What should we call the Levant mole? Unravelling the systematics and demography of Talpa levantis Thomas, 1906 sensu lato (Mammalia: Talpidae).

Sadik Demirtaș ${ }^{\text {a }}$, Metin Silsüpür ${ }^{\text {a }}$, Jeremy B. Searle ${ }^{\text {b }}$, David Bilton ${ }^{\text {c,d }}$, İslam Gündüz ${ }^{\text {a }}$, ${ }^{\text {, }}$
${ }^{\text {a}}$ Department of Biology, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey.
${ }^{\mathrm{b}}$ Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 148532701, USA.
${ }^{\mathrm{c}}$ Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, Devon, UK.
${ }^{\mathrm{d}}$ Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, Republic of South Africa
*Corresponding author. E-mail: gunduzi@omu.edu.tr

Abstract

Turkey hosts five of the eleven species of Talpa described to date, Anatolia in particular appearing to be an important centre of diversity for this genus. Of these taxa, the Levant mole, Talpa levantis Thomas, 1906 has been suggested to consist of two genetically divergent sublineages, which may represent separate species. Here we use a combination of mitochondrial and nuclear DNA sequences from specimens of T. levantis s.lat. collected across the species geographical range to explore the systematics and demographic history of Levant moles. Both mitochondrial and nuclear markers confirm the existence of distinct eastern and western sublineages, which apparently diverged from each other in the early Pleistocene. Given the degree of cytochrome- b divergence between these (7.28\%), we consider them to represent independent, cryptic species. By including topotypic specimens of T. levantis s. str. in our study we are able to show that this name applies to the western sublineage, distributed across most of the Anatolian Black Sea coastal region, from the vicinity of Trabzon in the east, westwards to Marmara. The earliest name available for the eastern taxon, found in Transcaucasia and adjacent parts of northeastern Anatolia, is T. transcaucasica Dahl, 1944. Cytochrome-b haplotype diversity in T. levantis is relatively high, demographic analyses suggesting that the species may have survived in multiple, separate, refugial areas during the Pleistocene. Our work brings the total number of named mole species recognized in Turkey to six, emphasising the importance of this region as a global centre of mole diversification.

Key words: Talpa; Cytochrome b; BRCA2; Phylogeny; Anatolia

Introduction

Talpa Linnaeus, 1758 is a strictly subterranean genus of moles, distributed throughout the western Palearctic region, from the Iberian Peninsula to China and Siberia (Hutterer, 2005), which has been recovered as monophyletic in a number of phylogenetic studies (e.g., Colangelo et al., 2010; Bannikova et al., 2015). Bannikova et al. (2015) dated the most recent common ancestor of Talpa to $5.49-7.64 \mathrm{Myr}$, based on four concatenated nuclear genes, a time window in keeping with that suggested by Colangelo et al. (2010) from studies of mitochondrial cytochrome b (cyt-b) sequences, and corresponding to the Late Miocene (latest Tortonian and Messinian stages). During this time several dramatic changes to terrestrial environments and ecosystems occurred, large areas of continents experiencing drying, enhanced seasonality, and a consequent restructuring of terrestrial plant and animal communities (Herbert et al., 2016). The most recent version of Mammal Species of the World (Hutterer, 2005) recognized nine valid species in the genus, divided into a western group including the common mole T. europaea Linnaeus, 1758, the blind mole T. caeca Savi, 1822, the Roman mole T. romana Thomas, 1902, the Levant mole T. levantis Thomas, 1906, the Iberian blind mole T. occidentalis Cabrera, 1907 and the Balkan mole T. stankovici Martino and Martino, 1931 and an eastern group comprised of the Siberian mole T. altaica Nikolasky, 1883, the Père David's mole T. davidiana Milne-Edwards, 1884 and the Caucasian mole T. caucasica Satunin, 1908. Based on genetic data, Bannikova et al. (2015) recognized three additional species: T. talyschensis Vereschagin, 1945; T. ognevi Stroganov, 1948 and Talpa ex gr. levantis. More recently two new mole species, T. aquitania Nicolas, Martínez-Vargas and Hugot, 2017 (Nicolas et al., 2017a) from southern France and northern Spain and T. martinorum Kryštufek, Nedyalkov, Astrin and Hutterer, 2018 from the south-western Black Sea coast (Thrace), were described, initially on the basis of genetic data(Nicolas et al. (2017b; Kryštufek et al. 2018). While most species of Talpa are narrowly endemic with predominantly non-overlapping ranges, one species, T. europaea, is widespread and relatively eurytopic across much of Europe, with a range extending from the Ebro River in Spain to the Ob and Irtish Rivers in Russia (Mitchell-Jones et al., 1999; Hutterer, 2005; Loy et al., 2005; Wilson and Reeder, 2005; Nicolas et al., 2017b).

The descriptions of the majority of the above Talpa species are based primarily on morphometry (Corti et al., 1985; Corti and Loy, 1987; Loy et al., 1993; Kryštufek, 1994; Rohlf et al., 1996; Loy and Capanna, 1998; Kryštufek and Benda, 2002; Kryštufek et al.,

2018; Selçuk et al., 2018; Sansalone et al., 2019) and dental traits (Nicolas et al., 2017a; Kryštufek et al., 2018). However, the highly conservative morphology of the genus, resulting from the functional constraints associated with fossoriality, have led to inconsistent morphological recognition of taxa that have confused taxonomic assignments in the past (Kryštufek and Vohralík, 2001; Bannikova et al., 2015; Kryštufek et al., 2018). Cytogenetic studies have also shown that the karyotypes of Talpa species are quite stable, with a diploid chromosome number (2n) of 34, and 62-64 autosomal arms (NFa) (Meylan, 1966; Dzuev et al., 1972; Todorovic' et al., 1972; Capanna, 1981; Jimenez et al., 1984; Gornung et al., 2008; Sözen et al., 2012) throughout the genus, with the exception of T. caeca $(2 n=36, N F a=64)$ and T. caucasica $(2 \mathrm{n}=38, \mathrm{NFa}=62)$. Additionally it has been shown that Talpa species with almost identical karyotypes (T. europaea and T. romana) differ only slightly in localisation of 5S rRNA genes (Gornung et al., 2008), further suggesting taxa are not easily distinguished on cytogenetic features.

In contrast to this morphological and karyotypic homogeneity, molecular genetic techniques have been highly successful in Talpa taxonomy - highlighting the existence of morphologically cryptic, but genetically divergent lineages, which appear to constitute species. Bannikova et al. (2015) recently separated three such well-defined lineages in the Caucasus and Anatolia: T. talyschensis Vereschagin, 1945, T. ognevi Stroganov, 1948, and Talpa levantis sensu lato (s.l.). The first of these taxa was formerly considered a junior synonym of T. levantis; the second a junior synonym of T. caucasica (Hutterer, 2005). These findings highlight the fact that lineage diversity within the genus Talpa likely remains underestimated, particularly in areas known to habour high biodiversity, and which likely served as refugia during Pleistocene glaciations. Turkey is likely to be one such area, since it not only hosts five out of the eleven currently known Talpa species (T. caucasica, T. davidiana, T. europaea, T. levantis, and T. martinorum - Kryštufek and Vohralík, 2009; Kryštufek et al., 2018; Selçuk et al., 2018) but it is also the region in which a number of other recent small mammal species/lineages originated (Gündüz et al., 2007). More generally, it is an important biodiversity hotspot in the West Palaearctic due to its complex topography, climatic conditions, and tectonic history (Myers et al., 2000). Talpa are strictly subterranean animals, with limited dispersal capability (Steinberg and Patton, 2000) and a high degree of territoriality (Ognev, 1928; Stein, 1950; Godfrey, 1957; Loy et al., 1994), and their diversification is likely to have been strongly impacted by such factors.

The Levant mole was first described from the vicinity of Trabzon (Maçka, Altındere, northeastern Turkey) as a subspecies of the European T. caeca Savi, 1822 - Talpa caeca levantis Thomas, 1906. After being considered as subspecies of T. caeca for a period of time (Spitzenberger and Steiner, 1962; Osborn, 1964; Grulich, 1972), it was elevated to species rank by Spitzenberger (in Felten et al., 1973) based on external measurements and craniometrical variables, especially the relationships between condylobasal length and rostral breadth. Subsequent studies showed that the two species are clearly distinguished on diploid karyotypes ($2 \mathrm{n}=36$ in T. caeca vs. $2 \mathrm{n}=34$ in T. levantis) and skull morphology (Zima and Král, 1984; Kryštufek, 1994; Selçuk and Kefelioğlu, 2017). Bannikova et al. (2015) showed that these two taxa are not particularly closely related, estimating that they diverged as early as the LateMiddle Pliocene, approximately 2.68 Myr , based on four concatenated nuclear genes. The range of the T. levantis s.l. extends west-east across the Anatolian Black Sea region, from Southeastern Bulgaria and Turkish Thrace as far as the southwestern coast of the Caspian Sea (Osborn, 1964; Doğramaci, 1989; Sokolov and Tembotov, 1989; Vohralík, 1991, Kryštufek, 2001; Popov and Miltchev, 2001; Bannikova et al., 2015). As such, it is the most common and widespread mole in Turkey, and inhabits various habitats from sea level to ca. 2000 m , in areas with rainfall ranging from 1000 to $2500 \mathrm{~mm} /$ year (Doğramaci, 1989; Kryštufek, 2001; Popov and Miltchev, 2001; this study). Bannikova et al. (2015) found relatively large cyt-b divergences (7\%) between two sublineages within Anatolian and Caucasian T. levantis s.l., suggesting that this taxon, as currently defined, constitutes a pair of cryptic species. Of these sublineages, one occupies the majority of the Turkish range of T. levantis s. 1., throughout the Black Sea coast, westwards to the Marmara region in Anatolia, whilst the other is found in Transcaucasia, and the adjacent parts of northeastern Anatolia. Bannikova et al., (2015) recognized that these two sublineages likely constitute separate species, but refrained from naming them since they lacked genetic data for moles from or close to the type locality of T. levantis, and so could not determine whether this name applied to the eastern or western sublineage.

Here we use a combination of nuclear and mitochondrial DNA sequence data to revisit the systematics and phylogeography of T. levantis s. 1., including material from the type locality, in an attempt to stabilize the taxonomy of these moles and better understand their evolutionary history and population expansion.

Material and methods

Specimen collection

Levant moles were collected from thirteen sites in northern Anatolia between 2007 and 2018 (Fig. 1), table 1 summarizes collection details. Standard voucher specimens (skins, skulls and various tissues in ethanol) are deposited in the Department of Biology, Faculty of Sciences and Arts, Ondokuz Mayıs University (OMUS), Samsun, Turkey for long term storage.

Molecular analyses

DNA Extraction

Total genomic DNA was extracted using Qiagen DNeasy tissue kits (QIAGEN Inc.) from tail tips, kidneys or liver preserved in 95% ethanol. Extracted DNA was suspended in nucleasefree water and DNA concentration quantified using a Nano-Drop spectrophotometer (NanoDrop Technologies, Wilmington, DE), adjusted to $25-50 \mathrm{ng} / \mu \mathrm{L}$, and stored at $-20^{\circ} \mathrm{C}$ until used for PCR.

$P C R$ amplification and sequencing of the cyt-b gene

A 1754 bp fragment encompassing a small part of tRNA-Glu (18 bp), the whole of the cyt- b gene (1140 bp), tRNA-Thr, tRNA-Pro (277 bp) and the 5 ' end (the hypervariable region I) of the D-loop (554 bp, excluding indels), spanning positions 14163 to 15913 of the T. europaea mitochondrial genome (GenBank Y19192, Mouchaty et al., 2000) was amplified with primers L14162 5'-GACATGAAAAATCATCGTTG-3' (modified from L14727-SP in Jaarola and Searle, 2002) and H15917 5'-CCTGAAGTAAGAACCAGATG-3' (modified from H16498 in Meyer et al., 1990). PCR amplifications were carried out in an S1000 thermal cycler (BIORAD) using Platinium Taq DNA polymerase (INVITROGEN). The PCR protocol consisted of an initial 2 min denaturation step at $95{ }^{\circ} \mathrm{C}, 35$ cycles of denaturation at $94{ }^{\circ} \mathrm{C}$ for 40 s , annealing at $56^{\circ} \mathrm{C}$ for 45 s and extension at $72{ }^{\circ} \mathrm{C}$ for 1.5 min , and a final 7 -min extension step at $72{ }^{\circ} \mathrm{C}$. PCR products were purified using QIAquick kits (QIAGEN). Negative controls were included in all PCRs to check for contamination. After amplification, an aliquot was taken from each PCR reaction mix, and the amplified DNA fragment quantified in agarose gel by comparison with known quantities of phage λ DNA.

The complete cyt- b gene was sequenced in both directions using one of the amplification primers (L14162) plus three internal primers (H15351 5'-

TCTCCATTGCTGGTTTACAAGAC-3', modified from H15915 in Irwin et al., 1991 and two
newly designed Levant mole specific primers, L14711 5'-GGTAGACAAAGCCACACTCAC -3 ' and H14935 5'-GAATGTAGTTGTCTGGATCTCC-3'). The position of the 3' end oligonucleotide of each primer is given relative to the published sequence of the common mole mtDNA (Mouchaty et al., 2000). Cycle sequencing reactions were carried out using BigDye Terminator cycle sequencing kits (Applied Biosystems). Amplifications and sequencing reactions were performed in an S1000 thermal cycler. Sequencing products were purified using DyeEx 2.0 Spin Kits (QIAGEN) and run in an ABI 3100 automated DNA sequencer (Applied Biosystems).

Nuclear mitochondrial pseudogenes (numts) detection

It is crucial to avoid confusion of true mitochondrial sequences with copies in the nucleus (pseudogenes - Mirol et al., 2000; Bensasson et al., 2001; Dubey et al., 2009). To screen for pseudogenes, three different PCRs, producing overlapping fragments, were performed on five randomly selected individuals from distinct localities. First, partial tRNA-Glu (42 bp), the entire cyt-b (1140 bp) and partial tRNA-Thr (26 bp) were amplified with primers L14138 5'-CCCACATGGAATTTAACCATGAC-3' (modified from Cb-M1 in Kurose et al., 2000) and H15351; second, partial tRNA-Glu (42 bp), the entire cyt-b (1140 bp), complete tRNA-Thr (69 bp), complete tRNA-Pro (70 bp) and the 5' end of the D-loop (554 bp) were amplified with primers L14138 and H15933; and third, part of tRNA-Glu (18 bp), the entire cyt-b gene (1140 bp), complete tRNA-Thr (69 bp), complete tRNA-Pro (70 bp) and the 5^{\prime} end of the Dloop (554 bp) were amplified with primers L14162 and H15933. These three PCR products were then sequenced and aligned. Overlapping sequences were examined for any ambiguous bases, stop codons or open reading frame shifts, which might have indicated the presence of nuclear copies.

PCR amplification and sequencing of breast cancer type 2 susceptibility protein (BRCA2) gene
Amplification of a 927 bp portion of exon 11 of BRCA2 was performed using the primer pair F1140a and R2050 (Bannikova et al., 2015). PCR conditions consisted of initial denaturing at $94{ }^{\circ} \mathrm{C}$ for 2 min ; 30 cycles of $94^{\circ} \mathrm{C}$ for $45 \mathrm{~s}, 64^{\circ} \mathrm{C}$ for 45 s , and $72{ }^{\circ} \mathrm{C}$ for 1 min ; and a final extension at $72^{\circ} \mathrm{C}$ for 6 min . PCR primers were used for sequencing in both directions.

Sequence inspection and alignment

All sequence traces were checked, aligned and ambiguous bases resolved by eye using Sequencher v4.5 (Gene Codes Corp.). Nucleotide and amino acid composition were analyzed using MacClade v4.08 (Maddison and Maddison, 2000).

Phylogenetic analyses

Nucleotide composition was analyzed and the frequency of each haplotype estimated using MacClade v4.08. To evaluate the degree of differentiation between sublineages of T. levantis s.l. compared to other species of the genus Talpa, and revisit the phylogenetic position of these, we also downloaded 78 cyt- b sequences from GenBank, from fourteen Talpa taxa (T. altaica, T. aquitania, T. caeca, T. caucasica, T. davidiana, T. europaea, T. levantis 'eastern' T. levantis 'western' (sensu Bannikova et al., (2015)), T. martinorum, T. occidentalis, T. ognevi, T. romana, T. stankovici and T. talyschensis - see Appendix). Phylogenetic relationships amongst cyt-b haplotypes were inferred with Maximum Parsimony (MP) and Maximum Likelihood (ML) algorithms implemented in PAUP v4.10b (Swofford, 2002) as well as Bayesian inference of phylogeny (BI) as implemented in MRBAYES v3.1.2 (Ronquist and Huelsenbeck, 2003). The Akaike information criterion (AIC) implemented in jMODELTEST v1.0 (Posada, 2008) was used to establish the most appropriate model of DNA substitution for our data, and this then employed in ML and BI analyses. The parsimony analyses were replicated 10 times with the heuristic search approach using the TBR swapping algorithm, steepest descent option and 10 random repetitions. Strict and 50% majority rule consensus trees were constructed from equally parsimonious MP trees. Bootstrap analysis of the MP tree was conducted with 1000 replications using 10 random repetitions of each replication. ML analysis was conducted using the heuristic search, the 'as is' addition replicate. Branch support was assessed using 1000 non-parametric bootstrap replicates. BI analysis involved four Markov Chains of 20 million generations, with trees being sampled every 100 generations and a burn-in of 25%. The software tool TRACER v1.6 (Rambaut et al., 2014) was used to observe the parameters and to determine the number of trees needed to reach stationarity (burn-in). After discarding burn-in trees and evaluating convergence, remaining samples were retained for generating 50% majority rule consensus tree and calculating posterior probabilities. Based on the existing supported phylogenetic hypothesis (He et al., 2014), cyt- b sequences of four eastern Asian mole species of three genera (Mogera robusta Nehring, 1891, Euroscaptor mizura (Günther, 1880), Euroscaptor longirostris (Milne-Edwards, 1870) and Parascaptor leucura (Blyth, 1850)) were used as outgroups in phylogenetic analyses (see Appendix).

Relationships amongst cyt- b sequences of T. levantis s.l. were also investigated by constructing a network using the median-joining (MJ) algorithm implemented in the software NETWORK v4.6.1.2 (Bandelt et al., 1999; http://www.fluxus-engineering.com). We included all newly sequenced specimens (24 individuals) and all specimens of T. levantis 'western' (seven individuals) and T. levantis 'eastern' (five individuals) available in GenBank (Table 1).

As some of the BRCA2 sequences in GenBank were shorter than ours or contained some unresolved positions, the BRCA2 alignment was limited to 656 bp to match newly obtained haplotypes with published data, leading to some redundant sequences and some loss of phylogenetic signal. Phylogenetic relationships between $B R C A 2$ sequences were also investigated using MP (1000 bootstrap replicates), ML (1000 bootstrap replicates) and BI approaches using the settings described above. The nucleotide substitution model selected according to the AIC by jMODELTEST was employed in ML and BI analyses. We included all newly described haplotypes (Hap.1-9) and those of Talpa species available in GenBank (Table 1, Appendix). Unfortunately, two recently described species (T. aquitania and T. martinorum) could not be included in the analyses since there are no BRCA2 sequences available. The full dataset contained 31 Talpa haplotypes. Again, BRCA2 sequences of the same four eastern Asian mole species were used as an outgroup in the phylogenetic analysis (Appendix).

Molecular diversity

Genetic diversity estimates were calculated for cyt- b sublineage of interest (western).
Nucleotide diversity (π) and haplotype diversity $\left(\mathrm{H}_{\mathrm{d}}\right)$ were calculated using ARLEQUIN v3.5 (Excoffier and Lischer, 2010). Another measure of nucleotide diversity, θw (computed from the number of segregating sites; Watterson, 1975), was calculated using DNASP v5 (Librado and Rozas, 2009). DNA net and mean divergences ($D a$ and $D x y$; Nei, 1987) between sublineages were estimated under the Kimura 2-parameter (K2P; Kimura, 1980) model using MEGA X (Kumar et al,. 2018).

Divergence time estimation and population demographics

We obtained an approximate estimation of the divergence time between T. levantis sublineages using the formula $T=D a / 2 \mu$, where 2μ is the divergence rate, using a substitution rate for the cyt- b gene of 0.01407 changes per site per lineage per million years (Colangelo et
al., 2010). We performed a series of statistical tests to test the hypothesis of sudden population expansion for the two sublineages. First, mismatch distributions (Rogers and Harpending, 1992; Rogers, 1995) were calculated for each sublineage to examine historical changes in population size with ARLEQUIN. To compare observed data with those expected under a sudden expansion model we conducted goodness-of-fit tests based on the sum of squared deviations (SSD) and Harpending's raggedness index (rg) (Harpending, 1994; Schneider and Excoffier, 1999) using 10000 parametric bootstrap replicates.

The mismatch distribution of pairwise genetic differences was also used to calculate expansion times (Rogers and Harpending, 1992). The change of effective female population size (N) since population expansion is used to estimate the time since expansion in generations. A population at equilibrium with N_{0} changes to N_{1} at τ units of mutational time. The modal value τ is determined from the distribution of pairwise genetic differences in the extant population. The parameters of the model are given by: $\theta_{0}=2 N_{0} u, \theta_{1}=2 N_{1} u$ and $\tau=$ $2 u t$. Here, t is the time since expansion in generations and u is the mutation rate of the entire DNA fragment (expressed as $u=2 \mu k$, where μ is the mutation rate per nucleotide per generation and k is the length of the sequence). Population expansion times were estimated assuming a mean clock rate of 1.407×10^{-8} substitution/site/year, as observed in the genus Talpa (Colangelo et al., 2010). Second, we conducted tests of neutral equilibrium assumptions using two widely used statistics, Tajima's D (Tajima, 1989) and Fu's F_{S} (Fu, 1997), as additional assessments of possible population expansion. Tajima's D statistic tests the null hypothesis that the average number of pairwise nucleotide differences and number of segregating sites in the sample are equal (Tajima, 1989). This method explicitly tests for selective neutrality and is based on an infinite-sites model assuming no recombination. Fu's Fs statistic is also a selective neutrality test based on the infinite-sites model, assumes no recombination and tests the probability of having no fewer haplotypes than the observed number in the sample (Fu, 1997). Negative values for these two statistics are most often attributed to positive selective sweeps, population size expansion or background selection. Used in combination, the tests can provide evidence for or against particular evolutionary mechanisms. As population size expansion leads to changes in the frequency distribution of haplotypes (i.e. an excess of haplotypes or an excess of singleton mutations), we also calculated Strobeck's S statistic (Strobeck, 1987) and R_{2} (Ramos-Onsins and Rozas, 2002). Strobeck's S compares the observed number of haplotypes to that expected based on the
frequency distribution derived from the inferred mutation rate, whereas R_{2} is based on the difference between the number of singleton mutations and the average number of nucleotide differences, where lower R_{2} values are expected under population expansion. The R_{2} test is very powerful in detecting population expansions in small sample sizes (Ramos-Onsins and Rozas, 2002). Significance values for Tajima's D, Fu's F_{S} and R_{2} were obtained from 10000 coalescent simulations conditioned on theta as implemented in DNASP. The cut-off level for statistical significance was 0.05 . For Fu's F_{S}, significance at the 0.05 level was indicated when P values were <0.02 (Excoffier and Lischer, 2010).

Results

Sequence analysis and phylogenetic reconstructions

Mitochondrial DNA

The entire cyt-b gene (1140 bp) was sequenced from 24 Levant moles from 13 localities, revealing 15 unique haplotypes (Hap.1-15) with K2P-distance values 0.09-3.34\% (overall mean K2P distance of 1.54%). Eleven of these haplotypes were found in one individual, four in more than one animal (Table 1). No internal stop codons or insertion/deletions were detected. Sequences with the same properties were also obtained using the alternative primer pairs for amplification and sequencing, making it reasonable to assume that no mitochondrial nuclear mitochondrial insertions (numts) were sequenced. The full dataset, including novel and published Talpa sequences contained 425 variable sites, of which 381 were parsimony informative, with 293 synonymous and 32 non-synonymous changes across all taxa. The substitution model supported was the General Time Reversible, with specified substitution types (AC-1.0052, AG-31.6171, AT-0.7223, CG-0.1456, CT-18.9234, GT-1.0), proportion of invariable sites (0.5570), gamma shape parameter (1.1580) and nucleotide frequencies (A-0.3572, C- $0.3041, ~ G-0.0941, ~ T-0.2446)$.

The phylogenetic hypothesis for species of Talpa based on cyt- b gene sequences from ML is shown in Fig. 2. The different phylogenetic methods used (BI, ML and MP) all produced similar topologies. Our tree broadly agrees with previous phylogenetic studies of the genus (Colangelo et al., 2010; Bannikova et al., 2015; Kryštufek et al., 2018), including the separation of Levant moles into an eastern and western sublineage. Specimens from the type locality of T. levantis (possessing Haplotype 1), fall into the western sublineage (see Fig. 2). The network profile of 26 haplotypes of T. levantis is shown in Fig. 3A. This haplotype
network was consistent with the results of the phylogenetic analyses, providing an enhanced visualization of intraspecific genetic variation, with many substitutions accumulated between the western and eastern sublineages of T. levantis s.l. The two sublineages were connected via two median vectors, separated by 45 mutational steps. There were no shared haplotypes between the two sublineages, suggesting complete lineage sorting. The majority of the haplotypes in the western (Hap.5-15, KP717339, KP717340 and FN640572) sublineage belonged to one group with short to long branches between the haplotypes, connected via median vectors. Three smaller group of haplotypes formed more distant subclusters within the western sublineage (Hap.1-3; FN640571; KP717336 and KP717338), suggesting additional subdivisions within this sublineage. One sub-cluster, comprising haplotypes Hap.1-3 is restricted to north-east Anatolia, including the locality of topotypes of T. levantis (localities 5 and 6), another sub-cluster comprising haplotypes FN640571, KP717336 and KP717338 is restricted to north-west Anatolia (localities 21-23), whilst the sub-cluster comprising the remaining 18 haplotypes is distributed across north-central Anatolia (localities 7-20) (Fig. 1, Table 1). The eastern sublineage is represented by fewer sequences than the western, but it is nevertheless clear that the haplotype (FN640570) from Çam geçidi, Ardahan (locality 4) in northeastern Anatolia is rather strongly differentiated from the four relatively closely related haplotypes (KP717334, KP717335, KP717337 and FN640574) from Russia (Nalchik, locality 1) and Armenia (Fioletovo and Margahovit, localities 2 and 3).

Nuclear DNA

Sequences of a 927 bp portion of exon 11 of BRCA2 were generated from 24 moles from 14 localities, revealing nine unique haplotypes (Hap.1-9), six of which were found in one individual, three in more than one (Table 1). When combined with available (shorter - see Materials and methods) published Talpa BRCA2 sequences, the dataset contained 31 Talpa haplotypes of 656 bp long (see Appendix). This alignment contained 43 variable sites, 22 of which were parsimony informative. jMODELTEST supported the Hasegawa-Kishino-Yano (HKY) substitution model for these data, maximum likelihood analysis resulting in an optimal which was only partly resolved due to the relatively low number of polymorphic sites (Fig. 4). BI and MP analyses both produced topologies similar to that of ML. As with the cyt- b phylogeny, the BRCA2 data separated T. levantis s.l. into a geographically widespread western sublineage represented by nine haplotypes (Hap.1-9, including Hap. 1 from the topotypes of T. levantis, locality 5 in Fig. 1) from this study, plus KP717122 from Uzungüney

Köyü, Zonguldak (locality 25 in Fig. 1), and a more restricted eastern sublineage represented here by one haplotype only, KP717115 from the Nalchik region in Russia (locality 1 in Fig. $1)$.

Diversity, divergence time and demographic history

The western sublineage of T. levantis contained 21 cyt- b haplotypes (15 new in the present study, six additional haplotypes from GenBank), resulting in a haplotype diversity $\left(\mathrm{H}_{\mathrm{d}}\right)$ of 0.996 , nucleotide diversity (π) of 1.894% and a θw of 2.447%. Mean and net divergence estimates between cyt- b sequences in eastern and western sublineages of T. levantis were 7.28% and 5.75%, respectively. This net divergence estimate equates to a separation time of ~ 1.91 Mya, suggesting that the two sublineages diverged in the early Pleistocene. For the western sublineage of T. levantis, neutrality tests for cyt- b data revealed no significant deviation from neutrality and the expected equilibrium. Both Tajima's $D(D=-0.9346, P=0.1765)$ and Fu's $F s(F s=-0.8062, P=0.3982$) yielded negative but nonsignificant values. Strobeck's S was low (0.816) and Ramos-Onsins and Rozas' R_{2} test was not significant ($R_{2}=0.0894, P=$ 0.1816). These results were corroborated by a mismatch distribution that showed a wave signal (multimodal distribution) consistent with constant population size or demographic equilibrium (Fig. 3B). Conversely, the goodness of fit test was consistent with a hypothesis of demographical expansion (SSD $=0.0239, P=0.1241 ; r g=0.0165, P=0.1812$). Demographic analyses were not possible for the eastern sublineage due to low sample size $(\mathrm{n}=5)$.

Discussion

Our data confirm that Talpa levantis s.l. is divisible into distinct eastern and western sublineages, which apparently diverged from each other in the early Pleistocene. Given the degree of DNA sequence divergence observed between sublineages, and the fact that these remain robust and geographically coherent in light of our more extensive sampling, we agree with Bannikova et al. (2015) that these should be considered as separate species. Mean cyt-b K2P divergences observed between most mole species examined previously range from 8.6\% (T. europaea vs. T. occidentalis) to 15.6% (T. altaica vs. T. romana) (Colangelo et al., 2010; Feuda et al., 2015). However, slightly lower genetic divergence (7.7\%) was observed between T. occidentalis and its recently described relative T. aquitana (Nicolas et al., 2017a,b). The 7.28% cyt- b divergence between sublineages revealed here is very close to this value. The inclusion of T. levantis specimens from the type locality allows us to fix the nomenclature of Levant moles for the first time. Topotypical T. levantis belong to the western sublineage, on both mitochondrial and nuclear data and it is therefore this taxon which is the
true T. levantis sensu Thomas, 1906. As discussed by Bannikova et al. (2015) this therefore means that the oldest name available for the eastern clade is T. transcaucasica Dahl, 1944. Traditional delineation of species-level entities in morphologically constrained subterranean mammals such as moles is intrinsically difficult (see Nevo, 1979), and there are, to date, no known diagnostic morphological characters on which T. levantis and T. transcaucasica can be separated. Selçuk et al. (2018) examined skull and mandible morphometrics of selected Turkish mole species, including specimens of T. levantis s.l. from both eastern and western areas; i.e. both T. levantis s. str. and T. transcaucasica as defined here. Their results reveal relatively high morphological variability in T. levantis s.l. compared to the other taxa studied, suggesting that morphometric separation between T. levantis and T. transcaucasica may be possible. Future studies exploring this, together with additional nuclear markers, would clearly be useful to confirm our taxonomic hypothesis. There is no clear geographical barrier currently separating T. levantis s. str. and T. transcaucasica, although the species appear to occur either side of the Anatolian Diagonal (sensu Davis, 1971), a biogeographical break between central and eastern Anatolia which is observed in a wide variety of organisms (Çıplak, 2003; Gündüz et al., 2007; Mutun, 2010; Kapli et al., 2013; Stümpel et al., 2016; van Riemsdijk et al., 2017). As discussed by Gür (2016), this seems to result largely from differences in temperature seasonality, which apparently also existed during the Last Glacial Maximum and possibly earlier. The identity of T. levantis s.l. reported from southeastern Bulgaria and Turkish Thrace remains unclear, due to the absence of molecular data from these regions. A number of small mammal species are known to span the Bosphorus (e.g. Dubey et al., 2007, Helvacı et al., 2012) and it is possible that European populations are indeed conspecific with Anatolian ones. Alternatively, what has been considered as T. levantis in Europe may belong to yet another distinct taxon, something which should be tested in the future. It is clear, however, that Turkey is a very important centre for mole speciation and diversity, now being home to six distinct species, more than any other comparable geographical region.

Compared with other mole species, T. levantis s . str. has relatively high haplotype and nucleotide diversity ($\mathrm{H}_{\mathrm{d}}=0.996, \pi=1.894 \%$). Based on cyt- b data, Canestrelli et al. (2010) estimated haplotype and nucleotide diversities for the six haplogroups of T. romana to be 0.81-0.98 and 0.18-0.77\%, respectively. Nicolas et al. (2017b) found almost equally high levels of haplotype diversity but relatively low nucleotide diversity values for three mole species: $\mathrm{H}_{\mathrm{d}}=0.932, \pi=0.371 \%$ in T. europaea; $\mathrm{H}_{\mathrm{d}}=0.908, \pi=0.830 \%$ in T. aquitania and
$\mathrm{H}_{\mathrm{d}}=0.892, \pi=0.724 \%$ in T. occidentalis. The high diversity values observed in T. levantis s. str. suggest either the maintenance of relatively large populations throughout the species evolutionary history, and/or its survival in a number of separate refugia during the Pleistocene (Grill et al., 2009; Vega et al., 2010; Nicolas et al., 2017b). Our understanding of Pleistocene palaeoenvironmental history in northern Anatolia remains incomplete, but it is clear that the region hosts a large number of microendemics, in a variety of plant and animal taxa (e.g. Davis, 1971; Wielstra et al., 2010; Trizzino et al., 2013), which strongly suggests the occurrence of multiple, long-term refugial areas in the region, as has been hypothesised elsewhere (e.g. Lindell et al., 2006; Soltis et al., 2006; Byrne et al., 2008; Canestrelli and Nascetti, 2008; Ursenbacher et al., 2008; Gonçalves et al., 2009; Wang et al., 2009; Vega et al., 2010; Bidegaray-Batista et al., 2016; van Riemsdijk et al., 2017; Wielstra et al., 2017). Genetic substructuring and mutation rate heterogeneity may produce a multimodal pattern, even in demographically unstable populations (Marjoram and Donnelly, 1994; Aris-Brosou and Excoffier, 1996). The multimodality of the mismatch distribution of T. levantis s. str. seems to result from the presence of different haplogroups, rather than demographical stability. This interpretation is supported by the phylogenetic and network analyses of cyt- b data, which suggest three distinct sub-clusters within this taxon (see Fig. 2 and 3A), perhaps corresponding to populations which have persisted in separate refugial areas which retained suitable habitat during much of the species evolutionary history. If we assume a hypothesis involving some degree of population growth for T. levantis s. str., demographic expansion for this taxon, based on our estimated values of τ, occurred approximately 296,000 years BP in the late Pleistocene.

Acknowledgements

The author would like to thank anonymous reviewers for providing very helpful suggestions that improved the manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Aris-Brosou, S., Excoffier, L., 1996. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol. 13, 494-504. https://doi.org/10.1093/oxfordjournals.molbev.a025610.

Bandelt, H.J., Forster, P., Röhl, A., 1999. Median-joining networks for inferring intraspecific $\begin{array}{llllll}\text { phylogenies. } & \text { Mol. } & \text { Biol. } & \text { Evol. } & \text { 37-48 }\end{array}$ https://doi.org/10.1093/oxfordjournals.molbev.a026036.

Bannikova, A.A., Zemlemerova, E.D., Colangelo, P., Sözen, M., Sevindik, M., Kidov, A.A., Dzuev, R.I., Kryštufek, B., Lebedev, V.S., 2015. An underground burst of diversity - a new look at the phylogeny and taxonomy of the genus Talpa Linnaeus, 1758 (Mammalia: Talpidae) as revealed by nuclear and mitochondrial genes. Zool. J. Linn. Soc. 175, 930-948. https://doi.org/10.1111/zoj.12298.

Bensasson, D., Zhang, D., Hartl, D.L., Hewitt, G.M., 2001. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol. Evol. 16, 314-321. https://doi.org/10.1016/S0169-5347(01)02151-6.

Bidegaray-Batista, L., Sánchez-Gracia, A., Santulli, G., Maiorano, L., Guisan, A., Vogler, A.P., Arnedo, M.A., 2016. Imprints of multiple glacial refugia in the Pyrenees revealed by phylogeography and palaeodistribution modelling of an endemic spider. Mol. Ecol. 25, 20462064. https://doi.org/10.1111/mec. 13585.

Byrne, M., Yeates, D.K., Joseph, L., Kearney, M., Bowler, J., Williams, M.A.J., Cooper, S., Donnellan, S.C., Keogh, J.S., Leys, R., Melville, J., Murphy, D.J., Porch, N., Wyrwoll, K.H., 2008. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 17, 4398-4417. https://doi.org/10.1111/j.1365-294X.2008.03899.x.

Canestrelli, D., Nascetti, G., 2008. Phylogeography of the pool frog Rana (Pelophylax) lessonae in the Italian peninsula and Sicily: multiple refugia, glacial expansions and nuclearmitochondrial discordance. J. Biogeogr. 35, 1923-1936. https://doi.org/10.1111/j.13652699.2008.01946.x.

Canestrelli, D., Aloise, G., Cecchetti, S., Nascetti, G., 2010. Birth of a hotspot of intraspecific genetic diversity: notes from the underground. Mol. Ecol. 19, 5432-5451. https://doi.org/10.1111/j.1365-294X.2010.04900.x.

Capanna, E., 1981. Caryotype et morphologie crânienne de Talpa romana Thomas de terra typica. Mammalia 45, 71-82. https://doi.org/10.1515/mamm.1981.45.1.71.

Colangelo, P., Bannikova, A.A., Kryštufek, B., Lebedev, V.S., Annesi, F., Capanna, E., Loy, A., 2010. Molecular systematics and evolutionary biogeography of the genus Talpa (Soricomorpha: Talpidae). Mol. Phylogenet. Evol. 55, 372-380. https://doi.org/10.1016/j.ympev.2010.01.038.

Corti, M., Loy, A., 1987. Morphometric divergence in southern European moles (Insectivora, Talpidae). Bol. Zool. 54, 187-191. https://doi.org/10.1080/11250008709355580.

Corti, M., Loy, A., Azzaroli, M.L., Capanna, E., 1985. Multivariate analysis of osteometric traits in Italian moles (genus Talpa). Z. Saugetierk 50, 12-17.

Çıplak, B., 2003. Distribution of Tettigoniinae (Orthoptera, Tettigoniidae) bush-crickets in Turkey: the importance of the Anatolian Taurus Mountains in biodiversity and implications for conservation. Biodivers. Conserv. 12, 47-64.

Davis, P.H., 1971. Distribution patterns in Anatolia with particular reference to endemism. In: Davis, P.H., Harper, P.C., Hedge, I.C. (Eds.), Plant Life of South-West Asia. Botanical Society of Edinburgh, Edinburgh, pp. 15-27.

Doğramaci, S., 1989. Taxonomy and distribution of moles (genus Talpa: Mammalia) in Turkey. Doğa - Turk J. Zool. 13, 204-219.

Dubey, S., Cosson, J.F., Vohralík, V., Kryštufek, B., Diker, E., Vogel, P., 2007. Molecular evidence of Pleistocene bidirectional faunal exchange between Europe and the Near East: the case of the bicoloured shrew (Crocidura leucodon, Soricidae). J. Evol. Biol. 20, 1799-1808. https://doi.org/10.1111/j.1420-9101.2007.01382.x.

Dubey, S., Michaux, J., Brünner, H., Hutterer, R., Vogel, P., 2009. False phylogenies on wood mice due to cryptic cytochrome-b pseudogene. Mol. Phylogenet. Evol. 50, 633-641. https://doi.org/10.1016/j.ympev.2008.12.008.

Dubey, S., Salamin, N., Ohdachi, S.D., Barrière, P., Vogel, P., 2007. Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. Mol. Phylogenet. Evol. 44, 126-137. https://doi.org/10.1016/j.ympev.2006.12.002.

Dzuev, R.I, Tembotov, A.K., Ivanov, V.G., 1972. New data on the karyology of the moles from the Caucasus. Zool. Zh. 51, 1898-1899.

Excoffier, L., Lischer, H.E., 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x.

Felten H., Spitzenberger, F., Storch, G., 1973. Zur Kleinsäugerfauna West-Anatoliens. Teil II. Senckenb. Biol. 54: 227-290.

Feuda, R., Bannikova, A.A., Zemlemerova, E.D., Di Febbraro, M., Loy, A., Hutterer, R., Aloise, G., Zykov, A.E., Annesi, F., Colangelo, P., 2015. Tracing the evolutionary history of the mole, Talpa europaea, through mitochondrial DNA phylogeography and species distribution modelling. Biol. J. Linn. Soc. 114, 495-512. https://doi.org/10.1111/bij.12459.

Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth hitchhiking and background selection. Genetics 147, 915-925.

Godfrey, G.K., 1957, Aggressive behaviour in the mole (Talpa europaea L.). Proc. Zool. Soc. Lond. 128, 602-604.

Gonçalves, H., Martínez-Solano, I., Pereira, R.J., Carvalho, B., García-París, M., Ferrand, N., 2009. High levels of population subdivision in a morphologically conserved Mediterranean toad (Alytes cisternasii) result from recent, multiple refugia: evidence from mtDNA, microsatellites and nuclear genealogies. Mol. Ecol. 18, 5143-5160.
https://doi.org/10.1111/j.1365-294X.2009.04426.x.

Gornung, E., Volleth, M., Capanna, E., Castiglia, R., 2008. Comparative cytogenetics of moles (Eulipotyphla, Talpidae): chromosomal differences in Talpa romana and T. europaea. Cytogenet. Genome Res. 121, 249-254. https://doi.org/10.1159/000138892.

Grill, A., Amori, G., Aloise, G., Lisi, I., Tosi, G., Wauters, L.A., Randi, E., 2009. Molecular phylogeography of European Sciurus vulgaris: refuge within refugia? Mol. Ecol. 18, 26872699. https://doi.org/10.1111/j.1365-294X.2009.04215.x.

Grulich, I., 1972. Ein Beitrag zur Kenntnis der ost-mediterranen kleinwüchsigen, blinden Maulwurf-sformen (Talpinae). Zool. Listy. 21, 3-21.

Gündüz, İ., Jaarola, M., Tez, C., Yeniyurt, C., Polly, P.D., Searle, J.B., 2007 Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Sciuridae, Rodentia) in Turkey, with a description of a new species. Mol. Phylogenet. Evol. 43, 916-935. https://doi.org/10.1016/j.ympev.2007.02.021.

Gür, H., 2016. The Anatolian diagonal revisited: testing the ecological basis of a biogeographic boundary. Zool. Middle East 62, 189-199. https://doi.org/10.1080/09397140.2016.1226544.

Harpending, R.C., 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 66, 591-600.

He, K., Shinohara, A., Helgen, K.M., Springer, M.S., Jiang, X.L., Campbell, K.L., 2017. Talpid mole phylogeny unites shrew moles and illuminates overlooked cryptic species diversity. Mol. Biol. Evol. 34, 78-87. https://doi.org/10.1093/molbev/msw221.

He, K., Shinohara, A., Jiang, X.L., Campbell, K.L., 2014. Multilocus phylogeny of talpine moles (Talpini, Talpidae, Eulipotyphla) and its implications for systematics. Mol. Phylogenet. Evol. 70, 513-521. https://doi.org/10.1016/j.ympev.2013.10.002.

Helvacı, Z., Renaud, S., Ledevin, R., Adriaens, D., Michaux, J., Çolak, R., Kankılıç, T., Kandemir, İ., Yiğit, N., Çolak, E., 2012. Morphometric and genetic structure of the edible
dormouse (Glis glis): a consequence of forest fragmentation in Turkey. Biol. J. Linn. Soc. 107, 611-623. https://doi.org/10.1111/j.1095-8312.2012.01952.x.

Herbert, T.D., Lawrence, K.T., Tzanova, A., Peterson, L.C., Caballero-Gill, R., Kelly, C.S., 2016. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843847. https://doi.org/10.1038/ngeo2813.

Hutterer, R., 2005. Order Soricomorpha. In: Wilson, D.E., Reeder, D.M. (Eds.), Mammal Species of the World. 3rd edn. Vol. 1. Johns Hopkins University Press, Baltimore, pp. 220311.

Irwin, D.M., Kocher, T.D., Wilson, A.C., 1991. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 32, 128-144. https://doi.org/10.1007/BF02515385.

Jaarola, M., Searle, J.B., 2002. Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Mol. Ecol. 11, 2613-2621. https://doi.org/10.1046/j.1365-294X.2002.01639.x.

Jimenez, R., Burgos, M., De La Guardia, D.R., 1984. Karyotype and chromosome banding in the mole (Talpa occidentalis) from the south-east of the Iberian Peninsula. Implications on its $\begin{array}{lllll}\text { taxonomic position. } & \text { Caryologia 253-258. }\end{array}$ https://doi.org/10.1080/00087114.1984.10797705.

Kapli, P., Botoni, D., Ilgaz, Ç., Kumlutaş, Y., Avcı, A., Rastegar-Pouyani, N., Fathinia, B., Lymberakis, P., Ahmadzadeh, F., Poulakakis, N., 2013. Molecular phylogeny and historical biogeography of the Anatolian lizard Apathya (Squamata, Lacertidae). Mol. Phylogenet. Evol. 66, 992-1001. https://doi.org/10.1016/j.ympev.2012.12.002.

Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581.

Kryštufek, B., Benda, P., 2002. The Caucasian mole Talpa caucasica - a new mammal for Iran. Mamm. Biol. 67, 113-116. https://doi.org/10.1078/1616-5047-00016.

Kryštufek, B., Vohralík, V., 2001. Mammals of Turkey and Cyprus. Introduction, Checklist, Insectivora. Koper. Knjinica Annales Majora, Republic of Slovenia Koper, 140 pp.

Kryštufek, B., 1994. The taxonomy of blind moles (Talpa caeca and T. stankovicici, Insectivora, Mammalia) from southeastern Europe. Bonn Zool. Bull. 45, 1-16.

Kryštufek, B., 2001. The distribution of the Levant mole, Talpa levantis. Zool. Middle East 23, 17-21. https://doi.org/10.1080/09397140.2001.10637863.

Kryštufek, B., Nedyalkov, N., Astrin, J.J., Hutterer, R., 2018. News from the Balkan refugium: Thrace has an endemic mole species (Mammalia: Talpidae). Bonn Zool. Bull. 67, 41-57.

Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35, 1547-1549. https://doi.org/10.1093/molbev/msy096.

Kurose, N., Abramov, A.V., Masuda, R., 2000. Intrageneric diversity of the cytochrome b gene and phylogeny of Eurasian species of the genus Mustela (Mustelidae, Carnivora). Zool. Sci. 17, 673-679. https://doi.org/10.2108/zsj.17.673.

Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA $\begin{array}{lllll}\text { polymorphism } \quad \text { data. } & \text { Bioinformatics 25, 1451-1452. }\end{array}$ https://doi.org/10.1093/bioinformatics/btp187.

Lindell J., Ngo, A., Murphy, R.W., 2006. Deep genealogies and the mid-peninsular seaway of Baja California. J. Biogeogr. 33, 1327-1331. https://doi.org/10.1111/j.13652699.2006.01532.x.

Loy, A., Capanna, E., 1998. A parapatric contact area between two species of moles (genus Talpa): character displacement investigated through the geometric morphometric of skull. Acta Zool. Acad. Sci. H. 44, 151-164.

Loy, A., Beolchini, F., Martullo, S., Capanna, E., 1994. Territorial behaviour of Talpa romana
in an olivegrove habitat in central Italy. Boll. Zool. 61, 207-211. https://doi.org/10.1080/11250009409355887.

Loy, A., Colangelo, P., Annesi, F., Capanna, E., 2005. Origin and evolution of Western European moles (genus Talpa, Insectivora): a multidisciplinary approach. Mamm. Study 30, 13-17. https://doi.org/10.3106/1348-6160(2005)30[S13:OAEOWE]2.0.CO;2.

Loy, A., Corti, M., Marcus, L.F., 1993. Landmark data: size and shape analysis in systematics. A case study on Old World Talpidae (Mammalia, Insectivora). In: Marcus, L.F., Bello, E., Valdecasas, A. (Eds.), Contribution to morphometrics. Monographias 8. Madrid: Museo Nacional de Ciencias Naturales, pp. 215-240.

Maddison, D.R., Maddison, W.P., 2000. MacClade 4: analysis of phylogeny and character evolution, Version 4.0. Sinauer Associates, Sunderland, Massachusetts.

Marjoram, P., Donnelly, P., 1994. Pairwise comparisons of mitochondrial DNA sequences in subdivided populations and implications for early human evolution. Genetics 136, 673-683. https://doi.org/10.1126/science. 1211028.

Meyer, A., Kocher, T.D., Basasibwaki, P., Wilson, A.C., 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347, 550-553. https://doi.org/10.1038/347550a0.

Meylan, A., 1966. Données nouvelles sur les chromosomes des Insectivores européens (Mamm.). Rev. Suisse Zool. 73, 548-558. https://doi.org/10.5962/bhl.part. 75842.

Mirol, P.M., Mascheretti, S., Searle, J.B., 2000. Multiple nuclear pseudogenes of mitochondrial cytochrome b in Ctenomys (Caviomorpha, Rodentia) with either great similarity to or high divergence from the true mitochondrial sequence. Heredity 84, 538-547. https://doi.org/10.1046/j.1365-2540.2000.00689.x.

Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Kryštufek, B., Reijnders, P., Spitzenberger, F., Stubbe, M., Thissen, J., Vohralík, V., Zima, J., 1999. The atlas of European mammals. Academic Press, London, xi $+1-484 \mathrm{pp}$.

Mouchaty, S.K., Gullberg, A., Janke, A., Arnason, U., 2000. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Mol. Biol. Evol. 17, 60-67. https://doi.org/10.1093/oxfordjournals.molbev.a026238.

Mutun, S., 2010. Intraspecific genetic variation and phylogeography of the oak gallwasp Andricus caputmedusae (Hymenoptera: Cynipidae): effects of the Anatolian diagonal. Acta Zool. Acad. Sci. H. 56, 153-172.

Myers, N.A., Mittermeier, R.A., Mittermeier, G.C., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858. https://doi.org/10.1038/35002501.

Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, 512 pp.

Nevo, E., 1979. Adaptive convergence and divergence of subterranean mammals. Annu. Rev. Ecol. Evol. S. 10, 269-308.

Nicolas, V., Martínez-Vargas, J., Hugot, J-P., 2017a. Talpa aquitania sp. nov. (Talpidae, Soricomorpha), a new mole species from SW France and N Spain. Mammalia 81, 641-642. https://doi.org/10.1515/mammalia-2017-0057.

Nicolas, V., Martínez-Vargas, J., Hugot, J-P., 2017b. Molecular data and ecological niche modelling reveal the evolutionary history of the common and Iberian moles (Talpidae) in Europe. Zool. Scr. 46, 12-26. https://doi.org/10.1111/zsc.12189.

Ognev, S.I., 1928. Zveri vostochnoi Evropy i severnoi Azii: Nasekomoyadnye i letychie myshi, Glavnauka, Moscow, Vol. 1, 631 pp. [in Russian]. English version: Ognev, S. I. 1962. Mammals of Eastern Europe and Northern Asia: Insectivora and Chiroptera, Translated by A. Birron and Z. S. Cole, Israel Program for Scientific Translations, Jerusalem, Vol. 1, xv+487 pp.

Osborn, J., 1964. Notes on the moles of Turkey. J. Mammal. 45, 127-129. https://doi.org/10.2307/1377301.

Popov, V.V., Miltchev, B., 2001. New data on morphology and distribution of Talpa levantis Thomas, 1906 (Mammalia : Insectivora) in Bulgaria. Acta Zool. Bulgar. 53, 79-95.

Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253-1256. https://doi.org/10.1093/molbev/msn083.

Rambaut, A., Suchard, M.A., Xie, D., Drummond, A.J., 2014. Tracer, Version 1.6. Available from: http://beast.bio.ed.ac.uk/Tracer.

Ramos-Onsins, S.E, Rozas, J., 2002. Statistical properties of new neutrality test against population growth. Mol. Biol. Evol. 19, 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034.

Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552-569. https://doi.org/10.1093/oxfordjournals.molbev.a040727.

Rogers, A.R., 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49, 608-615. https://doi.org/10.1111/j.1558-5646.1995.tb02297.x.

Rohlf, F.J., Loy, A., Corti, M., 1996. Morphometric analysis of Old World Talpidae (Mammalia, Insectivora) using partial-warp scores. Syst. Biol. 45, 344-362. https://doi.org/10.1093/sysbio/45.3.344.

Ronquist, F., Huelsenbeck, J.P., 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574. https://doi.org/10.1093/bioinformatics/btg180.

Sansalone, G., Colangelo, P., Loy, A., Raia, P., Wroe, S., Piras, P., 2019. Impact of transition to a subterraneanlifestyle on morphological disparity and integration in talpid moles (Mammalia, Talpidae). BMC Evol. Biol. 19 (1), 179. https://doi.org/10.1186/s12862-019-1506-0.

Schneider, S., Excoffier, L., 1999. Estimation of past demographic parameters from the
distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 1079-1089.

Selçuk, A.Y., Kefelioğlu, H., 2017. Cytogenetic characteristic of the Caucasian pygmy shrew (Sorex volnuchini) and Levant mole (Talpa levantis) (Mammalia: Eulipotyphla) in northern Anatolia, Turkey. Turk J. Zool. 41, 963-969. https://doi.org/10.3906/zoo-1607-36.

Selçuk, A.Y., Kaya, A., Kefelioğlu, H., 2018. Differences in shape and size of skull and mandible in Talpa species (Mammalia: Eulipotyphla) from Turkey. Zool. Middle East. 65, 2027. https://doi.org/10.1080/09397140.2018.1552304.

Sokolov, V., Tembotov, A., 1989. Mlekopitajuscie Kavkaza: Nasekomojadnye (Mammals of Caucasus: Insectivores). Nauka, Moskva. [in Russian]

Soltis, D.E., Morris, A.B, McLachlan, J.S., Manos, P.S., Soltis, P.S., 2006. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261-4293. https://doi.org/10.1111/j.1365-294X.2006.03061.x.

Sözen, M., Matur, F., Çolak, F., Irmak, S., 2012. Karyological characteristics, morphological peculiarities, and a new distribution locality for Talpa davidiana (Mammalia: Soricomorpha) in Turkey. Turk J. Zool. 36, 806-813.

Spitzenberger, F., Steiner, H., 1962. Über Insektenfresser (Insectivora) und Wühlmäuse (Microtinae) der nordosttürkischen Feuchtwälder. Bonn. Zool. Beitr. 13, 284-310.

Stein, G.H.W., 1950. Zur Biologie des Maulwurfs, Talpa europaea L. Bonn. Zool. Beitr. 1, 97116.

Steinberg, E.K., Patton, J.L., 2000. Genetic structure and the geography of speciation in subterranean rodents: opportunities and constraints for evolutionary diversification. In: Lacey, E.A, Patton, J.L., Cameron, G.N. (Eds.), Life underground: the biology of subterranean rodents. University of Chicago Press, Ltd., London, pp. 301-315.

Strobeck, C., 1987. Average number of nucleotide differences in a sample from a single
subpopulation: a test for population subdivision. Genetics 117, 149-153.

Stümpel, N., Rajabizadeh, M., Avci, A., Wüster, W., Joger, U., 2016. Phylogeny and diversification of mountain vipers (Montivipera, Nilson et al., 2001) triggered by multiple PlioPleistocene refugia and high-mountain topography in the Near and Middle East. Mol. Phylogenet. Evol. 101, 336-351. https://doi.org/10.1016/j.ympev.2016.04.025.

Swofford, D.L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, Massachusetts.

Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.

Todorović, M., Soldatović, B., Dunderski, Z., 1972. Karyotype characteristics of the population of the genus Talpa from Macedonia and Montenegro. Arh. Biol. Nauka 24, 131-139.

Trizzino, M., Carnevali, L., De Felici, S., Audisio, P., 2013. A revision of Hydraena species of the "Haenydra" lineage (Coleoptera, Hydraenidae). Zootaxa 3607, 1-173. http://dx.doi.org/10.11646/zootaxa.3607.1.1.

Tsuchiya, K., Suzuki, H., Shinohara, A., Harada, M., Wakana, S., Sakaizumi, M., Han, S.-H., Lin, L.-K., Kryukov, A.P. 2000. Molecular phylogeny of East Asian moles inferred from the sequence variation of the mitochondrial cytochrome b gene. Genes Genet. Syst. 75, 17-24. https://doi.org/10.1266/ggs.75.17.

Ursenbacher, S., Schweiger, S., Tomović, L., Crnobrnja-Isailović, J., Fumagalli, L., Mayer, W., 2008. Molecular phylogeography of the nose-horned viper (Vipera ammodytes, Linnaeus (1758): evidence for high genetic diversity and multiple refugia in the Balkan peninsula. Mol. Phylogenet. Evol. 46, 1116-1128. https://doi.org/10.1016/j.ympev.2007.11.002.
van Riemsdijk, I., Arntzen, J.W., Bogaerts, S., Franzen, M., Litvinchuk, S.N., Olgun, K., Wielstra, B., 2017. The Near East as a cradle of biodiversity: a phylogeography of banded newts (genus Ommatotriton) reveals extensive inter- and intraspecific genetic differentiation. Mol. Phylogenet. Evol. 114, 73-81. https://doi.org/10.1016/j.ympev.2017.05.028.

Vega, R., Fløjgaard, C., Lira-Noriega, A., Nakazawa, Y., Svenning, J.C., Searle, J.B., 2010. Northern glacial refugia for the pygmy shrew Sorex minutus in Europe revealed by phylogeographic analyses and species distribution modelling. Ecography 33, 260-271. https://doi.org/10.1111/j.1600-0587.2010.06287.x.

Vohralík, V., 1991. A record of the mole Talpa levantis (Mammalia: Insectivora) in Bulgaria and the distribution of the species in the Balkans. Acta Univ. Carol. Biol. 35, 119-127.

Wang, J., Gao, P., Kang, M., Lowe, A.J,, Huang, H., 2009. Refugia within refugia: the case study of a canopy tree (Eurycorymbus cavaleriei) in subtropical China. J. Biogeogr. 36, 21562164. https://doi.org/10.1111/j.1365-2699.2009.02165.x.

Watterson, G.A., 1975. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256-276. https://doi.org/10.1016/0040-5809(75)900209.

Wielstra, B., Espregueira Themudo, G., Güçlü, Ö., Olgun, K., Poyarkov, N.A., Arntzen, J.W., 2010. Cryptic crested newt diversity at the Eurasian transition: the mitochondrial DNA phylogeography of Near Eastern Triturus newts. Mol. Phylogenet. Evol. 56, 888-896. https://doi.org/10.1016/j.ympev.2010.04.030.

Wielstra, B., Zieliński, P., Babik, W., 2017. The Carpathians hosted extra-Mediterranean refugia-within-refugia during the Pleistocene Ice Age: genomic evidence from two newt genera. Biol. J. Linn. Soc. 122, 605-613. https://doi.org/10.1093/biolinnean/blx087.

Wilson, D.E., Reeder, D.M., 2005. Mammal Species of the World: a Taxonomic and Geographic Reference. 3rd edn. Johns Hopkins University Press, Baltimore.

Zemlemerova, E.D., Bannikova, A.A., Abramov, A.V., Lebedev, V.S., Rozhnov, V.V., 2013. New data on molecular phylogeny of the East Asian moles. Dokl. Biol. Sci. 451, 257-260. https://doi.org/10.1134/S0012496613040200.

Zima, J., Král B., 1984. Karyotypes of European mammals I. Acad. Sci. Boh. 18, 1-51.

Figure legends

Figure 1. Sampling locations and habitat of T. levantis s.l. in Anatolia. A) Map of sampling locations (see Table 1). • T. levantis s.l. 'western', this study; ○ T. levantis s.l. 'western'; previous studies and © T. levantis s.l. 'eastern', previous studies. Western and Eastern sublineages follow Bannikova et al. (2015). B) Typical habitat of T. levantis s.l. at the type locality (Altındere, locality 5); 1650 m a.s.1., Trabzon, Anatolia. Photograph S. Demirtaş.

Figure 2. Results of BI, ML and MP analyses combined on a ML tree based on cyt- b sequences of Talpa and outgroup species. Numbers at nodes indicate posterior probabilities (BI) and bootstrap support values (ML and MP) which are reported only for the key nodes. Bayesian posterior probabilities (≥ 0.90) and bootstrap supports ($\geq 70 \%$) are shown. The locality numbers for the haplotypes of 'western' and 'eastern' sublineages are given in parentheses just after the haplotype IDs according to the numbering on map on the Figure 1 and Table 1. For the geographical origins of the published sequences see Table 1 and Appendix.

Figure 3. A) Median-joining network constructed using cyt-b sequences of Talpa levantis s.l. The size of each circle is proportional to the frequency of the particular haplotype in the sample. Median vectors are indicated by blank circles. For the geographical origins of the published sequences see Appendix. B) Mismatch distribution of cyt- b sequences for the western sublineage of Talpa levantis s.l., showing observed and expected values (see text).

Figure 4. Results of BI, ML and MP analyses combined on a ML tree based on BRCA2 sequences of Talpa and outgroup species. Numbers at nodes indicate posterior probabilities (BI) and bootstrap support values (ML and MP). Bayesian posterior probabilities (≥ 0.90) and bootstrap supports ($\geq 70 \%$) are shown. The locality numbers for the haplotypes of 'western' and 'eastern' sublineages are given in parentheses just after the haplotype IDs according to the numbering on map on the Figure 1 and Table 1. For the geographical origins of the published sequences see Table 1 and Appendix.

Table 1. Populations of T. levantis s.l. sampled in this and previous studies (Colangelo et al., 2010; Bannikova et al., 2015), with details on the distribution of haplotypes (if more than one haplotype is present in a population the frequency is stated in parentheses). Cyt- b haplotypes (Hap.115, GenBank accession numbers: XXXXXXXX-XXXXXXXX) and BRCA2 haplotypes (Hap.1-9, GenBank accession numbers: YYYYYYYYYYYYYYYY) were new to this study. Locality codes correspond to Fig. 1. See Appendix for sequences from other taxa used in phylogenetic analyses.

Locality	Locality code	Latitude/longitude	n	GenBank Accession No/Haplotype ID		Reference
				Cyt-b	BRCA2	
RUSSIA						
Nalchik	1	$43^{\circ} 46^{\prime} \mathrm{N}, 43^{\circ} 66^{\prime} \mathrm{E}$	2	KP717334	KP717115	Bannikova et al., 2015
				FN640574		Colangelo et al., 2010
ARMENIA						
Fioletovo	2	$40^{\circ} 71^{\prime} \mathrm{N}, 44^{\circ} 71^{\prime} \mathrm{E}$	1	KP717337		Bannikova et al., 2015
Margahovit	3	$40^{\circ} 74^{\prime} \mathrm{N}, 44^{\circ} 70^{\prime} \mathrm{E}$	1	KP717335		Bannikova et al., 2015
TURKEY						
Çam geçidi, ARDAHAN	4	$41^{\circ} 20^{\prime} \mathrm{N}, 42^{\circ} 55^{\prime} \mathrm{E}$	1	FN640570		Colangelo et al., 2010
Taşköprü, Altındere, TRABZON	5	$40^{\circ} 64^{\prime} \mathrm{N}, 39^{\circ} 67^{\prime} \mathrm{E}$	2	Hap. 1	Hap. 1	
Görele, GİRESUN	6	$41^{\circ} 02^{\prime} \mathrm{N}, 39^{\circ} 02^{\prime} \mathrm{E}$	2	Hap. 2	Hap. 1	
				Hap. 3		
Batlama Deresi, GİRESUN	7	$40^{\circ} 88^{\prime} \mathrm{N}, 38^{\circ} 34^{\prime} \mathrm{E}$	1	Hap. 4	Hap. 2	
Ulubey, ORDU	8	$40^{\circ} 85^{\prime} \mathrm{N}, 37^{\circ} 76{ }^{\prime} \mathrm{E}$	2	Hap. 5	Hap. 3	
				Hap. 6	Hap. 4	
Geyikçeli Köyü, Fatsa, ORDU	9	$40^{\circ} 93^{\prime} \mathrm{N}, 37^{\circ} 37^{\prime} \mathrm{E}$	1	Hap. 7	Hap. 5	
Kurupelit, SAMSUN	10	$41^{\circ} 37^{\prime} \mathrm{N}, 36^{\circ} 19^{\prime} \mathrm{E}$	3	Hap. 8	Hap. 6 (2)	

İncesu Köyü, SAMSUN	11	$41^{\circ} 38^{\prime} \mathrm{N}, 36^{\circ} 18^{\prime} \mathrm{E}$	1	Hap. 9	Hap. 7	
					Hap. 8	
Erikli Köyü, SAMSUN	12	$41^{\circ} 37^{\prime} \mathrm{N}, 36^{\circ} 05^{\prime} \mathrm{E}$	1	Hap. 10	Hap. 6	
Karakavuk, SAMSUN	13	$41^{\circ} 38^{\prime} \mathrm{N}, 36^{\circ} 11^{\prime} \mathrm{E}$	1	Hap. 10	Hap. 6	
Kürtler, SAMSUN	14	$41^{\circ} 48^{\prime} \mathrm{N}, 36^{\circ} 09^{\prime} \mathrm{E}$	1	FN640572		Colangelo et al., 2010
Dereköy, Ondokuzmayıs, SAMSUN	15	$41^{\circ} 45^{\prime} \mathrm{N}, 36^{\circ} 11^{\prime} \mathrm{E}$	4	Hap. 11	Hap. 3 (2)	
				Нар. 12		
				Hap. 13 (2)	Hap. 6 (2)	
Kızılırmak deltası, Bafra, SAMSUN	16	$41^{\circ} 67{ }^{\prime} \mathrm{N}, 35^{\circ} 98^{\prime} \mathrm{E}$	4	Hap. 12 (2)	Hap. 6 (3)	
				Hap. 13	Hap. 1	
				Hap. 14		
Uluağaç Köyü, Bafra, SAMSUN	17	$41^{\circ} 26^{\prime} \mathrm{N}, 35^{\circ} 58^{\prime} \mathrm{E}$	1	Hap. 13	Hap. 3	
Abalı Köyü, SİNOP	18	$42^{\circ} 02^{\prime} \mathrm{N}, 34^{\circ} 98^{\prime} \mathrm{E}$	1	Hap. 15	Hap. 9	
Sefercik, Filyos, ZONGULDAK	19	$41^{\circ} 55^{\prime} \mathrm{N}, 32^{\circ} 03^{\prime} \mathrm{E}$	2	KP717339		Bannikova et al., 2015
				KP717340		Bannikova et al., 2015
Çaycuma, ZONGULDAK	20	$41^{\circ} 43^{\prime} \mathrm{N}, 32^{\circ} 15^{\prime} \mathrm{E}$	1	KP717339		Bannikova et al., 2015
Uzungüney Koyu, ZONGULDAK	21	$41^{\circ} 37^{\prime} \mathrm{N}, 31^{\circ} 70^{\prime} \mathrm{E}$	1	KP717338	KP717122	Bannikova et al., 2015
Alapli, ZONGULDAK	22	$41^{\circ} 18^{\prime} \mathrm{N}, 31^{\circ} 40^{\prime} \mathrm{E}$	1	KP717336		Bannikova et al., 2015
Uludağ, BURSA	23	$40^{\circ} 10^{\prime} \mathrm{N}, 29^{\circ} 24^{\prime} \mathrm{E}$	1	FN640571		Colangelo et al., 2010

