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Abstract 16 

There are two means by which metals associate with microplastics in the aquatic environment. 17 

Firstly, they may be adsorbed to the plastic surface or hydrogenous-biogenic accumulations thereon, 18 

and secondly, they may be present in the polymeric matrix as functional additives or as reaction or 19 

recyclate residues. In this study, the relative significance of these associations is evaluated with 20 

respect to Pb in beached marine microplastics. Thus, adsorbed Pb was determined in < 5 mm, 21 

neutrally-coloured polyethylene pellets that contained no detectable Pb added during manufacture 22 

by digestion in dilute aqua regia, while the bioaccessibility of this association was evaluated using an 23 

avian physiologically-based extraction test (PBET). Here, up to about 0.1 g g-1 of Pb was adsorbed to 24 

the plastic and between about 60 and 70% of the metal was accessible. Lead present as additive or 25 

residue was determined by x-ray fluorescence analysis of a wider range of beached plastics 26 

(polyolefins and polyvinyl chloride), with a selection of positive samples grated to mm-dimensions 27 

and subjected to the PBET. Here, total Pb concentrations up to 40,000 g g-1 and bioaccessibilities up 28 

to 16% were observed, with bioaccessible concentrations exceeding equivalent values for adsorbed 29 

Pb by several orders of magnitude. Ingestive exposure to Pb, and potentially other toxic metals, is 30 

more important through the presence of additives in historical plastics and recyclate residues in 31 

contemporary plastics than from adsorption, and it is recommended that future studies focus more 32 

on the environmental impacts and fate of metals bound in this form.       33 

Keywords: microplastics; metals; lead; additive; adsorption; bioaccessibility 34 

 35 

 36 

1. Introduction 37 

Among the many and varied environmental impacts of marine microplastics is their ability to 38 

transport contaminants and act as a means of contaminant exposure to wildlife (Li et al., 2016; 39 

Karbalaei et al., 2018). Empirical studies have demonstrated that neutral organic contaminants, like 40 

polycyclic aromatic hydrocarbons and polychlorinated biphenyls, are readily sorbed by the 41 

hydrophobic microplastic surface from the surrounding aqueous medium (Velzeboer et al., 2014; Liu 42 

et al., 2019). However, recent calculations and considerations have questioned the significance of 43 

this route for exposure and bioaccumulation compared with natural pathways (Beckingham and 44 

Ghosh, 2017; Lohmann, 2017), with suggestions that ingested microplastics could even act as 45 

chemical cleansers in the digestive environment (Koelmans et al., 2016). More important in this 46 

respect appears to be the presence of organic chemicals in the plastic matrix as reaction or recyclate 47 
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residues or as functional additives, like plasticisers, antioxidants and flame retardants 48 

(Hermabessiere et al., 2017; Gallo et al., 2018). Because many residues and additives are not 49 

chemically but physically bound to the plastic matrix they are able to migrate, with experiments 50 

using fluids mimicking digestive conditions of fish and seabirds demonstrating considerable 51 

mobilisation of bisphenol A and various phthalate esters and flame retardants and evidence of 52 

enhanced bioaccumulation or biological estrogenicity (Tanaka et al., 2015; Coffin et al., 2019).  53 

Many metals have also been shown to be associated with marine microplastics. Thus, laboratory and 54 

field studies have revealed that metal ions are able to adsorb directly to the plastic surface or to 55 

surficial accumulations of hydrogenous and biogenic matter (Rochman et al., 2014; Brennecke et al., 56 

2016), while non-destructive x-ray fluorescence techniques have demonstrated the presence of 57 

historical and recycled additives within the polymeric matrix (Nakashima et al., 2012; Turner, 2016). 58 

What is less clear, however, is the relative significance of the two associations of metal (hereafter 59 

termed “adsorbed” and “matrix”) with regard to transport, fate and potential environmental 60 

impacts, like mobility in seawater or dissolution in the digestive system of a plastic-ingesting animal 61 

(Wang et al., 2017; Munier and Bendell, 2018). 62 

In the present study, the associations of Pb with beached marine microplastics through adsorption 63 

from the environment and incorporation as a functional additive are quantified by appropriate 64 

analytical techniques and their mobilities compared by subjecting samples to a simulated avian 65 

physiologically-based extraction test (PBET). Lead was selected for study as, among trace metals, it 66 

has a relatively high affinity for plastic surfaces and accumulations thereon (Ashton et al., 2010; 67 

Holmes et al., 2014), it was historically important as a pigment for colour and a heat stabiliser in 68 

plastics (Hansen et al., 2013), and is highly toxic to seabirds (Finkelstein et al., 2003) with evidence 69 

that Pb derived from ingested plastic is able to accumulate (Lavers and Bond, 2016). 70 

The two associations of Pb (or any metal) in microplastics and their mechanisms of release are 71 

conceptualised in Figure 1 and serve to assist the definitions and discussion below. Thus, firstly Pb is 72 

physically held in the plastic as a simple compounded additive, (Pb-X)matrix, which is able to diffuse 73 

through the water-saturated matrix itself or on dissociation (with the rate of the latter pH-74 

dependent). Secondly, Pb is bound at adsorption sites on the plastic or on a more reactive and 75 

charged coating that has accumulated on the plastic surface during suspension, Pbads, and is able to 76 

undergo release through desorption should environmental conditions change. While two distinctive 77 

associations and mechanisms of release are illustrated, it is likely that both processes occur 78 

simultaneously or successively in seawater or in the avian digestive environment. 79 

 80 
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2. Methods 81 

2.1. Sampling 82 

Samples of marine plastics were collected by hand from the strandlines of south- or south west- (i.e. 83 

Atlantic-) facing sandy beaches within 10 km of Plymouth, south west England. Sampling focussed on 84 

black, white and off-white pellets (and mainly pre-production pellets; n ~ 300), whose primary and 85 

secondary diameters ranged from about 2 to 4 mm and which are known to accumulate trace metals 86 

but are largely free from metallic additives (Ashton et al., 2010), and hard (thermoplastic) objects 87 

and fragments (i.e. excluding rubbers and foams) of a range of colours (n ~ 180) whose largest 88 

dimension ranged from < 10 mm to about 250 mm.  89 

In the laboratory, plastic pellets were washed through a 1-mm mesh with the aid of a Nylon brush 90 

and subsequently ultrasonicated for five min in distilled water to remove extraneous (non-adsorbed) 91 

material. After drying at 40 oC, pellets were categorised by colour and morphology/shape and the 92 

five most abundant categories (namely, white discs, black discs, smooth white cylinders, rough white 93 

cylinders and translucent-amber ovoids) were retained in a series of screw-capped plastic jars for 94 

further characterisation and experimental work. Plastic objects and fragments were washed through 95 

a 2-mm mesh before being dried and stored in a series of polyethylene boxes. 96 

2.2. XRF analysis 97 

Plastic objects and fragments and selected plastic pellets were analysed for a range of elements 98 

contained in the matrix as additives, of which the main focus was Pb, by field portable X-ray 99 

fluorescence (XRF) spectrometry using a battery-powered Niton XL3t 950 He GOLDD+ XRF 100 

configured in a Thermo-Fisher Scientific shielded accessory (Turner and Solman, 2016). 101 

Measurements were made over the flattest surface of each sample, and with thickness correction 102 

applied, for counting periods of 40 s at 50 kV and 40 A and 20 s at 20 kV and 100 A. For quality 103 

assurance purposes, two reference polyethylene discs (PE-071-N and T-18) were analysed after 104 

every 15 samples, with concentrations returned for all elements, including Pb, within 15% of 105 

reference values and whose precisions (as relative standard deviations) were better than 10%. 106 

Median measurement detections limits, based on three counting errors for samples returning non-107 

detects, were about 5 g g-1 for Pb.  108 

2.3. Avian PBET and residual Pb extraction 109 

Five plastic samples whose added Pb concentrations exceeded 1000 g g-1, plus a control where Pb 110 

was undetected by the XRF, were micronized to < 3 mm in diameter using a stainless steel scalpel 111 

and grater in order to increase exposure of the internal structure and attain a size comparable with 112 
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the pellets. Aliquots of ~100 mg of each sample were then weighed into individual 60-mL screw-113 

capped polypropylene centrifuge tubes. Meanwhile, 20 random pellets from each of the five 114 

categories, plus 20 virgin plastic pellets sourced from a local injection moulding facility (Algram Ltd, 115 

Plympton) were added to a series of centrifuge tubes and the total mass in each case (~500 mg) 116 

recorded.  117 

In order to determine the reactivity or bioaccessibility of Pb in the plastic pellets and micronized 118 

plastics, samples were subjected to a physiologically-based extraction test (PBET) based on the 119 

digestive conditions present in marine birds, and in particular in Procellariiforms (Turner, 2018). 120 

Thus, 1 L of digestive solution containing 1% pepsin (lyophilised powder from porcine gastric 121 

mucosa; Sigma-Aldrich) in 0.1 M NaCl solution whose pH had been adjusted to 2.5 by addition of 1 M 122 

HCl was prepared in a glass volumetric flask, and 40 mL were added to each centrifuge tube, 123 

including three tubes without solids serving as procedural controls. The contents were then capped 124 

and incubated at 40oC in a shaking water bath set at 100 rpm for about 160 h, with subsamples of 1 125 

mL pipetted (pellets) or 0.45 m-filtered (micronized plastics) into individual Sterilin tubes after 126 

different time intervals and diluted to 5 mL in 2% HNO3. The combined pellets from each tube were 127 

subsequently retrieved, rinsed in Millipore Milli-Q water (MQW) and dried under laminar flow 128 

before being extracted in 2.5 mL of 20% aqua regia for 16 h at room temperature. Lead removed 129 

here is defined as being residually adsorbed, or adsorbed to the plastic surface or hydrogeneous and 130 

biogenic coatings thereon but resistant to the PBET. Extracts were diluted to 10 mL in volumetric 131 

flasks using MQW pending analysis.  132 

PBET digests and aqua regia extracts were analysed in triplicate for 208Pb by inductively coupled 133 

plasma-mass spectrometry (ICP-MS) using a Thermo X-Series II (Thermo Elemental, Winsford UK) 134 

operated in an ISO 9001-accredited laboratory. The instrument was calibrated externally using five 135 

mixed standards and five blanks prepared in 2% HNO3 and internally through the addition of 100 g 136 

L-1 of 115In and 193Ir to all samples, standards and blanks. The limit of detection for 208Pb in extracts 137 

and diluted digests, based on three standard deviations arising from blank measurements, was 138 

about 0.02 g L-1, and precision, based on relative standard deviations of triplicate measurements, 139 

was usually better than 10%. 140 

2.4. FTIR analysis 141 

The polymeric composition of the samples used in the PBETs were determined by Fourier transform 142 

infra-red (FTIR) spectroscopy using a Bruker ALPHA Platinum attenuated total reflection QuickSnap 143 

A220/D-01 spectrometer. Thus, a selection of whole pellets (n = 30) and gratings of each micronized 144 

plastic object or fragment were clamped down on to the ATR diamond crystal before measurements, 145 
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consisting of 16 scans in the range 4000 to 400 cm-1 and at a resolution of 4 cm-1, were activated via 146 

Bruker OPUS spectroscopic software. Polymer identification involved a comparison of sample 147 

transmittance spectra with libraries of reference spectra. 148 

 149 

3. Results and Discussion 150 

3.1. Sample characteristics 151 

The characteristics of the six (combined) plastic pellet samples and six micronized plastics (selected 152 

from 180 samples retrieved) are shown in Table 1. All pellets analysed from each colour-morphology 153 

category were of polyethylene construction while gratings of the micronized plastics were more 154 

varied in polymeric makeup, and included two samples of polyvinyl chloride (PVC). No extractable Pb 155 

was detected by ICP-MS after acid extraction of the virgin (control) pellets, while in the beached 156 

pellets total adsorbed Pb concentrations, [Pbads], are on the order of 0.1 g g-1 and represent metal 157 

acquired from the environment, calculated from the amount of Pb released at the end of the PBET 158 

on a weight-normalised basis plus that extracted by aqua regia once pellets had been recovered. 159 

(Where pellets were analysed by XRF, Pb was not detected and was below 10g g-1.) Regarding 160 

micronized plastics, Pb was not detected by XRF in the sample serving as a control but in the 161 

remaining samples total concentrations present in the polymer as a functional additive or reaction 162 

or recyclate residue, [Pbmatrix], range from a few thousand g g-1 to about 40000 g g-1. Specifically, 163 

co-association of Pb with Cr (also determined by XRF) in samples of polyethylene and polypropylene 164 

and in a mass ratio of about 4:1 suggests the presence of lead chromate particulates as a pigment 165 

for colour while Pb in samples of PVC is likely to be present in heat stabilising compounds (Hansen et 166 

al., 2013). 167 

3.2. PBET results 168 

Figure 2 shows the time-dependent concentration of Pb, normalised to sample weight (since the 169 

precise mass of plastic used in the experiment varied), that was released by desorption from plastic 170 

pellets during the avian PBET ([Pb]des); note that Pb mobilisation was not detected from the virgin 171 

(control) pellets. Here, release represents desorption of Pb that is adsorbed to the plastic surface or 172 

to hydrogenous and biogenic accumulations on the pellets (Figure 1) and is largely dictated by the 173 

stability constants and site densities defining surface adsorption and the rate of diffusion in the 174 

aqueous medium. There is a general increase in Pb release over the time-course of the experiment 175 

and evidence of equilibrium attained for sample 3 but more complex distributions and secondary 176 

maxima in other cases, with no data conforming to a simple Fickian diffusion-based model (i.e. a 177 
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proportionality with the square root of time). Irregularities may reflect slight changes in 178 

experimental conditions over the time course of the experiment (e.g. particle mass to medium 179 

volume ratio) or the heterogeneity amongst the samples of a given classification and redistribution 180 

of Pb amongst plastic pellets with the progression of time. By the end of the time course, and as 181 

shown in Table 2, between 61 and 78% of total Pb adsorbed to the pellets is mobilised or 182 

“bioaccessible” (but not necessarily bioavailable), where bioaccessibility, BA, is computed as follows: 183 

BA, % = [Pb]e
des * 100%/([Pb]e

des + [Pb]e
res) 184 

Here, [Pb]e
des is the concentration of adsorbed Pb released at the end of the PBET, but which is not 185 

necessarily equal to the maximum or equilibrium concentration, [Pb]e
res is the concentration of 186 

residually adsorbed Pb that is not mobilised at the end of the PBET but is extracted in aqua regia, 187 

and [Pb]e
des + [Pb]e

res is the total concentration of Pb acquired from the environment. 188 

  189 

Figure 3 shows the time-dependent concentrations of weight-normalised Pb released by diffusion 190 

from the micronized plastics subject to the avian PBET ([Pb]dif). In this case, release encompasses 191 

additives and reaction residues that are sufficiently small to diffuse through the matrix, as well as Pb 192 

ions and small complexes that have dissociated from additives and residues under the acidic 193 

conditions of the PBET (Figure 1; Town et al., 2018), and concentrations are orders of magnitude 194 

higher than those shown in Figure 2. Significantly, since (i) Pb release was not detected from the 195 

control sample prepared from plastic with no XRF-detectable Pb, and (ii) micronization exposes a 196 

greater proportion of the internal structure of the plastic relative to its original surface, the 197 

magnitude of desorption of the metal from the surface that had been acquired from the 198 

environment appears to be of minor importance here. The time courses of Pb release from the 199 

matrix are less complex than those defining release of Pb adsorbed to the plastic pellets but, as 200 

above, data did not conform to a simple diffusion model; specifically, there is evidence for secondary 201 

maxima in some cases (samples 1 and 2) suggesting that adsorption of mobilised Pb is possible at the 202 

micronized plastic surface or that there is some physical or chemical interaction between species 203 

diffusing through the plastic matrix. The concentrations of Pb released at the end of the time course, 204 

[Pb]e
dif, are shown in Table 2, along with measures of bioaccessible Pb and where BA is now 205 

computed as follows: 206 

BA, % = [Pb]e
dif * 100%/[Pb]matrix 207 
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BA ranges from < 1% in two polyolefin samples to about 16% for a sample of PVC where, 208 

presumably, organic stabilizers with higher diffusion coefficients than inorganic additives are present 209 

(Mercea et al., 2018). 210 

3.3. Adsorbed versus added Pb 211 

Overall, Pb bioaccessibility or reactivity is considerably greater when the metal is held at adsorption 212 

and exchange sites on the plastic surface or hydrogenous and biogenic coatings thereon than when 213 

bound as an additive or residue within the polymeric matrix. This is expected as diffusion coefficients 214 

defining Pb species traversing the plastic particle are orders of magnitude greater than those 215 

defining diffusion in the aqueous medium (Town et al., 2018). What is significant, however, and 216 

more than offsets differences in percentage bioaccessibility, is the difference in absolute 217 

concentrations of Pb released between the two associations that are many orders of magnitude. For 218 

plastics with no functionally added Pb, the quantity of adsorbed Pb largely depends on the surface 219 

area and length of time suspended in the water column (Rochman et al., 2014), and for microplastic 220 

pellets of the size and shape considered here, 0.05 g g-1 can be considered a representative 221 

bioaccessible concentration of adsorbed metal based on the PBET results (Figure 2). For micronized 222 

plastics of comparable dimensions containing leaded additives, bioaccessible concentrations range 223 

from about 20 to 1200 g g-1 in the PBET (Figure 3), or 102 to 104 times higher than bioaccessible Pb 224 

concentrations that are adsorbed. 225 

3.4. Wider implications 226 

Clearly, not all plastics contain leaded additives, but using the wider observations of samples made 227 

by XRF as part of the study may afford some indication of the quantity of added Pb that is 228 

bioaccessible more generally. Thus, despite Pb being restricted or phased out in consumer plastics, 229 

28 beached samples out of 180 analysed by XRF were positive for Pb, presumably because of the 230 

presence of legacy plastics and the dilution of Pb through the recycling of older plastics (Nakashima 231 

et al., 2016; Rambabu et al., 2018), with a median concentration of [Pbmatrix] of about 100 g g-1. 232 

Assuming that there is a similar abundance and concentration distribution of Pb among the (non-233 

pellet) microplastic population that is amenable to ingestion and that 3% is a representative 234 

(median) bioaccessibility of added Pb (Table 2), an average concentration of bioaccessible Pb in 235 

microplastics would be about 0.5 g g-1, or an order of magnitude greater than adsorbed Pb that is 236 

bioaccessible on a similar size of microplastics. It would appear, therefore, that potential impacts on 237 

wildlife from exposure to Pb through ingestion is greater overall for metals present as additives or 238 

residues from manufacturing. Moreover, based on general reaction considerations and for a given 239 

plastic, risk is predicted to increase with decreasing particle size, gut acidity and length of digestion.  240 
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Although the focus of the present study has been on Pb, data garnered simultaneously or 241 

independently on Cd (albeit more limited owing to constraints on detection by both ICP-MS and XRF) 242 

reveal similar findings. Thus, compared with Pb, there were fewer Cd-positive plastics among the 243 

180 beached samples analysed by XRF (n = 9) but a higher median concentration ([Cdmatrix] ~ 900 g 244 

g-1), and greater bioaccessible concentrations as additive metal ([Cd]e
dif up to 30 g g-1) relative to 245 

bioaccessible concentrations when adsorbed to the surface of plastic pellets ([Cd]des < 0.001 g g-1 246 

throughout the time courses of the PBET). 247 

4. Conclusions 248 

In summary, the transport, exposure and accessibility of Pb (and other toxic metals) in the marine 249 

environment appears to be more important through the historical and contemporary disposal or 250 

recycling of legacy plastics than the gradual accumulation of metal ions on to plastic surfaces 251 

suspended in the water column. With the majority of studies to date addressing adsorbed metals 252 

(Ashton et al., 2010; Holmes et al., 2014; Rochman et al., 2014; Brennecke et al., 2016; Dobaradaran 253 

et al., 2018; Maršić-Lučić et al., 2018; Vedolin et al., 2018; Rivera-Hernandez et al., 2019) it is 254 

recommended that future research focus on the environmental and ecological impacts of metal 255 

additives in microplastics and the identification and characterisation of the sources and fates of 256 

legacy plastics.  257 
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Table 1: Characteristics and total Pb content of the plastic samples used in the study. Note that total Pb was derived from extraction for the pellets ([Pb]ads) 356 

and from XRF analysis for the micronized plastics ([Pb]matrix).   357 

 358 

sample   colour polymer [Pb]ads or [Pb]matrix, g g-1 

pellets 1 white polyethylene 0.056 

  2 black polyethylene 0.060 

  3 white polyethylene 0.095 

  4 white polyethylene 0.037 

  5 translucent-amber polyethylene 0.062 

  6 (control) white polyethylene (virgin) <0.004 

          

micronized plastics 1 red polypropylene 4260 

  2 yellow polyethylene 3860 

  3 green polypropylene 6130 

  4 blue polyvinyl chloride 4090 

  5 black polyvinyl chloride 38200 

  6 red polypropylene <8.6 

 359 

 360 

 361 

 362 

 363 

 364 
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Table 2: Concentration of Pb released from pellets ([Pb]e
des) and micronized plastics ([Pb]e

dif)  at the end of each time course along with bioaccessibilities 365 

relative to total concentrations as reported in Table 1. 366 

 367 

sample   [Pb]e
des or [Pb]e

dif, g g-1 BA, % 

pellets 1 0.043 77.7 

  2 0.037 61.2 

  3 0.066 70.2 

  4 0.026 69.9 

  5 0.039 62.9 

        

micronized plastics 1 33.5 0.79 

  2 19.9 0.52 

  3 333 5.43 

  4 657 16.1 

  5 1230 3.22 

 368 

 369 

 370 

 371 

 372 

 373 

 374 
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Figure 1: Associations of Pb (and other metals) with microplastics in the marine environment and mechanisms by which they are released. Note that Pb-X 

represents an additive or residue in the polymeric matrix. 
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Figure 2: Concentration of Pb adsorbed to five pellet types (defined in Table 1) that is released by an 375 

avian PBET, [Pb]des, as a function of time. 376 
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 378 

Figure 3: Concentration of Pb as an additive in five micronized plastics (defined in Table 1) that is released by an avian PBET, [Pb]dif, as a function of time. 379 
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