
Research Article
Using Burstiness for Network Applications Classification

Hussein Oudah ,1,2 Bogdan Ghita ,1 Taimur Bakhshi ,3 Abdulrahman Alruban,1,4

and David J. Walker5

1Centre for Security, Communications and Network Research, University of Plymouth, Plymouth, UK
2Department of Mathematics and Computer Applications, Al-Muthanna University, Samawah, Iraq
3National University of Computer & Emerging Sciences, Lahore, Pakistan
4Department of Information Technology, Computer Sciences and Information Technology College, Majmaah University,
Al-Majmaah, 11952, Saudi Arabia
5Centre for Robotics and Neural Systems, University of Plymouth, Plymouth, UK

Correspondence should be addressed to Bogdan Ghita; bogdan.ghita@plymouth.ac.uk

Received 29 March 2019; Revised 19 June 2019; Accepted 25 July 2019; Published 20 August 2019

Academic Editor: Djamel F. H. Sadok

Copyright © 2019 Hussein Oudah et al. -is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Network traffic classification is a vital task for service operators, network engineers, and security specialists to manage network
traffic, design networks, and detect threats. Identifying the type/name of applications that generate traffic is a challenging task as
encrypting traffic becomes the norm for Internet communication. -erefore, relying on conventional techniques such as deep
packet inspection (DPI) or port numbers is not efficient anymore.-is paper proposes a novel flow statistical-based set of features
that may be used for classifying applications by leveraging machine learning algorithms to yield high accuracy in identifying the
type of applications that generate the traffic. -e proposed features compute different timings between packets and flows. -is
work utilises tcptrace to extract features based on traffic burstiness and periods of inactivity (idle time) for the analysed traffic,
followed by the C5.0 algorithm for determining the applications that generated it. -e evaluation tests performed on a set of real,
uncontrolled traffic, indicated that the method has an accuracy of 79% in identifying the correct network application.

1. Introduction

In the context of the ever-increasing network activity and
reliance on the Internet, monitoring and characterising web
traffic is critical for network administrators for operational
and security activities. A number of directions were ex-
plored, such as establishing what websites the users are
interested in, how much traffic is generated by specific
applications, and whether these applications or services can
be controlled in terms of network resource demands [1]. -e
research community proposed a number of alternatives,
with earlier studies focusing on port-based approaches and
deep packet inspection. However, these methods failed to
identify applications as they currently use dynamic/well-
known ports such as port 80 or encrypted methods such as
SSL/TLS [2, 3]. In recent years, studies have focused on using
statistical features approach for identifying traffic associated

with applications based on machine learning algorithms [4].
-is method relies on the characteristics of IP flows such as
the number of packets in a flow and size and duration of a
flow which reflect unique patterns for applications. -e
aforementioned method was considered flexible for
emerging traffic as it utilises the network level (packet
header) with promising results rather than the application
level (packet contents) [5].

For better classification decisions, the prior art proposed
either new machine learning algorithms (MLA) or novel
feature-based approaches. -e majority of previous studies
in the domain of traffic classification focused upon in-
troducing new MLA, and little attention has been given to
the extraction of new features. To this end, this study aims to
explore the potential of extracted new features subset and
find out whether these features have a positive impact on the
system performance.-e new features need to be sufficiently

Hindawi
Journal of Computer Networks and Communications
Volume 2019, Article ID 5758437, 10 pages
https://doi.org/10.1155/2019/5758437

mailto:bogdan.ghita@plymouth.ac.uk
https://orcid.org/0000-0001-8286-0458
https://orcid.org/0000-0002-1788-547X
https://orcid.org/0000-0003-4750-7864
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5758437

discriminative in order to distinguish between applications.
-e proposed approach focuses on classifying web-based
applications such as Facebook and YouTube, which use the
network/Internet to manage requests from a client to an
application server rather than network-specific utilities/
protocols such as SMTP and FTP. Identifying the optimal
features for applications reduces the potentially large di-
mensionality and might be useful to improve the system
performance [6]. -e proposed features were extracted from
real data, which were collected from a group of 20 users at
the University of Plymouth for two months, using tcptrace
tool and evaluated with the C5.0 algorithm [7]. -e data
were labelled based on DNS queries and IP addresses for
each examined application, which was identified from our
previous studies [8, 9].

-e rest of the paper is organised as follows: Section 2
discusses the state-of-the-art traffic classification approaches
in more detail to provide a review of the limitations of
present techniques. Section 3 highlights the proposed
method and analysis and introduces the feature set. Section 4
presents the results using C5.0 algorithm, and Section 5
concludes the paper with a summary of achievements.

2. Related Work

As mentioned in the introductory section, the classification
of applications has received significant interest from the
research community in recent years. -is section summa-
rises previously proposed classification techniques and their
limitations.

2.1. TrafficClassificationTechniques. In the early days of the
Internet, its applications were identified easily based only
upon port number [10]. IANA [11] assigned protocols to
well-known transport layer ports; therefore, the identifi-
cation process was merely based upon matching the port
number in the packet header with the table containing the
port applications. Due to the continuous growth of In-
ternet applications, standard ports are no longer used;
instead, they have been moved towards a web-based front-
end or have used dynamic ports [2]. Consequently, this
method becomes inaccurate when identifying applications
and typical performance ranges between 30 and 70%,
depending on the mix of traffic, and this includes a number
of applications to be identified [12]. Following from the
improvement in processing power, deep packet inspection
(DPI) [13] was then the preferred choice, as it identifies
signatures of applications or protocols based on the
content of the packets. DPI also became inefficient as most
traffic nowadays is encrypted. Moreover, it breaches the
privacy of the users and did not scale well from a com-
putational perspective with the increase in core network
speed [3, 14].

-e research community therefore introduced two
techniques to avoid these limitations, focusing on host
behaviour and statistical methods. -e former technique is
based on the idea that hosts generate different communi-
cation patterns at the transport layer; by extracting these

behavioural patterns, activities and applications can be
classified. Although the method showed acceptable per-
formance (over 90%) [15] and it can detect the application
type, it could not correctly identify the application names,
classifying both Yahoo and Gmail as e-mail [16]. In con-
trast, high accuracy was achieved (over 95%) by applying
the latter approach of statistical methods [17–20], using
statistical features derived from the packet header, such as
number of packets, packet size, interarrival packets time,
and flow duration with the aid of machine learning algo-
rithms. -e advantage of using ML algorithms is that they
can be used in real-time environments to provide rapid
application detection with high accuracy. For instance, the
authors of [21] used the Naı̈ve Bayes techniques with the
statistical features to identify traffic. Other ML algorithms
utilised were Bayesian neural networks, support vector
machines, and decision trees [7, 22, 23]. In [7], the author
used a C5.0 decision tree algorithm to classify seven ap-
plications with average accuracy over 99%. However, the
process of feature selection, which must be flexible to the
network circumstances, is a critical point in the construc-
tion of a classifier [6].

Given this classification, the statistical differences
between interarrival times of packets and flows approach
outlined in this work strengthen the behavioural and
statistical methods by considering arrival times of packets
and flows as discriminating features among applications.
-e authors in [24] proved that there is variability
(burstiness) in network traffic by using a measure called
index of variability. -e hypothesis that timing can be
used to discriminate between applications was also put
forward in [25], which highlighted that applications
generate different behaviour based on statistical features
relating to the timing of packets arriving. More details
about burstiness were proposed in [26], which defines it
in two levels. -e first level was called a small-time scale
flight (STF) which means that the interarrival times of
packets occur within a predefined time T (a constant
threshold in the range of 5–10milliseconds). -e second
level is a large-time scale flight (LTF), defined as larger
interarrival times of packets with a value of 40–
1,000 milliseconds. A different number of bursts would be
generated for each category based on the value of the
threshold.

From an efficiency perspective, it should be noted that
the statistical approach is appropriate for traffic classification
as it can deal with encrypted traffic, which nowadays has
become dominant, and it can adapt to real-time traffic. In
our previous studies [8, 9], we proposed a set of attributes
based on burstiness and idle time; six applications were used
to evaluate our features with the aid of C5.0 method, the
results showed high accuracy in identifying six applications
over 97%.

2.2. Splitting Traffic Based on DNS Requests. Given the di-
minishing success of port analysis and DPI, traffic clas-
sification can also be based on DNS analysis. -e authors
of [27, 28] focused on the volume and variety of DNS

2 Journal of Computer Networks and Communications

queries generated from both clients and servers, aiming to
observe the effect of caching mechanisms on the client
side. Other studies, such as [29, 30], exploited the DNS
information to reveal malware activities. Furthermore, the
authors in [31] used DNS queries to classify traffic by
matching keywords in the domain names table with the
collected flows of traffic. -ese labelled flows were cat-
egorised based on domain name similarity, and the aim
was to break down the traffic volume. Similarly, the study
[32] utilised DNS to tag flows by capturing the first packet
of each flow and exploiting the domain name which was
separated into keywords to form vectors for each appli-
cation. Also, they used the port number and transport
application name as features to classify applications. -ey
claimed that the provided DNS information could be
useful to identify more than 30% of traffic. In [33, 34], the
authors used DNS to label flows based on the keywords
available after resolving IP addresses. Otherwise, the flows
would be classified based on selected attributes and with
the aid of machine learning to improve accuracy. Another
study [35] collected large traffic from University of
Auckland and it found that about 10% of their observed
TCP traffic did not use DNS lookups and neither did about
85% of UDP lookups.

Using a similar scenario, the authors in [36] argued
that traffic could be classified based on the IP address and
hostname. Although the results showed that up to 55% of
web traffic could be identified based on the proposed
method, it also had a high accuracy in identifying appli-
cations such as WhatsApp, Twitter, and Dropbox. Based
on the long-term monitoring, the authors concluded that
the IP addresses of servers associated with each application
remain stable for short periods, but they change over long
periods. -e study recommended updating and checking
the IP addresses frequently for the methods that rely on IP
addresses as a key feature. Similarly, the authors in [37]
proposed a method to label websites based on server IP
addresses. Firstly, they collected data from different users
working on the same website to ensure that the server IP
address belongs to the same application, and then they
built a ground truth of IP addresses for specific applica-
tions and used it to classify a mix of traffic flows. -e
method showed good results when considering DNS
queries. Following the same line of research, the authors in
[38] used IP server addresses to group traffic applications
to study the user activities, and the authors in [39, 40]
claimed that the IP address represents an informative
feature. In [1], the authors claimed that traffic could be
classified based on DNS, and they proved that a majority of
traffic could be resolved, such as HTTP and HTTPS
generated traffic, except P2P applications.

From previous studies, we conclude that DNS in-
formation and IP addresses could be active factors in
classifying applications. We need to look into these attri-
butes for each application and check if they are unique and
robust when presented with the variable network environ-
ment. -e next section focuses on the concept of burstiness
and idle time and how burstiness-related features may be
generated from tcptrace [41].

3. Proposed Method and Features

As concluded from the prior art, the statistical approach is
a robust and reliable approach, allowing efficient network-
based (packet header) rather than application-based
(packet contents) analysis. Extracting the most discrimi-
native features that characterise applications remains the
key to success in this approach without being biased by
either user or network circumstances such as congestion
and delay.

-is paper aims at identifying an additional set of fea-
tures that can be used to discriminate between applications,
based on the statistical differences between interarrival times
of packets and flows. We focus in particular on burstiness,
which defines closely spaced data exchanges, such as objects
on the same page, and idle periods, which separate longer-
term transactions, such as moving from one page to another
when the user is browsing a website. -e assumption that we
make is that different applications produce different dis-
tributions of packet size, duration, distribution of the bursts,
and idle time parameters. Consequently, Internet applica-
tions behave inherently different, generating different
amounts of data, creating various connections and timing
patterns between the generated packets and flows, beyond
the generic distribution of connections for overall traffic
[42]. For instance, streaming a video on Netflix versus e-mail
checking or using social media could lead to significantly
different packet arrival patterns and hence a slightly different
burstiness signature.

-e following example explains the concept of burst-
iness and how it may be used to discriminate the behaviour
of Internet applications. When a user is browsing an
application, for instance, the BBC news website (https://
www.bbc.com/news), the session would consist of some
pages that the user chooses to visit. Within each page, the
browser will be requesting and downloading the objects
embedded in the page, some on the same site and some
hosted on other sites. From a timing perspective, the
download of objects on a page would appear as a burst of
connections, followed by a period of inactivity (idle time)
while the user reads the page until he/she decides to click
on a link and load another page. Figure 1 shows how the
group of packets forms a burst based on interpacket arrival
time and inactivity of time between bursts. -is burstiness
phenomenon could be happen within packets or flows. In
this study, the burstiness concept will be defined in two
levels, the first level is in the context of packet analysis and
the second level is in the context of flow analysis.

3.1. Packet Analysis. In a packet-based analysis, the bursts
and idle times would be formed based on the interarrival
times for packets during the connection between the client
and server. -is level was defined in [43] as a group of
consecutive packets with shorter interarrival delays than
the packets arriving before or after them. Given one of the
two unidirectional data flows within a connection, a
burst_threshold (T) is defined as a maximum time delay
between the arrivals of two consecutive packets that belong

Journal of Computer Networks and Communications 3

https://www.bbc.com/news
https://www.bbc.com/news

to the same burst. Similarly, idle_threshold (I) is defined
the distance between groups of packets of interarrival time
at which could be identified the idle time that separates two
consecutive data exchanges and could be defined as I. In
order to provide a meaningful description of the in-
teractions, the analysis must establish the values for Tand I
and whether they should be constant or dynamic. A
previous study [26] proposed two ranges for T, of 5ms–
10ms and 40ms–1 s. Another study [43] proposed two
different scenarios for the value of T; the first one was
dynamic, which means different values could be for T,
while the second scenario was fixed without proposing any
values for T. In order to get an image of the range of time
values for the protocol interaction, Figure 2 shows the
interpacket arrival time for five applications. Most dis-
tributions of the interpacket arrival time fall under
1 second, except for YouTube that falls under 0.5 seconds.
Accordingly, the burst_threshold could be set to 1 second,
while the idle threshold was set to 10 seconds. While the
application does indeed exhibit a different signature in
terms of packet arrival distribution, user behaviour may
also influence this distribution, particularly in relation to
long-term activity, as idle times are a factor of user be-
haviour too. -e idle time could be varied according to the
behaviour of the user when he/she moves from one page to
another. As shown in previous studies, the distribution of
timing for user connections may be used as a discriminant
among users [38, 44]. However, while users may introduce
a level of noise in the distribution, a sufficiently large data
sample would allow determining the benefits and limita-
tions of the method. Prior studies, such as [45], utilised idle
time values typically ranging from 10 seconds to 5minutes,
the idle_threshold (I) proposed to set 10 seconds. As
shown in Figure 1, many features could be extracted from
each flow and each direction such as a total number of
bursts in the direction a-b/b-a, the total number of packets
within bursts for each direction, and the total size of bursts
in bytes in each direction. -e pseudocode in Algorithm 1
summarises the estimation of bursts and idle time between
packets and for each flow. For each packet arrival, the
interarrival time is compared with the two burstiness
thresholds to determine whether the packet is part of a new
burst or session. -e possible features that could be
extracted from the pseudocode are described in Table 1,
each of the inputs in the table is a pair of variables, one for
the a-to-b direction and one for the b-to-a direction, where
a refers to the client side and b refers to the server side.

3.2. Flow Analysis. -e same concept was applied to cal-
culate the burst and idle time between flows. -e calculation
was measuring time differences between the initial times of
flows and subsequent flows, which are calculated from the
first packet of each flow. -e timestamp of the first packet
time of the first flow is subtracted from the timestamp of the
first packet time of the second flow; if the time difference is
less than 1 s, then a burst is formed. Otherwise, if the time
difference is more than 10 s, then the period is considered an
idle time. Table 2 summarises burst-based features.

3.3. ConventionalAnalysis. In our experiment, the proposed
features are compared with the previous ones to show the
effects of the proposed method in distinguishing between
applications. -ese features were calculated for each di-
rection of flow as shown in Table 3.

3.4. Splitting Traffic. In our earlier studies [8, 9], data
collection was based on controlled application usage, with
users being given instructions of what to do, which ap-
plications to use, and for how long. -e users were asked to
browse these applications separately. Hence, the data were
collected per application and dumped in labelled files.
Accordingly, from each application file, the destination IP
address was extracted and dumped in separated files. For
this paper, a real data traffic was collected and the DNS
requests were used to identify which application is
requested. We acknowledge that DNS may not be the most
accurate method, but it allowed testing the accuracy of our
method. In addition to the automatic allocation to ap-
plications, after each request, IP addresses were extracted
for three seconds to update the IP address files, finally
matching between traffic flows and the IP address files and
storing the matched traffic in files based on each appli-
cation. -ese two mechanisms were to label data with the
applications which will be the input to the classifier and to
examine the proposed features.

4. Experimental Methodology

A high-level architecture of the proposed system is presented
in Figure 3, which highlights the key components of the
application identification scheme. Firstly, a real traffic was
collected from twenty hosts in an office environment for
over two months. Afterwards, the packet trace was parsed to
read the captured DNS requests, and the name was used to
identify the application type, such as Google or BBC news.
Also, the packet trace was analysed by tcptrace to generate
flows with proposed and conventional features. Finally, the
resulting flows were labelled based on IP address, which was
then fitted into a C5.0 classifier. -e following subsections
provide more detail on the methodology.

4.1.DataCollection. -e raw data traffic was collected from
a lab in the University of Plymouth between May and July
2018 from a group of 20 PhD students. -e data were
collected using a tcpdump tool via a network-based

Burst1 Burst2 Burst3 Burst4
X-axis

Interarrival
time

Idle time1 Idle time2 Idle time3
Packet arrival time

Figure 1: Definition of bursts and idle time.

4 Journal of Computer Networks and Communications

100

90

80

70

60

50

40

30

20

10

0
0.001 0.01 0.1 1 10 100 1000 10000 100000

Inter-packets arrival time (msec)

Fr
eq

ue
nc

y

Amazon
CNN
Instagram

Skype
YouTube

Figure 2: -e distribution of interpacket arrival times for five applications.

burst_threshold� 1 s
idle_threshold� 10 s
initialise burst and idle time parameters
while packets arriving
do
calculate interarrival_time
if interarrival_time< burst_threshold
current_burst ++
current_session ++

else
burst_counter ++
current_burst� 1
if interarrival_time> idle_threshold

current_session� 1
session_counter ++
idle_time +� interarrival_time

fi
fi

done

ALGORITHM 1: Estimation of packet bursts and idle time.

Table 1: Burstiness and idle time features amongst packets (for each direction).

Feature Description

Bursts Total number of bursts between packets for each
direction

Packets-in-burst Total number of packets in bursts for each direction
Burst-size Total bytes for bursts for each direction
Burst-size-b/Burst-size-a -e ratio between burst-size-b and burst-size-a
Burst-duration -e time duration of bursts for each direction

Burst-duration-a/Packet-a -e ratio between burst duration and number of all
packets in bursts

Burst-duration-b/Packet-b -e ratio between burst duration and number of all
packets in bursts

Idle-time -e accumulation of inactive time for all packets

Idle-time-data -e accumulation of inactive time for only data
packets

Journal of Computer Networks and Communications 5

method and were divided into 24 samples per day; each
sample represented a one-hour traffic of pcap format
which is suitable to be input to the tcptrace tool; this
division reduces the size and processing time of each
sample.

4.2. DNS Enquires. -e collected data were packet-based,
which contain DNS queries; the content of the DNS requests is
used to identify applications. In each DNS packet request, there
is a keyword that refers to the requested application. For in-
stance, the keywords for BBC news and YouTube are bbc.co.uk

Table 2: Burstiness and idle time features for flow analysis.

Feature Description
Burst-no Total number of bursts between flows for each session

Flows-no Total number of flows within all bursts for each
session

Packets-no Total number of packets within all bursts for each
session

Packets-data-no Total number of data packets within all bursts for
each session

Burst-size -e total size of all bursts in bytes for each session
Average-burst-size -e average size of all bursts for each session
Burst-duration -e total time duration for all bursts

Burst-duration/burst-no -e ratio between burst duration and the total
number of bursts for each session

Burst-idle-time -e total inactive time between flows for each session

Table 3: Conventional features proposed by previous studies.

Features Description
Packets Total number of packets
Data_packets Total number of data packets
Flags_packets Total number of TCP flag packets
First_packet -e size of the first packet

Flow_duration -e time of the last packet subtracted by the time of
the first packet

Inter_arrival_time -e time duration of each direction divided by the
total number of packets

Packets_b/packets_a A ratio of received packets to transmitted packets

Data_packets_b/data_packets_a A ratio of receiving of data packets to transmitted
data packets

Flags_packets_b/Flags_packets_a A ratio of received of flags packets to transmitted of
flags packets

Packets trace Flows

Application 1
Application 2

.

.
Application 9

Decision tree
(C5.0)

DNS enquires
(application requests) Features extraction

BBC news
.
.

Facebook
.
.

YouTube
.
.

Basic features, burst
and idle time features

Matching IP flow with IP
files

IP files

Figure 3: Proposed traffic classification methodology.

6 Journal of Computer Networks and Communications

and youtube.com, respectively. A Python script is used to read
the DNS request from the user and tag the time of the ap-
plication requested. -ree seconds after each request usually
belong to the same application as noticed from the monitoring
the traffic. -erefore, the IP addresses for this period were
tagged as well for the same requested application. -is process
partitions the traffic into many applications considering the
specific time stamp of each request which is essential in the next
stage.

4.3. Feature Extraction (Packet Analysis). -e collected In-
ternet traffic was analysed using the tcptrace tool [41]. -e
tool takes packets as input and output flows that are sharing
the same five tuples (source IP address, source port number,
destination IP address, destination port number, and pro-
tocol). -e concept of burstiness and idle time was imple-
mented in this tool to generate the desired features; the script
was written inside the tool to extract the packet features.
Moreover, features that were proposed by other studies were
extracted from the same tool. In this stage, three types of
flows were classified; firstly, all flows which were extracted
with packet-based features, secondly, some flows were
tagged with time and name of applications, and finally, most
flows were tagged as unknown flows.

4.4. IP Address Matching. -e uncontrolled data were
analysed as shown in the previous subsection into flows that
contained known flows based on reading the DNS requests
plus the three seconds after the requests. -erefore, the
matching process started with reading the known flows to
determine the application name and afterwards fetching the
specified file of the IP addresses for that application. Sec-
ondly, matching the unknown flows with the specified file
until the end of the flow trace and tag them as known flows.
Finally, dumping known flows in separated files and la-
belling them according to the application name. Based on
previous studies, the IP files are subjected to change con-
tinuously by the owners of applications for security reasons.
-erefore, updating these addresses is essential, but it must
be automatic and during the identification process. -e
results are nine applications with details in Table 4. As seen
from the results, the application that was most frequently
used by the users was the Gmail, against very low usage for
Yahoo mail. -e application identification accuracy of the
proposed features versus traditional ones was evaluated
using three feature sets. -e first set included features
suggested by previous studies as introduced in Table 3; the
second set contained the burstiness and idle time features
proposed by this paper, as presented in Tables 1 and 2, while
the third set included the full list of inputs from the other
two. Cross-validation technique was used for training and
testing a model with three folds as ratio 2/1, respectively.
Cross validation is a statistical method that divides data into
equal folds, one fold used for validating the model, and the
others used for training it. In each new round, a different
fold is used for validating the model so that the training can
be shown to be effective across different datasets. During the
process, each fold will be used for validation once. -is

technique is used to evaluate the performance of machine
learning model by testing the model on unseen data to avoid
overfitting and underfitting problems. -is technique par-
titioned the data into three equal parts, and the model was
trained on two parts of the data and tested on the remaining
part.-e process was repeated three times, and the error was
calculated by taking the average of all errors. -e classifi-
cation algorithm was applied to all three feature sets with six
different boosting values (0, 10, 15, 20, 50, and 100). -e
boosting refers to algorithms that apply weak classifiers to
build a strong classifier by combining the results. -e al-
gorithm gives all records the same weight and applies a
sequence of iterations of classification; the misclassified
records increase their weight, while the weight of the right
classified records is reduced. Finally, a strong classifier is
created from incorporating the individual ones with the best
tuning for the parameters to avoid overfitting. -e results in
Table 5 indicate low accuracy for set1 compared to set2 as the
burstiness features to increase the efficiency of the classifier
in discriminating the different applications. Combining both
sets showed considerable improvement in classification
accuracy peaking at 79.68% at boost 10.

-e proposed features show the ability to better dis-
criminate between the applications in comparison with the
other parameters, which enhances the classifier capability.
Table 6 shows the comparison between basic and burstiness
features for the most attributes that were used by C5.0
classifier.-e burstiness attributes reported maximum usage
in segregating the applications.-is is another indicator that
the classifier strongly relied on the proposed features because
they provide high discrimination between applications.

4.5. Confusion Matrix. -e accuracy, as presented in the
previous section, represents only the ratio of correctly
classified samples versus all samples. In order to further
analyse the performance of the classifier, Table 7 presents a
confusion matrix for the observed data, which is presented
in Table 4. Rows of the matrix represent predicted samples of
each application and columns represent the actual samples.
For example, the actual samples for Gmail are 289, which are
a summation of a first column, 198 samples are predicated
correctly, while the other samples are predicted as false-
positives for different applications. On the contrary, the row
for Gmail represented a predication of other applications
and classified as false-negative for Gmail application. -e
overall performance of the classifier is high for all

Table 4: Overall results for classification of the observed data.

Application Flows Duration (h) Number of samples
BBC news 3,150 1.6 6
Facebook 98,210 33.1 287
Google 59,422 88.5 892
Yahoo mail 6,795 0.8 9
YouTube 66,500 76.5 714
Gmail 1,448,392 143 870
Amazon 23,975 6.6 34
Plymouth.ac.uk 24,225 42.5 286
Bing 10,324 17.2 110

Journal of Computer Networks and Communications 7

applications except for Google applications (i.e., Gmail,
YouTube, and Google search engine). Out of the total tested
samples, it was observed that Yahoo mail, Amazon, and BBC
news recorded optimal accuracy and that University of
Plymouth website recorded lowest rate of false-negatives.
-e reason for obtaining high classification accuracy for
these applications could be attributed to the fact that they
have unique behaviours, distinct from the others. On the
contrary, Google applications (Gmail, YouTube, and Goo-
gle) performed the worst in terms of classification, as they
belong to the same company and they were misclassified as
each other. Overall, the accuracy of all applications was
satisfactorily high.

5. Conclusion

-is study proposed a novel set of features based on
interarrival times between packets and flows, most specifi-
cally burstiness and idle time, for application identification.
From the experimental results, the proposed features out-
perform the traditional features that were proposed by
previous studies; furthermore, higher accuracy is achieved
when combining both proposed and traditional features. A
modified tcptrace tool was used to extract the new features,
and a C5.0 classifier was used to detect applications based
on real data collection. Overall, accuracy was more than
79%; however, some applications resulted in low accuracies
such as Google, Gmail, and YouTube as they belong to the
same owner. One of the limitations of this work was that

constructing the truth table for application membership of
flows relied on IP addresses and DNS. Unfortunately, due to
the underlying CDN hosting of different applications, this
classification led to inaccurate results. Moreover, the data
traffic was collected at the University of Plymouth and from
managed computers owned by the university and included
many web-based services that introduced noise in the col-
lected data. On the contrary, comparing results with previous
studies that reported high accuracy, most had classified traffic
either according to network protocols such as FTP, IMAP,
and HTTP or as per the application class such as e-mail, P2P,
and streaming. Protocol, port number, or class-based traffic is
generally easy to identify, and hence, the reported accuracy is
also usually high. However, reviewing literature, very few
studies such as [46] have classified traffic according tomodern
applications (i.e., Facebook and Google services). Moreover,
these studies relied on the DPI method for labelling traffic in
which they used a supervised approach for traffic classifica-
tion. DPI had been considered trustworthy by such studies
[47, 48] until 2009 where a study in [49] claimed that libraries
of DPI are unreliable. Nowadays, current applications are
web-based and become almost encrypted; therefore, the DPI
method cannot cope with modern services as it is based on
matching payload patterns, IP address, and port number [46].
Future work will primarily consider larger datasets with
different types of applications and more end users in order to
fully investigate the performance of the proposed work.
Moreover, future work will also focus on recognizing new
applications that emerge over time by applying the proposed

Table 6: Attribute usage in C 5.0 classifier.

Basic features usage (75-100)%
data_packets[min, max], flow_duration[mean, min], flags_packets[mean, min, max], inter_arrival_time_data[sd, min]
Burstiness features usage (75-100)%
burst_size_bytes[md, min, mean], burst_no[sd, min], idle_time_data[mean, min, sd], pkt_data_count[min, mean], pkt_count[min, sd],
inter_arrival_time_burst_conns[min, sd], inter_arrival_time_burst[mean, max], burst_size_bytes_data[max, min, mean], burst_duration
[sd, mean], burst_data_no[min]

Table 5: Average accuracies with different feature sets using 3-fold cross validation.

Boosting 0 10 15 20 50 100
Set1 47.77 56.56 58.05 58.54 60.30 60.31
Set2 49.30 58.75 60.21 61.11 64.23 65.51
Set3 52.55 79.73 73.99 67.78 68.10 67.13

Table 7: Confusion Matrix results for optimal classifier3.

Applications Gmail Ymail Amazon BBC Bing Facebook Google UoP site YouTube
Gmail 198 0 0 0 3 6 14 5 13
Ymail 0 4 0 0 0 0 0 0 0
Amazon 0 0 9 0 0 0 0 0 0
BBC 0 0 0 2 0 0 0 0 0
Bing 4 0 0 0 20 2 16 0 7
Facebook 14 0 0 0 5 82 0 0 8
Google 32 0 2 0 2 2 247 0 12
UoP site 11 0 0 0 0 3 0 90 1
YouTube 30 0 0 0 4 0 20 0 198

8 Journal of Computer Networks and Communications

method. Finally, a more accurate approach for labelling the
traffic should also be incorporated to ensure the robustness of
the method.

Data Availability

-e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

References

[1] I. N. Bermudez, M. Mellia, M. M. Munafo, R. Keralapura, and
A. Nucci, “DNS to the rescue: discerning content and services
in a tangled web,” in Proceedings of the 12th ACM SIGCOMM
Conference on Internet Measurement, (IMC’12), pp. 413–426,
Vienna, Austria, November 2012.

[2] A. Moore and K. Papagiannaki, “Toward the accurate iden-
tification of network applications,” in Proceedings of the
Passive and Active Measurement Workshop, Boston, MA,
USA, March 2005.

[3] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, and
K. Hanssgen, “A survey of payload-based traffic classification
approaches,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 2, pp. 1135–1156, 2014.

[4] S. Valenti, D. Rossi, A. Dainotti, A. Pescapè, A. Finamore, and
M. Mellia, “Reviewing traffic classification,” Data Traffic
Monitoring and Analysis, vol. 7754, pp. 123–147, 2013.

[5] Y.Wang, Y. Xiang, J. Zhang,W. Zhou, G.Wei, and L. T. Yang,
“Internet traffic classification using constrained clustering,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 11, pp. 2932–2943, 2014.

[6] A. Hajjar, J. Khalife, and J. Dı́az-Verdejo, “Network traffic
application identification based on message size analysis,”
Journal of Network and Computer Applications, vol. 58,
pp. 130–143, 2015.

[7] T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for
classification of network traffic based on C5.0 machine
learning algorithm,” in Proceedings of the International
Conference on Computing, Networking and Communications
(ICNC), pp. 237–241, Maui, HI, USA, March 2012.

[8] H. Oudah, B. Ghita, and T. Bakhshi, “Network application
detection using traffic burstiness,” in Proceedings of the World
Congress on Internet Security (WorldCIS-2017), Cambridge,
UK, December 2017.

[9] H. Oudah, B. Ghita, and T. Bakhshi, “A novel features set for
internet traffic classification using burstiness,” in Proceedings
of the (ICISSP 5th International Conference on Information
Systems Security and Privacy), pp. 397–404, Prague, Czech
Republic, July 2019.

[10] N. Al Khater and R. E. Overill, “Network traffic classification
techniques and challenges,” in Proceedings of the 2015 Tenth
International Conference on Digital Information Management
(ICDIM), pp. 43–48, Jeju, South Korea, October 2015.

[11] M. S. Joe Touch, E. Lear, A. Mankin et al., Service Name and
Transport Protocol Port Number Registry, IANA, Playa Vista,
CA, USA, 2016, http://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.xhtml.

[12] R. Zou, T. Xu, and H. Hou, “An enhanced Netflow data
collection system,” in Proceedings of the 2012 Second In-
ternational Conference on Instrumentation, Measurement,

Computer, Communication and Control (IMCCC), pp. 508–
511, Harbin, China, December 2012.

[13] A. Boukhtouta, S. A. Mokhov, N.-E. Lakhdari, M. Debbabi,
and J. Paquet, “Network malware classification comparison
using DPI and flow packet headers,” Journal of Computer
Virology and Hacking Techniques, vol. 12, no. 2, pp. 69–100,
2016.

[14] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “In-
dependent comparison of popular DPI tools for traffic clas-
sification,” Computer Networks, vol. 76, pp. 75–89, 2015.

[15] A. Bashir, C. Huang, B. Nandy, and N. Seddigh, “Classifying
P2P activity in netflow records: a case study on BitTorrent,” in
Proceedings of the 2013 IEEE International Conference on
Communications (ICC), pp. 3018–3023, Budapest, Hungary,
June 2013.

[16] B. Park, Y. Won, J. Chung, M.-S. Kim, and J. W.-K. Hong,
“Fine-grained traffic classification based on functional sepa-
ration,” International Journal of Network Management,
vol. 23, no. 5, pp. 350–381, 2013.

[17] A. Vlăduţu, D. Comăneci, and C. Dobre, “Internet traffic
classification based on flows’ statistical properties with ma-
chine learning,” International Journal of Network Manage-
ment, vol. 27, no. 3, article e1929, 2017.

[18] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic
classification through simple statistical fingerprinting,” ACM
SIGCOMM Computer Communication Review, vol. 37, no. 1,
p. 5, 2007.

[19] R. Alshammari and A. N. Zincir-Heywood, “How robust can a
machine learning approach be for classifying encrypted
VoIP?,” Journal of Network and Systems Management, vol. 23,
no. 4, pp. 830–869, 2015.

[20] A. Ulliac and B. V. Ghita, “Non-intrusive identification of
peer-to-peer traffic,” in Proceedings of the 2010 Bird In-
ternational Conference on Communication Beory, Reliability,
and Quality of Service, pp. 175–183, Athens, Greece, June
2010.

[21] A. W. Moore, D. Zuev, A. W. Moore, and D. Zuev, “Internet
traffic classification using bayesian analysis techniques,” ACM
SIGMETRICS Performance Evaluation Review, vol. 33, no. 1,
p. 50, 2005.

[22] T. Auld, A. W. Moore, and S. F. Gull, “Bayesian neural
networks for internet traffic classification,” IEEE Transactions
on Neural Networks, vol. 18, no. 1, pp. 223–239, 2007.

[23] A. Este, F. Gringoli, and L. Salgarelli, “Support vector ma-
chines for TCP traffic classification,” Computer Networks,
vol. 53, no. 14, pp. 2476–2490, 2009.

[24] G. Y. Lazarou, J. Baca, V. S. Frost, and J. B. Evans, “Describing
network traffic using the index of variability,” IEEE/ACM
Transactions on Networking, vol. 17, no. 5, pp. 1672–1683,
2009.

[25] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-
service mapping for QoS: a statistical signature-based ap-
proach to IP traffic classification,” in Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement—IMC
’04, pp. 135–148, Boston, MA, USA, July 2004.

[26] S. Shakkottai, N. Brownlee, and K. C. Claffy, “A study of
burstiness in TCP flows,” Lecture Notes in Computer Science,
vol. 3431, pp. 13–26, 2005.

[27] R. Liston, S. Srinivasan, and E. Zegura, “Diversity in DNS
performance measures,” in Proceedings of the Second ACM
SIGCOMM Workshop on Internet Measurment—IMW ’02,
vol. 19, Marseille, France, November 2002.

[28] J. Jung, E. Sit, H. Balakrishnan, and R. M. Morris, “DNS
performance and effectiveness of caching,” in Proceedings of

Journal of Computer Networks and Communications 9

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

the First ACM SIGCOMM Workshop on Internet Measure-
ment Workshop—IMW ’01, vol. 10, no. 5, pp. 589–603, San
Francisco, CA, USA, November 2001.

[29] D. Wessels, “Is your caching resolver polluting the internet?,”
in Proceedings of the ACM SIGCOMM Workshop on Network
Troubleshooting Research, Beory and Operations Practice
Meet Malfunctioning Reality—NetT ’04, pp. 271–276, Port-
land, OR, USA, September 2004.

[30] D. Whyte, E. Kranakis, and P. Van Oorschot, “DNS-based
detection of scanning worms in an enterprise network,” in
Proceedings of the 12th Annual Network And Distributed
System Security Symposium, vol. 1, pp. 1–17, San Diego, CA,
USA, January 2005.

[31] D. Plonka and P. Barford, “Flexible traffic and host profiling
via DNS rendezvous,” in Proceedings of the SATIN, Ted-
dington, UK, April 2011.

[32] P. Foremski, C. Callegari, and M. Pagano, “DNS-Class: im-
mediate classification of IP flows using DNS,” International
Journal of Network Management, vol. 24, no. 4, pp. 272–288,
2014.

[33] N. F. Huang, C. C. Li, C. H. Li, C. C. Chen, C. H. Chen, and
I. H. Hsu, “Application identification system for SDN QoS
based on machine learning and DNS responses,” in Pro-
ceedings of the 2017 19th Asia-Pacific Network Operations and
Management Symposium (APNOMS), pp. 407–410, Seoul,
South Korea, September 2017.

[34] G. Mamidisetti and G. T. Varma, “Performance issues of
internet protocol versions,” International Journal of Soft
Computing and Engineering, vol. 3, no. 6, pp. 30–32, 2014.

[35] M. Janbeglou, H. Naderi, and N. Brownlee, “Effectiveness of
DNS-based security approaches in large-scale networks,” in
Proceedings of the 28th International Conference on Advanced
Information Networking and Applications Workshops,
pp. 524–529, Victoria, Canada, May 2014.

[36] M. Trevisan, I. Drago, M. Mellia, and M. M. Munafo, “To-
wards web service classification using addresses and DNS,” in
International Wireless Communications and Mobile Com-
puting Conference (IWCMC), pp. 38–43, Paphos, Cyprus,
September 2016.

[37] L. M. Torres, E. Magana, M. Izal, and D. Morato, “A popu-
larity-aware method for discovering server IP addresses re-
lated to websites,” in Proceedings of the Global Information
Infrastructure Symposium—GIIS 2013, Trento, Italy, October
2013.

[38] T. Bakhshi and B. Ghita, “Traffic profiling: evaluating stability
in multi-device user environments,” in Proceedings of the 30th
International Conference on Advanced Information Net-
working and Applications Workshops (WAINA), pp. 731–736,
Crans-Montana, Switzerland, May 2016.

[39] A. N. Mahmood, C. Leckie, and P. Udaya, “An efficient
clustering scheme to exploit hierarchical data in network
traffic analysis,” IEEE Transactions on Knowledge and Data
Engineering, vol. 20, no. 6, pp. 752–767, 2008.

[40] D. Tammaro, S. Valenti, D. Rossi, and A. Pescapé, “Exploiting
packet-sampling measurements for traffic characterization
and classification,” International Journal of Network Man-
agement, vol. 22, no. 6, pp. 451–476, 2012.

[41] S. Ostermann, “tcptrace—Official Homepage,” 2016, http://
www.tcptrace.org/.

[42] B. V. Ghita, S. M. Furnell, B. M. Lines, and E. C. Ifeachor,
“Endpoint study of internet paths and web pages transfers,”
Campus-Wide Information Systems, vol. 20, no. 3, pp. 90–97,
2003.

[43] R. Krzanowski, “Burst (of packets) and burstiness,” in Pro-
ceedings of the 66th IETF Meeting, Montreal, Quebec, Canada,
July 2006.

[44] T. Bakhshi and B. Ghita, “User traffic profiling,” in Proeedings
of the 2015 Internet Technologies and Applications (ITA),
pp. 91–97, Wrexham, UK, September 2015.

[45] R. Hofstede, P. Celeda, B. Trammell et al., “Flow monitoring
explained: from packet capture to data analysis with NetFlow
and IPFIX,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 4, pp. 2037–2064, 2014.

[46] Z. Aouini, A. Kortebi, Y. Ghamri-Doudane, and I. L. Cherif,
“Early classification of residential networks traffic using C5.0
machine learning algorithm,” in Proceedings of the Wireless
Days (WD), pp. 46–53, Dubai, UAE, April 2018.

[47] L. Bernaille, R. Teixeira, L. Bernaille et al., Early Recognition of
Encrypted Applications to Cite Bis Version, Springer, Berlin,
Germany, 2007.

[48] R. Alshammari and A. N. Zincir-Heywood, “Machine
learning based encrypted traffic classification: identifying SSH
and Skype,” in Proceedings of the 2009 IEEE Symposium on
Computational Intelligence for Security and Defense
Applications, Ottawa, Canada, July 2009.

[49] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On
dominant characteristics of residential broadband internet
traffic,” in Proceedings of the 9th ACM SIGCOMM Confer-
ence on Internet Measurement Conference—IMC ’09, p. 90,
Chicago, IL, USA, November 2009.

10 Journal of Computer Networks and Communications

http://www.tcptrace.org/
http://www.tcptrace.org/

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

