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Abstract

Electronic Health Record-Derived Phenotyping Models to Improve Genomic Research in Stroke

Phyllis Mary Thangaraj

Stroke is a highly heterogeneous and complex disease that is a leading cause of death in the

United States. The landscape of risk factors for stroke is vast, and its large genetic burden has yet

to be fully discovered. We hypothesize that the small number of stroke variants recovered so far is

due to 1) the vast phenotypic heterogeneity of stroke and 2) binary labeling of stroke

genome-wide association study (GWAS) participants as cases or controls. Specifically,

genome-wide association studies accumulate hundreds of thousands to millions of participants to

acquire adequate signal for variant discovery. This requires time-consuming manual curation of

cases and controls often involving large-scale collaborations. Genetic biobanks connected to

electronic health records (EHR) can facilitate these studies by using data routinely captured

during clinical care like billing diagnosis codes. These data, however, do not define adjudicated

cases and controls, with many patients falling somewhere in between. There is an opportunity to

use machine learning to add nuance to these definitions. We hypothesize that an expanded

definition of disease by incorporating correlated diseases and risk factors from EHR data will

improve GWAS power. We also hypothesize that granularly subtyping stroke using unsupervised

learning methods can provide insight into stroke etiology and heterogeneity. In Chapter 1, we

described the motivation for building upon current phenotyping methods for subtyping and

genome-wide association studies to improve GWAS power. In Chapter 2, using patients from

Columbia-New York Presbyterian (NYP) Hospital, we built and evaluated machine learning



models to identify patients with acute ischemic stroke based on 75 different case-control and

classifier combinations. In chapter 3, we compared two data-driven and unsupervised methods,

non-negative matrix factorization (NMF) and hierarchical poisson factorization, to subtype stroke

patients and determined whether any of the subtypes correlate to stroke severity. In chapter 4, we

estimated the heritability of acute ischemic stroke by treating the patient probabilities assigned by

the machine learning phenotyping models for acute ischemic stroke in chapter 2 as a quantitative

trait and mapping the probabilities to Columbia-NYP EHR-generated pedigrees. We also applied

our machine learning phenotyping algorithm method, which we call QTPhenProxy, to venous

thromboembolism on Columbia eMERGE Consortium patients and ran a genome-wide

association study using the model probabilities as a quantitative trait. Finally, we applied

QTPhenProxy to subjects in the UK Biobank for stroke and 14 other diseases and ran

genome-wide association studies for each disease. We found that our machine learned models

performed well in identifying acute ischemic stroke patients in the Columbia-NYP EHR and in

the UK Biobank. We also found some NMF-derived subtypes that were significantly correlated

with stroke severity. We were underpowered in the eMERGE venous thromboembolism cohort

GWAS and did not recover any known or new variants. Finally, we found that QTPhenProxy

improved the power of GWAS of stroke and several subtypes in the UK Biobank, recovered

known variants, and discovered a new variant that replicates in a previous stroke GWAS. Our

results for QTPhenProxy demonstrate the promise of incorporating large but messy sets of data,

such as the electronic health record, to improve signal in genome-wide association studies.
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Chapter 1: Introduction

Stroke is a leading cause of death and the top cause of disability in the US [1]. Almost 800,000

people in the United States have a stroke every year, and over one sixth of these result in death[2,

3]. In addition, the rate of decline of stroke death has decreased in recent years and even increased

in certain communities, such as younger patients, the Hispanic community, and the south[3, 4]. A

stroke is characterized by an acute focal loss of neurological function and is primarily caused by

loss of blood flow to a specific area of the brain. In 80% of strokes, loss of blood flow is due to a

blockage, which is known as ischemic stroke, while in 20% of strokes, blood loss is due to a leaking

or burst vessel, which is known as a hemorrhagic stroke [5]. There are many identifiable risk fac-

tors for stroke, including various metabolic, cardiovascular, and coagulative diseases, medications,

lifestyle, and demographics. In addition, “triggers” such as pollution, infection, and inflammatory

disorders can precipitate the acute event [5]. Accurate determination of the etiology of disease

is essential for risk stratification and optimal treatment, but this can be difficult as up to 35% of

strokes are of undetermined cause [6, 7]. Most of the unidentified risk, up to 40%, is thought to be

genetic [8]. Initial stroke GWAS found few variants of genome-wide significance with thousands

of participants[9, 8, 10]. The largest stroke genome-wide association study (GWAS) consisted

of a cohort of 520,000 participants, including 67,162 cases [11]. Even with this large number of

cases, the study only found thirty-two genome-wide significant variants for stroke, many fewer

than the hundreds to thousands of variants found for related stroke risk factors [12]. Since stroke

requires both genetic risk factors and environmental stimuli to manifest[5], patients with genetic

predisposition for the disease but without a stroke event would be considered controls. This type

of stringent classification may lead to loss of power [13]. A recent study improved predictability of

acute ischemic stroke by using a polygenic risk score that incorporated known risk factor variants

in addition to known acute ischemic stroke variants [12]. This highlights the potential for incor-
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porating medical data into case assignment to improve genetic signal and reduce information loss

from treating potential genetically susceptible subjects with known risk factors as controls.

Genome-wide association studies were first introduced as an unbiased answer to family linkage

and specific gene studies [14]. Initially, family linkage studies identified heritable diseases that

aggregated within families, but they discovered variants at a scale too small and biased towards

specific genes found within the studied families [13, 15]. From the earliest GWAS, the goal of

finding variants that contribute to disease required identification of as many people with the disease

as possible [14, 16, 17]. These variants, however, only accounted for a portion of heritability[14,

15, 17]. Later studies argue that much of this was due to overly conservative significance thresholds

or causal variants not inherited with the marker single nucleotide polymorphism (SNP)[13, 18,

19]. These causal variants may have been expressed at low frequency, which supports the need to

maximize the sample size and to develop high throughput methods for identifying these cohorts[13,

17, 16].

Therefore, an essential task for genetic studies is to define who has the disease[13]. In a ge-

netic context, it requires choosing the best representation of the genotype, or genetic makeup of the

subject, through the phenotype, or physical manifestation of the genotype[20, 21]. The phenotype

can be described through appearance, characterization, behavior, and acute events stemming from

gene and environment interactions[22]. The field of phenomics and the human phenome project

developed from the recognition that missing heritability could be partially attributed to heterogene-

ity in the phenotype[16, 23]. With cohorts for genetic studies ballooning in size, a high-throughput

and accurate way to phenotype cohorts is essential[23]. High-throughput identification of cases

and controls can be difficult, however, due to time-consuming chart review and incompleteness of

medical records. Current GWAS require a large number of well-adjudicated cases for statistical

power[14, 17]. Convention argues that a cleaner phenotype at appropriate granularity for the study

disease results in a stronger genetic signal[17, 13]. This overlooks patients with a genetic predis-

position for the disease but may not have yet presented with the phenotype. In addition, the stroke

phenotype from individual to individual is heterogeneous, and its description is dependent on the
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data available. For example, stroke manifested in two different patients as hemiplegia and CT

imaging positive for a cerebral artery blockage may be caused by entirely different etiologies of

the disease, such as atrial fibrillation and stasis in the heart versus atherosclerosis. In most research

settings, it can be defined simply as a single International Classification of Diseases (ICD) code

for stroke[24]. A more holistic description of the phenotype can be defined within the electronic

health record, which has a rich assortment of information to describe a patient’s medical timeline.

The electronic health record has a long and successful history of use in genomic research even

though its primary purpose is for clinical coordination and billing[25, 26]. The UK Biobank is a

prospective study of 500,000 adults, aged 40-69, containing comprehensive questionnaires, phys-

ical measurements, imaging, EHR data, genotyping, and exome data[27, 28]. This resource is

openly used worldwide to study the genetics of thousands of diseases, social determinants, and

biological markers[29]. Some limitations of the UK Biobank include lack of visit dates and lack

of diversity within the biobank, where 95% of participants are of European ancestry. This prevents

the incorporation of the medical timeline into patient phenotyping, which is possible in biobanks

directly linking EHR data. In addition, the lack of diversity can lead to missed common and rare

variants found in other ancestral backgrounds[15, 30, 31]. More recent biobanks, such as the All of

Us Research Program in the United States, are aiming to fill the gap in diversity[30]. The electronic

Medical Records and Genomics Network (eMERGE) consortium is a large collaboration across

nine major academic medical centers combining biobanks of patients with their electronic health

record data. They also develop and maintain pheKB, a library of fifty-five rule-based phenotyping

algorithms which have been validated across other sites with a positive predictive value of at least

90%. Their large cross-institution data set and stringent phenotyping have resulted in hundreds of

publications including many successful genome-wide association studies[32, 33, 34, 35]. Some of

the difficulty in replication of phenotypes across sites, however, are due to implementation of the

algorithms. Many require natural language processing and inclusion/exclusion criteria that may

be recorded differently across sites. PheKB algorithms translated into the Observational Health

Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership Common
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Data Model (OMOP CDM) transferred better across institutions over the original phenotype algo-

rithms[36, 37]. The OHDSI OMOP CDM is a world-wide community-driven standardized model

for organizing electronic health record data and mapping the data to vocabularies and terminolo-

gies for research[38]. Major healthcare centers around the world have formatted their EHR data to

the OMOP CDM, leading to observational research studies with hundreds of millions of patients

and over a billion data points[39, 40, 41]. The OMOP CDM provides the base necessary to develop

high-throughput phenotyping within the EHR.

There are biases unique to phenotyping with EHR data since its primary uses are for patient

care and billing. Often, the data are incomplete and missing not at random. Diagnoses codes

are issued and tests ordered when doctors need them, and data completeness depends on patient

interactions with healthcare, such as having insurance or choosing not to seek care [42, 26, 25,

43, 44]. This can lead to a bias in algorithms assessing patient disease risk towards patients who

frequently seek health care[45]. In addition, since only a portion of people with a given disease

seek help, generalizing outcomes from the patients can be problematic[26]. Finally, diagnosis

codes can often be chosen for reimbursement purposes rather than actual diagnosis, and diagnosis

code use can change over time, leading to inaccuracies in phenotyping[43, 25].

Despite these caveats, successful phenotyping has combined specific data domains and vocab-

ularies within the OMOP CDM[36, 37]. The data contains seven domains, including conditions,

procedures, measurements (lab values), drugs (medications), devices, observations (such as social

history), and visits (type of visit, such as inpatient)[46]. Not all domains are populated with every

CDM implementation, but the most common are conditions, procedures, measurements, drugs,

and visits. Within conditions, which represent patient diagnoses, the International Classification of

Disease codes, version 9 and 10 (ICD9 and ICD10) and Systematized Nomenclature of Medicine

(SNOMED) codes are most commonly used[46]. ICD9 and ICD10 codes tend to be more sensitive

over specific, while Current Procedural Terminology (CPT) codes, used for procedures, are more

specific but have low recall across sites[47]. In addition, for diseases with easily detectable symp-

toms, such as stroke, the less likely a false positive diagnosis label will occur[42]. For diseases
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that are diagnosed or confirmed by lab values, the measurement domain is shown to have high

precision, and medications are also a good confirmatory data type[47].

Not only can phenotypes be richly described by the information in the EHR, but high through-

put screening for diseases worth pursuing through GWAS can be performed. Highly heritable

diseases, for example, have a strong genetic susceptibility[48]. Several papers have developed

high-throughput methods for estimating disease heritability without genetic data. Studies have

inferred genetic overlap between disease co-occurrences in millions of patients[49], estimated

high-throughput heritability through building familial relationships through insurance claims[50],

and developed an algorithm that creates EHR-derived pedigrees by inferring familial relationships

through emergency contact information[51]. These methods estimate the heritability of hundreds

of diseases without genetic information and rely on single insurance billing diagnosis codes to phe-

notype the patients. Another study further teased apart genetic versus environmental contribution

to phenotypic variance using insurance claims and phenotyped cases using phecodes, which are a

manually agglomerated group of ICD9 and ICD10 codes to represent a phenotype[52, 53].

The heterogeneous nature of diseases such as stroke is another source of loss of power in

GWAS, suggesting a need to conduct individual genetic studies on disease subtypes[17, 54]. Tra-

ditionally, subtyping a patient requires a time consuming and laborious process of integrating mul-

tiple facets of data, including medical notes, labs, and imaging reports with medical experience

by physicians[55]. There is an opportunity for an unsupervised data-driven subtyping method

to complement the physician-defined approach to phenotyping. The most common unsupervised

subtyping categories are clustering, dimensionality reduction, topological data analysis, and deep

learning[54]. Factorization and dimensionality reduction methods are common data-driven ap-

proaches to identify subtypes[56, 57, 58, 59, 60]. They can model interactions between items while

also de-emphasizing missing data. Non-negative matrix factorization is a dimensionality reduction

method to learn representation of parts. The method imposes non-negative constraints on its fac-

torization, so all components are additive[61]. Mixed membership models such as Latent Dirichlet

Allocation and semi-supervised mixed membership models have identified different disease phe-
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notypes from heterogeneous data in the electronic health record[62, 63]. In addition, Bayesian

factorization methods such as hierarchical Poisson factorization have been used in the past to sub-

type customers for recommender systems because of their ability to capture interactions of a user

with a set of items while also taking into account sparsity of data, large variation in interaction

frequency, and deemphasizing the weight of zeros[64]. Levitin et. al. applied hierarchical Poisson

factorization to determine novel transcriptional patterns of genes in single cell RNA-seq data to

separate different cell types within tissues and predict patient survival from glioblastoma[65].

In addition, deep learning has been applied to the subtyping field. Deep learning uses neural

networks to process large amounts of features and find novel patterns within the data[66]. Denois-

ing autoencoders (DAs) are a type of neural network that reconstructs an input through a hidden

layer, compressing thousands of features, or inputs, to a more compact representation[67, 68]. DAs

have been used to predict disease susceptibility to many different diseases[69], to predict survival

in ALS patients[68], and to successfully separate subtypes of simulated patients[67]. Reducing

phenotypic heterogeneity can improve genetic signal within subtypes[58]. Li et. al[70] found three

novel subtypes of Type 2 diabetes applying topological data analysis to clinical data enriched for

subtype-specific genetic variants. This reinforces the usefulness of subtyping to increase genetic

homogeneity of cohorts.

In this thesis, we explore three aims to improve phenotyping for genetic studies, particularly

when applied to stroke. In Aim 1, we develop a phenotyping algorithm to differentiate between

acute ischemic stroke patients and other similar diseases (Chapter 2). In Aim 2, we compare two

unsupervised learning algorithms to subtype acute ischemic stroke with more granularity and with

less manual labor than current methods (Chapter 3). Finally, in Aim 3, we develop QTPhenProxy, a

quantitative trait proxy that uses the phenotyping algorithms’ probability output from Aim 1 to im-

prove the power of estimating heritability and genome-wide significant variants within Columbia’s

electronic health record and eMERGE data set (Chapter 4) and the UK Biobank (Chapter 5).
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Chapter 2: Comparative analysis, applications, and interpretation of

EHR-based stroke phenotyping methods

2.1 Introduction

Stroke is a complex disease that is a leading cause of death and severe disability for millions

of survivors worldwide[1]. Accurate identification of stroke etiology, which is most commonly

ischemic but encompasses several other causative mechanisms, is essential for risk stratification,

optimal treatment, and support of clinical research. While electronic health records (EHR) are

an emerging resource that can be used to study stroke patients, identification of stroke patient

cohorts using the EHR requires the integration of multiple facets of data, including medical notes,

labs, imaging reports, and medical expertise of neurologists[55]. This process is often manually

performed and time-consuming, and can reveal misclassification errors[71, 55].

One simple approach to identify acute ischemic stroke (AIS) is the diagnosis-code based algo-

rithm created by Tirschwell and Longstreth[24]. Identifying every AIS patient using these criteria,

however, can be difficult due to the inaccuracy and incompleteness of diagnosis recording through

insurance billing[24, 72, 44]. Past studies have shown that the positive predictive value (PPV),

sensitivity, and specificity of identifying stroke using ICD9 codes varies widely depending on

cohort and data available [24, 73, 74, 75, 76, 77, 78]. Additionally, this approach prevents the

identification of AIS patients until after hospital discharge, thereby limiting the clinical usabil-

ity of identification algorithms in time-sensitive situations, such as in-hospital care management,

research protocol enrollment, or acute treatment. Reproducibility and computability of phenotyp-

ing algorithms stem from the use of structured data, standardized terminologies, and rule-based

logic[79]. Phenotyping features from the EHR have been traditionally culled and curated by ex-

perts to manually construct algorithms[80], but machine learning (ML) techniques present the
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potential advantage of automating this process of feature selection and refinement[81, 82, 83, 84].

Recent machine learning approaches have also combined publicly available knowledge sources

with EHR data to facilitate feature curation[85, 86]. Additionally, while case and control pheno-

typing using EHR data has also relied on a small number of expert curated cohorts, recent studies

have demonstrated that ML approaches can identify such cohorts using automated feature selec-

tion and imperfect case definitions in a high-throughput manner[87, 88, 89, 90]. Within these ML

methods, the selection of cases and controls using diagnosis codes can significantly affect model

performance[91]. Feature size can also influence the utility of the model. Structured medical data,

in particular, have hierarchical organization that can be utilized for the grouping of similar features

and have improved classification performance[92, 93]. Finally, interpretation of the ML pheno-

typing model relies on a calibration assessment[94]. Calibration provides a way to understand the

clinical utility of the phenotyping model.

Two stroke phenotyping algorithms have used machine learning to enhance the classification

performance of a diagnosis-code based AIS phenotyping algorithm[77, 78, 95, 96]. Ni et al. man-

ually curated hundreds of features and confirmed that machine learning classifiers outperformed

stroke ICD9 codes and research nurses’ review on all metrics except recall[77]. Imran et al. de-

veloped a knowledge-driven phenotyping algorithm to define a gold standard of stroke cases from

physician review and found that logistic regression trained with only ICD9 codes for acute is-

chemic stroke as features outperformed ICD9 AIS codes defined by Tirschwell and Longstreth

in sensitivity and specificity[78]. While ML models present an opportunity to automate identifi-

cation of AIS patients (i.e. phenotyping) with commonly accessible EHR data and develop new

approaches to etiologic identification and subtyping, the optimal combination of cases and controls

to train such models remains unclear.

Given the limitations of manual and diagnosis code cohort identification, we sought to de-

velop phenotypic classifiers for AIS using machine learning approaches, with the objective of

specifically identifying AIS patients that were missing diagnosis codes. Additionally, consider-

ing the challenge of identifying true controls in the EHR for the purpose of model training, we
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also attempted to determine the optimal grouping of cases and controls by selecting and compar-

ing model discriminatory performance with multiple case-control group combinations. We also

sought to contrast model trained on cases defined by diagnostic codes with manually-curated co-

horts. We also applied key methods to optimize the robustness of these models to missing data, the

calibration to ensure a clinically meaningful model output, and the number of features to improve

generalizability. We then applied the models to all 6.4 million patients in our EHR to estimate the

prevalence of potential stroke patients that do not have ICD codes for AIS. We tested one of our

best-performing models in an independent test set, the UK Biobank, to evaluate its ability to detect

self-reported AIS patients without the requisite ICD codes. Our phenotyping method utilizes ma-

chine learning classifiers with minimal data processing to increase the number of stroke patients

recovered within the EHR and reduces the time and effort needed to find them for research studies.

2.2 Objective

The aim of this chapter is to develop and evaluate a machine learning algorithm to phenotype

ischemic stroke patients in the EHR for research purposes. We hypothesize that the addition of

EHR data will identify features in addition to ICD9 and ICD10 AIS codes that can phenotype

these patients in a data-agnostic manner.

2.3 Methods

2.3.1 Study Design

In this study, we developed several machine learning phenotyping models for AIS using com-

binations of different case and control groups derived from our institution’s EHR data. Use of

Columbia patient data was approved by Columbia’s institutional review board and UK Biobank

data approved with UK Biobank Research Ethics Committee (REC) approval number 16/NW/0274.

Figure 1 shows the overall workflow of training and testing the models, the models’ evaluation,

and its testing in an independent test set.
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2.3.2 Data Sources

We used data from patients in the Columbia University Irving Medical Center Clinical Data

Warehouse (CUIMC CDW), which contains longitudinal health records of 6.4 million patients

from CUIMC’s EHR, spanning 1985-2018. The data include structured medical data such as con-

ditions, procedures, medication orders, lab measurement values, visit type, demographics, and

observations. The data are organized into tables and standardized vocabularies and terminologies

in the format of the Observational Health Data Sciences and Informatics (OHDSI) Observational

Medical Outcomes Partnership Common Data Model (OMOP CDM)[38]. This includes patients

from the CUIMC stroke service (Figure 2.1, Table 2.1) that were part of a larger group of patients

with acute cerebrovascular diseases, were prospectively identified upon admission to New York

Presbyterian Hospital, and recorded as part of daily research activities by a CUIMC stroke physi-

cian between 2011 and 2018. Two researchers (Phyllis Thangaraj (PT) and Benjamin Kummer

(BK)) each manually reviewed 50 patients’ charts for a total of 100 patients from this cohort to

determine baseline false positive rates.

2.3.3 Patient Population

We defined three case groups. We first included all patients from the CUIMC stroke ser-

vice with recorded with AIS (cohort S). We then defined all patients in the CDW that met the

Tirschwell-Longstreth (T-L) diagnosis code criteria for AIS (cohort T), which comprise ICD9

codes 434.x1, 433.x1, 436 (where x is any number), and the code is in the primary diagnostic

position[24]. Our dataset did not specify the diagnostic position of codes. We also included

ICD10 code equivalents, I63.xxx or I67.89, with the ICD10 codes determined from ICD9 from

Centers for Medicaid and Medicare Services (CMS) General Equivalence Mappings[97]. Because

patients with cerebrovascular event diagnosis codes such as transient ischemic attack or migraine

aura with cerebral infarction may have suffered AIS but may not have an attached AIS diagnosis

code, we also created a group of cases with cerebrovascular disease-related ICD codes defined by

the ICD-9-Clinical Modification (CM) Clinical Classifications Software tool (CCS). This includes
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ICD9 codes 430-438 and 346.xx as well as their ICD10 equivalents, I60.xxx-I66.xxx, R29.xxx,

and G43.xxx (cohort C)[98]. We then defined four control groups (Figure 2.1, Table 2.1). First, we

defined a control group of patients without AIS-related diagnosis codes (I). Since cerebrovascular

disease is a major risk factor for stroke[5] and to test a more stringent control definition than that

of group (I), we also defined an additional group without any of the CCS cerebrovascular disease

codes defined in cohort (C). Then, we defined a control set using CCS cerebrovascular disease

diagnosis codes other than AIS (CI). Because multiple clinical entities can present as AIS, we also

defined a group of controls according to diagnosis codes for AIS mimetic diseases (N), includ-

ing hemiplegic migraine (ICD9-CM 346.3), brain tumor (191.xx, 225.0), multiple sclerosis (340),

cerebral hemorrhage (431), and hypoglycemia with coma (251.0). Finally, we identified a control

group culled from a random sample of patients (R).

2.3.4 Model Features

From the CDW, we gathered race, ethnicity, age, sex, diagnostic and procedure insurance

billing codes as well as medication prescriptions for all patients. We dichotomized each feature

based on its presence or absence in the data. Because Systematized Nomenclature of Medicine

(SNOMED) concept IDs perform similarly to ICD9 and ICD10 codes for phenotyping[99, 100],

we mapped diagnoses and procedure features from ICD9, ICD10, and Current Procedural Ter-

minology 4 (CPT4) codes to SNOMED concept IDs and used RxNorm IDs for medication pre-

scriptions. We identified patients with Hispanic ethnicity using an algorithm combining race and

ethnicity codes[51]. The most recent diagnosis in the medical record served as the age end point,

and we dichotomized age as greater than or equal or less than 50 years. Importantly, we excluded

from our feature set any diagnosis codes that were used in any case or control definitions. Because

approximately 5 million patients exist in the CUIMC CDW without a cerebrovascular disease di-

agnosis code, there is a large imbalance between cases and controls, which can lead to a machine
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Variable Identification N Samples

Total Patients CUIMC CDW Person ID 6,377,222
Diagnosis Codes ICD9,ICD10,SNOMED 140,300,457
Procedure Codes ICD9,ICD10,CPT,SNOMED 64,383,775
Prescription Orders RxNorm 40,759,814
Training Categories

Stroke Service Cases (S) Seen by NYP Stroke Service 4,484
Tirschwell Criteria AIS Cases (T) ICD9:434.x1,433.x1,ICD10:I63.xxx 79,306
CCS Cerebrovascular Cases (C) ICD9:346.6x,430,431,432.x,433.xx 181,698
AIS Mimetic Diseases Controls (N) ICD9:191.x,225.x,340,250.0,431 8,438
No Stroke Controls (I) No (T) Codes 5,243,646
No Cerebrovascular Disease Controls (C) No (C) Codes 5,149,975
Cerebrovascular disease, w/o AIS Controls

(CI)
(T) codes, No (C) codes 102,435

Random set of patients Controls (R) With >=1 ICD9 or ICD10 diag-
nosis code

5,396,172

UK Biobank
Total Subjects With diagnoses codes, proce-

dure codes, medication pre-
scriptions, or demographics

384,208

Tirschwell Criteria AIS Cases (T) ICD10:I63.xxx,I64.x,(41202,
41204)

4,922

No Cerebrovascular Disease Controls (C) No (C) Codes (41202, 41204) 312,500
Subjects with AIS but no diagnosis codes Date of AIS (42008) - (T) cases 163

Table 2.1: Select Structured Data and Sample Case/Controls for models available in CUIMC
Common Data Warehouse.

learning classifier that undersamples cases[91]. By randomly sampling controls in a 1:1 case to

control ratio, we created a balanced dataset. In addition, we set the maximum sample size to 16,000

patients in order to control the size of the feature set.

2.3.5 Model development

Using all 15 case-control combinations, we trained 75 models using logistic regression classi-

fiers with L1 and elastic net regularization as well as random forest, AdaBoost, gradient boosting,

and neural network classifiers on the gathered features. We chose these classifiers to compare a

variety of feature-to-outcome relationships: linear (logistic regression), ensemble (random forest,
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Figure 2.1: Schematic of Model Training, Testing, Evaluation, and Application to UK
Biobank. Cases: 1) Physician curated, stroke service patients (S), 2) Patients with stroke in-
surance billing codes (I), 3) Patients with cerebrovascular disease billing codes (C) Controls: 1)
Stroke mimetic neurological diseases (N), 2) Sample of patients in EHR without stroke code (I),
3) Sample of patients in EHR without cerebrovascular disease codes (C), 4) Sample of patients
in EHR with cerebrovascular disease codes but without stroke codes or not gold standard (CI) 5)
Random sample in EHR (R). Case: Control ratio was 1:1 and models included Random Forest
(RF), Logistic Regression with L1 penalty (LR), Neural Network (NN), Gradient Boosting (GB),
Logistic Regression with Elastic Net Penalty (EN) and Adaboost (AB). Area Under the Receiver
Operating Curve (AUROC), Area under the Precision Recall Curve (AUPRC), Sensitivity (Sens),
Specificity (Spec), Positive Predictive Value (PPV), Negative Predictive Value (NPV).

AdaBoost, gradient boosting), and non-linear (neural network). We tuned the models’ hyperpa-

rameters using 10-fold cross validation. We ran a grid search for the hyperparameters of maximum

tree depth, number of estimators, L1-L2 ratio, penalty parameters, subsampling rate, learning rate,

momentum, and dropout. Outside of the default parameters, we used a max tree depth of 100,

1000 estimators, and square root maximum feature number for the random forest models. For L1

Logistic regression, we used an inverse of regularization strength of 0.1, and for elastic net regular-

ization, we used a penalty parameter of 0.01 and L1-L2 ratio parameter of .01, and "log" loss. For

the boosting algorithms, we used a learning rate of 0.1, 1000 estimators, and for gradient boosting

we also subsampled at a rate of 0.5, max depth as 10, and square root maximum feature number.

The neural network model was comprised of two layers, the first with 64 neurons, relu activator,
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and l1 kernel regularizer. The second layer contained two neurons and a softmax activator. Learn-

ing was compiled by stochastic gradient descent with a learning rate of 0.01 and momentum of 0.9,

nesterov=True. We included a dropout of data in the first layer at a rate of 0.3. Loss was calculated

by categorical cross-entropy. We then determined a probability threshold for each model from the

training set. Within the validation set of each training fold, controls were bootstrapped to form

a 100:1 control to case ratio to represent the prevalence of AIS in the population[1]. Precision

and recall were then calculated from the bootstrapped set. To determine the optimal threshold to

maximize precision while maintaining a high recall, we calculated maximum F scores at different

βs using the following equation:

Fβ = (1 + β2) ∗
precision ∗ recall

(β2 ∗ precision) + recall

where β = 1.0, 0.5, 0.25, and 0.125. Using the probability threshold determined from cross-fold

validation, we then calculated the maximum F1 score, sensitivity, specificity, positive predictive

value, negative predictive value, and precision on a holdout set of 1000 patients from the stroke

service and 100,000 non-overlapping randomly selected patients. We chose this test ratio to imitate

the prevalence of AIS in the general population. The models were evaluated on the test set with area

under the receiver operating curve (AUROC) and average precision score (AP), a proxy for area

under the precision-recall curve. All models were programmed using the Python sklearn scientific

computing package (Python Software Foundation, www.python.org)[101]. We then aggregated

common features found in the top ten in importance or beta coefficient weight for each model,

and we evaluated the contribution of each feature to each model by comparing its prevalence in

the cases with its prevalence in the controls and as a function of its importance (or weight) in the

model.
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2.3.6 Robustness of model

To test the robustness of the models, we trained on 100%, 90%, 70%, 50%, 30%, 10%, 5%, 1%,

0.5%, and 0.1% of the original training set. We then evaluated the performance of each training

size on the test set through AUROC and AP. We resampled the set 10 times at each training size

and averaged the results.

2.3.7 Calibration

The classifiers assign a probability of being an AIS case to each patient. In order to interpret

the meaning of these model probabilities and their applicability to other patients, we developed an

empirical calibration method for the models. For each training fold during 10-fold cross validation,

we first sorted the probabilities by value. We then averaged a bin of 100 patients intervals based on

their assigned probability (predicted probability). Within each bin, we calculated the proportion of

cases (actual probability). We repeated this sliding bin, averaging for every 10 patients, creating an

empirical function between the training set predicted probabilities and actual probabilities averaged

across training folds. We then repeated the same averaging of predicted and actual probabilities for

the sorted test set. We calibrated the test set predicted probabilities using the empirical function

generated from the training folds. To evaluate calibration success, particularly for identifying

cases, we calculated the root mean squared error (RMSE) of all calibrated test probabilities larger

than 0.1. We made this cut off because many of the poorly calibrated models have many points

near zero, giving a false low RMSE score. Models without any calibrated probabilities larger than

0.1 were given an RMSE of ’N/A’.

2.3.8 Feature collapsing

Reduction of feature size is also essential for reproducibility of the models in other hospital

settings. Our approach collapses features together by utilizing the hierarchical structure of ICD9,

ICD10, and CPT4 diagnosis codes and procedure codes, and ATC ingredient definitions for medi-

cations. We mapped ICD9 and ICD10 diagnosis and procedure codes and drug prescription order
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ingredients to SNOMED CT concept IDs. About 40% of the features could not be mapped auto-

matically to SNOMED concepts, so we kept codes and ingredients that did not have concept IDs as

separate features. We then mapped ICD9 codes to ICD10 codes using General Equivalence Map-

pings [97]. We mapped all ICD9 and ICD10 diagnosis and procedure codes and CPT4 procedure

codes to the Clinical Classifications System defined by the Health Cost and Utilization Project [98,

102, 103, 104, 105]. The CCS has flat level codes (most granular), and multilevel codes level 1-3

(least to most granular). We mapped all codes to the flat, multilevel level 1 and multilevel level 2

codes. We then mapped drug prescription ingredients to ATC codes by matching corresponding

RxNorm codes to ATC codes. Some drugs required manual mapping to ATC codes. All in all,

we successfully mapped 70% of 45 million prescription orders to ATC codes. We then reduced

prescription order features to the five different levels of ATC, which include, in increasing order

of specificity, anatomical systems (14), therapeutic subgroups (78), pharmacological subgroups

(159), chemical subgroups (364), and chemical substances (895). We then reran the training sets

with collapsed features in three combinations: flat CCS level with chemical substrates (the most

granular), multilevel CCS level 2 with pharmacological subgroups, and multilevel CCS level 1

with anatomical systems (the least granular). We chose these pairings to maintain similar ratios of

drugs and ICD9 and ICD10 codes. We evaluated the robustness of hierarchical feature collapsing

using the method described above. We then compared performance across levels of granularity

using AUROC and average precision score, which is a proxy for area under the precision-recall

curve.

2.3.9 Generalized linear model to determine feature category contribution to models

To further explore the contribution of conditions, procedures, drugs, and demographics, to the

models’ classification performance, we ran a multivariate generalized linear model (GLM) on the

stroke probabilities generated from each feature category. We retrained the models solely using

features from each category. We also added a fifth category, which comprised the ICD9 codes

that make up the T-L criteria and ICD10 equivalent codes (see Table 2.1). We added this category
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to compare the performance of the T-L criteria to the other features in AIS patient classification

because our models do not include the T-L criteria in training. We then generated AIS probabil-

ities for the holdout test set using each of the retrained models. Finally, we combined the model

probabilities from each of the five models and ran the generalized linear model with binomial dis-

tribution to determine which categories significantly (p < .05) contributed to case determination

and their corresponding beta coefficients.

2.3.10 Internal validation using all EHR patients

To identify the number of patients classified as having AIS in our institutional EHR, we applied

each of the 75 models to the entire patient population in the CUIMC CDW with at least one

diagnosis code. We chose a probability threshold based on the maximum F1 score determined for

each model from the training set. We also determined the percentage of patients that had AIS ICD9

codes as defined by T-L criteria and associated ICD10 codes.

2.3.11 External validation of acute ischemic stroke patient classification in the UK Biobank

The UK Biobank is a prospective health study of over 500,000 participants, ages 40-69, with

comprehensive EHR and genetic data[106]. Given that this dataset contains 4,922 patients with an

AIS related ICD10 code, similar to our T case cohort, and 163 patients without AIS related ICD10

codes, the UK Biobank can evaluate our machine learning models’ ability to recover potential AIS

patients that lack AIS-related ICD10 codes. One difference between the UK Biobank definition

of the AIS related ICD10 codes and our definition is their addition of code I64, which translates

as “Stroke, not specified as haemorrhage or infarction”. We chose the most accurate and robust

case-control combination from our models (cases defined by the T-L AIS codes (T) and controls

without codes for cerebrovascular disease (C) in a 1:1 case-control ratio as our training set) to

train the phenotyping model using conditions specified by ICD10 codes, procedures specified by

OCPS4 codes, medications specified by RxNorm codes, and demographics as features, excluding

features that were used to create the training and testing cohorts. We trained on half of the patients
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with AIS related ICD10 codes, and then tested our models on the rest of the UK Biobank data,

which included AIS cases without AIS ICD10 codes and the other half of the patients with AIS

related ICD10 codes. We added these patients to improve the power of detecting cases, and we

removed the AIS related ICD10 codes from our feature set to prevent recovery of patients due to

these codes. We resampled the control set 50 times and evaluated the performance of the algorithm

through AUROC, AP, and precision at the top 50, 100, 500 and 2,624 patients (ordered by model

probability).

2.4 Results

2.4.1 Study cohort

Table 1 presents the data and the total number of patients available for each set of cases and

controls used in the training and internal and external validation parts of this study. Out of the

CUIMC EHR, which has a total of 6.4 million patients, we extracted 4,844 stroke service patients,

which we found to have a 4-16% false positive rate for stroke. Table 2.2 presents demographic

characteristics.

Table 2.2: Demographics of Case-control cohorts

2.4.2 Algorithm Performance

We trained 75 models using all combinations of cases, controls, and model types after exclud-

ing 15 neural network models due to poor performance. Logistic regression classifiers with L1
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Figure 2.2: Performance of select models on holdout test set ((a): AUROC, (b): F1).(LR) logistic
regression with l1 penalty, (RF) random forest, (AB) AdaBoost, (GB) gradient boosting, (EN)
logistic regression with elastic net penalty. Different combinations of cases and controls are shown
on the y-axis. Cases (first letter) may be one of cerebrovascular (C), T-L (T), or Stroke Service
(S). Controls (second and third letters) may be one of random (R), cerebrovascular disease but no
AIS code (CI), no cerebrovascular disease (C), no AIS code (I), or a stroke mimetic disease (N),
see Method 2.3.3 and Table 2.6 for definitions of sets. Threshold to compute the F1 score on the
testing set was chosen as the threshold that yielded the maximum F1 in cross-validation on the
training set, see Method 2.3.5

penalty gave the best AUROC performance (0.913-0.997) and the best average precision score

(0.662-0.969), followed by logistic regression classifiers with elastic net penalty (Figure 2.2a).

Across all classifier types, the TC model had the best average F1 score (0.832±0.0383), which

is a measure of the harmonic mean of precision and recall. Logistic regression models with L1

penalty (LR) and Elastic Net penalty (EN) had the best classifier average F1 score (0.705 ± 0.146

and 0.710 ± 0.134 respectively) (Figure 2.2b). Stroke service cases gave the highest average

precision (0.932 ± 0.0536), while cases identified through AIS codes and controls without cere-

brovascular disease or the AIS codes (TC, TI) gave high precision as well (0.896 ± 0.0488 and

0.918 ± 0.0316, respectively). The sensitivity of the models ranged widely, between 0.18 and

0.96, while specificity narrowly ranged between 0.993-1.0 (Table 2.3). Precision at top 50 and 100

patient probabilities was very high, 0.99-1.00, for all classifiers except EN. Precision at top 500

patient probabilities was high except for the TCI, TR, CN, CCI, and CR models (Table 2.4).
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Table 2.3: Sensitivity, specificity, positive predictive value, and negative predictive value of
models on holdout test set. See Table 2.6 for case-control, model, and evaluator abbreviations’
definitions. Blue values > 0.85, yellow values between 0.65 and 0.85, red values < 0.65.

Table 2.4: Precision at top 50, 100, and number of known cases for each classifier. Blue values
> 0.99, yellow values between 0.9 and 0.99, orange values between 0.7 and 0.9, red values < 0.7.

2.4.3 Feature importances

We aggregated common features found in the top ten in importance or beta coefficient weight

for each model, as seen in Figure 2.3A. We found the most commonly chosen features were pro-

cedures used in evaluation of AIS, including extra and intra-cranial arterial scans, CT scans and

MRIs of the brain, and MR angiography. We also found age over 50 to be a top common demo-

graphic feature, and Aspirin and atorvastatin (a cholesterol lowering medication) to be important

medication features. Top diagnosis features included unspecified essential hypertension, history of

transient ischemic attack or stroke without residual effect, pulmonary congestion and hypostasis,

convulsions, and iatrogenic cerebrovascular infarction or hemorrhage. We also evaluated the con-

tribution of each feature to each model by comparing its prevalence in the cases with its prevalence

in the controls and as a function of its importance (or weight) in the model. Figure 2.3B plots
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one of the 75 models, TC case-control combination with an adaboost classifier. We found that

all 75 models relied on incremental contributions from many different features (figs. 2.3 and 2.24

to 2.38).

Feature (SNOMED ID) 
% 

Models 

Ave. 

Freq. 

Cases  

Ave. 

Freq. 

Controls 

CT head or brain; no contrast (2211327) 64% 54% 14% 

Age > 50 57% 85% 50% 

Duplex scan of extracranial arteries; bilateral (2313975) 55% 28% 8% 

Aspirin (1112807) 44% 61% 18% 

MRI, Brain and Brain stem; no contrast (2211351)  37% 36% 7% 

Transcranial Doppler study intracranial arteries (2313977) 33% 12% 1% 

Atorvostatin (1545958) 32% 48% 11% 

Unspecified essential hypertension (44821949) 31% 64% 26% 

MR angiography, neck, no contrast (2211348) 27% 55% 4% 

Level IV- Surgical pathology, gross, and microscopic… 

(2213283) 
27% 28% 24% 

Pulmonary congestion and hypostasis (44825477) 20% 30% 3% 

History of TIA or stroke w/o residual effect (45576200) 19% 6% 0.7% 

Convulsions (44823442) 16% 3% 2% 

Iatrogenic cerebrovascular infarction or hemorrhage (44834124) 13% 3% 0.3% 

!

A B

Feature with  

importance

Feature with 

no importance

Figure 2.3: A) Common top 10 features in the models,(B) Prevalence of features in cases vs
controls in the TC AB model. (A) After each of the 75 models were trained, we counted the
number of times each feature was represented as one of the top ten by absolute coefficient weight,
for methods like logistic regression, or by feature importance, for methods like random forest.
Above are features from this analysis along with the proportion of models in which they were in
the top ten (% Models), the average frequency in the cases (Ave. Freq. Cases) and the average
frequency in the controls (Ave. Freq. Controls). (B) Axes were on a logarithmic scale. Increasing
size of blue dot correlates with higher feature importance or beta coefficient weight, depending on
the classifier type. Gray dots are features with zero importance.

2.4.4 Feature reduction and subsequent algorithm performance.

The number of features of the models ranged from 22,000-35,500 depending on case-control

combination and classifier type. We evaluated the performance of collapsing features by ICD9

and ICD10 and Anatomical Therapeutic Chemical Classification System (ATC) code hierarchy,

reducing the number of features per model to 72-1500 features, depending on the class size and

collapsing level (see Method 2.3.8). As seen in Figure 2.4, we found a 9-27% reduction in AUROC

performance, compared to a 90-94% reduction in average precision score.
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C D

Figure 2.4: Performance of models at increasing level of feature hierarchical collapse. Logistic
regression with L1 penalty (LR), Logistic Regression with elastic net penalty (EN), random forest
(RF), AdaBoost (AB), gradient boosting (GB), and a two-layer neural network (NN). (a) The area
under the receiver operating characteristic curve (AUROC) for each of the models versus the level
of abstract with ‘First’ being the lowest level of abstraction and ‘Third’ being the highest. (b) AP,
annotation described in (a).
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2.4.5 Calibration

We calibrated the models to the training set results to produce meaningful probability estimates

(See Method 2.3.5, Figure 2.5 and supplementary material). We found a wide range of success

in calibration of the models. Uncalibrated, the AdaBoost classifier produced a narrow range of

probabilities, between 0.4 and 0.6, while the other models ran a range of probabilities from 0 to

1. On average, test set calibration of the AdaBoost models had the lowest root mean squared

error (RMSE). The AdaBoost models with controls without cerebrovascular disease codes (C)

showed the lowest RMSE for each respective case set (RMSE=0.0917 (SC), 0.1212 (TC), and

0.1779 (CC)). Models with no calibrated predicted probabilities above 0.1 were given an RMSE

of N/A, and this applied to 23 of the models. These models mostly had a case set of patients

with any cerebrovascular disease code (C) or used a gradient boosting classifier. Notably, the

logistic regression model with L1 penalty with S cases and random (R) controls or controls with

cerebrovascular disease but no stroke (CI) had uncalibrated test set probabilities with low RMSE,

but high RMSE after calibration (see figure 2.12, figure 2.13).

2.4.6 Robustness

We evaluated the robustness of the models to increasingly smaller training sets (Figure 2.6,

2.7). When stratified by classifier type, all classifier types except AdaBoost maintained at least

80% of its AUROC performance with 1% of the training size (70-160 samples) and maintained at

least 70% of its AP performance with 5% of the training size (350-800 samples). When stratified

by case, models with stroke service cases (S) maintained at least 96% of its AUROC performance

with 1% of the training size (∼70 samples) and maintained at least 94% of its AP performance

with 5% of the training size (∼350 samples). Other cases (T, C) maintained at least 92% of its AU-

ROC performance and 77% of its AP performance with 5% of the training size (∼350 samples).

When stratified by control, models with stroke mimetic controls (N) maintained at least 99% of

its AUROC performance and 92% of its AP performance with 5% of the training size (350-635

samples). Random patient controls (R) maintained 88% of its AUROC performance and 75% of
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Figure 2.5: Classifier type with stroke service cases and without cerebrovascular disease (SC)
case-control combination varies in calibration success between stroke score, or model prob-
ability, and actual proportion of patients at each probability. Top panel plots the proportion
of stroke case patients within a bin of 100 patients with similar stroke scores for models trained
with stroke service cases and controls without cerebrovascular disease ICD9 or 10 codes. The
black circles plot the mean test stroke score across all training set folds, while the blue circles plot
the training fold stroke scores combined. Classifier type varies from left to right:Random Forest
(RF), AdaBoost (AB), Logistic Regression with L1 penalty (LR), Gradient Boosting (GB), Logis-
tic regression with elastic net penalty (EN). Bottom panel plots the proportion of stroke patients
within a bin of 100 test set patients with similar stroke scores versus the calibrated test scores at
specific scores rounded to the nearest thousandth (Black dots). The test scores are calibrated from
an empirical distribution determined from the training set 2.3.7. The blue dots plot the proportion
of stroke patients within a bin of 100 bootstrapped training set patients with similar stroke scores
versus the calibrated training set scores rounded to the nearest thousandth. The light grey dots
show perfect calibration.

its AP performance with 5% of the training size (350-800 samples). Controls without T-L AIS

codes (I) maintained at least 97% of its AUROC performance and 91% of its AP performance with

1% of the training size (70-160 samples) and 5% of the training size (350-800 samples), respec-

tively. Controls without cerebrovascular disease codes (C) maintained at least 91% of its AUROC

performance and 92% of its AP performance with 0.5% of the training size (35-80 samples) and

5% of the training size (350-800 samples), respectively. Finally, controls with cerebrovascular dis-

ease but without T-L AIS codes (CI) maintained at least 91% of its AUROC performance and 91%

of its AP performance with 5% of the training size (700-1600 samples) and 10% of the training

(1400-3200 samples), respectively. The SI case-control combination and EN classifier type model

was removed from Figure 2.6,2.7 and the above summary because of very high standard deviation
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(125-150% of value) that obscured the trends of the other models.
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Figure 2.6: Robustness of models. Top: Normalized area under the receiver operating curve
(AUROC) across all case-control combinations. A: stratified by classifier type (LR, RF, AB,
GB, and EN), B: stratified by case type (first letter S,T,C), C: stratified by control type (second and
third letters: N, R, I,C,CI). Bottom: Normalized Average precision score (AP) values across all
case-control combinations, D: stratified by classifier type (LR, RF, AB, GB, and EN, E: stratified
by case type (first letter S,T,C), F: stratified by control type (second and third letters: N, R, I,C,CI).
Neural Network Models and EN GI model were removed from normalized graphs due to high
variance and obfuscation of other models’ trends.

2.4.7 Feature category contribution to models

We trained models on individual feature type categories (procedures, medications, conditions,

and T-L AIS conditions) and compared their contributions to model fit using nested linear models

(Method 2.3.9). We found that procedures contributed the most to model probabilities (Figure

2.8). 89% of the generalized linear model (GLM) models had a significant (p < 0.05) coefficient

weight for the procedure feature category, followed by medication orders, which made a significant

contribution in 59% of the models. The T-L AIS codes feature category, notably, was significant in

17% of the models. The beta coefficient of the T-L category was 2-20 times larger than the other

category coefficients.
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Figure 2.7: Robustness of models. Top panel, Left to Right: Area under the receiver operating
curve (AUROC) across all case-control combinations, A: stratified by classifier type (LR, RF, AB,
GB, and EN), B: AUROC across all models stratified by case type (first letter: S, T, C), C: AUROC
across all case-control combinations, stratified by control type (second and third letters: N, R,
I,C,CI). Bottom Panel, left to right: D: Average precision score (AP) values across all case-control
combinations, stratified by model, E: AP across all models stratified by case type, F AP across all
models stratified by control type. Neural Network Models and EN GI model were removed from
normalized graphs due to high variance and obfuscation of other models’ trends.

2.4.8 Internal validation in institutional EHR

We applied our models to the entire CUIMC EHR to estimate the prevalence of AIS patients

(Method 2.3.10). We trained 75 models using 15 case-control combinations and 5 classifier types

and then applied the models to the entire CUIMC EHR with at least one diagnosis code, totaling

5,324,725-5,315,923 patients depending on the case/control set. Based on the thresholds defined by

the maximum F1 score from the training set (see Method 2.3.5), we determined the prevalence of

AIS patients estimated in the EHR by each model. From these proposed cases, we also calculated

the proportion of patients with an ICD9 or ICD10 code for AIS defined by T-L. We found that

the results varied widely across models, but most predicted that a prevalence between 0.2-2% of

patients in the EHR were AIS patients. The models with controls with cerebrovascular disease

codes but no AIS codes predicted the lowest prevalence of AIS patients, and found 50.3-100%

26



A B

DC

Figure 2.8: Feature category contribution to model fits. Top panel Left to right: A shows the
total number of models with a significant coefficient weight for each feature category, stratified by
classifier type. B shows the value of the significant coefficient weights, stratified by classifier type.
Bottom panel Left to right: C shows the total number of models with a significant coefficient weight
for each feature category, stratified by case-control type. D shows the value of the significant
coefficient weights, stratified by case-control type. TCI Random Forest model and CCI EN model
had significant coefficients in all categories, and all of these weights were greater than 10E14, so
they would be plotted beyond the scope of the y axis in B and D.
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of the proposed patients had AIS diagnosis codes. The models with the best performance and

robustness, 1) stroke service cases and controls without cerebrovascular disease codes and 2) cases

with AIS codes and controls without cerebrovascular disease codes with 1) Logistic Regression and

L1 Penalty classifier and 2) Adaboost classifier, had sensitivities between 0.822-0.959, specificities

0.994-0.999, and estimated AIS prevalence in the EHR ranging between 1.3-2.0% (see Table 2.3,

Table 2.5). Within these proposed AIS patients, 37.2-47.2% had an AIS diagnosis code (see Table

2.5).

Table 2.5: Prevalence of acute ischemic stroke patients identified by each classifier across the
EHR and proportion of those patients with T-L criteria. Prev=prevalence. See Table 2.6 for
case-control and model abbreviations’ definitions.

2.4.9 External validation of acute ischemic stroke patient classification in the UK Biobank

We evaluated the performance of the TC models to identify 2,624 patients without AIS ICD10

codes. As seen in Figure 2.9, the top 50, 100, 500, and 2,624 probabilities had a precision of over

29%, and up to 80%. Since within the test set only 0.5% of the patients had AIS, this translates to

a 60-150-fold increase in AIS detection over random choice.
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Figure 2.9: Precision-fold over random sampling of acute ischemic stroke cases without re-
lated ICD10 codes at top 50, 100, 500, and 2,624 patient probabilities assigned by machine
learning algorithms. With 95% confidence intervals in error bars. See 2.6 for model abbrevia-
tions’ definitions.

2.5 Discussion

2.5.1 Machine learned models are able to identify acute ischemic stroke patients without direct

evidence.

Using a feature-agnostic, data-driven approach with minimal data transformation, we devel-

oped models that identify acute ischemic stroke (AIS) patients from commonly-accessible EHR

data at the time of patient hospitalization without making use of AIS-related ICD9 and ICD10

codes as defined by Tirschwell and Longstreth. In demonstrating that AIS patients can be recov-

ered from other EHR-available structured clinical features without AIS codes, this approach is

in contrast to previous machine learning phenotyping algorithms, which have relied on manually
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curated features or used AIS-related diagnosis codes as the sole nonzero features in their models.

[77, 78, 24]. We show that AIS patients can be recovered from other EHR-available structured

clinical features excluding the T-L criteria.

2.5.2 Case and control choices are important for acute ischemic stroke phenotyping.

Case-control selection for phenotyping algorithms can be challenging to identify and define

given the richness of available EHR data. From the sparsity of diagnosis codes in the EHR, it fol-

lows that patients lacking an AIS-related diagnosis code may not always be considered a control in

stroke cohorts. Similarly, it is difficult to determine whether patients with cerebrovascular diseases,

which can serve as risk factors for AIS, or share genetic and pathophysiologic underpinnings with

AIS, should be considered controls. Additionally, due to the prevalence of AIS mimics, cohort

definitions based on diagnosis code criteria may be unreliable. In light of the problems in defining

patient cohorts from EHR data, we found marked differences in classifying performance across

15 different case-control training sets. While training with cases from the CUIMC stroke service

identified stroke patients most accurately and with the highest precision and recall, we also found

that training with cases identified from AIS codes with controls from either 1) no cerebrovascular

disease or 2) no AIS codes afforded high precision. These findings suggest that a manually curated

cohort may not be necessary to train the phenotyping models, and the AIS codes may be enough to

define a training set. Using these models, we also increased our AIS patient cohort by 60% across

the EHR, suggesting that the AIS codes themselves are not sufficient to identify all AIS patients.

2.5.3 Procedures serve as a proxy for acute ischemic stroke diagnosis codes in model features.

We found that stroke evaluation procedures, such as a CT scan or MRI, were important features

in many of the models. Since none of these models use AIS diagnosis codes as features, this

suggests that procedures may serve as proxies for AIS cohort identification. In some cases, the

AIS code will only be added during outpatient follow up. For example, in the stroke service set,

13.5% of cases did not have AIS codes in the inpatient setting but did in the outpatient setting,
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and 90% of these patients had had a CT scan of the head. We found that procedures provided

a significant contribution (p < .05) to patient classification in 89% of the models, while the T-L

diagnosis codes provided a significant contribution in 17% of the models (though the T-L beta

coefficient was 2-20 times higher than the other categories). This suggests that procedures are

important proxy features for the T-L AIS diagnosis codes (Figure 2.3).

2.5.4 Other diagnosis codes may be useful for phenotyping acute ischemic stroke.

In addition, iatrogenic cerebrovascular infarction or hemorrhage (SNOMED ID 44834124,

ICD9 997.02) was found to be a top feature and is a code not within the cerebrovascular infarction

ICD9 code class. Although this code does not distinguish between an ischemic and hemorrhagic

stroke, it was found in 4% of cases and could be a useful addition for AIS cohort identification pur-

poses. Other conditions that were highlighted by the models include hemiplegia and convulsions.

This is consistent with features that may be coded during initial inpatient evaluation for a stroke.

In some cases, the actual AIS will only be coded during outpatient followup.

2.5.5 Models showed robustness to reduction of training set size, but not with code-hierarchy-

based feature reduction.

We found that as measured by AUROC and AP, discriminatory performance of the random

forest, logistic regression with L1 and elastic net penalties, and gradient boosting models was

robust, even when up to 95% of the training set was removed. These findings showed that a

training set size as small as 70-350 samples can maintain high performance, depending on the

model. However, reducing feature set size by collapsing with CCS and ATC hierarchy resulted

in large drops in performance, most likely due to the 95-99% drop in feature set size and high

level description of the features. This suggests that the feature reduction by hierarchical collapse

trains with excessively high-level features, leading to unsuccessful AIS identification. Feature size

reduction of up to 60% through training set size reduction, however, maintained high performance

of the models.
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2.5.6 Calibration using an empirical function differentiates the models and may identify addi-

tional control sets.

We calibrated the output of the models so that the predicted probability could be meaningfully

interpreted (see Method 2.3.7). After recalibration, the AdaBoost classifier type, in particular,had

the lowest root mean squared error (RMSE) of probabilities predicted. AdaBoost models that were

trained with controls without cerebrovascular disease produced the lowest RMSE. This suggests

the need for a more stringent definition of controls than simply no AIS code diagnosis. AdaBoost

and logistic regression models trained on stroke service patients as cases and stroke mimics as

controls also performed well and showcases another important control set to consider. Some case-

control sets, namely stroke service cases with random patients as controls and cerebrovascular

disease without AIS codes as controls produced well-calibrated test sets before calibration by the

boot-strapped training set but poor calibration in testing. This suggests that our training set may

have over-weighted the importance of the controls. In addition, we evaluate the calibration perfor-

mance based on the RMSE of the calibrated test set, when in the future we would like to evaluate

based on the training set. Our study shows that calibration potential of each model may better

discriminate model success for studies with a large control:case ratio than traditional evaluation

methods such as AUROC.

2.5.7 Models can identify a large number of stroke patients without acute ischemic stroke diag-

nosis codes.

Our results from traditional model performance and robustness evaluations show that our best

machine learning phenotyping algorithm used Logistic Regression with L1 penalty or AdaBoost

classifiers trained with controls without any cerebrovascular disease-related codes and a stroke

service case population. However, we found that a similar model performed comparably well

using cases identified by AIS-related diagnosis codes, suggesting that these models do not require

manual case curation for high performance. In addition, our validation study in the UK Biobank

detected AIS patients without ICD10 codes up to 150-fold better than random selection.
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2.5.8 Limitations

This study has several limitations. First, we relied on noisy labels and proxies for training our

models, as evidenced by the false positive rate of 4-16% that was determined by manual review.

Without a gold standard set of cases, model performance is difficult to definitively evaluate. Sec-

ond, we used only structured features contained within standard terminologies across the patients’

entire timeline and did not use clinical notes. While clinical notes may contain much highly rele-

vant information, they may also give rise to less reproducible and generalizable feature sets. Ad-

ditionally, each feature contributed incrementally to high performance of the models and required

minimal processing to acquire. Third, due to limitations of time and computational complexity,

we did not exhaustively explore all possible combinations of cases and controls, including other

potential AIS mimetic diseases. Despite these limitations, precision in the internal validation using

the held-out set was high, and when applied to an external validation cohort, the developed models

improved detection of AIS patients between 60 and 150-fold over random patient identification.

Fourth, we did not study clinical implementation of the models. However, the discriminatory abil-

ity of the classifiers in the external validation suggest that although these models have not been

implemented clinically, they may potentially be useful for improving the power of existing clinical

and research study cohorts.

2.5.9 Strengths

Our study benefits from several strengths. First, to address the current deficiencies in develop-

ing phenotyping algorithms, we developed an approach that demonstrates comparable discrimina-

tory ability of identifying patients with AIS to past methods but has the added benefit of using EHR

data that is generally available during inpatient hospitalization. Second, our model features were

composed of structured data that encompass a larger feature variety than purely ICD-code based

algorithms. Third, because our model incorporated structured data from standard terminologies, it

may be generalizable to other health systems outside CUIMC, whereas recent studies have relied

on manually curated feature sets[77]. Fourth, we examined several different combinations of cases,
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controls and classifiers for the purposes of training phenotyping models. Finally, our phenotype

classifiers assign probability of having had an AIS, which moves beyond binary classification of

patients to develop a more granular description of patient’s disease state.

2.6 Conclusions and future directions

In addition to research tasks such as cohort identification, future models could focus on timely

interventions such as care planning prior to discharge and risk stratification. We showed that struc-

tured data may be sufficiently accurate for classification, allowing for widespread usability of the

algorithm. We also demonstrated the potential for using machine learning classifiers for cohort

identification, which achieve high performance with many features acquired through minimal pro-

cessing. In addition, patient cohorts derived using AIS diagnosis codes may obviate the need for

manually-curated cohorts of patients with AIS, and procedure codes may be useful in identifying

patients with AIS that may not have been coded with AIS-related diagnosis codes. Specifically, our

phenotyping model aims to place patients on a spectrum of being a stroke patient. The probabil-

ity represents patients along this spectrum including those with direct evidence of stroke, patients

who have predisposition to stroke but have not experienced the environmental trigger leading to

stroke, patients with some risk factors for stroke but have not had a stroke, and patients who have

very few to no risk factors for stroke and have not had a stroke. We, and others, hypothesize that

expanding cohort size by assigning a probability of disease may improve the power of heritability

and genome-wide association studies[107, 108, 109, 110, 111]. Utilizing the structured framework

present in many current EHRs, along with machine learning models, may provide a generalizable

approach for expanding research study cohort size.
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Figure 2.10: Classifier type with Stroke Service Cases, Stroke Mimetic Controls (SN) case-
control combination varies in calibration success between stroke score and actual proportion
of patients at each probability.

Figure 2.11: Classifier type with Stroke Service Cases, Controls without T-L codes for AIS
(SI) case-control combination varies in calibration success between stroke score and actual
proportion of patients at each probability.
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Figure 2.12: Classifier type with Stroke Service Cases, Controls with ICD9 or ICD10 codes
for CvD, and without T-L codes for AIS (SCI) case-control combination varies in calibration
success between stroke score and actual proportion of patients at each probability.

Figure 2.13: Classifier type with Stroke Service Cases, Random patients in the EHR as con-
trols (SR) case-control combination varies in calibration success between stroke score and
actual proportion of patients at each probability.
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Figure 2.14: Classifier type with Cases with T-L codes for AIS, Stroke Mimetic Controls
(TN) case-control combination varies in calibration success between stroke score and actual
proportion of patients at each probability.

Figure 2.15: Classifier type with Cases with T-L codes for AIS, Controls without T-L codes
for AIS (TI) case-control combination varies in calibration success between stroke score and
actual proportion of patients at each probability.

39



Figure 2.16: Classifier type with Cases with T-L codes for AIS, Controls without ICD9 or
ICD10 codes for CvD (TC) case-control combination varies in calibration success between
stroke score and actual proportion of patients at each probability.

Figure 2.17: Classifier type with Cases with T-L codes for AIS, Controls with ICD9 or ICD10
codes for CvD, and without T-L codes for AIS (TCI) case-control combination varies in cali-
bration success between stroke score and actual proportion of patients at each probability.
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Figure 2.18: Classifier type with Cases with T-L codes for AIS, Random patients in the EHR
as controls (TR) case-control combination varies in calibration success between stroke score
and actual proportion of patients at each probability.

Figure 2.19: Classifier type with Cases with ICD9 or ICD10 codes for CvD, Stroke Mimetic
Controls (CN) case-control combination varies in calibration success between stroke score
and actual proportion of patients at each probability.
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Figure 2.20: Classifier type with Cases with ICD9 or ICD10 codes for CvD, Controls without
T-L codes for AIS (CI) case-control combination varies in calibration success between stroke
score and actual proportion of patients at each probability.

Figure 2.21: Classifier type with Cases with ICD9 or ICD10 codes for CvD, Controls without
ICD9 or ICD10 codes for CvD (CC) case-control combination varies in calibration success
between stroke score and actual proportion of patients at each probability.
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Figure 2.22: Classifier type with Cases with ICD9 or ICD10 codes for CvD, Controls with
ICD9 or ICD10 codes for CvD and without T-L codes for AIS (CCI) case-control combination
varies in calibration success between stroke score and actual proportion of patients at each
probability.

Figure 2.23: Classifier type with Cases with ICD9 or ICD10 codes for CvD, Random patients
in the EHR as controls (CR) case-control combination varies in calibration success between
stroke score and actual proportion of patients at each probability.
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Figure 2.24: Prevalence of features in cases vs controls in the TCI model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.25: Prevalence of features in cases vs controls in the TC model. Left to Right: LR,
RF, AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot
correlates with higher feature importance or beta coefficient weight, depending on the classifier
type. Gray dots are features with zero importance.

Figure 2.26: Prevalence of features in cases vs controls in the TI model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance
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Figure 2.27: Prevalence of features in cases vs controls in the TR model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.28: Prevalence of features in cases vs controls in the TN model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.29: Prevalence of features in cases vs controls in the CR model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.
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Figure 2.30: Prevalence of features in cases vs controls in the CC model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.31: Prevalence of features in cases vs controls in the CI model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.32: Prevalence of features in cases vs controls in the CCI model. Left to Right: LR,
RF, AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.
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Figure 2.33: Prevalence of features in cases vs controls in the CN model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.34: Prevalence of features in cases vs controls in the SN model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.35: Prevalence of features in cases vs controls in the SCI model. Left to Right: LR,
RF, AB, GB, and EN models.Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.
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Figure 2.36: Prevalence of features in cases vs controls in the SC model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.37: Prevalence of features in cases vs controls in the SI model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.

Figure 2.38: Prevalence of features in cases vs controls in the SR model. Left to Right: LR, RF,
AB, GB, and EN models. Axes are on a logarithmic scale. Increasing size of blue dot correlates
with higher feature importance or beta coefficient weight, depending on the classifier type. Gray
dots are features with zero importance.
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Chapter 3: Data-driven subtyping of acute ischemic stroke

3.1 Introduction

Although genome-wide association studies have uncovered many variants for a wide range of

diseases, many still have a high proportion of missing heritability[17, 15, 113, 114]. This lost ge-

netic signal may be due to phenotype heterogeneity[17]. In addition, the largest GWAS for stroke

and its ischemic stroke subtypes found only thirty-two significant loci after carefully phenotyping

each patient[11, 8, 9, 115]. This number of variants is much smaller than those found in other

common diseases. This is partially due to the genetic heterogeneity of the disease across subtypes,

which hinders the discovery of causative variants[9]. Accurate determination of the etiology of

stroke is essential for genetic studies, in addition to risk stratification, optimal treatment, and pre-

diction of outcomes. This can be difficult, however, because, as described in Chapter 1, there is

a wide range of causes of stroke, with up to 40% labeled undetermined by traditional methods of

subtyping[8, 6, 7, 4]. This highlights the need for a data-driven approach to subtyping in order to

uncover the etiologies of strokes of unknown cause and patterns of distinct combinations of envi-

ronmental and genetic risk factors leading to stroke. Traditionally, the Trial of Org 10172 Acute

Stroke Treatment (TOAST) criteria is used to subtype ischemic stroke into the following cate-

gories: large artery atherosclerotic stroke, small artery lacunar stroke, cardioembolic stroke, stroke

of other determined cause, and stroke of unknown cause[116]. These traditional criteria, however,

have not been granular enough for treatment decisions. The ASCO (Atherosclerosis, Small ves-

sel disease, Cardiac source, and Other) criteria provide percentages of evidence for each subtype

without choosing the most probable cause[117]. The Causative Classification System (CCS1) for

stroke provides a comprehensive algorithm combining medical and family history, demographics,

imaging, and labs to determine the most likely cause of the stroke. It assigns patients multiple
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pathogenic mechanisms based on their clinical picture and is currently found to be the most sen-

sitive subtyping system[118, 119]. This classification method, however, is time consuming, since

it requires a trained researcher to manually classify the patients[118]. We hypothesize that divid-

ing ischemic stroke patients into more specific groups based on their clinical picture can provide

data-driven insight into the causes of the disease, predict cohorts more likely to have recurrence or

serious morbidity, and group people who are more likely to share similar gene variants.

Although the electronic health record (EHR) provides a rich amount of information about the

medical history of each patient, identifying subtypes within the EHR is challenging because of

the sparsity of the data, its ascertainment bias, and its optimization for insurance billing rather

than research. Patients only interact with the EHR when sick or for a wellness check up, and

which leads to a discontinuous and incomplete medical timeline[26, 44]. In addition, structured

data is recorded primarily for medical communication and insurance billing purposes, so it is not

optimized for research purposes[26, 72]. As seen in Table 3.1, the vast majority of cases are solely

described as cerebral infarction due to unspecified cause. More information, such as risk factors,

prior treatments, and procedures must be curated from the EHR to determine the subtype of stroke.

In addition, optimal subtyping techniques need to take into account the sparsity and missingness

of the data.

Factorization methods, such as non-negative matrix factorization (NMF), have been shown to

identify interpretable latent topics, or subtypes, in text better than PCA or vector quantization[61].

NMF has successfully subtyped type 2 diabetes mellitus, hypertension and cardiovascular disease,

but has not been applied to stroke[57, 58, 59, 60]. A limitation of NMF is that it can over-inflate the

importance of missing data, not taking into account the false negative[65]. In addition, Bayesian

factorization methods such as hierarchical Poisson factorization is well-suited for identifying sub-

types of patients in the EHR. Similar to previous uses of the method in RNA-seq or click data, item

use is sparse, there are some patients who are in the system much more frequently than others, and

data are missing not-at random[65, 64]. We can apply these methods to identify groups, or topics,

of risk factors before a stroke that may predict outcomes after the stroke. Deep learning methods
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Table 3.1: Distribution of AIS subtypes using only AIS ICD9 or ICD10 codes

such as denoising autoencoders, as described in Chapter 1 also have been successful in subtyping

disease, but interpretation and implementation can be difficult. In this study, we apply NMF and

HPF to structured EHR data to identify topics of clinical features found in patients before their first

acute ischemic stroke that are significant for predicting stroke severity.

3.2 Methods

Data extracted from the Columbia University Irving Medical Center (CUIMC) Clinical Data

Warehouse (CDW) contained longitudinal health records of 6.4 million patients spanning from

1985-2018. We selected 4,386 patients with acute ischemic stroke (AIS) evaluated on the stroke
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service at New York Presbyterian Hospital. We gathered diagnostic and procedure International

Classification of Diseases (ICD) codes, medication prescriptions, race/ethnicity, age, and gender

of each patient. AIS was defined by diagnosis codes within the Tirschwell-Longstreth criteria[24].

To study risk factors leading to the AIS, we only extracted data before the patient’s first recorded

stroke. We also manually extracted the National Institute of Health Stroke Severity Score from

the unstructured medical notes of 488 of the patients seen on the stroke service for their AIS as a

measure of severity. We used data structured in the OMOP CDM format in the EHR because this

data is more easily accessible and reproducible at other hospitals, and requires little processing

power compared to parsing notes from the EHR[36]. We ran non-negative matrix factorization

of data from all 4,386 stroke patients before their first acute ischemic stroke. In order to reduce

sparsity, we trained the model on features seen in at least 20 patients, which reduced the feature

size from 14,618 to 2,264. In NMF, the patient by feature matrix (X) is factorized into a topic by

feature matrix (H) and patient by topic (W) matrix. In H, each feature is assigned a weighting to

every topic, and in W, every patient is assigned a weighting to every topic. We implemented the

NMF module in the scikit-learn python package. We set the number of components, or topics, to

20, calculated loss by kullback-leibler distance, penalized the model with an even ratio of l1 and

l2, and ran for 1000 iterations.

We then compared the non-negative matrix factorization method to a probabilistic method,

hierarchical Poisson factorization (HPF). We implemented scHPF created by [65] and found at

https://www.github.com/simslab/scHPF/tree/master. In our implementation, cells replaced patients,

and structured medical data of the patients replaced genes. Patient scores for each factor and fea-

ture scores for each factor were calculated by sampling the product of variational distributions of

latent variables from the model. We used the default settings for the hyperparameters. As seen

in [65], the posterior probability of the model was inferred using Coordinate Ascent Variational

Inference. Hyperparameters b′ and d′ were calculated empirically based on the ratio of mean to

variance of items per patient or per medical feature, a′ and c′ were set to 1 and a and c were set to

0.3, and variational parameters ξ, β,θ, and η were sampled from gamma distributions whose rate
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(a) Poisson Log-Likelihood vs. HPF run (b) Mean Log-likelihood vs. Number of factors number

Figure 3.1: (a) Poisson Log-Likelihood vs. Iteration for HPF shows convergence, k=100. (b)
Mean Log-Likelihood vs. factor k size

and shape were randomly initialized between 0.5 and 1.5 times its prior[65].

We ran the model for 7 different factor size k: 20, 30, 40, 50, 80, 100, and 130. Figure

3.1a shows a sample convergence of the model at k=100, and Figure 3.1b shows increased log-

likelihood with increasing k size.

We ran the model 5 times with random initialization until the drop in loss was less than 0.001

percent, 1000 iterations were run, or the loss increased, whichever came first.

3.2.1 Determining stability of the topics

To determine the stability of the topics, we calculated the Tanimoto coefficient of the top 20

features between every topic between every NMF and HPF run (n=100 runs, 8 runs respectively).

3.2.2 Using topics to predict stroke severity

Because of the instability of the HPF topics, we only used NMF topics for severity analysis.

For the 488 patients with stroke severity scores, we randomly divided the patients into 300 training

cases and 188 testing cases. We then ran a univariate linear regression on each topic from NMF

with stroke severity as the outcome. After correction by false discovery rate, we predicted the

stroke severity of the test patient cases.
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3.3 Results

3.3.1 Non-negative matrix factorization and hierarchical Poisson factorization topics

Each patient was assigned to the topic with their maximum W component found using NMF.

Table 3.2 shows the top 10 scoring medical features for each factor. The maximum weight for

33% of patients was on a topic with general demographics such as white race, gender, age and

lymphoma and colon cancer. The next largest proportion, 7.5% of patients, had maximum weight

for the topic with essential hypertension, pure hypercholesterolemia, and osteoarthritis as its top

three features, and 6.7% of patients had maximum weight for the topic with atrial fibrillation,

essential hypertension, and aortic valve disorder as its top three features.

In comparison, as seen in Table 3.3, hierarchical Poisson factorization displayed more special-

ized topics, only covering 1-3 different disease processes and with no generalized hospitalization

or procedure topics as seen using NMF. Topic 6 had the highest proportion of patient maximum

scores, 26%, whose top scoring features included cancers and pregnancy. This group of patients

were enriched for internal carotid artery dissection, acetaminophen, laxative, and vertebral artery

dissection after stroke diagnosis. The next most common topic, 19, with 9% of patients included

topics of joint disease and Parkinson’s disease. These patients were enriched for procedures of the

elderly including shingles vaccine administration, hearing aid fitting, ear wax removal, and physi-

cal therapy after stroke diagnosis. In general, for HPF, the enrichment of features in patients after

stroke were similar to the disease processes of top scoring features of each factor.

Figure 3.2 shows hierarchical clustering maps of patient scores across all topics for NMF and

HPF. As seen in the figure, NMF assigns smaller weights to most factors for each patient compared

to the patient scores sampled from the HPF model. The HPF model appears to identify clearer

clusters of patients compared to NMF.
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Table 3.2: Top ten features found from structured medical data from 4,368 AIS patients
before their first recorded stroke using Non-negative Matrix Factorization, number of com-
ponents=20
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Table 3.3: Top ten features found from structured medical data from 4,368 AIS patients
before their first recorded stroke using hierarchical Poisson factorization, number of compo-
nents=20

3.3.2 NMF topics are stable

The NMF topics were more stable than HPF topics. Out of the expected NMF topic matches,

98% had a Tanimoto coefficient of 1. Out of the expected HPF topic matches, 24% had a Tanimoto

coefficient above 0.5.
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Figure 3.2: Hierarchical Clustering of Patient Scores for each factor, K=20, Left= NMF,
Right=HPF

3.3.3 Topics were significantly correlated with stroke severity

After running a univariate linear regression for each topic on different randomized training

samples of 300 patients with stroke severity scores, we found four topics significantly correlated

with stroke severity in at least one run. Table 3.4 shows the performance of the four topics on

predicting stroke severity in the test set. The average stroke severity score in the test set was

8.85 ± 8.71. The topic with atrial fibrillation as its highest weighted feature was significantly

correlated with severity for 35% of the trials with the lowest p-value of 2.3E-05, and its top features

included valve disorders, essential hypertension, warfarin, atrial flutter, metoprolol, and high risk

drug monitoring status. The patients highest weighted for this topic had the highest average NIHSS

score of 12.1 ± 10.9. The topic with type 2 diabetes mellitus as its highest weighted feature was

significantly correlated with severity in 5% of the trials with the lowest p-value of 0.0012, and its

top features included type 1 diabetes mellitus, ECG and medications for diabetes. The patients

highest weighted for this topic had an average NIHSS score of 8.53 ± 7.10. The topic with a

chest x-ray as its highest weighted feature was significantly correlated with severity in 2% of the

trials with the lowest p-value of 0.0088, and its top features included critically ill patient, pleural
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effusion, abnormal breath sounds, ECG, atelectasis, medical decision making of high complexity,

pneumonia, and acute respiratory failure. The patients highest weighted for this topic had the

second highest average NIHSS score of 11.4 ± 7.87. The final significantly correlated topic with

AIS, in 2% of the trials and with a lowest p-value 0.043, had age as its highest weighted feature,

and its top features included adult health exam, various cancer diagnoses, unknown and white race,

and gender.

Atrial
Fibrillation

Diabetes
Mellitus

General
demographics
and cancer

Critical
Respiratory
Failure

β coefficient 2.3 ± 1.3 2.0 ± 0.74 2.6 ± 0.3 3.0 ± 0.73
FDR-
corrected
p-value(min,
max)

(2.3e-5, 0.048) (0.0012,
0.037)

(0.043, 0.048) (0.0088,
0.042)

Pct. signifi-
cant
trials

35% 5% 2% 2%

Mean absolute
error

6.6 ± 0.21 6.7 ± 0.14 7.1 ± 0.21 7.1 ± 0.18

Root mean
squared error

8.2 ± 0.32 8.3 ± 0.20 9.3 ± 0.29 8.9 ± 0.26

Mean NIHSS 12 ± 10 9.8 ± 10 8.5 ± 7.7 11 ± 7.9

Table 3.4: Topics derived from Non-negative matrix factorization significantly correlated
with stroke severity

3.4 Discussion

Subtyping using factorization methods produced topics enriched for important risk factors be-

fore the patients’ first acute ischemic stroke. Non-negative matrix factorization topics were more

stable compared to HPF topics, and several were significantly correlated with stroke severity. The

topic with the most significant runs also had patients with the highest mean severity score. The

top weighted feature in this topic was atrial fibrillation, which is associated with more severe

strokes[120]. The mean absolute error of the severity predictions was between 6.6-7.2, which is
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smaller than the difference between mild and severe strokes on the NIHSS scale (10-30 points).

This topic also represents a traditional TOAST subtype of acute ischemic stroke, cardio-embolic

stroke. Other topics that correlated with severity represented more granular etiologies of stroke

than those found using the TOAST subtype. One included a top weighted feature of diabetes melli-

tus 2, a known risk factor for stroke[5]. In addition, a third topic included highly weighted features

such as acute respiratory failure and pneumonia. Respiratory infections such as influenza have

been shown to trigger cardiovascular events such as myocardial infarction[121] and stroke[122, 5].

3.4.1 Limitations

This study had several limitations. We did not complete hyperparameter tuning for the HPF

model, which could be a reason why the HPF model topics had low stability across runs. Each

HPF run had a long run time, making the NMF model more feasible. In addition, at up to 120

topics, the HPF mean log-likelihood had not plateaued, suggesting that more topics are needed for

greater stability. Such a large number of topics however, does not translate to feasible subtypes for

acute ischemic stroke. In addition, although the NMF topics were stable, the most common topic

was a general demographics and cancer topic. Although the general demographic features of the

topic were non-specific, cancer is a risk factor for stroke[123]. In addition, other topics that did

correlate with severity, such as patients with acute respiratory distress and pneumonia and those

with atrial fibrillation represent important AIS patient subsets. Finally, we did not determine the

genetic heterogenity of the subjects within the subtypes, which would require a larger sample size

and future study.

3.5 Conclusions

This study implemented non-negative matrix factorization (NMF) and hierarchical Poisson

factorization (HPF) to identify groups of risk factors within patients that predict acute ischemic

stroke severity. Both NMF and HPF identified subgroups of patients with specific disease pro-

cesses, though NMF topics were preserved across runs more stably than HPF topics. Factorization
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approaches to analyze data available in the EHR can identify previously unrecognized ischemic

stroke subtypes, unbiased by clinical preconceptions of etiology. Such subtypes correlate with

stroke severity and include conventionally recognized clusters, such as stroke associated with atrial

fibrillation and other cardiac diseases, but also novel subtype clusters, such as stroke associated

with respiratory failure and pneumonia. Future directions include improving the stability of topics

within the HPF models, studying other neuro-psychological sequelae of stroke, and incorporating

unstructured notes into this model to improve the richness of the data. A semi-supervised approach

of projecting factors from the models on physician-subtyped patients may provide a link between

the data-derived factors and clinically meaningful AIS subtypes such as those defined by TOAST

and ASCO[63, 116, 117]. Finally, we would like to test whether these more granular topics sep-

arate stroke patients into less genetically heterogeneous subtypes by estimation of heritability of

each subtype using RIFTEHR and solarSTRAP (discussed in Chapters 4 and 5).
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Chapter 4: Expansion of Case/Control cohorts by application of machine

learning models to the EHR: Applications to heritability and genetics within

Columbia and the eMERGE dataset

4.1 Introduction

Large genetic repositories connected to electronic health records (EHR) form the basis of local

and national precision medicine initiatives. These linked repositories promise the ability to perform

thousands of simultaneous genetic studies using diagnoses, procedures, and treatment responses

that are routinely captured by the EHR. Not all patients have genetic data available, however,

limiting what actually can be studied. There is opportunity to use machine learning methods to

derive quantitative proxy variables and expand the sample population. We hypothesized that the

output of a supervised machine learning classifier can be used as a proxy variable for disease

classification and be an efficient strategy for expanding a study cohort. We tested this hypothesis

in two genetics studies that would benefit from cohort expansion: heritability estimation and a

genome-wide association study.

Heritability, often measured through family studies, provides a quantitative measure for the

genetic component of a disease[15]. Conducting family or genome-wide association studies for

every disease is a time-consuming and expensive process; therefore, a systematic manner to iden-

tify diseases with a genetic component is needed. Polubriaginof et al. developed a high- through-

put corollary to the genetic estimate of heritability, termed observational heritability[51]. Without

genetic data, they suggested which diseases are heritable and should be studied genetically. In

contrast to traditional estimation of heritability, observational heritability is measured using fam-

ilies derived from the EHR. These families were extracted using an algorithm, RIFTEHR, which

uses emergency contact information to infer familial relationships between patients at the hospi-
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tal[51]. They found and inferred relationships within 223,307 families and estimated heritability

using a bootstrapped version of SOLAR (SOLARstrap), a program that uses identity by descent

calculations to estimate trait heritability from pedigrees[51, 124]. They were able to estimate the

heritability of over 500 diseases, though they attempted to estimate 2500 disease heritabilities.

Since the acquisition of disease case/control status was from patient electronic health records, this

heritability analysis is not structured like a tradition genetic study, in which there is a proband and

search for family members with or without the disease[51, 124]. Only family members that interact

with the hospital system have a disease status, which leads to an ascertainment bias and a reduced

cohort size[51, 124, 26]. Phenotyping may also have affected the success of disease heritability

estimation. Each case was phenotyped by a single ICD9 code for the disease, and each control

did not have the ICD9 code for the disease or any disease code within the same Clinical Classi-

fication System category[98]. Acute ischemic stroke heritability, for example, was not able to be

estimated by RIFTEHR and SOLARstrap. As demonstrated in Chapter 2, single diagnosis codes

for disease may not be enough to identify all cases, and it is not clear whether patients without a

stroke diagnosis can be considered a control. Similarly, it is difficult to determine whether fam-

ily members with only cerebrovascular disease or metabolic disease should be considered controls

since there is significant enrichment of genetic variants from coronary artery disease, hypertension,

and atrial fibrillation in stroke patients[125]. Therefore, we hypothesized that heritability estimates

could benefit from assigning patients on a spectrum of disease from 0 to 1. Specifically, instead of

treating stroke as a dichotomous trait, we converted it to a quantitative one– the probability that a

patient had an acute stroke.

Genome-wide association studies move beyond the family linked studies to identify common

variants affecting complex traits. Ischemic stroke, in particular, has a high heritability estimate,

37.9% ± 5.2%, and the most recent GWAS identified over 20 associated variants[10, 11]. To

achieve adequate power, this study required over 40,000 cases and 520,000 participants overall.

These cohort sizes, with genetic data, are generally only achievable through large meta-analyses.

We hypothesized that our cohort expansion method could improve the power of genome-wide as-
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sociation studies with a fraction of those cases. We tested this hypothesis on a disease with a

validated phenotyping algorithm applied to a small number of cases within a large dataset. The

Electronic Medical Records and Genomics (eMERGE) consortium developed a database of rule-

based algorithms, PheKB, to identify cases and controls of dozens of phenotypes [34, 126]. The

algorithms are designed by physicians and bioinformaticians and validated at one or more major

medical centers with a positive predictive value of at least 90%. The algorithms vary in computa-

tional complexity, from extracting diagnosis and procedure billing codes and lab values to applying

natural language processing to medical notes. In addition, the phenotypes are validated within the

eMERGE consortium, which consists of subjects across nine study sites in the US. As a proof of

concept that the conversion of dichotomous to quantitative traits can identify variants of a disease,

we implemented a phenotype that was well characterized in PheKB, venous thromboembolism

(VTE). To demonstrate the utility of this quantitative trait proxy in a genetics study, we trained

classifiers on algorithmically phenotyped cases and controls of venous thromboembolism (VTE)

using EHR-extracted features. We then tested the classifiers on VTE cases and controls in the

EHR with genotyping data. Finally, to better understand the effect of converting a binary trait to

quantitative on power, we simulated a complex trait. We used an additive model, as suggested

through previous studies, as the mode of inheritance of causal traits [127], and varied the effect

sizes, penetrance, and allele frequencies.

In our heritability estimation study, we show that our stroke phenotyping models can estimate

stroke heritability, while traditional binary classification of stroke could not. In our genome-wide

association study of venous thromboembolism in the Columbia eMERGE cohort, we were under-

powered to recover variants. Our simulation studies, however, suggest that power may be mini-

mally improved by converting binary traits to quantitative ones.
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4.2 Methods

4.2.1 Estimating heritability in stroke with phenotyping model probabilities

We applied the probabilities generated from our phenotyping models to estimate the heritabil-

ity of stroke without genetic data (Figure 4.1). We ran SOLARstrap against the model probabil-

ities identified from each case-control and classifier model. For every model, we estimated the

heritability 200 times, sampling 2000 families for each run. This bootstrapping method reduces

ascertainment bias in the heritability estimation. If we were to estimate the heritability using all

families available in the EHR, the estimate would be influenced by the most complete families with

the disease in the EHR. By bootstrapping the families, we reduce inflated heritability estimation,

as shown in [51]. We compared heritability estimates with and without taking into account shared

environment within households. Finally, we compared the number of SOLARstrap runs that suc-

cessfully converged using the original model probabilities to the number of runs that converged

after multiplying the probabilities by 100.

Figure 4.1: Schematic of Stroke Model Training and Application to heritability estimation.
Cases:1) Physician curated, gold standard stroke patients (G), 2) Patients with stroke insurance
billing codes (I), 3) Patients with cerebrovascular disease billing codes (C) Controls: 1) Stroke
mimetic neurological diseases (N), 2,3) Sample of patients in EHR without stroke code (I,S), 4)
Sample of patients in EHR without cerebrovascular disease codes (C), 5) Sample of patients in
EHR with cerebrovascular disease codes but without stroke codes or not gold standard (CI) 6) Ran-
dom sample in EHR (R). Case:Control ratio was between 1:1 and 1:2, models included Random
Forest (RF), Logistic Regression (LR), Neural Network (NN), Gradient Boosting (GB), Elastic
Net (EN) and Adaboost (AB).
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4.2.2 Venous Thromboembolism Phenotyping Model Development

From the Columbia group of the eMERGE consortium, we received 3,071 patients’ MRNs

linked to the New York Presbyterian Hospital EHR. Given the small number of patients and the

low effect sizes of known stroke variants, we did not use stroke as our test disease[11]. We in-

stead chose a disease with a rule-based phenotyping algorithm from the PheKB database due to

the PheKB algorithms’ high positive predictive value and reproducibility across institutes[126].

Seven of the eMERGE PheKB algorithms were applied to the Columbia eMERGE group patients:

venous thromboembolism, chronic kidney disease, colorectal cancer, autism, rheumatoid arthritis,

type II diabetes, and heart failure. Because of the small sample size of patients, we filtered for

diseases with known associated variants with an odds ratio of greater than 2 using the EBI-GWAS

catalog and the largest number of cases[128]. Chronic kidney disease had the most cases, 2231,

but only 288 controls, which would have lead to a large case/control imbalance. We chose venous

thromboembolism (VTE), which is a thrombotic disease and a leading cause of cardiovascular

death[129, 130]. It is often caused by commonly inherited variants leading to a hypercoaguable

state[129]. The disease has 5 high effect size variants, increasing the chance of recovery through

GWAS[131, 130, 33, 129, 132]. The algorithm was developed at the Mayo Clinic and had 100%

positive predictive value and 95% negative predictive value at their institute[133]. When applied

to the Columbia eMERGE dataset, the algorithm assigned 419 as cases for VTE, 2,551 as controls,

and 101 as undetermined. We collected genotyping data on 2,065 subjects, 1058 of which were

male, and 1007 female. (VTE cases, n=289, controls, n=1721) We then trained several machine

learning models on the patients without genetic data and with a definite case-control label (VTE

cases, n=130, controls, n=830). From the EHR, we pulled conditions, procedures, drugs, and all

demographics of each patient, assigning each as a binary presence or absence of the feature to each

patient. Age was also treated as a binary variable, where greater than 50 was considered 1. We

trained logistic regression models with L1 (LR) and elastic net (EN) penalties, a random forest

(RF) model, gradient boosting (GB) model, adaboost (AB) model, and a neural network (NN) on

the 960 patients without genotyping data, evaluating with 10-fold cross validation. Hyperparame-
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ters were the same as described in Method 2.3.5. In addition, we compared the performance of 1)

using feature counts instead of binary presence or absence of each feature, and 2) only including

features with 2 or more counts in the model. We then tested the original binary feature models on

the patients with genetic data.

Figure 4.2: Schematic of Model Training and Application in GWAS. Cases: eMERGE Venous
Thromboembolism cases without genetic data, Controls: eMERGE Venous Thromboembolism
controls without genetic data. Models included Random Forest (RF), Logistic Regression (LR),
Neural Network (NN), Gradient Boosting (GB), Elastic Net (EN) and Adaboost (AB) and are
trained on structured medical data and applied to 2,062 patients with genotyping data. Quantitative
trait GWAS using the model probabilities for the patients was then run.

4.2.3 VTE GWAS implementation

After assigning model probabilities for VTE for Columbia eMERGE subjects with genetic data,

we ran genome-wide association studies. The genotyping data was imputed by the University of

Michigan Imputation Server (MIS) using the Haplotype Reference Consortium (HRC1.1) in build

37[35]. Quality control on the genotyping data conducted by Dr. Anna Basile included filtering for

SNPs with a minor allele frequency of greater than 1%, Hardy-Weinberg equilibrium test p-value >

10−10, and imputation INFO scores of greater than 0.3. She then ran linkage disequilibrium pruning

on the variants with an r2 threshold of 0.7 and PCA analysis. The top five principal components

explained over 98% of the variance, so we used these 5 PCs as covariates in addition to sex,

age, incidence of stroke, and incidence of myocardial infarction. We ran a Mann-Whitney U test

comparing the cases and controls for each covariate and found significant differences for all except
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for PCs 2, 4, and 5. We removed these PCs from the covariates. We then ran a logistic regression

GWAS on the 2,062 patients using Plink, where cases and controls were identified from the PheKB

algorithm[134]. We then ran four linear regression genome-wide association studies on the same

patients’ genotyping data using different quantitative phenotypes: 1) the model probabilities from

the neural network (NN) model, 2) model probabilities from the random forest (RF) model, and 3)

and 4), the log base 10 of the NN and RF model probabilities. We chose the RF model since it gave

the best performance (see Result 4.3.2) and the NN model since its model probabilities were the

most normally distributed. We also compared the log base 10 probabilities since their distributions

were more normal. We determined whether the known VTE variants were recovered by the binary

or quantitative studies by first converting the known VTE variants from the EBI-GWAS database

to chromosome positions from the chr38:12 build to the chr37.p13 build[128]. The genetic data

was imputed by the University of Michigan, and we were given chr:bp as variant identifiers rather

than SNP name. We mapped the variants using the NCBI Genome Remapping Service[135].

4.3 Results

4.3.1 Heritability estimates using the models as quantitative traits

Using the model probabilities from our phenotyping models, we estimated the observational

heritability of acute ischemic stroke to be 0.16-0.28, depending on the model used. We used a

cutoff of at least 30/200 converging runs and a Proportion of Significant Attempts (POSA) score

of 0.7. As shown in Polubriaginof et. al, the POSA score measures the proportion of converged

runs that are statistically significant. The more runs that converged and are statistically significant,

the more representative the heritability of all samples. Adjusting by household effect reduced the

heritability estimates by an average of 6.2%. Random Forest models had the most case-control

sets successfully estimate heritability (12/15). All other classifier types increased the proportion of

successful heritability estimates among case-control sets (LR from 6/15 to 7/15, AB from 1/15 to

7/15, GB from 4/15 to 11/15, and EN, from 7/15 to 8/15) by multiplying the model probabilities by

100. Though the number of successful estimates increased, mean values did not change apprecia-
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bly, with an increase of 0.1-0.2%. The RF models estimated the highest mean heritability for acute

ischemic stroke, 0.27±0.090, LR had a mean heritability estimate of 0.17±0.053, AB, 0.22±0.08,

GB, 0.23±0.053, and EN, 0.21±0.081 The TCI case-control set successfully estimated heritability

across all classifier types. The CC case-control set with random forest or adaboost classifier had

the highest heritability estimates of 0.38± 0.04. The TI, TC, and CI case-control sets with random

forest classifier also had high heritability estimates of 0.34 ± 0.04, 0.34 ± 0.04 and 0.36 ± 0.04

respectively. The SCI and CCI case-control sets had the lowest mean heritability estimates of

0.12 ± 0.013 and 0.12 ± 0.015 respectively. Figure 4.3a shows the observational heritability es-

timates compared to model area under the receiver operating curve, and figure 4.3b shows the

estimates compared to area under the precision-recall curve. Neither shows an appreciable rela-

tionship between heritability estimates and performance. However, some high performing random

forest and adaboost models have heritability estimates within the literature heritability estimate

range for acute ischemic stroke. The curated case (S) models had the lowest average heritability

estimates 0.20 ± 0.08, followed by the CCS cerebrovascular disease case models (C), 0.24 ± 0.09,

and finally the AIS diagnosis code cases (T) 0.25 ± 0.07. The no ischemic stroke diagnosis code

controls models had the highest heritability estimates (0.28± 0.059) followed by the no CCS cere-

brovascular disease control models (0.26 ± 0.097). The N and CI control models had the lowest

heritability estimates (0.18 ± 0.033, 0.18 ± 0.070 respectively) and the random R control models

had a mean heritability estimate of 0.22 ± 0.070. Overall, our average heritability estimates were

36% lower than the literature estimate of 0.379 ± 0.052.

4.3.2 Performance of the VTE Phenotyping Algorithms

Cross-validation performance: The random forest model had the highest performance with an

AUROC of 0.84, area under the precision-recall curve (AUPRC) was 0.54 and maximum F1 score

was 0.51. The LR model had an AUROC of 0.82 and AUPRC of 0.48, AB model had an AUROC

of 0.79 and AUPRC of 0.47, EN model had an AUROC of 0.77 and AUPRC of 0.47, GB had an

AUROC of 0.71 and AUPRC of 0.40, and NN model had an AUROC of 0.79 and AUPRC of 0.41.
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(a) Observational heritability vs. AUROC (b) Observational heritability vs AUPRC

Figure 4.3: Observational heritability estimates versus phenotyping model performance. (a)
shows the observational heritability estimates versus area under the receiver operating curve (AU-
ROC) and literature heritability (h2) range (b) shows the observational heritability estimates versus
area under the receiver precision-recall curve (AUPRC) and literature heritability (h2) range

Changing the features from binary to counts or only using features with 2 or more counts resulted

on average in only a small (0.01-0.02) drop in AUROC.

4.3.3 Genome-wide association study for VTE

We were unable to recover any known VTE variants to nominal 0.05 significance in the binary

or the quantitative GWAS. We also were unable to find any variants with genome-wide signif-

icance. Only 59 out of 129 known VTE variants were found in the eMERGE genotyping array,

which had 6.8 million variants. A Mann-Whitney U test of the ranks of the VTE variants by P-value

compared to the other variants showed an AUROC of 0.6 for the binary trait GWAS, and 0.575 for

the quantitative trait GWAS using the log probability of the random forest model. Logarithm of

the p-values of the binary trait GWAS results were minimally correlated with the quantitative trait

results with an r2 of 0.30.
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4.3.4 Simulation of traits

The quantitative VTE score represents a probability of a patient’s classification as a VTE patient

based off their medical history. The probability is derived from a model trained on the EHR-derived

medical history of PheKB determined cases and controls. We were unable to rediscover the known

VTE variants using binary or quantitative traits, most likely due to a relatively small sample size.

To further test whether quantitative traits could recover variants as well as binary traits, we ran a

simulation on a single variant (Figure 4.4). We tested whether quantitative traits would be more

robust to phenotyping noise than binary traits. We created a sample of 10,000 patients, with a minor

allele frequency of 0.1, penetrance of 0.3 of the variant leading to disease, and general population

disease risk of 0.05. We then randomly assigned patients both variant and disease status based on

the rates described above. We then added noise at levels between .025 and .5 to the disease labels

and calculated the odds ratios and p-values of the variant effect size using a Fisher’s exact test.

We simulated 100 binary features for each patient, and assigned the features randomly at rates

between 0-1 for patients with the variant and between 0-0.5 for patients without the variant. We in-

clude a wider range of feature assignment rates for those with the variant because we imagine there

would be specific tell tale features, such as a medication or a condition that may more commonly

be seen in the patients with the variants. We then trained a random forest classifier on 75% of

patients and their 100 features to predict the remaining patients’ disease status. We then fit a linear

regression on the disease probabilities assigned by the model to variant status for each patient and

extracted the beta coefficient and p-value. We then swapped the disease labels of the training set

at different noise rates between 0.025-0.5. We again predicted on the remaining 25%, fit a linear

regression to the disease probabilities identified by the model to determine variant status of each

patient, and extracted the beta coefficients and their p-values.

4.3.5 Simulation of traits results

We found that penetrance of the variant was directly proportional to the performance of the

classifier (Figure 4.5A). We also found that increased noise was inversely proportional to the per-
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Figure 4.4: Schematic of Disease-Trait Power Simulation

formance of the classifier (Figure 4.5B). Within the binary trait simulation results, we found that

a penetrance of 0.3 gave an odds ratio of 8.1, and so used this value for the rest of the simula-

tions. We found that for the binary trait simulation, as noise increased, the odds ratio decreased

towards 1 as did the standard error. P values also were very low at low noise and moved towards

insignificant with noise at rates of 40% and 50% (Figure 4.5C). For the quantitative simulation,

the p value also increased towards insignificant at a rate of 0.5, and was lower than the binary trait

p values at all noise levels. Although converted odds ratios from the beta coefficients of the linear

regression using the quantitative trait were lower than the binary trait odds ratio, both held genome

wide significance until a noise rate of 50%.

4.4 Discussion

4.4.1 The models can estimate observational heritability at a lower average value than the litera-

ture estimate.

In Chapter 2, we developed a method to create a probability of disease for the acute ischemic

stroke phenotype. The RIFTEHR and SOLARstrap methods in Polubriaginof et. al. estimated the
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Figure 4.5: Results of Simulation Study, Varying Penetrance and Noise. (A) Area Under the
Receiver Operating Curve (AUROC) vs. Penetrance for simulated quantitative trait, (B) Area
Under the Receiver Operating Curve (AUROC) vs. Noise for simulated quantitative trait. Orange
represents results from noise only in training labels while blue represents results from noise in both
the training labels and feature assignment. (C) Log base 10 of P value versus Noise. Red triangles
represent the binary trait p-values, orange circles represent results from noise only in training labels
while blue circles represent results from noise in both the training labels and feature assignment.

heritability of over 500 diseases using only EHR data. For over 2000 diseases, however, including

stroke, the methods were unable to estimate heritability. We hypothesized that our models could

recover some of these heritability estimates by expanding case/control assignment to a probabil-

ity of disease and subsequently converting the binary trait to a quantitative one. For many of our

models, especially those using random forest classifiers, the RIFTEHR and SOLARstrap methods

successfully converged. The average heritability estimate was 36% lower than the known heri-

tability estimate. In general, RIFTEHR and SOLARstrap estimate heritabilities 20% lower than

the literature values[51]. Our models’ heritability estimates were lower and did not appear to have

a correlation between performance and heritability estimate. Some high performing random forest
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and adaboost models did estimate heritability within the literature range. In addition, the CCS

cerebrovascular disease (C) or ischemic stroke diagnosis code (I) cases and no cerebrovascular

disease or no ischemic stroke controls had the highest heritability estimates overall. This suggests

that expanding the case set by training on CCS cerebrovascular disease classifications or diagnosis

codes for stroke captured the disease heritability across families more successfully than training

on a curated data set. Although further study is needed to optimize the use of model probabili-

ties to convert binary to quantitative traits, we show that we can recover observational heritability

estimates for initially under-powered phenotypes, such as acute ischemic stroke.

4.4.2 Genome-wide association studies of venous thromboembolism were underpowered in the

Columbia eMERGE dataset.

Our study was underpowered to discover genome-wide significant VTE variants using either

traditional binary phenotyping or model probability phenotyping. All prior VTE GWAS studies

had at least 1,500 cases of European ancestry or 400 cases of African ancestry, while our study only

had 289 cases, half of which were African ancestry and the other half European. Although venous

thromboembolism has known variants with high odds ratios, we were unable to recover these vari-

ants to nominal significance. Simulated trait studies suggest that conversion from a dichotomous

to quantitative trait will result in minimal to potentially improved power to re-identify established

causal variants in GWAS. We plan to run future studies with larger cohort size to demonstrate that

quantitative proxy traits can improve performance by increasing the effective sample size.

4.5 Conclusions

Using EHR-derived model probabilities as quantitative traits to replace traditional case-control

assignment in genetic studies requires further analysis in larger cohorts, as demonstrated in our

under-powered venous thromboembolism genome-wide association study. The quantitative trait

proxy method did estimate observational stroke heritability, however, while traditional case-control

assignment failed. Our simulated study also suggests potential p-value improvement when convert-
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ing binary traits to quantitative, though future evaluation in a large cohort is needed.
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Chapter 5: QTPhenProxy, a supervised machine learning model that

leverages Electronic Health Record data to improve power in genome-wide

association studies in the UK Biobank

5.1 Introduction

Genome-wide association studies accumulate hundreds of thousands to millions of participants

to acquire adequate signal for variant discovery. High-throughput identification of cases and con-

trols can be difficult, however, due to time-consuming chart review and incompleteness of medi-

cal records. Current disease genome-wide association studies develop case-control sets in which

power relies on a large number of pure cases, and the missingness of EHR data could prevent

some cases from discovery in a high-throughput manner[13, 44, 136]. In addition, extreme case-

control imbalance in biobanks can lead to increased type 1 error when running linear mixed model

genome-wide association analysis[137]. An incorporation of additional accessible EHR data could

improve case curation sensitivity. In addition, many diseases such as stroke result from a combi-

nation of gene and environmental interactions, and there is significant overlap with comorbidities

in genome-wide significant variants[11]. Therefore, it is difficult to confirm every person without

the event is a control, suggesting the utility of a disease likelihood assignment[13, 138].

The definition of the disease phenotype influences the success of detecting a genetic signal

since power is generally calculated by number of cases and controls [17, 139]. We propose that in-

cluding EHR information about comorbidities[140] and other health information about the subject

in trait assignment can improve the power of GWAS. Past studies have shown that incorporating

diagnosis count improved the power of genetic studies, and the addition of patient questionnaires

and genetic correlations to hospital records improved detection of cases[141, 136, 142, 143]. In-

corporating EHR data to develop a probability of suicide attempt also improved the power of its
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genome-wide association study [143]. We argue that including several modalities of health data

to estimate assignment of case probability can improve the power of genomic studies. For ex-

ample, the most successful genome-wide association study for stroke required 40,585 cases and

406,111 controls[11]. We hypothesize that we can discover genome-wide significant variants as-

sociated with stroke with a fraction of those cases (4,354) by incorporating EHR information into

a quantitative trait assignment.

In this study, we use machine learning methods to expand sample cohorts by assigning every

patient a probability of disease. As described in Chapter 2, the probability represents patients along

a spectrum of the disease including those who have experienced stroke, those who are predisposed

to stroke but have not experienced a stroke, and those who have not had a stroke and do not have

stroke risk factors. We hypothesize that the output of a supervised machine learning classifier,

trained on the EHR data of a small number of known cases and controls, can be used as a proxy

variable for stroke and will be an efficient strategy for expanding cohort size. We demonstrate

that our quantitative proxy trait can improve power over its respective binary trait in ischemic

stroke. We also show that the new variants discovered are known in similar cardiovascular and

neurological diseases. We find up to 13 LD independent loci that pass genome-wide significance

and conditional analysis, and the majority of the associated genes are known to be associated

with stroke or cardiovascular disease. For stroke and its subtypes, ischemic stroke, subarachnoid

hemorrhage, and intracerebral hemorrhage, QTPhenProxy recovered known and discovered new

stroke variants with an order of magnitude fewer cases than traditional genome-wide association

studies.

5.2 Methods

5.2.1 QTPhenProxy Phenotyping Model.

We gathered clinical features of primary ICD10 diagnosis codes, OCPS4 procedure codes (UK

Biobank code 42100), medications (UK Biobank code 20003), race/ethnicity (UK Biobank code

1001), and age. 2018 served as the age end point. We mapped the OCPS4 procedure codes (UK
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Biobank code 240) to SNOMED-CT codes and the UK Biobank medication codes to RxNorm

codes by name[99, 144]. We also gathered data of self-reported and first occurrence of all stroke,

ischemic stroke, subarachnoid stroke, and intracerebral hemorrhage, asthma, COPD, myocardial

infarction, ST-elevation Myocardial infarction, and Non ST-elevation Myocardial Infarction. We

chose to study all 18 diseases that had a validated algorithmically defined outcome (category 42)

in the UK Biobank: the above stroke subtypes, myocardial infarction and two main subtypes:

STEMI and NSTEMI, asthma, COPD, dementia and three main subtypes: frontotemporal demen-

tia, vascular dementia, and Alzheimer’s disease, motor neuron disease (also known as ALS), and

Parkinson’s disease and three subtypes: Parkinsonism, Progressive Supranuclear Palsy, and Multi-

ple Systems Atrophy. We made a large matrix in which each extracted EHR feature was a binary

variable based on the presence or absence of the feature. We dichotomized age as greater than or

equal or less than 50 years. For each disease, we then defined the cases from the ICD10 code com-

binations described in the UK Biobank’s phenotyping algorithm[145]. We then trained 5 different

classifiers: 1) logistic regression with elastic net penalty, 2) logistic regression with L1 penalty, 3)

random forest, 4) Adaboost, and 5) gradient boosting classifiers on 50% of the cases and an equal

number of controls. Controls were identified as subjects without any ICD10 codes within the same

category as the Clinical Modification Clinical Classifications Software tool[102]. We then applied

the trained algorithm to the whole UK Biobank, resulting in a model probability or quantitative

trait proxy for each subject and each disease. For comparison, another phenotype file with binary

assignment of case and control for each disease was prepared as well. Table 5.4 shows the number

of cases available for each disease.

5.2.2 Evaluation of QTPhenProxy Model Performance.

To evaluate the performance of the QTPhenProxy model, we determined its ability to recover

cases when the defining ICD10 codes are removed. We trained 50% of the cases and an equal

number of controls on the clinical features described above using the EN and RF classifiers. We

chose these classifiers because of their overall high performance and because their probability
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assignment distributions were continuous (Figure 5.2). We removed the ICD10 codes used to

define the cases and controls in our feature set. We then tested the model on all other subjects

in the UK Biobank, which included known cases, and for some diseases such as Ischemic Stroke

and Myocardial Infarction, self-reported cases that did not have an ICD10 code for the disease.

We then evaluated the recovery of 1) cross-validation and 2) the holdout test set through Precision

at top 50, 100, 500, and number of cases, area under the receiver operating curve, area under the

precision recall curve, and maximum F1 score.

5.2.3 Genotyping and Imputation.

UK Biobank subjects that were of White British descent, were in the UK Biobank PCA calcu-

lations and therefore without 3rd degree and above relatedness, and were without aneuploidy were

used in this study, totalling 337147 subjects (181,032 females and 156,115 males)[146, 28]. Of the

nearly 500,000 participants, approximately 50,000 subjects were genotyped on the UK BiLEVE

Array by Affymetrix while the rest were genotyped using the Applied Biosystems UK Biobank

Axiom Array with over 800,000 markers. The arrays share 95% marker coverage. Initially, we ran

a QC extracting markers with an MAF>0.5%, INFO score > 0.3, and Hardy-Weinberg equilib-

rium test mid-p-value > 10−10 using all subjects, which we will refer to as QC1. QC1 was run for

GWAS of all 18 diseases. We then re-ran the QC, which we will refer to as QC2, more stringently

by extracting markers with an MAF>1%, INFO score > 0.8, and Hardy-Weinberg equilibrium

test mid-p-value > 10−5 using Plink2[147]. UKBB version 3 Imputation combined the Haplotype

Research Consortium with the UK10K haplotype resource using the software IMPUTE4[146].

5.2.4 Genome-wide Association Analysis.

The binary trait and QTPhenProxy probabilities were compared by running two separate as-

sociation analyses. For both analyses, covariates included age at 2018, sex, first 10 principal

components, and the genotyping array the sample was carried out on. In QC1, the original PCs

determined by the UK Biobank QC were used. In QC2, we calculated the PCs using the method
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described in Method 5.2.11. QC2 GWAS was only run for stroke, ischemic stroke, subarachnoid

hemorrhage, and intracerebral hemorrhage GWAS. For the binary trait GWAS, a logistic regres-

sion was run, adjusted with the aforementioned covariates. For comparison, the QTPhenProxy

probabilities were quantile normalized and run under a linear regression adjusting for the same co-

variates. We also permuted the probabilities within the phenotyping files and ran additional GWAS

10 times to ensure the signal was correlated with the phenotype.

5.2.5 Mapping variants to known disease variant marker sets and mapping marker sets to disease

systems.

The EBI-GWAS catalogue has a database of all published GWAS[128]. We extracted over

2,000 disease marker sets conducted on populations with European ancestry. MedDRA is a stan-

dardized medical vocabulary developed by the International Council for Harmonisation of Techni-

cal Requirements for Pharmaceuticals for Human Use (ICH)[148]. All terms in the vocabulary can

be mapped to its highest system level, which includes 27 different organ systems and other general

and lab studies such as social circumstance and investigations. Using the NCBO annotator, we

mapped the names of the EBI-GWAS disease marker sets to the MedDRA System Organ Classes

level[149].

5.2.6 Assessing the specificity of the QTPhenProxy-derived variants.

To assess the disease specificity of the genome-wide significant variants, we first calculated the

proportion of genome-wide significant variants in each of the EBI-GWAS disease marker sets. We

then aggregated the marker sets together by System Organ Class to evaluate the systems enriched

for genome-wide significant variants. We ordered the marker sets in each class by proportion of

genome-wide significant variants and divided by the number of marker sets in each class. We

also compared the proportion of variants of varying significance of the marker sets related to each

disease with 1) the other marker sets related to the same System Organ Class as the disease and

2) all other marker sets. We stratified each comparison by significance value, between 0.05 and

79



5E-08.

5.2.7 Evaluation of recovery of known variants

For each disease, we gathered EBI-GWAS marker sets that contained the disease in its name.

These represent known variants of each disease. We then extracted the p-value from either the

binary trait logistic regression or QTPhenProxy linear regression. We then ran a t-test comparing

the negative log base 10 p-values of the binary trait with QTPhenProxy GWAS. We also ran a

t-test comparing the difference between the binary and QTPhenProxy log base 10 p-values for the

known ischemic stroke variants and an equivalent number of random variants.

5.2.8 Refinement of discovered variants by QTPhenProxy using conditional analysis

At each LD-independent locus, the SNP with lowest p-value may not be the variant that causes

the most phenotypic variation within the area[150]. Therefore, we applied GCTA-COJO, a condi-

tional analysis that takes into account lead SNPs and the LD structure of a sample of the population,

to our genome-wide association results[150]. We randomly sampled 10,000 subjects from the UK-

Biobank for the linkage disequilibrium calculation[151]. From the GCTA-COJO results, we then

mapped each locus to its nearest gene using dbSNP and the UCSC Genome Browser accessed at

http://genome.ucsc.edu/[152, 153]. For intergenic loci, we chose the 1-2 nearest genes that were

at most 10,000 kbps away.

5.2.9 Correlation of QTPhenProxy GWAS beta coefficients to Binary trait GWAS Odds Ratio

We calculated the Pearson correlation between the beta-coefficients of the QTPhenProxy GWAS

and log of the odds ratios of the Binary trait GWAS. In order to account for noise, we calculated the

correlation with variants with different levels of significance in the QTPhenProxy models. P-value

cutoffs included 1, 0.05,0.0005,5e-06,and 5e-08.
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5.2.10 Simulation of Conversion of QTPhenProxy trait to Binary trait and Conversion of beta

coefficients to odds ratios

In order to validate our method of converting binary traits to quantitative traits, we ran simula-

tions and tested the correlation between the two methods. Using SOLAR, a software package for

estimating heritability using identity by descent calculations, we simulated a quantitative trait with

one quantitative trait locus with two alleles and a nearby marker locus with two alleles[124]. We

first removed all related individuals with a resulting cohort of 4,195 subjects. For the simulation,

we varied the frequency for the causal minor allele and a marker minor allele from 0.05-0.45 in

increments of 0.010, the mean quantitative trait value for the heterozygous genotype from 5-45 in

increments of 10 and the homozygous genotypes’ mean±50, the standard deviation of the quantita-

tive trait from 5-20 in increments of 4, and the recombinant fraction from 0.01-0.10 in increments

of 0.02. After simulating the quantitative trait distribution, we then normalized the trait to several

distributions: standard normal, normal distribution with mean 0 and standard deviation 10, and

mean 50 and standard deviation 10. We compared distributions because we quantile normalized

our QTPhenProxy trait values before running the genome-wide associations studies. We then con-

verted each simulation to a binary trait using liability thresholding[154]. Liability thresholding

was implemented as follows: We determined a quantitative trait value as a threshold based off the

prevalence of the simulated trait, which we varied from 2.5-20% in increments of 5%. Any sub-

ject above this threshold is labeled a case and the rest, controls, in the binary trait phenotype. We

then ran linear or logistic regressions using the python package statsmodels between the simulated

quantitative trait or the binary trait and the subjects’ genotypes for the marker and causal loci[155].

We developed a conversion formula for the beta coefficients to odds ratios by linearly regressing

the correlation between the simulated effect sizes. We then converted the beta-coefficients to odds

ratios of the UK Biobank GWAS results by multiplying the beta coefficient by the average slope

and intercept and then taking the exponential of the result.

81



5.2.11 PCA

In order to confirm the cases were well distributed within the data and to determine the number

of principal components to use as covariates, we conducted PCA. For each of the four diseases,

we first pruned the variants used for PCA by running a sliding window of size 100 kbps, 5 variant

step size, and r2 threshold of 0.1. We then combined the chromosomes, extracting only the pruned

variants, using Plink2 and cat-bgen software[156]. We then ran PCA with Plink2[147] and eval-

uated the PCs to be used as covariates using a skree plot. Within the main PCs, we plotted them

against each other, highlighting the distribution of the cases.

5.2.12 LD Score Regression and evaluation of genomic inflation

We determined the lambda genomic correction and LD score regression coefficient using the

software LDSC[157]. We used the disease GWAS summary statistics and European LD scores pre-

computed from 1000 genomes by the Alkes group[157]. QQ plots were plotted using qqman[158].

To determine the relationship between genomic inflation and minor allele frequency, we binned

all variants in the stroke GWAS by minor allele frequency into 30 bins. We then calculated the

genomic inflation of the p-values of the variants in each bin.

5.2.13 Genetic Correlation of QTPhenProxy with MEGASTROKE and Coronary Artery Disease

GWAS

We measured the genetic correlation of the QTPhenProxy EN stroke model with QC1 quality

control with the MEGASTROKE all stroke GWAS summary statistics[11] and coronary artery

disease GWAS summary statistics from [159]. We calculated genetic correlation using the LDSC

software[157].
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5.3 Results

5.3.1 QTPhenProxy Model Performance

We trained models with 5 different classifier types and the 18 disease phenotypes as defined by

the UK Biobank Algorithmically Defined Outcomes rubric[145]. Random forest models overall

showed the best area under the receiver operating curve and Adaboost models gave the best area

under the precision recall curve on the hold-out test set. Overall stroke, followed by ischemic

stroke, showed high precision at top 50 patients ordered by probability (Figure 5.1, tables 5.1,

5.2 and 5.5). We chose the probabilities from the EN and RF models to run the genome-wide

association analyses because the distribution of their probabilities was continuous and included

values from 0-1 (Figure 5.2).

Disease Model AUROC AUPRC Maximum F1

Ischemic Stroke

rf 0.953(0.000279) 0.248(0.00201) 0.326(0.00229)

ab 0.950(0.000504) 0.246(0.00465) 0.316(0.00335)

lr 0.946(0.000409) 0.239(0.0021) 0.322(0.00196)

gb 0.952(0.000686) 0.210(0.00479) 0.294(0.00319)

en 0.943(0.000362) 0.209(0.00193) 0.295(0.00199)

SAH Stroke

rf 0.875(0.000746) 0.144(0.00299) 0.242(0.00423)

ab 0.859(0.00186) 0.171(0.0062) 0.271(0.00807)

lr 0.850(0.00115) 0.151(0.00419) 0.291(0.00509)

gb 0.863(0.00149) 0.113(0.00379) 0.203(0.00513)

en 0.863(0.000958) 0.109(0.00377) 0.198(0.00497)

ICH Stroke

rf 0.903(0.000924) 0.0483(0.00143) 0.116(0.00253)

ab 0.900(0.00171) 0.0480(0.00196) 0.114(0.00305)

lr 0.879(0.00145) 0.0270(0.000709) 0.0762(0.00137)

gb 0.900(0.00123) 0.0365(0.00125) 0.0935(0.00227)

en 0.903(0.00118) 0.0329(0.000755) 0.0861(0.00146)

Stroke

rf 0.899(0.000404) 0.326(0.0016) 0.375(0.00147)

ab 0.906(0.000711) 0.335(0.00423) 0.380(0.00262)

lr 0.905(0.000528) 0.314(0.00143) 0.368(0.00154)

gb 0.903(0.00047) 0.292(0.00245) 0.355(0.00151)

en 0.896(0.000448) 0.282(0.00113) 0.350(0.000962)
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Disease Model AUROC AUPRC Maximum F1

NSTEMI

rf 0.943(0.000192) 0.168(0.000887) 0.263(0.0012)

ab 0.94(0.000469) 0.195(0.00169) 0.286(0.00153)

lr 0.941(0.000234) 0.189(0.00102) 0.281(0.00112)

gb 0.937(0.00617) 0.173(0.0111) 0.262(0.0127)

en 0.94(0.000244) 0.173(0.000975) 0.258(0.00099)

Disease Model AUROC AUPRC Maximum F1

STEMI

rf 0.977(0.000154) 0.193(0.00203) 0.275(0.00208)

ab 0.978(0.000287) 0.223(0.00227) 0.308(0.00206)

lr 0.977(0.000262) 0.211(0.00169) 0.296(0.00149)

gb 0.973(0.00694) 0.204(0.012) 0.283(0.0145)

en 0.974(0.000216) 0.181(0.00142) 0.26(0.00159)

Disease Model AUROC AUPRC Maximum F1

MI

rf 0.935(0.000197) 0.356(0.001) 0.424(0.000676)

ab 0.941(0.000156) 0.384(0.00123) 0.465(0.00106)

lr 0.941(0.000153) 0.367(0.000968) 0.44(0.00087)

gb 0.94(0.000161) 0.365(0.00105) 0.434(0.000826)

en 0.931(0.000181) 0.335(0.000798) 0.392(0.000694)

Disease Model AUROC AUPRC Maximum F1

MSA

rf 0.952(0.00188) 0.00639(0.00107) 0.0317(0.00395)

ab 0.945(0.00324) 0.00393(0.000431) 0.0203(0.00272)

lr 0.822(0.00886) 0.00125(3.59e-05) 0.00347(5.82e-05)

gb 0.951(0.00224) 0.00439(0.00057) 0.022(0.00231)

en 0.952(0.00189) 0.00353(0.000161) 0.0176(0.0015)

Disease Model AUROC AUPRC Maximum F1

Motor Neuron

rf 0.927(0.00256) 0.0349(0.00328) 0.111(0.00752)

ab 0.91(0.00428) 0.0162(0.00137) 0.0684(0.00503)

lr 0.795(0.00795) 0.0217(0.00318) 0.1(0.00826)

gb 0.917(0.00333) 0.0165(0.00167) 0.0646(0.00521)

en 0.909(0.00398) 0.0151(0.00144) 0.0629(0.00491)

Disease Model AUROC AUPRC Maximum F1

Parkinson’s

rf 0.886(0.0013) 0.063(0.00302) 0.139(0.00371)

ab 0.863(0.00172) 0.0667(0.00477) 0.153(0.00694)

lr 0.842(0.00188) 0.0549(0.00323) 0.14(0.00562)

gb 0.866(0.00144) 0.0234(0.00113) 0.0705(0.00242)

en 0.87(0.00164) 0.0264(0.00104) 0.0819(0.00241)
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Disease Model AUROC AUPRC Maximum F1

Parkinsonism

rf 0.908(0.000947) 0.0659(0.00119) 0.138(0.00175)

ab 0.901(0.00141) 0.0606(0.00258) 0.124(0.00382)

lr 0.898(0.00119) 0.0583(0.000865) 0.121(0.00117)

gb 0.903(0.00101) 0.0515(0.000953) 0.112(0.00182)

en 0.897(0.00114) 0.0494(0.00069) 0.112(0.00121)

Disease Model AUROC AUPRC Maximum F1

COPD

rf 0.915(0.000342) 0.2(0.00144) 0.266(0.00137)

ab 0.915(0.000431) 0.224(0.00306) 0.292(0.00182)

lr 0.915(0.000339) 0.245(0.00116) 0.303(0.00107)

gb 0.915(0.000321) 0.215(0.00146) 0.283(0.00133)

en 0.906(0.000415) 0.197(0.000952) 0.264(0.00111)

Disease Model AUROC AUPRC Maximum F1

Asthma

rf 0.806(0.000366) 0.165(0.000643) 0.23(0.000714)

ab 0.804(0.000447) 0.185(0.00118) 0.254(0.000653)

lr 0.808(0.000415) 0.197(0.000627) 0.254(0.000564)

gb 0.807(0.000323) 0.176(0.000695) 0.238(0.000683)

en 0.79(0.000501) 0.146(0.000474) 0.211(0.000552)

Disease Model AUROC AUPRC Maximum F1

Vascular Dementia

rf 0.93(0.00228) 0.0158(0.00127) 0.0652(0.00345)

ab 0.906(0.00334) 0.0105(0.00101) 0.0516(0.00376)

lr 0.887(0.00374) 0.00842(0.000719) 0.0486(0.00442)

gb 0.922(0.00245) 0.0116(0.00082) 0.0539(0.00368)

en 0.919(0.00294) 0.0137(0.000906) 0.0615(0.00337)

Disease Model AUROC AUPRC Maximum F1

Alzheimer’s

rf 0.877(0.00215) 0.00989(0.000578) 0.0468(0.00245)

ab 0.846(0.00367) 0.00697(0.000334) 0.0371(0.00215)

lr 0.808(0.00269) 0.00453(0.000162) 0.0305(0.00116)

gb 0.857(0.00321) 0.00675(0.000255) 0.0359(0.00199)

en 0.857(0.00285) 0.00646(0.000277) 0.0348(0.00205)

Disease Model AUROC AUPRC Maximum F1

All Dementia

rf 0.895(0.00101) 0.0536(0.00112) 0.115(0.00181)

ab 0.905(0.00106) 0.09(0.0042) 0.192(0.00907)

lr 0.887(0.0011) 0.119(0.00235) 0.243(0.00355)

gb 0.905(0.000731) 0.0567(0.000921) 0.116(0.00162)

en 0.878(0.0014) 0.0441(0.000976) 0.105(0.00182)
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Table 5.1: Phenotyping Models Performance. rf : Random Forest, ab= Adaboost, lr=Logistic
regression with L1 penalty, gb=Gradient Boosting, en=Logistic Regression with elastic net penalty
models. AUROC: Area under the Receiver Operating Curve, AUPRC: Area under Precision-Recall
curve. 95% confidence intervals

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

IscStroke

rf 0.739(0.0132) 0.682(0.0105) 0.544(0.00575) 0.322(0.00246)

ab 0.71(0.0192) 0.674(0.0154) 0.527(0.0117) 0.309(0.00405)

lr 0.801(0.0143) 0.672(0.00997) 0.483(0.00560) 0.314(0.00205)

gb 0.609(0.0305) 0.544(0.0246) 0.425(0.0179) 0.282(0.00714)

en 0.74(0.0141) 0.63(0.00946) 0.435(0.00476) 0.29(0.00197)

SAHStroke

rf 0.607(0.0178) 0.55(0.0106) 0.308(0.00623) 0.235(0.00381)

ab 0.627(0.0185) 0.538(0.0144) 0.329(0.0102) 0.266(0.00801)

lr 0.535(0.0187) 0.5(0.0147) 0.356(0.00722) 0.271(0.00630)

gb 0.532(0.0203) 0.442(0.0176) 0.249(0.00759) 0.197(0.00557)

en 0.543(0.0188) 0.441(0.0136) 0.244(0.00773) 0.192(0.00523)

ICHStroke

rf 0.263(0.013) 0.216(0.00968) 0.124(0.00328) 0.110(0.00265)

ab 0.203(0.0185) 0.171(0.0124) 0.108(0.00400) 0.0997(0.00352)

lr 0.109(0.0121) 0.100(0.00713) 0.0742(0.00252) 0.0677(0.0027)

gb 0.137(0.0146) 0.123(0.00838) 0.0908(0.00279) 0.0834(0.00240)

en 0.123(0.0110) 0.115(0.00761) 0.0835(0.00262) 0.0768(0.00204)

Stroke

rf 0.974(0.00548) 0.941(0.00506) 0.822(0.00339) 0.374(0.0015)

ab 0.940(0.0120) 0.910(0.0120) 0.813(0.0131) 0.378(0.00265)

lr 0.929(0.00793) 0.872(0.00678) 0.775(0.00413) 0.365(0.00164)

gb 0.868(0.0324) 0.818(0.0309) 0.696(0.0180) 0.351(0.00166)

en 0.848(0.00829) 0.836(0.00706) 0.694(0.00394) 0.345(0.000996)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

NSTEMI

rf 0.367(0.0151) 0.35(0.0117) 0.293(0.00471) 0.228(0.00161)

ab 0.454(0.0224) 0.428(0.016) 0.361(0.00636) 0.258(0.00208)

lr 0.498(0.0128) 0.452(0.00926) 0.346(0.00383) 0.251(0.00117)

gb 0.4(0.0451) 0.363(0.0379) 0.296(0.028) 0.224(0.0189)

en 0.494(0.0136) 0.438(0.00987) 0.329(0.00347) 0.23(0.00129)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

STEMI

rf 0.376(0.019) 0.38(0.0137) 0.336(0.00505) 0.248(0.00252)

ab 0.446(0.0192) 0.429(0.0146) 0.365(0.00649) 0.27(0.0026)
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lr 0.45(0.0116) 0.459(0.0087) 0.355(0.00515) 0.253(0.00195)

gb 0.399(0.0326) 0.388(0.03) 0.341(0.0248) 0.245(0.0174)

en 0.365(0.0117) 0.363(0.00947) 0.328(0.00404) 0.233(0.0015)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

MI

rf 0.706(0.0139) 0.677(0.0103) 0.623(0.00441) 0.414(0.000878)

ab 0.773(0.0107) 0.755(0.00615) 0.668(0.00409) 0.449(0.00128)

lr 0.772(0.00873) 0.749(0.00669) 0.685(0.00369) 0.419(0.000945)

gb 0.746(0.0159) 0.751(0.0125) 0.684(0.00506) 0.414(0.000937)

en 0.884(0.00827) 0.82(0.0062) 0.706(0.00302) 0.381(0.000827)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

MSA

rf 0.0256(0.00608) 0.0164(0.00332) 0.0102(0.00112) 0.0185(0.00401)

ab 0.008(0.00314) 0.007(0.00237) 0.00756(0.00114) 0.00765(0.00264)

lr 0.0036(0.00213) 0.0018(0.00106) 0.00036(0.000213) 0.00222(0.00131)

gb 0.0128(0.0038) 0.01(0.00235) 0.0066(0.000916) 0.0109(0.00271)

en 0.0032(0.00203) 0.0058(0.00176) 0.0058(0.000817) 0.00469(0.0018)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

Motor Neuron

rf 0.164(0.0154) 0.112(0.0089) 0.041(0.00221) 0.0965(0.00728)

ab 0.058(0.00832) 0.0526(0.00636) 0.0346(0.00249) 0.0491(0.0057)

lr 0.0968(0.0181) 0.0632(0.00948) 0.0449(0.00521) 0.0567(0.00727)

gb 0.07(0.00949) 0.0552(0.00618) 0.0311(0.00227) 0.0518(0.00502)

en 0.0568(0.00779) 0.0492(0.00531) 0.031(0.0024) 0.0469(0.00505)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

Parkinson’s

rf 0.394(0.0231) 0.309(0.0142) 0.157(0.00497) 0.133(0.00369)

ab 0.33(0.0263) 0.274(0.02) 0.167(0.00887) 0.147(0.00706)

lr 0.331(0.0215) 0.26(0.0149) 0.154(0.00693) 0.135(0.00578)

gb 0.12(0.0107) 0.102(0.00862) 0.0668(0.00329) 0.0617(0.00258)

en 0.129(0.012) 0.117(0.00671) 0.0793(0.00327) 0.0725(0.00277)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

Parkinsonism

rf 0.279(0.0177) 0.261(0.0115) 0.191(0.00419) 0.131(0.00218)

ab 0.316(0.0202) 0.276(0.015) 0.18(0.00716) 0.117(0.00368)

lr 0.214(0.0116) 0.198(0.00881) 0.156(0.00365) 0.112(0.00144)

gb 0.208(0.0134) 0.185(0.0105) 0.129(0.00372) 0.0977(0.00187)

en 0.188(0.0115) 0.19(0.00905) 0.122(0.00319) 0.102(0.00144)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

COPD

rf 0.784(0.017) 0.732(0.0123) 0.567(0.00564) 0.261(0.00162)

ab 0.776(0.0194) 0.738(0.0188) 0.607(0.0139) 0.288(0.00201)

lr 0.878(0.00797) 0.831(0.00528) 0.681(0.00474) 0.301(0.00116)
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gb 0.766(0.0138) 0.719(0.0114) 0.584(0.0062) 0.279(0.00134)

en 0.762(0.00879) 0.742(0.00626) 0.575(0.00457) 0.261(0.00109)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

Asthma

rf 0.538(0.0183) 0.542(0.0125) 0.517(0.00457) 0.225(0.000823)

ab 0.743(0.0162) 0.708(0.0103) 0.582(0.00752) 0.251(0.000822)

lr 0.831(0.00915) 0.808(0.00623) 0.677(0.00463) 0.251(0.000607)

gb 0.761(0.0167) 0.725(0.0118) 0.599(0.00578) 0.233(0.000811)

en 0.703(0.00917) 0.627(0.00856) 0.502(0.00402) 0.201(0.000615)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

Vascular Dementia

rf 0.0612(0.0081) 0.0532(0.00556) 0.033(0.00176) 0.0493(0.00461)

ab 0.0432(0.00802) 0.041(0.00579) 0.0255(0.00175) 0.0382(0.00473)

lr 0.034(0.0108) 0.0268(0.00702) 0.0187(0.00317) 0.0226(0.0059)

gb 0.052(0.00844) 0.0434(0.00507) 0.0268(0.00168) 0.0394(0.00417)

en 0.056(0.00815) 0.0528(0.00557) 0.0304(0.00162) 0.0488(0.00417)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

Alzheimer’s

rf 0.0556(0.00847) 0.0506(0.00462) 0.0311(0.00189) 0.0386(0.0029)

ab 0.0388(0.00631) 0.0332(0.00448) 0.0231(0.0017) 0.028(0.00259)

lr 0.0156(0.00499) 0.0134(0.00374) 0.0139(0.00213) 0.0121(0.00255)

gb 0.03(0.00568) 0.0302(0.00409) 0.0223(0.00156) 0.0277(0.00219)

en 0.0236(0.00681) 0.0268(0.00465) 0.0214(0.00182) 0.0239(0.00234)

Disease Model Prec at 50 Prec at 100 Prec at 500 Prec at N

All Dementia

rf 0.323(0.0125) 0.281(0.00994) 0.177(0.00397) 0.112(0.00193)

ab 0.247(0.0144) 0.235(0.0127) 0.198(0.00998) 0.168(0.00964)

lr 0.38(0.0138) 0.351(0.00989) 0.26(0.00573) 0.211(0.00496)

gb 0.178(0.0134) 0.178(0.00971) 0.146(0.0035) 0.106(0.00173)

en 0.132(0.0121) 0.14(0.00831) 0.138(0.00381) 0.0975(0.00189)

Table 5.2: Precision at top 50, 100, 500, and N cases probabilities of phenotyping models.
rf : Random Forest, ab= Adaboost, lr=Logistic regression with L1 penalty, gb=Gradient Boosting,
en=Logistic Regression with elastic net penalty models. Prec: Precision. 95% confidence intervals

Disease Model Sensitivity Specificity

Ischemic Stroke

rf 0.347(0.00483) 0.996(0.000133)

ab 0.369(0.00744) 0.995(0.000256)

lr 0.362(0.00528) 0.995(0.000127)

gb 0.368(0.00868) 0.994(0.000354)
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en 0.332(0.00624) 0.995(0.000195)

SAH Stroke

rf 0.215(0.00503) 0.999(5.47e-05)

ab 0.272(0.00924) 0.999(7.14e-05)

lr 0.266(0.00764) 0.999(6.34e-05)

gb 0.204(0.00598) 0.999(9.43e-05)

en 0.201(0.00597) 0.999(0.000126)

ICH Stroke

rf 0.133(0.00715) 0.998(0.000140)

ab 0.167(0.0113) 0.998(0.000219)

lr 0.177(0.0211) 0.995(0.000742)

gb 0.141(0.00950) 0.998(0.000268)

en 0.146(0.0123) 0.997(0.000398)

Stroke

rf 0.377(0.00414) 0.989(0.000286)

ab 0.390(0.00559) 0.989(0.000379)

lr 0.399(0.00499) 0.987(0.000408)

gb 0.388(0.00462) 0.986(0.000373)

en 0.393(0.00425) 0.985(0.000336)

Disease Model Sensitivity Specificity

NSTEMI

rf 0.425(0.007) 0.987(0.000314)

ab 0.426(0.00737) 0.989(0.000312)

lr 0.423(0.00663) 0.989(0.000284)

gb 0.45(0.0192) 0.983(0.00473)

en 0.387(0.00569) 0.989(0.000275)

Disease Model Sensitivity Specificity

STEMI

rf 0.414(0.00813) 0.991(0.000265)

ab 0.501(0.0112) 0.99(0.000356)

lr 0.506(0.00956) 0.99(0.000297)

gb 0.49(0.0177) 0.986(0.0052)

en 0.416(0.00949) 0.99(0.000372)

Disease Model Sensitivity Specificity

MI

rf 0.498(0.00399) 0.98(0.000349)

ab 0.541(0.00383) 0.982(0.000319)

lr 0.546(0.00269) 0.978(0.000224)

gb 0.532(0.00443) 0.979(0.000357)

en 0.466(0.00355) 0.979(0.000375)

Disease Model Sensitivity Specificity

MSA

rf 0.0625(0.0153) 0.999(0.000229)
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ab 0.0593(0.0122) 0.999(0.00035)

lr 0.653(0.0335) 0.939(0.00315)

gb 0.0491(0.0115) 0.999(0.000299)

en 0.0662(0.0131) 0.999(0.000346)

Disease Model Sensitivity Specificity

Motor Neuron

rf 0.0943(0.0061) 1(4.16e-05)

ab 0.117(0.0123) 0.999(0.00014)

lr 0.151(0.0198) 0.999(0.000125)

gb 0.0924(0.00995) 1(9.9e-05)

en 0.0984(0.00965) 0.999(0.000119)

Disease Model Sensitivity Specificity

Parkinson’s

rf 0.136(0.00503) 0.999(0.000112)

ab 0.161(0.00823) 0.999(0.000113)

lr 0.153(0.00564) 0.999(0.000114)

gb 0.105(0.00817) 0.997(0.000343)

en 0.116(0.00616) 0.998(0.000219)

Disease Model Sensitivity Specificity

Parkinsonism

rf 0.179(0.00758) 0.995(0.000343)

ab 0.157(0.00857) 0.995(0.000347)

lr 0.196(0.00976) 0.993(0.00053)

gb 0.197(0.00923) 0.992(0.00053)

en 0.165(0.00634) 0.994(0.000366)

Disease Model Sensitivity Specificity

COPD

rf 0.309(0.0054) 0.987(0.000477)

ab 0.316(0.00507) 0.989(0.000365)

lr 0.327(0.00458) 0.989(0.000327)

gb 0.317(0.00506) 0.988(0.000383)

en 0.293(0.00504) 0.988(0.000419)

Disease Model Sensitivity Specificity

Asthma

rf 0.278(0.00434) 0.959(0.00122)

ab 0.287(0.00346) 0.965(0.000893)

lr 0.288(0.00376) 0.965(0.000908)

gb 0.289(0.00388) 0.959(0.00108)

en 0.284(0.00375) 0.949(0.00118)

Disease Model Sensitivity Specificity

Vascular Dementia

rf 0.102(0.0104) 0.999(0.000112)

ab 0.08(0.0102) 0.999(0.000142)
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lr 0.113(0.0128) 0.999(0.000332)

gb 0.0874(0.0089) 0.999(0.000135)

en 0.0888(0.0102) 0.999(0.000102)

Disease Model Sensitivity Specificity

Alzheimer’s

rf 0.062(0.00475) 0.999(0.000121)

ab 0.0574(0.00727) 0.999(0.000213)

lr 0.0786(0.0065) 0.998(0.000177)

gb 0.0526(0.00631) 0.999(0.000205)

en 0.0612(0.00618) 0.999(0.000219)

Disease Model Sensitivity Specificity

All Dementia

rf 0.126(0.00416) 0.996(0.000232)

ab 0.309(0.0264) 0.993(0.00122)

lr 0.296(0.00669) 0.996(0.000244)

gb 0.183(0.0102) 0.993(0.000512)

en 0.155(0.00745) 0.994(0.000491)

Table 5.3: Sensitivity and Specificity of phenotyping models. rf : Random Forest, ab= Adaboost,
lr=Logistic regression with L1 penalty, gb=Gradient Boosting, en=Logistic Regression with elastic
net penalty models. 95% confidence intervals

5.3.2 Variants recovered by QTPhenProxy for all stroke, ischemic stroke, subarachnoid hemor-

rhage, intracerebral hemorrhage, and improvement over traditional binary method using the

QC1 markers and principal components

The binary trait logistic regression genome-wide association study for stroke, ischemic stroke,

and subarachnoid hemorrhage recovered no variants with genome-wide significance. Binary trait

logistic regression genome-wide association study for intracerebral hemorrhage recovered 2 vari-

ants with genome-wide significance. Quantitative trait linear regression using QTPhenProxy prob-

abilities for stroke recovered 120 genome-wide significant SNPs with 16 LD-independent loci and

1215 genome-wide significant SNPs with 39 LD-independent loci, for ischemic stroke recovered

202 genome-wide significant SNPs with 15 LD-independent loci, and 1266 genome-wide signifi-

cant SNPs with 46 LD-independent loci, for subarachnoid hemorrhage recovered 69 genome-wide
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Figure 5.1: Precision at top 50, 100, 500, and N cases probabilities assigned by machine learn-
ing algorithms on hold out test set. A. All Stroke, B. Ischemic Stroke, C. Subarachnoid Hemor-
rhage, D. Intracerebral Hemorrhage. Circles represent precision for the Logistic Regression model
with L1 penalty, squares: Random Forest model, triangles: Adaboost model, cross: Gradient
boosting model, and star Logistic Regression model with Elastic Net penalty.
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Figure 5.2: Model probability distributions assigned by machine learning algorithms. RF:
Random Forest model, EN: Logistic Regression with elastic net penalty model, LR: Logistic Re-
gression model with L1 penalty, AB: Adaboost model,GB: Gradient boosting model, IscStroke:
Ischemic Stroke phenotype,SAHStroke: Subarachnoid hemorrhage phenotype,ICHStroke: Intrac-
erebral hemorrhage phenotype

significant SNPs with 4 LD-independent loci, and 722 genome-wide significant SNPs with 40 LD-

independent loci, and for intracerebral hemorrhage recovered 146 genome-wide significant SNPs

with 8 LD-independent loci, and 1059 genome-wide significant SNPs with 54 LD-independent

loci using the EN and RF classifiers, respectively (Table 5.4). We show the comparison of genome-

wide significant variants between the QTPhenProxy EN model and Binary trait GWAS for stroke

in a Hudson plot (Figure 5.3)[160]. Out of known ischemic stroke variants, both models also re-

covered 3 known variants with genome-wide significance, and the EN model recovered 21/49 of

the known variants, equivalent to a sensitivity of 0.428, while the traditional binary trait recov-

ered 15/49, (sensitivity=0.306), and RF model recovered 14/49 (sensitivity=0.286) with nominal

p-value of 0.05 (Table 5.5). For all stroke, sensitivity of known stroke variants was 0.333 using the

EN model, 0.261 using the RF model, and 0.202 using the binary trait. Subarachnoid hemorrhage

did not have a specific EBI-GWAS disease marker set, and the EBI-GWAS disease marker set for

intracerebral hemorrhage only consisted of one variant. The difference in p-values between the
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Figure 5.3: QQ Plots and Hudson plot of QTPhenProxy genome-wide association analysis,
EN Model with Binary trait genome-wide association analysis for Stroke, using QC1 quality
control. A. Q-Q Plot for QTPhenProxy, EN Model GWAS. B. Q-Q Plot for Binary trait GWAS.
C. Top Manhattan plot is for QTPhenProxy, bottom plot for binary trait. Variants with p-value <
5e-08 are highlighted in pink, and the dashed lines are at the same value.

binary method and QTPhenProxy method for known ischemic stroke variants was significantly

increased compared to the same number of random variants using the EN classifier (two sample

t test, t=2.43, p=0.0184 for EN classifier and t=1.74, p=0.0876 for RF classifier). In addition,

QTPhenProxy with EN classifier showed a significant decrease in p-value of all known ischemic

stroke variants compared to traditional binary method (two sample t-test, t=-2.1 p=0.0367) while

QTPhenProxy with RF classifier did not show a significant decrease (t=-1.48,p=0.144). The dif-

ference in p-values between the binary method and QTPhenProxy method for known all stroke

variants was significantly increased compared to the same number of random variants for the EN

classifier (t=2.80, p=0.00638) but not significant for the RF classifier (t=0.737,p=0.463). In addi-

tion, QTPhenProxy with EN classifier showed a decrease in p-value of all known stroke variants

compared to traditional binary method (two sample t-test, t=-1.87 p=0.0639) while QTPhenProxy

with RF classifier did not show a significant decrease (t=-1.05,p=0.298).
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Disease N Cases Bin Hits RF Hits RF AUROC EN Hits EN AUROC

Asthma 21491 8548 3946 0.805 3117 0.79
COPD 8290 82 2544 0.915 2088 0.906
All cause Dementia 2279 36 550 0.85 91 0.878
Alzheimer’s disease 357 72 1356 0.876 196 0.856
Vascular dementia 178 34 1832 0.93 611 0.919
Frontotemporal Dementia 39 6 1655 NA 0 NA
Motor neuron disease 173 1 1652 0.927 48 0.908
Myocardial Infarction 9407 487 2126 0.935 940 0.931
STEMI 3386 82 1806 0.977 563 0.974
NSTEMI 3932 137 2922 0.943 459 0.94
Parkinsonism 2321 3 881 0.908 41 0.897
Parkinson’s disease 934 3 997 0.885 3 0.87
Progressive supranuclear palsy 14 34 3789 NA 40 NA
Multiple System Atrophy 120 14 1386 0.952 15 0.952
Stroke 4354 0 1215 0.899 120 0.896
Ischemic stroke 3308 0 1266 0.952 202 0.943
Intracerebral hemorrhage 581 2 1059 0.903 146 0.903
Subarachnoid hemorrhage 665 0 722 0.875 69 0.862

Table 5.4: Number of genome-wide significant variants. N Cases: number of cases. hits: Num-
ber of genome-wide significant variants, Bin: binary trait, RF: Random Forest model, EN: Logistic
Regression with elastic net penalty model.

Disease Bin Sens RF Sens EN Sens

Asthma 0.667 0.458 0.513
COPD 0.254 0.182 0.2
All cause Dementia 0 1 1
Alzheimer’s disease 0.285 0.155 0.173
Myocardial Infarction 0.789 0.71 0.736
Parkinsonism 0.473 0.231 0.0842
Stroke 0.217 0.217 0.261
Ischemic stroke 0.312 0.312 0.333

Table 5.5: Proportion of known stroke variants that reach nominal significance for each
model. N Cases: number of cases, sens: sensitivity measure for each model GWAS and binary
trait GWAS, measures what proportion of known stroke variants reach genome-wide significance
in each association test. Bin: binary trait, RF: Random Forest model, EN: Logistic Regression
with elastic net penalty model.

95



5.3.3 Variants recovered by QTPhenProxy for all stroke, ischemic stroke, subarachnoid hemor-

rhage, intracerebral hemorrhage, and improvement over traditional binary method using the

QC2 markers and principal components

The binary trait logistic regression genome-wide association study for stroke, ischemic stroke,

and subarachnoid hemorrhage recovered no variants with genome-wide significance. Binary trait

logistic regression genome-wide association study for intracerebral hemorrhage recovered 2 vari-

ants with genome-wide significance. Quantitative trait linear regression using QTPhenProxy prob-

abilities for stroke recovered 7 LD-independent loci, 3 LD-independent loci, for ischemic stroke,

3 LD-independent loci for subarachnoid hemorrhage, and 3 LD-independent loci for intracerebral

hemorrhage using the EN classifier. We show the comparison of genome-wide significant variants

between the EN and Binary in a Hudson plot (Figure 5.4)[160]. Out of known ischemic stroke

variants, both models also recovered 3 known variants with genome-wide significance, and the

EN model recovered 16/49 of the known variants, equivalent to a sensitivity of 0.326, while the

traditional binary trait recovered 15/49, (sensitivity=0.306), and RF model recovered 15/49 (sensi-

tivity=0.306) with nominal p-value of 0.05 (Figure 5.5). For all stroke, sensitivity of known stroke

variants was 0.265 using the EN model, 0.220 using the RF model, and 0.220 using the binary

trait. The t-tests referred to in Result 5.3.2 did not show significance.

5.3.4 Conditional analysis refines candidate variants to mostly lead some nearby SNPs.

Conditional analysis of the GWAS with QC1 quality control for the QTPhenProxy EN model

for all stroke identified 13 candidate variants with genome-wide significance, all of which are

novel, though some of the nearest genes to these loci have been identified in previous studies

through nearby loci. There were 12 loci identified for the stroke subtype ischemic stroke, 3 loci

for subarachnoid hemorrhage, and 9 loci for intracerebral hemorrhage (Table 5.6). Several loci

overlapped across stroke and some subtypes. Position 46705193 on chromosome 11, which is

in an intronic section of ARHGAP1[152], showed genome-wide significance in stroke, ischemic

stroke, and intracerebral hemorrhage. A missense mutation at locus rs6025 in the F5 gene showed
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Figure 5.4: QQ Plots and Hudson plot of QTPhenProxy genome-wide association analysis,
EN Model with Binary trait genome-wide association analysis for Stroke, using QC2 quality
control. QQ Plots and Hudson plot of QTPhenProxy genome-wide association analysis, EN Model
with Binary trait genome-wide association analysis for Stroke, using QC2 quality control. QQ
Plots and Hudson plot of QTPhenProxy genome-wide association analysis, EN Model with Binary
trait genome-wide association analysis for Stroke, using QC2 quality control. A. Q-Q Plot for
QTPhenProxy, EN Model GWAS. B. Q-Q Plot for Binary trait GWAS. C. Top Manhattan plot is
for QTPhenProxy, bottom plot for binary trait. Variants with p-value < 5e-08 are highlighted in
pink, and the dashed lines are at the same value.
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Figure 5.5: QTPhenProxy recovers known ischemic stroke variants. Results from QTPhen-
Proxy GWAS with QC2 quality control. Horizontal axis shows Ischemic Stroke variants cata-
logued in EBI-GWAS that have shown genome-wide significance in previous studies. Black mark-
ers represent p-values of variants recovered by QTPhenProxy models (square=RF,Triangle=EN).
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genome-wide significance across stroke, intracerebral hemorrhage, and locus rs1894692, which is

near the F5 gene[152], showed genome wide significance in ischemic stroke. Additional loci that

showed genome-wide significance in both all stroke and ischemic stroke included those that are

intronic to LPA and NOS3 and nearby to APOC1P1/APOC1 and CDKN2A/CDKN2B[152]. Finally,

all stroke and intracerebral hemorrhage shared additional loci that showed genome-wide signifi-

cance after conditional analysis, which were nearby LOC105377992 and RPS4X9[152]. All stroke

genome-wide significant variants also included intronic loci in the MTA3, SOX7, ABO, FURIN, and

PLCB1 genes[152]. Ischemic stroke genome-wide significant variants included intronic loci in the

LPAL2 gene, intergenic loci in the PITX2, LDLR, and an insertion mutation in the ABO gene[152].

Subarachnoid hemorrhage genome-wide significant variants included an intronic locus in the ABO

gene. Finally, intracerebral hemorrhage genome-wide significant variants included a missense mu-

tation loci in the ABCG8 gene, and intronic loci in the NOS3 and XKR6 genes[152]. The variants

near or in LOC105377992, NOS3, CDKN2A/CDKN2B, LPA, LDLR, ABCG8, and RPS4X9 were

below nominal significance of 0.05 in the MEGASTROKE stroke and ischemic stroke GWAS of

European ancestry (Table 5.7)[11].

Phenotype rsID Chr. Gene Location Allele RAF Beta Converted OR P value

Stroke rs6025 1q24.2 F5 missense T/C 0.0231 0.0492 (0.0421-0.0564) 1.09 (1.08-1.10) 4.87e-12

Stroke rs8179838 2p21 MTA3 intronic T/C 0.621 0.0126 (0.0104-0.0149) 1.02 (1.02-1.03) 9.63e-09

Stroke rs6923947 6q22.32 LOC105377992 intergenic A/G 0.447 0.0123 (0.0101-0.0144) 1.02 (1.02-1.02) 1.19e-08

Stroke rs55730499 6q25.3 LPA intronic T/C 0.0817 0.0273 (0.0234-0.0312) 1.05 (1.04-1.06) 2.70e-12

Stroke rs3918226 7q36.1 NOS3 intronic T/C 0.0814 0.0263 (0.0223-0.0302) 1.05 (1.04-1.05) 3.44e-11

Stroke rs6991641 8p23.1 SOX7 intronic G/C 0.403 0.013 (0.0108-0.0152) 1.02 (1.02-1.03) 3.29e-09

Stroke rs1333049 9p21.3 CDKN2A intergenic C/G 0.481 0.0129 (0.0108-0.0151) 1.02 (1.02-1.03) 1.41e-09

Stroke 9:136138765 9q34.3 ABO intronic G/GC... 0.184 0.0155 (0.0128-0.0183) 1.03 (1.02-1.03) 2.05e-08

Stroke 11:46705193 11p11.2 ARHGAP1 intronic C/CT 0.28 0.0143 (0.0119-0.0167) 1.02 (1.02-1.03) 4.10e-09

Stroke rs59065675 15q26.1 FURIN intronic C.../C 0.47 0.0127 (0.0105-0.0149) 1.02 (1.02-1.03) 5.00e-09

Stroke rs814573 19q13.32 APOC1 intergenic T/A 0.188 0.0156 (0.0128-0.0184) 1.03 (1.02-1.03) 2.97e-08

Stroke 20:862958 20p12.3 PLCB1 intronic TA/T 0.76 0.0138 (0.0113-0.0164) 1.02 (1.02-1.03) 4.73e-08

IscStroke rs1894692 1q24.2 F5 intergenic G/A 0.0218 0.0546 (0.0478-0.0614) 1.1 (1.09-1.11) 8.22e-16

IscStroke rs369787256 4q25 PITX2 intergenic C/T 0.0905 0.0223 (0.0188-0.0257) 1.04 (1.03-1.05) 1.17e-10

IscStroke rs55730499 6q25.3 LPA intronic T/C 0.0817 0.0272 (0.0236-0.0307) 1.05 (1.04-1.05) 2.49e-14

IscStroke rs117733303 6q25.3 LPAL2 intronic G/A 0.0187 0.0428 (0.0356-0.05) 1.08 (1.06-1.09) 2.69e-09
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IscStroke rs3918226 7q36.1 NOS3 intronic T/C 0.0814 0.0209 (0.0173-0.0246) 1.04 (1.03-1.04) 6.81e-09

IscStroke rs2205258 8q23.3 LOC107986968 intronic C/T 0.83 0.0151 (0.0125-0.0177) 1.03 (1.02-1.03) 6.76e-09

IscStroke rs8176719 9q34.2 ABO insertion TC/T 0.34 0.0145 (0.0124-0.0165) 1.02 (1.02-1.03) 2.17e-12

IscStroke rs1333049 9p21.3 CDKN2A intergenic C/G 0.481 0.0132 (0.0112-0.0151) 1.02 (1.02-1.03) 1.31e-11

IscStroke 11:46705193 11p11.2 ARHGAP1 intronic C/CT 0.28 0.0122 (0.01-0.0145) 1.02 (1.02-1.02) 3.22e-08

IscStroke rs814573 19q13.32 APOC1 intergenic T/A 0.188 0.0172 (0.0146-0.0198) 1.03 (1.02-1.03) 1.85e-11

IscStroke rs118068660 19p13.2 LDLR intergenic C/T 0.901 0.0193 (0.0159-0.0227) 1.03 (1.03-1.04) 1.43e-08

IscStroke rs12151925 20p12.2 FAT1P1 intergenic C/T 0.222 0.0129 (0.0105-0.0152) 1.02 (1.02-1.03) 4.26e-08

SAHStroke rs6025 1q24.2 F5 missense T/C 0.0231 0.0673 (0.0593-0.0753) 1.12 (1.11-1.14) 4.61e-17

SAHStroke rs36058710 9q34.2 ABO intronic CT/C 0.287 0.0166 (0.0139-0.0194) 1.03 (1.02-1.03) 1.03e-09

SAHStroke rs34850248 12q12 LINC02400 intergenic A/AC 0.0714 0.0268 (0.0221-0.0314) 1.05 (1.04-1.06) 9.95e-09

ICHStroke rs6025 1q24.2 F5 missense T/C 0.0231 0.0480 (0.0411-0.0549) 1.09 (1.07-1.1) 2.85e-12

ICHStroke rs11887534 2p21 ABCG8 missense G/C 0.935 0.0271 (0.0229-0.0313) 1.05 (1.04-1.06) 7.90e-11

ICHStroke rs372302634 3q22.3 ESYT3-MRAS intergenic T/T... 0.457 0.0121 (0.01-0.0142) 1.02 (1.02-1.02) 8.51e-09

ICHStroke rs6923947 6q22.32 LOC105377992 intergenic A/G 0.447 0.0127 (0.0106-0.0148) 1.02 (1.02-1.03) 9.5e-10

ICHStroke rs2077111 6q22.33 RPS4XP9 intergenic G/A 0.447 0.012 (0.00995-0.0141) 1.02 (1.02-1.02) 8.89e-09

ICHStroke rs1808593 7q36.1 NOS3 intronic G/T 0.25 0.0131 (0.0107-0.0155) 1.02 (1.02-1.03) 4.14e-08

ICHStroke rs7013277 8p23.1 XKR6 intronic C/A 0.396 0.0116 (0.00947-0.0137) 1.02 (1.02-1.02) 4.6e-08

ICHStroke 11:46705193 11p11.2 ARHGAP1 intronic C/CT 0.28 0.0133 (0.011-0.0156) 1.02 (1.02-1.03) 1.35e-08

Table 5.6: Genome-wide significant variants discovered by QTPhenProxy, EN Model, using
QC1 quality control. Cytogenic position was determined using [153]. rsID: variant id, Chr:
cytogenic position, Location: location of variant relative to the gene, Allele: risk/reference alleles,
RAF: risk allele frequency in population, Beta: Beta coefficient OR: Odds Ratio, 95% Confidence
Intervals

5.3.5 Conditional analysis refines candidate variants to mostly lead some nearby SNPs.

Conditional analysis of the GWAS with QC2 quality control for the QTPhenProxy EN model

for all stroke identified 7 candidate variants with genome-wide significance, all which are novel,

though some of the nearest genes to these loci have been identified in previous studies through

nearby loci. There were 3 loci identified for the stroke subtype ischemic stroke, 3 loci for sub-

arachnoid hemorrhage, and 3 loci for intracerebral hemorrhage (Table 5.7). Almost all of the

genome-wide significant variants overlapped with those found running the GWAS using QC1

quality control. New variants that were genome-wide significant for all stroke included a dele-
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tion variant that was intergenic to the gene ATP5MC1P3, an intronic variant of the MRSA gene,

and a 3’UTR variant in KCNJ4[152]. In addition, several genome-wide significant variants in the

MEGASTROKE stroke and ischemic stroke GWAS were near the variants that were genome-wide

significant in the QTPhenProxy EN GWAS. Almost all of those nearby MEGASTROKE genome-

wide significant variants replicated to at least nominal significance of 0.05 in the QTPhenProxy

EN GWAS (Table 5.8).

Phenotype rsID Chr. Gene P value MEGASTROKE P value

Stroke rs1894692 1q24.2 F5-SLC19A2 6.87E-10 0.435

Stroke rs8179838 2p21 MTA3 8.36E-06 0.515

Stroke rs769407520 3q22.3 ATP5MC1P3 2.50E-08 not found

Stroke rs6923947 6q22.32 LOC105377992 4.58E-07 0.04332

Stroke rs55730499 6q25.3 LPA 6.85E-10 0.05915

Stroke rs3918226 7q36.1 NOS3 6.45E-09 0.00134

Stroke 8:10206921 8p23.1 MSRA 4.62E-08 not found

Stroke rs1333049 9p21.3 CDKN2A-CDKN2B 5.02E-06 1.85E-07

Stroke 9:136138765 9q34.3 ABO 9.73E-09 not found

Stroke 11:46705193 11p11.2 ARHGAP1 7.06E-07 not found

Stroke rs59065675 15q26.1 FURIN 4.06E-07 not found

Stroke rs814573 19q13.32 APOC1-APOC1P1 2.52E-05 0.412

Stroke 20:862958 20p12.3 PLCB1 1.95E-06 not found

Stroke rs2269608 22q13.1 KCNJ4 4.23E-08 0.212

IscStroke rs1894692 1q24.2 F5-SLC19A2 1.90E-11 0.229

IscStroke rs369787256 4q25 PITX2-MIR297 3.69E-06 not found

IscStroke rs55730499 6q25.3 LPA 1.26E-09 0.0316

IscStroke rs117733303 6q25.3 LPAL2 0.000119 0.422

IscStroke rs3918226 7q36.1 NOS3 3.59E-06 0.00118

IscStroke rs2205258 8q23.3 LOC107986968 7.16E-06 0.415

IscStroke 9:1361387 9q34.2 ABO 4.99E-10 not found

IscStroke rs1333049 9p21.3 CDKN2A-CDKN2B 3.01E-06 1.09E-06

IscStroke 11:46705193 11p11.2 ARHGAP1 3.85E-05 not found
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IscStroke rs814573 19q13.32 APOC1-APOC1P1 2.20E-06 0.716

IscStroke rs118068660 19p13.2 LDLR 1.28E-06 1.14E-05

IscStroke rs12151925 20p12.2 LOC101929413-FAT1P1 0.000107 0.104

SAHStroke rs6025 1q24.2 F5 6.34E-18 0.453

SAHStroke rs36058710 9q34.2 ABO 1.59E-10 not found

SAHStroke rs34850248 12q12 LINC02400 7.18E-09 not found

ICHStroke rs6025 1q24.2 F5 1.52E-10 0.453

ICHStroke rs11887534 2p21 ABCG8 4.29E-08 6.85E-04

ICHStroke rs372302634 3q22.3 ESYT3-MRAS 4.03E-08 not found

ICHStroke rs6923947 6q22.32 LOC105377992 1.47E-07 0.00433

ICHStroke rs2077111 6q22.33 RPS4XP9 1.96E-06 0.0372

ICHStroke rs1808593 7q36.1 NOS3 2.96E-06 0.565

ICHStroke rs7013277 8p23.1 XKR6 2.06E-05 0.156

ICHStroke 11:46705193 11p11.2 ARHGAP1 3.59E-06 not found

Table 5.7: Genome-wide significant variants discovered by QTPhenProxy, EN Model, using
QC2 quality control. Also includes QC2 p-value for genome-wide significant variants from QC1
GWAS and p-values for variants from the MEGASTROKE stroke or ischemic stroke european
GWAS [11]. Cytogenic position was determined using [153]. rsID: variant id, Chr: cytogenic
position

5.3.6 Correlation between effect sizes of QTPhenProxy and traditional binary trait analysis

We determined the correlation between the effect sizes of the binary trait GWAS and QTPhen-

Proxy GWAS. Pearson correlation of the beta coefficients and log of the odds ratios increased when

restricting to variants with small p-values (max r2=0.70) (Figure 5.9). Too few variants, such as

with p-values > 5e-08 resulted in a decreased Pearson correlation.
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Phenotype Gene rsID QTPhenProxy p-value

Stroke LPA rs56393506 1.09E-08
Stroke NOS rs1799983 not found
Stroke CDKN2B-CDKN2A rs7859727 6.94E-05
Stroke ABO rs635634 1.07E-07
Stroke FURIN rs4932370 2.55E-05
Stroke COL4A1 rs9521634 0.00375
Stroke LOC105372798 rs720470 0.88

Ischemic stroke PITX2-MIR297 rs13143308 not found
Ischemic stroke LPA rs56393506 2.50E-09
Ischemic stroke NOS3 rs1799983 not found
Ischemic stroke CDKN2B-CDKN2A rs7859727 5.95E-05
Ischemic stroke ABO rs635634 7.93E-09
Ischemic stroke LDLR rs8103309 0.171

Subarachnoid Hemorrhage ABO rs635634 2.22E-06

Intracerebral Hemorrhage NOS3 rs1799983 not found

Table 5.8: QTPhenProxy EN Model GWAS using QC2 quality control P-value of variants
that were genome-wide significant in MEGASTROKE Stroke and Ischemic Stroke GWAS.

5.3.7 QTPhenProxy results for other diseases.

For myocardial infarction, traditional binary trait method recovered 487 variants while quanti-

tative trait linear regression using QTPhenProxy probabilities recovered 940 genome-wide signif-

icant SNPs and 2126 genome-wide significant hits using the EN and RF classifiers, respectively.

Out of the 487 variants determined by traditional methods, 204 variants overlapped in the EN QT-

PhenProxy linear regression. In contrast, for COPD, traditional binary trait method recovered 82

variants while QTPhenProxy method recovered 2544 and 2088 variants using RF and EN classi-

fiers, respectively. Out of the 82 variants determined by traditional method, none were recovered

using the QTPhenProxy method.

5.3.8 Specificity analysis of genome-wide significant variants using EBI-GWAS marker sets

From the over 2,000 EBI-GWAS disease variant marker sets mapped to organ systems, we cal-

culated the proportion of markers in each set that were found to be at genome-wide significance
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by our QTPhenProxy model with QC2 markers and principal components. We found that the or-

gan systems with markers sets with the highest proportion of genome-wide significant variants for

stroke included vascular disorders, investigations, psychiatric disorders, and general disorders and

administration site conditions (Figure 5.6). The enriched disease marker sets in the Investigations

class included the lab values lipoprotein A levels, lipoprotein a levels adjusted for apolipoprotein

A isoforms, blood protein levels, and white blood cell counts. The enriched disease marker sets in

the General disorders and administration site conditions included aortic valve stenosis and allergy,

while the Psychiatric disorders enriched marker sets were response to statins (LDL change) and ve-

nous thromboembolism. For ischemic stroke, the top enriched disease marker sets included those

described for stroke and also activated partial thromboplastin time, coagulation factor levels, pro-

tein biomarkers, soluble levels of adhesion molecules, pancreatic cancer, and urinary metabolites.

We also found GWAS results from diseases other than stroke to be enriched with corresponding

EBI-GWAS disease marker sets. QTPhenProxy EN and RF Model GWAS using QC1 quality

control showed increased proportion of significant variants for myocardial infarction (MI), COPD,

and Asthma in corresponding EBI-GWAS disease and System Organ Class marker sets compared

to all other marker sets, but not in Alzheimer’s or Parkinson’s disease. Representative plots (Figure

5.7 for MI, COPD, and Parkinson’s EN show increased median proportion significant variants in

disease and system organ class marker sets compared to other marker sets for MI and COPD but

not Parkinson’s disease. This difference is seen when the threshold for significance is 0.05 or

0.005.

5.3.9 LD score regression intercept, genomic inflation, and evaluation of genomic inflation

Using QC1 quality control, the genomic inflation for QTPhenProxy EN model for Stroke was

1.133, while using the QC2 quality control the genomic inflation for the same model was 1.134.

For binary traits using QC2 quality control, genomic inflation for stroke was 1.027. Using the

QTPhenProxy EN model with QC2 quality control, the genomic inflation for Ischemic stroke was
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Figure 5.6: Disease categories that are enriched for variants discovered by QTPhenProxy
genome-wide association study of Stroke. X-axis is the top percentile of marker sets in each
category, Y-axis is the proportion of variants in marker sets that overlap with QTPhenProxy
genome-wide significant variants. Each shape corresponds to a disease category. In color are
top disease categories: Square=Investigations, Triangle=Vascular disorders, Cross=Nervous sys-
tem disorders, X=General disorders and administration site conditions, Star=cardiac disorders, and
Diamond=Blood and lymphatic system disorders.

105



Figure 5.7: Median proportion of significant variants stratified by disease, system organ class,
and other disease markers for QTPhenProxy EN model genome-wide association study of
MI, COPD, and Parkinson’s Disease with QC1 quality control. Colors correspond to negative
log10 of p-value significance threshold (-log10(alpha)). Panel A corresponds to Myocardial Infarc-
tion (MI) GWAS, Panel B, Chronic Obstructive Pulmonary Disease (COPD) GWAS, and Panel C,
Parkinson’s Disease. en= logistic regression model with elastic net penalty. First column of each
panel represents disease (dz) marker sets, second column, System Organ Class (sys) marker sets,
and third column other (oth) disease marker sets.
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Figure 5.8: Genomic Inflation within bins of variants with similar minor allele frequencies
for QTPhenProxy EN Model for Stroke with QC2 quality control. Orange line shows the
genomic inflation of each bin of variants, green line shows 1.0 genomic inflation, and blue bars
show numbers of SNPs (variants) in each bin, binned by log(MAF), or log(minor allele frequency.)

1.118, for subarachnoid hemorrhage was 1.122, and for intracerebral hemorrhage was 1.114. LD

score regression intercept for QTPhenProxy EN model with QC2 quality control for stroke was

1.037± 0.0088, for ischemic stroke, 1.031± 0.0077, for subarachnoid hemorrhage, 1.012± 0.008,

and for intracerebral hemorrhage, 1.051 ± 0.0081. We found that more common variants, or those

with higher minor allele frequencies, had higher genomic inflation than rarer variants (Figure 5.8).

5.3.10 Genetic Correlation of QTPhenProxy with MEGASTROKE and Coronary Artery Disease

GWAS

We measured a genetic correlation of 0.64 (p-value 1.8E-23) between the QTPhenProxy EN

Model for stroke, QC1 quality control, and the MEGASTROKE all stroke GWAS and a genetic
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Figure 5.9: Correlation between QTPhenProxy, EN Model GWAS and Binary trait GWAS
effect size. Pearson correlation is recorded in top right corner. From left to right, variants included
decreases by restricting p-value.

correlation of 0.60 (p-value 1.4E-19) between the QTPhenProxy EN Model for stroke, QC2 quality

control, and the MEGASTROKE all stroke GWAS. We also found a genetic correlation of -0.1 (p-

value 0.0065) between the MEGASTROKE all stroke GWAS and coronary artery disease GWAS,

and we found a genetic correlation of -0.0048 (p-value 0.88) between the QTPhenProxy EN Model

for stroke, QC1 quality control, and coronary artery disease GWAS.

5.3.11 Simulation of Conversion of Quantitative trait to Binary trait shows similar correlation of

effect sizes to empirical data.

We simulated the effect of a quantitative trait locus and nearby marker both on the original

quantitative trait and the binary trait converted from the quantitative trait using liability threshold-

ing. We found high correlation of effect sizes between the beta coefficients and log odds ratios of

the quantitative trait variants with p-value < 0.005 and their respective binary trait variant effect

sizes (Pearson correlation, r2=0.82) (Figure5.9). Lower p-values were not tested because of too

few qualifying variants. After standard normalizing the quantitative trait, we also found the slope

of its correlation with the log binary trait to be stable across the parameters, with a mean of 1.63

for each parameter except for marker allele frequency (1.35) and prevalence (1.77) (Figure 5.10).

108



Figure 5.10: Slope of correlation between beta from simulated quantitative trait and log(odds
ratio) of simulated binary trait with varying simulation parameters. Left panels calculate
slope with all variants, right panels calculate slope with variants with p-value <0.005. (A) varies
the transformation of the probability distribution, where N(0,1) is a normal distribution with mean
0, variance 1, N(0,10) is a normal distribution with mean 0, variance 10, N(10,50) is a normal
distribution with mean 10, variance 50, norm is normalized by the maximum value, and orig is the
original distribution. (B) varies the prevalence of the trait, (C) varies the causal allele frequency,
(D) varies the recombination fraction between the causal allele and marker allele, and (E) varies
the marker minor allele frequency.
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5.4 Discussion

5.4.1 QTPhenProxy can identify patients with stroke using EHR data other than the disease di-

agnosis code

For all stroke and its subtype ischemic stroke, the machine learning models trained to assign

QTPhenProxy probabilities performed well (greater than 90% AUROC, greater than 30% maxi-

mum F1 score, 74-97% precision at 50). The models trained on subarachnoid hemorrhage and

intracerebral hemorrhage cases performed similarly with AUROC but with lower maximum F1

score and precision at 50. This may be due to the number of cases available for the two subtypes

to train on, which was an order of magnitude smaller ( 600 cases versus 3300-4300 cases). Impor-

tantly, we only trained on half of the cases and tested on the other half, which equates to 300-2200

cases, depending on the disease. From this small training set, we were able to assign a probability

of disease to all 500,000 subjects in the UK Biobank. This is a fraction of the over 40,000 cases

required to power the most recent genome-wide association study for stroke (MEGASTROKE).

5.4.2 QTPhenProxy discovers many new variants and recovers known disease variants to genome-

wide significance

Training on half the number of cases of each disease and assigning a probability from the

trained models to each UK Biobank subject resulted in 3-13 loci with genome-wide significance

using QTPhenProxy. In contrast, traditional binary trait GWAS using all disease cases resulted

in the discovery of 0 genome-wide significant loci for stroke, ischemic stroke, and subarachnoid

hemorrhage and 2 loci for intracerebral hemorrhage. In addition to new loci discovery, QTPhen-

Proxy recovered known disease variants to a significance level of 0.05 with a sensitivity better than

binary trait GWAS. In addition to recovering known variants, overall, the effect size of the known

variants in the binary trait GWAS was correlated with QTPhenProxy effect sizes for variants with

low p-values. These results suggest that the QTPhenProxy method can recover relevant variants

with fewer cases than traditional methods for stroke.
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5.4.3 Simulation of quantitative trait and corresponding binary trait further supported the corre-

lation of effect sizes between the two methods.

Our simulations showed high correlation between quantitative trait beta coefficients and binary

trait log odds ratio, which is similar to our empirical findings in the UK Biobank. We also show that

the correlation slope is relatively stable across all the different simulation parameters, suggesting

that there is a set correlation between quantitative traits and binary traits created from them. Further

simulation will need to determine the effects of multiple loci on correlation between quantitative

and corresponding binary traits.

5.4.4 Variants discovered for stroke are enriched in disease marker sets for vascular and neu-

rological disease, and variants discovered for other diseases were enriched for disease and

system specific markers.

As a specificity measure for the variants discovered by QTPhenProxy, we found the EN model

had the highest proportion of overlapping variants with EBI-GWAS marker sets related to vascular

disorders and associated lab values. QTPhenProxy variants improve the power of detecting vari-

ants related to diseases that are co-morbid or risk factors for stroke. We found that for myocardial

infarction, Asthma, and COPD, there were increased proportion of variants with a p-value signifi-

cance of 0.05 or lower for disease marker sets corresponding to the related disease or system organ

class compared to other disease marker sets. This was not the case for Alzheimer’s and Parkin-

son’s disease. This suggests that for some diseases, the variants discovered by QTPhenProxy were

specific for the study disease and its system.

5.4.5 QTPhenProxy has high genetic correlation with the MEGASTROKE GWAS

We found high genetic correlation (0.60-0.64) between the MEGASTROKE all stroke GWAS

and QTPhenProxy EN Model stroke GWAS. In addition, we found little genetic correlation(-

0.1 and -0.0048 respectively) between the MEGASTROKE and a recent coronary artery disease

(CAD) GWAS ([159]) and QTPhenProxy and the same CAD GWAS. The same genetic correlation
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calculation between MEGASTROKE and CAD was reported in [11] as a large genetic correlation

of around 0.5 with a p-value of 1E-20; therefore, further work will be needed to resolve this dis-

crepancy. The high genetic correlation between MEGASTROKE and QTPhenProxy suggests that

both studies highlight shared genetic underpinnings and predicts that risk factors for stroke GWAS

should have positive genetic correlation with QTPhenProxy as it has for MEGASTROKE GWAS

in the past. [11].

5.4.6 Low LD score regression intercepts relative to genomic inflation suggests high polygenicity

Our genome-wide association studies using QTPhenProxy had moderate genomic inflation,

slightly above 1.1, but low LD score regression intercepts near 1.0. The corresponding binary

trait GWAS had genomic inflation below 1.05, suggesting minimal population stratification. Since

the population for the binary trait GWAS was the same as that used for QTPhenProxy, this sug-

gests that polygenicity, rather than population stratification, is the cause for genomic inflation.

Polygenicity, or the contribution of small effects of many genes to a phenotype, may be the more

likely cause[157]. In addition, Bulik-Sullivan et. al. argue that genomic inflation can increase

with sample size when there is polygenicity, and LD score regression intercept is more robust in

distinguishing inflated p-values from polygenicity. As seen in [161], increased genomic inflation

with common variants over rare variants suggests polygenicity. We show a similar upward trend

in Figure 5.8. Another sign of true signal over inflated signal is the evidence of causal variants in

linkage disequilibrium, as seen in a Manhattan or Hudson plot [161]. Figures figs. 5.3 and 5.4 show

genome-wide significant variants in linkage disequilibrium with each other. Finally, this study re-

ports results from using two different quality controls in the genome-wide association analysis,

QC1, and more stringent, QC2. Results using QC1 showed more variants with genome-wide sig-

nificance and discovered more new variants for stroke than the QC2 GWAS. This may lead one

to believe that more stringent quality control led to reduced inflation of p-values. However, the

genomic inflation of the p-values from the QC1 GWAS was the same as the genomic inflation of

the p-values from the QC2 GWAS (1.134 vs 1.133), with the QC2 GWAS having a slightly higher
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LD score regression intercept value (1.0288 vs 1.0369). This suggests that the p-values from the

QC1 GWAS may not be overly inflated.

5.4.7 QTPhenProxy replicates known stroke variants and discovers variants within cardiovascu-

lar disease genes

Several of the genes discovered by the QTPhenProxy GWAS, using QC1 or QC2 quality con-

trol have been associated with stroke, including NOS3, FURIN, PITX2, CDK2NB, LDLR, and

ABO[11, 162]. NOS3, in particular, was discovered through meta-analysis of the MEGASTROKE

results with the UK Biobank[162]. We were able to replicate this association using only the QT-

PhenProxy method on the UK Biobank, and not traditional binary trait analysis. NOS3 has been

shown to be related to hypertension either through salt excretion regulation in the kidney[163] or

regulation of vascular relaxation in endothelial cells[164]. Other discovered genes by QTPhen-

Proxy are also associated with related cardiovascular diseases. The F5 gene codes for an essential

coagulation factor and mutations that can lead to increased thrombosis or hemorrhage, depending

on the mutation[165, 166, 167]. LPA (Lipoprotein-A) codes for a protein that can contribute to

atherosclerosis[168, 169]. Mutations in the PLCB1 gene, which encodes for phospholipase syn-

thesis, have been found in epilepsy and seizures[170]. The LDLR gene codes for the low-density

lipoprotein receptor, which is involved in cholesterol production[171], and the APOC1/APOC1P1

genes code for parts of apoliprotein C1, which are involved in high density lipoprotein metabolism

[172]. ARHGAP1, a gene coding for Rho GTPase activating protein 1 has been associated with can-

cer phenotypes and activation of hypoxic and inflammatory pathways[173, 174, 175]. The ABCG8

gene has been associated with combined gwas of lipids and inflammation, lipid levels, and gall-

stone disease[176]. EYST3 and XKR6 gene mutations have been associated with coronary artery

disease and ischemic stroke respectively in Asian populations, and MRAS gene mutations have

been associated with coronary artery disease in two populations[177, 178, 179, 180]. These results

suggest that QTPhenProxy has replicated genome-wide significant mutations in genes known to be

related with stroke and discovered those associated with related risk factors such as coronary artery
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neurological diseases. Out of the 13 newly discovered variants with genome-wide significance, five

are intronic or in nearby genes that have been found in previous studies (MEGASTROKE), and

five more have been discovered in previous GWAS studies of related cardiovascular diseases. The

variants within and near the F5 gene had the highest genetic signal for stroke and all of its sub-

types, even though it was not replicated in the MEGASTROKE GWAS. Out of all the new variants

discovered by the QTPhenProxy EN model using the GWAS QC2 quality control, the rs11887534

variant, a missense mutation within the ABCG8 gene, replicated to a p-value significance of 6.85E-

04 in the MEGASTROKE stroke GWAS of over 40,000 European ancestry subjects. Using a tenth

of the number of cases, QTPhenProxy discovered a variant within a new gene that replicated in

MEGASTROKE, and discovered variants within known stroke genes.

5.4.8 Limitations

There are several limitations with this method. First, out of the five machine learning models

used in QTPhenProxy, only two provided probabilities along a continuous scale. Adaboost, gra-

dient boosting, and logistic regression using L1 penalty models, although with high performance,

assigned probabilities in discrete bins. These distributions violate the genome-wide association

linear regression assumption of normal distribution of the quantitative trait. Although the prob-

abilities produced by EN and RF models were not initially normally distributed, they were con-

tinuous, and could be adjusted with quantile normalization. In addition, the GWAS results from

QTPhenProxy using the RF model resulted in many more hits than the EN model, and reduced

sensitivity to known disease variants. Further study will be required to understand why one model

gave more sensitive and specific results than the other, and whether there was p-value inflation in

the random forest models. In addition, from our preliminary studies, the sensitivity of recovering

known loci for diseases other than stroke and ischemic stroke did not improve using QTPhenProxy.

This may be because the training model for phenotyping patients was optimized for stroke[112].

Since stroke is an acute event than can be identified with high accuracy in the electronic health

record, this method may not translate as well to other diseases, such as chronic illnesses. Another
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potential limitation of the study is that only about half of known loci for stroke are replicated with

significance of less than 0.05 in the QTPhenProxy method, even though new variants are suggested.

5.4.9 Conclusions

We have developed a method, QTPhenProxy, that we have shown improves the power of

genome-wide association studies in stroke and three of its subtypes: ischemic stroke, subarachnoid

hemorrhage, and intracerebral hemorrhage with an order of magnitude fewer cases than required

for traditional genome-wide association studies of the same diseases. Converting dichotomous

traits to quantitative ones could result in improvement of power by incorporating electronic health

record information for subjects who may have genetic susceptibility to stroke but may not have

experienced a stroke yet. Previous studies have shown that for diseases with low prevalence, there

can be a reduction of power using logistic regression for binary trait GWAS compared to linear

regression for quantitative trait GWAS[19]. Recently, [12] showed that the inclusion of ischemic

stroke risk factors’ genome-wide significant SNPs in polygenic risk score improves prediction of

ischemic stroke. This supports our idea that inclusion of risk factor information into the phe-

notype can help detect genetically susceptible subjects. We plan to test the correlation between

our QTPhenProxy probabilities with the metaGRS polygeneic risk scores from [12] in the UK

Biobank. We have shown that there is high genetic correlation between MEGASTROKE and QT-

PhenProxy. We also show that with as few as 2200 stroke subjects we can recover known variants

of stroke and discover new variants that have been linked to cardiovascular and nervous system

diseases. This method could be useful for studies with a small set of cases and without access to

large meta-analyses. We also have suggested new variants that warrant further replication in other

groups. QTPhenProxy shows the benefits of incorporating electronic health record data to convert

traditional binary traits to quantitative in improving GWAS power.

115



5.5 Acknowledgements

I would like to thank Dr. Krzysztof Kiryluk and Dr. Anna O. Basile for helpful discussions.

MedDRA® trademark is registered by IFPMA on behalf of ICH. The MEGASTROKE project

received funding from sources specified at http://www.megastroke.org/acknowledgments.html

116



Conclusion

Stroke is a highly heterogeneous and heritable disease that is a leading cause of mortality and

disability. The etiology of strokes are varied and complex, caused by a combination of modifiable,

such as lifestyle, and non-modifiable, such as genetics, risk factors and environmental influences.

Elucidating the genetics of stroke and related diseases, such as coronary artery disease, has led to

a better understanding of the genetics of the disease and potential avenues for treatment[181, 162,

11]. For stroke, however, large scale genome-wide association studies have discovered far fewer

variants than related risk factors such as blood pressure and atrial fibrillation[12]. Past studies

have suggested that this is due to the phenotypic heterogeneity of stroke[8, 11]. Recent studies in

polygenic risk scores of stroke have also found improved predictive power of stroke patients when

incorporating known variants of risk factors for stroke. This suggests that there are variants still to

be discovered for stroke, and they most likely overlap with related diseases. In an era of large scale

biobanks paired with electronic health record data, we hypothesized that a high-throughput method

of incorporating medical information of stroke patients into a phenotypic score could bolster the

power of genomic studies.

In this thesis, we combined supervised machine learning with large scale EHR and biobank

databases to develop a high-throughput phenotyping method that improves the power of stroke

genome-wide association studies. In Chapter 2, we develop this high-throughput phenotyping

method, and find, across several supervised machine learning phenotyping models trained on a
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small cohort of cases and controls, high performance of acute ischemic stroke (AIS) case identifi-

cation with minimal feature processing. We built upon previous stroke machine learning phenotyp-

ing algorithms by using a data agnostic approach to identify features such as diagnostic procedure

codes that could be included to identify stroke patients. In our external validation of the method

in the UK Biobank, we also found that the top probabilities from a model-predicted AIS cohort

were significantly enriched for AIS patients without AIS diagnosis codes. Our findings support

machine learning algorithms as a generalizable way to accurately identify AIS patients without

using process-intensive manual feature curation. In chapter 3, we applied factorization methods

to subtype acute ischemic stroke patients, a potential avenue to reduce phenotypic heterogenity

in stroke. We found non-negative matrix factorization to produce more stable subtypes over hi-

erarchical Poisson factorization, and we found several subtypes significantly correlated to stroke

severity. These subtypes highlighted known risk factors for stroke, including atrial fibrillation,

diabetes mellitus, and acute respiratory failure. We then tested whether the probabilities gener-

ated from our supervised machine learning phenotyping models, which we called QTPhenProxy,

could be used as phenotypic scores for genetic studies. This required the use of the phenotypic

score as a quantitative trait. In Chapter 4, we showed that some of our high performing QT-

PhenProxy models estimated the heritability of AIS within the range of literature values and oth-

ers underestimated AIS heritability, while traditional case/control assignment of AIS was unable

to estimate AIS heritability. Our venous thromboembolism genome-wide association study was

under-powered to show whether converting a phenotype from a binary to quantitative trait could

improve the power of genome-wide association studies. In Chapter 5, however, in the UK Biobank

database, we showed that QTPhenProxy can discover genome-wide significant variants associated

with stroke with an order of magnitude fewer cases (4,354) than the most recent stroke GWAS,

MEGASTROKE (40,585). We found up to 7 LD independent loci that pass genome-wide signif-

icance while the binary definition yielded no genome-wide significant hits. The majority of the

discovered variants were near genes known to be associated with stroke. In addition, we found a

novel locus in the ABCG8 gene that replicates in MEGASTROKE. We introduced a method that
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may improve the power of genome-wide association studies when limited curated cohort data are

available within a healthcare system.

This thesis also lays the groundwork for future studies along several avenues. Although we

began to understand what the probabilities assigned from the phenotyping models mean through

calibration and performance, further study is warranted through validation of the models by physi-

cians. In addition, although we used supervised machine learning models for ease of reproducibil-

ity and implementation, incorporation of timeline, natural language processing of notes, and appli-

cation of deep learning models could improve performance of the models. A future exploration for

subtyping stroke would determine whether the subtypes found have reduced phenotypic hetero-

geneity compared to traditional subtypes of stroke, and thus lead to reduced genetic heterogeneity

and clearer genetic signal. A first step would expand the subtyping cohort to all stroke patients in

the electronic health record and estimate the heritability using RIFEHR and SOLARstrap[51]. In

addition, we could compare other subtyping methods such as topological data analysis and deep

learning methods such as denoising autoencoders to the factorization methods to determine the

best method for subtyping stroke.

We would like to generalize QTPhenProxy for more diseases. Many diseases, such as en-

dometrosis or autoimmune diseases, are undiagnosed or misdiagnosed, and may benefit from a

supervised machine learning algorithm trained on EHR data to identify potential patients[182, 88,

183, 184] and improve the power of their genetic studies. To start, we need to further explore

why QTPhenProxy did not improve the power of other disease GWAS in the UK Biobank. This

would include determining which aspects of the model are most informative, whether it be the

effect size or penetrance of the variant, the phenotypic heterogeneity of the disease, the duration

of the disease, the performance of the model, or the the number of cases available. In addition,

polygenic risk scores are an important recent addition to the genomics field, and recently have been

successfully applied to stroke[12]. The score is comprised of the effect sizes of variants known to

be associated with the study disease through GWAS[185]. An important future direction of this

thesis would be to determine the correlation between the polygenic risk score of stroke with the
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phenotypic probabilities assigned by QTPhenProxy in the UK Biobank. This would suggest that

the incorporation of EHR information into the trait plays a similar role to incorporating variants

from risk factors, as shown in [12].

There is still a long way to go to fully identify the genetic burden of stroke. Increased cohort

size to improve power and disease subtypes to reduce phenotypic heterogeneity are established

methods for identifying variants. To keep up with the hundreds of thousands of future subjects,

automated methods of cohort and subtype identification are needed. In addition, new methods to

improve genomic power, such as considering traditional binary traits as quantitative by utilizing

a phenotypic score, should be further explored and expanded upon. This thesis demonstrates the

promise of incorporating large but messy sets of data, such as the electronic health record, to

improve signal in genome-wide association studies.

120



References

[1] E. J. Benjamin, S. S. Virani, C. W. Callaway, A. M. Chamberlain, A. R. Chang, S.
Cheng, S. E. Chiuve, M. Cushman, F. N. Delling, R. Deo, and et al., “Heart disease and
stroke statistics-2018 update: A report from the american heart association.,” Circulation,
vol. 137, no. 12, e67–e492, 2018.

[2] Benjamin Emelia J., Blaha Michael J., Chiuve Stephanie E., Cushman Mary, Das Sandeep
R., Deo Rajat, de Ferranti Sarah D., Floyd James, Fornage Myriam, Gillespie Cathleen,
Isasi Carmen R., Jiménez Monik C., Jordan Lori Chaffin, Judd Suzanne E., Lackland
Daniel, Lichtman Judith H., Lisabeth Lynda, Liu Simin, Longenecker Chris T., Mackey
Rachel H., Matsushita Kunihiro, Mozaffarian Dariush, Mussolino Michael E., Nasir Khur-
ram, Neumar Robert W., Palaniappan Latha, Pandey Dilip K., Thiagarajan Ravi R., Reeves
Mathew J., Ritchey Matthew, Rodriguez Carlos J., Roth Gregory A., Rosamond Wayne
D., Sasson Comilla, Towfighi Amytis, Tsao Connie W., Turner Melanie B., Virani Salim
S., Voeks Jenifer H., Willey Joshua Z., Wilkins John T., Wu Jason HY., Alger Heather M.,
Wong Sally S., and Muntner Paul, “Heart Disease and Stroke Statistics—2017 Update: A
Report From the American Heart Association,” Circulation, vol. 135, no. 10, e146–e603,
Mar. 2017.

[3] Q. Yang, “Vital Signs: Recent Trends in Stroke Death Rates — United States, 2000–2015,”
MMWR. Morbidity and Mortality Weekly Report, vol. 66, 2017.

[4] N. Maaijwee, L. Rutten-Jacobs, P. Schaapsmeerders, E. van Dijk, and F.-E. de
Leeuw, “Ischaemic stroke in young adults: Risk factors and long-term consequences,”
Nature Reviews Neurology, vol. 10, no. 6, 315–325, 2014.

[5] A. Boehme, C. Esenwa, and M. Elkind, “Stroke risk factors, genetics, and prevention.,”
Circulation research, vol. 120, no. 3, 472–495, 2017.

[6] G. Jickling, B. Stamova, B. Ander, X. Zhan, D. Liu, S.-M. Sison, P. Verro, and F. Sharp,
“Prediction of cardioembolic, arterial, and lacunar causes of cryptogenic stroke by gene
expression and infarct location,” Stroke, vol. 43, no. 8, 2036–2041, 2012.

[7] A. Nouh, M. Hussain, T. Mehta, and S. Yaghi, “Embolic strokes of unknown source and
cryptogenic stroke: Implications in clinical practice,” Frontiers in Neurology, vol. 7, p. 37,
2016.

[8] H. Markus and S. Bevan, “Mechanisms and treatment of ischaemic stroke—insights from
genetic associations,” Nature Reviews Neurology, vol. 10, no. 12, 723–730, 2014.

121



[9] N. (SiGN) and I. (ISGC), “Loci associated with ischaemic stroke and its subtypes (sign):
A genome-wide association study.,” The Lancet. Neurology,

[10] S. Bevan, M. Traylor, P. Adib-Samii, R. Malik, N. L. Paul, C. Jackson, M. Farrall, P. M.
Rothwell, C. Sudlow, and M. Dichgans, “Genetic heritability of ischemic stroke and the
contribution of previously reported candidate gene and genomewide associations,” Stroke,
vol. 43, no. 12, 3161–3167, 2012.

[11] R. Malik, G. Chauhan, M. Traylor, M. Sargurupremraj, Y. Okada, A. Mishra, L. Rutten-
Jacobs, A.-K. Giese, S. W. van der Laan, S. Gretarsdottir, and et al., “Multiancestry
genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke
and stroke subtypes,” Nature Genetics, vol. 50, 1–14, 2018.

[12] G. Abraham, R. Malik, E. Yonova-Doing, A. Salim, T. Wang, J. Danesh, A. S. But-
terworth, J. M. M. Howson, M. Inouye, and M. Dichgans, “Genomic risk score of-
fers predictive performance comparable to clinical risk factors for ischaemic stroke,”
Nature Communications, vol. 10, no. 1, p. 5819, Dec. 2019.

[13] M. I. McCarthy, G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J. Little, J. P. A. Ioannidis,
and J. N. Hirschhorn, “Genome-wide association studies for complex traits: Consensus,
uncertainty and challenges,” Nature Reviews Genetics, vol. 9, no. 5, pp. 356–369, May
2008.

[14] P. M. Visscher, W. G. Hill, and N. R. Wray, “Heritability in the genomics era â concepts
and misconceptions,” Nature Reviews Genetics, vol. 9, no. 4, pp. 255–266, Apr. 2008.

[15] T. A. Manolio, F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter,
M. I. McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti, J. H. Cho, A. E. Guttmacher,
A. Kong, L. Kruglyak, E. Mardis, C. N. Rotimi, M. Slatkin, D. Valle, A. S. Whittemore,
M. Boehnke, A. G. Clark, E. E. Eichler, G. Gibson, J. L. Haines, T. F. C. Mackay, S. A.
McCarroll, and P. M. Visscher, “Finding the missing heritability of complex diseases,”
Nature, vol. 461, no. 7265, pp. 747–753, Oct. 2009.

[16] D. Houle, D. R. Govindaraju, and S. Omholt, “Phenomics: The next challenge,”
Nature Reviews Genetics, vol. 11, no. 12, pp. 855–866, Dec. 2010.

[17] B. Maher, “Personal genomes: The case of the missing heritability.,” Nature, vol. 456,
no. 7218, 18–21, 2008.

[18] J. Yang, B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt, P. A.
Madden, A. C. Heath, N. G. Martin, G. W. Montgomery, M. E. Goddard, and P. M. Viss-
cher, “Common SNPs explain a large proportion of the heritability for human height,”
Nature Genetics, vol. 42, no. 7, pp. 565–569, Jul. 2010.

122



[19] N. Zaitlen, B. Pasaniuc, N. Patterson, S. Pollack, B. Voight, L. Groop, D. Altshuler, B. E.
Henderson, L. N. Kolonel, L. L. Marchand, K. Waters, C. A. Haiman, B. E. Stranger, E. T.
Dermitzakis, P. Kraft, and A. L. Price, “Analysis of case-control association studies with
known risk variants,” Bioinformatics, vol. 28, no. 13, pp. 1729–1737, Jul. 2012.

[20] W Johannsen, “The genotype conception of heredity1,” The American Naturalist, no. 45,
pp. 129–159, 1911.

[21] M. R. Boland, G. Hripcsak, Y. Shen, W. K. Chung, and C. Weng, “Defin-
ing a comprehensive verotype using electronic health records for personalized
medicine.,” Journal of the American Medical Informatics Association: JAMIA, vol. 20,
no. e2, e232–8, 2013.

[22] Nature Education, Phenotype / phenotypes | Learn Science at Scitable.

[23] N. Freimer and C. Sabatti, “The Human Phenome Project,” Nature Genetics, vol. 34, no. 1,
pp. 15–21, May 2003.

[24] D. Tirschwell and W. Longstreth, “Validating administrative data in stroke research,”
Stroke, vol. 33, no. 10, 2465–2470, 2002.

[25] W. Hersh, M. Weiner, P. Embi, J. Logan, P. Payne, E. Bernstam, H. Lehmann, G. Hripcsak,
T. Hartzog, J. Cimino, and J. Saltz, “Caveats for the Use of Operational Electronic Health
Record Data in Comparative Effectiveness Research,” Medical Care, vol. 51, Aug. 2013.

[26] R. M. Kaplan, D. A. Chambers, and R. E. Glasgow, “Big Data and Large Sample Size:
A Cautionary Note on the Potential for Bias,” Clinical and Translational Science, vol. 7,
no. 4, pp. 342–346, 2014.

[27] C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D. Vukce-
vic, O. Delaneau, J. O’Connell, A. Cortes, S. Welsh, G. McVean, S. Leslie, P. Donnelly, and
J. Marchini, “Genome-wide genetic data on ~500,000 UK Biobank participants,” Genetics,
preprint, Jul. 2017.

[28] C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D. Vukce-
vic, O. Delaneau, J. O’ Connell, A. Cortes, S. Welsh, A. Young, M. Effingham, G. McVean,
S. Leslie, N. Allen, P. Donnelly, and J. Marchini, “The UK Biobank resource with deep
phenotyping and genomic data,” Nature, vol. 562, no. 7726, pp. 203–209, Oct. 2018.

[29] B. Neale, UK Biobank, http://www.nealelab.is/uk-biobank, 2018.

[30] T. A. of Us Research Program Investigators, “The All of Us Research Program,”
New England Journal of Medicine, vol. 381, no. 7, pp. 668–676, Aug. 2019.

123



[31] T. G. P. Consortium, “An integrated map of genetic variation from 1,092 human genomes,”
Nature, vol. 491, no. 7422, pp. 56–65, Nov. 2012.

[32] M. D. Ritchie, J. C. Denny, D. C. Crawford, A. H. Ramirez, J. B. Weiner, J. M. Pulley,
M. A. Basford, K. Brown-Gentry, J. R. Balser, D. R. Masys, J. L. Haines, and D. M. Ro-
den, “Robust Replication of Genotype-Phenotype Associations across Multiple Diseases in
an Electronic Medical Record,” The American Journal of Human Genetics, vol. 86, no. 4,
pp. 560–572, Apr. 2010.

[33] J. A. Heit, S. M. Armasu, Y. W. Asmann, J. M. Cunningham, M. E. Matsumoto,
T. M. Petterson, and M. D. Andrade, “A genome-wide association study of ve-
nous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q,”
Journal of Thrombosis and Haemostasis, vol. 10, no. 8, pp. 1521–1531, 2012.

[34] O. Gottesman, H. Kuivaniemi, G. Tromp, W. Faucett, R. Li, T. A. Manolio, and et. al., “The
electronic medical records and genomics (emerge) network: Past, present, and future.,”
Genetics in Medicine, vol. 15, pp. 761–771, 2013.

[35] I. B. Stanaway, T. O. Hall, E. A. Rosenthal, M. Palmer, V. Naranbhai, R. Knevel, B.
Namjou, R. J. Carroll, K. Kiryluk, A. S. Gordon, J. Linder, K. M. Howell, B. M. Mapes,
F. T. J. Lin, Y. Y. Joo, M. G. Hayes, A. G. Gharavi, S. A. Pendergrass, M. D. Ritchie, M.
de Andrade, D. C. Croteau, S. Raychaudhuri, S. T. Weiss, M. Lebo, S. S. Amr, D. Carrell,
E. B. Larson, C. G. Chute, L. J. Rasmussen, M. J. Roy, P. Sleiman, H. Hakonarson, R. Li,
E. W. Karlson, J. F. Peterson, I. J. Kullo, R. Chisholm, J. C. Denny, and G. P. Jarvik, “The
eMERGE genotype set of 83,717 subjects imputed to ~40âmillion variants genome wide
and association with the herpes zoster medical record phenotype,” Genetic Epidemiology,
vol. 43, pp. 63–81, 2019.

[36] G. Hripcsak, N. Shang, P. L. Peissig, L. V. Rasmussen, C. Liu, B. Benoit, R. J. Carroll,
D. S. Carrell, J. C. Denny, O. Dikilitas, V. S. Gainer, K. M. Howell, J. G. Klann, I. J.
Kullo, T. Lingren, F. D. Mentch, S. N. Murphy, K. Natarajan, J. A. Pacheco, W.-Q. Wei,
K. Wiley, and C. Weng, “Facilitating phenotype transfer using a common data model,”
Journal of Biomedical Informatics, vol. 96, p. 103 253, Aug. 2019.

[37] N. Shang, C. Liu, L. V. Rasmussen, C. N. Ta, R. J. Caroll, B. Benoit, T. Lingren, O. Dikili-
tas, F. D. Mentch, D. S. Carrell, W.-Q. Wei, Y. Luo, V. S. Gainer, I. J. Kullo, J. A. Pacheco,
H. Hakonarson, T. L. Walunas, J. C. Denny, K. Wiley, S. N. Murphy, G. Hripcsak, and
C. Weng, “Making work visible for electronic phenotype implementation: Lessons learned
from the eMERGE network,” Journal of Biomedical Informatics, vol. 99, p. 103 293, Nov.
2019.

[38] C. Reich, P. Ryan, N. K. Belenkaya R., and C. Blacketer,
Omop common data model v6.0 specifications, accessed:11.09.2019.

124



[39] M. A. Suchard, M. J. Schuemie, H. M. Krumholz, S. C. You, R. Chen, N. Pratt, C. G.
Reich, J. Duke, D. Madigan, G. Hripcsak, and P. B. Ryan, “Comprehensive comparative
effectiveness and safety of first-line antihypertensive drug classes: A systematic, multina-
tional, large-scale analysis,” The Lancet, vol. 394, no. 10211, pp. 1816–1826, Nov. 2019.

[40] G. Hripcsak, P. B. Ryan, J. D. Duke, N. H. Shah, R. W. Park, V. Huser, M. A. Suchard, M. J.
Schuemie, F. J. DeFalco, A. Perotte, J. M. Banda, C. G. Reich, L. M. Schilling, M. E. Ma-
theny, D. Meeker, N. Pratt, and D. Madigan, “Characterizing treatment pathways at scale
using the OHDSI network,” Proceedings of the National Academy of Sciences, vol. 113,
no. 27, pp. 7329–7336, Jul. 2016.

[41] M. R. Boland, P. Parhi, L. Li, R. Miotto, R. Carroll, U. Iqbal, P.-A. A. Nguyen,
M. Schuemie, S. C. You, D. Smith, S. Mooney, P. Ryan, Y.-C. J. Li, R. W.
Park, J. Denny, J. T. Dudley, G. Hripcsak, P. Gentine, and N. P. Tatonetti, “Un-
covering exposures responsible for birth season â disease effects: A global study,”
Journal of the American Medical Informatics Association, vol. 25, no. 3, pp. 275–288,
Mar. 2018.

[42] S. Schneeweiss and J. Avorn, “A review of uses of health care utilization databases for
epidemiologic research on therapeutics,” Journal of Clinical Epidemiology, vol. 58, no. 4,
pp. 323–337, Apr. 2005.

[43] J. M. Overhage and L. M. Overhage, “Sensible use of observational clinical data,”
Statistical Methods in Medical Research, vol. 22, no. 1, pp. 7–13, Feb. 2013.

[44] N. G. Weiskopf, G. Hripcsak, S. Swaminathan, and C. Weng, “Defining
and measuring completeness of electronic health records for secondary use,”
Journal of biomedical informatics, vol. 46, no. 5, 830–836, 2013.

[45] Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an
algorithm used to manage the health of populations,” Science, vol. 366, no. 6464, pp. 447–
453, Oct. 2019.

[46] O. H. D. S. a. Informatics, The Book of OHDSI. 2019, p. 63.

[47] J. C. Denny, “Chapter 13: Mining electronic health records in the genomics era,”
PLoS computational biology, vol. 8, no. 12, e1002823, 2012.

[48] R. M. Bilder, F. W. Sabb, T. D. Cannon, E. D. London, J. D. Jentsch, D. S. Parker, R. A.
Poldrack, C. Evans, and N. B. Freimer, “Phenomics: The systematic study of phenotypes
on a genome-wide scale,” Neuroscience, Linking Genes to Brain Function in Health and
Disease, vol. 164, no. 1, pp. 30–42, Nov. 2009.

125



[49] A. Rzhetsky, D. Wajngurt, N. Park, and T. Zheng, “Probing genetic overlap among complex
human phenotypes,” Proceedings of the National Academy of Sciences, vol. 104, no. 28,
pp. 11 694–11 699, Jul. 2007.

[50] K. Wang, H. Gaitsch, H. Poon, N. J. Cox, and A. Rzhetsky, “Classification of com-
mon human diseases derived from shared genetic and environmental determinants,”
Nature genetics, vol. 49, no. 9, pp. 1319–1325, Sep. 2017.

[51] F. C. G. C. Polubriaginof, R. Vanguri, K. Quinnies, G. M. Belbin, A. Yahi, H. Salmasian,
T. Lorberbaum, V. Nwankwo, L. Li, M. M. Shervey, and et al., “Disease heritability in-
ferred from familial relationships reported in medical records.,” Cell, vol. 173, no. 7,
1692–1704.e11, 2018.

[52] C. M. Lakhani, B. T. Tierney, A. K. Manrai, J. Yang, P. M. Visscher, and C. J. Patel,
“Repurposing large health insurance claims data to estimate genetic and environmental
contributions in 560 phenotypes,” Nature Genetics, vol. 51, no. 2, pp. 327–334, Feb. 2019.

[53] J. C. Denny, M. D. Ritchie, M. A. Basford, J. M. Pulley, L. Bastarache, K. Brown-Gentry,
D. Wang, D. R. Masys, D. M. Roden, and D. C. Crawford, “PheWAS: Demonstrating the
feasibility of a phenome-wide scan to discover geneâdisease associations,” Bioinformatics,
vol. 26, no. 9, pp. 1205–1210, May 2010.

[54] A. O. Basile and M. D. Ritchie, “Informatics and machine learning to define the pheno-
type,” Expert Review of Molecular Diagnostics, vol. 18, no. 3, pp. 219–226, Mar. 2018.

[55] A. E. Arch, D. C. Weisman, S. Coca, K. V. Nystrom, C. R. Wira, and J. L. Schindler,
“Missed ischemic stroke diagnosis in the emergency department by emergency medicine
and neurology services.,” Stroke, vol. 47, no. 3, 668–73, 2016.

[56] S. Lyalina, B. Percha, P. LePendu, S. V. Iyer, R. B. Altman, and N. H. Shah, “Identify-
ing phenotypic signatures of neuropsychiatric disorders from electronic medical records,”
Journal of the American Medical Informatics Association: JAMIA, vol. 20, no. e2, e297–
305, Dec. 2013.

[57] J. Ho, J. Ghosh, S. Steinhubl, W. Stewart, J. Denny, B. Malin, and J. Sun,
“Limestone: High-throughput candidate phenotype generation via tensor factorization,”
Journal of Biomedical Informatics, vol. 52, 199–211, 2014.

[58] M. S. Udler, J. Kim, M. von Grotthuss, S. Bonàs-Guarch, J. B. Cole, J. Chiou, M. Boehnke,
M. Laakso, G. Atzmon, B. Glaser, and et al., “Type 2 diabetes genetic loci informed by
multi-trait associations point to disease mechanisms and subtypes: A soft clustering anal-
ysis.,” PLoS medicine, vol. 15, no. 9, e1002654, 2018.

126



[59] Y. Luo, C. Mao, Y. Yang, F. Wang, F. S. Ahmad, D. Arnett, M. R. Irvin, and S. J. Shah,
“Integrating hypertension phenotype and genotype with hybrid non-negative matrix factor-
ization,” Bioinformatics, vol. 35, no. 8, pp. 1395–1403, Apr. 2019.

[60] J. Zhao, Y. Zhang, D. J. Schlueter, P. Wu, V. Eric Kerchberger, S. Trent Rosenbloom, Q. S.
Wells, Q. Feng, J. C. Denny, and W.-Q. Wei, “Detecting time-evolving phenotypic topics
via tensor factorization on electronic health records: Cardiovascular disease case study,”
Journal of Biomedical Informatics, vol. 98, p. 103 270, Oct. 2019.

[61] D. Lee and S. H. Nature, “Learning the parts of objects by non-negative matrix factoriza-
tion,” Nature, 1999.

[62] R. Pivovarov, A. Perotte, E. Grave, J. Angiolillo, C. Wiggins, and N. Elhadad, “Learning
probabilistic phenotypes from heterogeneous ehr data,” Journal of Biomedical Informatics,
vol. 58, 156–165, 2015.

[63] V. Rodriguez and A. Perotte, “Phenotype Inference with Semi-Supervised Mixed Member-
ship Models,” arXiv:1812.03222 [cs, q-bio, stat], Mar. 2019, arXiv: 1812.03222.

[64] P Gopalan, J. Hofman, and B. D. UAI, “Scalable recommendation with hierarchical pois-
son factorization.,” UAI, 2015.

[65] H. Levitin, J. Yuan, Y. Cheng, F. Ruiz, E. Bush, J. Bruce, P. Canoll, A. Iavarone, A. La-
sorella, D. Blei, and et al., “De novo gene signature identification from single-cell rna-seq
with hierarchical poisson factorization,” bioRxiv, p. 367 003, 2018.

[66] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–
444, May 2015.

[67] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,” in
Proceedings of the 25th international conference on Machine learning - ICML ’08,
Helsinki, Finland: ACM Press, 2008, pp. 1096–1103, ISBN: 978-1-60558-205-4.

[68] B. K. Beaulieu-Jones, C. S. Greene, and Pooled Resource Open-Access ALS Clinical Tri-
als Consortium, “Semi-supervised learning of the electronic health record for phenotype
stratification,” Journal of Biomedical Informatics, vol. 64, pp. 168–178, 2016.

[69] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “Deep Patient: An Unsupervised
Representation to Predict the Future of Patients from the Electronic Health Records,”
Scientific Reports, vol. 6, no. 1, pp. 1–10, May 2016.

[70] L. Li, W.-Y. Cheng, B. S. Glicksberg, O. Gottesman, R. Tamler, R. Chen, E. P. Bottinger,
and J. T. Dudley, “Identification of type 2 diabetes subgroups through topological analysis
of patient similarity,” Science translational medicine, vol. 7, no. 311, 311ra174, Oct. 2015.

127



[71] T. E. Madsen, J. Khoury, R. Cadena, O. Adeoye, K. A. Alwell, C. J. Moomaw, M. Erin,
M. L. Flaherty, S. Ferioli, D. Woo, P. Khatri, J. P. Broderick, B. M. Kissela, and D. Klein-
dorfer, “Potentially missed diagnosis of ischemic stroke in the emergency department in
the greater Cincinnati/Northern kentucky stroke study,” Acad Emerg Med, vol. 23, no. 10,
pp. 1128–1135, 2016.

[72] Benesch, Witter, Wilder, Duncan, Samsa, and Matchar, “Inaccuracy of the international
classification of diseases (icd-9-cm) in identifying the diagnosis of ischemic cerebrovascu-
lar disease,” Neurology, vol. 49, no. 3, 660–664, 1997.

[73] N. McCormick, V. Bhole, D. Lacaille, and J. A. Avina-Zubieta, “Validity of diagnostic
codes for acute stroke in administrative databases: A systematic review.,” PloS one, vol. 10,
no. 8, e0135834, 2015.

[74] K. Olson, M. Wood, T Delate, L. Lash, J Rasmussen, A. Denham, and J. Merenich,
“Positive predictive values of icd-9 codes to identify patients with stroke or tia.,”
The American journal of Managed Care, vol. 20, no. 2, 2014.

[75] T. E. Chang, J. H. Lichtman, L. B. Goldstein, and M. G. George, “Accuracy of icd-9-cm
codes by hospital characteristics and stroke severity: Paul coverdell national acute stroke
program.,” Journal of the American Heart Association, vol. 5, no. 6, 2016.

[76] R. Woodfield, I. Grant, and C. L. Sudlow, “Accuracy of electronic health record data for
identifying stroke cases in large-scale epidemiological studies: A systematic review from
the uk biobank stroke outcomes group.,” PloS one, vol. 10, no. 10, e0140533, 2015.

[77] Y. Ni, K. Alwell, C. J. Moomaw, D. Woo, O. Adeoye, M. L. Flaherty, S. Ferioli, J. Mackey,
F. De Los Rios La Rosa, S. Martini, and et al., “Towards phenotyping stroke: Leverag-
ing data from a large-scale epidemiological study to detect stroke diagnosis.,” PloS one,
vol. 13, no. 2, e0192586, 2018.

[78] T. F. Imran, D. Posner, J. Honerlaw, J. L. Vassy, R. J. Song, Y.-L. L. Ho, S. J. Kittner,
K. P. Liao, T. Cai, C. J. O’Donnell, and et al., “A phenotyping algorithm to identify
acute ischemic stroke accurately from a national biobank: The million veteran program.,”
Clinical epidemiology, vol. 10, 1509–1521, 2018.

[79] H. Mo, W. Thompson, L. Rasmussen, J. Pacheco, G. Jiang, R. Kiefer, Q.
Zhu, J. Xu, E. Montague, D. Carrell, and et al., “Desiderata for computable
representations of electronic health records-driven phenotype algorithms,”
Journal of the American Medical Informatics Association, vol. 22, no. 6, 1220–1230,
2015.

[80] C. Shivade, P. Raghavan, E. Fosler-Lussier, P. Embi, N. Elhadad, S. Johnson, and A.
Lai, “A review of approaches to identifying patient phenotype cohorts using electronic

128



health records,” Journal of the American Medical Informatics Association, vol. 21, no. 2,
221–230, 2014.

[81] G. Hripcsak and D. J. Albers, “Next-generation phenotyping of electronic health records.,”
Journal of the American Medical Informatics Association: JAMIA, vol. 20, no. 1, 117–21,
2013.

[82] P. Peissig, V. Costa, M. Caldwell, C. Rottscheit, R. Berg, E. Mendonca, and D.
Page, “Relational machine learning for electronic health record-driven phenotyping,”
Journal of Biomedical Informatics, vol. 52, 260–270, 2014.

[83] R. Carroll, A. Eyler, and J. Denny, “Naïve electronic health
record phenotype identification for rheumatoid arthritis.,”
AMIA ... Annual Symposium proceedings / AMIA Symposium. AMIA Symposium,
vol. 2011, 189–96, 2011.

[84] Y. Chen, R. Carroll, E. Hinz, A. Shah, A. Eyler, J. Denny, and H. Xu, “Applying active
learning to high-throughput phenotyping algorithms for electronic health records data,”
Journal of the American Medical Informatics Association, vol. 20, no. e2, e253–e259,
2013.

[85] S. Yu, A. Chakrabortty, K. P. Liao, T. Cai, A. N. Ananthakrishnan, V. S.
Gainer, S. E. Churchill, P. Szolovits, S. N. Murphy, I. S. Kohane, and et
al., “Surrogate-assisted feature extraction for high-throughput phenotyping.,”
Journal of the American Medical Informatics Association: JAMIA, vol. 24, no. e1,
e143–e149, 2017.

[86] W. Ning, S. Chan, A. Beam, M. Yu, A. Geva, K. Liao, M. Mullen, K. D. Mandl, I. Ko-
hane, T. Cai, and et al., “Feature extraction for phenotyping from semantic and knowledge
resources.,” Journal of biomedical informatics, p. 103 122, 2019.

[87] S. Yu, Y. Ma, J. Gronsbell, T. Cai, A. Ananthakrishnan, V. Gainer, S. Churchill, P.
Szolovits, S. Murphy, I. Kohane, and et al., “Enabling phenotypic big data with phenorm.,”
Journal of the American Medical Informatics Association: JAMIA, vol. 25, 2017.

[88] V. Agarwal, T. Podchiyska, J. M. Banda, V. Goel, T. I. Leung, E. P. Minty, T. E. Sweeney,
E. Gyang, and N. H. Shah, “Learning statistical models of phenotypes using noisy labeled
training data.,” Journal of the American Medical Informatics Association: JAMIA, vol. 23,
no. 6, 1166–1173, 2016.

[89] Y. Halpern, S. Horng, Y. Choi, and D. Sontag, “Electronic med-
ical record phenotyping using the anchor and learn framework.,”
Journal of the American Medical Informatics Association: JAMIA, vol. 23, no. 4,
731–40, 2016.

129



[90] S. G. Murray, A. Avati, G. Schmajuk, and J. Yazdany, “Automated and flexible identifica-
tion of complex disease: Building a model for systemic lupus erythematosus using noisy la-
beling.,” Journal of the American Medical Informatics Association: JAMIA, vol. 26, no. 1,
61–65, 2019.

[91] C. Walsh and G. Hripcsak, “The effects of data sources, cohort selection, and out-
come definition on a predictive model of risk of thirty-day hospital readmissions,”
Journal of Biomedical Informatics, vol. 52, pp. 418–426, Dec. 2014.

[92] A. Perotte, R. Pivovarov, K. Natarajan, N. Weiskopf, F. Wood, and N.
Elhadad, “Diagnosis code assignment: Models and evaluation metrics,”
Journal of the American Medical Informatics Association, vol. 21, no. 2, 231–237,
2014.

[93] Y. Zhang, “A hierarchical approach to encoding medical concepts for clinical notes,”
Association for Computational Linguistics, 67–72, 2008.

[94] C. G. Walsh, K. Sharman, and G. Hripcsak, “Beyond discrimination: A comparison of
calibration methods and clinical usefulness of predictive models of readmission risk,”
Journal of Biomedical Informatics, vol. 76, pp. 9–18, Dec. 2017.

[95] V. Abedi, N. Goyal, G. Tsivgoulis, N. Hosseinichimeh, R. Hontecillas, J. Bassaganya-
Riera, L. Elijovich, J. E. Metter, A. W. Alexandrov, D. S. Liebeskind, and et al., “Novel
screening tool for stroke using artificial neural network.,” Stroke, vol. 48, no. 6, 1678–1681,
2017.

[96] Z. Chen, R. Zhang, F. Xu, X. Gong, F. Shi, M. Zhang, and M. Lou, “Novel pre-
hospital prediction model of large vessel occlusion using artificial neural network.,”
Frontiers in aging neuroscience, vol. 10, p. 181, 2018.

[97] Center for Medicaid and Medicare Services, 2018 ICD-10 CM and GEMs, https://
www.cms.gov/medicare/coding/icd10/2018-icd-10-cm-and-gems.
html.

[98] Healthcare Cost and Utilization Project, CCS for ICD-10-CM, FY 2018 (October 2017),
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp.

[99] National Library of Medicine, UMLS SNOMED CT to ICD-10-CM Map.

[100] G. Hripcsak, M. E. Levine, N. Shang, and P. B. Ryan, “Ef-
fect of vocabulary mapping for conditions on phenotype cohorts.,”
Journal of the American Medical Informatics Association: JAMIA, 2018.

[101] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

130

https://www.cms.gov/medicare/coding/icd10/2018-icd-10-cm-and-gems.html
https://www.cms.gov/medicare/coding/icd10/2018-icd-10-cm-and-gems.html
https://www.cms.gov/medicare/coding/icd10/2018-icd-10-cm-and-gems.html
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp


M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[102] Healthcare Cost and Utilization Project, Multi-Level Procedures CCS Categories,
https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp#
download.

[103] ——, Multi-Level Diagnoses CCS Categories, https://www.hcup- us.ahrq.
gov/toolssoftware/ccs/ccs.jsp.

[104] ——, CCS for ICD-10-PCS, FY 2018 (October 2017) , https://www.hcup- us.
ahrq.gov/toolssoftware/ccs10/ccs10.jsp#download.

[105] ——, 2018 CCS-Services and Procedures Software, https : / / www . hcup - us .
ahrq.gov/toolssoftware/ccs_svcsproc/ccscpt_downloading.jsp.

[106] C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott,
J. Green, M. Landray, and et al., “Uk biobank: An open access resource for identifying
the causes of a wide range of complex diseases of middle and old age.,” PLoS medicine,
vol. 12, no. 3, e1001779, 2015.

[107] J. A. Sinnott, W. Dai, K. P. Liao, S. Y. Shaw, A. N. Ananthakrishnan, V. S. Gainer, E. W.
Karlson, S. Churchill, P. Szolovits, S. Murphy, and et al., “Improving the power of ge-
netic association tests with imperfect phenotype derived from electronic medical records.,”
Human genetics, vol. 133, no. 11, 1369–82, 2014.

[108] J. Sinnott, F. Cai, S. Yu, B. Hejblum, C. Hong, I. Kohane, and K. Liao, “Pheprob: Proba-
bilistic phenotyping using diagnosis codes to improve power for genetic association stud-
ies.,” Journal of the American Medical Informatics Association: JAMIA, 2018.

[109] L. Bastarache, J. Hughey, S. Hebbring, J. Marlo, W. Zhao, W. Ho, S. Driest, T. McGregor,
J. Mosley, Q. Wells, and et al., “Phenotype risk scores identify patients with unrecognized
mendelian disease patterns,” Science, vol. 359, no. 6381, 1233–1239, 2018.

[110] J. H. Son, G. Xie, C. Yuan, L. Ena, Z. Li, A. Goldstein, L. Huang, L. Wang, F. Shen, H.
Liu, and et al., “Deep phenotyping on electronic health records facilitates genetic diagnosis
by clinical exomes.,” American journal of human genetics, vol. 103, no. 1, 58–73, 2018.

[111] G. Hripcsak and D. Albers, “High-fidelity phenotyping: Richness and freedom from bias,”
Journal of the American Medical Informatics Association, 2017.

[112] P. M. Thangaraj, B. R. Kummer, T. Lorberbaum, M. V. S. Elkind, and N. P. Tatonetti,
“Comparative analysis, applications, and interpretation of electronic health record-based
stroke phenotyping methods,” bioRxiv, 2019.

131

https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp##download
https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp##download
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp##download
https://www.hcup-us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp##download
https://www.hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/ccscpt_downloading.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/ccscpt_downloading.jsp


[113] A. Blanco-gomez, S. Castillo-Lluva, M. d. M. Saez-Freire, L. Hontecillas-Prieto, J. H.
Mao, A. Castellanos-Martin, and J. Perez-Losada, “Missing heritability of complex dis-
eases: Enlightenment by genetic variants from intermediate phenotypes,” BioEssays,
vol. 38, no. 7, pp. 664–673, 2016.

[114] O. Zuk, E. Hechter, S. R. Sunyaev, and E. S. Lander, “The mystery
of missing heritability: Genetic interactions create phantom heritability,”
Proceedings of the National Academy of Sciences, vol. 109, no. 4, pp. 1193–1198,
Jan. 2012.

[115] H. Ay, E. Arsava, G. Andsberg, T. Benner, R. D. Brown, S. N. Chapman, J. W. Cole, H.
Delavaran, M. Dichgans, G. Engström, G. Eva, R. P. Grewal, K. Gwinn, C. Jern, J. Jordi,
K. Jood, M. Katsnelson, B. Kissela, S. J. Kittner, D. O. Kleindorfer, D. L. Labovitz, S.
Lanfranconi, J. Lee, M. Lehm, R. Lemmens, C. Levi, L. Li, A. Lindgren, H. S. Markus,
M. P. F, O. Melander, B. Norrving, L. Peddareddygari, A. Pedersén, J. Pera, K. Rannikmäe,
K. M. Rexrode, D. Rhodes, S. S. Rich, J. Roquer, J. Rosand, P. M. Rothwell, T. Rundek,
R. L. Sacco, R. Schmidt, M. Schürks, S. Seiler, P. Sharma, A. Slowik, C. Sudlow, V. Thijs,
R. Woodfield, B. B. Worrall, and J. F. Meschia, “Pathogenic ischemic stroke phenotypes
in the NINDS-Stroke genetics network,” Stroke, vol. 45, no. 12, pp. 3589–3596, 2014.

[116] Adams, Bendixen, Kappelle, Biller, Love, Gordon, and Marsh, “Classification of subtype
of acute ischemic stroke. definitions for use in a multicenter clinical trial. toast. trial of org
10172 in acute stroke treatment.,” Stroke, vol. 24, no. 1, 35–41, 1993.

[117] Amarenco, Bogousslavsky, L. Caplan, G. Donnan, and M. Hennerici, “New ap-
proach to stroke subtyping: The a-s-c-o (phenotypic) classification of stroke,”
Cerebrovascular Diseases, vol. 27, no. 5, 502–508, 2009.

[118] H. Ay, T. Benner, M. Arsava, K. Furie, A. Singhal, M. Jensen, C. Ayata, A. Towfighi,
E. Smith, J. Chong, and et al., “A computerized algorithm for etiologic classification
of ischemic stroke the causative classification of stroke system,” Stroke, vol. 38, no. 11,
2979–2984, 2007.

[119] M. E. Arsava, J. Helenius, R. Avery, M. H. Sorgun, G. Kim, P. O. M, K. Park, J. Rosand,
M. Vangel, and H. Ay, “Assessment of the predictive validity of etiologic stroke classifica-
tion.,” Jama Neurol, vol. 74, no. 4, p. 419, 2017.

[120] H. Lin, P. Wolf, K. M, A. Beiser, C. Kase, E. Benjamin, and D. RB, “Stroke severity in
atrial fibrillation. the framingham study.,” Stroke, vol. 27, no. 10, pp. 1760–4, 1996.

[121] J. C. Kwong, K. L. Schwartz, M. A. Campitelli, H. Chung, N. S. Crowcroft, T. Karnau-
chow, K. Katz, D. T. Ko, A. J. McGeer, D. McNally, D. C. Richardson, L. C. Rosella, A.
Simor, M. Smieja, G. Zahariadis, and J. B. Gubbay, “Acute Myocardial Infarction after
Laboratory-Confirmed Influenza Infection,” New England Journal of Medicine, Jan. 2018.

132



[122] M. S. V. Elkind, P. Ramakrishnan, Y. P. Moon, B. Boden-Albala, K. M. Liu, S. L. Spitalnik,
T. Rundek, R. L. Sacco, and M. C. Paik, “Infectious Burden and Risk of Stroke: The
Northern Manhattan Study,” Archives of Neurology, vol. 67, no. 1, pp. 33–38, Jan. 2010.

[123] B. B. Navi and C. Iadecola, “Ischemic stroke in cancer patients: A review of an underap-
preciated pathology,” Annals of Neurology, vol. 83, no. 5, pp. 873–883, 2018.

[124] L. Almasy and J. Blangero, “Multipoint Quantitative-Trait Linkage Analysis in General
Pedigrees,” The American Journal of Human Genetics, vol. 62, no. 5, pp. 1198–1211, May
1998.

[125] Dichgans, Malik, Konig, Rosand, Clarke, Gretarsdottir, Thorleifsson, Mitchell, Assimes,
Levi, and et al., “Shared genetic susceptibility to ischemic stroke and coronary artery dis-
ease,” Stroke, vol. 45, no. 1, 24–36, 2014.

[126] J. Kirby, P. Speltz, L. Rasmussen, and et al., “Phekb: A catalog and work-
flow for creating electronic phenotype algorithms for transportability.,”
Journal of the American Medical Informatics Association, vol. 23, no. 6, pp. 1046–
1052, 2016.

[127] T. J. C. Polderman, B. Benyamin, C. A. d. Leeuw, P. F. Sullivan, A. v. Bochoven, P. M.
Visscher, and D. Posthuma, “Meta-analysis of the heritability of human traits based on fifty
years of twin studies,” Nature Genetics, vol. 47, no. 7, pp. 702–709, Jul. 2015.

[128] A. Buniello, J. A. L. MacArthur, M. Cerezo, L. W. Harris, J. Hayhurst, C. Malangone, A.
McMahon, J. Morales, E. Mountjoy, E. Sollis, D. Suveges, O. Vrousgou, P. L. Whetzel, R.
Amode, J. A. Guillen, H. S. Riat, S. J. Trevanion, P. Hall, H. Junkins, P. Flicek, T. Burdett,
L. A. Hindorff, F. Cunningham, and H. Parkinson, “The NHGRI-EBI GWAS Catalog of
published genome-wide association studies, targeted arrays and summary statistics 2019,”
Nucleic Acids Research, vol. 47, no. D1, pp. D1005–D1012, Jan. 2019.

[129] D. Klarin, C. A. Emdin, P. Natarajan, M. F. Conrad, and S. Kathiresan, “Genetic Analysis
of Venous Thromboembolism in UK Biobank Identifies the ZFPM2 Locus and Implicates
Obesity as a Causal Risk Factor,” Circulation. Cardiovascular genetics, vol. 10, no. 2, Apr.
2017.

[130] M. Germain, D. I. Chasman, H. de Haan, W. Tang, S. Lindstrom, L.-C. Weng, M. de
Andrade, M. C. H. de Visser, K. L. Wiggins, P. Suchon, N. Saut, D. M. Smadja, G. Le
Gal, A. van Hylckama Vlieg, A. Di Narzo, K. Hao, C. P. Nelson, A. Rocanin-Arjo, L.
Folkersen, R. Monajemi, L. M. Rose, J. A. Brody, E. Slagboom, D. Aissi, F. Gagnon,
J.-F. Deleuze, P. Deloukas, C. Tzourio, J.-F. Dartigues, C. Berr, K. D. Taylor, M. Civelek,
P. Eriksson, B. M. Psaty, J. Houwing-Duitermaat, A. H. Goodall, F. Cambien, P. Kraft,
P. Amouyel, N. J. Samani, S. Basu, P. M. Ridker, F. R. Rosendaal, C. Kabrhel, A. R.
Folsom, J. Heit, P. H. Reitsma, D.-A. Tregouet, N. L. Smith, and P.-E. Morange, “Meta-
analysis of 65,734 Individuals Identifies TSPAN15 and SLC44a2 as Two Susceptibility

133



Loci for Venous Thromboembolism,” The American Journal of Human Genetics, vol. 96,
no. 4, pp. 532–542, Apr. 2015.

[131] M. Germain, N. Saut, N. Greliche, C. Dina, J.-C. Lambert, C. Perret, W. Cohen, T. Oudot-
Mellakh, G. Antoni, M.-C. Alessi, D. Zelenika, F. Cambien, L. Tiret, M. Bertrand, A.-M.
Dupuy, L. Letenneur, M. Lathrop, J. Emmerich, P. Amouyel, D.-A. Tregouet, and P.-E.
Morange, “Genetics of Venous Thrombosis: Insights from a New Genome Wide Associa-
tion Study,” PLOS ONE, vol. 6, no. 9, e25581, Sep. 2011.

[132] W. Tang, M. Teichert, D. I. Chasman, J. A. Heit, P.-E. Morange, G. Li, N. Pankratz, F. W.
Leebeek, G. Pare, M. d. Andrade, C. Tzourio, B. M. Psaty, S. Basu, R. Ruiter, L. Rose,
S. M. Armasu, T. Lumley, S. R. Heckbert, A. G. Uitterlinden, M. Lathrop, K. M. Rice,
M. Cushman, A. Hofman, J.-C. Lambert, N. L. Glazer, J. S. Pankow, J. C. Witteman, P.
Amouyel, J. C. Bis, E. G. Bovill, X. Kong, R. P. Tracy, E. Boerwinkle, J. I. Rotter, D.-A.
Tregouet, D. W. Loth, B. H. C. Stricker, P. M. Ridker, A. R. Folsom, and N. L. Smith,
“A Genome-Wide Association Study for Venous Thromboembolism: The Extended Co-
horts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium,”
Genetic Epidemiology, vol. 37, no. 5, pp. 512–521, 2013.

[133] J. Heit, J. Pathak, J. Denny, G. Hinz, and Mayo Clinic,
Venous Thromboembolism (VTE) | PheKB, 2012.

[134] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender,
J. Maller, P. Sklar, P. I. W. d. Bakker, M. J. Daly, and P. C. Sham, “PLINK: A
Tool Set for Whole-Genome Association and Population-Based Linkage Analyses,”
The American Journal of Human Genetics, vol. 81, no. 3, pp. 559–575, Sep. 2007.

[135] National Center for Biotechnology Information, US National Library of Medicine,
Coordinate remapping service: NCBI.

[136] C. DeBoever, Y. Tanigawa, M. Aguirre, G. McInnes, A. Lavertu, and M. A. Rivas, “Assess-
ing digital phenotyping to enhance genetic studies of human diseases,” Genetics, preprint,
Aug. 2019.

[137] W. Zhou, J. B. Nielsen, L. G. Fritsche, R. Dey, M. E. Gabrielsen, B. N. Wolford, J. LeFaive,
P. VandeHaar, S. A. Gagliano, A. Gifford, L. A. Bastarache, W.-Q. Wei, J. C. Denny, M.
Lin, K. Hveem, H. M. Kang, G. R. Abecasis, C. J. Willer, and S. Lee, “Efficiently control-
ling for case-control imbalance and sample relatedness in large-scale genetic association
studies,” Nature Genetics, vol. 50, no. 9, pp. 1335–1341, Sep. 2018.

[138] J. Yang, N. R. Wray, and P. M. Visscher, “Comparing apples and oranges: Equating the
power of case-control and quantitative trait association studies,” Genetic Epidemiology,
n/a–n/a, 2009.

134



[139] D. V. Zaykin and L. A. Zhivotovsky, “Ranks of Genuine Associations in Whole-Genome
Scans,” Genetics, vol. 171, no. 2, pp. 813–823, Oct. 2005.

[140] I. S. Kohane, “Using electronic health records to drive discovery in disease genomics,”
Nature Reviews Genetics, vol. 12, no. 6, pp. 417–428, Jun. 2011.

[141] J. A. Sinnott, F. Cai, S. Yu, B. P. Hejblum, C. Hong, I. S. Kohane, and K. P. Liao, “PheP-
rob: Probabilistic phenotyping using diagnosis codes to improve power for genetic asso-
ciation studies,” Journal of the American Medical Informatics Association, vol. 25, no. 10,
pp. 1359–1365, Oct. 2018.

[142] J. Z. Liu, Y. Erlich, and J. K. Pickrell, “Case-control association mapping by proxy using
family history of disease,” Nature Genetics, vol. 49, no. 3, pp. 325–331, Mar. 2017.

[143] D. M. Ruderfer, C. G. Walsh, M. W. Aguirre, Y. Tanigawa, J. D. Ribeiro, J. C. Franklin,
and M. A. Rivas, “Significant shared heritability underlies suicide attempt and clinically
predicted probability of attempting suicide,” Molecular Psychiatry, pp. 1–9, Jan. 2019.

[144] National Library of Medicine, UMLS Metathesaurus - RXNORM.

[145] C. Schnier, K. Bush, J. Nolan, C. L. M. Sudlow, and UK Biobank Outcome Adjuduca-
tion Group, Definitions of Stroke for UK Biobank Phase 1 Outcomes Adjudication, Aug.
2017.

[146] UK Biobank, “Genotyping and quality control of UK Biobank, a large-scale, extensively
phenotyped prospective resource,” UK Biobank Website,

[147] C. C. Chang, C. C. Chow, L. C. Tellier, S. Vattikuti, S. M. Purcell, and J. J. Lee, “Second-
generation PLINK: Rising to the challenge of larger and richer datasets,” GigaScience,
vol. 4, no. 1, p. 7, Dec. 2015.

[148] E. Brown, “Coding of Data â MedDRA and other Medical Technologies,” in
Clinical Data Management, Chichester, UK, Dec. 1999, p. 177, ISBN: 978-0-471-98329-3.

[149] P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache, and
M. A. Musen, “BioPortal: Enhanced functionality via new Web services from the National
Center for Biomedical Ontology to access and use ontologies in software applications,”
Nucleic Acids Research, vol. 39, no. suppl, W541–W545, Jul. 2011.

[150] J. Yang, T. Ferreira, A. P. Morris, S. E. Medland, Genetic Investigation of ANthropomet-
ric Traits (GIANT) Consortium, DIAbetes Genetics Replication And Meta-analysis (DI-
AGRAM) Consortium, P. A. F. Madden, A. C. Heath, N. G. Martin, G. W. Montgomery,
M. N. Weedon, R. J. Loos, T. M. Frayling, M. I. McCarthy, J. N. Hirschhorn, M. E. God-
dard, and P. M. Visscher, “Conditional and joint multiple-SNP analysis of GWAS summary

135



statistics identifies additional variants influencing complex traits,” Nature Genetics, vol. 44,
no. 4, pp. 369–375, Apr. 2012.

[151] H. R. Wells, M. B. Freidin, F. N. Zainul Abidin, A. Payton, P. Dawes, K. J. Munro, C. C.
Morton, D. R. Moore, S. J. Dawson, and F. M. Williams, “GWAS Identifies 44 Independent
Associated Genomic Loci for Self-Reported Adult Hearing Difficulty in UK Biobank,”
The American Journal of Human Genetics, vol. 105, no. 4, pp. 788–802, Oct. 2019.

[152] National Center for Biotechnology Information, National Library of Medicine.,
Database of single nucleotide polymorphisms (dbsnp). http : / / www . ncbi . nlm .
nih.gov/SNP/, (dbSNP Build ID: GRCh37.p13), Bethesda, MD.

[153] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and D.
Haussler, “The Human Genome Browser at UCSC,” vol. 12, pp. 996–1006, 2002.

[154] N. Risch, “Linkage Strategies for Genetically Complex Traits. 1. Multilocus Models,”
Am J Hum Genet., vol. 46, no. 2, pp. 222–228, 1990.

[155] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical modeling with
python,” in 9th Python in Science Conference, 2010.

[156] G. Band and J. Marchini, “BGEN: A binary file format for imputed genotype and haplotype
data,” bioRxiv, p. 308 296, May 2018.

[157] B. K. Bulik-Sullivan, P.-R. Loh, H. K. Finucane, S. Ripke, J. Yang, N. Patterson, M. J.
Daly, A. L. Price, and B. M. Neale, “LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies,” Nature Genetics, vol. 47, no. 3, pp. 291–
295, Mar. 2015.

[158] S. D. Turner, “Qqman: An R package for visualizing GWAS results using Q-Q and man-
hattan plots,” bioRxiv, p. 005 165, May 2014.

[159] C. P. Nelson, A. Goel, A. S. Butterworth, S. Kanoni, T. R. Webb, E. Marouli, L. Zeng, I.
Ntalla, F. Y. Lai, J. C. Hopewell, O. Giannakopoulou, T. Jiang, S. E. Hamby, E. Di Ange-
lantonio, T. L. Assimes, E. P. Bottinger, J. C. Chambers, R. Clarke, C. N. A. Palmer, R. M.
Cubbon, P. Ellinor, R. Ermel, E. Evangelou, P. W. Franks, C. Grace, D. Gu, A. D. Hingo-
rani, J. M. M. Howson, E. Ingelsson, A. Kastrati, T. Kessler, T. Kyriakou, T. Lehtimäki,
X. Lu, Y. Lu, W. März, R. McPherson, A. Metspalu, M. Pujades-Rodriguez, A. Ruusalepp,
E. E. Schadt, A. F. Schmidt, M. J. Sweeting, P. A. Zalloua, K. AlGhalayini, B. D. Keavney,
J. S. Kooner, R. J. F. Loos, R. S. Patel, M. K. Rutter, M. Tomaszewski, I. Tzoulaki, E. Zeg-
gini, J. Erdmann, G. Dedoussis, J. L. M. Björkegren, H. Schunkert, M. Farrall, J. Danesh,
N. J. Samani, H. Watkins, and P. Deloukas, “Association analyses based on false discov-
ery rate implicate new loci for coronary artery disease,” Nature Genetics, vol. 49, no. 9,
pp. 1385–1391, Sep. 2017.

136

 http://www.ncbi.nlm.nih.gov/SNP/
 http://www.ncbi.nlm.nih.gov/SNP/


[160] A. Lucas, Hudson: R package, https://github.com/anastasia-lucas/hudson, Philadel-
phia,PA.

[161] D. Howrigan, L. Abbott, C. Churchhouse, and D. Palmer, UK Biobank,
http://www.nealelab.is/uk-biobank, 2017.

[162] R. Malik, K. Rannikmae, M. Traylor, M. K. Georgakis, M. Sargurupremraj, H. S. Markus,
J. C. Hopewell, S. Debette, C. L. M. Sudlow, M. Dichgans, and for the MEGAS-
TROKE consortium and the International Stroke Genetics Consortium, “Genome-wide
meta-analysis identifies 3 novel loci associated with stroke: MEGASTROKE and UK
Biobank GWAS,” Annals of Neurology, vol. 84, no. 6, pp. 934–939, Dec. 2018.

[163] Gao Yang, Stuart Deborah, Takahishi Takamune, and Kohan Donald E., “NephronâSpecific
Disruption of Nitric Oxide Synthase 3 Causes Hypertension and Impaired Salt Excretion,”
Journal of the American Heart Association, vol. 7, no. 14, e009236, Jul. 2018.

[164] C. Farah, L. Y. M. Michel, and J.-L. Balligand, “Nitric oxide signalling in cardiovascular
health and disease,” Nature Reviews Cardiology, vol. 15, no. 5, pp. 292–316, May 2018.

[165] R. Asselta and F. Peyvandi, “Factor V deficiency,”
Seminars in Thrombosis and Hemostasis, vol. 35, no. 4, pp. 382–389, Jun. 2009.

[166] J. L. Kujovich, “Factor V Leiden thrombophilia,”
Genetics in Medicine: Official Journal of the American College of Medical Genetics,
vol. 13, no. 1, pp. 1–16, Jan. 2011.

[167] D. A. Hinds, A. Buil, D. Ziemek, A. Martinez-Perez, R. Malik, L. Folkersen, M. Germain,
A. Malarstig, A. Brown, J. M. Soria, M. Dichgans, N. Bing, A. Franco-Cereceda, J. C.
Souto, E. T. Dermitzakis, A. Hamsten, B. B. Worrall, J. Y. Tung, METASTROKE Consor-
tium, INVENT Consortium, and M. Sabater-Lleal, “Genome-wide association analysis of
self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated
with thrombosis,” Human Molecular Genetics, vol. 25, no. 9, pp. 1867–1874, 2016.

[168] The Emerging Risk Factors Collaboration, “Lipoprotein(a) Concentration and
the Risk of Coronary Heart Disease, Stroke, and Nonvascular Mortality,”
JAMA : the journal of the American Medical Association, vol. 302, no. 4, pp. 412–
423, Jul. 2009.

[169] Wang Long, Chen Juan, Zeng Ying, Wei Jie, Jing Jinjin, Li Ge, Su Li, Tang Xi-
aojun, Wu Tangchun, and Zhou Li, “Functional Variant in the SLC22a3-LPAL2-
LPA Gene Cluster Contributes to the Severity of Coronary Artery Disease,”
Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 36, no. 9, pp. 1989–1996, Sep.
2016.

137



[170] A.-S. Schoonjans, M. Meuwissen, E. Reyniers, F. Kooy, and B. Ceulemans, “PLCB1
epileptic encephalopathies; Review and expansion of the phenotypic spectrum,”
European journal of paediatric neurology, vol. 20, no. 3, pp. 474–479, May 2016.

[171] M. S. Brown and J. L. Goldstein, “Receptor-mediated en-
docytosis: Insights from the lipoprotein receptor system,”
Proceedings of the National Academy of Sciences of the United States of America,
vol. 76, no. 7, pp. 3330–3337, Jul. 1979.

[172] S. Erqou, A. Thompson, E. D. Angelantonio, D. Saleheen, S. Kaptoge, S.
Marcovina, and J. Danesh, “Apolipoprotein(a) Isoforms and the Risk of Vas-
cular Disease: Systematic Review of 40 Studies Involving 58,000 Participants,”
Journal of the American College of Cardiology, vol. 55, no. 19, pp. 2160–2167, May 2010.

[173] M. B. Fessler, P. G. Arndt, S. C. Frasch, J. G. Lieber, C. A. Johnson, R. C. Murphy,
J. A. Nick, D. L. Bratton, K. C. Malcolm, and G. S. Worthen, “Lipid Rafts Regulate
Lipopolysaccharide-induced Activation of Cdc42 and Inflammatory Functions of the Hu-
man Neutrophil,” Journal of Biological Chemistry, vol. 279, no. 38, pp. 39 989–39 998,
Sep. 2004.

[174] K. Hashimoto, H. Ochi, S. Sunamura, N. Kosaka, Y. Mabuchi, T. Fukuda, K.
Yao, H. Kanda, K. Ae, A. Okawa, C. Akazawa, T. Ochiya, M. Futakuchi, S.
Takeda, and S. Sato, “Cancer-secreted hsa-miR-940 induces an osteoblastic pheno-
type in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134a,”
Proceedings of the National Academy of Sciences, vol. 115, no. 9, pp. 2204–2209, Feb.
2018.

[175] X. Zhang, J. Guan, M. Guo, H. Dai, S. Cai, C. Zhou, Y. Wang, and Q. Qin, “Rho GT-
Paseâactivating protein 1 promotes apoptosis of myocardial cells in an ischemic cardiomy-
opathy model,” Kardiologia Polska, vol. 77, no. 12, pp. 1163–1169, 2019.

[176] S. Ligthart, A. Vaez, Y.-H. Hsu, Inflammation Working Group of the CHARGE Consor-
tium, PMI-WG-XCP, LifeLines Cohort Study, R. Stolk, A. G. Uitterlinden, A. Hofman,
B. Z. Alizadeh, O. H. Franco, and A. Dehghan, “Bivariate genome-wide association study
identifies novel pleiotropic loci for lipids and inflammation,” BMC Genomics, vol. 17,
no. 1, p. 443, Dec. 2016.

[177] F. Jiang, Y. Dong, C. Wu, X. Yang, L. Zhao, J. Guo, Y. Li, J. Dong, G.-Y. Zheng, H. Cao,
L. Jin, Y. Ren, W. Cheng, W. Li, X.-L. Tian, and X. Li, “Fine mapping of chromosome
3q22.3 identifies two haplotype blocks in ESYT3 associated with coronary artery disease
in female Han Chinese,” Atherosclerosis, vol. 218, no. 2, pp. 397–403, Oct. 2011.

[178] P.-F. Zheng, R.-X. Yin, G.-X. Deng, Y.-Z. Guan, B.-L. Wei, and C.-X. Liu, “Association
between the XKR6 rs7819412 SNP and serum lipid levels and the risk of coronary artery

138



disease and ischemic stroke,” BMC Cardiovascular Disorders, vol. 19, no. 1, p. 202, Aug.
2019.

[179] Y. Song, R. Ma, and H. Zhang, “The influence of MRAS gene variants on ischemic stroke
and serum lipid levels in Chinese Han population,” Medicine, vol. 98, no. 48, e18065, Nov.
2019.

[180] J. Erdmann, A. Grosshennig, P. S. Braund, I. R. Konig, C. Hengstenberg, A. S. Hall, P.
Linsel-Nitschke, S. Kathiresan, B. Wright, D.-A. Tregouet, F. Cambien, P. Bruse, Z. Aher-
rahrou, A. K. Wagner, K. Stark, S. M. Schwartz, V. Salomaa, R. Elosua, O. Melander,
B. F. Voight, C. J. O’ Donnell, L. Peltonen, D. S. Siscovick, D. Altshuler, P. A. Merlini, F.
Peyvandi, L. Bernardinelli, D. Ardissino, A. Schillert, S. Blankenberg, T. Zeller, P. Wild,
D. F. Schwarz, L. Tiret, C. Perret, S. Schreiber, N. E. El Mokhtari, A. Schafer, W. Marz,
W. Renner, P. Bugert, H. KlÃŒter, J. Schrezenmeir, D. Rubin, S. G. Ball, A. J. Balmforth,
H.-E. Wichmann, T. Meitinger, M. Fischer, C. Meisinger, J. Baumert, A. Peters, W. H.
Ouwehand, Italian Atherosclerosis, Thrombosis, and Vascular Biology Working Group,
Myocardial Infarction Genetics Consortium, Wellcome Trust Case Control Consortium,
Cardiogenics Consortium, P. Deloukas, J. R. Thompson, A. Ziegler, N. J. Samani, and H.
Schunkert, “New susceptibility locus for coronary artery disease on chromosome 3q22.3,”
Nature Genetics, vol. 41, no. 3, pp. 280–282, Mar. 2009.

[181] A. M. Small, C. J. O’Donnell, and S. M. Damrauer, “Large-Scale Genomic Biobanks and
Cardiovascular Disease,” Current Cardiology Reports, vol. 20, no. 4, p. 22, Mar. 2018.

[182] M. McKillop, L. Mamykina, and N. Elhadad, “Designing in the Dark: Elic-
iting Self-tracking Dimensions for Understanding Enigmatic Disease,” in
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
Montreal QC, Canada: ACM Press, 2018, pp. 1–15, ISBN: 978-1-4503-5620-6.

[183] A. S. Faye, F. Polubriaginof, P. H. R. Green, D. K. Vawdrey, N. Tatonetti, and B.
Lebwohl, “Low Rates of Screening for Celiac Disease Among Family Members,”
Clinical Gastroenterology and Hepatology, vol. 17, no. 3, pp. 463–468, Feb. 2019.

[184] J. A. O’Rourke, C. Ravichandran, Y. J. Howe, J. E. Mullett, C. J. Keary, S. B. Golas, A. R.
Hureau, M. McCormick, J. Chung, N. R. Rose, and C. J. McDougle, “Accuracy of self-
reported history of autoimmune disease: A pilot study,” PLoS ONE, vol. 14, no. 5, May
2019.

[185] L. P. Sugrue and R. S. Desikan, “What Are Polygenic Scores and Why Are They Impor-
tant?” JAMA, vol. 321, no. 18, pp. 1820–1821, May 2019.

139


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Introduction
	Comparative analysis, applications, and interpretation of EHR-based stroke phenotyping methods
	Introduction
	Objective
	Methods
	Study Design
	Data Sources
	Patient Population
	Model Features
	Model development
	Robustness of model
	Calibration
	Feature collapsing
	Generalized linear model to determine feature category contribution to models
	Internal validation using all EHR patients
	External validation of acute ischemic stroke patient classification in the UK Biobank

	Results
	Study cohort
	Algorithm Performance
	Feature importances
	Feature reduction and subsequent algorithm performance.
	Calibration
	Robustness
	Feature category contribution to models
	Internal validation in institutional EHR
	External validation of acute ischemic stroke patient classification in the UK Biobank

	Discussion
	Machine learned models are able to identify acute ischemic stroke patients without direct evidence.
	Case and control choices are important for acute ischemic stroke phenotyping.
	Procedures serve as a proxy for acute ischemic stroke diagnosis codes in model features.
	Other diagnosis codes may be useful for phenotyping acute ischemic stroke.
	Models showed robustness to reduction of training set size, but not with code-hierarchy-based feature reduction.
	Calibration using an empirical function differentiates the models and may identify additional control sets.
	Models can identify a large number of stroke patients without acute ischemic stroke diagnosis codes.
	Limitations
	Strengths

	Conclusions and future directions
	Acknowledgements
	Supplementary Materials

	Data-driven subtyping of acute ischemic stroke
	Introduction
	Methods
	Determining stability of the topics
	Using topics to predict stroke severity

	Results
	Non-negative matrix factorization and hierarchical Poisson factorization topics
	NMF topics are stable
	Topics were significantly correlated with stroke severity

	Discussion
	Limitations

	Conclusions
	Acknowledgements

	Expansion of Case/Control cohorts by application of machine learning models to the EHR: Applications to heritability and genetics within Columbia and the eMERGE dataset
	Introduction
	Methods
	Estimating heritability in stroke with phenotyping model probabilities
	Venous Thromboembolism Phenotyping Model Development
	VTE GWAS implementation

	Results
	Heritability estimates using the models as quantitative traits
	Performance of the VTE Phenotyping Algorithms
	Genome-wide association study for VTE
	Simulation of traits
	Simulation of traits results

	Discussion
	The models can estimate observational heritability at a lower average value than the literature estimate.
	Genome-wide association studies of venous thromboembolism were underpowered in the Columbia eMERGE dataset.

	Conclusions
	Acknowledgements

	QTPhenProxy, a supervised machine learning model that leverages Electronic Health Record data to improve power in genome-wide association studies in the UK Biobank
	Introduction
	Methods
	QTPhenProxy Phenotyping Model.
	Evaluation of QTPhenProxy Model Performance.
	Genotyping and Imputation.
	Genome-wide Association Analysis.
	Mapping variants to known disease variant marker sets and mapping marker sets to disease systems.
	Assessing the specificity of the QTPhenProxy-derived variants.
	Evaluation of recovery of known variants
	Refinement of discovered variants by QTPhenProxy using conditional analysis
	Correlation of QTPhenProxy GWAS beta coefficients to Binary trait GWAS Odds Ratio
	Simulation of Conversion of QTPhenProxy trait to Binary trait and Conversion of beta coefficients to odds ratios
	PCA
	LD Score Regression and evaluation of genomic inflation
	Genetic Correlation of QTPhenProxy with MEGASTROKE and Coronary Artery Disease GWAS

	Results
	QTPhenProxy Model Performance
	Variants recovered by QTPhenProxy for all stroke, ischemic stroke, subarachnoid hemorrhage, intracerebral hemorrhage, and improvement over traditional binary method using the QC1 markers and principal components
	Variants recovered by QTPhenProxy for all stroke, ischemic stroke, subarachnoid hemorrhage, intracerebral hemorrhage, and improvement over traditional binary method using the QC2 markers and principal components
	Conditional analysis refines candidate variants to mostly lead some nearby SNPs.
	Conditional analysis refines candidate variants to mostly lead some nearby SNPs.
	Correlation between effect sizes of QTPhenProxy and traditional binary trait analysis
	QTPhenProxy results for other diseases.
	Specificity analysis of genome-wide significant variants using EBI-GWAS marker sets
	LD score regression intercept, genomic inflation, and evaluation of genomic inflation
	Genetic Correlation of QTPhenProxy with MEGASTROKE and Coronary Artery Disease GWAS
	Simulation of Conversion of Quantitative trait to Binary trait shows similar correlation of effect sizes to empirical data.

	Discussion
	QTPhenProxy can identify patients with stroke using EHR data other than the disease diagnosis code
	QTPhenProxy discovers many new variants and recovers known disease variants to genome-wide significance
	Simulation of quantitative trait and corresponding binary trait further supported the correlation of effect sizes between the two methods.
	Variants discovered for stroke are enriched in disease marker sets for vascular and neurological disease, and variants discovered for other diseases were enriched for disease and system specific markers.
	QTPhenProxy has high genetic correlation with the MEGASTROKE GWAS
	Low LD score regression intercepts relative to genomic inflation suggests high polygenicity
	QTPhenProxy replicates known stroke variants and discovers variants within cardiovascular disease genes
	Limitations
	Conclusions

	Acknowledgements

	Conclusion
	References

