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Abstract 25 

To persist in extreme environments, some meiofaunal taxa have adopted outstanding resistance 26 

strategies. Recent years have seen increased enthusiasm for understanding extreme-resistance 27 

mechanisms evolved by tardigrades, nematodes and rotifers, such as the capability to tolerate 28 

complete desiccation and freezing by entering a state of reversible suspension of metabolism called 29 

anhydrobiosis and cryobiosis, respectively. In contrast, the less common phenomenon of diapause, 30 

which includes encystment and cyclomorphosis, is defined by a suspension of growth and 31 

development with a reduction in metabolic activity induced by stressful environmental conditions. 32 

Because of their unique resistance, tardigrades and rotifers have been proposed as model organisms 33 

in the fields of exobiology and space research. They are also increasingly considered in medical 34 

research with the hope that their resistance mechanisms could be used to improve the tolerance of 35 

human cells to extreme stress. This review will analyse the dormancy strategies in tardigrades, 36 

rotifers, and nematodes with emphasis on mechanisms of extreme stress tolerance to identify 37 

convergent and unique strategies occurring in these distinct groups. We also examine the ecological 38 

and evolutionary consequences of extreme-tolerance by summarizing recent advances in this field. 39 

 40 

Key words: anhydrobiosis; cryptobiosis, desiccation, diapause, dormancy, encystment 41 

 42 
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Introduction 44 

Tardigrades, rotifers and nematodes are considered permanent and essential members of freshwater 45 

and terrestrial meiofaunal communities that can undergo dormancy during their life stages 46 

(Bertolani et al., 2019; Guidetti et al., 2018; Hengherr & Schill, 2018; Rundle et al., 2002; Schill 47 

& Hengherr, 2018). 48 

Tardigrades, commonly called “water bears”, are micrometazoans categorized into two main 49 

classes (Eutardigrada and Heterotardigrada) with 1298 species described from marine, freshwater 50 

and terrestrial habitats (Degma et al., 2019). The highest number of species belong to the class 51 

eutardigrades and to the family Echiniscidae within the heterotardigrades and has been described 52 

from terrestrial habitats, where they are inactive unless surrounded by a film of water. The smallest 53 

numbers are true limnic species, but several species are limnoterrestrial and can colonize both 54 

terrestrial and freshwater habitats (Nelson et al., 2015). Rotifera, also called “wheel animals”, is a 55 

phylum of microscopic metazoans, comprising about 2000 species (Segers, 2007) traditionally 56 

divided in three main classes: (1) Bdelloidea live in freshwater and terrestrial ephemeral aquatic 57 

environments and only reproduce by apomictic parthenogenesis; (2) Monogononta live in 58 

freshwater and marine environments and reproduce by cyclical parthenogenesis; and (3) Seisonida, 59 

with only a few exclusively marine species (Ricci, 1987; Wallace and Snell, 1991; Melone et al., 60 

1998; Mark Welch and Meselson, 2000; Ricci and Melone, 2000; Segers, 2007). A fourth class, 61 

the exclusively parasitic Acanthocephala, has recently been added, although its exact relationship 62 

with the other taxa is still debated (e.g. Sørensen et al., 2005; Sielaff et al., 2016). The majority of 63 

nematodes, also called “roundworms”, are small free-living animals inhabiting the thin layer of 64 

water surrounding soil particles and in aquatic sediments, although some taxa have become 65 

endoparasitic and can reach meters in length (Lee, 2002). Some taxa have evolved the ability to 66 
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resist desiccation during various stages of their life cycles (Ricci and Pagani, 1997; Womersley, 67 

1987; Shannon et al., 2005, Erkut et al., 2011). 68 

Tardigrades, rotifers and nematodes are meiofaunal aquatic animals common in lakes, rivers, 69 

streams, and ponds, but paradoxically they are able to colonize and persist in desiccation-prone 70 

environments, such as freshwater (e.g. temporary ponds, Antarctic lakes, cryoconite holes) and 71 

terrestrial (e.g. mosses and lichens) habitats where liquid water is not always available (Nelson et 72 

al., 2015, 2018; Rundle et al., 2002). In these habitats, water loss can occur via evaporation or 73 

freezing, with diel, seasonal, annual, or longer fluctuations in the duration of the wet phase. Since 74 

tardigrades, rotifers and nematodes are incapable of active migration to more suitable habitats, 75 

occupancy of these unpredictable habitats requires organisms to be versatile, tolerant, or to possess 76 

specific and exceptional resistance and adaptive strategies (Fontaneto, 2019). Accordingly, life in 77 

these environments is adapted to a dual existence, flourishing when the habitat contains liquid 78 

water, and dormant when liquid water is not available and dormant states are linked to a temporary 79 

suspension of active life with reduction or interruption of metabolism and/or arrested development. 80 

Dormancy includes any form of resting stage, regardless of the cues required for induction or 81 

termination (Hand, 1991; Cáceres, 1997). Tardigrades, rotifers, and nematodes exhibit both forms 82 

of dormancy: quiescence (cryptobiosis) and diapause (encystment, cyclomorphosis and resting 83 

eggs) (e.g. Crowe and Madin, 1975; Ricci, 1987; Guidetti et al., 2011a). 84 

Among the various forms of dormancy, cryptobiosis (“hidden life”, Keilin, 1959) is under 85 

exogenous control, being directly induced and maintained by adverse environmental conditions, 86 

and it is immediately reversed by the removal of the external stimuli. It originated independently 87 

several times in the history of life, as it is present in diverse groups of bacteria, metazoans, fungi 88 

and plants (Clegg, 2001). Cryptobiosis includes different strategies such as anhydrobiosis, 89 

cryobiosis, anoxybiosis and osmobiosis directly induced by desiccation, sub-zero temperatures, 90 
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low oxygen pressure and osmotic extremes, respectively (Keilin, 1959; Wright et al., 1992). 91 

Cryptobiosis allows tardigrades, rotifers and nematodes to survive periods of desiccation, whereas 92 

few freshwater and marine species are known to have this adaptive strategy (Ricci and Pagani, 93 

1997; Ricci, 1998; Eyres et al., 2005 Guidetti et al., 2011a, b; Clausen et al., 2014). Conversely, 94 

encystment and the production of resting eggs are a state of diapause controlled by both exogenous 95 

and endogenous stimuli and is more common in freshwater and marine species. Although 96 

tardigrades, rotifers, and nematodes exhibit both forms of dormancy, there are differences among 97 

taxa. Tardigrades, as well as insects, can undergo both diapause (encystment and cyclomorphosis) 98 

(Guidetti and Møbjerg, 2019) and the production of resting eggs (Hansen and Katholm, 2002; 99 

Altiero et al., 2010). In comparison, in rotifers the two main types of dormancy are restricted to 100 

two separate taxa. The class Bdelloidea can resist adverse environmental conditions via quiescence 101 

and directly respond to environmental stimuli at any life stage, from eggs to adults, although with 102 

age-dependent degrees of resistance (Örstan, 1995, 1998; Ricci, 1987, 1998), while the other main 103 

class, the Monogononta, only engage in diapause via the production of resting eggs, which tend to 104 

stop at a specific and common developmental stage and are generally very resistant to various 105 

environmental stresses, including desiccation (e.g. Balompapueng et al., 1997; Cáceres, 1997; 106 

Schröder, 2005; Garcia-Roger et al., 2006, Boschetti et al., 2010, Ziv et al., 2017). Within 107 

nematodes, dormancy is more scattered across taxa. For example some genera or species can 108 

survive desiccation (e.g. Wharton, 1996; Tyson et al., 2012), while other species only have limited 109 

resistance at specific life stages (e.g. Erkut et al., 2011; Erkut and Kurzchalia, 2015). 110 

This review analyses the dormancy strategies in tardigrades, rotifers, and nematodes with emphasis 111 

on mechanisms of stress tolerance in order to identify convergent strategies occurring in these 112 

animal taxa. The review also considers the ecological and evolutionary consequences of extreme-113 

tolerance by summarizing recent advances in this field. 114 
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 115 

Diapause: encystment 116 

In terrestrial and freshwater tardigrades, encystment is an adaptive strategy that involves profound 117 

morphological changes that occur during the molting process, resulting in the dormant organism 118 

lying within retained cuticular exuvia. During this state, the organism also presents a very low or 119 

undetectable metabolism, even if the cyst is not desiccated (Patil et al., 2013; Ziv et al., 2017), 120 

highlighting possible physiological similarities between diapause and quiescence. Although 121 

encystment is rare in moss-dwelling tardigrades, it has been confirmed in grassland and leaf litter 122 

habitats but is more common in freshwater sediments (Guidetti et al., 2006). Encystment has been 123 

verified in limnic eutardigrades and a few heterotardigrade and eutardigrade limnoterrestrial 124 

species, however the phenomenon may be widespread but relatively unstudied (Guidetti and 125 

Møbjerg, 2019; Bertolani et al., 2019). In addition, the marine intertidal heterotardigrade 126 

Echiniscoides sigismundi Plate, 1888, a cryptic species complex, produces two or three new 127 

cuticles during cyst formation (Clausen et al., 2014). 128 

In response to the gradual onset of adverse environmental conditions (e.g. temperature, oxygen 129 

tension, pH), encystment in tardigrades begins with the ejection of the sclerified parts of the buccal-130 

pharyngeal apparatus (“simplex stage”). Instead of undergoing normal ecdysis, however, one to 131 

three new cuticles are serially produced in addition to the retained external (old) cuticle (Fig. 1). 132 

The animal’s size is reduced by longitudinal contraction, body movements cease completely, 133 

metabolism is significantly reduced, and the mouth and cloaca are closed. Modified claws and 134 

buccal-pharyngeal apparatus are synthesized, but non-functional. At this stage, the cyst resembles 135 

an onion or a Russian doll (“Matryoshka”) (Guidetti et al., 2006), often with one cuticle becoming 136 

hardened and pigmented. Encystment ends as environmental conditions improve, and the 137 
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tardigrade gradually resynthesizes a normal cuticle, claws, and feeding apparatus and leaves the 138 

cyst. Unknown endogenous stimuli may also play a role in the process. 139 

 140 

Ecology of cysts 141 

Limnic eutardigrades that frequently encyst belong to the genera Dactylobiotus, Pseudobiotus, 142 

Isohypsibius, Hypsibius, Thulinius, and Bertolanius (See Table 9.1 in Guidetti and Mobjerg, 2019 143 

for a list of encysting tardigrade species reported in the literature). Detailed steps in encystment in 144 

Dactylobiotus and moss-dwelling/freshwater Bertolanius were provided by Guidetti et al. (2006). 145 

Dactylobiotus has only one type of cyst, which is dark-reddish brown (Szymańska, 1995; Guidetti 146 

et al. 2006, 2008), whereas Bertolanius, which has both limnic and moss-dwelling species, forms 147 

two types of cysts (“white/type 1” in cold periods and “red/type 2” in warm periods) that Westh 148 

and Kristensen (1992) correlated with seasonal environmental changes in Greenland. Cyst 149 

formation in Bertolanius is cyclic and be a part of cyclomorphosis, defined as cyclic and reversible 150 

morphological modifications within a single species (Kristensen, 1982; Rebecchi and Bertolani, 151 

1994; Hansen and Katholm, 2002). The production of extra cuticles isolates and protects the 152 

animals from environmental factors. Since the cysts remain viable for several months, encystment 153 

enhances tardigrade survival of freezing in winter and desiccation in summer (since limnic 154 

tardigrades often disappear in summer). Although encystment is best studied in limnic species, 155 

which do not undergo anhydrobiosis (but a few species can withstand cryobiosis), most of the 156 

species that produce cysts can also enter anhydrobiosis (Guidetti et al., 2011a). Since diapause 157 

(encystment) and cryptobiosis are dormancy states that can be present in a single species, their 158 

evolution was not mutually exclusive. Although we are beginning to understand the molecular 159 

mediators involved in cryptobiosis, the molecular mechanisms involved in encystment (see 160 

Rozema et al., 2019) are unknown. 161 
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 162 

Extreme resistance strategy: anhydrobiosis 163 

The most widespread and best-known form of extreme-stress resistance evolved by tardigrades, 164 

rotifers and nematodes is the capability to tolerate complete desiccation (drying to < 0.1 g H2O g-1 165 

dry mass) by entering in a state of reversible suspension of metabolism called anhydrobiosis (“life 166 

without water”) without the loss of viability. At the end of dehydration process, tardigrades have 167 

lost 97% of their body water (Westh and Ramløv, 1991; Horikawa et al., 2008), and similar values 168 

have been shown for the anhydrobiotic nematodes Ditylenchus dipsaci (Kuhn, 1857), Aphelenchus 169 

avenae Bastian, 1865 and Panagrolaimus superbus (Fuchs, 1930) (Crowe and Madin, 1975; 170 

Wharton, 1996; Banton and Tunnacliffe, 2012). 171 

Anhydrobiosis indicates a fundamental concept about the nature of living systems since an 172 

anhydrobiotic organism lacks all dynamic features of living organisms due to the absence of 173 

detectable metabolism. In that sense it is not alive, but it is not dead because rehydration produces 174 

a living organism and a kind of resuscitation routinely occurs (Clegg, 2001; Tunnacliffe and 175 

Lapinski, 2003). Consequently, anhydrobiotic organisms have two distinct living physiological 176 

states: active and anhydrobiotic. 177 

Despite its clear adaptive potentiality, anhydrobiosis can be found only in a restricted number of 178 

metazoans whose sizes generally do not exceed 1 mm, with the exception of a few taxa that can 179 

reach 5-7 mm in length, such as the larvae of the African midge Polipedylum vanderplanki Hinton 180 

1951 (Watanabe et al., 2004). These apparent morphological and ecological characteristics could 181 

be linked to limiting factors required for tolerating physical and physiological constraints imposed 182 

by complete dehydration (Alpert, 2005). In animals, desiccation tolerance occurs either the whole 183 

animal at any stage of their life cycle, from the egg to the adult stage (tardigrades, bdelloid rotifers 184 

and nematodes), in which case the animals are defined as holo-anhydrobiotic (Jönsson, 2005; 185 
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Rebecchi et al., 2007), or at a specific life stage, usually egg/embryo/larval stage (shrimps, the 186 

midge P. vanderplanki, monogonont rotifers, some nematodes). 187 

As described above, anhydrobiosis allows tardigrades, rotifers and nematodes to colonise and 188 

persist in various otherwise unavailable environments. A high number of species colonise habitats 189 

subjected to periodic desiccation (e.g. lichens, mosses, and ephemeral lakes and ponds) that are 190 

prohibitive for most other animals. In these habitats, they perform all activities of routine life only 191 

when there is at least a small layer of water around the body of the animals. For example, mosses 192 

and lichens provide habitats featuring a myriad of small pockets of water; as their surroundings 193 

lose water through evaporation, animals lose water with them. Consequently, their life cycle 194 

consists of active periods for growth and reproduction, interrupted by periods of metabolic 195 

inactivity (Jönsson, 2005; Glime, 2017). When rehydrated by dew, rain or melting snow, they can 196 

return to their active state in a few minutes to a few hours. Therefore, during their life, holo-197 

anhydrobiotic animals can enter anhydrobiosis several times (e.g. Ricci, 1987; Womersley, 1987). 198 

An experimental study evidenced that the moss-dwelling eutardigrade Richtersius coronifer 199 

(Richters, 1903) may survive up to 6 repeated desiccations, with a declining survival rate with an 200 

increasing number of desiccation events (Czernekova and Jönsson, 2016). Interestingly, repeated 201 

desiccation seems also to improve the long-term survival of rotifer populations. Populations that 202 

are regularly subjected to desiccation grow faster than permanently hydrated corresponding 203 

cohorts, suggesting that diapause is not only a strategy to survive harsh environmental conditions, 204 

but it also has ecological advantages to the organisms that managed to evolve this strategy (Ricci 205 

et al., 2007; Sommer et al., 2019). 206 

The time for recovery to active life after a period of anhydrobiosis is directly related to the 207 

environmental condition during the desiccation phase (e.g. humidity rate during the desiccation 208 

process) in which higher stressors lead to longer recovery time, and to the time spent in 209 
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anhydrobiosis (Rebecchi et al., 2009a). The recovery time is probably function of the metabolic 210 

activities linked to the repair of damages caused by desiccation and/or to the restoration of 211 

metabolic pathways (see Mattimore and Battista, 1996). 212 

Among anhydrobiotic tardigrade and rotifers studied, desiccation tolerance varied from zero to 213 

high tolerance (e.g. Ricci, 1987; Wright, 1989a; Bertolani et al., 2004; Rebecchi et al., 2006). These 214 

gradients are correlated with the abiotic factors (e.g. humidity) of the substrate inhabited since 215 

species living in constantly wet or submerged mosses usually show lower anhydrobiotic 216 

performance than those living in mosses growing on trees and rocks (Guidetti et al., 2011b; Eyres 217 

et al., 2015). In addition, anhydrobiotic capability is similar among species belonging to distant 218 

evolutionary lines, but they can be very different among closely related species. However, species 219 

with similar ecological requirements share a close similarity in anhydrobiotic performances 220 

(Wright, 1991, 2001; Guidetti et al., 2011b; Ricci, 1998, 2001; Ricci and Caprioli, 2005; Fontaneto 221 

et al., 2004; Fontaneto and Ambrosini, 2010; Eyres et al., 2015). 222 

Therefore in both rotifers and tardigrades, we hypothesize that anhydrobiosis is more likely linked 223 

to local adaptations to habitats than to phylogenetic relationships suggesting that anhydrobiotic 224 

capabilities have been evolved once and secondarily lost in some lineages. 225 

Some species of nematodes within the genus Panagrolaimus Fuchs, 1930 can survive immediate 226 

desiccation (e.g. Ricci and Pagani, 1997) and are referred to as fast-desiccation strategists, while 227 

others (e.g. A. avenae) require a period of slow-drying (pre-conditioning) and are referred to as 228 

slow desiccation strategists (e.g. Womersley, 1987; Shannon et al., 2005). Similar patterns were 229 

detected in tardigrade and rotifer species when experimentally desiccated under laboratory 230 

conditions (e.g. Ricci, 1987, 2001; Wright 1989a; Eyres et al., 2015; Hashimoto et al., 2016; 231 

Boothby et al., 2017). Full anhydrobiotic nematodes can undergo desiccation at any stage of their 232 

life cycles, but recent studies have suggested that some species, traditionally considered intolerant 233 



11 

 

to desiccation, can actually survive desiccation at least in some stages of their life cycle (e.g. the 234 

dauer larvae of the model species Caenorhabditis elegans (Maupas, 1900)) (Erkut et al., 2011). As 235 

in tardigrades and rotifers, the anhydrobiotic abilities of different taxa of nematodes seem do not 236 

appear to be related to their phylogeny, suggesting that the evolutionary processes have affected 237 

the loss or maintenance of this remarkable ability. Although traditionally less studied, the recent 238 

characterisation of some of the molecular strategies of diapause in nematodes, and especially in the 239 

well-known and well-characterised model organism C. elegans, allows a better understanding of 240 

how diapause is induced, maintained, and what its effects are, as well as common mechanisms to 241 

different organisms (e.g. Fielenbach and Antebi, 2008; Hand et al., 2016). 242 

In the desiccated state, holo-anhydrobiotic animals are biostable for decades (e.g. tardigrades 20 243 

years; Guidetti and Jönsson, 2002; Bertolani et al., 2004; Rebecchi et al., 2006; Jørgensen et al., 244 

2007) even though recently the consistent long-term survival of at least some taxa under desiccation 245 

has been debated (Jönsson and Bertolani, 2001; Fontaneto et al., 2012a). For example, a 246 

comparative study of the survival rate of different taxa and the statistical model developed from it 247 

suggested that recovery of bdelloid rotifers, tardigrades and nematodes found in lichens within 248 

collections in museums decreases to almost zero after desiccation periods of up to 10 years; this is 249 

significantly longer than the life span of single individuals in the active state, but is not as long as 250 

anecdotally suggested by other studies, and not as long as in other taxa like resting eggs of 251 

monogonont rotifers (Cáceres, 1997; Fontaneto et al., 2012a). These data confirm that these 252 

organisms do survive long periods of desiccation but that the rate and general conditions of 253 

desiccation, as well as the substrate and the storage conditions during diapause, influence survival 254 

in a significant way (e.g. Ricci and Caprioli, 2001; Fontaneto et al., 2012a). 255 

Other than its effect on longevity, anhydrobiosis can have an impact on ageing in meiofauna as 256 

illustrated by the “Sleeping Beauty” and “Picture of Dorian Grey” models derived from 257 
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experimental data on a few species of holo-anhydrobiotic organisms (for a review, see Kaczmarek 258 

et al., 2019). The first model predicts that anhydrobiotic organisms do not age during anhydrobiosis 259 

in at least some tardigrade and bdelloid rotifer species (Ricci and Covino, 2005; Hengherr et al., 260 

2008a, b). The latter model predicts that anhydrobiotic organisms age, at least in the initial stages 261 

of the anhydrobiosis process, as in some species of nematodes (Ricci and Pagani, 1997). 262 

Nevertheless, a comprehensive comparative analysis that considers all taxa and strategies is still 263 

lacking. 264 

Numerous studies have focused on molecular changes during aging in tardigrades, rotifers and 265 

nematodes, especially from the molecular approach, and the potential “rejuvenation” of stressed 266 

animals, but the full picture is very complex and still poorly understood. Early studies highlighted 267 

general changes in protein patterns with age (Carmona et al., 1989), and recent advances have 268 

started uncovering specific changes in regulatory molecules (e.g. Snell et al., 2014), protein 269 

modifications like carbonylation (Krisko and Radman, 2019), and improved physiological 270 

characteristics like fecundity (Ricci and Covino, 2005: Ricci and Perletti, 2006). Based on these 271 

and other studies, rotifers can be added to the list of useful model organisms which can be used to 272 

study aging (Snell et al., 2015), although the exact links between molecular changes and aging are 273 

still not fully characterised. Even more obscure at the moment are the precise links between the 274 

ability of some types of dormancy to stop or reverse aging. For example, both desiccation and 275 

starvation seem to stop or reverse aging in bdelloid rotifers, allowing dormant bdelloids to “wake 276 

up” with similar or higher fitness than animals in the pre-stressed condition (Ricci and Covino, 277 

2005; Ricci and Perletti, 2006; Sommer et al., 2019). Some recent advances suggest that some of 278 

the mechanisms and molecules involved in the organism’s protection during desiccation, like 279 

antioxidants or LEA proteins, can also prevent at least some aspects correlated with aging (e.g. 280 

Kaneko et al. 2005; Snare et al., 2013). Aging is generally better characterised in nematodes, 281 
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although the majority of studies are limited to model species like C. elegans (e.g. Schaffitzel and 282 

Hertweck, 2006; Hughes et al., 2007; Mack et al., 2018) and therefore lack the more direct link 283 

between aging and dormancy in stress-resistant animals from natural habitats. Interestingly, where 284 

data are available, they suggest that the rejuvenation effect of desiccation is not present in at least 285 

some anhydrobiotic nematodes of the genus Panagrolaimus (Ricci and Pagani, 1997), making the 286 

understating of the relationship between desiccation resistance and aging even more fascinating 287 

and interesting. 288 

Even though dehydration can have a major effect on survival, aging and longevity, the 289 

anhydrobiotic process per se can induce molecular damages that accumulate with time, reducing 290 

the viability of desiccated animals (França et al., 2007; Tyson et al., 2007; Neumann et al., 2009; 291 

Rebecchi et al., 2009a; Marotta et al., 2010; Hespeels et al., 2014). The amount of these damages 292 

is directly impacted by high temperature, high humidity level and high oxygen partial pressure. In 293 

tardigrades, the time required to recover active life after a period of desiccation is affected by these 294 

abiotic conditions and can be related to the metabolic activities necessary to repair molecular 295 

damages and to catabolise damaged molecules (Rebecchi et al., 2009a; Guidetti et al., 2011a). 296 

Different strategies and molecules seem to be involved in the reduction and/or repair of molecular 297 

damage (see below). 298 

Even more striking, in the dry state, anhydrobiotic organisms show extraordinary resistance to 299 

physical and chemical extremes (very low sub-zero temperature, high pressure, radiation, extreme 300 

pH, toxic chemicals, lack of geomagnetic field) that may far exceed the tolerance ranges of active 301 

organisms (Wharton et al., 2003; Jönsson et al., 2005, 2013; Watanabe et al., 2006; Rebecchi et al., 302 

2007; Gladyshev and Meselson, 2008; Rebecchi et al., 2009b; Altiero et al., 2011; Guidetti et al., 303 

2011a; Krisko et al., 2012; Rebecchi, 2013; Hashimoto et al., 2016; Erdmann et al., 2017; Jönsson 304 

and Wojcik, 2017; Giovannini et al., 2018). 305 
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In tardigrades, a strong correlation between the capability to withstand desiccation and the 306 

capability to withstand sub-zero temperatures (-20°C, -80°C) was detected, and species that were 307 

not able to enter anhydrobiosis showed low or no capability to withstand sub-zero temperatures 308 

(Guidetti et al., 2011a, b). This direct relationship could be related to the fact that during both 309 

desiccation and freezing stresses, tardigrades are under the same selective pressure induced by a 310 

wide variation in body fluid osmolality and in cell volume (Sømme, 1996; Guidetti et al., 2011b). 311 

Nevertheless, the freeze resistance of anhydrobiotic tardigrades should be distinguished from 312 

cryobiosis, which is the ability of active hydrated animals in contact with water to freeze and 313 

survive after thawing (Guidetti et al., 2011b). 314 

The aggregate of all these characteristics, especially radiation tolerance, has led to the 315 

characterization of tardigrades as the “toughest animals on the Earth” (Copley, 1999) and to make 316 

them an emerging model for space biology (Horikawa et al., 2008; Jönsson, 2007; Erdmann and 317 

Kaczmarek, 2017), more recently joined by bdelloid rotifers. Tardigrades and rotifers have been 318 

exposed to space stressors in Low Earth Orbit several times, on board of the International Space 319 

Station and FOTON (Ricci and Boschetti, 2003; Ricci et al., 2005; Leandro et al., 2007; Selch et 320 

al., 2008; Jönsson et al., 2008; Rebecchi et al., 2009b, 2011; Persson et al., 2011; Guidetti et al., 321 

2012; Vukich et al., 2012). 322 

 323 

Morphological, physiological and molecular adaptations enabling anhydrobiosis 324 

The evolution of a series of behavioural, morphological, physiological and molecular/biochemical 325 

adaptations provided anhydrobiotic organisms with mechanisms to withstand the deleterious 326 

effects caused by the drastic loss of water. The majority of holo-anhydrobiont organisms cannot 327 

survive a desiccation rate that is too rapid (as shown in a few hours in laboratory experiments, even 328 

though the rate is species-dependent (Wright, 1989a, b, c; Wright et al., 1992; Jönsson and Järemo, 329 
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2003; Banton and Tunnacliffe, 2012; Boothby et al., 2017), so they have evolved different 330 

strategies to slow down the rate of water evaporation. 331 

To reduce the rate, the tardigrade shrivels into a barrel-shaped structure (“tun”), about one-third of 332 

its original size, by contracting the body anterior-posteriorly and withdrawing the legs and head 333 

(Figs. 2-3). Tun formation produces a new spatial organization of some internal organs (such as 334 

the pharyngeal bulb), and epidermal cells, storage cells, ovarian cells, and digestive system cells 335 

undergo shrinkage, containing electron dense cytoplasm (Czernekova et al., 2016). Lipids and 336 

polysaccharides dominate in the reserve material of the storage cells, whereas the amount of protein 337 

is small (Czernekova et al., 2016). The tun minimizes the permeability and evaporative surface of 338 

the organism by removing the high permeability areas of the cuticle from direct contact with the 339 

air, resulting in a slow rate of desiccation (Wright, 1988a, b, 1989a, b, c, 2001). Differences in the 340 

reduction of cuticle permeability detected among tardigrade species are related to the level of 341 

desiccation tolerance of each species and to the morphology of the cuticle in eutardigrades and 342 

heterotardigrades (Wright, 1989a, b). The permeability slump of the cuticle permits animals to lose 343 

water slowly, allowing animals to produce bioprotectants. Somewhat similarly to tardigrades, 344 

bdelloid rotifers contract their body into a compact shape by withdrawing their cephalic and caudal 345 

extremities into the trunk, facilitated by muscle contractions and by a coordinated morphological 346 

arrangement of internal structures (Ricci, 2001; Ricci et al., 2003; Marotta et al., 2010; Fig. 4.) A 347 

decrease in permeability (the permeability slump) during the early stages of desiccation was 348 

detected in the anhydrobiotic plant-parasitic nematode D. dipsaci during which the surface of the 349 

animal body was coated with an extracuticular layer of lipid (triglyceride) that produced a slow 350 

rate of water loss necessary for its survival (Wharton et al., 2008). Nematodes tend to coil their 351 

body (Crowe, 1971) and certain nematodes are also reported to congregate into masses of 352 

“nematode wool”, with better survival of specimens in the centre of the mass (Ellenby, 1968). The 353 
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aggregation effect has also been experimentally produced in tardigrades (Ivarsson and Jönsson, 354 

2004), but not yet verified in nature. 355 

As water evaporates and dry conditions set in, holo-anhydrobiotic organisms start generating a 356 

variety of protective agents, collectively termed bioprotectants, which they accumulate in and 357 

around the cells of their body. It was initially thought that non-reducing disaccharides, like 358 

trehalose, were solely responsible for preventing damage (e.g. Crowe et al., 1984, 1992), but more 359 

recent studies point to a complex picture of molecular adaptations. These bioprotectants molecules 360 

include: sugars, mostly disaccharides such as trehalose; a unique repertoire of proteins generally 361 

lacking persistent tertiary structure classified as intrinsically disordered proteins (IDPs) or proteins 362 

with intrinsically disordered regions (IDRs) and represented by Late Embryogenesis Abundant 363 

proteins (LEAp), Heat Shock proteins (HSPs), cytoplasmic abundant heat soluble (CAHS) 364 

proteins, secretory abundant heat soluble (SAHS) proteins, and mitochondrial abundant heat 365 

soluble (MAHS) proteins; antioxidants, and molecules involved in protection from or repair of 366 

DNA damage (e.g. Lapinski and Tunnacliffe, 2003; Schill et al., 2004; Altiero et al., 2007; Jönsson 367 

and Schill, 2007; Pouchkina-Stantcheva et al., 2007; Förster et al., 2009, 2011; Schokraie et al., 368 

2010; Boschetti et al., 2011; Yamaguchi et al., 2012; Boschetti et al., 2013; Rebecchi 2013; Wang 369 

et al., 2014; Tanaka et al., 2015; Hashimoto et al., 2016; Boothby et al., 2017: Schill and Hengherr, 370 

2018). A recent study showed that one of the most stress-tolerant tardigrade species (Ramazzottius 371 

varieornatus Bertolani and Kinchin, 1993) has a tardigrade-unique DNA-associating protein, 372 

termed Dsup, which is able to suppress the incidence of DNA breaks caused by radiation 373 

(Hashimoto et al., 2016). Accumulation of these xeroprotectants is generally slow and gradual, 374 

taking place in parallel with the drying process, although a few taxa, like the nematode P. superbus, 375 

seem to express a full repertoire of protective molecules and have therefore been defined as fast-376 

desiccation strategist (Shannon et al., 2005; Banton and Tunnacliffe, 2012). Even though many 377 
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organic compounds have been identified in tardigrades, rotifers, and nematodes, the biochemical 378 

and molecular mechanisms involved in complete desiccation tolerance are currently little known 379 

and constitute an intriguing challenge for biologists. For instance, it is well known that in some 380 

species of tardigrades the synthesis of the disaccharide trehalose counteracts the loss of water, as 381 

well as other environmental extremes (Westh and Ramløv 1991; Hengherr et al., 2008b, Jönsson 382 

and Persson, 2010; Wełnicz et al., 2011; Cesari et al., 2012; Schill and Hengherr, 2018). In any 383 

case, the absolute trehalose levels detected in tardigrades are much lower than those reported for 384 

other anhydrobiotic organisms. This sugar has a double role in desiccation tolerant organisms. As 385 

the trehalose replaces water, it protects biomolecules and the integrity of membranes during 386 

dehydration, and participates in the formation of a glassy matrix that reduces the rates of chemical 387 

reactions and inhibits free radical production (Crowe et al., 1984; Teramato et al., 2008). The 388 

CAHS, SAHS and MAHS proteins have been detected so far only in eutardigrades (Tanaka et al., 389 

2015; Boothby et al., 2017). However, the distribution of the encoding genes of these proteins is 390 

scattered among tardigrades, suggesting species- or at least taxon-specific adaptations (Yoshida et 391 

al., 2017; Kamilari et al., 2019). The CAHS and SAHS proteins probably form a molecular shield 392 

inside and outside cells, respectively, whereas MAHS proteins are defined as potent specific 393 

mitochondrial protectants (Boothby et al., 2017). The heterologous expression of some CAHS 394 

proteins in both prokaryotic and eukaryotic cells allows an increase in their tolerance to desiccation, 395 

and purified CAHS proteins protect desiccation-sensitive proteins in vitro (Boothby et al., 2017). 396 

The very low or null metabolic activity of anhydrobionts limits the production/accumulation of 397 

products of metabolism such as Reactive Oxygen Species (ROS). Even though the origin of ROS 398 

in anhydrobiosis is not yet well known, their production can occur both during the dehydration, in 399 

a permanent desiccated state as well as during rehydration, so an efficient antioxidant mechanism 400 

is necessary (França et al., 2007; Cornette et al., 2010; Rebecchi, 2013). For example, in desiccated 401 
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specimens of the eutardigrade Paramacrobiotus spatialis Guidetti, Cesari, Bertolani, Altiero and 402 

Rebecchi, 2019, glutathione peroxidase was the most abundant antioxidant enzyme in hydrated 403 

animals, followed by the enzyme superoxide dismutase and glutathione content (Rizzo et al., 2010). 404 

With regard to the repair of DNA damages, desiccation enhanced the expression of DNA-repair 405 

proteins in tardigrades (Wang et al., 2014; Kamilari et al., 2019). 406 

Rotifers possess similar strategies, but there are also marked differences. Neither trehalose nor the 407 

metazoan genes for its synthesis have been found in bdelloid rotifers (Lapinski and Tunnaclife, 408 

2003), although trehalose has been found in monogonont rotifers (Caprioli et al., 2004), suggesting 409 

that non-reducing disaccharides are not necessary for successful recovery from desiccation. 410 

Instead, other molecules are now thought to be essential to protect molecules, cells and tissues and 411 

to repair any damage caused by anhydrobiosis. It is becoming clear that no single class of 412 

protectant/repair molecules is sufficient, but successful desiccation depends on the co-ordinated 413 

action of all of them. These molecules, which are usually upregulated upon desiccation, include 414 

different types of LEA proteins which perform different and often still uncharacterised functions, 415 

other (non-LEA) protein families, often at least partially unstructured (IDPs and proteins 416 

containing IDRs) and with still uncharacterised functions, other types of hydrophilins or 417 

chaperones, different types antioxidants, molecules involved in DNA repair as well as, probably, 418 

other still unknown molecules and mechanisms (e.g. Browne et al., 2002; Browne et al., 2004; 419 

Goyal et al, 2005; Pouchkina-Stantcheva et al., 2007; Denekamp et al., 2010, 2011; Boschetti et 420 

al., 2011, 2012; Hanson et al., 2013; Hespeels et al., 2014). 421 

All these molecules, some of which are taxon-specific while others are common to all analysed 422 

taxa (e.g. Denekamp et al., 2010; Mali et al., 2010; Boschetti et al., 2011, 2012; Hanson et al., 423 

2013; Hashimoto et al., 2016; Boothby et al., 2017; Hashimoto and Kunieda, 2017; Kamilari et al., 424 
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2019; Kamilari et al, 2019), seem to be necessary for an integrated and effective response to 425 

anhydrobiosis. 426 

Interestingly, the majority of the previously mentioned studies were based on the analyses of one 427 

or a relatively small subset of genes, but recent technological advances have allowed analyses of 428 

whole genomes and transcriptomes and are uncovering an even more fascinating story, suggesting 429 

that some animals, and bdelloid rotifers in particular, have been acquiring genes, which code for 430 

protective/repair molecules, from organisms that are not direct ancestors and can even belong to 431 

different taxa, in a process known as Horizontal Gene Transfer (HGT, also called lateral gene 432 

transfer, LGT). Horizontal gene transfer was previously known only in bacterial and archaeal 433 

organisms and was thought to be absent in eukaryotic organisms, but recent studies suggest that it 434 

is more widespread than previously thought (e.g. Dunning Hotopp, 2011; Boto, 2014, Drezen et 435 

al., 2017) and that these “foreign” genes can indeed contribute to the resistance to desiccation of 436 

some organisms, especially bdelloid rotifers. Initial suggestions that bdelloid rotifers possess a very 437 

high percentage of genes acquired via HGT (Gladyshev et al., 2008; Boschetti et al., 2012) and 438 

“domesticated” (Barbosa et al., 2016) have now been confirmed and expanded (Flot et al., 2003; 439 

Eyres et al., 2015; Hespeels et al., 2015; Nowell et al., 2018). This unusual characteristic is made 440 

even more interesting by the recent understanding of the role that these foreign genes play in stress 441 

resistance: many foreign genes are over-expressed during desiccation or rehydration and might 442 

therefore at least partially responsible for their successful anhydrobiotic capabilities (Boschetti et 443 

al., 2011, 2012; Eyres et al., 2015), although the precise link between desiccation resistance and 444 

levels of HGT is still unclear (e.g. Eyres et al., 2015; Nowell et al., 2018). Indeed, recent studies 445 

have found genes involved in trehalose synthesis in bdelloids, but they seem to have been 446 

originated by HGT (Hespeels et al., 2015), while other foreign genes can add various biochemical 447 

capabilities, some of which might improve the desiccation abilities of bdelloids (Boschetti et al., 448 
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2012; Szydlowski et al., 2015). This unusual high level of foreign genes seems to be a characteristic 449 

only of bdelloid rotifers: other taxa have been analysed and, although a few foreign genes are 450 

present (e.g. Boothby et al., 2015; Bemm et al., 2016; Koutsovoulos et al., 2016; Nowell et al., 451 

2018), they are not so abundant, and the details of their contribution to successful desiccation is 452 

still being characterised (e.g. Yoshida et al., 2017; Nowell et al., 2018; Kamilari et al., 2019). 453 

 454 

Ecological and evolutionary consequences of extreme tolerance of meiofaunal organisms 455 

The evolution of anhydrobiosis is the result of trade-offs between the selective advantages of this 456 

adaptive strategy, the energetic costs, and the physical and physiological constraints related to the 457 

process (Jönsson, 2005; Guidetti et al., 2011a). Energy is probably necessary to produce and 458 

accumulate bioprotectants during the initial phase of anhydrobiosis and to catabolize them during 459 

the exit phase (rehydration). There are few data on anhydrobiotic energetic costs, but a substantial 460 

energetic cost of anhydrobiosis was shown in the tardigrade Richtersius coronifer (Jönsson and 461 

Rebecchi, 2002) and in some species of nematodes (Madin and Crowe, 1975; Demeure et al., 462 

1978). Little is known about rotifers, but the presence of lipid droplets (Wurdak et al., 1978) and 463 

the differential expression of some genes potentially involved in lipid metabolism or protection 464 

(Denekamp et al., 2009) in monogonont resting eggs and in desiccated bdelloids (Marotta et al., 465 

2010) suggest that costs are present in these taxa as well. 466 

The anhydrobiotic process requires energy that is withdrawn from other physiological functions 467 

such as growth and reproduction. This should have strong effects on the life histories of holo-468 

anhydrobiotic organisms. Even though there is no direct evidence for a trade-off between 469 

anhydrobiosis and fitness, the few ecological studies on this topic are consistent with the hypothesis 470 

that fitness of desiccation tolerant organisms is lower (Jönsson, 2005; Alpert, 2006; Guidetti et al., 471 

2007). In tardigrades, both positive and negative relationships between body size (as an indication 472 
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of age) and desiccation performance have been demonstrated at the intraspecific and interspecific 473 

levels. In species living in the same moss and with high anhydrobiotic performance, desiccation 474 

survival increases in R. coronifer with an increase of the body size, whereas it decreases in 475 

Ramazzottius oberhaeuseri (Doyère, 1840) (Jönsson et al., 2001; Jönsson and Rebecchi, 2002). 476 

These contrasting models could be due to genetic differences and/or contingent factors, such as 477 

nutritional state, level of molecular protectants and some life history traits, including age, 478 

reproductive stage, and phenotypic plasticity. Lastly, differences in anhydrobiotic performances 479 

among geographically isolated populations of eutardigrades have been reported, but the literature 480 

data are conflicting (Horikawa and Higashi, 2004; Jönsson et al., 2001) probably due to the 481 

presence of cryptic species and differences in ecological conditions of the microhabitats. 482 

Interestingly, as previously mentioned, bdelloid rotifers seem to be different, i.e. desiccation 483 

improves individual and population fitness (Ricci et al., 2007; Sommer et al., 2019), but with still 484 

unknown mechanisms. 485 

In addition, low fitness associated with a long-lifespan could slow down rates of evolution in 486 

comparison to organisms with similar lifespans but without the capability to perform 487 

anhydrobiosis. Furthermore, ancestral genetic traits may reappear after a long time in 488 

anhydrobiosis, jumping generations, and contributing to the longer existence of unchanged traits 489 

(Kaczmarek et al., 2019). Anhydrobiosis represents an ‘‘escape in time’’ from habitat conditions 490 

hostile to active life, opposed to an ‘‘escape in space’’ performed by organisms with an ability to 491 

migrate away from unfavorable conditions (Jönsson, 2005). In addition, it limits selection and 492 

creates a ‘‘seedbank’’ for maintaining haplotypes in time and space (environment) (Guidetti et al., 493 

2011a). These advantages are reinforced by the ageing models (“Sleeping Beauty” and “Picture of 494 

Dorian Grey”) allowing organisms to withstand adverse conditions for a long time and the 495 

capability to restore active life and reproduction when environmental conditions become suitable 496 
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(Kaczmarek et al., 2019). Such scenarios are in line with the hypothesis that anhydrobiotic 497 

organisms almost avoid environmental selection since they are active only under favourable 498 

environmental conditions (Pilato, 1979). Therefore, anhydrobiotic periods could have an impact 499 

on generation time, which in turn influences the potential rate of evolution. This could be the cause 500 

of the surprising morphological uniformity at the species, genera and family level of terrestrial 501 

anhydrobiotic tardigrades in contrast to marine species that, in practice, are not able to enter 502 

anhydrobiosis (Kaczmarek et al., 2019). Interestingly, molecular analyses have suggested that 503 

bdelloid and monogonont rotifers might have different diversification and mutation rates, although 504 

it is still unclear if this is due to the different dormancy patterns (quiescence vs dormancy, 505 

respectively) or the different reproductive strategies (obligately vs cyclical parthenogenesis, 506 

respectively) of these taxa or other, still unknown, factors, and if they are indeed common 507 

(Barraclough et al., 2007; Swanstrom et al., 2011; Fontaneto et al., 2012b). 508 

Further selective advantages of anhydrobiosis can be cited. Anhydrobiosis allows the reduction of 509 

predators, competitors, and parasites since stochastic habitats are colonized only by a reduced 510 

number of species (Wilson and Sherman, 2013; Guidetti et al., 2011a). Since holo-anhydrobiotic 511 

organisms are aquatic animals, desiccation tolerance allows them to colonize and persist in 512 

terrestrial habitats other than in stochastic and extreme habitats. Moreover, the capability to 513 

withstand extreme conditions by entering anhydrobiosis increases the number of possible 514 

‘‘refugia’’ that can be utilized by the species during long harsh environmental conditions, with a 515 

decrease in the rate of extinction and the loss of diversity (Guidetti et al., 2011a). Anhydrobiosis 516 

increases passive dispersal capability since dormant anhydrobiotic animals and eggs can act as 517 

propagules, be transported over long distances, and cross physical barriers for months without 518 

losing viability, which active animals cannot do, and establish new populations in new territories 519 

(Guidetti et al., 2011a; Mogle et al., 2018; Fontaneto, 2019). This capability is aided by the fact 520 
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that mostly holo-anhydrobionts reproduce via telytokous parthenogenesis, a reproductive strategy 521 

favourably adapted to colonise new and isolated habitats with a single individual (Bertolani, 2001, 522 

Ricci and Fontaneto, 2009; Fontaneto, 2019). This could influence the biogeographical pattern of 523 

holo-anhydrobionts that supports the hypothesis that “everything is everywhere”. This hypothesis 524 

was confirmed for many bdelloid rotifers (Fontaneto et al., 2008), monogonont rotifers (e.g. Gómez 525 

et al. 2002; Mills et al., 2017) and for few tardigrade species (Kaczmarek et al., 2019), although 526 

some caution should be exercised, as other variables, including sampling effort or hidden diversity, 527 

might influence results and should therefore be carefully considered (Fontaneto et al., 2007, 2008, 528 

2009; Mills et al., 2017). Nevertheless, despite that tardigrades are able to disperse by wind as are 529 

other terrestrial anhydrobionts (Nkem et al., 2006; Rivas et al., 2019), most tardigrade species have 530 

a narrow species range, with a large number of endemic species (e.g. Pilato and Binda, 2001; 531 

Guidetti et al., 2019). In contrast, biogeographic patterns were detected in several anhydrobiotic 532 

taxa of nematodes (Faurby and Barber, 2015; Zullini, 2018). In any case, the paucity of faunistic 533 

data, the presence of cryptic species, and the high level of confounding factors make the distribution 534 

patterns more complex with the exigency to collect further experimental and faunistic data. Some 535 

of these effects on the life history, like the ability to “escape in time”, aging, “refugia”, generation 536 

time, selection, and avoidance of predators, are also valid for other dormant stages, for example 537 

resting eggs and cysts, even when they are not desiccated, highlighting common ecological effects 538 

of dormancy, irrespective of the physiological adaptations of each taxon or response to stress. 539 

These conditions, together with the capability of desiccation-tolerant organisms to repopulate 540 

habitats when liquid water returns, affect community dynamics and produce substantial 541 

modifications in the structure of biological communities, even leading to modifications in the 542 

functional integrity of the ecosystems (Irons et al., 1993; Walsh et al., 2104). 543 

 544 
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Implications/application of extreme tolerance of meiofaunal organisms 545 

A better understanding of the life strategies of anhydrobiotic animals both at the ontogenetic and 546 

phylogenetic levels can provide answers to many fundamental questions as well as useful practical 547 

outcomes in many branches of applied sciences. Understanding desiccation tolerance in 548 

anhydrobiotic organisms will enable us to induce or engineer tolerance in sensitive species and to 549 

produce subsequent long-term stabilization and preservation of biological material in a dry state 550 

This is a topic of considerable practical importance both in medical and commercial fields since 551 

drying is widely used in the food and pharmaceutical industries as a long-term preservation 552 

technique (Saragusty and Loi, 2019). 553 

Based on knowledge accumulated from anhydrobiotic organisms, much of the research on 554 

stabilising cellular membranes and proteins has centered on trehalose, which preserves cell 555 

membranes, and proteins, which can allow fluids to solidify without forming crystals through glass 556 

transition or vitrification, forming a large number of hydrogen bonds with membranes and proteins, 557 

and by replacing water molecules during the drying process (Hengherr et al., 2009), although many 558 

other protein families, as well as molecules, perform many functions, some of which still 559 

uncharacterised (e.g. Tompa, 2002; Tunnacliffe and Wise, 2007; Tunnacliffe et al., 2010). Some 560 

anhydrobiotic organisms naturally possess the molecular mechanisms to produce these sugars and 561 

load and unload them to and from the cells of the body or the intracellular spaces. Since the first 562 

report that biomolecules, membranes, and organisms can be stabilized in a dry state, due to the 563 

presence of trehalose, an array of possible applications for trehalose have been reported, ranging 564 

from the stabilization of vaccines, lysosomes, platelets, spermatozoa and oocytes to the 565 

hypothermic storage of human organs (Chen et al., 2001; Crowe et al., 2005; Schill et al., 2009; 566 

Saragusty and Loi, 2019). The determination of the properties of trehalose and the debate whether 567 

trehalose alone is sufficient to preserve biomolecules (e.g. Garcia de Castro and Tunnacliffe, 2000; 568 
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Ratnakumar and Tunnacliffe, 2006; Pouchkina-Stantcheva et al., 2007; Tapia et al., 2015, Chau et 569 

al., 2016) have stimulated the continuation of basic research to discover the secret of life without 570 

water. Recently, Boothby and co-workers (2017) indicated that the heterologous expression of 571 

some CAHS proteins in both prokaryotic and eukaryotic cells is sufficient to increase desiccation 572 

tolerance in these sensitive systems, and purified CAHS proteins protect desiccation-sensitive 573 

proteins in vitro. Moreover, Hashimoto et al. (2016) found that tardigrade DNA-associating protein 574 

(Dsup) suppresses X-ray-induced DNA damage by 40% and improves radiotolerance of human 575 

cultured cells. The story of the already known bioprotectants tells us that the tolerant ability of 576 

anhydrobiotic animals could be transferred to more sensitive organisms at least partly by 577 

transferring the corresponding genes. Recent rapid progress of molecular analyses should 578 

accelerate the elucidation of the mechanisms at the basis of extreme stresses, including complete 579 

desiccation stress, providing novel clues that open new avenues to confer stress resistance to 580 

intolerant species, including humans. 581 

 582 

Conclusions 583 

Various extreme-tolerance mechanisms have evolved in meiofauna, enabling micrometazoans like 584 

tardigrades, rotifers, and nematodes, to reduce or interrupt metabolism and survive stressful 585 

environments. In response to the gradual onset of adverse environmental conditions (e.g. water 586 

availability, temperature, oxygen tension, pH), these organisms undergo complex molecular, 587 

physiological, morphological and behavioural changes, which can share common characteristics 588 

but also present some differences. For example, tardigrades undergo encystment, an adaptive 589 

strategy that involves profound morphological changes that occur during the molting process, 590 

resulting in the dormant organism lying within retained cuticular exuvia. On the other side, 591 

cryptobiosis happens at any stage of the life cycle of the organisms and includes different strategies 592 
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such as anhydrobiosis, cryobiosis, anoxybiosis and osmobiosis directly induced by desiccation, 593 

sub-zero temperatures, low oxygen pressure and osmotic extremes, respectively. The most 594 

widespread and best-known form of these is anhydrobiosis, the capability evolved by tardigrades, 595 

rotifers and nematodes to tolerate complete desiccation by entering in a state of reversible 596 

suspension of metabolism without the loss of viability. 597 

When dormant, these taxa show extraordinary resistance to physical and chemical extremes that 598 

may far exceed the tolerance ranges of active organisms, therefore the two dormancy strategies, 599 

quiescence and diapause, allows tardigrades, rotifers and nematodes to colonise and persist in 600 

various otherwise unavailable environments. Interestingly, while dormant, some taxa do not age, 601 

although the specific effects of dormancy on aging varies with the taxa and is poorly understood 602 

but this ability make tardigrades, rotifers, and nematodes very useful model organisms that can be 603 

used to study the aging process. Furthermore, the evolution of anhydrobiosis resulted in selective 604 

advantages but also in energetic costs with effects on growth, reproduction, life history, and fitness, 605 

in turn affecting the rate of evolution, but more studies are needed to fully understand the ecological 606 

and evolutionary implications of these resistance strategies on these taxa. 607 

Furthermore, novel findings have also contributed to expand other aspects of these taxa, with 608 

potential exciting applications in other fields: the evolution of a series of behavioural, 609 

morphological, physiological and molecular/biochemical adaptations provided anhydrobiotic 610 

organisms with different unusual mechanisms to withstand desiccation. To prevent cell damage 611 

during dehydration, bioprotectant molecules that accumulate in and around the cells of their body 612 

are generated; the identification of these molecules and their mechanisms are the focus of much 613 

current research, including the role of horizontal gene transfer. It is becoming clear that no single 614 

class of protectant/repair molecules is sufficient, but successful desiccation depends on the co-615 

ordinated action of all of them. The understating of the detailed mechanisms and consequences of 616 
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extreme tolerance, these meiofauna taxa are becoming popular model organisms in the fields of 617 

exobiology and medical research, with the hope that they might also help to improve the tolerance 618 

of human cells to extreme stress in the future. 619 
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FIGURE LEGENDS 1433 

 1434 

Fig. 1. A) In toto cyst of the freshwater eutardigrade Hypsibius sp. (phase contrast). B) In toto cyst 1435 

of the freshwater eutardigrade Dactylobiotus parthenogeneticus (phase contrast). Bar = 100 μm. 1436 

 1437 

Fig. 2. A) In toto specimen of the limnoterrestrial eutardigrade Acutuncus antarcticus (in vivo and 1438 

Nomarski contrast). B) In toto female of the lichen-dwelling eutardigrade Ramazzottius cf. 1439 

oberhaeuseri; the ovary containing three oocytes (asterisk). (in vivo and Nomarski contrast). C) 1440 

Tun (desiccated animal) of the eutardigrade Ramazzottius cf. oberhaeuseri (in vivo). 1441 

Arrow: buccal-pharyngeal apparatus; arrowhead: midgut; cross: gonad. Bar = 100 μm. 1442 

 1443 

Fig. 3. Scanning electron micrographs of the moss-dwelling heterotardigrade Echiniscus sp. A) 1444 

Dorsal view of an in toto and hydrated specimen. B) Dorsal view of an in toto desiccated specimen 1445 

(tun). C) Ventral view of an in toto desiccated specimen (tun). Bar = 100 μm. 1446 

 1447 

Fig. 4. Scanning electron micrographs of the rotifer Adineta tuberculosa. A) In toto and hydrated 1448 

specimen. B) In toto desiccated specimen (tun). Bar = 100 μm. (Courtesy of Giulio Melone and 1449 

Diego Fontaneto). 1450 

 1451 

 1452 
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