not M (z =−1.273, p = 0.6451) or O (z =−1.712, p = 0.3610).

(c) Natural pattern analysis
The absolute salience of the middle third was significantly
greater than that of the inner third (t = 9.208, d.f. = 27.2, p<
0.001). However, the inner third was significantly more salient
than the outer third (t = 9.687, d.f. = 35.3, p< 0.001). By necessity,
the difference in salience between the middle and outer thirds
was also significant (t = 11.45, d.f. = 24.7, p< 0.001) (figure 4).
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When the analysiswas repeated using relative salience, both
the middle third and the outer third had a significantly greater
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comparisons (t = 2.95, d.f. = 35.3, p = 0.0060
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lyses with moth family as an additional
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versus middle: t = 4.154, d.f. = 5.133, p =
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4. Discussion
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was demonstrated when the analysis wa
tive salience (figure 4). The shape of m
therefore adds to the intrinsic cost of sym
by virtue of there being more area near
though the median wing area is great
third, our results demonstrate that the
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the visual ecologies of predators search
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Given that the salient markings of inter
ruptive patterns that break the body outli
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edge disruption rather than reduction of sy
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significantly greater than that of the inner
middle having less edge per unit area. T
the positional bias of disruptive marking
sole explanation for the trends that emerge
pattern analysis. In any case, considerati
species chosen for the experiment (electron
material) shows that 18 of the 36 speci
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