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Summary

Model updating is used to reduce error between measured structural responses and
corresponding finite element (FE) model outputs, which allows accurate prediction
of structural behavior in future analyses. In this work, reduced-order parametriza-
tions of an underlying FE model are developed from singular value decomposition
(SVD) of the sensitivitymatrix, thereby improving efficiency and posedness inmodel
updating. A deterministic error minimization scheme is combined with asymptotic
Bayesian inference to provide optimal regularization with estimates for model evi-
dence and parameter efficiency. Natural frequencies and mode shapes are targeted
for updating in a small-scale example with simulated data and a full-scale example
with real data. In both cases, SVD-based parametrization is shown to have as-good
or better results than subset selection with very strong results on the full-scale model,
as assessed by Bayes factor.
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1 INTRODUCTION

Numerical models are essential tools for scientists and engineers to understand and predict the behavior of physical systems.
In the context of structural engineering, finite element (FE) models are ubiquitously used to predict structural response and
assess risk for existing structures under variable conditions and loadings. While numerical models should, ideally, provide
exact predictions for their corresponding system, discrepancies always exist between measured behavior and model-predicted
behavior. In FE modeling, these errors can be split into three categories [1]:

1. idealization errors, related to model simplification;

2. discretization errors, due to poor arrangement of the FE model; and

3. uncertainty in model parameters, such as mass densities, stiffnesses, and geometry.

The existence of modeling errors (and output discrepancies) indicates that the FE model is unreliable for predicting system
behavior, diminishing its value for analysis.
The process of FE model updating seeks to correct the FE model, generally by modifying physical parameters to reduce

discrepancy between measured and model-output data [1–3]. For structural applications, data often comes from vibration stud-
ies (which may provide natural frequencies, mode shapes, time histories, frequency-response functions, etc.) under forced or
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ambient loadings. FE model updating has been successfully demonstrated on a multitude of civil structures [2,4], in addition to
aerospace [1,5,6] and mechanical [7] structures.
It is important to note that FE model updating corrects model parameter errors (category 3), and generally cannot improve

idealization or discretization errors (categories 1 and 2) [1]. When all three categories of FE modeling error are minimized, the
model is said to be validated [1] and can give greater understanding of the current structural state, possibly for damage detection [8].
When the FE model exhibits idealization and/or discretization errors, the model is said to be inconsistent [1], but the updated
model may still be valuable for response prediction within the measured frequency range.
FEmodel updating approaches can be divided into uncertainty quantification (UQ)methods and deterministic methods [9]. UQ

methods naturally reflect measurement and model uncertainties in their results and can be further divided into probabilistic and
non-probabilistic UQ methods. Probabilistic UQ methods estimate probability distributions functions for parameters and model
outputs by drawing a large number of samples in the parameter space. Non-probabilistic UQmethods generally estimate intervals
for parameters and outputs corresponding to upper and lower bounds of measured data. While non-probabilistic methods are
generally less computationally-expensive than probabilistic methods, they are still orders-of-magnitude more expensive than
deterministic methods and may be prohibitive for large models. Further detail on UQ methods in model updating is available by
Simoen et al. [9].
Deterministic methods provide unique optimal solutions, generally by local or global minimization of a non-linear residual

function. The sensitivity method [1] is a popular and intuitive local approach which iteratively minimizes a scalar objective
function. The objective function is the sum of squared residual between measured and model-output data, making it easily
extensible to many different sources or combinations of data. At each iteration, the non-linear residual function is linearized,
forming the sensitivity matrix which intuitively captures the changes in model-outputs when modifying model parameters.
However, the sensitivity method is often applied to ill-posed model updating problems. Reparametization is one approach to

improve posedness and efficiency by systematic selection of a new set of parameters to update the FE model. In this work, a
novel parametrization technique is proposed based on the singular value decomposition (SVD) of the sensitivity matrix. Instead
of selecting a reduced set of FE model parameters for updating, as in subset selection [10,11], linear combinations of FE model
parameters are updated by single updating parameters. These linear combinations are defined by singular vectors. This is used to
produce parametrizationswhich best represent the original sensitivitymatrixwith a reduced number of parameters. Alternatively,
this can be closely related to subset selection by selecting singular vectors which best represent the residual.
Regularization is another approach to counter ill-posedness in model updating [1,12–14]. In general, regularization introduces

additional equations to constrain the solution, such as equality constraints between nominally identical element material prop-
erties. More commonly, regularization is used to penalize large changes in updating parameters, representing a prior belief that
parameter updates should be small. In this work, Bayesian regularization [15] is proposed for producing optimally regularized
results through maximization of the model evidence. This method confers several benefits beyond parameter constraint, giving
key insight into the support for competing models and parametrization efficiency, with strong ties to probabilistic methods.
In this work, the proposed SVD-based parametrization scheme is compared against subset selection in two FEmodel updating

problems: a small-scale numerical example and a large-scale real example. In both cases, natural frequency and mode shape
data for several dynamic modes are targeted for updating. Levenberg–Marquardt minimization with Bayesian regularization is
implemented to provide deterministic model updating results, as well as estimates for model evidence and parameter efficiency.
The paper is structured as follows. The objective function, comprising natural frequency and mode shape data, is detailed in
Section 2. The objective function is then regularized using Bayesian inference in Section 3 with discussion of model evidence
and parameter efficiency. In Section 4, the Levenberg–Marquardt minimization algorithm is briefly discussed in the context of
regularization. Parametrization methods, including subset selection and the proposed SVD-based scheme, are detailed in Section
5. The proposed parametrization methods are first tested on a small-scale 2-dimensional truss with simulated data in Section 6,
then on a full-scale large suspension bridge with real measurements in Section 7. Section 8 presents discussion of findings and
conclusions.

2 OBJECTIVE FUNCTION AND RESIDUAL DEFINITION

FE model updating begins with measured data from a structure, which can be written as a column vector of m components, z̃.
The corresponding column vector of m model outputs, z(�), is a function of the column vector of p updating parameters �. A
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common choice for the objective function is the weighted sum-of-square residual, Er,

Er = rTWrr (1)
r(�) = z̃ − z(�) (2)

where r(�) is the residual vector and Wr is the residual weighting matrix. The residual weighting matrix should reflect the
uncertainty in the measurements z̃, giving the optimal weighting matrix as Wr = C−1

z̃ , where Cz̃ is the covariance matrix of
z̃ [16,17]. Since Cz̃ is symmetric and positive semi-definite (SPSD), Wr is also SPSD. Wr and Cz̃ are often diagonal or block-
diagonal, representing statistical independence of measurements or sets of measurements, respectively.
When the measurement vector z̃ contains disparate sources of data, it may be worthwhile to partition the problem. The

examples studied in this paper utilize natural frequency and mode shape data, so r andEr are partitioned into a natural frequency
components (rf and Ef

r ) and mode shape components (rs and Es
r ) with corresponding weighting matricesW f

r andW s
r

Er = rTWrr =
[

rTf r
T
s

]

[

W f
r
W s
r

] [

rf
rs

]

(3)

= rTfW
f
r rf

⏟⏞⏟⏞⏟
Ef
r

+ rTsW
s
r rs

⏟⏟⏟
Es
r

(4)

The FE model-output natural frequencies and mode shapes are assumed to come from an undamped structural model, resulting
in real-numbered outputs. The structural stiffness matrix K and mass matrix M are N × N symmetric real-valued matrices.
For j = 1, ..., N , the j th angular natural frequency !j (rad/s) and corresponding mass-normalized mode shape �j satisfy the
generalized eigenvalue problem K�j = !2jM�j , where �TjM�j = 1. The equivalent natural frequency (Hz) is given by
fj = !j∕(2�) and the unit-normalized mode shape is given  j = �j∕(�Tj �j)

1∕2.

2.1 Natural frequency residual
The natural frequency residual column vector rf is given by the difference between l measured natural frequencies f̃ and
corresponding model-output natural frequencies f̃ (�)

rf = z̃f − zf (�) = f̃ − f (�) (5)

It is essential to performmode pairing [3] to ensure that measured andmodel-output modes are correctly correlated. Mode pairing
generally pairs a model-output mode with the measured mode which maximizes the Modal Assurance Criterion (MAC) [18], or
equivalently, minimizes the angle between their mode shapes.
When W f

r is diagonal (i.e. natural frequency measurements are statistically independent) then the weighted sum-of-square
natural frequency residual is

Ef
r = r

T
fW

f
r rf =

l
∑

j=1
wf
rj(f̃j − fj(�))

2 (6)

2.2 Mode shape residual
The mode shape residual column vector rs is given by the difference between the concatenated set of l measured mode
shapes z̃s = [ ̃T

1 ⋯  ̃T
l ]

T and the corresponding concatenated model-output (unit-normalized) mode shapes zs(�) =
[�1 T

1 (�) ⋯ �l T
l (�)]

T . The modal scaling factor, �j , is used to minimize the difference between corresponding measured
and model-output mode shapes,  ̃ and  j(�) in the least-squares sense [18]

�j =  ̃T
j  j(�) (7)

Each measured mode shape  ̃j and model-output mode shape  j(�) must have measurements corresponding to the same n
degrees of freedom (DoFs), making rs a column vector of nl elements

rs = z̃s − zs(�) (8)
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If W s
r is diagonal and decomposable into a scalar multiple of In for each mode ([W s

r ]j = ws
rjIn), then the sum-of-squared

mode shape residual Es
r can be written

Es
r = r

T
sW

s
r rs =

l
∑

j=1
ws
rjr

T
sjrsj =

l
∑

j=1
ws
rj‖ ̃j − �j j(�)‖

2
2 (9)

where rsj =  ̃j − �j j(�) is the residual for mode shape j and ‖ ‖2 is the l2 norm. Equation 9 can be rewritten in a more
familiar form as

Es
r =

l
∑

j=1
ws
rj

[

1 −MAC( ̃j , j(�))
]

(10)

where MAC is defined as [18]

MAC( ̃j , j) =
( ̃T

j  j)
2

 ̃T
j  ̃j ⋅  

T
j  j

(11)

2.3 Partitioned objective function
Equations 6 and 10 can be combined into Equation 3 to give

Er = Ef
r + E

s
r =

l
∑

j=1
wf
rj(f̃j − fj(�))

2 +
l

∑

j=1
ws
rj

[

1 −MAC( ̃j , j(�))
]

(12)

As noted before, the residual weighting matrixWr should be equal to the inverse of the measurement covariance matrix Cz̃.
The measurement covariance model used in the included examples uses a diagonal covariance matrix. The standard deviation
of each natural frequency measurement j is assumed to be a scalar (cf ) multiple of the measured natural frequency f̃j , giving
wf
rj = (cf f̃j)−2. Similarly, the standard deviation for each component of measured mode j is assumed to be equivalent to a

scalar (cs) multiplied by the standard deviation of measured mode shape j, giving ws
rj = (cs std( ̃j))

−2. Inserting these results
into Equation 12 gives

Er =
1
c2f

l
∑

j=1
(1 − fj(�)∕f̃j)2 +

1
c2s

l
∑

j=1

1
var( ̃j)

[

1 −MAC( ̃j , j(�))
]

(13)

which provides further insight into relative weighting of the natural frequency and mode shape error components.

3 MODEL EVIDENCE ESTIMATION AND BAYESIAN REGULARIZATION

While the general goal of FE model updating is to optimize the objective function, such as Er in Equation 1, this often results in
an ill-posed problem and/or an overfitted solution [1,12–14]. Ill-posedness may develop when there are more updating parameters
than measurements (underdetermined), leading to non-unique solutions. Overfitting occurs when the model updating solution
fits to the measurement noise at the expense of generality, reducing its utility for prediction.
Both of these problems can be ameliorated through regularization, which adds an additional term to the objective function.

This increases the number of equations, reducing ill-posedness, and penalizes overly large updating parameter values, reducing
overfitting. Equation 1 is modified to include the regularization term E� = �TW��.

F (�) = �Er + �E� = �rTWrr + ��TW�� (14)

The regularization parameters � and � control the relative importance of reducing residual against reducing the amount of
parameter modification. The Bayesian approach to regularization [15] treats � and � as random variables. The optimal values for
the regularizing parameters maximize the model evidence, which is a key component of Bayesian analysis.

3.1 Model evidence estimation
Given a modelj (parametrization of an FE model) and values of � and �, the posterior probability of the updating parameters
can be written using Bayes’ rule:

P (�|z̃, �, �,j) =
P (z̃|�, �,j)P (�|�,j)

P (z̃|�, �,j)
(15)
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in which P (z̃|�, �,j) is the likelihood function of the measured data z̃, P (�|�,j) is the prior probability density function
(PDF) of �, and P (z̃|�, �,j) is a normalization term also known as the evidence for modelj .
The likelihood function is proportional to the probability of the data z̃ given � for a model j . If the noise in z̃ is assumed

to be additive, zero-mean, and Gaussian, with covariance Cz̃ = [2�Wr]−1 then the likelihood is written

P (z̃|�, �,j) =
e−�Er
Zz̃(�)

; Zz̃(�) = �m∕2 det(�Wr)−1∕2 (16)

However, the likelihood is not a PDF and Zz̃(�) should not be viewed as the integral of e−�Er over �. The prior distribution for
� is assumed to be a zero-mean Gaussian with covariance C� = [2�W�]−1, giving

P (�|�,j) =
e−�E�
Z�(�)

; Z�(�) = �p∕2 det(�W�)−1∕2 (17)

Substituting Equations 16 and 17 into Equation 15 simplifies to

P (�|z̃, �, �,j) =
e−F (�)

ZF (�, �)
(18)

where ZF (�, �) is a normalization term. This can be estimated by expanding the regularized objective function F (�) (Equation
14) using a Taylor series truncated after the quadratic term [15]. F (�) is estimated as

F (�) ≈ F (�MP) + (� − �MP)THMP(� − �MP) (19)

The expansion is performed about the minimum point of F , �MP, which is the maximum of the posterior probability. Therefore
the evaluated gradient {∇F }(�MP) is zero, where∇ = )∕)�.HMP is the Hessian ofF (�) evaluated at �MP,HMP = {∇∇F }(�MP).
ZF (�, �) is then evaluated as the Gaussian integral, using Laplace’s method [15]

ZF (�, �) = ∫ e−F (�)d� ≈ e−F (�MP)(2�)p∕2 det(HMP)−1∕2 (20)

Rewriting Equation 15 to find the evidence and substituting in Equations 16-18 gives

P (z̃|�, �,j) =
P (z̃|�, �,j)P (�|�,j)

P (�|z̃, �, �,j)
=

ZF (�, �)
Zz̃(�)Z�(�)

(21)

Evaluating the log-evidence using the normalization terms yields [15]

logP (z̃|�, �,j) = −�EMP
r + 1

2
log det

(

(�∕�)Wr
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
log likelihood

−�EMP
� + 1

2
log det

(

H−1
MP[2�W�]

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
logOccam factor

(22)

which can be separated into terms related to the log likelihood and the logOccam factor. The likelihood is maximized by reducing
the sum-of-square residual, Er, which favors complex models that may overfit the data. The Occam factor penalizes overly
complex models, representing Occam’s principle that simpler models are preferable [9,15]. The first Occam term penalizes overly
large parameter values, while the second term is the ratio of the prior curvature or volume relative to the posterior curvature
or volume, which penalizes overly large prior parameter spaces. The second Occam term also reflects the robustness of the
model [19], penalizing highly peaked posteriors which imply poor model generalization.

3.2 Optimal regularization
Estimating the log evidence using Laplace’s method, generally referred to as an “asymptotic approach”, is well-known in model
updating [9,20,21]. However, within these works, the prior PDF was fixed. In general, the prior PDF of updating parameters for
a given model P (�|j) is mostly unknown and uninformed assumptions are made. The work done by MacKay [15] provides a
method for determining the “width” of a Gaussian prior, �, to maximize the log evidence, simultaneously delivering optimal
regularization. To the authors’ knowledge, this approach has not been previously used for evidence estimation in FE model
updating and presents a step forward for deterministic model updating. Previous work by the authors [22] implemented Bayesian
regularization, but also optimized �, which is inappropriate for evidence estimation and model evidence comparison, as will be
discussed below.
The optimal regularizing constant � is determined by maximizing the log evidence in Equation 22 with respect to �, giving

� =


2EMP
�

(23)
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where  is called the “effective number of parameters” [15]. The Hessian,H(�), can be separated as

H(�) = {∇∇F }(�) = �B(�) + �A (24)

where B(�) = {∇∇Er}(�) andA = ∇∇E� = 2W� . This allows  to be written using the trace operator or a sum of eigenvalues

 = p − 2� tr(H−1
MPW�) =

p
∑

j=1

��j
��j + �

(25)

where �j is the j th eigenvalue of [W −1
� BMP].

 = 0 implies the estimated posterior curvature (Hessian) is identical to the prior curvature, representing a null updating result
and ineffective parametrization.  → p implies the posterior curvature is infinitely greater than the prior curvature, such that the
prior has no impact relative to the likelihood during updating and the result is the maximum likelihood estimate. MacKay [15]

suggests that  = p∕2 is a reasonable result for many updating problems, but  → p is desirable because it suggests that the
updating result is controlled by the data rather than by regularization.
At this stage, the optimal value of � could be found by evidence maximization, as in � = (m − )∕(2EMP

r ) [15], as in previous
work [22], but this has several disadvantages. Foremost, the likelihood function will no longer be model-independent since �
will depend on the optimized model error EMP

r . Additionally, this will fix the regularized objective function at F (�MP) = m∕2,
which causes difficulty for model evidence comparison. The approach adopted in this work evaluates Wr as the inverse of the
measurement covariance matrix,Wr = C−1

z̃ with � fixed to the value of 1∕2. If the measurement covariance is unknown,Wr can
reflect the relative importance of each residual term for reduction, but evidence estimates should be analyzed cautiously since �
will be arbitrary.

3.3 Model comparison via Bayes factor
The relative evidence, or Bayes factor [23], can be used to evaluate the strength of support for competing models. Given the
evidence (approximate or exact) for two modelsj andk with equally likely prior probabilities, the Bayes factor is

Bjk =
P (z̃|j)
P (z̃|k)

(26)

which gives the support for using j instead of k. Note that this form drops dependence on the regularizing constants �
and �. These parameters can either be marginalized (integrating over all values), or more reasonably, the model comparison
can be performed using the optimal regularizing constants [15]. Kass and Raftery [23] provided a widely used set of criteria for
interpreting the Bayes factor, given in Table 1. Note that logBjk = − logBkj , so negative results can be interpreted as support
fork.

TABLE 1 Interpretation of Bayes factors, adapted from Kass and Raftery [23]

2 logBjk Bjk Evidence againstk
0-2 1-3 Not worth more than a bare mention
2-6 3-20 Positive
6-10 20-150 Strong
>10 >150 Very strong

4 LEVENBERG–MARQUARDT MINIMIZATION ALGORITHM

With a well-defined objective function (Section 2) and regularization (Section 3), FEmodel updating can proceed by determining
an optimal model through minimization of the regularized objective function. The parameter values at iteration i, �i, are updated
by Δ�i to give the values at the next iteration:

�i+1 = �i + Δ�i (27)
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The goal is then to find the parameter update Δ�i such that the objective function F (�i +Δ�i) is minimized. Using the notation
of ri = r(�i), then the updated residual can be estimated by its linearization

r(�i + Δ�i) ≈ ri + JiΔ�i (28)

where Ji is the Jacobian of r evaluated at �i, Ji = {∇r}(�i). Linearization of the residual forms the basis of the sensitivity
method [1], where Ji is also called the sensitivity matrix and its columns represent the sensitivity of the residual to changes in
each parameter. The Jacobian can be estimated numerically using a finite-difference scheme, or it can be calculated analytically.
For FE model updating of natural frequencies and mode shapes, the analytical Jacobian can be assembled column-wise [24].
When the linearized residual is used and F (�i + Δ�i) is minimized with respect to Δ�i, then the parameter update is

Δ�i = −2[Hi]−1[�J Ti Wrri + �W��i] (29)

which represents the Gauss–Newton algorithm. The terms 2(�J Ti Wrri + �W��i) are the gradient of F at �i, {∇F }(�i). Hi is
the Hessian of F at �i, which is approximated as

Hi = {∇∇F }(�i) ≈ 2[�J Ti WrJi + �W�] (30)

Comparing this to Equation 24 indicates that the approximate Hessian of Er is {∇∇Er}(�i) = B(�i) ≈ J Ti WrJi.
The Gauss–Newton algorithm is transformed into themore robust Levenberg–Marquardt algorithm [25,26] by adding a damping

term � to the diagonal ofH , giving the Levenberg–Marquardt parameter update

Δ�i = −2[Hi + 2�I]−1[�J Ti Wrri + �W��i] (31)

This trust region approach collapses to the Gauss–Newton algorithm when � → 0, and to the gradient-descent algorithm
(with infinitesimal step size) when � → ∞. � is controlled by the multiplicative process given by Marquardt [26]. The utilized
Levenberg–Marquardt algorithm is described inAlgorithm 1, including the scheme for iteratively evaluating the hyperparameters
�, �, and  .

Algorithm 1 Pseudocode for Levenberg–Marquardt minimization with Bayesian regularization
Input: Regularized objective function F (�) = �Er + �E� to be minimized, modelj
Output: Optimal parameters �MP, effective number of parameters  , log evidence estimate logP (z̃|�, �,j)
1: initialization Set �0, � = 0.5, � = 0.5, � = 0.01, v = 10, i = 0
2: while not converged do
3: Compute residual ri, Jacobian Ji, and approximate HessianHi = 2[�J Ti WrJi + �W�]
4: Compute parameter update Δ�i = −2[Hi + 2�I]−1[�J Ti Wrri + �W��i]
5: Evaluate trial parameters �i+1 = �i + Δ�i
6: if Objective value increased F (�i+1) > F (�i) then
7: Increase damping term �← � ⋅ v
8: Go back to parameter update computation step (4)
9: else Decrease damping term �← �∕v

10: end if
11: Compute effective number of parameters*  = p − 2� tr(H−1

i W�)
12: Reestimate regularization parameter � = ∕(2E�(�i+1))
13: i← i + 1
14: end while
15: Estimate evidence for updated modelj by logP (z̃|�, �,j) (Equation 22)
* Note:  is only meaningful at a converged solution, �MP
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5 MODEL PARAMETRIZATION

Parametrization is a crucial part of FE model updating. Even a small model can easily have thousands of possible parametriza-
tions among combinations of material properties, geometry, and external conditions. In general, parametrizations should satisfy
three requirements [3]:

1. ill-posedness should be avoided by limiting the number of parameters,

2. parameters should reflect model uncertainty, and

3. FE model-outputs should be sensitive to chosen parameters.

Fulfilling these requirements generally requires physical understanding of the FE model. Mottershead et al. [7] studied several
parametrizations of a frame joint, including geometric and element-eigenvalue modifications. While these parametrizations
may be more effective for reducing modeling error, they are often difficult to justify physically. Other methods directly use
FE model parameters, but select a reduced number of updating parameters to alleviate ill-posedness. This has been accom-
plished through subset selection [10,11], which is described in Section 5.1. Smith and Hernandez [27] recently proposed LASSO
for combined subset selection and l1 regularization which is appropriate for sparse model errors. Alternative methods include
parameter clustering, in which all FEmodel parameters are retained and grouped into clusters (substructures) based on sensitivity
considerations [1,5,22,28,29]. Each cluster is then updated by a single parameter, giving a reduced parametrization.
The simplest parametrization is the vector of uncertain FE physical properties x, such as mass densities, Young’s moduli,

geometry, cross-sectional properties, etc. Since xmay contain parameters which differ by several orders of magnitude, updating
x directly may result in a poorly-scaled Jacobian matrix. The use of physical parameter modification parameters � results in
comparably-sized updating parameters and improved condition of J . Then the eth updated FE physical properties can be written

xe = x0e(1 − �e) (32)

where x0e is the initial value of xe. The FE model physical properties utilized in this work include the Young’s modulus and mass
density for each element (or substructure), e, out of a total number nel. Thus, each element mass matrix (Me) and stiffness matrix
(Ke) is modified prior to summation into the global mass (M) and stiffness (K) matrices, similar to other work [1,5,22,28,29]:

M(�) =
nel
∑

e=1
Me(1 − �me ) =M0 −

nel
∑

e=1
Me�

m
e (33)

K(�) =
nel
∑

e=1
Ke(1 − �ke ) = K0 −

nel
∑

e=1
Ke�

k
e (34)

whereM0 and K0 are the initial global stiffness and mass matrices, respectively. �me and �ke are the stiffness and mass physical
parameter modifications for element e, making � a vector comprising these d = 2nel components.
Parameterizing the model updating problem using � = � is simple, but it is intractable for FE models with thousands of

uncertain physical parameters. Not only does the complexity of computing the Jacobian increase linearly with the number of
updating parameters, but the Jacobian is increasingly likely to exhibit ill-conditioning [5]. These problems can be resolved by
intelligently reparameterizing.
For the methods covered here, it is possible to write a linear transformation between the selected parametrization � and �,

which will be called the natural parametrization:
� = T � (35)

where T is the d×p transformation matrix from � to �. This notation confers several insights. Namely, the Jacobian with respect
to �, J ′, can be related to the Jacobian with respect to �, J :

J ′ = )r
)�

= )r
)�
)�
)�

= JT (36)

Using the condition that E� should be invariant under reparametrization, thenW� can be related toW� by

W� = T TW�T (37)

This relation is useful for generating consistently-defined W� when performing model comparison, such that each W� reflects
the uncertainty in the underlying FE model parameters.
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5.1 Parameter subset selection
The parameter subset selection method [30] chooses a subset of parameters by testing candidate parameter groups of fixed size.
The parameter subset which results in minimum residual is chosen. Since testing all possible parameter subsets is intractable for
practical problems, greedy methods are typically used. One such approach, forward selection, was applied to FE model updating
by Lallement and Piranda [10] and by Friswell et al. [11].
Consider a natural FE model parametrization using the column vector � with d components. Model updating using this

parametrization would find Δ� which minimizes Er. This can be written as the l2 norm of the weighted residual:

Er(� + Δ�) = ‖q +GΔ�‖22 (38)

where G and q are the weighted Jacobian and residual, respectively.

G = W 1∕2
r J ; q = W 1∕2

r r (39)

Forward subset selection chooses p < d elements of � with corresponding columns of G = [g1 ⋯ gd] which minimize
Er [10,11,30]. The iterative process begins by identifying the parameter �a (and corresponding column of G) which minimizes Er
at the initial state �0

ga = arg mingj∈G
‖q + gjΔ̂�j‖22 (40)

where Δ̂�j is the least-squares estimate of the j th parameter, Δ̂�j = −gTj q∕g
T
j gj . This is equivalent to identifying the parameter

sensitivity which has the minimum angle with the weighted residual at the initial state. Then the columns ofG and the weighted
residual q are replaced by

gj ← gj − ga(gTa gj∕g
T
j gj); q ← q + gaΔ̂�a (41)

Thus q and the remaining columns of G are orthogonal to ga, and the process is iterated until p parameters are selected. The
transformation matrix can be written

Tak =
{

1 �a selected in iteration k; �a updated by �k
0 else (42)

Each of the p columns of T is a unique member of the standard basis of ℝd , thus T is orthogonal (T TT = Ip).
Low-sensitivity parameters may be excluded from subset selection [1,3,5]. If the degree-of-sensitivity of a parameter is given

by the l2 norm of its sensitivity vector, ‖gj‖22 = g
T
j gj , it is clear that low-sensitivity parameters will tend to require large update

terms Δ̂�j . This poses difficulties, since deterministic model updating generally depends on initial model parameters being close
to global optimal values. Additionally, if model parameters are related to physical quantities, then large parameter updates may
go beyond physically-plausible bounds (e.g. negative mass).
Unfortunately, there is no consensus for what constitutes low sensitivity. This could be taken as a relative term, i.e. ‖gb‖2 ≪

‖gj‖2 ∀j ≠ b, but this doesn’t guarantee a limit on the parameter update. Low sensitivity could instead be tied to the estimate for
the parameter update, Δ̂�j , at the first iteration, but this may be a poor estimate for the parameter update since Δ̂�j comes from
a one-dimensional optimization instead of the true multi-dimensional optimization. Alternatively, any parameters which result
in unacceptably-sized parameter updates could be removed (and possibly replaced) after-the-fact, but there is no guarantee that
the new parametrization will result in a properly bounded set of parameter updates. Since there isn’t a clear method for removing
low sensitivity parameters, no parameters are excluded from analysis in this work.

5.2 SVD-based parametrization
The parametrization method proposed in this paper shares many similarities with subset selection and SVD. The subset selection
method seeks a reduced set of parameters from � with residual gradients (columns ofG) which best represent the residual using
an orthogonalization process. The proposedmethod also uses an orthogonalization process, but instead of selecting a subset from
�, it forms linear combinations of parameters using SVD and updates � along these vectors. While SVD is not new to FE model
updating, it has usually been used for regularization [12]. Recently, Silva et al. [31] selected parameters based on contribution to
the output covariance matrix, closely related to the SVD of the Jacobian matrix. Note that this was used for subset selection,
while the proposed approach forms linear combinations of existing parameters and uses very different logic.
The proposed parametrization method begins by considering the SVD of the weighted Jacobian, G, which is m× d with rank

r ≤ min(m, d). In general, the process of reparametrization is used for underdetermined problems, such that m < d. The SVD
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of G is [32]

G = U�V T =
r
∑

j=1
�jujvTj (43)

where U is a m × m orthogonal matrix of the left singular vectors, U = [u1 ⋯ um], and V is a d × d orthogonal matrix of the
right singular vectors, V = [v1 ⋯ vd]. � is an m × d matrix with singular values [�1 ⋯ �r] along its main diagonal, arranged
in descending order. There are at most r = min(m, d) non-zero singular values and associated left and right singular vectors.
Any singular vectors which correspond to zero singular values are outside of the column or row space of G.
Using SVD, the parameter update which minimizes Equation 38 is given by the sum

Δ� =
r
∑

j=1

uTj q
�j
vj (44)

An approximate solution (or, equivalently, approximation to G) can be obtained by truncating the sums in Equations 43 and 44
using only p < r singular vectors. Using this logic, a set C of p singular values and right singular vectors is retained, and the
model is updated along the right singular vectors in this set, such that the transformation matrix is T = VC . In other words, each
chosen singular vector defines a linear combination of model parameters in � which is updated by a single updating parameter
in �, such that

� =
∑

j∈C
�jvj (45)

Since each of the p right-singular vectors in VC is a column vector of size d, then T is d × p orthogonal matrix (i.e. T TT = Ip).
The resulting parametrization � has a weighted Jacobian matrix given by G′, as in Equation 36. Since the columns of V are

orthogonal and VC is a subset of these columns, this is equivalent to writing

G′ = GVC = U�V TVC =
∑

j∈C
�jujeTj (46)

where ej is the j th standard basis vector of d-space. Therefore, the singular values ofG′ are a subset of the singular values ofG.

5.2.1 Parametrization to maximize singular values
The most critical issue, then, is to choose the set of p singular vectors to retain, C . The first proposed parametrization delivers
the best approximation toG by retaining the largest singular values, which correspond to the first p singular vectors [32]. This set
can be defined recursively such that the set of p retained singular values �C is greater than all other singular values �b not in �C :

T = VC ; C = {j | �j > �b; ∀b ∉ C} (47)

This method improves the condition ofG′ (when using the reduced parametrization) since the range of singular values is reduced.
Under a set of conditions, it can be shown that this choice will maximize the effective number of parameters,  . Starting with a
natural FE model parametrization � with d parameters, then  is given by Equation 25:

 =
d
∑

j=1

��j
��j + �

(48)

where � and � are regularization parameters which are assumed to be constant. �j is the j th eigenvalue of [W −1
� BMP]. The

Hessian of the residual objective function is B(�) = {∇∇Er}(�), and �MP are the updating parameters at the minimum value of
F .BMP may be estimated byB = J TWrJ = GTG (Equations 30 and 39), where the Jacobian is evaluated at the minimum point.
Since VC is a subset of these columns corresponding to the largest �j , this is equivalent to writing

G′ = U�
[

Ip
0

]

=
p
∑

j=1
�jujeTj (49)

where 0 is a (d − p) × p matrix of zeros. Therefore, the singular values of G′ are only the maximal p singular values of G. The
singular values ofG are equal to the square root of the eigenvalues of B = GTG. If the parameter values � are sufficiently close
to �MP, then B ≈ BMP. Using a uniform prior distribution for the FE model parameters W� ∝ Id , then W� = T TW�T ∝ Ip.
Therefore �j = �2j are both the first p eigenvalues of [W −1

� GTG] and all the eigenvalues of [W −1
� G′TG′]. Thus, the new
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parametrization represented by the transformation T = VC results in the maximal number of effective updating parameters since

 ′ =
p
∑

j=1

��2j
��2j + �

≥
∑

D

��2j
��2j + �

∀D ≠ {1, ..., p} (50)

This comes from the fact that x∕(x + 1) is maximized when x is maximized and {�1, .., �p} ≥ {�j|j ∉ {1, ..., p}}.

5.2.2 Parametrization to maximize projection onto residual
While Equation 47 provides the best representation of the sensitivity matrix, there is no guarantee that the selected ‘directions’
(singular vectors) for updating will be effective in reducing the residual, and may even be orthogonal to q. To avoid this, the logic
of subset selection is used, with the set of right singular vectors VC chosen such that the resulting sensitivity matrix G′ = GVC
has maximum projection onto the residual q. The new sensitivity matrix can be decomposed using Equation 46 and therefore
the j th column ofG′ is equal to g′j = �juj . The projection of g

′
j onto q is then �ju

T
j q, but can be normalized to uTj q∕q

T q, which
is the cosine of the angle between uj and q.
Therefore, the following parametrization is proposed: the set of singular values C is chosen which correspond to the p largest

projections of left singular vectors uj onto the weighted residual vector q:

T = VC ; C = {j | uTj q > u
T
b q; ∀b ∉ C} (51)

This ensures that the updating parameters will be (at least locally) effective in reducing the residual. However, this approach
may result in amplification of noise when uTj q > �j

[13] and may require very large updating parameter values when uTj q ≫ �j .
It may be practical to exclude singular values which are too small, but this requires definition of a threshold, evoking many of
the difficulties previously noted for subset selection.

6 UPDATING A SMALL-SCALE TRUSS MODELWITH SIMULATED DATA

6.1 Model description
The efficiency of the proposed model parametrization scheme was first tested on a 29-element, 28-DoF, 2-dimensional truss
shown in Figure 1. This structure was modified from Papadimitriou et al.’s work [33] to have symmetric (pin-pin) boundary
conditions and slightly different scale. This truss was also used in previous work by the authors [22]. Each truss element had
identical section properties, with mass density of 7800 kg/m3, Young’s modulus of 200GPa, and area 0.25m2. Therefore, this
structure was statically indeterminate and symmetric. The truss FE model was implemented in MATLAB [34].
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FIGURE 1 Truss structure layout with element and node numbers indicated

The first five vibrational modes were selected for analysis, with natural frequencies and mode shapes depicted in Figure 2. All
28 free DoFs were assumed to be measured, giving m = 145 measurements across the 5 natural frequencies and mode shapes.
In order to capture a full comparison between the different FE model parametrization schemes, the presented truss was used

to generate a large number of related FE model updating problems. This was accomplished in two stages: random structural
modification and addition of random measurement noise. Beginning with the unmodified truss, the mass density and Young’s
modulus of each element were modified using uncorrelated Gaussian random variables, �em and �ek, as in Equations 33 and
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Mode 1 (f = 9.31 Hz)

Mode 2 (f = 19.8 Hz)

Mode 3 (f = 26.9 Hz)

Mode 5 (f = 51.2 Hz)

Mode 4 (f = 37.3 Hz)

FIGURE 2 Truss mode shapes and natural frequencies

34. Two different levels of variability were analyzed, with case I corresponding to high uncertainty in physical parameters,
� ∼  (0, (0.1)2Id) and case II corresponding to low uncertainty in physical parameters, � ∼  (0, (0.01)2Id). 100 random
realized states were generated for each case.
The second stage was adding noise to the natural frequency and mode shape measurements for each of the 200 realized

states. Natural frequency measurement noise was sampled from a Gaussian random variable with standard deviation equal to
0.5% of the measured natural frequency, i.e. f̃j ∼  (fj , (0.005fj)2). Mode shape measurement noise was sampled from a
Gaussian random variable with standard deviation equal to 5% of the corresponding mode shape (vector) standard deviation,
i.e.  ̃j ∼  ( j , (0.05 std( j))2Il). This measurement noise model was intended to reflect typical conditions, in which natural
frequency measurements are reliable within 1% of true values, while mode shape measurements exhibit an order-of-magnitude
greater variability [2,35]. Note that all measurement noise was uncorrelated.
The residual weighting matrixWr was evaluated as the inverse of the measurement covariance matrix, using measured quan-

tities. Therefore, Wr was diagonal with w
f
rj = (0.005f̃j)−2 and ws

rj = (0.05 std( ̃j))−2 in Equation 12. Obviously, Wr would
vary slightly depending on the realization. The regularization parameter � was fixed at a value of 1/2, as discussed in Section 3,
to ensure that the likelihood function was independent of the parametrization. Thus, �Wr was fixed for all parameterizations.

6.2 Parametrization
For each realization, the FEmodel was parametrized using themethods described in Section 5. For a given number of parameters,
p, each parametrization could also be called a “model class” or model, denoted asj in Equation 15. The first parametrization
method was subset selection, described in Section 5.1, which is denoted as SS or1. The second parametrization method was
SVD-based parametrization with maximal singular values, defined by Equation 47, which is denoted as SVD� or2. The third
parametrization was SVD-based parametrization with maximal singular vector projection, defined by Equation 51, denoted as
SVDproj or 3. Each parametrization was tested with the number of updating parameters ranging from p = 1 to p = nel, only
updating the Young’s modulus of each element. Element mass densities were not used as FE model updating parameters to aid
in depiction of parametrizations.
A sample set of model parametrizations is depicted in Figures 3a, c, and e using p = 6 updating parameters. Corresponding

parameter sensitivities are shown in Figures 3b, d, and f, where larger squares indicate larger (magnitude) of sensitivity. For
clarity of depiction, MAC sensitivity is shown in lieu of mode shape sensitivities. The sample SS parametrization in Figure 3a
didn’t show any preference for symmetry, but tended to avoid grouping all selected elements near one area of the truss. The
sensitivities of the SS parameters showed good coverage of all natural frequencies, but none of the selected parameters were
particularly impactful on the MAC of mode 1.
The first and sixth (right) singular vectors are shown in Figures 3c and e, respectively, with positive components denoted

by filled circles and negative components denoted by hollow circles. Each singular vector encodes the change in FE physical
parameters as a result of a change in the corresponding updating parameter. Each singular vector is generally non-zero for all
FE Young’s moduli, defining a relative amount of stiffness increase or decrease in each element. Thus the first singular vector
depicts the stiffness changes corresponding to �1 in SVD� , which mostly affected the stiffness of the end diagonal elements.
The sixth singular vector in Figure 3e corresponds to �6 in SVD� as well as �1 in SVDproj. The sixth singular vector had a large
effect on diagonal elements and bottom chord elements near the supports.
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It is interesting to note that both SVD-based parametrization methods had parameters which were mostly effective on natural
frequencies (e.g. �3 in SVD� and �1 in SVDproj) and separate parameters which were impactful on mode shapes (e.g. �1 in SVD�
and �2 in SVDproj). This may be explained by phenomena noticed in previous work [22], in which natural frequency sensitivities
were symmetric for symmetric parameters, but mode shape sensitivities were asymmetric for symmetric parameters. Intuitively,
this implies that symmetric singular vectors (e.g. Figure 3e) will be more impactful on natural frequencies while anti-symmetric
singular vectors (e.g. Figure 3c) will contribute more to mode shape sensitivities.
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(e) Sixth singular vector (f) SVDproj parameter sensitivities 

FIGURE 3 Sample truss parametrizations and parameter sensitivities for p = 6 updating parameters

6.3 Model updating results
FE model updating was performed for each of the 200 realizations, using the three described parametrization methods and
model sizes from 1 to nel. The regularized objective function in Equation 14 was used with the FE model parameter covariance
matrix W� = Id . It is interesting to note that all parametrization methods used in this work used orthogonal transformation
matrices, and therefore W� = Ip from Equation 37. The regularization parameter � was allowed to vary as determined by the
estimation algorithm to provide an optimal parameter weighting matrix. The Levenberg–Marquardt minimization with Bayesian
regularization scheme (Section 4 and Algorithm 1) was used to optimize the objective function. The evidence, likelihood, and
Occam factor were evaluated using Equation 22 at �MP.
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The average posterior results for model evidence, likelihood, and Occam factor are shown for high FE model parameter
uncertainty (case I) in Figures 4a, c, and d, respectively. In this case, the model evidence for each parametrization peaked between
p = 12 and p = 24, favoring larger parametrizations. Each parametrization method resulted in similar evidence, likelihood,
and Occam factor curves, with likelihood increasing for larger parametrizations as expected. The Occam factor was not linear
with respect to p, indicating that adding parameters gave diminishing returns in terms of information extraction. Significant
differences in average evidence are visible at p < 12, with all parametrizations performing similarly for larger models. SVDproj
outperformed SS at small p, indicating that it was more efficient with highly reduced parametrizations. SVD� was outperformed
by both SVDproj and SS at all values of p, suggesting that it was far more important to incorporate the weighted residual q during
parametrization, rather than trying to extract as much information from the Jacobian matrix. SS had the highest (magnitude)
Occam factor, which implies that it extracted mildly more information from the data during updating.
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FIGURE 4 Average truss model updating results, high uncertainty in FE model parameters (case I)

Instead of plotting the effective number of parameters  from Equation 25, the ratio of effective parameters ∕p is plotted
in Figure 4b. All parametrizations began with nearly full saturation of parameters, ∕p = 1, and decayed to ∕p ≈ 0.70 even
when using p = d. SS parametrization resulted in a nearly linear decay in efficiency, while the SVD-based parametrizations
were non-linear. Despite the fact that SVD� theoretically should have had maximal  for a set number of parameters p (Section
5.2.2), this was only true between p = 6 and p = 20. This may be due to the large discrepancy between initial model parameters
and updated model parameters, which renders some assumptions in Section 5.2.2 inappropriate.
Figure 5 presents the average truss model updating results using low FE model parameter uncertainty (case II). Evidence

results favored small models, peaking between p = 1 and p = 7 for each of the three parametrizations. Unlike the results in
Figure 4, the behavior of the evidence and likelihood curves was markedly different for each parametrization. SS showed mildly
greater average evidence at its peak of p = 3 and decreased nearly linearly after its peak. SVDproj showed a flatter evidence curve
that outperformed the other parametrizations at for nearly all p. SVD� didn’t display a peak evidence, decreasing monotonically
from p = 1 and with lower evidence than the other parametrizations. SS actually outperformed the other parametrizations in
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terms of data fit (likelihood) between p = 2 and p = 11, but this was offset by its greater Occam factor. It may be concerning
to note that the likelihood curves (Figure 5c) weren’t monotonically increasing with more parameters for SS and SVDproj, but
this is explained by the fact that the posterior probability (F ) was maximized in Algorithm 1 rather than the likelihood (Er).
The parametrization efficiency (Figure 5b) again started with near-saturation, but decayed non-linearly to the much lower level
of 0.15 for all models. Despite the fact that the initial FE model parameters were much closer (on average) to their true values,
SVD� didn’t provide the maximal value for  at each given p.
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FIGURE 5 Average truss model updating results, low uncertainty in FE model parameters (case II)

Interpretation of the support for each parametrization (j) is performed most naturally using Bayes factors [23], as defined
in Equation 26. The support for SVD� over SS (2 over 1: B21) and for SVDproj over SS (3 over 1: B31) are plotted in
Figure 6 for each level of FE model parameter uncertainty, including dashed lines for interpreting the significance of the support
from Table 1. Note that evidence comparison between SVD� and SVDproj could be inferred by the log difference between B21
and B31 since logB23 = logB21 − logB31. For high parameter uncertainty, logB21 was almost entirely less than 0, indicating
support for SS over SVD� with very strong significance for small p and diminishing to strong or less for p > 24. At p = 1
however, SVD� was actually supported over SS. Conversely, SVDproj was very strongly supported over SS for p < 10 (B31),
then decreasing into weak support for SS with p > 14.
Bayes factors were much lower in significance for low uncertainty in FE model parameters (Figure 6b). Again, SS was sup-

ported over SVD� with logB21 < 0 for most p, varying from positive for 2 < p < 14 and weak results for larger models.
Support for SVDproj over SS (B31) was inconclusive for p < 14, but was generally positive for p > 14, indicating that these
parametrizations are equally supported by the data with a slight edge toward SVDproj for larger parametrizations.
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FIGURE 6 Bayes factors for competing truss parametrizations

7 UPDATING A LARGE-SCALE SUSPENSION BRIDGE MODELWITH REAL DATA

7.1 System identification
The second test of the proposed parametrization schemes was FE model updating of a full-scale suspension bridge with mea-
sured data. The studied structure is a double-deck steel bridge with four suspension cables and two towers, as used in previous
work [22,28,29]. The structure is symmetric with a 2089m total length among two side-spans and a 451m mid-span. A series of
ambient vibration studies were performed in 2009 to identify modal properties such as natural frequencies, mode shapes, and
damping ratios under typical operating conditions [28,29]. Vibrational responses were captured using tri-axial accelerometers at
9 locations on the spans and towers, giving 27 measured DoFs for each mode shape. The data from one day was used in this
study, using measurements during four 1-hour periods. The measured modal data (natural frequencies and mode shapes) was
then averaged across the four measurement periods to provide an estimate for average daily modal properties. Note that more
detailed data about identification techniques and hourly data can be found in Jang and Smyth’s work [28,29].
The first 7 vibrational modes were chosen for use in model updating, giving m = 196measurements for 7 natural frequencies

and mode shapes. The average mode shapes, including mode labels and average natural frequencies, are given in Figure 7. The
depicted mode shapes indicate the mode shape amplitude at the 9 measured locations (indicated by dots), while the unmeasured
modal displacements were interpolated with reasonable boundary conditions. This interpolation was only used for the purposes
of depiction; any use of measured data only utilizes the 27 directly-measured DoFs. The suspension cables and suspenders are
omitted from Figure 7 for clarity.
The measured data could have been used to estimate the measurement covariance matrix Cz̃, but four observations was

considered to be inadequate. Thus, the measurement covariance matrix was formed based on an assumed noise model. The noise
in each natural frequencymeasurement was assumed to have a standard deviation equal to 0.5% of themeasured natural frequency
value. The noise in each mode shape component was assumed to have a standard deviation equal to 5% of the measured mode
shape’s standard deviation. The residual weighting matrix, Wr, was then the inverse of this assumed measurement covariance
matrix. Using Equation 12, this can be written aswf

rj = (0.005f̃j)
−2 andws

rj = (0.05 std( ̃j))
−2, or cf = 0.005 and cs = 0.05 in

Equation 13. As in Section 6, the regularization parameter related to the residual, �, was fixed at a value of 1/2 to provide more
accurate evidence comparisons between parametrizations.

7.2 FE model description
The suspension bridge FEmodel was developed in ABAQUS [36] using partially-available technical drawings to define the geom-
etry and element properties. In cases where technical drawings were uninformative, reasonable guesses for element properties
were made using photography. The FE model comprised approximately 21,000 elements and 18,000 nodes. Soil interaction and
thermal expansion joints were incorporated through boundary condition springs and hinge springs, respectively. For a thorough
discussion of element types, boundary conditions, connections, and initial model material properties, please refer to Jang and
Smyth’s description of the same FE model [28].
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Mode H1 (f = 0.194 Hz)
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Mode H2 (f = 0.450 Hz)

Second lateral

Mode V3 (f = 0.500 Hz)

Third vertical

FIGURE 7 Suspension bridge measured modes (measurement locations indicated by red dots)

The natural frequencies MAC values of the initial FE model are given in Table 2, along with the relative frequency error,
ferr = (f̃ − f )∕f̃ . Due to FE model modifications to account for more realistic structural behavior, particularly in the boundary
conditions and interactions between cable and deck components, the initial ferr and MAC values are slightly different from
those in Jang and Smyth’s previous work [28,29]. The natural frequencies of the initial FE model were higher than their measured
counterparts. The first torsional mode (T1) had the lowest initial natural frequency error at -3.0%, while the first side-span
vertical mode (SV1) exhibited the highest initial natural frequency error at -34.2%. The first two vertical modes (V1 and V2)
and the first lateral mode (H1) were already very close to their measured counterparts, with MAC values above 0.950. The first
torsional mode (T1) and the third vertical mode (V3) exhibited the lowest initial MAC values at 0.741 and 0.743, respectively.
Every mode exhibited a high frequency error and/or a low MAC, indicating that every mode would be important in model
updating. The total initial FE model error Er was a summation of the natural frequency error Ef

r , comprising 60% of the total,
and the mode shape error Es

r , comprising the other 40% of the total (Equation 12).
Due to the relatively low number of mode shape measurements, an intermediate step was implemented during mode pairing.

Initial FE model modes and measured modes were paired using MAC from the 27 measured DoFs, creating an index between
the modes of the initial FE model and measured modes. During the model updating, FE model modes were first paired with the
initial FE model modes using all FE model DoFs to increase pairing fidelity. Then the index between initial FE model-measured
modes was used to relate each updated mode to the correct measured mode. This approach ensured consistent pairing between
FE model modes and measured modes, since FE model mode shapes could change significantly and had relatively few DoFs for
direct pairing.

7.3 Parametrization
Due to the large number of FE model physical parameters (approximately 42,000 physical parameters, among mass densities,
Young’s moduli, and spring coefficients), it was necessary to first arrange elements into substructures to avoid an intractably
large set of sensitivity calculations. Structural components were decomposed into 132 substructures based on element type and
location. The main span was divided into 8 longitudinal groups and the two side-spans were each divided into four longitudinal
groups. The towers were divided into three vertical groups. These groups were then further divided based on element type.
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The properties of these substructures were used as the FE model physical parameters, giving 132 mass densities, 132 Young’s
moduli, 15 spring coefficients to update. Thus, the natural FE parametrization � had d = 279 components.
To be consistent with Jang and Smyth’s prior work, each parametrization used 5 mass parameters and 17 stiffness (and spring)

parameters, giving p = 22 total updating parameters. This was achieved by separately selecting mass and stiffness parameters
based on )q∕)�m and )q∕)�k sensitivities, respectively. The FE model was parametrized according to subset selection (1 or
SS), SVD-based parametrization with maximal singular values (2 or SVD�), and SVD-based parametrization with maximal
singular vector projection (3 or SVDproj) methods described in Section 5.
Figure 8 depicts the parametrizations of the bridge, as well as the sensitivities for the 22 updating parameters of each

parametrization in subfigures b, d, and f. Note that these plots reflect the absolute value of the sensitivity, so visually simi-
lar parameters (e.g. �20 to �22 in Figure 8d) may have components which differ significantly in sign. The sensitivity plots are
separated into mass parameters (�1 to �5) and stiffness parameters (�6 to �22).
Figure 8a depicts the mass substructures chosen by SS, with �1 and �5 affecting the mass density of the side-span lateral

bracing. As expected, these parameters have the largest impact on the side-span vertical mode, SV1, as confirmed by the sensi-
tivities in Figure 8b. �2 comprises mid-span lateral bracing and mainly affects natural frequencies for main-span modes. �3 and
�4 comprise bracing and chord main-span elements near one tower, mainly affecting modes H2 and V3. It is interesting to note
that SS parameters seem to be specialized in the sense that each parameter mainly affects one or two modal properties with very
little influence on other properties. This is exemplified by �15 which only has significant effect on the T1 and SV1 mode shapes.
The third mass singular vector (i.e. v3 of )q∕)�m) is shown in Figure 8c, which corresponds to �3 in SVD� and �1 in SVDproj.

This can be viewed as the change in element masses when either of those two updating parameters are perturbed, which essen-
tially adds mass to the midspan area. Unsurprisingly, these parameters mostly affect the natural frequency of main-span modes
(Figures 8d and f). The third stiffness singular vector (i.e. v3 of )q∕)�k) is shown in Figure 8e, which mainly influences the truss
element stiffnesses near the span-ends and the tower elements. This corresponds to �8 in SVD� and �5 in SVDproj. These updat-
ing parameters have large influence on natural frequencies, mainly for mode T1, with little impact on mode shapes. As noted
in Section 6, since the singular vectors depicted in Figure 8c and e are approximately symmetric, they are mostly impactful on
natural frequencies. In general, the SVD-based parametrizations had low mode shape sensitivity compared to natural frequency
sensitivity, except for �19 of SVDproj, which also exhibited separation between the two kinds of sensitivity.
Both of the SVD-based parametrizations showed less specialization than SS, with parameters generally having significant

effect on multiple modal properties. In particular, pretty much every parameter in SVD� affected multiple natural frequencies,
generally with lower impact on mode shapes, while SVDproj had much some parameters which were specialized (e.g. �4 and
�13) and more impact on mode shapes. This suggests that parametrizations which incorporate the measurement residual q show
a tendency towards specialized parameters, perhaps reflecting non-uniform distribution of measurement error.

7.4 Model updating results
Model updating proceeded using the three parametrization methods, each with 5 mass and 17 stiffness updating parameters. The
regularized objective function in Equation 14was usedwith FEmodel parameter covariancematrixW� = Id . As noted in Section
6, all parametrizations used orthogonal transformation matrices givingW� = Ip. The Levenberg–Marquardt minimization with
Bayesian regularization scheme (Section 4 and Algorithm 1) was used to optimize the objective function, with � free to be
determined by the algorithm. Parametrization and optimization were performed in MATLAB [34], while modal analysis was
performed in ABAQUS [36]. Communication between MATLAB and ABAQUS was controlled by an application programming
interface. The evidence, likelihood, and Occam factor were evaluated using Equation 22 at the minimum point �MP.
The converged results are shown in Table 2, including the relative frequency error ferr and MAC for each mode in both the

initial and updated states. The total sum-of-square residual Er, composed of natural frequency residual Ef
r and mode shape

residual Es
r (as in Equation 12) is also included, along with the parameter efficiency ∕p (Equation 25).

SS parametrization producedmediocre reductions in model error, giving 34% less total error than the initial model, splitting its
total error almost equally between Ef

r and Es
r . SS mildly improved natural frequency results across all modes. SS was relatively

unsuccessful in reducing large natural frequencies errors, but did show promising results for H1 and V2. Mode shape results
were underwhelming, with very slight gains for most modes and slight loss in MAC for mode SV1. Parameter efficiency was
also quite low at 0.31, indicating that the prior distribution (regularization) played a larger role than the likelihood (data) in
determining the parameter values.
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(a) Subset selection mass parameters (b) Subset selection parameter sensitvities

(c) Third mass singular vector (d) SVDσ parameter sensitvities

(e) Third stiffness singular vector (f) SVDproj parameter sensitvities
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θ5

θ3

θ4

θ5

θ1

FIGURE 8 Suspension bridge parametrizations and parameter sensitivities

The SVD-based parametrizations both showed very strong results with 74% and 76% reduction in Er for SVD� and SVDproj,
respectively. SVD� focused more on reducing more shape error, with Es

r comprising 77% of its total error, while it comprised
82% of the total error for SVDproj. Both SVD-based parametrizations showed similar natural frequency results, with SVDproj
slightly outperforming SVD� for all modes except V2. These parametrizations were extremely successful in reducing natural
frequency error, cutting Ef

r by approximately 90% from its initial value. Both methods struggled with mode T1, increasing the
relative error from -3% to approximately 10%. Problems with mode T1 were noted in previous work [22,28], and may be related to
unmodeled non-linear geometry. Three T1 modes were identified in the measured data sets, each with different in-phase or out-
of-phase motions between the main cable and deck, and different interactions between the main-span and side-spans. However,
only one T1 mode was produced in the FE model because the geometrically non-linear deck-cable interaction was not modeled.
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TABLE 2 Suspension bridge model updating results

Initial FE model Updated FE model
1 (SS) 2 (SVD�) 3 (SVDproj)

Mode ferr MAC ferr MAC ferr MAC ferr MAC
H1 -21.7% 0.984 -10.5% 0.990 5.4% 0.992 2.4% 0.991
V1 -29.8% 0.969 -25.9% 0.971 -9.4% 0.970 -8.9% 0.963
V2 -17.5% 0.986 -8.8% 0.984 2.8% 0.980 5.1% 0.979
T1 -3.0% 0.741 1.7% 0.795 11.3% 0.820 9.7% 0.846
SV1 -34.2% 0.879 -26.0% 0.876 0.4% 0.872 0.3% 0.889
H2 -19.8% 0.845 -11.3% 0.903 -1.1% 0.962 -0.3% 0.939
V3 -19.4% 0.743 -16.8% 0.774 -10.3% 0.974 -7.4% 0.968
Total error, Er (104) 2.39 1.57 0.61 0.57
Nat. freq. error, Ef

r (104) 1.44 0.78 0.14 0.10
Mode shape error, Es

r (10
4) 0.95 0.79 0.47 0.47

Parameter efficiency, ∕p – 0.31 0.94 0.92

TABLE 3 Suspension bridge posterior results and Bayes factors (all results ×103)

Posterior results (log) Bayes factor, 2 logBjk
Modelk

Modelj Evidence Likelihood Occam factor 1 2 3

1 (SS) -7.11 -7.08 -0.027 – -9.41 -9.87
2 (SVD�) -2.41 -2.32 -0.085 9.41 – -0.46
3 (SVDproj) -2.18 -2.11 -0.069 9.87 0.46 –

Similar mode shape updating results were also noted for the two SVD-based parametrizations, decreasing the mode shape
error Es

r by about 50% from its initial value. Both parametrizations were highly successful in improving the MAC of modes
T1 and V3, beginning near 0.750 and ending around 0.830 and 0.970, respectively. Similarly strong improvement was noted
for mode H2. Parametrization efficiencies were excellent, at 0.94 for SVD� and 0.92 for SVDproj, respectively. This indicates
that the parameters were very efficient in utilizing the data for updating, with minimal influence of regularization. The slightly
higher values for SVD� was expected due to the results of Section 5.2.2.
Table 3 displays the posterior results, including the (log) evidence, likelihood, and Occam factor for each parametrization.

Since � andWr were fixed for all models, the log likelihood was controlled by the total error Er. Therefore, it was expected that
SVDproj would have higher likelihood and also greater evidence since the Occam factors were small in magnitude. The evidence
for SS was very low compared to the SVD-based parametrizations, due the high total error and therefore low likelihood. The
Occam factors for the SVD-based methods were similar, with SS having a much lower Occam factor, reflecting the statements
made for ∕p (i.e. low data utilization). The relative evidence for pairs of models were examined using Bayes factors (see
Equation 26 and Table 1). There was extremely strong evidence for the SVD-based parametrizations over SS (>9000) with
order-of-magnitude lower, but still decisive, evidence for SVDproj over SVD� in this model updating exercise.

8 CONCLUSIONS

The approach proposed in this work utilizes SVD of the sensitivity matrix to develop robust, reduced-order parametrizations
which improve posedness and efficiency in FE model updating. Singular vectors are used to define linear combinations of under-
lying FE model parameters which are each updated by a single updating parameter. SVD-based parametrization can form an
optimal, reduced representation of the sensitivity matrix, or singular vectors can be selected to best represent the measure-
ment residual, similar to subset selection. Model error is minimized using a deterministic scheme which incorporates Bayesian
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inference to perform regularization and estimate both parametrization efficiency and model evidence. This is closely related to
Laplace’s method with minimization via the Levenberg–Marquardt algorithm. The main novelty of this approach is in optimally
selecting the regularization parameter, which corresponds to estimating an improved prior PDF. The proposed approach tomodel
updating combines the low computational cost of regularized deterministic methods with strong ties probabilistic methods.
The proposed SVD-based parametrization schemes were tested against subset selection on two vibration-based model updat-

ing problems: a small-scale 2-dimensional truss with simulated measurements and a large-scale suspension bridge with real
data. In both cases, natural frequencies and mode shapes were targeted for updating. The truss example provided an efficient
testbed for comparing a range of model sizes and parameter uncertainty levels across a significant number of randomized real-
izations. Parametrization using only the largest singular vectors was generally not supported by the data compared to subset
selection, while incorporating the residual into choice of singular vectors resulted in as-good or better support compared to
subset selection. Support was measured by the relative evidence (Bayes factor). Model updating of the large-scale suspension
bridge produced mediocre results when parametrized using subset selection, while the SVD-based methods provided excellent
reductions in error. In this example, incorporating data into choice of singular vectors was again shown to be effective.
While the proposed parametrizations showed excellent results on the presented examples, there was significant variation in

the strength of model support in the two model updating exercises. Further work is required to understand if subset selection is
inherently ineffective on large-scale models or only for the presented suspension bridge. Regularization was generally unneces-
sary for the included examples which were always overdetermined, but it provided a consistent set of prior beliefs and allowed
estimates of model evidence. The posterior estimates may be inaccurate for non-Gaussian prior distributions and likelihoods, or
for small data sets.
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