
Data Encryption and Fragmentation in Autonomous Vehicles using Raspberry Pi 3

Sahand Murad*, Asiya Khan*, Stavros Shiaeles* and Giovanni Masala†
*University of Plymouth, UK

e-mail: sahand.murad;;asiya.khan;stavros.shiaeles@plymouth.ac.uk

†Manchester Metropolitan University, UK
e-mail: g.masala@mmu.ac.uk

Abstract—Autonomous vehicles have huge potential in
improving road safety and congestion. Towards the road map of
full autonomy, each vehicle will be able to communicate with
other vehicles within the network of vehicles to improve
congestion and notify emergencies. Many architectures for
communication between vehicles are centralised, typically using
cloud servers. The security and trust of that communication is
paramount. Therefore, the aim of this paper is to propose a novel
method for encrypting and fragmenting data in various cloud
providers in order to protect the anonymity and increase the
uncertainty for an attacker having access to the data on cloud. Our
experimental results seem promising and we were able to achieve
good results with low overhead in transmission.

Keywords-component; data fragmentation, encryption,
autonomous vehicles

I. INTRODUCTION

Autonomous cars are intelligent systems, which are able
to do physical tasks without human interaction. Autonomous
vehicles are used in industrial environment, transport and
military. These vehicles are increasingly becoming intelligent
agents that have the capability to learn from their environment.
Autonomous cars have several sensors with connectivity
between them. Most cars manufactured now use some
autonomous features such as lane keeping, Adaptive Cruise
Control (ACC) and automatic parking. In order to research on
such vehicles, Induct Technology created Navia, which is a
robotically driven electric shuttle, with a maximum speed of
20 Km/h. The shuttle has an optical camera and four Lidar
sensors on it, and has been tested in many universities in
England, Singapore and Switzerland [1]. In each car, it is
possible to install many kinds of sensors e.g. LIDAR, GPS,
Camera sensor, which are able to perform specialized task.

In the last decade, driverless vehicles have been piloted on
the roads. In addition, advanced driver assistance systems and
autonomous vehicles continue to increase rapidly, e.g. the
2004 and 2005 DARPA challenges for vehicles to
autonomously navigate via desert terrain. Further, the DARPA
challenge in 2007 developed and tested cars that
independently explored via a mock urban condition amid
traffic, have created significant excitement and research
enthusiasm for the field of autonomous driving [2] [3].

The increased connectivity and interaction of an
autonomous vehicle gives rise to vulnerabilities in data
integrity. A single vehicle compromised can lead to security
hazards affecting multiple vehicles. Hence, it is important to
design robust systems that ensure data integrity and are very
difficult to be hacked. Data encryption offers some security.
Therefore, to make data secure from hackers it is better to
encrypt data before sending data to the cloud to protect the
data from the attackers; data is encrypted using a key verified
by the identity of the sender [4]. There are many ways to
protect data, such as hiding identities of communication
parties; however, still let them authenticate each other,
encryption and authentication [5]. Moreover, as managing and
protecting key is a problem, authors in [6] propose a cloud
stash, which splits the files to multi shares, and send it to
multiple clouds where the files are reconstructed by the
threshold. Whereas, authors in [7] propose a threshold
scheme to divide the data in a number of pieces in such a way
that the individual pieces do not reveal any information about
the data. Another way to keep the data safe from hackers is
symmetric and asymmetric encryption, in symmetric
encryption sender and receiver use the same key to encrypt and
decrypt data but in asymmetric each user has their own private
key to encrypt and decrypt the data [8].

Therefore, the main contribution of this paper is to propose
a scheme to protect the anonymity of the vehicular data, thus,
increasing the uncertainty for an attacker to access the data
on the cloud. Vehicular data is collected from an autonomous
vehicle with ultrasound sensors and camera on a Raspberry Pi
3 microcontroller [9]. We collect both text and video data and
propose a novel way to achieve data integrity. We first split
the data (both text and video) into smaller chunk sizes of
20KB, 15KB, 10KB and 5KB, and encrypted it. We then
compared that to the whole file encrypted in terms of
performance metrics of time, CPU usage and size of files. We
used Python 3 for programming and for encryption we used
Pycrypto Aes CBC256.

The rest of the paper is organized as follows. Section II
presents the literature review. In section III we present the
proposed method, whereas, the results are presented in
Section IV. Section V concludes the paper and presents areas
of future work.

212

2019 IEEE World Congress on Services (SERVICES)

978-1-7281-3851-0/19/$31.00 ©2019 IEEE
DOI 10.1109/SERVICES.2019.00058

II. LITERATURE REVIEW

There have been several ways in which data protection
from hackers has been presented in literature. Encryption and
fragmentation techniques offer secure ways to protect data
from hackers. Researchers in [6] proposed a cloud stash to
split data to multi shares, where threshold shares are required
to reconstruct the file. They used multithreading to manage
secret sharing in to multiple clouds. Therefore, when the
client tries to download data and it is corrupted, cloud stash
can reconstruct a new one from another cloud. To protect and
make data more secure from attackers, work presented in [10]
encrypted the data before sending it to the cloud to make it
more secure. Only the clients had access to the decryption
keys making it is difficult for the attackers to get the data. The
work presented in [11] [15]proposed a new technique to
fragment the original file to chunks, they used random pattern
fragmentation for splitting data, each split file had the same
length as the associated pattern. Moreover, the aim of using
this method is to protect the data from attackers, as the
attackers do not know the information about the length of
each split data, therefore, they cannot get the data. Authors in
[15] present a new approach for data fragmentation combined
with AES 256 CBC to encrypt the data and split to multiple
chunks, and the chunks were sorted to split files by using a
random pattern fragmentation. In [4] authors propose a
taxonomy of defence against attacks on autonomous vehicles
to enable targeted defence to be developed. According to [12]
to make the data more secure they proposed to split the data,
then after splitting the data, the header was stored in another
file of smaller size, they then added some bytes to the header
making it harder to be attacked as it appears to be like other
header files. This will make it harder for the attacker to find
the header because when attacker attacks the data inside the
cloud, they cannot find the header because all the split files
have the same size, as it shows that the header was not sent to
the cloud, so the attackers cannot defragment the split data
without headers. Moreover, to make data more safe from eyes
of the attackers, authors in [13] proposed a way to encrypt data
by using master key and symmetric encryption. For each
authorized client key encryption key (KEK) obtained via
passphrase and also by using KEK the master key has been
encrypted, after the data encrypted each client the master key
and client identifier encrypted depending on user key
encryption key. For decrypting the data, the user enters a
passphrase to the client which obtains the KEK, so the client
decrypts the master key and data. From the literature, we
conclude that manyresearchers have worked on autonomous cars
data splitting data or encrypting data and splittingheaders, but
no one has tried to split and encrypt the headers of different
files.

III. PROPOSED METHOD

The work presented in this paper focuses on splitting and
encrypting files to smaller chunks, encrypt the header and
send those chunks to the multiple providers. In each encrypted
header there is information about the location of next data
which helps the client locate the data to reconstruct it easily,
so by using the proposed method the attackers cannot
reconstruct the data as they cannot understand anything from
the data.

Fig. 1 shows the proposed scheme for vehicular data
security. The right side of Fig. 1 shows the block diagram
of the autonomous vehicle using the Raspberry Pi
microcontroller. Both text and video data collected from
the vehicle is then split into multiple chunks using Python
3 (left side of Fig. 1). To hide the data from the attacker’s
eyes and make it more private, we proposed to split data
to smaller chunks and encrypt the headers. We use the
AES encryption method. The data is then re-joined and
send to multiple clouds thus making the data more secure
as described in Fig. 1.

Fig. 1. Block diagram of the autonomous vehicle and Data
Collection.

This section outlines the experimental methodology,
conversion of the mobility vehicle to be fully autonomous with
sensors connected and the proposed data encryption and
fragmentation scheme.

A. Experimental Methodology

The vehicle used for this project is a Capricorn Electric
Wheelchair from Better life Healthcare [14] as shown in
Fig. 2a. It is a small, four wheeled vehicles with caster type
front wheels, two fixed driven rear wheels and powered
by two 12V batteries. It is driven by two separate electric
motors, which are connected directly to each of the rear
wheels. It has a maximum speed of 4mph, a maximum
incline of 6° and a turning circle of radius 475mm. The
maximum range of the wheelchair is 9.5km. The tyres are
solid and have a larger radius than many other models of
its type, helping to improve performance on rough or
uneven surfaces.

This section will present the conversion of the mobility
scooter into an autonomous vehicle controlled by
Raspberry Pi 3. It will further describe the connection of
ultrasonic sensors and camera.

B. Connecting the Raspberry Pi 3
The autonomous vehicle was built from a mobility

scooter as shown in Fig. 2a. The scooter had an inbuilt
microcontroller shown in Fig. 2b which was used as a
communicative tool between the Raspberry Pi version 3
and the vehicle’s motors.

213

To ensure the vehicle was mobile, a portable battery
producing 5V was powering the Pi and a laser-cut housing
was designed to hold the system in place and absorb forces
from potential collisions (Fig.3).

In order to make space for a platform on which the system
can be installed, the chair was removed, as was the housing
surrounding the frame of the vehicle. The central column
between the chair and the frame was also removed, allowing
the new chassis to be placed over the frame. The newchassis
is shown in Fig. 3, whereas, the block diagram is presented in
Fig. 1 showing the connections of the Raspberry Pi with the
sensors and the vehicle’s controller. The chassis shown in Fig.
2a has enough space for the control panel – rewired to connect
the Raspberry Pi directly to the joystick input, the Pi itself,
and two breadboards with which the circuitry could be
modified during the built and testing process. The chassis is
designed so additional components and sensors can be added.
Two digital to analogue converters were installed, controlling
both forwards/backwards motion and the yaw of the vehicle,
respectively. The front wheels were fixed in place by the
removal of the bearings contained in the shafts. This allowed
the connecting bolts to be tightened fully and restricting the
motion of the vehicle to forwards and backwards.

Fig. 3. The autonomous vehicle modified from the mobility
scooter

For the vehicle to be autonomous it would have to be
controlled by the General-Purpose Input Output (GPIO) pins
on the Pi which would send signals emulating the joystick.
The GPIO pins work with digital signals therefore a Digital
to Analogue Converter (DAC) (Fig. 2b) would be required to
alter the signal type. An Adafruit MCP4725 DAC [20] was
used and functioned well with the Raspberry Pi.

C. Connecting Ultrasonic Sensors to the Raspberry Pi
3

Ultrasonic sensors provide basic object-detection
autonomy to the vehicle. The HC-SR04 sensor was used
which could work with the Pi’s GPIO pins through jumper
wires. The principle of the HC-SR04 is that there are four
pins: power, trigger, echo, and ground. The power and ground
were connected directly to the Pi’s voltage and ground pins,
the trigger acts as a ‘starting gun’ for the sensor signifying
when to produce a soundwave, and the echo receives the
soundwave. While these are binary input/output functions
they can be used on Python to determine the distance of the
closest object. The programming logic is shown in in Fig. 1.
In order to connect the ultrasonic sensors to the Raspberry Pi,
the circuit was adjusted so that all of the triggers were
controlled by the same i/o pin on the Pi, keeping the amount
of i/o pins used to a minimum of x+1, where x is the number
of sensors used in the design. Each of the sensors outputs the
result to an array which is continually updated, and it is this
array which can be communicated to an infrastructure hub.
As sensors are connected to the Raspberry Pi, and the
microcontroller makes a connection between vehicle and
Raspberry Pi, we collected data from the sensors (text data)
and video data from the camera. This process has been
described earlier in Fig.1.

D. DATA ENCRYPTION AND FRAGMENTATION

Text data from the ultrasonic sensors and video data from
the camera was collected from the autonomous vehicle. We
used AES encryption algorithm as it is the most widely used
encryption method, it is symmetric encryption which uses one
key for encryption and decryption. We collected the data
from the autonomous vehicle ultrasound sensors and from the
camera. We then encrypted the whole text and video file, then
we fragmented both the text and video files in to four
fragments of sizes 5KB, 10KB, 15KB and 20KB. The size of
the whole video file was 512KB and the text file was 247KB.
This allowed us to make comparison in terms of time, size and
CPU usage for the full-size file and when fragmented. The
full-size video and data files were encrypted with AES
method. Finally, the fragmented video and text files were
encrypted with the AES method as described earlier in Fig.1
After fragmenting the data files in 4 different sizes, we
encrypted them and then re-joined it with the remaining files
i.e. 507, 502, 497 and 492KB, and send it to multiple clouds,
so when the attacker tries to attack the data in cloud they will
not be able to decrypt it. This is because the hacker cannot
understand anything from the data because it will be difficult
to find all the chunks and determine the difference between
header and body. For reconstructing data, we used the same
method i.e. the client downloads the data chunks and decrypt
the headers, then re-joining the chunks and the client has
access to the original data. After the client has downloaded
text or video data,

Fig. 2a. Original mobility
scooter

Fig. 2b. Autonomous vehicle
microcontroller

214

0.3
0.25

0.2
0.15

0.1
0.05

20 KB 15 KB 10 KB 5 KB 512 KB 248 KB

 Size (KB)

Video Text

As each client has his own key so it will be easier for the
client to get first chunk after that they can find all chunks as
each chunk has the information about previous and next
chunk.

IV. RESULTS AND DISCUSSIONS
Once the data was collected from the autonomous vehicle,

we have analysed the results in terms of the comparison in
time, size and CPU utilization of the text and video files. The
data files were encrypted as the whole file and as the
fragmented chunks of size 5, 10, 15 and 20KB. The size of
the whole video file is 512KB and of the text file is 247KB.

We found that encrypting whole file needs more time and
storage rather than encrypting first part of the file. There is
change in the size of files before encrypting and after
encrypting first 20, 15, 10 and 5 KB. The size of both files
(text and Video) increased after encrypting to 20.2KB. For
both (encrypting part of file then re-joining and encrypting
whole file), as the size of file before encrypting was 20KB or
other sizes and after encrypting increased, encrypting whole
of the text file results to bigger size of file rather than
encrypting just some KB of file as the file size was 247
(253943bytes) but after encrypting the size increased to 248
(254247 bytes).

Table I. Time and CPU utilization for splitting different sizes
of video and text file

Table 1 shows that splitting 512 KB to 20 KB and 492KB
of both files take more time than splitting the same size to 15
KB and 497KB, 10 KB and 502KB, and 5 KB and 507 KB,
also splitting 15 KB of video file takes more time rather than
splitting the same size of text file. The chart shows that
splitting 10 KB takes more time compared to the time to split
5 KB. In addition, splitting 20 KB takes more time than
15KB, 15KB takes more time for splitting than 10 KB and 5
Kb of video file is also for the text file splitting 20 KB takes
more time than splitting other sizes of the same file.
Moreover, from Table 1 we can see that splitting 20 KB, 15
KB, 10 KB and 5 KB of video file takes more time rather than
splitting same sizes of text file. Table 1 also shows the CPU
utilization for splitting text and video files in different sizes,
from the chart we can see that splitting 20 KB need more CPU
usage than other sizes of video and text files, also for splitting
15 KB CPU utilization is more than 10 Kb and 5 KB for both
files. On the other hand, splitting 20KB of video file needs
more CPU usage compared to 12 KB of video rather splitting
20KB of text file.

We can see from Fig. 4 the time to encrypt 20 KB of video
file needs more time rather than encrypting same size of text
file, at same time encrypting 20 KB takes more time than
other sizes. Encrypting 15 KB of video and text file needs
more time than encrypting 10 KB of both files, but in
encrypting 20 KB of video file takes more time rather than
encrypting same size of text file. Encrypting 5 KB of text
takes less time than encrypting same files of size 20KB, 15
KB, and 10 KB and less than same size of video file.
Moreover, the chart represents that encrypting 512 KB of
video and text file takes more time than encrypting just 20,
15, 10 and 5 KB.

Fig. 4 Time for encrypting different sizes of video and text
file

Fig. 5shows that usage of CPU for encrypting 20KB of
video is higher than encrypting same size of text file,
compared to other sizes. CPU usage of 20 KB encryption is
higher than encrypting other sizes. Moreover, when we
encrypted 15KB of video file the CPU usage is higher than
encrypting 15KB of text file also when we encrypted 10KB
for both video and text we can see that the CPU usage of
encrypting 10 KB of video file is bigger than encrypting the
same size of text file. Also the CPU usage for encrypting 5KB
of text file is less than the video file. Overall from Fig. 5 we
can see that encrypting 5KB results in less CPU usage
compared to other sizes.

Fig. 5 CPU utilization for encrypting different sizes of
video and text file

CP
U

Ut
ili

za
tio

n
CP

U
Ut

ili
za

tio
n

40.00%

30.00%

20.00%

10.00%

0.00%
20 KB 15 KB 10 KB 5 KB 512 KB 248 KB

 Size (KB)

Video Text

Ti
m

e(
s)

Text
Video

Time CPU usage

20 KB 0.008
0.017

%2.15
%3.88

15 KB 0.007
0.015

%1.85
%3.6

10 KB 0.006
0.013

%1.65
%2.13

5 KB 0.005
0.011

%1.4
%1.77

215

From the experimental results, we can see that the best way to
save time and CPU usage is to split and encrypt 5KB of 512 KB
rather than other sizes or encrypting the whole file without
splitting.

V. CONCLUSION AND FUTURE WORK

In this paper, our experimental results shown that splitting
and encrypting 5 KB is the ideal size as it is not using many
CPU resources and memory compared to other sizes. We
compared our results in terms of time, CPU utilization and
size. This allowed us to determine which one is most useful
method to make the data secure in the cloud and hence make
it difficult for a hacker to reconstruct data. Splitting and
encrypting different size of video and text file or encrypting
whole file shows that less time, CPU usage and size is taken
in splitting and encrypting 5KB rather than other sizes or
encrypting the whole file, so it saves CPU utilization, time
and storage. The privacy of data is at a higher level preventing
a hacker to access the data as it is shared in multiple clouds
and header of each chunk is encrypted.

In our future work, we will reconstruct data from multiple
clouds with each chunk having its location also each chunk
knows about next and previous chunk location which will
help the client to reconstruct the data easily and decrypt data
then send it back to the autonomous vehicle.

ACKNOWLEDGMENTS

The authors would like to thank Mr Charlie Day, My Liam
McEachen, Mr Stuart MacVeigh, Mr John Welsh and Dr Toby
Whitley for their support in building the autonomous vehicle
and general electronics.

REFERENCES

[1] Zhang, R. and M. Pavone, Control of robotic mobility-on-demand systems:
a queueing-theoretical perspective. The International Journal of Robotics
Research, 2016. 35(1-3): p. 186-203.

[2] Choi, W.-S., et al. Fast iterative closest point framework for 3D LIDAR
data in intelligent vehicle. in 2012 IEEE Intelligent Vehicles
Symposium. 2012. IEEE.

[3] Levinson, J. and S. Thrun. Robust vehicle localization in urban
environments using probabilistic maps. in 2010 IEEE International
Conference on Robotics and Automation. 2010. IEEE.

[4] Thing, V.L. and J. Wu. Autonomous vehicle security: A taxonomy of
attacks and defences. in 2016 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). 2016.
IEEE.

[5] Chaum, D.L., Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 1981. 24(2): p. 84-90.

[6] Alsolami, F. and T.E. Boult. CloudStash: using secret-sharing scheme
to secure data, not keys, in multi-clouds. in 2014 11th International
Conference on Information Technology: New Generations. 2014.
IEEE.

[7] Shamir, A., How to share a secret. Communications of the ACM, 1979.
22(11): p. 612-613.

[8] Esslinger, B., CrypTool. Available via www. cryptool. de, 2008.
[9] Day, C., McEachen, L., Khan, A., Sharma, S. and Masala, G., L.

Pedestrian Recognition and Obstacle Avoidance for Autonomous
Vehicles using Raspberry Pi. accepted for presentation at the
Intelligent Systems Conference (IntelliSys) 2019, 5-6 September2019
in London, United Kingdom.

[10] di Vimercati, S.D.C., et al., Encryption and fragmentation for data
confidentiality in the cloud, in Foundations of security analysis and
design VII. 2013, Springer. p. 212-243.

[11] Santos, N. and G.L. Masala. Big Data Security on Cloud Servers Using
Data Fragmentation Technique and NoSQL Database. in International
Conference on Intelligent Interactive Multimedia Systems and
Services. 2018. Springer.

[12] Bahrami, M. and M. Singhal. A light-weight permutation based
method for data privacy in mobile cloud computing. in 2015 3rd IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering. 2015. IEEE.

[13] Jonas, P.E., A.L. Roginsky, and N. Zunic, Encrypting data for access
by multiple users. 2009, Google Patents.

[14] Betterlife Healthcare, 2018. Betterlife Capricorn Electric Wheelchair.
[15] N. Santos, S. Lentini, E. Grosso, B. Ghita and G. Masala,

"Performance Analysis of Data Fragmentation Techniques on a
Cloud Server" in press on the, International Journal of Grid and
Utility Computing, InderScience publishers.

216

