
A Framework for Analyzing Stochastic
Optimization Algorithms Under

Dependence

Chaoxu Zhou

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/287655272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2020

Chaoxu Zhou

All Rights Reserved

ABSTRACT

A Framework for Analyzing Stochastic Algorithms Under Dependence

Chaoxu Zhou

In this dissertation, a theoretical framework based on concentration inequalities for empirical

processes is developed to better design iterative optimization algorithms and analyze their

convergence properties in the presence of complex dependence between directions and step-sizes.

Based on this framework, we proposed a stochastic away-step Frank-Wolfe algorithm and a

stochastic pairwise-step Frank-Wolfe algorithm for solving strongly convex problems with

polytope constraints and proved that both of those algorithms converge linearly to the optimal

solution in expectation and almost surely. Numerical results showed that the proposed algorithms

are faster and more stable than most of their competitors.

This framework can be applied for designing and analyzing stochastic algorithms with adaptive

step-sizes that are based on local curvature for self-concordant optimization problems. Notably,

we proposed and analyzed a stochastic BFGS algorithm without line-search, and proved that it

converges linearly globally and super-linearly locally using the framework mentioned above. This

is the first work that analyzes a fully stochastic BFGS algorithm, which also avoids time

consuming or even impossible line-search steps.

A third class of problems that the empirical processes framework can be applied to is to study the

optimization of compositions of stochastic functions. A multi-level Monte Carlo based unbiased

gradient generation method is introduced into stochastic optimization algorithms for minimizing

function compositions. Based on this, standard stochastic optimization algorithms can be applied

to these problems directly.

Table of Contents

List of Tables . v

List of Figures . vi

Acknowledgments . vii

Chapter 1: Introduction and Background . 1

1.1 Overview . 1

1.2 The Empirical Processes Framework . 2

1.3 The Frank-Wolfe Algorithm and Its Variants . 3

1.4 Local Curvature Based Adaptive Step-size Algorithms 4

1.5 Unbiased Simulation Method for Stochastic Composition Optimization Problems . 5

Chapter 2: An Empirical Processes Framework . 6

2.1 The Framework . 6

2.2 Proof of Theorem 2.1.1 . 10

2.3 From Convergence in Expectation to Almost Sure Convergence. 14

Chapter 3: Linear Convergence of Stochastic Frank Wolfe Variants 15

3.1 Motivation . 15

3.2 Contribution . 15

i

3.3 Related Work . 16

3.4 Problem description. 17

3.5 The Frank-Wolfe Algorithms. 18

3.5.1 Variants of Stochastic Frank-Wolfe Algorithm 19

3.6 Convergence Proof . 21

3.7 Numerical Experiments . 32

3.7.1 Simulated Data . 32

3.7.2 Million Song Dataset . 35

3.8 Conclusion and Future Work . 36

Chapter 4: Local Curvature Based Adaptive Step-size Algorithms 38

4.1 Introduction . 38

4.2 Assumptions and Notation . 41

4.3 Stochastic Framework . 42

4.4 Self-Concordant Functions and Adaptive Methods 44

4.5 Stochastic Adaptive Methods . 46

4.5.1 Stochastic Adaptive GD . 46

4.5.2 Stochastic Adaptive BFGS . 50

4.6 Numerical Experiments . 66

4.7 Conclusion and Future works . 70

Chapter 5: Using Unbiased Simulation for Solving Stochastic Composition Optimization
Problems . 72

5.1 Introduction . 72

ii

5.1.1 Contributions . 74

5.1.2 Related work . 74

5.1.3 Organization . 76

5.2 Problem Description and Algorithms . 76

5.2.1 Problem Description and Notation . 76

5.2.2 Unbiased Stochastic Gradient Simulation 79

5.2.3 Optimization Algorithms . 80

5.3 Examples . 82

5.3.1 Conditional Random Fields (CRF) . 83

5.3.2 Softmax Optimization . 84

5.3.3 Cox’s Partial Likelihood . 85

5.4 Theory . 86

5.4.1 Definitions, Assumptions and Lemmas . 86

5.4.2 Properties of the Unbiased Gradient Simulation Algorithm 87

5.4.3 Convergence of the Simulated Gradient Descent Algorithm 99

5.4.4 Lipschitz Continuity of the Simulated Variance Reduced Gradient 102

5.4.5 Convergence of the Simulated Variance Reduced Gradient Algorithm . . . 114

5.4.6 Convergence of the Stochastically Controlled Simulated Gradient Algorithm 118

5.5 Numerical Experiments . 123

5.5.1 Cox’s Partial Likelihood . 123

5.5.2 Conditional Random Fields . 126

5.6 Conclusion and Future Work. 126

iii

References . 135

iv

List of Tables

3.1 Comparisons of algorithms in terms of their requirements and theoretical perfor-
mance to get an ε-approximate solution. In Table 3.1, FG denotes full gradient; SG
denotes stochastic gradients; and LO denotes linear optimizations. In Prox-SVRG,
m is the number of iterations in each epoch. In PSFW, |V | is the number of vertices
in the polytope constraint. 17

3.2 Parameter choices in the algorithms . 34

5.1 Iteration complexity of different algorithms for solving smooth SCO problems. . . 75

v

List of Figures

3.1 Comparison between algorithms on simulated data. 34

3.2 Comparisons between algorithms on million song dataset. 36

4.1 Experimental results for p = 100, 500 and varying ρ. The x-axis is the elapsed
CPU time and the y-axis measures log(f (x) − f (x∗)). 69

5.1 Performance plots for different algorithms on Cox’s partial likelihood dataset. . . . 125

5.2 Performance plots for different algorithms on the OCR dataset. 127

vi

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my academic advisors

Professor Donald Goldfarb and Garud Iyengar. This thesis would not have been possible without

their constant guidance and support during my graduate study. They not only provided valuable

advice on my research, but also cared about my personal and career development, for which I am

truly indebted and grateful.

I would also like to thank my committee members, Professors John Wright, Henry Lam, and

Krzysztof Choromanski for their advice and helpful insights, and for careful reading of my thesis

manuscript.

I would like to thank all the faculty and staff members of the Department of Industrial

Engineering and Operations Research for creating such a supportive community. I am also

obliged to my friends and fellow students for their sincere friendship.

I especially thank my family for their unconditional support and understanding throughout the

years.

vii

Chapter 1: Introduction and Background

1.1 Overview

In the era of big data, the main challenge that the field of optimization faces is the trade-off

between solution accuracy and algorithm running time. To address this issue, a large number of

stochastic optimization algorithms have been developed, especially for convex problems. When the

directions and step sizes are both stochastic and depend on each other, analyzing the convergence

properties of such algorithms poses great technical difficulty. To address this issue, we developed a

theoretical framework based on concentration inequalities for empirical processes to better design

algorithms and analyze their convergence properties in the presence of complex dependence.

Based on this framework, we proposed a stochastic away-step Frank-Wolfe algorithm and a

stochastic pairwise-step Frank-Wolfe algorithm in [1] for solving strongly convex problems with

polytope constraints and proved that both of them converge linearly to the optimal solution in

expectation and almost surely. Numerical results showed that the proposed algorithms are faster

and more stable than most of their competitors.

Another important issue for current stochastic optimization algorithms is step-size tuning. Most

currently available stochastic algorithms are provably convergent only if either diminishing or in-

finitesimal step-sizes are used. As a result, practitioners have to put a lot of effort into tuning

step-sizes and other parameters in most of the algorithms that are used. To address this topic,

we proposed an adaptive step-size framework based on local curvature for a number of stochas-

tic algorithms for self-concordant optimization problems in [2]. Most notably, we proposed a

stochastic BFGS algorithm without line-search, and proved that it converges linearly globally and

super-linearly locally using the techniques mentioned above that we developed to resolve the de-

pendence issue. This is the first work that analyzes a fully stochastic BFGS algorithm, which also

1

avoids time consuming or even impossible line-search steps.

A third class of problems that we studied addresses the optimization of compositions of stochas-

tic functions. Problems that have this structure arise in many statistics and machine learning appli-

cations, such as parameter estimation for conditional random fields and for maximizing the partial

likelihood in proportional-hazards models. In these problems, obtaining a stochastic gradient is

already computationally difficult. Therefore most current approaches use biased stochastic gradi-

ents in their algorithmic design, which results in non-optimal iteration complexities. To solve this

problem, we introduced multi-level Monte Carlo methods into optimization algorithms for mini-

mizing function compositions in [3]. We proposed simulation algorithms that generate unbiased

gradient estimates with finite variance and finite expected computational cost. As a result, standard

stochastic optimization algorithms can be applied to these problems directly. We also modified our

simulation algorithms to enable them to incorporate various acceleration schemes.

1.2 The Empirical Processes Framework

Empirical processes generalizes the Glivenko-Cantelli theorem and the Donsker theorem to

more general function classes. It has been widely used in analyzing large-sample properties of

statistical estimators, especially M-estimators, in parametric, non-parametric, and semi-parametric

statistical models. The uniform convergence results in the theory of empirical processes natu-

rally resolve the complex dependence between the estimator and the samples when analyzing its

properties. The complexity of the underlying function class, which is measured by the covering

number, packing number, or bracketing number, plays an important role in the development of

empirical processes theory. However, this set of tools has not been previously used in analyzing

the properties of stochastic optimization algorithms. In chapter 2 of this thesis, we propose and

develop a theoretical framework that is based on concentration inequalities for empirical processes

for proving the convergence results for stochastic optimization algorithms under dependence.

2

1.3 The Frank-Wolfe Algorithm and Its Variants

The Frank-Wolfe algorithm, which is also known as the conditional gradient algorithm, was

proposed in 1956 to minimize a convex function over a convex and compact feasible region. More

specifically, for solving minx∈D F (x), where F (·) is a convex function and D is a convex and

compact set, the Frank-Wolfe algorithm proceeds as follows:

Algorithm 1 The Frank-Wolfe Algorithm

Input: Initial solution x (1) ∈ D.

for k = 1, 2, . . . do

Set p(k) = arg mins∈D〈∇F (x (k)), s〉.

Set d (k) = p(k) − x (k).

Set x (k+1) = x (k) + γ (k)d (k), where γ (k) = 2
k+2 or obtain by line-search.

end for

Return: x (k+1).

The Frank-Wolfe Algorithm has become popular recently because it performs a sparse update

at each step. For a good review of what was known about the FW algorithm until a few years ago,

see [4]. When the feasible region D is a polytope, it is well-known that this algorithm converges

sub-linearly with rate O(1/k) because of the so-called zig-zagging phenomenon [5]. Especially if

the optimal solution x∗ does not lie in the relative interior ofD, the FW algorithm tends to zig-zag

amongst the vertices that define the facet containing x∗. One way to overcome this zig-zagging

problem is to keep track of the "active“ vertices (the vertices discovered previously in the FW

algorithm) and move away from the “worst” of these in some iterations. The Away-step Frank-

Wolfe algorithm (AFW) and the Pairwise Frank-Wolfe algorithm (PFW) in [5] are two notable

variants based on this idea.

In chapter 3 of this thesis, we will discuss in details and analyze the convergence properties of

stochastic versions of these two algorithms. Moreover, in large-scale numerical experiments, the

proposed algorithms perform as well as or better than their stochastic competitors in actual CPU

3

time.

1.4 Local Curvature Based Adaptive Step-size Algorithms

Many stochastic algorithms have been proposed to solve the generic stochastic optimization

problem

min
x∈Rd
Eξ f (x, ξ),

and its finite sample version

min
x∈Rd

1
n

n∑
i=1

f (x, ξi),

including stochastic gradient descent (SGD), and variance-reduced extensions of SGD, such as

SVRG [6], SAG [7], and SAGA [8]. These first-order methods extend gradient descent to the

stochastic setting. It is natural to consider stochastic extensions of quasi-Newton and second-order

methods. One such method, the Newton Incremental Method (NIM) [9], combines cyclic updating

of a fixed collection of functions f (x, ξ1), . . . , f (x, ξm) with Newton’s method, and attains local

superlinear convergence.

One of the key obstacles in developing stochastic extensions of quasi-Newton methods is the

necessity of selecting appropriate step sizes. The analysis of the global convergence of the BFGS

method [10] and other members of Broyden’s convex class [11] assumes that Armijo-Wolfe inexact

line search is used. This is rather undesirable for a stochastic algorithm, as line search is both

computationally expensive and difficult to analyze in a probabilistic setting. However, there is a

special class of functions, the self-concordant functions, whose properties allow us to compute an

adaptive step size based on local curvature and thereby avoid performing line searches. In [12], it

is shown that the BFGS [13][14][15][16] method with adaptive step sizes converges superlinearly

when applied to self-concordant functions.

In chapter 4 of this thesis, we will introduce class of stochastic, adaptive methods for mini-

mizing self-concordant functions which can be expressed as an expected value. These methods

generate an estimate of the true objective function by taking the empirical mean over a sample

4

drawn at each step, making the problem tractable. The use of adaptive step sizes, which are based

on local curvature, eliminates the need for the user to supply a step size. Methods in this class

include extensions of gradient descent (GD) and BFGS. Based on the empirical processes frame-

work, we can show that, given a suitable amount of sampling, our stochastic adaptive GD method

attains linear convergence in expectation, and with further sampling, our stochastic adaptive BFGS

method attains R-superlinear convergence.

1.5 Unbiased Simulation Method for Stochastic Composition Optimization Problems

Most of the algorithms for solving the generic stochastic optimization problem,

min
x∈D
Eξ f (x; ξ),

implicitly assume the gradient of each member function f (·; ξ) is easy to compute. But this as-

sumption does not hold in the so-called stochastic composition optimization (SCO) problem [17]:

min
x∈D

F (x) , Ev fv (Ewgw (x)),

where v and w are random variables with certain known joint distributions nor its finite sample

version:

min
x∈D

Fn(x) ,
1
n

n∑
i=1

fi{
1
mi

mi∑
j=1

gi j (x)}. (1.1)

As far as we know, all current algorithms that are used to solve SCO problems are based on biased

stochastic gradient oracles.

In chapter 5 of this thesis, we introduce unbiased gradient simulation algorithms that are based

on a multilevel Monte Carlo technique for solving smooth SCO problems. Based on our unbiased

gradient simulation algorithms, a stochastic composition optimization problem can be considered

as a generic stochastic optimization problem.

5

Chapter 2: An Empirical Processes Framework

2.1 The Framework

The goal of developing the empirical prcoesses framework described in this section is to unify

the convergence analysis of stochastic optimization algorithms under dependence. These results

originate in empirical process theory [18]. The problem to be minimized has the form

min
x∈Rd

F (x) ≡ Eξ f (x, ξ). (2.1)

We require the following assumptions on F and f for the analysis.

Assumptions:

1. There exist compact sets D0 and D with x∗ ∈ D and D0 ⊆ D ⊂ R
d , such that if x0 is

chosen in D0, then for all possible realizations of the samples ξ1, . . . , ξm(k) for every k, the

sequence of iterates {xk }
∞
k=0 produced by the algorithm is contained within D. We write

D = sup{‖x − y‖ : x, y ∈ D} for the diameter of D.

Furthermore, we assume that the objective values and gradients are bounded:

u = sup
ξ

sup
x∈D

f (x, ξ) < ∞

l = inf
ξ

inf
x∈D

f (x, ξ) > −∞

γ = sup
ξ

sup
x∈D
‖∇ f (x, ξ)‖ < ∞

2. There exists 0 < L < ∞, such that supξ | f (x, ξ) − f (y, ξ) | < L‖x − y‖.

The key theorem of this framework is a concentration bound which limits the divergence of a

6

sub-sampled function F (k) (x) from F (x).

Theorem 2.1.1. Let m(k) ∈ N+, and F (k) (x) ≡ 1
m(k)

∑m(k)

i=1 f (x, ξ (k)
i), where ξ (k)

1 , . . . , ξ (k)
m(k) are i.i.d.

following the distribution of ξ. For any δ > 0 and 0 < ε < min{D, δ
2L }, we have

P(sup
x∈D
|F (k) (x) − F (x) | ≥ δ) ≤ 2dd/2 Dd

εd exp
{
−

m(k) (δ − 2Lε)2

2(u − l)2
}
. (2.2)

Moreover, let x∗ = arg minx∈D F (x) and x (k)
∗ = arg minx∈D F (k) (x). For m(k) ≥ 3, we have

E sup
x∈D
|F (k) (x) − F (x) | ≤ C

√
log m(k)

m(k) (2.3)

and

E|F (k) (x (k)
∗) − F (x∗) | ≤ C

√
log m(k)

m(k) , (2.4)

where

C = 4(|u| + |l |)dd/2Dd exp
{
− d log

u − l

2
√

2L

}
+ (u − l)

√
d + 1.

Proof of this theorem can be found in next section.

Based on this theorem, we are ready to state our theoretical framework for proving the con-

vergence of stochastic algorithms. Let {y(k)} be a sequence of iterates that are generated by an

iterative and deterministic algorithm which solves problem (2.1). Assume the iterates satisfies the

property that

F (y(k+1)) − F (y∗) ≤ ρ(k){F (y(k)) − F (y∗)}, (2.5)

where ρ(k) ∈ (0, 1) and only depends on the smoothness properties of F (·) and other deterministic

7

properties such as iteration count and hyper-parameters. Now consider a stochastic version of the

deterministic algorithm which uses an average i.i.d. sub-sampled quantity to substitute for the

original deterministic quantity. Let {x (k)} be the sequence of iterates generated by this stochastic

algorithm. Then we have

F (x (k+1)) − F (x∗) =
{
F (x (k+1)) − F (k) (x (k+1))

}
+

{
F (k) (x (k+1)) − F (k) (x (k)

∗)
}
+

{
F (k) (x (k)

∗) − F (x∗)
}
.

For the terms in the first set of brackets on the right hand side of the equation above, we have

E{F (x (k+1)) − F (k) (x (k+1))} ≤ E|F (x (k+1)) − F (k) (x (k+1)) |

≤ E sup
x∈D
|F (k) (x) − F (x) |

≤ C

√
log m(k)

m(k) . (2.6)

Similarly, for the terms in the third set of brackets on the right hand side, we have

E
{
F (k) (x (k)

∗) − F (x∗)
}
≤ E|F (k) (x (k)

∗) − F (x∗) | ≤ C

√
log m(k)

m(k) . (2.7)

For the second term, note that x (k+1) only depends on the samples generated in k-th iteration and

x (k). As a result, we may consider it as running the deterministic algorithms on a deterministic

function F (k) (·). Thus the property (2.5) can be directly applied here; that is,

F (k) (x (k+1)) − F (k) (x (k)
∗)

≤ ρ(k){F (k) (x (k)) − F (k) (x (k)
∗)}

= ρ(k){F (x (k)) − F (x∗)} + ρ(k){F (k) (x (k)) − F (x (k))} + ρ(k){F (x∗) − F (x (k)
∗)}.

8

Taking expectation on both sides of the inequality above and using (2.6) and (2.7), we have

E{F (k) (x (k+1)) − F (k) (x (k)
∗)} ≤ ρ(k)E{F (k) (x (k)) − F (k) (x (k)

∗)} + 2ρ(k)C

√
log m(k)

m(k)

≤ ρ(k)E{F (k) (x (k)) − F (k) (x (k)
∗)} + 2C

√
log m(k)

m(k) ,

where the last inequality follows from ρ(k) < 1.

Combining these three inequalities, we have

EF (x (k+1)) − F (x∗) ≤ ρ(k)E
{
F (x (k)) − F (x∗)

}
+ 4C

√
log m(k)

m(k)

≤ (F (x (1)) − F (x∗))
k∏

i=1
ρ(i) + 4C

k∑
i=1

√
log m(i)

m(i)

k∏
j=i+1

ρ(j) .

Therefore, the rate of convergence of this stochastic algorithm is determined by the rate of of con-

vergence of its deterministic version ρ(k) and the sampling rate, m(k), in every iteration.

Remark. Our analysis above focuses on the iteration complexities instead of sample complexities.

In machine learning, the sample complexity of an algorithm represents the total number of training

samples needed in order to learn the target function with arbitrarily high probability. This concept

is also important in the context of optimization algorithms, since many stochastic algorithms, such

as Stochastic Gradient Descent (SGD), use only one sample in every iteration and obtaining such

a sample is the most time consuming step. In this case, the sample complexity is a good indicator

of the performance of these algorithms. However, in many other algorithms such as the stochastic

Frank-Wolfe (conditional gradient) algorithms and stochastic Quasi-Newton algorithms, this is not

the case. In stochastic Frank-Wolfe algorithms, in every iteration, one needs to solve a linear

programming problem which is typically much more time consuming than sampling. Similarly,

the matrix vector multiplications in the Quasi-Newton algorithms can be more time consuming

than sampling. In such cases, the iteration complexity is a much more reasonable indicator of the

9

performance of an algorithm.

2.2 Proof of Theorem 2.1.1

We need the following definition and lemma to prove the Theorem 2.1.1.

Definition [Bracketing Number] Let F be a class of functions. Given two functions l and u, the

bracket [l, u] is the set of all function f with l ≤ f ≤ u. An ε-bracket in L1 is a bracket [l, u] with

E|u − l | < ε . The bracketing number N[](ε, F , L1) is the minimum number of ε-brackets needed

to cover F . (The bracketing functions l and u must have finite L1-norms but need not belong to F).

The bracketing number is a quantity that measures the complexity of a function class. The lemma

below provides an upper bound for a function class indexed by a finite dimensional bounded set.

This result can be found in any empirical processes textbook such as [18]. For completeness, we

provide a proof.

Lemma 2.2.1. Let F = { fθ | θ ∈ Θ} be a collection of measurable functions indexed by a bounded

subset Θ ⊂ Rd . Denote DΘ = sup{‖θ1 − θ2‖ | θ1, θ2 ∈ Θ}. Suppose that there exists a measurable

function g such that

| fθ1 (ξ) − fθ2 (ξ) | ≤ g(ξ)‖θ1 − θ2‖ (2.8)

for every θ1, θ2 ∈ Θ. If ‖g(ξ)‖1 ≡
∫
|g(ξ) |dP < ∞, then the bracketing numbers satisfy

N[](ε ‖g‖1, F , L1) ≤ (

√
dDΘ
ε

)d

for every 0 < ε < DΘ.

Proof. To prove the result, we use brackets of the type [fθ − εg/2, fθ + εg/2] for θ that ranging

over a suitably chosen subset of Θ and these brackets have L1-size ε ‖g‖1. If ‖θ1 − θ2‖ ≤ ε/2, then

by the Lipschitz condition (2.8), we have fθ1 − εg/2 ≤ fθ2 ≤ fθ1 + εg/2. Therefore, the brackets

10

cover F if θ ranges over a grid of meshwidth ε/
√

d over Θ. This grid has at most (
√

dDΘ/ε)d grid

points. Therefore the bracketing number N[](ε ‖g‖1, F , L1) can be bounded by (
√

dDΘ/ε)d . �

Remark: The bracketing number has a very close relationship with the covering number, which

is a better known quantity in machine learning. Let N (ε, F , L1) be the covering number of the

set F ; that is, the minimal number of balls of L1-radius ε needs to cover the set F . Then the

relation, N (ε, F , L1) ≤ N[](2ε, F , L1), between covering number and bracketing number always

holds. Moreover, this concept is also closely related to the VC-dimension. Usually, constructing

and counting the number of brackets for a class of functions is easier to do than computing the

minimum number of balls that covers the class.

Now, we are ready to prove Theorem 2.1.1.

Proof. Consider the function class F = { f (x, ·) | x ∈ D} as defined in (2.1). Since f (·, ξ) each is

assumed to be Lipschitz continuous with Lipschitz constant L, we must have | f (x, ξ) − f (y, ξ) | ≤

L‖x − y‖. Moreover, the index set D ∈ Rp for the function class F is assume to be bounded.

Therefore all conditions for Lemma 2.2.1 are satisfied and hence the number of brackets of the

type [f (x, ·) − εL, f (x, ·) + εL] satisfies

N[](εL, F , L1) ≤ (
√

d)d (
D
ε

)d,

for every 0 < ε < D, where D = sup{‖x − y‖ | x, y ∈ D}. Let Γ ⊂ D denote the set of indices of

the centers of these brackets and ξ1, . . . ξm(k) be the i.i.d. samples drawn at the k-th iteration of the

algorithm. Since the brackets centered at Γ cover F , we must have

sup
x∈D
|

1
m(k)

m(k)∑
i=1

f (x, ξi) − E f (x, ξi) | ≤ max{|
1

m(k)

m(k)∑
i=1

f (y, ξi) − E f (y, ξi) | | y ∈ Γ} + 2εL.

11

Consequently, for every δ ≥ 0 and ε < min{δ/(2L), D},

P{sup
x∈D
|

1
m(k)

m(k)∑
i=1

f (x, ξi) − E f (x, ξi) | ≥ δ}

≤ P{max{|
1

m(k)

m(k)∑
i=1

f (y, ξi) − E f (y, ξi) | | y ∈ Γ} + 2εL ≥ δ}

≤
∑
y∈Γ

P{|
1

m(k)

m(k)∑
i=1

f (y, ξi) − E f (y, ξ1) | ≥ δ − 2εL} (union bound)

≤
∑
y∈Γ

2 exp{−
2m(k) (δ − 2Lε)2

(u − l)2 } (Hoeffding inequality)

≤ 2(
√

d)d (
D
ε

)d exp{−
2m(k) (δ − 2Lε)2

(u − l)2 }. (|Γ| ≤ (
√

d)d (D
ε)d)

Since by definition, F (k) (x) = 1
m(k)

∑m(k)

i=1 f (ξi, x) and F (x) = E f (ξi, x), then (2.2) follows.

To show (2.3), first note that both F (k) (·) and F (·) are bounded by l and u; hence, supx∈D |F
(k) (x)−

F (x) | ≤ 2(|u| + |l |). Then for every δ ≥ 0, we have,

E sup
x∈D
|F (k) (x) − F (x) |

≤ 2(|u| + |l |)P{sup
x∈D
|F (k) (x) − F (x) | ≥ δ} + δ P{sup

x∈D
|F (k) (x) − F (x) | < δ}

≤ 4(|u| + |l |)(
√

d)d (
D
ε

)d exp{−
2m(k) (δ − 2Lε)2

(u − l)2 } + δ

≤ 4(|u| + |l |)(
√

d)d Dd exp{−
2m(k) (δ − 2Lε)2

(u − l)2 + d log
1
ε
} + δ.

Now let δ = (u−l)
√

4(d+1) log
√

m(k)
√

m(k)
√

2
, ε = (u−l)

2L
√

m(k)
√

2
. Then

E sup
x∈P
|F (k) (x) − F (x) | ≤ 4(|u| + |l |)(

√
d)d Dd exp{−(

√
4(d + 1) log

√
m(k) − 1)2 − d(log

u − l

2
√

2L
)

+ d log
√

m(k)} +
(u − l)

√
4(d + 1) log

√
m(k)

√
m(k)
√

2
.

Note that (x − 1)2 ≥ x2/4 when x ≥ 2. Thus, for m(k) ≥ 3 and d ≥ 1,
√

4(d + 1) log
√

m(k) ≥ 2.

12

Therefore

E sup
x∈D
|F (k) (x) − F (x) |

≤ 4(|u| + |l |)(
√

d)d Dd exp{−(d + 1) log(
√

m(k)) + d log
√

m(k) − d(log
u − l

2
√

2L
)}

+
(u − l)

√
4(d + 1) log

√
m(k)

√
m(k)
√

2

≤ C

√
log m(k)

m(k) ,

where C = 4(|u| + |l |)(
√

d)d Dd exp{−d(log u−l
2
√

2L
)} + (u − l)

√
d + 1.

Next, we will obtain a bound for E|F (k) (x (k)
∗) − F (x∗) |. (2.2) implies both

F (x (k)
∗) − δ ≤ F (k) (x (k)

∗) ≤ F (x (k)
∗) + δ (2.9)

and

F (x∗) − δ ≤ F (k) (x∗) ≤ F (x∗) + δ (2.10)

happen with probability at least 1−2(
√

d)d (D
ε)d exp{−m(k) (δ−2Lε)2

2(u−l)2 }. Consequently, on the one hand

F (k) (x (k)
∗) ≥ F (x (k)

∗) − δ (by 2.9)

≥ F (x∗) − δ (optimality of x∗ for F (·))

On the other hand,

F (k) (x (k)
∗) ≤ F (k) (x∗) (optimiality of x (k)

∗ for F (k) (·))

≤ F (x∗) + δ (by 2.10)

13

Therefore, we have

P{|F (k) (x (k)
∗) − F (x∗) | ≥ δ} ≤ 2(

√
d)d (

D
ε

)d exp{−
m(k) (δ − 2Lε)2

2(u − l)2 },

and hence, E|F (k) (x (k)
∗) − F (x∗) | = C

√
log m(k)

m(k) . �

2.3 From Convergence in Expectation to Almost Sure Convergence.

In this section, we will discuss a simple technique that enables us to derive the almost sure

convergence of the solutions of a stochastic algorithm from its convergence rate in expectation.

Let {x (k)} be the solutions generated by a stochastic algorithm for solving problem (2.1). Assume

that EF (x (k))−F (x∗) ≤ α(k) and
∑∞

k=1 α
(k) < ∞. Then F (x (k)) → F (x∗) almost surely as k → ∞.

To prove this, for every ε > 0, let E (k) denote the event that F (x (k)) − F (x∗) > ε . By the

Markov inequality

∞∑
k=2
P(E (k)) =

∞∑
k=2
P((F (x (k)) − F (x∗)) > ε) ≤

∞∑
k=2

E{F (x (k)) − F∗}
ε

<
1
ε

∞∑
k=2

α(k) < ∞.

Therefore the Borel-Cantelli lemma implies that P(lim supk→∞ E (k)) = 0, and hence, F (x (k)) −

F (x∗) → 0 almost surely as k → ∞.

Remark. As we have shown, when the rate of convergence in expectation satisfies certain condi-

tions, we can get almost sure convergence for free. This result guarantees the global convergence of

every individual sample path, which is a key component for analyzing local convergence properties

of the stochastic quasi-Newton algorithms.

14

Chapter 3: Linear Convergence of Stochastic Frank Wolfe Variants

3.1 Motivation

The recent trend of using a large number of parameters to model large datasets in machine

learning and statistics has created a strong demand for optimization algorithms that have low com-

putational cost per iteration and exploit model structure. Regularized empirical risk minimization

(ERM) is an important class of problems in this area that can be formulated as smooth constrained

optimization problems. A popular approach for solving such ERM problems is the proximal gra-

dient method which solves a projection sub-problem in each iteration. The major drawback of

this method is that the projection step can be expensive in many situations. As an alternative, the

Frank-Wolfe (FW) algorithm [19], also known as the conditional gradient method, solves a linear

optimization sub-problem in each iteration, which is much faster than the standard projection tech-

nique when the feasible set is a simple polytope [20]. When the number of observations in ERM

is large, calculating the gradient in every FW iteration becomes a computationally intensive task.

The question of whether ‘cheap’ stochastic gradients can be used as a surrogate in FW immediately

arises.

3.2 Contribution

In this chapter, we show that the Away-step Stochastic Frank-Wolfe (ASFW) algorithm con-

verges linearly in expectation and on each sample path, the algorithm converges linearly. We also

show that if an algorithm converges linearly in expectation then it converges linearly almost surely.

The major technical difficulty of analyzing the ASFW algorithm is the lack of tools that combine

stochastic arguments and combinatorial arguments. In order to solve this problem and prove our

convergence results, a novel proof technique based on the empirical processes framework, that we

15

introduced in Chapter 2, is developed. This technique is then applied to prove the linear conver-

gence in expectation and almost sure convergence of each sample path of another Frank-Wolfe

variant, the Pairwise Stochastic Frank-Wolfe (PSFW) algorithm. In our large-scale numerical ex-

periments, the proposed algorithms outperform their competitors in all different settings.

3.3 Related Work

The Frank-Wolfe algorithm was proposed sixty years ago ([19]) for minimizing a convex func-

tion over a polytope and is known to converge at an O(1/k) rate. In [21] the same convergence

rate was proved for compact convex constraints. When both objective function and the constraint

set are strongly convex, [22] proved that the Frank-Wolfe algorithm has an O(1/k2) rate of con-

vergence with a properly chosen step size. Motivated by removing the influence of “bad" visited

vertices, the away-steps variant of the Frank-Wolfe algorithm was proposed in [23]. Later, [24]

showed that this variant converges linearly under the assumption that the objective function is

strongly convex and the optimum lies in the interior of the constraint polytope. Recently, [25]

and [26] extended the linear convergence result by removing the assumption of the location of

the optimum and [27] extended it further by relaxing the strongly convex objective function as-

sumption. Stochastic Frank-Wolfe algorithms were studied by [28] and [29] and an O(1/k) rate of

convergence in expectation were established. [30] considered the Stochastic Varianced-Reduced

Frank-Wolfe method (SVRF) which also has convergence rate O(1/k) in expectation. In addition,

the Frank-Wolfe algorithm has been applied to solve several different classes of problems, includ-

ing non-linear SVM ([31]), structural SVM ([32, 33]), and comprehensive principal component

pursuit ([34]) among many others. We compare FW variants and other useful algorithms such as

the Prox-SVRG of [35] and the stochastic variance reduced FW algorithm of [30] in Table 3.1,

where we summarize the required conditions for convergence and the given complexity bounds,

the number of exact and stochastic gradient oracle calls, the number of linear optimization oracle

(LO) calls and the number of projection calls in order to obtain an ε-approximate solution.

16

Algorithm Extra conditions FG SG LO Projection

FW bounded constraint O(1
ε) NA O(1

ε) NA

Away-step polytope constraint

FW strongly convex O(log 1
ε) NA O(log 1

ε) NA

objective

Pairwise polytope constraint

FW strongly convex O(log 1
ε) NA O(log 1

ε) NA

objective

SVRF bounded constraint O(log 1
ε) O(1

ε2) O(1
ε) NA

Prox- strongly convex O(log 1
ε) O(m log 1

ε) NA O(m log 1
ε)

SVRG objective

ASFW polytope constraint O(1/ε4η),

strongly convex NA 0 < η < 1 O(log 1
ε) NA

objective

PSFW polytope constraint O(1/ε (6|V |!+2)ζ),

strongly convex NA 0 < ζ < 1 O(log 1
ε) NA

objective

Table 3.1: Comparisons of algorithms in terms of their requirements and theoretical performance
to get an ε-approximate solution. In Table 3.1, FG denotes full gradient; SG denotes stochastic
gradients; and LO denotes linear optimizations. In Prox-SVRG, m is the number of iterations in
each epoch. In PSFW, |V | is the number of vertices in the polytope constraint.

3.4 Problem description.

Consider the minimization problem

min
x∈P

{
F (x) ≡

1
n

n∑
i=1

fi (x)
}
, (P1)

17

where P is a polytope, i.e., a non-empty compact polyhedron given by P = {x ∈ Rp : Cx ≤ d}

for some C ∈ Rm×p, d ∈ Rm. Therefore, the set of vertices V of the polytope P has finitely many

elements. Let D = sup{‖x−y‖ | x, y ∈ P} be the diameter of P. For every i = 1, . . . , n, fi : R→ R

is a strongly convex function with parameter σi with an Li Lipschitz continuous gradient. From

another point of view, (P1) can be reformulated as the stochastic optimization problem

min
x∈P

{ 1
n

n∑
i=1

fi (x) ≡ E f (ξ, x)
}
, (SP1)

where ξ is a random variable that follows a discrete uniform distribution on {1, . . . , n}, f (i, x) =

fi (x) for every i = 1, . . . , n and x ∈ P. Furthermore, define ∇ f (ξ, x) = ∇ fξ (x).

3.5 The Frank-Wolfe Algorithms.

In contrast to the projected gradient algorithm, the Frank-Wolfe algorithm calls a linear opti-

mization oracle instead of a projection oracle in every iteration.

Algorithm 2 The Frank-Wolfe Algorithm

Input: x (1) ∈ P, F (·)

for k = 1, 2, . . . do

Set p(k) = arg mins∈P〈∇F (x (k)), s〉.

Set d (k) = p(k) − x (k).

Set x (k+1) = x (k) + γ (k)d (k), where γ (k) = 2
k+2 or obtain by line-search.

end for

Return: x (k+1).

The Frank-Wolfe Algorithm has become popular recently because it performs a sparse update

at each step. See [4] for a good review of the classical results on the FW algorithm. It is well-known

that this algorithm converges sub-linearly with rate O(1/k) because of the so-called zig-zagging

phenomenon ([5]). Especially when the optimal solution x∗ does not lie in the relative interior of

18

P, the FW algorithm tends to zig-zag amongst the vertices that define the facet containing x∗. One

way to overcome this zig-zagging problem is to keep tracking of the "active“ vertices (the vertices

discovered previously in the FW algorithm) and move away from the “worst” of these in some

iterations.

The Away-step Frank-Wolfe algorithm (AFW) and the Pairwise Frank-Wolfe algorithm (PFW)

are two notable variants based on this idea. After computing the vertex

p(k) = arg minx∈P〈∇F (x (k)), x〉 by the linear optimization oracle and the vertex

u(k) = arg maxx∈U (k)〈∇F (x (k)), x〉, where U (k) is the set of active vertices at iteration k, the AFW

algorithm moves away from the one that maximizes the potential increase in F (x); i.e. the increase

in the linearized function, while the PFW algorithm tries to take advantages of both vertices and

moves in the direction p(k) − u(k). Details of the algorithms can be found in [5].

3.5.1 Variants of Stochastic Frank-Wolfe Algorithm

When the exact gradients are expensive to compute and an unbiased stochastic gradient is easy

to obtain, it may be advantageous to use stochastic gradients in AFW and PFW. We describe the

Away-step Stochastic Frank-Wolfe Algorithm (ASFW) and the Pairwise Stochastic Frank-Wolfe

Algorithm(PSFW) below.

19

Algorithm 3 Away-step Stochastic Frank-Wolfe algorithm

1: Input: x (1) ∈ V , fi and Li

2: Set µ(1)
x (1) = 1, µ(1)

v = 0, for all v ∈ V/{x (1)} and U (1) = {x (1)}.

3: for k = 1, 2, . . . do

4: Sample ξ1, . . . , ξm(k)
i.i.d.
∼ ξ and set g(k) = 1

m(k)

∑m(k)

i=1 ∇x f (ξi, x (k)),

L(k) = 1
m(k)

∑m(k)

i=1 Lξi .

5: Compute p(k) ∈ arg minx∈P〈g
(k), x〉.

6: Compute u(k) ∈ argmaxv∈U (k)〈g(k), v〉.

7: if 〈g(k), p(k) + u(k) − 2x (k)〉 ≤ 0, then

8: Set d (k) = p(k) − x (k) and γ (k)
max = 1.

9: else

10: Set d (k) = x (k) − u(k) and γ (k)
max =

µ(k)
u(k)

1−µ(k)
u(k)

.

11: end if

12: Set γ (k) = min{− 〈g
(k),d (k)〉

L(k) ‖d (k) ‖2
, γ(k)

max} or determine it by line-search.

13: Set x (k+1) = x (k) + γ (k)d (k).

14: Update U (k+1) and µ(k+1) by VRU Procedure.

15: end for

16: Return: x (k+1).

Algorithm 4 Pairwise Stochastic Frank-Wolfe algorithm

1: Replace line 7 to 11 in Algorithm 3 by: d (k) = p(k) − u(k) and γ (k)
max = µ

(k)
u(k) .

The following algorithm updates a vertex representation of the current iterate and is called in

Algorithms 3 and 4.

20

Algorithm 5 Procedure Vertex Representation Update (VRU)
1: Input: x (k), (U (k), µ(k)), d (k), γ (k), p(k) and v (k).

2: if d (k) = x (k) − u(k) then

3: Update µ(k)
v = µ

(k)
v (1 + γ (k)), for all v ∈ U (k)/{u(k)}.

4: Update µ(k+1)
u(k) = µ

(k)
u(k) (1 + γ (k)) − γ (k).

5: if µ(k+1)
u(k) = 0 then

6: Update U (k+1) = U (k)/{u(k)}

7: else

8: Update U (k+1) = U (k)

9: end if

10: end if

11: Update µ(k+1)
v = µ(k)

v (1 − γ (k)), for any v ∈ U (k)/{p(k)}.

12: Update µ(k+1)
p(k) = µ

(k)
p(k) (1 − γ (k)) + γ (k).

13: if µ(k+1)
p(k) = 1 then

14: Update U (k+1) = {p(k)}.

15: else

16: Update U (k+1) = U (k) ∪ {p(k)}.

17: end if

18: (Optional) Carathéodory’s Theorem can be applied for the vertex representation of x (k+1) so

that |U (k+1) | = p + 1 and µ(k+1) ∈ Rp+1.

19: Return: (U (k+1), µ(k+1))

3.6 Convergence Proof

In this section, we first introduce some lemmas and notation and then prove the main theorems

in this chapter. Note that, at the k-th iteration of Algorithms 3 and 4, m(k) i.i.d. samples of

ξ are obtained. Define F (k) (x) = 1
m(k)

∑m(k)

i=1 fξi (x). Clearly, F (k) is Lipschitz continuous with

Lipschitz constant L(k) = 1
m(k)

∑m(k)

i=1 Lξi and strongly convex with constant σ(k) = 1
m(k)

∑m(k)

i=1 σξi .

21

The following ancillary problem is used in our analysis.

min
x∈P

F (k) (x), (H1)

Let x (k)
∗ denote the optimal solution of problem (H1), i.e., x (k)

∗ = argminx∈P F (k) (x). The lemma

below plays an important role in our proof. We refer to [27] for a detailed proof of this lemma.

Lemma 3.6.1. For any x ∈ P/{x (k)
∗ } that can be represented as x =

∑
v∈U (k) µvv for some U (k) ⊂

V , where
∑

v∈U (k) µv = 1 and µv > 0 for every v ∈ U (k), it holds that,

max
u∈U,p∈V

〈∇F (k) (x), u − p〉 ≥
ΩP

|U |
〈∇F (k) (x), x − x (k)

∗ 〉

‖x − x (k)
∗ ‖

,

where |U (k) | denotes the cardinality of U (k), V is the set of extreme points of P and

ΩP =
ζ

φ

for

ζ = min
v∈V,i∈{1,...,m}:ai>Civ

(di − Civ),

φ = max
i∈{1,...,m}/I (V)

‖Ci‖.

Lemma 3.6.2. Let ci ≥ 0 and bi ∈ {0, 1} for i = 1, . . . , n. Assume that
∑n

j=1 b j = m < n. Then for

0 < a < 1, we have

n∑
k=1

a
∑n

j=k bjck ≤

m∑
k=1

am−k+1ck +

n∑
k=m+1

ck . (3.1)

Proof. The right hand side of (3.1) is obtained by setting bi = 1 for i ≤ m and bi = 0 for i > m. We

will show that this choice of {bi} maximizes
∑n

k=1 a
∑n

j=k bjck . Consider an assignment of bi such

that there is a br = 0 for r ≤ m and bs = 1 for s > m. Define a new assignment b′i such that there

22

is b′i = bi for i , r, s, b′r = 1 and b′s = 0. Then

n∑
k=1

a
∑n

j=k bjck =

n∑
k=s+1

a
∑n

j=k bjck +

s∑
k=r

a
∑n

j=k bjck +

r−1∑
k=1

a
∑n

j=k bjck

=

n∑
k=s+1

a
∑n

j=k b′jck +

s∑
k=r+1

a
∑n

j=k bjck +

r∑
k=1

a
∑n

j=k b′jck

=

n∑
k=s+1

a
∑n

j=k b′jck + a
s∑

k=r+1
a
∑n

j=k b′jck +

r∑
k=1

a
∑n

j=k b′jck

≤

n∑
k=s+1

a
∑n

j=k b′jck +

s∑
k=r+1

a
∑n

j=k b′jck +

r∑
k=1

a
∑n

j=k b′jck

=

n∑
k=1

a
∑n

j=k b′jck .

Therefore, such interchanges will always increase the value of
∑n

k=1 a
∑n

j=k bjck and hence, setting

bi = 1 for i ≤ m and bi = 0 for i > m maximizes it. �

Using the above lemmas we are ready to state and prove the main results.

Theorem 3.6.3. Let {x (k)}k≥1 be the sequence generated by Algorithm 3 for solving Problem (P1),

N be the number of vertices used to represent x (k) (if VRU is implemented by using Carathéodory’s

theorem, N = p + 1, otherwise N = |V |) and F∗ be the optimal value of the problem. Let ρ =

min{ 12,
Ω2
P
σF

16N2LF D2 }, where σF = min{σ1, . . . , σn}, LF = max{L1, . . . , Ln}. Set m(i) = d1/(1 −

ρ)2i+2e. Then for every k ≥ 1,

E{F (x (k+1)) − F∗} ≤ C2(1 − β)(k−1)/2, (3.2)

where C2 is a deterministic constant and 0 < β < ρ ≤ 1/2.

Proof. At iteration k, let x (k) denote the current solution, ξ1, . . . , ξm(k) denote the samples used

by Algorithm 3, d (k) denote the direction that Algorithm 3 takes and γ (k) denote the step length.

Define F (k) (x) = 1
m(k)

∑m(k)

i=1 f (ξi, x), x (k)
∗ = arg minx∈P F (k) (x) and F (k)

∗ = F (k) (x (k)
∗). Note that

F (k) is Lipschitz continuous with Lipschitz constant L(k) = 1
m(k)

∑m(k)

i=1 Lξi and strongly convex

23

with constant σ(k) = 1
m(k)

∑m(k)

i=1 σξi . In addition, the stochastic gradient g(k) = ∇F (k) (x). From the

choice of d (k) in the algorithm,

〈g(k), d (k)〉 ≤
1
2

(〈g(k), p(k) − x (k)〉 + 〈g(k), x (k) − u(k)〉) =
1
2
〈g(k), p(k) − u(k)〉 ≤ 0.

Hence, we can bound 〈g(k), d (k)〉2 below by

〈g(k), d (k)〉2 ≥
1
4
〈g(k), u(k) − p(k)〉2

≥
1
4

max
p∈V,u∈U (k)

〈g(k), u − p〉2 (definition of p(k) and u(k))

=
1
4

max
p∈V,u∈U (k)

〈∇F (k) (x (k)), u − p〉2 (g(k) = ∇F (k) (x (k)))

≥
1
4
Ω2
P

|U (k) |2
〈∇F (k) (x (k)), x (k) − x (k)

∗ 〉
2

‖x (k) − x (k)
∗ ‖

2
(by Lemma 3.6.1)

≥
Ω2
P

4N2
{F (k) (x (k)) − F (k)

∗ }
2

‖x (k) − x (k)
∗ ‖

2
(Convexity of F (k) (·))

≥
Ω2
P
σ(k)

8N2 {F
(k) (x (k)) − F (k)

∗ } (by strong convexity of F (k) (·))

≥
Ω2
P
σF

8N2 {F
(k) (x (k)) − F (k)

∗ }.

Similarly, we can bound 〈g(k), d (k)〉 above by

〈g(k), d (k)〉 ≤
1
2
〈g(k), p(k) − u(k)〉

≤
1
2
〈g(k), x (k)

∗ − x (k)〉 (definition of p(k) and u(k))

=
1
2
〈∇F (k) (x (k)), x (k)

∗ − x (k)〉 (g(k) = ∇F (k) (x (k)))

≤
1
2
{F (k)
∗ − F (k) (x (k))}. (Convexity of F (·))

With the above bounds, we can separate our analysis into the following four cases at iteration k

(A(k)) γ (k)
max ≥ 1 and γ (k) ≤ 1 .

24

(B(k)) γ (k)
max ≥ 1 and γ (k) ≥ 1.

(C (k)) γ (k)
max < 1 and γ (k) < γ(k)

max.

(D(k)) γ (k)
max < 1 and γ (k) = γ (k)

max.

By the descent lemma, we have

F (k) (x (k+1)) = F (k) (x (k) + γ (k)d (k))

≤ F (k) (x (k)) + γ (k)〈∇F (k) (x (k)), d (k)〉 +
L(k) (γ (k))2

2
‖d (k) ‖2

= F (k) (x (k)) + γ (k)〈g(k), d (k)〉 +
L(k) (γ (k))2

2
‖d (k) ‖2. (3.3)

In case (A(k)), let δA(k) denote the indicator function for this case. Then

δA(k) {F (k) (x (k+1)) − F (k)
∗ }

≤ δA(k) {F (k) (x (k)) − F (k)
∗ + γ

(k)〈g(k), d (k)〉 +
L(k) (γ (k))2

2
‖d (k) ‖2}

= δA(k) {F (k) (x (k)) − F (k)
∗ −

〈g(k), d (k)〉2

2L(k) ‖d (k) ‖2
} (definition of γ (k) in case A(k))

≤ δA(k) {(1 −
Ω2
P
σF

16N2L(k) D2)(F (k) (x (k)) − F (k)
∗)}

≤ δA(k) {(1 −
Ω2
P
σF

16N2LF D2)(F (k) (x (k)) − F (k)
∗)}

In case (B(k)), since γ (k) > 1, we have

− 〈g(k), d (k)〉 > L(k) ‖d (k) ‖2 and (3.4)

γ (k)〈g(k), d (k)〉 +
L(k) (γ (k))2

2
‖d (k) ‖2 ≤ 〈g(k), d (k)〉 +

L(k)

2
‖d (k) ‖2. (3.5)

25

Use δB(k) to denote the indicator function for this case. Then,

δB(k) {F (k) (x (k+1)) − F (k)
∗ }

≤ δB(k) {F (k) (x (k)) − F (k)
∗ + γ

(k)〈∇F (k) (x (k)), d (k)〉 +
L(k) (γ (k))2

2
‖d (k) ‖2}

= δB(k) {F (k) (x (k)) − F (k)
∗ + γ

(k)〈g(k), d (k)〉 +
L(k) (γ (k))2

2
‖d (k) ‖2

≤ δB(k) {F (k) (x (k)) − F (k)
∗ + 〈g

(k), d (k)〉 +
L(k)

2
‖d (k) ‖2} (by (3.5))

≤ δB(k) {F (k) (x (k)) − F (k)
∗ +

1
2
〈g(k), d (k)〉} (by (3.4))

≤ δB(k) {
1
2

(F (k) (x (k)) − F (k)
∗)}

In case (C (k)), let δC (k) be the indicator function for this case. Using exactly the same argument

as in case (A(k)), we obtain the following inequality

δC (k) {F (k) (x (k+1)) − F (k)
∗ } ≤ δC (k) {F (k) (x (k)) − F (k)

∗ −
〈g(k), d (k)〉2

2L(k) ‖d (k) ‖2
}

≤ δC (k) {(1 −
Ω2
P
σF

16N2LF D2)(F (k) (x (k)) − F (k)
∗)}

Case (D(k)) is the so called “drop step" in the conditional gradient algorithm with away-steps. Use

δD(k) to denote the indicator function for this case. Note that γ (k) = γ (k)
max ≤ −〈g

(k), d (k)〉/(L(k) ‖d (k) ‖2)

in this case. Hence, we have

δD(k) {(F (k) (x (k+1)) − F (k)
∗)}

≤ δD(k) {F (k) (x (k)) − F (k)
∗ + γ

(k)〈∇F (k) (x (k)), d (k)〉 +
L(k) (γ (k))2

2
‖d (k) ‖2}

= δD(k) {F (k) (x (k)) − F (k)
∗ + γ

(k)〈g(k), d (k)〉 +
L(k) (γ (k))2

2
‖d (k) ‖2}

≤ δD(k) {F (k) (x (k)) − F (k)
∗ +

γ (k)

2
〈g(k), d (k)〉}

≤ δD(k) {F (k) (x (k)) − F (k)
∗ }.

26

Define ρ = min{ 12,
Ω2
P
σF

16N2LF D2 }. Note that ρ is a deterministic constant between 0 and 1. Therefore

we have

F (k) (x (k+1)) − F (k)
∗

≤ ({1 − ρ){1−δD(k) } (F (k) (x (k)) − F (k)
∗)

= (1 − ρ){1−δD(k) } (F (k−1) (x (k)) − F (k−1)
∗)

+ (1 − ρ){1−δD(k) }{F (k) (x (k)) − F (k)
∗ − F (k−1) (x (k)) + F (k−1)

∗ }

= (1 − ρ){1−δD(k) } (F (k−1) (x (k)) − F (k−1)
∗)

+ (1 − ρ){1−δD(k) }{F (k) (x (k)) − F (x (k)) + F (x (k)) − F (k−1) (x (k)) + F∗ − F (k)
∗ + F (k−1)

∗ − F∗}

≤ (1 − ρ){1−δD(k) } (F (k−1) (x (k)) − F (k−1)
∗)

+ (1 − ρ){1−δD(k) }{|F (k) (x (k)) − F (x (k)) | + |F (k−1) (x (k)) − F (x (k)) | + |F (k)
∗ − F∗ |

+ |F (k−1)
∗ − F∗ |}

≤ (1 − ρ)
∑k

i=1{1−δD(i) } (F (0) (x (1)) − F (0)
∗)+

k∑
i=1

(1 − ρ)
∑k

j=i {1−δD(j) }{|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)
∗ − F∗ |

+ |F (i−1)
∗ − F∗ |}.

At iteration k, there are at most (k +1)/2 drop steps, i.e., at most (k +1)/2 δD(i) ’s equal to 1. Then,

letting a = 1 − ρ, bi = 1 − δD(i) , and ci = {|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)
∗ −

27

F∗ | + |F (i−1)
∗ − F∗ |}, it follows from Lemma 3.6.2 that

k∑
i=1

(1 − ρ)
∑k

j=i {1−δD(j) }{|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)
∗ − F∗ |

+ |F (i−1)
∗ − F∗ |}

≤

k∑
i=k/2
{|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)

∗ − F∗ | + |F (i−1)
∗ − F∗ |}

+

k/2−1∑
i=1

(1 − ρ)k/2−i{|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)
∗ − F∗ | + |F (i−1)

∗ − F∗ |}.

Therefore

F (k) (x (k+1)) − F (k)
∗

≤ (1 − ρ)
k−1

2 (uF − lF)

+

k∑
i=k/2
{|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)

∗ − F∗ | + |F (i−1)
∗ − F∗ |}

+

k/2−1∑
i=1

(1 − ρ)k/2−i{|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)
∗ − F∗ | + |F (i−1)

∗ − F∗ |}.

In addition, F (k) (x (k+1)) − F (k)
∗ = F (x (k+1)) − F∗ + (F (k) (x (k+1)) − F (x (k+1))) + (F∗ − F (k)

∗). Thus

F (x (k+1)) − F∗

≤ (1 − ρ)
k−1

2 (uF − lF)

+

k+1∑
i=k/2
{|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)

∗ − F∗ | + |F (i−1)
∗ − F∗ |}

+

k/2−1∑
i=1

(1 − ρ)k/2−i{|F (i) (x (i)) − F (x (i)) | + |F (i−1) (x (i)) − F (x (i)) | + |F (i)
∗ − F∗ | + |F (i−1)

∗ − F∗ |}.

Note that for any deterministic x ∈ P, we have EF (k) (x) = F (x). In addition, by Theorem 2.1.1,

28

the following bound holds for every iteration k

E|F (k) (x (k)) − F (x (k)) | ≤ E sup
x∈P
|F (k) (x) − F (x) | ≤ C1

√
log m(k)

m(k)

and

E|F (k)
∗ − F∗ | ≤ C1

√
log m(k)

m(k) .

Combining all above bounds and using m(i) = d1/(1 − ρ)2i+2e, we have

E{F (x (k+1)) − F∗}

≤ (1 − ρ)
k−1

2 (uF − lF)

+ 2C1{

k+1∑
i=k/2

(

√
log m(i)

m(i) +

√
log m(i−1)

m(i−1)) +
k/2−1∑

i=1
(1 − ρ)k/2−i (

√
log m(i)

m(i) +

√
log m(i−1)

m(i−1))}

≤ (1 − ρ)
k−1

2 (uF − lF) + 4C1{

k+1∑
i=k/2

√
log m(i−1)

m(i−1) +

k/2−1∑
i=1

(1 − ρ)k/2−i

√
log m(i−1)

m(i−1) }

(log x
x decreases for x > e)

≤ (1 − ρ)
k−1

2 (uF − lF) + 4C1

√
2 log

1
1 − ρ

{

k+1∑
i=k/2

(1 − ρ)i
√

i +
k/2−1∑

i=1
(1 − ρ)k/2√i}

≤ C2(1 − β)
k−1

2

for some constant C2 and 0 < β < ρ < 1. �

Remark: The proof of Theorem 3.6.3 does not use any stochastic arguments until the very end

and uses Lemma 3.1 to get rid of the indicator function for the ‘drop-steps’ so that the stochastic

arguments based on concentration inequalities can be applied. Note that we cannot take expectation

on the stochastic gradients and utilize their unbiasedness property because of the presence of the

indicator functions. This proof technique is specifically designed for the ‘drop-step’ in ASFW and

can be useful in analyzing other similar algorithms.

29

Corollary 3.6.4. Let {x (k)}k≥1 be the sequence generated by Algorithm 3 for solving Problem

(P1). Then
F (x (k)) − F∗

(1 − ω)
k−1

2
→ 0

almost surely as k tends to infinity for any 0 < ω < β. Therefore F (x (k)) linearly converges to F∗

almost surely.

Proof. For every ε > 0, let E (k) denotes the event that (F (x (k)) − F∗)/(1 − ω)(k−1)/2 > ε . By

Markov’s inequality

∞∑
k=2
P(E (k)) =

∞∑
k=1
P((F (x (k)) − F∗)/(1 − ω)(k−1)/2 > ε)

≤

∞∑
k=2

E{F (x (k)) − F∗}
ε (1 − ω)(k−1)/2

≤
C2
ε

∞∑
k=2

(
1 − β
1 − ω

)
k−1

2

< ∞.

Therefore
∑∞

k=2 P(E (k)) < ∞ and the Borel-Cantelli lemma implies that P(lim supk→inf E (k)) =

0, which implies (F (x (k)) − F∗)/(1 − ω)(k−1)/2 converges to 0 almost surely. This implies that

every sequence generated by Algorithm 3 linearly converges to the optimal function value almost

surely. �

Remark: Note that the result in Corollary 3.6.4 only relies on the property that an algorithm

converges linearly in expectation. Therefore, we can apply exactly the same argument to show that

every sequence generated by the algorithm in [6] converges linearly almost surely.

Corollary 3.6.5. To obtain an ε-accurate solution, Algorithm 3 requires O((1/ε)4η) of stochastic

gradient evaluations, where 0 < η = log(1 − ρ)/ log(1 − β) < 1.

Proof. Let k be the total number of iterations performed by Algorithm 3 so that an ε-accurate

solution is obtained for the first time. Theorem 3.6.3 implies C2(1 − β)
k−1

2 < ε and hence k ≥

30

1 + 2 log ε/ log(1 − β). In iteration i of Algorithm 3, m(i) = 1/(1 − ρ)2i+2 stochastic gradient

evaluations are performed. Thus, the total number of stochastic gradient evaluations until iteration

k is

k∑
i=1

m(i) =

k∑
i=1

1
(1 − ρ)(2i+2)

=
1

(1 − ρ)2
1/(1 − ρ)2 − 1/(1 − ρ)2k+2

1 − 1/(1 − ρ)2

≤
2

(1 − ρ)2k+4 ≤
2

(1 − ρ)4 exp{−2k log(1 − ρ)}

≤
2

(1 − ρ)4 exp{−2 log(1 − ρ) − 4
log ε log(1 − ρ)

log(1 − β)
}

= O((
1
ε

)
4 log(1−ρ)
log(1−β))

= O((
1
ε

)4η).

�

Theorem 3.6.6. Let {x (k)}k≥1 be the sequence generated by Algorithm 4 for solving Problem (P1),

N be the number of vertices used to represent x (k) (if VRU is implemented by using Carathéodory’s

theorem, N = p + 1, otherwise N = |V |) and F∗ be the optimal value of the problem. Let κ =

min{ 12,
Ω2
P
σF

8N2LF D2 } where σF = min{σ1, . . . , σn}, LF = max{L1, . . . , Ln}. Set m(i) = d1/(1− κ)2i+2e.

Then for every k ≥ 1

E{F (x (k+1)) − F∗} ≤ C3(1 − φ)k/(3|V |!+1) (3.6)

where C3 is a deterministic constant and 0 < φ < κ ≤ 1/2.

Proof. Since d (k) = p(k) − u(k), similar to the proof of Theorem 3.6.3, we have

〈g(k), d (k)〉2 ≥
Ω2
P
σF

4N2 {F
(k) (x (k)) − F (k)

∗ }

〈g(k), d (k)〉 ≤
1
2

(F (k)
∗ − F (k) (x (k))).

31

The remaining proof for Theorem 3.6.3 could also apply here except that the case D(k) can be

either a ‘drop step’ or a so-called ‘swap step’. A swap step moves the weight of a active vertex to

another active vertex. There are at most (1 − 1
3|V |!+1)k drop steps and swap steps after k iteration.

The same argument as in Theorem 3.6.3 implies

E{F (x (k+1)) − F∗} ≤ C3(1 − φ)k/(3|V |!+1)

for a deterministic constant C3 and 0 < φ < κ ≤ 1/2. �

Corollary 3.6.7. Let {x (k)}k≥1 be the sequence generated by Algorithm 4 for solving Problem

(P1). Then
F (x (k)) − F∗

(1 − ψ)
k

3 |V |!+1
→ 0

almost surely as k tends to infinity for some 0 < ψ < φ. Therefore F (x(k)) linearly converges to

F∗ almost surely.

Proof of this Corollary is almost the same as the proof of Corollary 3.6.4.

Corollary 3.6.8. To obtain an ε-accurate solution, Algorithm 4 requires O((1/ε)(6|V |!+2)ξ) of

stochastic gradient evaluations, where 0 < ζ = log(1 − ρ)/ log(1 − φ) < 1.

Proof of this Corollary is the same as the proof of Corollary 3.6.5.

3.7 Numerical Experiments

3.7.1 Simulated Data

We apply the proposed algorithms to the synthetic problem:

minimize ‖Ax − b‖22 +
1
2
‖x‖22

such that l ≤ x1 ≤ x2 ≤ · · · ≤ xp ≤ u,

32

where A ∈ Rn×p, b ∈ Rn and x ∈ Rp. We generated the entries of A and b from the standard

normal distribution and set n = 106, p = 1000, l = −1 and u = 1. This problem can be viewed

as minimizing a sum of strongly convex functions subject to a polytope constraint. Such problems

can be found in the shape restricted regression literature. We compared the ASFW and PSFW with

two variance-reduced stochastic methods, the variance-reduced stochastic Frank-Wolfe (SVRF)

method [30] and the proximal variance-reduced stochastic gradient (Prox-SVRG) method [6, 35].

Both Prox-SVRG and SVRF are epoch based algorithms. They first fix a reference point and com-

pute the exact gradient at the reference point at the beginning of each epoch. Within each epoch,

both algorithms compute variance reduced gradients in every step using the control variates tech-

nique based on the reference point. The major difference between them is that in every iteration, the

Prox-SVRG takes a proximal gradient step and the SVRF takes a Frank-Wolfe step. For detailed

implementations of SVRF, we followed Algorithm 1 in [30] and chose the parameters according

to Theorem 1 in [30]. For the Prox-SVRG, we followed the Algorithm in [35] and set the number

of iterations in each epoch to be m = 2n and set the step size to be γ = 0.1/L found by [35] to

give the best results for Prox-SVRG, where n is the sample size and L is the Lipschitz constant of

the gradient of the objective function. For ASFW and PSFW implementations, we followed Algo-

rithm 3 and Algorithm 4 and used adaptive step sizes since we know the Lipschitz constants of the

gradients of the objective functions. The number of samples that we used to compute stochastic

gradients for ASFW and PSFW was set to be 1.04k +100 at the iteration k. The linear optimization

sub-problems in the Frank-Wolfe algorithms and the projection step in Prox-SVRG were solved

by using the GUROBI solver. We summarize the parameters that were used in the algorithms at it-

eration k and epoch t in Table 3.2. In this table, g(k) is the stochastic gradient, L(k) is the Lipschitz

constant of the stochastic gradient at iteration k, d (k) is the direction the algorithms take at iteration

k and γmax is the maximum of the possible step sizes (see Algorithm 3 and 4). In Prox-SVRG, L

is the Lipschitz constant of the gradient of the objection function and n is the sample size.

To make fair comparisons, we used the same starting point for all four algorithms. The loss

33

step-size batch-size #iterations
ASFW min{−〈g(k), d (k)〉/(L(k) ‖d (k) ‖2), γmax} 100 + 1.04k N/A
PSFW min{−〈g(k), d (k)〉/(L(k) ‖d (k) ‖2), γmax} 100 + 1.04k N/A
SVRF 2/(k + 1) 96(k + 1) 2t+3 − 2
SVRG 0.1/L 1 2n

Table 3.2: Parameter choices in the algorithms

function values obtained by using ASFW, PSFW and Prox-SVRG and the running minimum values

obtained by SVRF are plotted against CPU time. From the plot, we can see that ASFW and PSFW

performed as well as or slightly better than their stochastic competitors. At the very beginning, both

Prox-SVRG and SVRF descents rapidly, while ASFW and PSFW obtains lower function values

later on. We also observe big swings in SVRF periodically. This is because at the beginning of

each epoch, SVRF proceeds with noisy gradients and very large step sizes. According to Theorem

1 in [30], the step size of the first step in every epoch can be as large as 1.

Seconds

0 10 20 30 40 50 60

L
o

s
s

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Simulated Data

ASFW

PSFW

SVRF

SVRG

Figure 3.1: Comparison between algorithms on simulated data.

34

3.7.2 Million Song Dataset

We implemented ASFW and PSFW for solving least squares problems with elastic-net regu-

larization and tested them on the Million Song Dataset (YearPredictionMSD) [36][37], which is

a dataset of songs with the goal of predicting the release year of a song from its audio features.

There are n = 463, 715 training samples and p = 90 features in this dataset. The dataset is the

one with largest number of training samples available in the UCI machine learning data repository.

Therefore it is interesting to examine the actual performance of stochastic algorithms on such a

massive dataset. The least squares with elastic-net regularization model that we used was,

min
x∈Rp

1
n
‖Ax − b‖22 + λ‖x‖1 + µ‖x‖

2
2

where A ∈ Rn×p and b ∈ Rn. µ ≥ 0 and λ ≥ 0 are regularization parameters. In the numerical

experiments, we considered the constrained version of the problem, that is,

minimize
1
n
‖Ax − b‖22 + µ‖x‖

2
2

subject to ‖x‖1 ≤ α

where α > 0 is inversely related to λ.

We also compared the ASFW and PSFW with SVRF and Prox-SVRG. We followed the same

settings in this real data experiment as that in the simulated data experiment except that we used

explicit solutions for solving linear optimizations over an l1-balls in FW algorithms and we used

the algorithm in [38] for the solving projections onto l1-balls in the Prox-SVRG algorithm instead

of using GUROBI for solving linear optimizations and projections. To make fair comparisons,

we used the same starting point for all four algorithms. The logarithm of the loss function values

obtained by ASFW, PSFW and Prox-SVRG and the running minimum value obtained by SVRF

are plotted against CPU time. The figures indicate that the performance of ASFW and PFW was

as good as or better than Prox-SVRG and SVRF under different regularization parameter settings.

35

t Seconds

0 5 10 15

L
o
g
 L

o
s
s

13.2

13.4

13.6

13.8

14

14.2

14.4

14.6
Million Song Data with µ = 0.5, α = 0.5

ASFW

PSFW

SVRF

SVRG

Seconds

0 5 10 15

L
o
g
 L

o
s
s

12.6

12.8

13

13.2

13.4

13.6

13.8

14

14.2

14.4
Million Song Data with µ = 0.5, α = 5

ASFW

PSFW

SVRF

SVRG

Seconds

0 5 10 15

L
o
g
 L

o
s
s

13.2

13.4

13.6

13.8

14

14.2

14.4

14.6
Million Song Data with µ = 10, α = 0.5

ASFW

PSFW

SVRF

SVRG

Seconds

0 5 10 15

L
o
g
 L

o
s
s

12.6

12.8

13

13.2

13.4

13.6

13.8

14

14.2

14.4
Million Song Data with µ = 10, α = 5

ASFW

PSFW

SVRF

SVRG

Figure 3.2: Comparisons between algorithms on million song dataset.

We also observed huge swings in SVRF periodically in these experiments. Therefore, we plot the

running minimums instead of the most recent function values for SVRF.

3.8 Conclusion and Future Work

In this chapter, we proved linear convergence almost surely and in expectation of the Away-

step Stochastic Frank-Wolfe algorithm and the Pairwise Stochastic Frank-Wolfe algorithm by us-

ing a novel proof technique. We tested these algorithms by training a least squares model with

elastic-net regularization on the million song dataset and on a synthetic problem. The proposed al-

gorithms performed as well as or better than their stochastic competitors for various choices of the

36

regularization parameters. Future work includes extending the proposed algorithms to problems

with block-coordinate structures and non-strongly convex objective functions and using variance

reduced stochastic gradients to reduce the number of stochastic gradient oracle calls.

37

Chapter 4: Local Curvature Based Adaptive Step-size Algorithms

4.1 Introduction

We are concerned with minimizing functions of the form

min
x∈Rn

F (x) = Eξ f (x, ξ). (4.1)

Many common problems in statistics and machine learning can be put into this form. For

instance, in the empirical risk minimization framework, a model is learned from a set {y1, . . . , ym}

of training data by minimizing an empirical loss function of the form

min
x

L(x) =
1
m

m∑
i=1

f (x, yi). (4.2)

It is easy to see that this formulation is equivalent to taking ξ to be the uniform distribution on the

points {y1, . . . , ym}.

An objective function of the form (4.1) is often impractical, as the distribution of ξ is gener-

ally unavailable, making it infeasible to analytically compute E f (x, ξ). This can be resolved by

replacing the expectation E f (x, ξ) by the estimate (4.2). The strong law of large numbers implies

that the sample mean L(x) converges almost surely to F (x) as the number of samples m increases,

provided that the samples yi are drawn independently from the distribution of ξ. However, even

the concrete problem (4.2) is not a good target for classical optimization algorithms, as the amount

of data m is frequently extremely large. Thus, a better strategy when optimizing (4.2) is to consider

subsamples of the data to reduce the computational cost. This leads to stochastic algorithms where

the objective function changes at each iteration by randomly selecting subsamples.

Many stochastic algorithms have been proposed which use this approach for solving (4.2), no-

38

tably stochastic gradient descent (SGD), and variance-reduced extensions of SGD, such as SVRG

[6], SAG [7], and SAGA [8]. These methods are first-order methods, extending gradient descent

to the stochastic setting, and the latter three (variance-reduced) methods can be shown to converge

linearly for strongly convex objectives. Linearly convergent stochastic Limited Memory BFGS

algorithms [39][40] have also been proposed. It is then natural to consider stochastic extensions

of quasi-Newton and second-order methods. One such method, the Newton Incremental Method

(NIM) [9], combines cyclic updating of a fixed collection of functions f (x, y1), . . . , f (x, ym) with

Newton’s method, and attains local superlinear convergence.

One of the key obstacles to developing stochastic extensions of quasi-Newton methods is the

necessity of selecting appropriate step sizes. The analysis of the global convergence of the BFGS

method [10] and other members of Broyden’s convex class [11] assumes that Armijo-Wolfe inexact

line search is used. This is rather undesirable for a stochastic algorithm, as line search is both

computationally expensive and difficult to analyze in a probabilistic setting. However, there is a

special class of functions, the self-concordant functions, whose properties allow us to compute

an adaptive step size and thereby avoid performing line searches. In [12], it is shown that the

BFGS [13][14][15][16] method with adaptive step sizes converges superlinearly when applied to

self-concordant functions.

In this chapter, our goal is to develop a stochastic quasi-Newton algorithm for self-concordant

functions. We propose an iterative method of the following form. At the k-th iteration, we draw

mk i.i.d samples ξ1, . . . , ξmk
. Define the empirical objective function at the k-th iteration to be

Fk (x) =
1

mk

mk∑
i=1

f (x, ξi). (4.3)

Let Hk be a positive definite matrix. The next step direction is given by

dk = −Hk∇Fk (xk),

39

and the step size by

tk =
αk

1 + αkδk
,

where

αk =
∇Fk (xk)T Hk∇Fk (xk)

δ2
k

and (4.4)

δk =

√
∇Fk (xk)T Hk∇

2Fk (xk)Hk∇Fk (xk).

The motivation for this step size is described in Section 4.4.

A key feature of these methods is that the step size tk can be computed analytically, using only

local information, and adapts itself to the local curvature. A fixed step size η is typically used in

the SGD variants, and this step size must be determined experimentally. The theoretical analysis

that has been provided for these methods is of little help in choosing η, as often η is constrained

to be impractically small, and moreover, is related to unknown constants such as the Lipschitz

parameter of the gradient. Furthermore, a fixed η which was effective in one phase may become

ineffective as the algorithm progresses, and enters regions of varying curvature.

Our new methods are also capable of solving general problems of the form (4.1). This is

in contrast to incremental-type methods such as SAG, SAGA, and NIM, which, because of their

stored updating scheme, can only be applied to problems of the form (4.2) with a fixed data set

{y1, . . . , ym}. This opens up new avenues for the solutions of problems where new data can be

sampled as the algorithm progresses, as opposed to having a fixed training set throughout.

By choosing the matrices Hk appropriately, we obtain stochastic extensions of classical meth-

ods. In particular, two choices of Hk will be of interest:

1. Taking Hk = I yields the stochastic adaptive gradient descent method (SA-GD).

2. Fixing H0, and then taking Hk+1 to be the BFGS update of Hk , yields the stochastic adaptive

BFGS method (SA-BFGS).

When the number of samples mk is fixed, and large enough, both SA-GD and SA-BFGS con-

40

verge R-linearly in expectation to an ε-optimal solution. The SA-BFGS algorithm can also be

shown to converge R-superlinearly to the true optimal solution if the number of samples is in-

creased so that m−1
k converges R-superlinearly to 0.

This chapter is organized as follows. In Section 4.2, we introduce our notation, and the techni-

cal assumptions needed for the analysis of our methods. In Section 4.3, we describe the relevant

results from stochastic analysis which motivate our algorithms. In Section 4.4, we describe the

required theory of self-concordant functions. In Section 4.5, we formally define stochastic adap-

tive methods, and prove the convergence results. In Section 4.6, we present preliminary numerical

experiments, and conclude with a discussion in Section 4.7.

4.2 Assumptions and Notation

The number of variables is n. We use gk (x) = ∇Fk (x) and Gk (x) = ∇2Fk (x) for the gradient

and Hessian of the empirical objective function. In the context of a sequence of iterates {xk }
∞
k=0

generated by an algorithm, we also write gk with no argument to denote gk (xk), and Gk for Gk (xk).

In the context of BFGS, Hk denotes the approximation to the inverse Hessian, and Bk = H−1
k .

The optimal solution of min
x

F (x) is denoted x∗, and the optimal solution of the empirical

problem min
x

Fk (x) is denoted x∗k . Note that x∗k is random.

Unless otherwise specified, the norm ‖ · ‖ is the 2-norm, or the operator 2-norm. The Frobenius

norm is indicated as ‖ · ‖F .

We make the following technical assumptions on F (x) and f (x, ξ). We will explain the moti-

vation behind these assumptions at the relevant points in the discussion.

Assumptions:

1. There exist constants L ≥ ` > 0 such that for every x ∈ Rn and every realization of ξ, the

Hessian of f with respect to x satisfies

`I � ∇2
x f (x, ξ) � LI

41

That is, f (x, ξ) is strongly convex for all ξ, with the eigenvalues of ∇2
x f (x, ξ) bounded by `

and L.

2. Fk (x) is standard self-concordant for every possible sampling ξ1, . . . , ξmk
.

3. There exist compact sets D0 and D with x∗ ∈ D and D0 ⊆ D, such that if x0 is chosen in

D0, then for all possible realizations of the samples ξ1, . . . , ξmk
for every k, the sequence of

iterates {xk }
∞
k=0 produced by the algorithm is contained withinD. We use D = sup{‖x− y‖ :

x, y ∈ D} for the diameter of D.

Furthermore, we assume that the objective values and gradients are bounded:

u = sup
ξ

sup
x∈D

f (x, ξ) < ∞

l = inf
ξ

inf
x∈D

f (x, ξ) > −∞

γ = sup
ξ

sup
x∈D
‖∇ f (x, ξ)‖ < ∞

4. (For BFGS only) The Hessian G(x) is Lipschitz continuous with constant LH .

Note that Assumption 1 is standard when analyzing stochastic algorithms. The function f (x, ξ)

is commonly a loss function, and either f (x, ξ) is itself strongly convex, or each f (x, ξ) is weakly

convex and strong convexity is ensured by adding a quadratic regularization term to F (x).

4.3 Stochastic Framework

Our analysis is based on a uniform convergence law, a standard technique in learning theory

and empirical processes. The central idea is that Fk (x) is an empirical mean estimating F (x),

and we can closely control the error |Fk (x) − F (x) | over all x ∈ D by varying the sample size

mk . The relevant stochastic analysis can be found in [1]. [41] and [42] also consider strategies

of increasing sample size during the computation of batch gradients that are based on pointwise

variance estimate or pointwise tail bounds instead of a bound that is uniform over all possible

42

points. To be consistent with the notation in this chapter, we restate the Theorem 2.1.1 below as

Theorem 4.3.1.

Theorem 4.3.1. Let δ > 0 and 0 < ε < min{D, δ
2L }. Then

P(sup
x∈D
|Fk (x) − F (x) | > δ) ≤ c(ε) exp

(
−

mk (δ − 2Lε)2

2(u − l)2

)

where c(ε) = 2nn/2Dnε−n. If mk ≥ 3, then

E sup
x∈D
|Fk (x) − F (x) | ≤ C

√
log mk

mk

E|Fk (x∗k) − F (x∗) | ≤ C

√
log mk

mk

where C is given by

4(|u| + |l |)nn/2Dn exp
[
−n

(
log

u − l

2
√

2L

)]
+ (u − l)

√
n + 1

Assumption 3 is required for the uniform law of Theorem 4.3.1 to hold. The setD0 is assumed

to be a region where, if x0 is chosen within D0, the path of the stochastic algorithm will remain

within the larger set D. For practical purposes, we may take D to be an arbitrarily large bounded

set in order to ensure convergence, though this worsens the complexity bounds provided by The-

orem 4.3.1. We note that the constant C is very much a ‘worst-case’ bound, and for almost every

problem arising in practice, the expected difference will be much smaller than Theorem 4.3.1 sug-

gests. Rather, the crucial implication is that the expected difference diminishes at the rate
√

log mk

mk
,

allowing a sharp level of control by adjusting mk .

We will also use Theorem 4.3.1 to bound gk and Gk . Assumption 1 implies that the partial

derivatives ∂F
∂xi

(x) and ∂2F
∂xi x j

(x) are also uniformly bounded for x ∈ D. Hence, we can apply

Theorem 4.3.1 to each of the n entries ∂F
∂xi

of the gradient, and each of the n2 entries ∂2F
∂xi∂x j

of

the Hessian. Taking a union bound over the resulting n2 + n inequalities, we obtain the following

43

concentration inequality for the sampled gradients and Hessians:

Corollary 4.3.2. For any δ > 0 and 0 < ε < min{D, δ
2L },

P(sup
x∈D
‖Gk (x) − G(x)‖ > δ or sup

x∈D
‖gk (x) − g(x)‖ > δ) ≤ C1ε

−n exp
[
−C2mk (δ − C3ε)2

]

where C1,C2,C3 are constants depending only on F.

Recall the definitions of δk, ρk, αk , and ηk above. In our analysis of stochastic methods, the

gradients and Hessians are those of the empirical objective function. That is to say, ρk = gT
k Hkgk

and δk =

√
dT

k Gk dk , where gk and Gk are the gradient and Hessian of Fk .

We say that a constant c is global if it depends only on the properties of the function F, and is

completely independent of the realization of the samples ξ1, . . . , ξmk
.

4.4 Self-Concordant Functions and Adaptive Methods

A convex function f : Rn → R is self-concordant if there exists a constant κ such that for every

x ∈ Rn and every h ∈ Rn, we have

|∇3 f (x)[h, h, h]| ≤ κ(∇2 f (x)[h, h])3/2

If κ = 2, f is standard self-concordant. Self-concordant functions were introduced by Nesterov

and Nemirovski in the context of interior point methods [43].

Many common problems have self-concordant formulations. At least one method, the DiSCO

algorithm of [44], is tailored for distributed self-concordant optimization and has been applied to

many regression problems. Convex quadratic objective functions have third derivatives equal to

zero, and are therefore trivially standard self-concordant. In particular, least squares regression is

self-concordant. In [44], it is also shown that regularized regression, with either logistic loss or

hinge loss, is self-concordant.

For self-concordant functions, the notion of a local norm is especially useful. Given a convex

44

function f , the local norm with respect to f at the point x is given by

‖h‖x =
√

hT∇2 f (x)h

Consider an iterative method for minimizing self-concordant functions with steps given as

follows. On the k-th step, the step direction dk is given by dk = −Hk∇ f (xk) for some positive

definite matrix Hk , and the step size is given by tk =
αk

1+αkδk
, where δk = ‖dk ‖xk and αk =

gT
k

Hkgk

δ2
k

.

Methods of this type have been analyzed in [45] and [12]. In [12], the above choice of αk is

shown to guarantees a decrease in the function value.

Theorem 4.4.1 (Lemma 4.1, [12]). Let ρk = ∇ f (xk)T Hk∇ f (xk). If αk is chosen to be αk =
ρk
δ2
k

,

then

f (xk + tk dk) ≤ f (xk) − ω(ηk),

where ηk =
ρk
δk

and the function ω(z) = z − log(1 + z).

We make Assumption 2 in order to apply Theorem 4.4.1 to the empirical objective functions

Fk (x). A natural question is whether Assumption 2 can be relaxed to the assumption that f (x, ξ)

is self-concordant for all ξ, and F (x) is standard self-concordant. In the case where ξ is finitely

supported, it is possible to scale F (x) so that we may use this weaker assumption.

Lemma 4.4.2. Suppose that ξ is finitely supported on {a1, . . . , am}, with pi = P(ξ = ai). Suppose

that f (x, ai) is self-concordant with constant κi. Let θ = 1
4

max κ2
i

min pi
. Then the scaled function F (x) =

E[θ f (x, ξ)] is standard self-concordant, and every empirical objective function Fk (x) is standard

self-concordant.

Proof. Observe that θ f (x, ai)pi is self-concordant with constant θ−1/2p−1/2
i κi ≤ 2. We deduce that

EF (x) =
∑m

i=1 θ f (x, ai)pi is standard self-concordant. Furthermore, since
∑m

i=1 pi = 1, we have

min pi ≤
1
m . Thus, 1

mθ f (x, ai) is self-concordant with constant θ−1/2m−1/2κi ≤ 2, which implies

that Fk (x) is standard self-concordant for every possible Fk (x). �

45

However, if we do not assume that each f (x, ξ) is self-concordant, or if ξ is not compactly

supported, it is unclear whether every possible Fk (x) will be standard self-concordant, even when

F (x) is standard self-concordant. Thus, we impose Assumption 2 in our analysis, while observing

that it is unnecessary in the practical case where ξ is derived from a finite data set.

4.5 Stochastic Adaptive Methods

Our basic approach is to sample an empirical objective function Fk (x) at each step, and then

compute the step direction and adaptive step size (4.4) using Fk . For particular choices of the

matrices Hk , we recover analogues of classical methods such as gradient descent, L-BFGS, and

BFGS.

4.5.1 Stochastic Adaptive GD

When Hk = I for every k, the resulting method is stochastic adaptive gradient descent (SA-

GD), which is given as Algorithm 6. The number of samples drawn at each iteration is left as an

input to the algorithm, and (weak) bounds on the required number mk can be inferred from the

convergence analysis.

Algorithm 6 SA-GD
Input: x0, {m0,m1, . . .}
for k = 0, 1, 2, . . . do

Sample ξ1, . . . , ξmk
i.i.d from ξ

Compute:

gk = ∇Fk (xk), dk = −gk

δk =

√
gT

k Gk (xk)gk

αk =
gT

k gk

δ2
k

, tk =
αk

1 + αkδk

where Fk (x) = 1
mk

∑mk

i=1 f (x, ξi).
Set xk+1 = xk + tkgk .

end for

46

Theorem 4.5.1. Let ε > 0 be fixed. At each iteration, we draw m i.i.d samples ξ1, . . . , ξm, where

the size of m satisfies
log m

m
≤

(
1 − r
4C

)2
ε2

and C is the constant in Theorem 4.3.1 and r = 1 − λ2`3/2

(
√
`+γ)Λ2L

. Then we have

EF (xk+1) − F (x∗) ≤ ε

when k = log(ε−12(u − l))/ log r .

We need the following theorem and lemma to prove our main theorem (Theorem 4.5.1) in this

subsection.

For matrices Hk with bounded eigenvalues, ηk = ρk/δk can readily be bounded in terms of the

empirical gradients, and the sequence {ηk }
∞
k=0 is bounded.

Theorem 4.5.2. There exists a global constant Γ = γ
√
`

such that ηk ≤ Γ for all k. Furthermore,

ηk ≥
λ

Λ
√

L
‖gk ‖ for all k.

Proof. By Assumption 1 (strong convexity), Gk satisfies `I � Gk � LI. Thus, from the definition

of ηk , we have

ηk =
gT

k Hkgk√
gT

k HkGk Hkgk

≤
‖gk ‖‖Hkgk ‖
√
`‖Hkgk ‖

=
1
√
`
‖gk ‖

By Assumption 3, we find that ‖gk ‖ = ‖gk (xk)‖ ≤ γ. Hence, we may take Γ = γ
√
`
. We also find

that

ηk =
gT

k Hkgk√
gT

k HkGk Hkgk

≥
λ

Λ
√

L
‖gk ‖

�

Lemma 4.5.3. The empirical objective function Fk (x) satisfies

Fk (xk+1) − Fk (x∗k) ≤ r (Fk (xk) − Fk (x∗k))

47

for the global constant r = 1 − `
(1+Γ)L < 1.

Proof. Observe that the function ω(z) satisfies ω(z) ≥ 1
2 (1 + Γ)−1z2 for all z ∈ [0, Γ]. Also, recall

that the strongly convex function Fk satisfies ‖gk (x)‖2 ≥ 2`(Fk (x) − Fk (x∗k)). By Theorem 4.4.1

and Theorem 4.5.2, we find that

Fk (xk+1) − Fk (x∗k) ≤ Fk (xk) − Fk (x∗k) − ω(ηk) ≤ Fk (xk) − Fk (x∗k) −
1
2

(1 + Γ)−1η2
k

≤ Fk (xk) − Fk (x∗k) −
1
2

(1 + Γ)−1 λ2

Λ2L
‖gk ‖

2

≤

(
1 −

λ2`

(1 + Γ)Λ2L

)
(Fk (xk) − Fk (x∗k))

Thus, we may take r = 1 − λ2`
(1+Γ)Λ2L . For SA-GD in particular, λ = Λ = 1, so r = 1 − `

(1+Γ)L . �

We are now ready to prove Theorem 4.5.1.

Proof. By Lemma 4.5.3, we calculate that

Fk (xk+1) − Fk (x∗k) ≤ r (Fk (xk) − Fk (x∗k))

= r (Fk−1(xk) − Fk−1(x∗k−1))

+ r (Fk (xk) − F (xk) − Fk−1(xk) + F (xk))

+ r (Fk−1(x∗k−1) − F (x∗) − Fk (x∗k) + F (x∗))

≤ r (Fk−1(xk) − Fk−1(x∗k−1))

+ r (sup
x∈D
|Fk (x) − F (x) | + sup

x∈D
|Fk−1(x) − F (x) |)

+ r (|Fk (x∗k) − F (x∗) | + |Fk−1(x∗k−1) − F (x∗) |)

48

By iterating this expansion, we find that

Fk (xk+1) − Fk (x∗k) ≤ r k (F0(x1) − F0(x∗0))

+

k∑
j=1

r j (sup
x∈D
|Fk+1− j (x) − F (x) | + sup

x∈D
|Fk− j (x) − F (x) |)

+

k∑
j=1

r j (|Fk+1− j (x∗k+1− j) − F (x∗) | + |Fk− j (x∗k− j) − F (x∗) |)

Decompose Fk (xk+1) − Fk (x∗k) as

Fk (xk+1) − Fk (x∗k) = F (xk+1) − F (x∗) + [Fk (xk+1) − F (xk+1)] + [F (x∗) − Fk (x∗k)]

We can move the terms in square brackets to the right hand side, and upper bound them, to obtain

F (xk+1) − F (x∗) ≤ r k (F0(x1) − F0(x∗0))

+ sup
x∈D
|Fk (x) − F (x) |

+

k∑
j=1

r j (sup
x∈D
|Fk+1− j (x) − F (x) | + sup

x∈D
|Fk− j (x) − F (x) |) (4.5)

+ |Fk (x∗k) − F (x∗) |

+

k∑
j=1

r j (|Fk+1− j (x∗k+1− j) − F (x∗) | + |Fk− j (x∗k− j) − F (x∗) |)

Suppose that we draw a constant number of samples mk = m at each iteration. Taking expectations

on both sides of equation (4.5) and applying the concentration bound of Theorem 4.3.1, we obtain

EF (xk+1) − F (x∗) ≤ r k (u − l) + 2C

√
log m

m

k∑
j=0

r j

≤ r k (u − l) +
2C

1 − r

√
log m

m

In order to obtain an ε-optimal solution, we may use sufficiently large samples, and take sufficiently

49

many iterations, so that

r k (u − l) ≤
ε

2
2C

1 − r

√
log m

m
≤
ε

2

This yields the given bounds on m and k in Theorem 4.5.1. �

In particular, it suffices to take m = O(ε−2 log ε−1) and k = O(log ε−1).

4.5.2 Stochastic Adaptive BFGS

By updating Hk using the BFGS formula, we obtain the stochastic adaptive BFGS (SA-BFGS)

method, which is given in Algorithm 7.

Algorithm 7 SA-BFGS
Input: x0, H0, {m0,m1, . . .}, β < 1
for k = 0, 1, 2, . . . do

Sample ξ1, . . . , ξmk
i.i.d from ξ

Compute

gk = ∇Fk (xk), dk = −Hkgk

δk =

√
dT

k Gk (xk)dk

αk =
gT

k Hkgk

δ2
k

, tk =
αk

1 + αkδk

where Fk (x) = 1
mk

∑mk

i=1 f (x, ξi).
Set gk+1 = ∇Fk (xk + tk dk)
Set yk = gk+1 − gk
if gT

k+1dk < βgT
k dk then

Set dk = gk
Recompute δk, αk, tk
Set Hk+1 = Hk

else
Set Hk+1 = (I −

sk yTk
sT
k
yk

)Hk (I −
yk sT

k

sT
k
yk

) +
sk sT

k

sT
k
yk

end if
Set xk+1 = xk + tk dk .

end for

50

In Algorithm 7, we use the standard BFGS update with yk = gk (xk+1) − gk (xk). Another

option is to replace yk with the action of the Hessian on sk , so yk = Gk (xk)sk . In general, we

must compute Gk (xk)dk when finding the adaptive step size, so we can re-use the result of that

computation instead of computing an extra gradient gk (xk+1).

For technical reasons, our SA-BFGS procedure tests whether the Wolfe condition is satisfied

for the adaptive step size tk . If not, we revert to taking a SA-GD step. This is an artifact of our

analysis, and under suitable conditions on the growth of the samples mk , there will be some point

after which the Wolfe condition is necessarily satisfied on every step. In practice, omitting this test

does not impact performance.

There are also two possible ways to implement SA-BFGS. For problems with n at most medium-

sized, it is possible to explicitly store the matrix Hk , and compute dk by a matrix product −Hkgk .

For n very large, it is infeasible to store Hk , and we can instead store the pairs (sk, yk) and compute

−Hkgk using a two-loop recursion [46]. This corresponds to stochastic adaptive L-BFGS (SA-

LBFGS) if we limit the number of past pairs (sk, yk) to only the h most recent, and to SA-BFGS

if we store everything. The amount of storage used by SA-LBFGS surpasses that of SA-BFGS as

h approaches n.

Theorem 4.5.1 holds for SA-LBFGS, since it holds for any method where {Hk } has uniformly

bounded eigenvalues. Thus, SA-LBFGS also converges in expectation to an ε-optimal solution

after k = O(log ε−1) steps given samples of size m = O(ε−2 log ε−1), though now the constants

within the big-O are dependent on h.

Now, we will layout our framework for proving that SA-BFGS converges superlinearly with

probability 1.

Theorem 4.5.4. Suppose that we draw mk samples on the k-th step, where m−1
k converges R-

superlinearly to 0. Then SA-BFGS converges to the optimal solution x∗ almost surely.

Our arguments closely follow the proofs given in [10] and [47] for the deterministic BFGS

method. Along the way, we will also consider the behavior of SA-BFGS when ε-optimality suf-

fices, and mk is held constant. Note that the results preceding Lemma 4.5.13 do not depend on any

51

particular choice of sample sizes mk .

We introduce the following assumption in this section:

Assumption:

4. The Hessian G(x) is Lipschitz continuous with constant LH .

The adaptive step size is known to satisfy the Armijo-Wolfe conditions in the deterministic

setting. A similar property holds for the empirical objective functions.

Theorem 4.5.5 (Theorem 6.2, [12]). The adaptive step size tk satisfies the Armijo condition for

α = 1
2 , for the empirical objective function Fk (x).

Recall that the SA-BFGS algorithm performs a BFGS update at step k only if tk satisfies the

Wolfe condition. If tk does not satisfy the Wolfe condition, then we take a SA-GD step instead. In

this case, the direction is −gk and the step size is the adaptive step size for SA-GD.

We use q(j) to denote the the index of the j-th BFGS step, or equivalently, the index at which

the j-th BFGS update is performed. The steps {q(j)}∞j=1 where we perform BFGS updates will be

referred to as update times. Later on, we will see that if mk grows at a sufficient rate, then all q(j)

exist with probability 1.

The following technical lemma is used in the analysis of BFGS; it can also be found in [11]

and [10].

Lemma 4.5.6. Let k = q(j) be an update time. Let Gk =
∫ 1

0 Gk (xk + τsk)dτ, and let θk denote

the angle between the vectors −gk and sk . Then

1. yk = Gk sk , and sT
k yk ≤ L‖sk ‖

2.

2. ‖sk ‖ ≤
1
` ‖gk ‖ cos θk

3. If the Wolfe condition is satisfied on step k, then 〈yk, sk〉 ≥ (1 − β)〈−gk, sk〉 and ‖sk ‖ ≥

(1−β)
L ‖gk ‖ cos θk .

52

Proof. The first statement follows from the definition yk = gk (xk+1) − gk (xk). Since Gk (x) � LI

for all x, we also have Gk � LI, and hence sT
k yk = sT

k Gk sk ≤ L‖sk ‖
2.

The second statement follows from the Armijo condition (Theorem 4.5.5) and Taylor’s theo-

rem. Let x be a point on the line [xk, xk+1] with Fk (xk+1) = Fk (xk)+ 〈gk, sk〉+
1
2 sT

k Gk (x)sk . Since

Fk (xk+1) − Fk (xk) ≤ 1
2〈gk, sk〉, we have 1

2〈−gk, sk〉 ≥
1
2 sT

k Gk (x)sk ≥
1
2 m‖sk ‖

2 as desired.

The Wolfe condition implies that 〈yk, sk〉 = 〈gk (xk+1)−gk (xk), sk〉 ≥ (1− β)〈−gk, sk〉. Writing

〈−gk, sk〉 = ‖gk ‖‖sk ‖ cos θk , we have L‖sk ‖
2 ≥ (1 − β)‖gk ‖‖sk ‖ cos θk , which gives the last

statement. �

The next result is the key technical lemma in proving that SA-BFGS converges R-linearly. Its

proof is identical to the deterministic case [10].

Lemma 4.5.7. There exists a global constant c such that

k∏
j=1

‖gq(j) ‖
2

〈−gq(j), sq(j)〉
≤ ck .

Proof. By considering the BFGS update formula, we have

Tr(B j+1) = Tr(B j) −
sT

j B2
j s j

sT
j B j s j

+
yT

j y j

sT
j y j

,

Recall from Lemma 4.5.6 that y j = G j s j . Therefore, writing z j = G
1/2
j s j , we have

yT
j y j

sT
j y j
=

zT
j G j z j

zT
j z j

≤ L,

where the last inequality follows from Assumption 1. Let c1 = Tr(B0) + kL. The BFGS formula

implies that Tr(Bq(k+1)) ≤ Tr(B0) + kL ≤ c1k, and since Bq(k+1) is positive definite, we also have

k∑
j=1

sT
q(j) B2

q(j)sq(j)

sT
q(j) Bq(j)sq(j)

≤ Tr(B0) + kL ≤ c1k .

53

Observe that sT
j B2

j s j = t2
j ‖g j ‖

2 and that sT
j B j s j = t j〈−g j, s j〉. By the arithmetic mean-geometric

mean (AM-GM) inequality,
k∏

j=1

tq(j) ‖gq(j) ‖
2

〈−gq(j), sq(j)〉
≤ ck

1 . (4.6)

Next, we use the recursive formula for the determinant:

det(B j+1) =
yT

j s j

sT
j B j s j

det(B j).

Since the Wolfe condition is satisfied, we have

yT
j s j = (g j (x j+1) − g j (x j))T s j ≥ (1 − β)〈−g j, s j〉.

Therefore,

det(Bq(k+1)) ≥ det(B0)
k∏

j=1

1 − β
tq(j)

.

By the AM-GM inequality applied to the eigenvalues of Bq(k+1), we find that det(Bq(k+1)) ≤

(c1k/n)n ≤ ck
2 for a global constant c2. Hence,

∏k
j=1

1−β
tq(j)
≤ ck

2 . Multiplying this together with

inequality (4.6), and taking c = c1
(1−β)c2

, we find that

k∏
j=1

‖gq(j) ‖
2

〈−gq(j), sq(j)〉
≤ ck

as desired. �

Lemma 4.5.8. At least 1
2 k of the angles θq(1), . . . , θq(k) satisfy cos2 θq(j) > (`/c)2, where c is the

constant of Lemma 4.5.7.

Proof. By Lemma 4.5.6, ‖s j ‖ ≤
1
` ‖g j ‖ cos θ j . Substituting this in Lemma 4.5.7 yields

ck ≥

k∏
j=1

‖gq(j) ‖
2

〈−gq(j), sq(j)〉
≥

k∏
j=1

`

cos2 θq(j)
= `k+1

k∏
j=1

1
cos2 θq(j)

.

54

Hence,
∏k

j=1 cos2 θq(j) ≥ (`/c)k . It follows that at least 1
2 k of the angles must satisfy cos2 θq(j) ≥

(`/c)2. �

We can proceed to show that stochastic adaptive BFGS converges R-linearly. The argument

proceeds by showing that if k is not an update time, then SA-BFGS inherits the Q-linear conver-

gence rate of SA-GD, and if k = q(j), then we can measure the decrement with Lemma 4.5.7.

Lemma 4.5.9. If k is not an update time, then

Fk (xk+1) − Fk (x∗k) ≤ r (Fk (xk) − Fk (x∗k)),

where r = 1 − `3/2

(
√
`+γ)L

.

Proof. This follows from Lemma 4.5.3 for SA-GD. �

Lemma 4.5.10. Let k = q(j). Then

Fk (xk+1) − Fk (x∗k) ≤
(
1 − (1 − β)`L−1 cos2 θk

)
(Fk (xk) − Fk (x∗k)).

Proof. Since the adaptive step size tk satisfies the Armijo condition for α = 1
2 , we have

Fk (xk+1) − Fk (xk) ≤
1
2
〈gk, sk〉 = −

1
2
‖gk ‖‖sk ‖ cos θk .

Using Lemma 4.5.6, we rewrite ‖sk ‖ in terms of ‖gk ‖, cos θk to obtain

Fk (xk+1) − Fk (xk) ≤ −
1
2

(1 − β)L−1‖gk ‖
2 cos2 θk .

Since ‖gk ‖
2 ≥ 2`(Fk (xk) − Fk (x∗k)), we rearrange to obtain

Fk (xk+1) − Fk (x∗k) ≤ (1 − (1 − β)`L−1 cos2 θk)(Fk (xk) − Fk (x∗k)).

�

55

Theorem 4.5.11. Suppose that we draw samples of size mk at step k, where m−1
k converges super-

linearly to 0. With probability 1, SA-BFGS converges R-linearly.

Proof. Let ν = max{1 − (1 − β)`L−1(`/c)2, r } < 1. Let I1(k) be the 0-1 indicator variable for the

event that k is a BFGS update time, and let I2(k) be the indicator for the event that k is a BFGS

update time and cos2 θk ≥ (`/c)2. Combining Lemma 4.5.9 and Lemma 4.5.10 by using these

indicator variables, we have

Fk (xk+1) − Fk (x∗k) ≤ (1 − (1 − β)`L−1 cos2 θk)I1(k)r1−I1(k) (Fk (xk) − Fk (x∗k))

≤ (1 − (1 − β)`L−1(`/c)2)I2(k)r1−I1(k) (Fk (xk) − Fk (x∗k))

≤ νI2(k)+1−I1(k) (Fk (xk) − Fk (x∗k)).

For any t ≤ k, let b(t) =
∑t

j=0 I1(j). Rewritten with indicators, Lemma 4.5.8 states that
∑t

j=0 I2(j) ≥

1
2 b(t). Therefore,

k∑
j=0

(I2(j) + 1 − I1(j)) ≥ k −
1
2

b.

56

Define I3(k) = I2(k) + 1 − I1(k). Iterating the above expansion, we have

Fk (xk+1) − Fk (x∗k) ≤ νI3(k) (Fk (xk) − Fk (x∗k))

≤ νI3(k) (Fk−1(xk) − Fk−1(x∗k−1) + (Fk (xk) − Fk−1(xk)) + (Fk−1(x∗k−1) − Fk (x∗k))

≤ ν
∑k

i=0 I3(i) (F0(x0) − F0(x∗0))

+

k∑
j=1

ν
∑k

i=j I3(i)[sup
x∈D
|Fj (x) − F (x) | + sup

x∈D
|Fj−1(x) − F (x) |]

+

k∑
j=1

ν
∑k

i=j I3(i)[|Fj (x∗j) − F (x∗) | + |Fj−1(x∗j−1) − F (x∗) |]

≤ νk−b/2(F0(x0) − F0(x∗0))

+ 2
∑

0≤ j≤k−b/2
νk−b/2− j (sup

x∈D
|Fj (x) − F (x) | + |Fj (x∗j) − F (x∗) |)

+ 2
k∑

j>k−b/2
(sup

x∈D
|Fj (x) − F (x) | + |Fj (x∗j) − F (x∗) |).

In the last inequality, we have simply split the sums into two sums, one running over the indices

0 ≤ j ≤ k − b/2 and the other over k − b/2 < j ≤ k. Writing the left side as

Fk (xk+1) − Fk (x∗k) = F (xk+1) − F (x∗) + (Fk (xk+1) − F (xk+1)) + (F (x∗) − Fk (x∗k)),

we can move terms to the right to obtain

F (xk+1) − F (x∗) ≤ νk−b/2(F0(x0) − F0(x∗0))

+ sup
x∈D
|Fk (x) − F (x) | + |Fk (x∗k) − F (x∗) |

+ 2
∑

0≤ j≤k−b/2
νk−b/2− j (sup

x∈D
|Fj (x) − F (x) | + |Fj (x∗j) − F (x∗) |)

+ 2
k∑

j>k−b/2
(sup

x∈D
|Fj (x) − F (x) | + |Fj (x∗j) − F (x∗) |).

57

Taking expectations, and applying Theorem 4.3.1 on the right, we have

EF (xk+1) − F (x∗) ≤ νk−b/2(u − l) + 4C
∑

0≤ j≤k−b/2
νk−b/2− j

√
log m j

m j
+ 4C

k∑
j>k−b/2

√
log m j

m j
. (4.7)

Our choice of m j satisfies m j = Ω(ν−2 j), so
√

log m j

m j
= O(ν j√ j). Hence, by bounding each term

with a multiple of νk−b/2, we may find a global constant φ, with 1 > φ > ν, and a global constant

c3, such that

EF (xk+1) − F (x∗) ≤ c3φ
k−b/2.

Clearly b ≤ k, and thus we find that

EF (xk+1) − F (x∗) ≤ c3φ
k/2.

Now, fix any constant ϕ with φ < ϕ < 1. By Markov’s inequality,

P(F (xk) − F (x∗) ≥ ϕk/2) ≤
E(F (xk) − F (x∗))

ϕk/2 ≤ c3

(
φ

ϕ

) k/2
.

Since
∑∞

k=0

(
φ
ϕ

) k/2
< ∞, the Borel-Cantelli Lemma implies that the sequence of events Ak with

Ak = {F (xk) − F (x∗) > ϕk/2}

occurs finitely often with probability 1. Therefore, with probability 1, SA-BFGS converges R-

linearly. �

Before proceeding further, let us digress briefly to consider the behavior of SA-BFGS when we

are satisfied with an ε-optimal solution, and wish to hold the number of samples constant.

Lemma 4.5.12. Let ε > 0. Suppose we draw m i.i.d samples at each step, where m = O(ε2(log ε−1)3).

Then SA-BFGS converges in expectation to an ε-optimal solution after k steps, where k = O(ε−1).

Proof. Note that equation (4.7) in the proof of Theorem 4.5.11 holds in the absence of any as-

58

sumptions on the sample sizes mk . Suppose that we take mk = m. Then we have

EF (xk+1) − F (x∗) ≤ νk−b/2(u − l) + 4C
∑

0≤ j≤k−b/2
νk−b/2− j

√
log m j

m j
+ 4C

k∑
j>k−b/2

√
log m j

m j

≤ νk/2(u − l) + 4C

√
log m

m

(
1

1 − ν
+ k/2

)
.

Therefore, in order to obtain an ε-optimal solution from SA-BFGS, we may take

νk/2(u − l) ≤
ε

2
4C

1 − r

√
log m

m

(
1

1 − ν
+ k/2

)
≤
ε

2
.

Thus, it suffices to take k = log(ε−12(u − l))/ log ν. Substituting this value of k into the second

inequality, we see that it suffices to take m = O(ε2(log ε−1)3). �

We now concern ourselves with R-superlinear convergence to the true optimal solution. Hence-

forth, we assume that the sample sizes grow so that m−1
k converges R-superlinearly to 0.

Lemma 4.5.13. We have
∑∞

k=0ω(ηk) < ∞ with probability 1. In particular, ηk → 0 almost surely.

Proof. By Theorem 4.4.1, we find that

Fk (xk+1) ≤ Fk (xk) − ω(ηk)

= Fk−1(xk) + (Fk (xk) − Fk−1(xk)) − ω(ηk)

≤ F0(x0) +
k∑

j=1
(Fj (x j) − Fj−1(x j)) −

k∑
j=0

ω(η j)

≤ F0(x0) +
k∑

j=1
sup
x∈D
|Fj (x) − Fj−1(x) | −

k∑
j=0

ω(η j)

≤ F0(x0) + 2
k∑

j=1
sup
x∈D
|Fj (x) − F (x) | −

k∑
j=0

ω(η j)

≤ F0(x0) + 2
∞∑

j=1
sup
x∈D
|Fj (x) − F (x) | −

k∑
j=0

ω(η j).

59

Let Y =
∑∞

j=1 supx∈D |Fj (x) − F (x) |. By the monotone convergence theorem and Theorem 4.3.1,

we have

EY =
∞∑

j=1
E sup

x∈D
|Fj (x) − F (x) | ≤ C

∞∑
j=1

√
log m j

m j
.

By our choice of m j , the latter sum is finite. This implies that P(Y < ∞) = 1. Since Fk (x) is

bounded below on D by Assumption 3, we necessarily have
∑∞

k=0ω(ηk) < ∞ whenever Y < ∞.

Thus ηk → 0 with probability 1. �

Theorem 4.5.14. Fix any β < 1. With probability 1, there exists a finite index k0 such that the

Wolfe condition is satisfied for all k ≥ k0.

Proof. This follows from Theorem 6.3 in [12], for any realization of the empirical objective func-

tions F0, F1, . . . such that ηk → 0. By Lemma 4.5.13, the event ηk → 0 occurs with probability

1. �

In particular, this implies that with probability 1, there exists a finite time k0 after which every

step is a BFGS step, and BFGS updates are always performed.

Corollary 4.5.15. With probability 1, we have
∑∞

k=0 ‖xk − x∗‖ < ∞.

Proof. This follows from Theorem 4.5.11. Let {xk }
∞
k=0 be any instance of the algorithm where

F (xk) ≤ F (x∗) + ϕk/2 for all k ≥ k0, for some index k0. Since F (x) is strongly convex,

‖xk − x∗‖ ≤
2
`

(F (xk) − F (x∗)) ≤
2
`
ϕk/2

for all k ≥ k0. Hence
∑∞

k=0 ‖xk − x∗‖ < ∞. By Theorem 4.5.11, this occurs with probability 1. �

Let us define ek = max{‖xk − x∗‖, ‖xk+1 − x∗‖}. Corollary 4.5.15 implies that
∑∞

k=0 ek < ∞.

Next, we perform a detailed analysis of the evolution of Hk+1. By applying Corollary 4.3.2, we

can use a modified form of the classical argument ([47]) on a path-by-path basis.

60

Corollary 4.5.16. Let σk = m−2/5
k . By taking δ = σk in Corollary 4.3.2, we can find global

constants c4 and ω < 1 such that

P(sup
x∈D
‖Gk (x) − G(x)‖ > σk or sup

x∈D
‖gk (x) − g(x)‖ > σk) ≤ c4ω

k .

Hence, with probability 1, there exists an index k0 such that for all k ≥ k0, we have both

sup
x∈D
‖Gk (x) − G(x)‖ < σk and sup

x∈D
‖gk (x) − g(x)‖ < σk .

By construction, {σk } converges to 0 at a R-superlinear rate.

Proof. The first part follows by Corollary 4.3.2. Taking ε = δ
2L+1 , our probability bound is

P(sup
x∈D
‖Gk (x) − G(x)‖ > σk or sup

x∈D
‖gk (x) − g(x)‖ > σk)

≤ C1 exp(
2
5

n log mk − C2(1 −
C3

2L + 1
)2m1/5

k).

Since
m1/5
k

log mk
→ ∞ and mk = Ω(k5) by construction, we can find the desired ω < 1. The second

statement then follows immediately from the Borel-Cantelli Lemma. �

LetΩ denote the space of paths where
∑∞

k=0 ek < ∞ and for some k0, supx∈D ‖Gk (x)−G(x)‖ ≤

σk and supx∈D ‖gk (x) − g(x)‖ ≤ σk for all k ≥ k0. By Corollary 4.5.15 and Corollary 4.5.16,

P(Ω) = 1. Henceforth, we restrict our analysis to the paths belonging to Ω.

The BFGS algorithm is invariant under a linear change of variables, so without loss of gen-

erality, we may assume that G(x∗) = I. This corresponds to the change of variables F̃ (y) =

F (G(x∗)−1/2y), y = G(x∗)1/2x. Define two ‘hypothetical’ updates:

B̂k+1 = Bk −
Bk sk sT

k Bk

sT
k Bk sk

+
Gk (x∗)sk sT

k Gk (x∗)

sT
k Gk (x∗)sk

B̃k+1 = Bk −
Bk sk sT

k Bk

sT
k Bk sk

+
G(x∗)sk sT

k G(x∗)

sT
k G(x∗)sk

.

Lemma 4.5.17. We have

‖ B̃k+1 − I ‖2F ≤ ‖Bk − I ‖2F

61

and

‖H̃k+1 − I ‖2F ≤ ‖Hk − I ‖2F .

Proof. For brevity, we write s = sk, B = Bk, H = Hk . By a routine calculation (see §4 of [47]), we

have

‖ B̃k+1 − I ‖2F − ‖Bk+1 − I ‖2F = −

(
1 −

sT B2s
sT Bs

)2

+ 2 *
,

sT B3s
sT Bs

−

(
sT B2s
sT Bs

)2
+
-

and

‖H̃k+1 − I ‖2F − ‖Hk+1 − I ‖2F = −

(
1 −

sT Hs
sT s

)2

+ 2 *
,

sT H2s
sT s

−

(
sT Hs
sT s

)2
+
-

.

The Cauchy-Schwarz inequality implies that the latter terms in the brackets are non-positive, which

gives the desired result. �

Lemma 4.5.18. Every path in Ω satisfies

‖Bk+1 − B̃k+1‖ ≤ O(ek + σk)

and

‖Hk+1 − H̃k+1‖ ≤ (‖Hk − I ‖ + 1)O(ek + σk).

Proof. We again write s = sk, y = yk, B = Bk, H = Hk for brevity.

We can bound the difference ‖Bk+1 − B̂k+1‖, as both updates are performed with sampled

gradients, and then use Corollary 4.5.16 to bound ‖ B̂k+1 − B̃k+1}.

Take ∆ = Gk (x∗)s − y. By Lemma 4.5.6, we can write y = Gk (x̂)s for some x̂ on the line

segment [xk, xk+1], and we deduce that:

1. `‖s‖2 ≤ yT s ≤ L‖s‖2

2. ‖∆‖ ≤ LH ek ‖s‖.

62

3. yT∆

sT y ≤ LLH ek

Hence, writing 1
sT y+∆T s =

1
sT y −

yT∆

sT y+yT∆ , we have

‖Bk+1 − B̂k+1‖ =

yyT

sT y
−

(y + ∆)(y + ∆)T

(y + ∆)T s

=

−
y∆T + ∆yT + ∆∆T

sT y
+

yT∆(yyT + y∆T + ∆yT + ∆∆T)
sT y + yT∆

≤ O(ek).

Next, write ŷ = Gk (x∗)s and ỹ = G(x∗)s. Since our path lies in Ω, we know that ‖Gk (x∗) −

G(x∗)‖ ≤ σk . Let ∆ = ŷ − ỹ, so ‖∆‖ ≤ σk ‖s‖, and perform the same calculation as above to

obtain

‖ B̂k+1 − B̃k+1‖ =

−
ỹ∆T + ∆ỹT + ∆∆T

sT ỹ
+

ỹT∆(ỹ ỹT + ỹ∆T + ∆ỹT + ∆∆T)
sT ỹ + ỹT∆

≤ O(σk).

Hence, ‖Bk+1 − B̃k+1‖ ≤ O(ek + σk).

A similar calculation holds for H .

‖Hk+1 − Ĥk+1‖ = ‖
ssT

(y + ∆)T s
−

ssT

sT y

+

(
s(y + ∆)T

(y + ∆)T s
−

syT

sT y

)
H + H

(
(y + ∆)sT

(y + ∆)T s
−

ysT

sT y

)
+

s(y + ∆)T H (y + ∆)sT

((y + ∆)T s)2 −
syT HysT

(sT y)2 ‖.

It is elementary, though tedious, to verify that ssT
(y+∆)T s −

ssT
sT y ≤ O(ek) and that the other terms are

bounded by O(‖H ‖ek). The same calculation shows that ‖Ĥk+1− H̃k+1‖ ≤ O(σk+ ‖H ‖σk). Thus,

we have ‖Hk+1 − H̃k+1‖ ≤ (‖Hk − I ‖ + 1)O(ek + σk). �

63

Corollary 4.5.19. By Lemma 4.5.18, Lemma 4.5.17, and the triangle inequality,

‖Bk+1 − I ‖ ≤ ‖Bk+1 − B̃k+1‖ + ‖ B̃k+1 − I ‖ ≤ ‖Bk − I ‖ +O(ek + σk)

and

‖Hk+1 − I ‖ ≤ ‖Hk+1 − H̃k+1‖ + ‖H̃k+1 − I ‖ ≤ (‖Hk − I ‖ + 1)O(ek + σk).

A lemma of Griewank and Toint shows that this forces the convergence of {‖Bk − I ‖} and

{‖Hk − I ‖}.

Lemma 4.5.20 (Lemma 3.3 of [47]). Let {φk } and {δk } be sequences of non-negative numbers

such that φk+1 ≤ (1 + δk)φk + δk and
∑∞

k=1 δk < ∞. Then {φk } converges.

In our case, we take δk = ek + σk , as
∑∞

k=0(ek + σk) < ∞ by Corollary 4.5.15 and Corol-

lary 4.5.16.

Following §4 of [47], our previous results yield the Dennis-Moré ([48]) condition:

lim
k→∞

‖(Bk − I)sk ‖

‖sk ‖
= 0.

It only remains to show that this implies R-superlinear convergence in the stochastic setting.

64

Since I = G(x∗), we have

‖Bk sk − G(x∗)sk ‖

= ‖ − gk − G(x∗)sk + gk (xk+1) − gk (xk+1)‖

= ‖gk (xk+1) − gk − G(x∗)sk − gk (xk+1)‖

= ‖

∫ 1

0
(Gk (xk + τsk) − G(x∗))sk dτ − gk (xk+1)‖

= ‖

∫ 1

0
(G(xk + τsk) − G(x∗))sk dτ +

∫ 1

0
(Gk (x + τsk) − G(xk + τsk))sk dτ − gk (xk+1)‖

≥ ‖gk (xk+1)‖ − (LH ek + σk)‖sk ‖

and therefore ‖gk (xk+1)‖
‖sk ‖

→ 0. By Assumption 1, the empirical objective function Fk (x) is strongly

convex, and therefore

‖gk (xk+1)‖
‖sk ‖

≥
|‖gk (xk+1) − gk (x∗)‖ − ‖gk (x∗) − g(x∗)‖|

‖xk+1 − x∗‖ + ‖xk − x∗‖
. (4.8)

To complete the analysis, let ak =
‖gk+1‖
‖sk ‖

, bk = ‖gk (x∗) − g(x∗)‖, and zk = ‖xk − x∗‖. Our

above results show that ak → 0, and bk ≤ σk tends to 0 R-superlinearly. For convenience, we

assume without loss of generality that {bk } converges Q-superlinearly, by replacing {bk } by the

Q-superlinear sequence bounding σk if necessary.

Rearrange inequality (4.8) to obtain

`zk+1 = `‖xk+1 − x∗‖ ≤ ‖gk (xk+1) − gk (x∗)‖ ≤ ak (zk+1 + zk) + bk .

Eventually, ak <
1
2`, as ak → 0. Beyond that point, we find that

zk+1 ≤
ak

` − ak
zk + bk ≤

2
`

ak zk + bk . (4.9)

Let ck = max{ak zk, bk }. Clearly zk+1 ≤ (2 + 2
`)ck , so it suffices to prove that {ck } converges

65

superlinearly. There are two cases to consider. If ck+1 = ak+1zk+1, then

ck+1
ck
=

ak+1zk+1
ck

≤ ak+1
(2 + 2

`)ck

ck
=

(
2 +

2
`

)
ak+1

and ak → 0. Otherwise, if ck+1 = bk+1, then

ck+1
ck
=

bk+1
ck
≤

bk+1
bk

and by construction, {bk } converges to 0 superlinearly, so bk+1
bk
→ 0.

This proves that zk converges R-superlinearly, and completes the proof of Theorem 4.5.4.

Increasing mk at this rate is clearly infeasible in reality, and it is non-trivial to determine a level

of sampling which produces (iteration-wise) superlinear convergence in a reasonable amount of

real time. However, the problem of choosing mk is exactly analogous to choosing the batch size

in SGD or SVRG, and similar heuristics can be used. In the early phase of the algorithm, there is

less value in attempting to compute the gradient particularly precisely, and taking more steps with

small batches/samples is efficient. As the algorithm approaches optimality, the sample size should

increase, or else the objective value will simply fluctuate.

4.6 Numerical Experiments

We compared several implementations of SA-GD and SA-BFGS against the original SGD

method on a penalized least squares problem with random design. That is, the objective function

has the form

min
w∈Rp

L(w) = E(Y − XTw)2 +
1
2
‖w‖22,

where X ∈ Rp and Y ∈ R are random variables with finite second moments. We base our model

on a standard linear regression problem with Gaussian errors, so Y = XT β + ε for a deterministic

vector β ∈ Rp and ε ∼ N (0, 1) is a noise component. X was drawn according to a multivariate

N (0, Σ(ρ)), where Σ(ρ) = (1 − ρ2)Ip + ρ
2 J (here J is the all-ones matrix). By varying ρ, we

66

control the condition number of the expected Hessian. We tested problems of size p = 100 and

p = 500.

The following six algorithms were tested:

SGD: SGD with fixed mk = p and diminishing step sizes tk =
1

k+1000 for problems with p = 100,

and tk =
1

k+5000 for p = 500.

SA-GD: SA-GD with fixed mk = p.

SA-GD-I: SA-GD with increasing samples mk =
1
2 p + 1.01k .

SA-BFGS: SA-BFGS with fixed mk = p. We do not test for the Wolfe condition at each step, and

instead always take the adaptive BFGS step and perform a BFGS update.

SA-BFGS-I: SA-BFGS with increasing samples mk =
1
2 p + 1.01k . We do not test for the Wolfe

condition at each step, and instead always take the adaptive BFGS step and perform a BFGS

update.

SA-BFGS-GD: SA-BFGS with increasing samples mk =
1
2 p + 1.01k . We test for the Wolfe

condition and switch to taking a SA-GD step when the adaptive step tk for SA-BFGS fails

the test.

R-S-GD-C: Robust SGD with constant step size tk =
1√
N

where N is the total number of iteration

that the algorithm will perform. At iteration N , output the average of the last N/2 solutions.

For details, see [49].

R-S-GD-V: Robust SGD with diminishing step size tk =
1√
k
. At iteration T , output the average of

the last T/2 solutions. For details, see [49].

We also implemented the Streaming SVRG algorithm using parameter values specified in Corol-

lary 4 in [50]. However, the performance of this algorithm is not comparable to the algorithms

listed above. Therefore we didn’t include it in the figures.

67

All algorithms whose “identifier" begin with "SA-" use the adaptive step size. For SGD, we

followed the standard practice of using a diminishing and non-summable step size tk =
a

k+b . The

values a = 1, b = {1000, 5000} in our test were chosen experimentally.

The SA-BFGS algorithms were implemented using a two-loop recursion to compute Hkgk

when p = 500. This significantly improved their performance compared to storing the matrix Hk

explicitly.

Figure 4.1 shows the performance of each algorithm on a series of problems with varying

problem size p and parameter ρ. The y-axis measures the gap log(f (x(t)) − f (x∗)) of the solution

x(t) obtained by the algorithm after using t seconds of CPU time. We used Matlab 2015a to

implement the algorithms. The hardware was an Intel i5-5200U CPU running Ubuntu.

The increasing sample sizes used in SA-GD-I do not appear to reduce its variance, compared

to SA-GD with mk fixed, which goes against our initial expectations. In plots (a), (b), (e), and (f),

SA-GD-I appears to exhibit the same fluctuations as SA-GD when the points approach optimality.

In plot (c), SA-GD-I briefly surpasses SA-GD before the objective value jumps again. It is only in

plot (d) that SA-GD-I appears to descend more consistently than SA-GD.

In contrast, SA-BFGS-I performed substantially better than SA-BFGS with mk fixed. On the

larger problem (p = 500), SA-BFGS-I rapidly approaches the optimal solution, until its progress

slows. This suggests that the growth rate 1.01k in sample sizes is too slow. This is not as apparent in

the smaller problem p = 100, but a closer inspection reveals that all algorithms reach a comparable

objective value after only 0.2s of CPU time.

What is also interesting is that SA-GD often outperforms SA-BFGS if both algorithms use the

same fixed sample size. While somewhat disappointing, there is a natural reason for this. BFGS

optimizes a local quadratic model of the objective, and is performant when its approximation

Hk resembles the true Hessian. The Hessian exhibits greater variance than the gradient, simply

by virtue of having n2 components compared to n, and we generally expect that more sampling

is needed to accurately estimate the Hessian. With the same amount of sampling, SA-BFGS is

therefore ‘noisier’ than SA-GD relative to the true function.

68

CPU time(s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g
(f

(x
k
)

-
f(

x
*
))

-2

-1

0

1

2

3

4

5

6

ρ = 0, p = 100

S-GD

SA-GD

SA-GD-I

SA-BFGS

SA-BFGS-I

SA-BFGS-GD

R-S-GD-C

R-S-GD-V

(a) ρ = 0, p = 100

CPU time(s)
0 10 20 30 40 50 60

lo
g
(f

(x
k
)

-
f(

x
*
))

-2

-1

0

1

2

3

4

5

6

7

8

ρ = 0, p = 500

S-GD

SA-GD

SA-GD-I

SA-BFGS

SA-BFGS-I

SA-BFGS-GD

R-S-GD-C

R-S-GD-V

(b) ρ = 0, p = 500

CPU time(s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g
(f

(x
k
)

-
f(

x
*
))

-3

-2

-1

0

1

2

3

4

5

6

ρ = 0.5, p = 100

S-GD

SA-GD

SA-GD-I

SA-BFGS

SA-BFGS-I

SA-BFGS-GD

R-S-GD-C

R-S-GD-V

(c) ρ = 0.5, p = 100

CPU time(s)
0 10 20 30 40 50 60

lo
g

(f
(x

k
)

-
f(

x
*
))

-2

-1

0

1

2

3

4

5

6

7

8

ρ = 0.5, p = 500

S-GD

SA-GD

SA-GD-I

SA-BFGS

SA-BFGS-I

SA-BFGS-GD

R-S-GD-C

R-S-GD-V

(d) ρ = 0.5, p = 500

CPU time(s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g
(f

(x
k
)

-
f(

x
*
))

-3

-2

-1

0

1

2

3

4

5

6

ρ = 0.9, p = 100

S-GD

SA-GD

SA-GD-I

SA-BFGS

SA-BFGS-I

SA-BFGS-GD

R-S-GD-C

R-S-GD-V

(e) ρ = 0.9, p = 100

CPU time(s)
0 10 20 30 40 50 60

lo
g

(f
(x

k
)

-
f(

x
*
))

-3

-2

-1

0

1

2

3

4

5

6

7

ρ = 0.9, p = 500

S-GD

SA-GD

SA-GD-I

SA-BFGS

SA-BFGS-I

SA-BFGS-GD

R-S-GD-C

R-S-GD-V

(f) ρ = 0.9, p = 500

Figure 4.1: Experimental results for p = 100, 500 and varying ρ. The x-axis is the elapsed CPU
time and the y-axis measures log(f (x) − f (x∗)).

69

4.7 Conclusion and Future works

For self-concordant objective functions, adaptive methods eliminate the need to choose a step

size, which is a big advantage. This is independent of a new difficulty which arises for stochastic

methods, which is the choice of the sample size mk . From our experiments, we see that choosing

mk appropriately is crucial. Unlike SGD and SVRG, where it is often most effective to use mini-

batches of size 1, SA-BFGS and SA-GD work best with comparatively larger samples.

Note that SA-GD and SA-BFGS are not purely first-order methods, as computing the adaptive

step size requires calculating the Hessian-vector product Gk (xk)dk . However, it is often possible

to calculate Hessian-vector products efficiently, and at far less cost than computing the full Hessian

∇2Fk (x). Consider, for example, a a logistic regression problem where the empirical loss function

is

L(x) =
1
m

m∑
i=1

log(1 + e−yia
T
i x)

for sampled data {(ai, yi) : ai ∈ R
n, yi ∈ {−1, 1}}. Let A denote the n × m matrix with columns ai.

The gradient is given by AT β where β is the vector

βi =
−yie−yia

T
i x

1 + e−yia
T
i x

and the Hessian is given by ABAT where B is the diagonal matrix with entries

Bii =
e−yia

T
i x

(1 + e−yia
T
i x)2

To compute the product dT∇2L(x)d, it suffices to compute
∑m

i=1 Bii (aT
i d)2, and this requires ap-

proximately the same number of arithmetic operations as computing ∇L(x). Thus, computing δk

for the adaptive step size requires roughly the same amount of work as one additional gradient

calculation. Also, as mentioned in Section 4.5, we may replace the BFGS update in SA-BFGS

with a modified update using the Hessian action yk = Gk (xk)dk to save effort.

This work represents only a preliminary step in the development of stochastic quasi-Newton

70

methods. There are several key questions that remain open:

1. Theorem 4.5.4 partially resolves a question posed by Moritz et al. [39] by proving superlin-

ear convergence under rather restrictive conditions. It would be strengthened greatly if we

could prove superlinear convergence under weaker conditions on mk .

2. The theory developed for adaptive step sizes only applies to self-concordant functions, but

the adaptive step size itself can be interpreted for non-self-concordant functions, as an adjust-

ment based on the local curvature. It would be of great interest to extend adaptive methods

to general convex functions, thereby replacing both inexact line search and fixed step sizes

on a large class of problems.

3. How can variance-reduction be applied to SA-GD and SA-BFGS? The control variates used

in SVRG are effective, though costly, and perhaps difficult to compute for functions of the

form E f (x, ξ). However, SA-GD and SA-BFGS could potentially be improved by incorpo-

rating some form of variance reduction, which would also allow us to reduce the number of

samples needed on most iterations.

4. What heuristics can be developed for the sample sizes mk to improve accuracy and speed up

performance of SA-GD and SA-BFGS?

71

Chapter 5: Using Unbiased Simulation for Solving Stochastic Composition

Optimization Problems

5.1 Introduction

In statistics and machine learning, we often encounter the generic stochastic optimization prob-

lem

min
x∈D

F (x) , Ev fv (x), (5.1)

where fv is a convex function indexed by random variable v, Ev denotes expectation with respect to

v, and D ⊂ Rd is a compact convex set. A special case of (5.1) is the empirical risk minimization

(ERM) problem when v is from the uniform random variable on {1, 2, . . . , n}, that is,

min
x∈D

Fn(x) ,
1
n

n∑
i=1

fi (x). (5.2)

When obtaining the full gradient is computationally intensive, a popular method for solving these

problems is the (projected) stochastic gradient descent (SGD) algorithm, which can be described

by the following update rule for t = 1, 2, ...

xt = ΠD {xt−1 − λt∇ fvt (xt−1)}, (5.3)

where vt is sampled from the distribution of v for generic optimization problems and from the

uniform distribution on {1, 2, ..., n} for ERM problems, λt is the step size, and ΠD is the projection

operator on to D. It is well known that convergence of SGD requires a diminishing step size λt

and thus results in a worse convergence rate than gradient descent algorithms. [6] observed that

72

the inferior rate of SGD is caused by the fact that stochastic gradients do not converge to 0 as the

iterates converge to the optimal solution. Based on this observation, they improved the SGD by

applying a control variate variance reduction technique to the stochastic gradient generation which

is known as the SVRG algorithm. SVRG has been shown to converge linearly to the optimal

solution for strongly convex ERM problems and performs well in practice. These algorithms

implicitly assume that the gradient of each member function fv (·) is easy to compute. But this

assumption does not hold in the so-called stochastic composition optimization (SCO) problem

[17]:

min
x∈D

F (x) , Ev fv (Ewgw (x)), (5.4)

where v and w are random variables with certain known joint distributions or in its finite sample

version:

min
x∈D

Fn(x) ,
1
n

n∑
i=1

fi{
1
mi

mi∑
j=1

gi j (x)}. (5.5)

Problems of this form arise in many areas such as reinforcement learning and risk-averse learning

to graphical models, econometrics and survival analysis. As far as we know, all current algo-

rithms that are used to solve SCO problems are based on biased stochastic gradient oracles. The

convergence rates for these algorithms are unsatisfactory compared to the algorithms for solving

generic stochastic optimization problems, except for the Comp-SVRG algorithms in [51]. These

algorithms are also based on biased stochastic gradients, but the modified variance reduced gra-

dients vanish as the iterates converge to the optimal solution. Therefore, linear convergence can

be proved for the finite sum version of SCO when strong convexity is present. However, the num-

ber of samples that are needed to construct a variance reduced gradient depends on the condition

number of the objective function. All these drawbacks are the result of biased stochastic gradients.

If unbiased stochastic gradients can be generated for SCO problems, we can treat SCO problems

in the same way that we treat generic stochastic optimization problems and apply SGD and its

73

variants to solve them.

5.1.1 Contributions

Our contributions in this section can be summarized as follows.

• We introduce unbiased gradient simulation algorithms that are based on a multilevel Monte

Carlo technique for solving smooth SCO problems. We also show that the output of these

algorithms has finite variance and its expected computational cost is finite.

• Based on our unbiased gradient simulation algorithms, a stochastic composition optimization

problem can be considered as a generic stochastic optimization problem. This is because we

can simply apply SGD to solve SCO problems and achieve the same iteration complexity as

using SGD to solve generic stochastic optimization problems.

• We also show that our unbiased gradient simulation algorithm can be combined with vari-

ance reduction techniques including SVRG [6] and SCSG [52], yielding variance reduced

optimization algorithms that converge linearly to the optimum of a SCO problem.

5.1.2 Related work

Using biased stochastic gradients, [17] proposed a generic algorithm for solving (5.4) with

an iteration complexity of O(ε−3/2) for strongly convex objectives and O(ε−4) for general convex

objectives. This result was improved to O(ε−5/4) for strongly convex objectives and O(ε−7/2) for

general convex objectives in [53]. For strongly convex objectives with finite sum structure, ([51])

modified the SVRG algorithm and achieved a sample complexity O((m + n) log(1/ε)). Stochastic

algorithms using biased gradient methods also appeared in [54] for non-convex SCOs.

We propose unbiased gradient simulation methods that are based on a multilevel Monte Carlo

technique for solving smooth SCO problems. Unbiased simulation methods for functions of expec-

tations using multilevel Monte Carlo techniques were developed in [55] and [56]. Such techniques

74

have been heavily used in simulation algorithms to solve problems that require high accuracy esti-

mates such as stochastic differential equation [57, 58, 59], stochastic partial differential equations

[60], and Markov Chains [61]. They also have been used to reduce computational cost through

variance reduction techniques [62, 63, 64, 65].

We also consider variance reduced stochastic gradient algorithms that are based on unbiased

gradient simulation. A number of variance reduction techniques have been proposed for strongly

convex ERM problems in the literature including the use of control variates; see SVRG in ([6])

and SDCA in ([66]), incremental gradients in [67] and SAGA in [8], and importance sampling in

[68]. The analysis of these methods and their variants can be found in [69, 70, 52, 71, 72].

The iteration complexity for current algorithms on smooth SCO is presented in Table 1. In

particular, SimGD, SimVRG and SCSimG are proposed by us in this chapter. We report iteration

complexity instead of sample complexity due to the special randomization component in the gra-

dient estimator construction. This component is critical for our estimator to be unbiased, but the

trade-off that it is difficult to analyze sample complexity. We will discuss related issues in detail in

later sections.

Table 5.1: Iteration complexity of different algorithms for solving smooth SCO problems.

Convex Strongly Convex

Basic SCGD [17] O(1/ε4) O(1/ε3/2)

Accelerating SCGD [53] O(1/ε7/2) O(1/ε5/4)

Compositional SVRG-1 [51] N.A. O(log(1/ε))

Compositional SVRG-2 [51] N.A. O(log(1/ε))

SimGD (our variant of SGD) O(1/ε2) O(1/ε)
SimVRG (our variant of SVRG) N.A. O(log(1/ε))
SCSimG (our variant of SCSG) N.A. O(log(1/ε))

Both basic SCGD and accelerating SCGD make 2 sampling queries in every iteration, Com-

positional SVRG-1 and Compositional SVRG-2 make
∑n

i=1 mi and an additional constant number

of sampling queries in every iteration. SimGD makes a random number of sampling queries in

every iteration and the expectation of this random number is finite. SimSVRG makes
∑n

i=1 mi and

75

additional random number of sampling queries in every iteration and the the expectation of this

random number is finite. SCSimG makes min{
∑n

i=1 mi, 1/ε } and an additional random number of

sampling queries in every iteration and the the expectation of this random number is finite.

5.1.3 Organization

The rest of this chapter is organized as follows. In section 5.2, we describe the problem for-

mulations and introduce the notation that we will use. We then present our unbiased gradient

simulation algorithms and the optimization algorithms that are based on these unbiased simula-

tions. In section 5.3, we give concrete examples of SCO problems that arise in a variety of areas

and explain how our algorithms are well-suited to solve them. In section 5.4, we prove several im-

portant theoretical properties of our gradient simulation algorithm, in particular, its unbiasedness,

finite variance and finite expected computational cost. We also show it has a certain “Lipschitz”

property that enable it to be combined with variance reduction algorithms such as SVRG and

SCSG. Finally, we prove the convergence properties of our algorithms. In section 5.5, we present

numerical results obtained using our algorithms for maximizing Cox’s partial likelihood and train-

ing conditional random fields.

5.2 Problem Description and Algorithms

5.2.1 Problem Description and Notation

Throughout this chapter, we consider the following smooth stochastic composition optimiza-

tion problem (5.4). We define the support of the distributions v and w to be Ωv and Ωw. Note that

the following two problems can be considered as special cases of (5.4); the first one is the finite

sum problem:

min
x∈D

Fn(x) ,
1
n

n∑
i=1

fi (
1
mi

mi∑
j=1

gi j (x)), (5.6)

76

and the second one is the mixed problem:

min
x∈D

1
n

n∑
i=1

fi (Ewgw (x)). (5.7)

Later, we will discuss algorithms for these two special cases.

As for notation, for a vector v ∈ Rn, we use [v]i to denote the i-th entry for 1 ≤ i ≤ n and use

‖v‖p to denote its Lp-norm. For a matrix A ∈ Rm×n, we use [A]i j , [A]: j and [A]i: to denote the

(i, j)-th entry, j-th column and i-th row for every 1 ≤ i ≤ m and 1 ≤ j ≤ n. We use ‖A‖2 and ‖A‖F

to denote its spectral norm and Frobenius norm, respectively. We use ‖A‖∞ to denote the maximum

absolute value of the entries of A, that is, ‖A‖∞ = max{|[A]i j | | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. For a multi-

linear map B ∈ Rm×n×p, we use [B]i j k ∈ R to denote its (i, j, k)-th entry, [B]: j k ∈ R
m,[B]i:k ∈ R

n,

and [B]i j: ∈ R
1×p to denote its (j, k)-th column fiber,(i, k)-th row fiber, and (i, j)-th tube fiber,

and [B]::k ∈ R
m×n, [B]: j: ∈ R

m×p and [B]i:: ∈ R
n×p to denote its k-th frontal slice, j-th lateral

slice and i-th horizontal slice, where 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ p. We define

‖B‖∞ = {|[B]i j k | | 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p}. Moreover, we use vec(·) to denote the

vectorize operation for one matrix or a multi-linear map. When there are multiple arguments in

vec(), it vectorize each component and stack them into another vector.

We write the Jacobian (with respect to x) of the vector valued gw (·) as

∇gw (x) =

*......
,

∂[gw]1
∂[x]1

(x) · · ·
∂[gw]1
∂[x]p (x)

...
. . .

...

∂[gw]d
∂[x]1

(x) · · · ∂[gw]d
∂[x]p (x)

+//////
-

,

where

gw (x) = ([gw]1(x), [gw]2(x), . . . , [gw]d (x))>.

It then follows from the chain rule that the gradient (with respect of x) of fv (·) for the stochastic

77

problem is {Ew∇gw (x)}∇ fv {Ewgw (x)} and

∇F (x) = {Ew∇gw (x)}ᵀEv {∇ fv (Ewgw (x))}. (5.8)

We use ∇2gw (x) ∈ Rd×p×p to denote the Hessian (with respect to x) of the vector valued gw (·) and

use ∇2gw (x)[u, v] ∈ Rd to denote the vector produced by ∇2gw (x) acting on u, v ∈ Rp, that is,

[∇2gw (x)[u, v]]i =

p∑
j=1

p∑
k=1

[∇2gw (x)]i j k[u] j[v]k =

p∑
j=1

p∑
k=1

[∇2[gw]i (x)] j k[u] j[v]k .

Finally, we introduce the following notation used in our gradient simulation algorithms. Let

In(v1) = {wi}
n
i=1 be a collection of random variables that are i.i.d. generated from the distribution

of w given v = v1, where v and w are the random variables in problem (5.4). Given the samples

In(v1), let

g(x; n1, n2) =
1

n2 − n1 + 1

n2∑
i=n1

gwi (x),

∇g(x; n1, n2) =
1

n2 − n1 + 1

n2∑
i=n1

∇gwi (x), and

∇2g(x; n1, n2) =
1

n2 − n1 + 1

n2∑
i=n1

∇2gwi (x),

for x ∈ D ⊂ Rp and 1 ≤ n1 ≤ n2 ≤ n. These quantities are unbiased estimates of Ewgw (x),

Ew∇gw (x) and Ew∇2gw (x). In addition, let

ȳ(x; n1, n2) = ∇g(x; n1, n2)>∇ fv (ḡ(x; n1, n2)),

which is the gradient of fv1 (ḡ(x; n1, n2)). This is an estimate of ∇{Ev fv (Ewgw (x))}. However, it

is a biased estimate, that is,

Eȳ(x; n1, n2) , ∇
(
Ev fv {Ewgw (x)}

)
.

78

Since the samples are i.i.d., the expectation of ȳ(x; n1, n2) only depends on the distribution of w

conditioned on v = v1, and the number of samples that are used to construct ȳ(x; n1, n2), we write

s(x; n2 − n1 + 1, v1) = E{ ȳ(x; n1, n2) |v = v1}.

We also let

[z̄(x; n1; n2)]i = {[∇2g(x; n1, n2)]::i}
>∇ fv1 {ḡ(x; n1, n2)}

+ {∇g(x; n1, n2)}>∇2 fv1 {ḡ(x; n1, n2)}[∇g(x; n1, n2)]:i,

which is the i-th row of the Hessian of fv1 (ḡ(x; n1, n2)) for 1 ≤ i ≤ p. Similarly, it is also a biased

estimate of ∇2 (Ev fv {Ewgw (x)}
)
.

5.2.2 Unbiased Stochastic Gradient Simulation

We first present Algorithm 8 to simulate unbiased gradients for the stochastic problems (5.4)

and (5.7) while fixing a component v1 for fv1 (Ewgw (x)). It can be considered as a variant of [56]

based on a multilevel randomization technique.

Algorithm 8 UnbiasedGradient(x, v1, n0, γ)
Input: x ∈ D,v1 ∈ Ωv, base level n0 ≥ 0 ∈ Z, rate parameter 1 < γ < 2.
Output: G(x, v1) ∈ Rp, an unbiased estimate of the gradient of fv1 (Ewgw (x)) at point x and
component v1.
Sample N from a geometric distribution with success probability 1 − p where p = 0.5γ.
Independently sample I2n0+N+1 (v1) = {wi}

2n0+N+1

i=1 from the distribution of w given v1.
Compute Y1(x) = ȳ(x; 1, 2n0+N+1).
Compute Y2(x) = ȳ(x; 1, 2n0+N).
Compute Y3(x) = ȳ(x; 2n0+N + 1, 2n0+N+1).
Compute Y4(x) = ȳ(x; 1, 2n0).
Compute G(x, v1) = Y1(x)−0.5(Y2(x)+Y3(x))

p̃N
+ Y4(x), where p̃N = (1 − p)pN .

Output: G(x, v1)

We shall prove in Section 4 that the output of Algorithm 8 is indeed an unbiased estimate of

fv1 (Ewgw (x)) for fixed v1. It follows that if we sample v1 ∼ v, then G(x, v1) would be an unibased

79

estimate of the gradient of Ev fv (Ewgw (x)).

Remark: We note that Algorithm 8 requires conditional sampling of w given v. It is difficult

to obtain such samples in a very general setting. However, in many applications, obtaining such

samples can be relatively easy. We will discuss this in detail in Section 5.3. Moreover, Algorithm

8 uses a random number of samples to construct an unbiased estimate. We will show later that

the number of samples needed is finite in expectation and independent of the problem sample size.

However, for problems such as (5.6), computing an unbiased estimate using this algorithm may

need the same number of samples as computing the true gradient in a worst case scenario.

5.2.3 Optimization Algorithms

We now present our optimization algorithms to solve problem (5.4), (5.7) and (5.6) based on

unbiased gradient simulation. First, in Algorithm 9, we present our SGD (SimGD) algorithm with

a simple averaging techinique (see [73]). Convergence of our SimGD algorithm under different

conditions will be analyzed in Section 5.4. It is worth noting that our SGD algorithm is an analogue

of the standard stochastic gradient descent algorithm that substitutes simulated unbiased gradients

for sampled stochastic gradients. Therefore, the unbiased gradient simulation algorithm enables us

to solve SCO problems in the same way as generic stochastic optimization problems.

Algorithm 9 Simulated Gradient Descent (SimGD)
Input: Number of iterations T , step size {λt }

∞
t=1, initial point x0, base level n0 and rate parameter

1 < γ < 2.
for t = 0, 1, 2, . . . ,T − 1 do

Sample vt follows the distribution of v and let ρt = UnbiasedGradient(xt, vt, n0, γ)
xt+1 = ΠD (xt − λt ρt)

end for
option I Output x̃T =

2
(T)(T+1)

T−1∑
t=0

(t + 1)xt

option II Output xT

In contrast to SGD, where a diminishing step size is used, we also introduce an SVRG type

of control variate variance reduced algorithm as mentioned in [6] with constant step size for SCO

problems. As described in [6] for ERM problems (5.2) and in [50] for generic stochastic optimiza-

80

tion problems (5.1), a variance reduced stochastic gradient at point x with respect to the reference

point x̃ is defined as∇ fv′ (x)−∇ fv′ (x̃)+∇F (x̃) where v′ is sampled from v for the generic stochastic

optimization problem (5.1) and defined similarly for the ERM problem. We adopt these variance

reduction techniques in our setting of unbiased gradient simulation. Specifically, we will simulate

the unbiased gradients at x and x̃ simultaneously, using the same set of simulated data, to reduce

variance. The details of generating such variance reduced gradients are specified in Algorithm 10.

For ease of presentation, Algorithm 10 is built on the setting of Algorithm 8 and it can be modified

by using Algorithm 9 for solving problem (5.6).

Algorithm 10 SimulatedGradient(x, x̃, G(x̃), v1, n0, γ)

Input: x ∈ Rd , v1 ∈ Ωv, reference point x̃ ∈ Rd , an estimate of gradient at point x̃ Ĝ(x̃) ∈ Rp,
base level n0 ≥ 0 and rate parameter 1 < γ < 2.
Output: W ∈ Rp, a variance reduced unbiased estimator of the gradient of Ev f (Ewgw (x), v) at
point x.
Sample N from a geometric distribution with success rate 1 − p, where p = 0.5γ.
Compute p̃N = (1 − p)pN .
Independently sample I2n0+N+1 (v1) = {wi}

2n0+N+1

i=1 from the conditional distribution of w, given
v = v1.
Compute Y1(x) = ȳ(x; 1, 2n0+N+1) and Y1(x̃) = ȳ(x̃; 1, 2n0+N+1).
Compute Y2(x) = ȳ(x; 1, 2n0+N) and Y2(x̃) = ȳ(x̃; 1, 2n0+N).
Compute Y3(x) = ȳ(x; 2n0+N + 1, 2n0+N+1) and Y3(x̃) = ȳ(x̃; 2n0+N + 1, 2n0+N+1).
Compute Y4(x) = ȳ(x; 1, 2n0) and Y4(x̃) = ȳ(x̃; 1, 2n0).
Compute W (x, v1) = Y1(x)−0.5{Y2(x)+Y3(x)}

p̃N
+ Y4(x).

Compute W (x̃, v1) = Y1(x̃)−0.5{Y2(x̃)+Y3(x̃)}
p̃N

+ Y4(x̃).
Set W (x, x̃, v1) = W (x, v1) −W (x̃, v1) + Ĝ(x̃).
Output: W (x, x̃, v1).

In Algorithm 10, the reference gradient G(x̃) can either be the full gradient at ∇F (x̃) or an

estimate of the full gradient ∇F (x̃). For example, when it is efficient to compute full gradients

of the objective function for problem (5.4) and (5.7), we propose to use the following method in

Algorithm 11 to solve this problem. Since it can be considered as a variant of SVRG, we refer to

it as Simulated Variance Reduced Gradient Descent.

However, when the full gradient ∇F (x̃) of the objective function (5.4) is difficult to compute,

we estimate ∇F (x̃) by sampling the unbiased gradient within a batch of the indices and take the

81

Algorithm 11 Simulated Variance Reduced Gradient Descent(SimVRG)
Inputs: Number of epochs T , number of steps in each epoch M , step size λ and initial point x̃0,
base level n0 ≥ 0, and parameter 1 < γ < 2.
for s = 0, 1, 2, . . . ,T − 1 do

Compute the full gradient ∇F (x̃s)
x0 = x̃s
for t = 0, 1, 2, . . . , M − 1 do

Sample vt from the distribution of v.
Compute ρt = SimulatedGradient(xt, x̃s, Ĝ(xs), vt, n0, γ).
Update xt+1 = ΠD (xt − λρt).

end for
option I Output x̃s+1 = xM
option II Output x̃s+1 = xt for randomly chosen t ∈ {1, ..., M }

end for

average. This method is related to another variant of SVRG, namely SCSG in [52] and we present

this approach in Algorithm 12. Convergence properties of Algorithm 11 and Algorithm 12 will be

analyzed in Section 5.4.

Algorithm 12 Stochastically Controlled Simulated Gradient Descent(SCSimG)
Inputs: Number of epochs T , number of steps in each epoch M , batch size B, sample size K ,
step size λ, initial point x̃0, base level n0 ≥ 0 and parameter 1 < γ < 2.
for s = 0, 1, . . . ,T − 1 do

x0 = x̃s
Uniformly sample a batch Is ⊂ Ωv according to the distribution of v with |Is | = B
for k = 1, 2, . . . , K do

Compute hk (x̃s) = 1
B
∑

vi∈IsUnbiasedGradient(x̃s, vi, n0, γ)
end for
Compute h̃(x̃s) = 1

K
∑K

i=1 hi (x̃s)
for t = 0, 1, . . . , M − 1 do

Sample vt from the distribution of v.
Set ρt = SimulatedGradient(xt, x̃s, h̃(x̃s), vt, n0, γ).
Update xt+1 = ΠD (xt − λρt).

end for
option I Output x̃s = xM
option II Output x̃s = xt for randomly chosen t ∈ {1, ..., M }

end for

5.3 Examples

We now present some important examples that can be formulated as SCO problems.

82

5.3.1 Conditional Random Fields (CRF)

Conditional random fields (CRF) [74] is a popular probabilistic model used for structural pre-

diction. It has been used in a number of natural language processing (NLP) problems including

part-of-speech tagging [74], noun-phrase chunking [75, 76], named identity recognition [77] and

image segmentation in computer vision [78]. In the CRF models, the conditional probability of a

structured outcome y ∈ Y, given an observation x ∈ X is:

p(y | z; x) =
exp{x>F (z, y)}∑

y′∈Y exp{x>F (z, y′)}
, (5.9)

where x ∈ Rp is the parameter for estimation and F (z, y) ∈ Rp is a vector of pre-specified feature

functions depending on the underlying structure ofY. Based on the set of training data {(zi, yi), i =

1, . . . , n}, the parameter x can be estimated by maximizing the log likelihood function

max
x∈Rp

1
n

n∑
i=1

log p(yi | zi, x). (5.10)

As we shall see, the practical difficulty of computing the objective function value or its gradient lies

in the exponential cardinality of Y. The hardness of computing log-likelihood and gradients for

CRFs has been considered in [79] and [80]. When the underlying structure of Y is a linear chain

or a tree, both the objective function value and the gradient can be efficiently computed through

dynamic programming (the Viterbi algorithm in [81]). For these structural cases, a number of

methods can be used to solve (5.10); for example, deterministic methods such as the iterative

scaling algorithm in [74] , L-BFGS in [76], stochastic methods such as stochastic gradient descent

in [82] and SAG in [83]. However, when the underlying structure is more general (no linear chain

or tree structure), computing a full gradient or even a stochastic gradient for problem (5.10) is

difficult due to the exponential cardinality of Y. In our setting, we can formulate (5.10) as a

83

composition optimization problem as in (5.4) by noticing that (5.10) is equivalent to

min
x

1
n

n∑
i=1

(
log

[∑
y′∈Y

exp{x>F (zi, y
′)}

]
− x>F (zi, yi)

)
, (5.11)

whose gradient can be written as

1
n

n∑
i=1

[∑y′∈Y exp{x>F (zi, y
′)}F (zi, y

′)∑
y′∈Y exp{x>F (zi, y′)}

− F (zi, yi)
]
.

Note that this problem is equivalent to

min
x

1
n

n∑
i=1

(
log

[1
|Y |

∑
y′∈Y

exp{x>F (zi, y
′)}

]
− x>F (zi, yi) + log |Y |

)
.

Therefore we can view it as a form of problem (5.4) and apply our optimization algorithms to solve

(5.11).

To obtain a sample y′ uniformly from Y, we first let (V, E) be the underlying graph of the

CRF. We assume that each vertex v ∈ V takes value from {1, 2, . . . , K }. Under this setting, we can

generate a discrete uniform random number over {1, 2, . . . , K } for each vertex, and hence repeat

this |V | times to obtain a sample y′ uniformly, where |V | is the cardinality of V . This sampling

scheme avoids sampling y′ from a set of cardinality K |V | directly.

5.3.2 Softmax Optimization

Softmax optimization problems naturally arise when applying maximum likelihood estima-

tion to the multinomial logistic model with application in many fields such as economics [84]

and and network flows [85]. Specifically, the multinomial logistic model assumes the conditional

probability mass of a discrete response Y ∈ {1, . . . , K }, given covariates X ∈ Rp and parameters

β = [β1, . . . βK] ∈ Rp×K , satisfies

P(Y = k |X, β) =
exp(X> βk)∑K
i=1 exp(X> βi)

.

84

Given n observations (Xi,Yi), the log-likelihood function can be written as

l (β) =
n∑

i=1

[
X>i βYi − log{

K∑
j=1

exp(X>j β j)}
]
.

Therefore, maximizing the log-likelihood function, which is known as the Softmax optimization

problem, can be viewed as a compositional optimization problem, where the β here corresponds

to the x in problem (5.6). To obtain a sample wi in Algorithm 1 for this problem, we only need to

generate a discrete uniform random variable over {1, . . . , K }.

5.3.3 Cox’s Partial Likelihood

The Cox’s partial likelihood model [86, 87] is a widely used in survival analysis for censored

data. It belongs to a class of survival models in statistics called the proportional-hazards models

in [88]. In particular, the Cox’s model assumes there is a hazard function for an observation with

covariates X ∈ Rp and coefficient β ∈ Rp as:

λ(t |X) = λ0(t) exp(β>X),

where λ0(t) is the baseline hazard function. In Cox’s model, for each data point, we have two

variables Ti denoting the true life time and Ci denoting the censoring time independent of Ti, which

are not observed. Instead, we can only observe (Xi,Yi,∆i)1≤i≤n assumed to be i.i.d. observations,

where Xi ∈ R
p are the covariates, Yi ∈ R are the observed times determined by Yi = min(Ti,Ci),

and ∆i = I{Yi = Ti} are the indications for the censoring. Moreover, for a particular observation

i, we define its risk set as the index set { j : Yj ≥ Yi}. Cox’s model aims to maximize the partial

likelihood function as follows:

max
β∈Rp
−

1
n

n∑
i=1
∆i[−X>i β + log{

n∑
j=1
I(Yj ≥ Yi) exp(X>j β)}], (5.12)

85

which is equivalent to

min
β∈Rp

1
n

n∑
i=1
∆i[−X>i β + log{

1
n

n∑
j=1
I(Yj ≥ Yi) exp(X>j β)}],

whose gradient can be written as

1
n

n∑
i=1
∆i[−Xi +

∑n
j=1 I(Yj ≥ Yi) exp(X>j β)X j∑n

j=1 I(Yj ≥ Yi) exp(X>i β)
]. (5.13)

This problem is of the form of (5.4); hence we can apply our proposed algorithms to solve it.

5.4 Theory

In this section we present the analysis of our algorithms applied to problem (5.4), that is,

min
x∈D

F (x) , Ev fv {Ewgw (x)}. We omit the cases (5.6) and (5.7) as they can be analyzed similarly.

We first give our assumptions.

5.4.1 Definitions, Assumptions and Lemmas

Assumption 1 In the compact set D, each fv (·) in the objective function of (5.4) is three times

continuously differentiable. Its first-order, second-order and third-order derivatives are Lipschitz

continuous with constants L f ,1,L f ,2, and L f ,3, respectively.

Assumption 2 In the compact setD, each gw (·) is twice continuously differentiable. Its first-order

and second-order derivatives are Lipschitz continuous with constant Lg,1 and, Lg,2, respectively.

Assumption 3 F (·) in (5.4) is strongly convex with parameter µ and its gradient is Lipstchitz

continuous with constant L.

Definition. Define G = {y ∈ Rd | y = gw (x), x ∈ D,w ∈ Ωw} H = {y ∈ R
d×p | y = ∇gw (x), x ∈

D,w ∈ Ωw} and J = {z ∈ Rd×p×p | z = ∇2gw (x), x ∈ D,w ∈ Ωw}.

Assumption 4 lg,0 = sup{‖y‖∞ | y ∈ G ⊂ Rd } < ∞, lg,1 = sup{‖y‖∞ | y ∈ H ⊂ Rd×p} < ∞, and

lg,2 = sup{‖z‖∞ | z ∈ J ⊂ Rd×p×p}.

86

Assumption 5 l f ,0 = sup{|y | | y = fv (x), x ∈ G, v ∈ Ωv } < ∞, l f ,1 = sup{‖y‖∞ | y =

∇ fv (x), x ∈ G, v ∈ Ωv } < ∞, l f ,2 = sup{‖y‖∞ | y = ∇2 fv (x), x ∈ G, v ∈ Ωv } < ∞, and

l f ,3 = sup{‖y‖∞ | y = ∇3 fv (x), x ∈ G, v ∈ Ωv } < ∞.

Before we proceed, we state two elementary lemmas used in our proofs.

Lemma 5.4.1. Let f : Rd → R be a continuously differentiable function with L-Lipschitz contin-

uous gradients, then

| f (y) − f (x) − 〈∇ f (x), y − x〉| ≤
L
2
‖y − x‖22 .

We omit the proof of Lemma 5.4.1 since it is a well known result.

Lemma 5.4.2. Given a positive integer N and a sequence of real number ai, 1 ≤ i ≤ N , we have,

for all p ≥ 1, that

|

N∑
i=1

ai |
p ≤ N p−1

N∑
i=1
|ai |

p, (5.14)

Proof. This is a consequence of Jensen’s inequality. �

5.4.2 Properties of the Unbiased Gradient Simulation Algorithm

In this subsection, we analysis the properties of Algorithm 8. We first prove the unbiasedness

of G(x, v1).

Proposition 5.4.3 (Unbiasedness). For any x ∈ D, sample v1 ∼ v, G(x, v1) is an unbiased estimate

of ∇Ev fv {Ewgw (x)}, that is, EG(x, v1) = ∇Ev fv {Ewgw (x)}.

Proof. Fix v1 and x ∈ D. We first show that the output G(x, v1) is an unbiased estimate of

87

∇ fv1 {Ewgw (x)}. According to Algorithm 8, we have,

EG(x, v1) =
∞∑

n=0
E{G(x, v1) |N = n}P(N = n)

=

∞∑
n=0

E{Y1(x) − 0.5(Y2(x) + Y3(x)) |N = n}
p̃n

p̃n + EY4(x)

=

∞∑
n=0
E{Y1(x) − 0.5(Y2(x) + Y3(x)) |N = n} + EY4(x).

Note that condition on N = n, we assume there is hypothetically a set of i.i.d. samples I2n0+n+1 (v1) =

{wi}
2n+n0+1

i=1 that follows the distribution of w given v = v1 that Y1(x), Y2(x) and Y3(x) are con-

structed. Therefore

E{Y2(x) |N = n} = E{ ȳ(x, 1, 2n0+n)} = s(x; 2n+n0)

= E{ ȳ(x; 2n0+n + 1, 2n0+n+1)} = E{Y3(x) |N = n},

EY4(x) = s(x; 2n0, v1) and E{Y1(x) |N = n} = s(x; 2n0+n+1, v1). Therefore,

EG(x, v1)

=

∞∑
n=0

(
s(x; 2n0+n+1, v1) − 0.5{s(x; 2n0+n, v1) + s(x; 2n0+n, v1)}

)
+ s(x; 2n0, v1)

=

∞∑
n=0
{s(x; 2n0+n+1, v1) − s(x; 2n0+n, v1)} + s(x; 2n0, v1).

88

Note that the above sum is a telescoping sum. Therefore

EG(x, v1) = lim
n→∞

s(x; 2n0+n, v1) − s(x; 2n0, v1) + s(x; 2n0, v1)

= lim
n→∞

s(x; 2n0+n, v1) = lim
n→∞
Eȳ(x; 1, 2n0+n, v1)

= lim
n→∞
E
(
∇g(x; 1, 2n0+n)>∇ fv1 {ḡ(x; 1, 2n0+n)}

)
= lim

n→∞
E
(
{

1
2n0+n

2n0+n∑
i=1
∇gwi (x)}> fv1 {

1
2n0+n

2n0+n∑
i=1

gwi (x)}
)
.

Note that

‖{
1

2n0+n

2n0+n∑
i=1
∇gwi (x)}> fv1 {

1
2n0+n

2n0+n∑
i=1

gwi (x)}‖2

≤ ‖{
1

2n0+n

2n0+n∑
i=1
∇gwi (x)}‖F ‖ fv1 {

1
2n0+n

2n0+n∑
i=1

gwi (x)}‖2

≤
(√

pd‖{
1

2n0+n

2n0+n∑
i=1
∇gwi (x)}‖∞

) (√
d‖ fv1 {

1
2n0+n

2n0+n∑
i=1

gwi (x)}‖∞
)

≤
√

pdlg,0lg,1,

where the last inequality utilizes Assumption 4 and Assumption 5. Then, by the bounded conver-

gence theorem, we can exchange the expectation and limit and hence

EG(x, v1) = E lim
n→∞

(
{

1
2n0+n

2n0+n∑
i=1
∇gwi (x)}> fv1 {

1
2n0+n

2n0+n∑
i=1

gwi (x)}
)
.

By continuity of ∇ fv1 (·), we have

lim
n→∞
∇ fv1 {

1
2n0+n

2n0+n∑
i=1

gwi (x)} = ∇ fv1 { limn→∞

1
2n0+n

2n0+n∑
i=1

gwi (x)}.

89

Since the samples are i.i.d., by the strong law of large numbers, we have

lim
n→∞

1
2n0+n

2n0+n∑
i=1

gwi (x) = Ewgw (x) almost surely.

By a similar argument,

lim
n→∞

1
2n0+n

2n0+n∑
i=1
∇gwi (x) = Ew∇gw (x) almost surely.

Therefore

EG(x, v1) = E lim
n→∞

(
{

1
2n0+n

2n0+n∑
i=1
∇gwi (x)}> fv1 {

1
2n0+n

2n0+n∑
i=1

gwi (x)}
)

= E
(
{Ew∇gw (x)}>∇ fv1 {Ewgw (x)}

)
= {Ew∇gw (x)}>∇ fv1 {Egw (x)} = ∇{ fv1 (Ewgw (x))}.

Finally, taking expectation w.r.t v1, we obtain that

EG(x, v1) = Ev∇(fv {Ewgw (x)}) = ∇Ev fv {Ewgw (x)}.

�

We now state two ancillary lemmas that will be used in proving the finite variance of G(x, v1).

Lemma 5.4.4. For every s ∈ H ⊂ Rd×p, t ∈ G ⊂ Rd , and v1 ∈ Ωv, define H : H × G → Rp

by H (s, t) = s>∇ fv1 (t). Then every component function of H (s, t) has a Lipschitz continuous

gradient with constant LH =
√

L2
f ,1 + 2dl2

f ,2 + 2dl2
g,1L2

f ,2, i.e., for every 1 ≤ i ≤ p, we have

‖∇[H]i (s1, t1) − ∇[H]i (s2, t2)‖F ≤ LH ‖vec([s1]:i, t1) − vec([s2]:i, t2)‖2.

Proof. Before proving this lemma, we introduce the notation for partial derivatives of H (s, t), i.e.,

90

each component of the gradient ∇H (s, t) ∈ Rp × (Rd×p × Rd). Let

∂[H]i

∂[s]k j
(s, t) = δi j

∂ fv1

∂[t]k
(t), and

∂[H]i

∂[t]h
(s, t) =

d∑
k=1

[s]ki
∂[∇ fv1]k

∂[t]h
=

d∑
k=1

[s]ki
∂2 fv1

∂[t]k∂[t]h
(t),

where 1 ≤ i ≤ p, 1 ≤ j ≤ p, 1 ≤ k ≤ d , 1 ≤ h ≤ d, and δi j is the Kronecker delta, i.e., δi j = 1

when i = j; δi j = 0 otherwise. Note that by Assumption 1, ∇ fv1 is Lipschitz continuous with

constant L f ,1; therefore ∂[H]i
∂[s]k j (s, t), which is the partial derivative of ∇ fv1 , is Lipschitz continuous

with constant L f ,1. By Assumption 1, ∇2 fv1 is Lipschitz continuous with constant L f ,2; therefore

∂[H]i
∂[t]h (s, t) is Lipschitz continuous with constant L f ,2. Therefore

‖∇[H]i (s1, t1) − ∇[H]i (s2, t2)‖F ≤
√√√ d∑

k=1

p∑
j=1

(δi j
∂ fv1

∂[t]k
(t1) − δi j

∂ fv1

∂[t]k
(t2))2 +

d∑
h=1

(
d∑

k=1
[s1]ki

∂2 fv1

∂[t]k∂[t]h
(t1) −

d∑
k=1

[s2]ki
∂2 fv1

∂[t]k∂[t]h
(t2))2.

Since

d∑
k=1

p∑
j=1
{δi j

∂ fv1

∂[t]k
(t1) − δi j

∂ fv1

∂[t]k
(t2)}2 =

d∑
k=1
{
∂ fv1

∂[t]k
(t1) −

∂ fv1

∂[t]k
(t2)}22 = ‖∇ fv1 (t1) − ∇ fv2 (t2)‖22

≤ L2
f ,1‖t1 − t2‖

2
2

91

using the fact that |[s2]ki | ≤ lg,1 |
∂2 fv1

∂[t]k∂[t]h (t2) | ≤ l f ,2 for all k and h,

d∑
h=1
{

d∑
k=1

[s1]ki
∂2 fv1

∂[t]k∂[t]h
(t1) −

d∑
k=1

[s2]ki
∂2 fv1

∂[t]k∂[t]h
(t2)}2

≤ 2
d∑

h=1
{

d∑
k=1

[s1]ki
∂2 fv1

∂[t]k∂[t]h
(t1) −

d∑
k=1

[s2]ki
∂2 fv1

∂[t]k∂[t]h
(t1)}2

+ 2
d∑

h=1
{

d∑
k=1

[s2]ki
∂2 fv1

∂[t]k∂[t]h
(t1) −

d∑
k=1

[s2]ki
∂2 fv1

∂[t]k∂[t]h
(t2)}2

≤ 2l2
f ,2

d∑
h=1
{

d∑
k=1

[s1]ki − [s2]ki}
2 + 2l2

g,1

d∑
h=1
{

d∑
k=1

∂2 fv1

∂[t]k∂[t]h
(t1) −

∂2 fv1

∂[t]k∂[t]h
(t2)}2

≤ 2l2
f ,2d‖[s1]:i − [s2]:i‖

2
2 + 2l2

g,1dL2
f ,2‖t1 − t2‖

2
2 .

Hence,

‖∇[H]i (s1, t1) − ∇[H]i (s2, t2)‖F

≤

√
L2

f ,1‖t1 − t2‖
2
2 + 2l2

f ,2d‖[s1]·i − [s2]·i‖22 + 2dl2
g,1L2

f ,2‖t1 − t2‖
2
2

≤

√
L2

f ,1 + 2dl2
f ,2 + 2dl2

g,1L2
f ,2‖vec([s1]:i, t1) − vec([s2]:i, t2)‖2

= LH ‖vec([s1]:i, t1) − vec([s2]:i, t2)‖2.

�

Lemma 5.4.5. For every s, s0 ∈ H ⊂ R
d×p and t, t0 ∈ G ⊂ R

p, define

R(s, s0, t, t0) = H (s, t) − H (s0, t0) − ∇H (s0, s0)[s − s0, t − t0].

Then we have

‖R(s, s0, t, t0)‖ ≤
LH

2
(‖s − s0‖

2
F + p‖t − t0‖

2
2).

Proof. Recall that ∇H (s, t)[u, v] ∈ Rp, u ∈ Rd×p, v ∈ Rd and each component of ∇H (s, t) is

92

defined as

[∇H (s, t)[u, v]]i = ∇[H]i (s, t)[u, v] =
d∑

k=1

p∑
j=1

∂[H]i

∂[s]k j
(s, t) · [u]k j +

d∑
h=1

∂[H]i

∂[t]h
(s, t) · [v]h.

Note that R(s, s0, t, t0) can be considered as the remainder of the first-order Taylor expansion of

H (s, t) at (s0, t0). Now using Lemma 5.4.1, we have

‖R(s, s0, t, t0)‖2 = ‖H (s, t) − H (s0, t0) − ∇H (s0, t0)[(s − s0), (t − t0)]‖2

=

√√ p∑
i=1
|[H]i (s, t) − [H]i (s0, t0) − ∇[H]i (s0, t0)[s − s0, t − t0]|2

≤

p∑
i=1
|[H]i (s, t) − [H]i (s0, t0) − ∇[H]i (s0, t0)[s − s0, t − t0]|

≤

p∑
i=1

1
2

√
L2

f ,1 + 2dl2
f ,2 + 2dl2

g,1L2
f ,2 ‖vec([s] i, t) − vec([s0] i, t0)‖22

=
1
2

√
L2

f ,1 + 2dl2
f ,2 + 2dl2

g,1L2
f ,2(‖s − s0‖

2
F + p‖t − t0‖

2
2)

=
LH

2
(‖s − s0‖

2
F + p‖t − t0‖

2
2) (5.15)

for any x, x0 ∈ H and y, y0 ∈ G.

�

Proposition 5.4.6 (Finite second moment). Fix any x ∈ D and v1 ∈ Ωv, we have

E‖G(x, v1)‖22 ≤ C′D,

where

C′D = 2pd2l2
g,1l2

f ,1 +
108p2d2(L2

f ,1 + 2df 2
f ,2 + 2dl2

g,1L2
f ,2)(l4

g,0 + l4
g,1)

4n0 (1 − 0.5γ)(1 − 0.52−γ)

and 1 < γ < 2 is from the unbiased gradient simulation algorithm. Therefore G(x, v1) has finite

variance.

93

Proof. First, by (5.14),

‖G(x, v1)‖22 = ‖
(
Y1(x) − 0.5{Y2(x) + Y3(x)}

)
p̃N

+ Y4(x)‖22

≤ 2‖
(
Y1(x) − 0.5{Y2(x) + Y3(x)}

)
p̃N

‖22 + 2‖Y4(x)‖22 .

To obtain an upper bound of E‖G(x, v1)‖22 , we first take expectation with respect to N . Therefore

E‖G(x, v1)‖22

≤ 2
∞∑

n=0
E(
‖Y1(x) − 0.5{Y2(x) + Y3(x)}‖22

p̃2
n

|N = n)P(N = n) + 2E‖Y4(x)‖22

≤ 2
∞∑

n=0

E
(
‖Y1(x) − 0.5{Y2(x) + Y3(x)}‖22 |N = n

)
p̃n

+ 2E‖Y4(x)‖22 . (5.16)

To bound ‖Y4(x)‖22 , we first note that

‖Y4(x)‖22 = ‖{
1

2n0

2n0∑
i=1
∇gwi (x)}>∇ fv1 {

1
2n0

2n0∑
i=1

gwi (x)}‖22

≤ ‖
1

2n0

2n0∑
i=1
∇gwi (x)‖22 ‖∇ fv1 {

1
2n0

2n0∑
i=1

gwi (x)}‖22

≤ ‖
1

2n0

2n0∑
i=1
∇gwi (x)‖2F ‖∇ fv1 {

1
2n0

2n0∑
i=1

gwi (x)}‖22 .

Then by Assumptions 4 and 5,

‖
1

2n0

2n0∑
i=1
∇gwi (x)‖F ≤

√
pd‖

1
2n0

2n0∑
i=1
∇gwi (x)‖∞ ≤

√
pdlg,1, and

‖∇ fv1 {
1

2n0

2n0∑
i=1

gwi (x)}‖2 ≤
√

d‖∇ fv1 {
1

2n0

2n0∑
i=1

gwi (x)}‖∞ ≤
√

dl f ,1.

94

Therefore

E‖Y4(x)‖22 ≤ pd2l2
g,1l2

f ,1. (5.17)

To bound the first term on the right hand side of (5.16), we first define the following vector-

valued function: for s ∈ H ⊆ Rd×p and t ∈ G ⊆ Rd , define H : H × G → Rp by H (s, t) ,

sᵀ∇ fv1 (t). Moreover, to simplify the notation, let n̄0 = n0+n and n̄+0 = n0+n+1. Therefore given

that N = n, we can write

Y1(x) − 0.5{Y2(x) + Y3(x)}

= ȳ(x; 1, 2n̄+0) − 0.5{ ȳ(x; 1, 2n̄0) + ȳ(x; 2n̄0 + 1, 2n̄+0)}

= H {∇g(x; 1, 2n̄+0), ḡ(x; 1, 2n̄+0)} − 0.5H {∇g(x; 1, 2n̄0), ḡ(x; 1, 2n̄0)}

− 0.5H {∇g(x; 2n̄0 + 1, 2n̄+0), ḡ(x; 2n̄0 + 1, 2n̄+0). (5.18)

Since ḡ(x; 1, 2n̄+0) = 0.5{ḡ(x; 1, 2n̄0) + ḡ(x; 2n̄0 + 1, 2n̄+0)}, and ∇g(x; 1, 2n̄+0) = 0.5{∇g(x; 1, 2n̄0) +

∇g(x; 2n̄0 + 1, 2n̄+0)}, when expanding the three functions in (5.18) at (Ew∇gw (x),Ewgw (x)), the

zeroth order terms and first order terms vanish. Therefore condition on N = n,

Y1(x) − 0.5(Y2(x) + Y3(x))

= R{∇g(x; 1, 2n̄+0),Ew∇gw (x), ḡ(x; 1, 2n̄+0),Ewgw (x)}

− 0.5R{∇g(x; 1, 2n̄0),Ew∇gw (x), ḡ(x; 1, 2n̄0),Ewgw (x)}

− 0.5R{∇g(x; 2n̄0 + 1, 2n̄+0),Ew∇gw (x), ḡ(x; 2n̄0 + 1, 2n̄+0),Ewgw (x)}.

95

As a result, using (5.14) and (5.15), we have

∞∑
n=0

E[‖Y1 − 0.5(Y2 + Y3)‖22 |N = n]
p̃n

≤

∞∑
n=0

3
p̃n

(
E‖R{∇g(x; 1, 2n̄+0),Ew∇gw (x), ḡ(x; 1, 2n̄+0),Ewgw (x)}‖22

+
1
4
E‖R{∇g(x; 1, 2n̄0),Ew∇gw (x), ḡ(x; 1, 2n̄0),Ewgw (x)}‖22

+
1
4
E‖R{∇g(x; 2n̄0 + 1, 2n̄+0),Ew∇gw (x), ḡ(x; 2n̄0 + 1, 2n̄+0),Ewgw (x)}‖22

)
≤

3L2
H

4

∞∑
n=0

1
p̃n

(
E(‖∇g(x; 1, 2n̄+0) − Ew∇gw (x)‖2F + p‖ḡ(x; 1, 2n̄+0) − Ewgw (x)‖22)2

+
1
4
E(‖∇g(x; 2n̄0 + 1, 2n̄+0) − Ew∇gw (x)‖2F + p‖ḡ(x; 2n̄0 + 1, 2n̄+0) − Ewgw (x)‖22)2

)
+

1
4
E(‖∇g(x; 1, 2n̄0) − Ew∇gw (x)‖2F + p‖ḡ(x; 1, 2n̄0) − Ewgw (x)‖22)2. (5.19)

Then, by (5.14),

E(‖∇g(x; 1, 2n̄+0) − Ew∇gw (x)‖2F + p‖ḡ(x; 1, 2n̄+0) − Ewgw (x)‖22)2

≤ 2E‖∇g(x; 1, 2n̄+0) − Ew∇gw (x)‖4F + 2p2E‖ḡ(x; 1, 2n̄+0) − Ewgw (x)‖22)4.

Next, we will analyze the two terms on the right hand side of the inequality above.

Since ∇g(x; 1, 2n̄+0) = 1
2n̄
+
0

∑2n̄
+
0

i=1 ∇gwi (x), and E∇g(x; 1, 2n̄+0) = Ew∇gw (x), we can write

E‖∇g(x; 1, 2n̄+0) − Ew∇gw (x)‖4F

= E{
d∑

k=1

p∑
h=1

(
1

2n̄+0

2n̄
+
0∑

i=1
{[∇gwi (x)]kh − Ew[∇gw (x)]kh})2}2

≤ pd
d∑

k=1

p∑
h=1
E(

1
2n̄+0

2n̄
+
0∑

i=1
{[∇gwi (x)]kh − Ew[∇gw (x)]kh})4,

where the last inequality is obtained by using (5.14). Note that for i.i.d. {X }ni=1’s that EXi = 0, and

96

|X | ≤ c0 we have

E(
1
n

n∑
i=1

Xi)4

=
1
n4E{

n∑
i=1

X4
i +

∑
i, j

(4X3
i X j + 3X2

i X2
j) +

∑
i, j,k

6X2
i X j Xk +

∑
i, j,k,h

Xi X j Xk Xh}

=
1
n4 {nEX4

1 + 3n(n − 1)EX2
1 X2

2 } ≤
3c4

0
n2 .

Since |[∇gwi (x)]kh − Ew[∇gw (x)]kh | ≤ 2lg,1 and E{[∇gwi (x)]kh − Ew[∇gw (x)]kh} = 0, we have

E(1
2n̄
+
0

∑2n̄
+
0

i=1 {[∇gwi (x)]kh − Ew[∇gw (x)]kh})4 ≤
48l4

g,1

4n̄
+
0

and hence E‖∇g(x; 1, 2n̄+0) − Ew∇gw (x)‖4F ≤
48p2d2l4

g,1

4n̄
+
0

. By the same argument, we also have E‖∇g(x; 1, 2n̄0) − Ew∇gw (x)‖4F ≤
48p2d2l4

g,1
4n̄0 and

E‖∇g(x; 2n̄0 + 1, 2n̄+0) − Ew∇gw (x)‖4F ≤
48p2d2l4

g,1
4n̄0 . Similarly, since Eḡ(x; 1, 2n̄+0) = Ewgw (x) and

|[gwi (x)] j − Ew[gw (x)] j | ≤ 2lg,0, we have

E‖ḡ(x; 1, 2n̄+0) − Ewgw (x)‖42 = E(
d∑

j=1
{

1
2n̄+0

2n̄
+
0∑

i=1
([gwi (x)] j − Ew[gw (x)] j)}2)2

≤ d
d∑

j=1
E{

1
2n̄+0

2n̄
+
0∑

i=1
([gwi (x)] j − Ew[gw (x)] j)}4 ≤

48d2l4
g,0

4n̄+0
.

Using the same argument, we also have E‖ḡ(x; 1, 2n̄0) − Ewgw (x)‖42 ≤
48d2l4

g,0
4n̄0 , and E‖ḡ(x; 2n̄0 +

1, 2n̄+0) − Ewgw (x)‖42 ≤
48d2l4

g,0
4n̄0 . Therefore

E(‖∇g(x; 1, 2n̄+0) − Ew∇gw (x)‖2F + p‖ḡ(x; 1, 2n̄+0) − Ewgw (x)‖22)2

≤ 2E‖∇g(x; 1, 2n̄+0) − Ew∇gw (x)‖4F + 2p2E‖ḡ(x; 1, 2n̄+0) − Ewgw (x)‖22)4

≤
96p2d2(l4

g,0 + l4
g,1)

4n̄+0
.

97

Hence

E(‖∇g(x; 1, 2n̄0) − Ew∇gw (x)‖2F + p‖ḡ(x; 1, 2n̄0) − Ewgw (x)‖22)2 ≤
96p2d2(l4

g,0 + l4
g,1)

4n̄0
and

E(‖∇g(x; 2n̄0 + 1, 2n̄+0) − Ew∇gw (x)‖2F + p‖ḡ(x; 2n̄0 + 1, 2n̄+0) − Ewgw (x)‖22)2 ≤
96p2d2(l4

g,0 + l4
g,1)

4n̄0
.

Now we continue with the analysis of (5.19)

∞∑
n=0

1
p̃n
E{(Y1(x) − 0.5(Y2(x) + Y3(x)))2 | N = n}

≤
3LH

4

∞∑
n=0

1
p̃n

(
E(‖∇g(x; 1, 2n̄+0) − Ew∇gw (x)‖2F + p‖ḡ(x; 1, 2n̄+0) − Ewgw (x)‖22)2

+
1
4
E(‖∇g(x; 1, 2n̄0) − Ew∇gw (x)‖2F + p‖ḡ(x; 1, 2n̄0) − Ewgw (x)‖22)2

+
1
4
E(‖∇g(x; 2n̄0 + 1, 2n̄+0) − Ew∇gw (x)‖2F + p‖ḡ(x; 2n̄0 + 1, 2n̄+0) − Ewgw (x)‖22)2

)
≤ 72(L2

f ,1 + 2df 2
f ,2 + 2dl2

g,1L2
f ,2)p2d2(l4

g,0 + l4
g,1)

∞∑
n=0

3
p̃n4n+n0+1 ,

since LH =
√

L2
1 + 2df 2

f ,2 + 2dl2
g,1L2

2. Note that p̃n = (1 − 0.5γ)0.5γn and 1 < γ < 2; therefore

∞∑
n=0

3
p̃n4n+n0+1 =

3
4n0+1(1 − 0.5γ)

∞∑
n=0

2n(γ−2) =
3

4n0+1(1 − 0.5γ)(1 − 0.52−γ)
< ∞.

Hence

∞∑
n=0

{‖Y1(x) − 0.5(Y2(x) + Y3(x))‖22
p̃n

≤
54p2d2(L2

f ,1 + 2df 2
f ,2 + 2dl2

g,1L2
f ,2)(l4

g,0 + l4
g,1)

4n0 (1 − 0.5γ)(1 − 0.52−γ)
(5.20)

Combining (5.17) and (5.20), we can bound (5.16) by

E‖G(x, v1)‖22 ≤ 2E‖Y4(x)‖22 + 2
∞∑

n=0

{‖Y1(x) − 0.5(Y2(x) + Y3(x))‖22
p̃n

≤ 2pd2l2
g,1l2

f ,1 +
108p2d2(L2

f ,1 + 2df 2
f ,2 + 2dl2

g,1L2
f ,2)(l4

g,0 + l4
g,1)

4n0 (1 − 0.5γ)(1 − 0.52−γ)
= C′D .

98

�

Proposition 5.4.7 (Finite expected computational cost). For any x ∈ D and v1 ∈ Ωv, the num-

ber of random numbers one needs to generate (simulation cost) to construct G(x, v1) has finite

expectation.

Proof. Fix v1 ∈ Ωv and x ∈ D, and denote by costG the number of random variables one needs

to generate to construct G(x, v1). In Algorithm 8, we generate one geometric random variable N

and 2n0+n+1 wi’s that follows the distribution of w conditioned on v = v1. Thus we have costG =

1 + 2n0+N+1. Taking expectation w.r.t. N , we conclude

E(costG) = E{E(costG |N)} =
∞∑

n=0
E(costG |N = n)P(N = n)

=

∞∑
n=0

(1 + 2n0+n+1)(1 − 0.5γ)0.5γn

=1 + 2n0+1(1 − 0.5γ)(1 − 21−γ)−1 < ∞,

where the convergence of the series above relies on γ > 1. �

Remark: Note that the choices of both the base level n0 and γ affect both the variance of

the simulated estimator and its computational cost. By choosing a larger n0, the variance of the

simulated gradient will be lower but it will also have a higher computational cost. Similarly,

choosing a smaller γ will result in an estimator that has lower variance but higher computational

cost.

5.4.3 Convergence of the Simulated Gradient Descent Algorithm

In this subsection, we establish the convergence properties of Algorithm 9 when F (·) is either

µ-strongly convex or non-strongly convex. Note that with the unbiasedness and finite second-order

moment properties of the simulated gradients, convergence properties of the Simulated Gradient

99

Descent (SimGD) algorithm for SCO problems follow from the classical theory of SGD for generic

stochastic optimization problems.

Lemma 5.4.8. [Almost Sure Convergence] If F (·) is µ-strongly convex, assume E‖xt − x?‖22 ≤ D

for all t ≥ 0. When
∑

t λt = ∞ and
∑

t λ
2
t < ∞, ‖xt − x?‖22 converges to 0 almost surely.

Proof. Define Yt = ‖xt − x?‖22 . By the contraction property of projection operators, we have

Yt+1 = ‖xt+1 − x?‖22 = ‖ΠD (xt − λt ρt) − ΠD (x?)‖22 ≤ ‖xt − λt ρt − x?‖22 . Thus

Yt+1 − Yt ≤ ‖xt+1 − x?‖2 = ‖xt − x?‖2 = −2λt (xt − x?)ᵀ ρt + λ
2
t ‖ρt ‖

2
2, (5.21)

Moreover, with respect to the natural filtration {Ft }t≥0, we can obtain, using Proposition 5.4.3

and 5.4.6, E{ρt | Ft } = ∇F (xt) and E{‖ρt ‖
2
2 | Ft } ≤ C′

D
and by convexity of F (·), we have 0 ≥

F (x?) − F (x) ≥ (x? − x)ᵀ∇F (x). Therefore

E[Yt+1 − Yt |Ft] ≤ −2λt (xt − x?)ᵀ∇F (xt) + λ2
t C′D ≤ λ

2
t C′D . (5.22)

Define Mt = Yt +
∑∞

t λ2
sC′
D

with respect to the natural filtration Ft . Then it can be checked that

Mt is a positive supermartingale with finite expected values. Thus, it follows from the martingale

convergence theorem that Mt and consequently Yt = ‖xt − x?‖22 converges almost surely. To show

that ‖xt − x?‖22 → 0, we define Zt =
∑t

s=0 2λt (xt − x?)ᵀ∇F (xt), and notice that 0 ≤ Zt ≤ Zt+1

due to convexity of F (·). Therefore, using the monotone convergence theorem and (5.22) we have

E[
∑

t

2λt (xt − x?)ᵀ∇F (xt)] ≤
∑

t

E[2λt (xt − x?)ᵀ∇F (xt)]

=
∑

t

E[Yt] − E[Yt+1] + λ2
t E[ρ2

t] ≤ D +
∑

t

λ2
t C′D < ∞. (5.23)

Thus the monotone series Zt =
∑

s≤t 2λs (xs − x?)ᵀ∇F (xs) converges almost surely. It follows

from
∑

t λt = ∞ and (xt − x?)ᵀ∇F (xt) ≥ 0 that (xt − x?)ᵀ∇F (xt) → 0. Since F (·) is µ-strongly

convex, we have (xt − x?)ᵀ∇F (xt) ≥ µ‖xt − x?‖22 , which implies ‖xt − x?‖22 → 0. �

100

The techniques of our proof for the Lemma below come mostly from [73].

Lemma 5.4.9. [Rate of Convergence] In the presence of µ-strong convexity for F (·), with λt =

2
µ(t+1) , we can show that E‖xT − x?‖22 ≤

4C ′
D

µ2(T+1) and E‖ x̃T − x?‖22 ≤
4C ′
D

µ2(T+1) . In the case where

F (·) is not strongly convex, if we have E‖xt − x?‖22 ≤ D for all t, then with λt =
c√
t+1

and c > 0,

we can show that EF (x̃T) − F (x?) ≤
2
√

2C ′
D
+c−14

√
2D

√
T

.

Proof. By the contraction property of projection operators, we have

E[‖xt − x?‖2 |xt−1] ≤ E[‖xt−1 − λt ρt−1 − x?‖2 |xt−1]

= ‖xt−1 − x?‖22 + λ
2
t E[‖ρt−1‖

2
2 |xt−1] − 2λt (xt−1 − x?)ᵀE[ρt−1 |xt−1]

= ‖xt−1 − x?‖22 + λ
2
t E[‖ρt−1‖

2
2 |xt−1] − 2λt (xt−1 − x?)ᵀ∇F (xt−1)

≤ ‖xt−1 − x?‖22 + λ
2
t C′D − 2λt (F (xt−1) − F (x?) +

µ

2
‖xt−1 − x?‖22). (5.24)

The third line follows from the Proposition 5.4.3 and the fourth line follows from Proposition 5.4.6

and strong convexity. Now we have

E[F (xt−1)] − F (x?) ≤
λtC′D

2
+
λ−1

t − µ

2
E‖xt−1 − x?‖22 −

λ−1
t

2
E‖xt − x?‖22 . (5.25)

Finally, with λt =
2

µ(t+1) , it follows from the convexity of F (·) that

0 ≤ E[F (x̃T)] − F (x?) ≤
2

(T)(T + 1)

T−1∑
t=0

(t + 1)
(
E[F (xt)] − F (x?)

)
≤

2
(T)(T + 1)

T−1∑
t=0

t + 1
t + 2

C′
D

µ
+
µ

4
(
(t)(t + 1)E‖xt−1 − x?‖22 − (t + 1)(t + 2)E‖xt − x?‖22

)
≤

2C′
D

µ(T + 1)
−
µ

2
E‖xT − x?‖22 . (5.26)

The last inequality implies that both E‖xT − x?‖22 ≤
4C ′
D

µ2(T+1) and E‖ x̃T − x?‖22 ≤
4C ′
D

µ2(T+1) (using

strong convexity).

When F (·) is non-strongly convex, we can use the convexity of F (·) so that the last inequality

101

of (5.24) becomes

E[‖xt − x?‖2 |xt−1] ≤ ‖xt−1 − x?‖22 + λ
2
t C′D − 2λt (F (xt−1) − F (x?)), (5.27)

Thus we have

E[F (xt−1)] − F (x?) ≤
λtC′D

2
+
λ−1

t

2
E‖xt−1 − x?‖22 −

λ−1
t

2
E‖xt − x?‖22 . (5.28)

Finally, with λt =
c√

(t+1)
, it follows from the convexity of F (·) and the assumption that E‖xt −

x?‖22 ≤ D that

0 ≤ E[F (x̃T)] − F (x?) ≤
2

(T)(T + 1)

T−1∑
t=0

(t + 1)
(
E[F (xt)] − F (x?)

)
≤

√
2

2c(T)(T + 1)
D +

2
(T)(T + 1)

T−1∑
t=0

(t + 1)
cC′
D

2
√

t + 2

+

T−1∑
t=1

(

√
t + 2(t + 1)

2c
−

√
t + 1(t)

2c
)E‖xt − x?‖22

≤

√
2

2c(T)(T + 1)
D +

2
(T)(T + 1)

T−1∑
t=0

√
t + 1

cC′
D

2
+

T−1∑
t=1

√
t + 1
2c

(
3t + 2

√
(t + 2)(t + 1) + t

)D

≤

√
2

2c(T)(T + 1)
D +

2
(T)(T + 1)

(T + 1)
3
2
(cC′

D

2
+

3D
2c

)
≤

2
√

2C′
D
+ c−14

√
2D

√
T

(5.29)

�

Corollary 5.4.10. The iteration complexity of Algorithm 9 is O(ε−1) when F (·) is µ-strongly con-

vex and the iteration complexit is O(ε−2) when F (·) is non-strongly convex.

5.4.4 Lipschitz Continuity of the Simulated Variance Reduced Gradient

In this subsection, we will present the convergence properties of the Simulated Variance Re-

duced Gradient (SVRG) algorithm. In contrast to the stochastic variance reduced gradient algo-

102

rithm for the ERM problem (5.2) , the property that

E‖∇ fi (x) − fi (x̃) + ∇Fn(x̃)‖22 ≤ 4L{Fn(x) − Fn(x?) + Fn(x̃) − Fn(x?)},

where i is uniformly sampled from {1, . . . , n} and L is the Lipschitz constant for ∇Fn(x), may no

longer hold because of the variance introduced by the simulation procedure. Instead, we establish

a Lipschitz continuity property for the output W = W (x, v1) −W (x̃, v1) + G(x̃), where G(x̃) can

be full gradient or a subsampled gradient at x̃, from Algorithm 10 that is important in the proof of

the convergence rate of Algorithms 11 and 12. We need the following lemma to prove the results.

Lemma 5.4.11. For all n ≥ 1, we have

E
[

sup
x∈D
|[∇g(x; 1, n)]k j − [Ew∇gw (x)]k j |

4
]
≤ C1

(log(4n2)
n

)2 (5.30)

E
[

sup
x∈D
|[ḡ(x; 1, n)]h − [Ewgw (x)]h |

4
]
≤ C0

(log(4n2)
n

)2 (5.31)

E
[

sup
x∈D
|[∇2g(x; 1, n)]ki j − [Ew∇2gw (x)]ki j |

4
]
≤ C2

(log(4n2)
n

)2 (5.32)

for any n ≥ 1, 1 ≤ k, h ≤ d and 1 ≤ i, j ≤ p, where C1 = 8l4−p
g,1 (4diam(D)p)pp/2Lp

g,1 + 64l4
g,1(p +

1)2, C0 = 8l4−p
g,0 (4diam(D)p)pp/2Lp

g,0 + 64l4
g,0(p + 1)2 and C2 = 8l4−p

g,2 (4diam(D)p)pp/2Lp
g,2 +

64l4
g,2(p + 1)2.

We also need the following ancillary functions to develop our theory. For x ∈ H ⊂ Rd×p,

y ∈ G ⊂ Rd and z ∈ J ⊂ Rd×p×p, for every 1 ≤ i ≤ p and 1 ≤ j ≤ p, define J (x, y, z) :

H × G × J → Rp×p that

[J]i j (x, y, z) = z>:i j∇ fv (y) + [x]i:∇
2 fv (y)[x]: j .

Lemma 5.4.12. [J]i j (x, y, z) has Lipschitz continuous gradient with constant LJ; that is, for

103

x1, x2 ∈ H , y1, y2 ∈ G and z1, z2 ∈ J ,

‖∇[J]i j (x1, y1, z1) − ∇[J]i j (x2y2, z2)‖F ≤ LJ ‖vec(x1, y1, z1) − vec(x2, y2, z1)‖2,

where

LJ = {12d2L2
f ,2l2

g,1 + 4d(
√

dg,2L f ,2 + d2l2
g,1L f ,3)2 + dL2

f ,1 + 4d2l2
f ,2L2

g,2 + 2d2l2
f ,2 + 4d3l2

f ,3}
1/2.

Proof. Note that

[J]i j (x, y, z) = z>:i j∇ fv (y) + [x]i:∇
2 fv (y)[x]: j

=

d∑
k=1

(
[z]ki j

∂ fv1

∂[y]k
(y) + [x]ki

(d∑
h=1

∂ fv1

∂[y]k∂[y]h
(y)[x]h j

))
.

We can then compute each component of the gradient ∇[J]i j (x, y, z) ∈ R(d×p)×d×(d×p×p) as

∂[J]i j

∂[x]k ′ j ′
(x, y, z) = δi j ′

d∑
h=1

∂ fv1

∂[y]k ′∂[y]h
(y)[x]h j + δ j j ′

d∑
k=1

∂ fv1

∂[y]k∂[y]k ′
(y)[x]ki

= δi j ′[∇2 fv1]k ′:(y)[x]: j + δ j j ′[∇2 fv1]k ′:(y)x:i

∂[J]i j

∂[y]h′
(x, y, z) =

d∑
k=1

(
[z]ki j

∂ fv1

∂[y]k∂[y]h′
(y) + [x]ki

(d∑
h=1

∂ fv1

∂[y]k∂[y]h∂[y]h′
(y)[x]h j

))
= [z]>:i j[∇

2 fv1 (y)]:h′ + [x]>:i [∇3 fv1 (y)]::h′[x]: j

∂[J]i j

∂[z]k ′′i′′ j ′′
(x, y, z) = δii′′δ j j ′′

∂ fv1

∂[y]k ′′
(y) = δii′′δ j j ′′ [∇ fv1 (y)]k ′′ .

where 1 ≤ i′, j′, i′′, j′′ ≤ p,1 ≤ k′, h′, k′′ ≤ d and δi j is the Kronecker delta. Note that by

104

Assumptions 1, 2, 4, and 5, we have

|
∂[J]i j

∂[x]k ′ j ′
(x1, y1, z1) −

∂[J]i j

∂[x]k ′ j ′
(x2, y2, z2) |

≤ δi j ′ |[∇2 fv1]k ′:(y1)[x1]: j − [∇2 fv1]k ′:(y2)[x2]: j | + δ j j ′ |[∇2 fv1]k ′:(y1)[x1]:i − [∇2 fv1]k ′:(y2)[x2]:i |

≤ δi j ′
√

d{l f ,2‖[x1]: j − [x2]: j ‖2 + L f ,2lg,1‖y1 − y2‖2} + δ j j ′
√

d{l f ,2‖[x1]:i − [x2]:i‖2

+ L f ,2lg,1‖y1 − y2‖2}

= (δi j ′ + δ j j ′)
√

dL f ,2lg,1‖y1 − y2‖2 + δi j ′
√

dl f ,2‖[x1]: j − [x2]: j ‖2 + δ j j ′
√

dl f ,2‖[x1]:i − [x2]:i‖2

|
∂[J]i j

∂[y]h′
(x1, y1, z1) −

∂[J]i j

∂[y]h′
(x2, y2, z2) |

≤ |[z1]>:i j[∇
2 fv1 (y1)]:h′ − [z2]>:i j[∇

2 fv1 (y2)]:h′ |

+ |[x1]>:i [∇3 fv1 (y1)]::h′[x1]: j − [x2]>:i [∇3 fv1 (y2)]::h′[x2]: j |

≤
√

dlg,2L f ,2‖y1 − y2‖2 +
√

dl f ,2Lg,2‖[z1]:i j − [z2]:i j ‖2 + dl2
g,1L f ,3‖y1 − y2‖2

+ dlg,1l f ,3‖[x1]: j − [x2]: j ‖2 + dlg,1l f ,3‖[x1]:i − [x2]:i‖2

= (
√

dlg,2L f ,2 + dl2
g,1L f ,3)‖y1 − y2‖2 +

√
dl f ,2Lg,2‖[z1]:i j − [z2]:i j ‖2

+ dlg,1l f ,3‖[x1]: j − [x2]: j ‖2 + dlg,1l f ,3‖[x1]:i − [x2]:i‖2

|
∂[J]i j

∂[z]k ′′i′′ j ′′
(x1, y1, z1) −

∂[J]i j

∂[z]k ′′i′′ j ′′
(x2, y2, z2) |

≤ |δii′′δ j j ′′[∇ fv1 (y1)]k ′′ − δii′′δ j j ′′[∇ fv1 (y1)]k ′′ |

≤ δii′′δ j j ′′L f ,1‖y1 − y2‖2.

105

Note that

‖∇[J]i j (x1, y1, z1) − ∇[J]i j (x2, y2, z2)‖2F

=

d∑
k ′=1

p∑
j ′=1
|
∂[J]i j

∂[x]k ′ j ′
(x1, y1, z1) −

∂[J]i j

∂[x]k ′ j ′
(x2, y2, z2) |2

+

d∑
h′=1
|2
∂[j]i j

∂[y]h′
(x1, y1, z1) −

∂[j]i j

∂[y]h′
(x2, y2, z2) |2

+

d∑
k ′′=1

p∑
i′′=1

p∑
j ′′=1
|
∂[J]i j

∂[z]k ′′i′′ j ′′
(x1, y1, z1) −

∂[J]i j

∂[z]k ′′i′′ j ′′
(x2, y2, z2) |2.

Then based on our previous computation and using (5.14), we have

d∑
k ′=1

p∑
j ′=1
|
∂[J]i j

∂[x]k ′ j ′
(x1, y1, z1) −

∂[J]i j

∂[x]k ′ j ′
(x2, y2, z2) |2

≤

d∑
k ′=1

p∑
j ′=1

3{(2δi j ′ + 2δ j j ′)dL2
f ,2l2

g,1‖y1 − y2‖
2
2 + δi j ′dl2

f ,2‖[x1]: j − [x2]: j ‖
2
2

+ δ j j ′dl2
f ,2‖[x1]:i − [x2]:i‖

2
2 }

= 12d2L2
f ,2l2

g,1‖y1 − y2‖
2
2 + d2l2

f ,2‖[x1]: j − [x2]: j ‖
2
2 + d2l2

f ,2‖[x1]:i − [x2]:i‖
2
2 },

d∑
h′=1
|
∂[j]i j

∂[y]h′
(x1, y1, z1) −

∂[j]i j

∂[y]h′
(x2, y2, z2) |2

≤ 4d(
√

dlg,2L f ,2 + dl2
g,1L f ,3)2‖y1 − y2‖

2
2 + 4d2l2

f ,2L2
g,2‖[z1]:i j − [z2]:i j ‖

2
2

+ 4d3l2
f ,3‖[x1]: j − [x2]: j ‖

2
2 + 4d3l2

g,1l2
f ,3‖[x1]:i − [x2]:i‖, and

d∑
k ′′=1

p∑
i′′=1

p∑
j ′′=1
|
∂[J]i j

∂[z]k ′′i′′ j ′′
(x1, y1, z1) −

∂[J]i j

∂[z]k ′′i′′ j ′′
(x2, y2, z2) |2 ≤ dL2

f ,1‖y1 − y2‖
2
2 .

106

Therefore

‖∇[J]i j (x1, y1, z1) − ∇[J]i j (x2, y2, z2)‖2F

≤ {12d2L2
f ,2l2

g,1 + 4d(
√

dg,2L f ,2 + d2l2
g,1L f ,3)2 + dL2

f ,1}‖y1 − y2‖
2
2 + 4d2l2

f ,2L2
g,2‖[z1]:i j − [z2]:i j ‖

2
2

+ (d2l2
f ,2 + 4d3l2

f ,3)‖[x1]: j − [x2]: j ‖
2
2 + (d2l2

f ,2 + 4d3l2
f ,3)‖[x1]:i − [x2]:i‖

2
2

≤ {12d2L2
f ,2l2

g,1 + 4d(
√

dg,2L f ,2 + d2l2
g,1L f ,3)2 + dL2

f ,1 + 4d2l2
f ,2L2

g,2

+ 2d2l2
f ,2 + 4d3l2

f ,3}‖vec(x1 − x2, y1 − y2, z1 − z2)‖22

= L2
J ‖vec(x1 − x2, y1 − y2, z1 − z2)‖22

�

Based on the ancillary function J (x, y, z), for x, x0 ∈ H ⊂ R
d×p, y, y0 ∈ G ⊂ R

d and z, z0 ∈

J ⊂ Rd×p×p, we define

[R]i j (x, x0, y, y0, z, z0)

= [J]i j (x, y, z) − [J]i j (x0, y0, z0) − {∇[J]i j (x0, y0, z0)}[x − x0, y − y0, z − z0],

where

{∇[J]i j (x0, y0, z0)}[x − x0, y − y0, z − z0]

=
(
vec{∇[J]i j (x0, y0, z0)}

)>vec(x − x0, y − y0, z − z0)

=

d∑
k ′=1

d∑
j ′=1

∂[J]i j

∂[x]k ′ j ′
(x0, y0, z0)([x]k ′ j ′ − [x0]k ′ j ′) +

d∑
h′=1

∂[J]i j

∂[y]h′
([y]h′ − [y0]h′)

+

d∑
k ′′=1

p∑
i′′=1

p∑
j ′′=1

∂[J]i j

∂[z]k ′′i′′ j ′′
(x0, y0, z0)([z]k ′′i′′ j ′′ − [z0]k ′′i′′ j ′′).

Lemma 5.4.13. For all x, x0 ∈ H , y, y0 ∈ G and z, z0 ∈ J , we have

|[R]i j (x, x0, y, y0, z, z0) | ≤
LJ

2
‖vec(x, y, z) − vec(x0, y0, z0)‖22,

107

where

LJ = {12d2L2
f ,2l2

g,1 + 4d(
√

dg,2L f ,2 + d2l2
g,1L f ,3)2 + dL2

f ,1 + 4d2l2
f ,2L2

g,2 + 2d2l2
f ,2 + 4d3l2

f ,3}
1/2.

Proof. This result is a direct consequence of Lemma 5.4.1. �

Now we proceed with the main lemma of this section. This lemma will be used for proving

convergence results for our SimVRG (Algorithm 11) and SCSimG (Algorithm 12) algorithms.

Lemma 5.4.14. There exist a constant CD < ∞ such that for any v1 ∈ Ωv and x, x̃ ∈ D, W (x, v1)

and W (x̃, v1) from the variance reduced unbiased gradient W (x, x̃, v1) = W (x, v1) − W (x̃, v1) +

∇G(x̃) in Algorithm 10 satisfies

E‖W (x, v1) −W (x̃, v1)‖22 ≤ CD ‖x − x̃‖22, (5.33)

where

CD = 4p2d2 f 2
g,2l2

f ,1 + 4p2d4l4
g,1l2

f ,2

+ 9L2
J p2(C0 + C1 + C2)

((n0 + 1)2

1 − 2γ−2 +
2(n0 + 1)2γ−2

(1 − 2γ−2)2 +
23γ−6 + 2γ−2

(1 − 2γ−2)3
)
.

Proof. Fixing v1 ∈ Ωv and x, x̃ ∈ D, we have

W (x, v1) −W (x̃, v1) =
1

p̃N

(
Y1(x) − Y1(x̃) −

1
2
(
Y2(x) − Y2(x̃) + Y3(x) − Y3(x̃)

))
+ Y4(x) − Y4(x̃).

108

Similar to the proof of Proposition 5.4.6, we first take expectation with respect to N . Then,

E‖W (x, v1) −W (x̃, v1)‖22 =
∞∑

n=0
E{‖W (x, v1) −W (x̃, v1)‖22 |N = n}p̃n

=

∞∑
n=0

p∑
i=1
E
(
{[W (x, v1)]i − [W (x̃, v1)]i}

2 |N = n
)
p̃n ≤

p∑
i=1

2E{[Y4(x)]i − [Y4(x̃)]i}
2

+

∞∑
n=0

p∑
i=1

2
p̃n
E{

(
[Y1(x)]i − [Y1(x̃)]i − 0.5{[Y2(x)]i − [Y2(x̃)]i + [Y3(x)]i − [Y3(x̃)]i}

)2
|N = n},

where the last inequality comes from (5.14). Since [Y4(·)]i and [Y1(·)]i −0.5{[Y2(·)]i + [Y3(·))]i} are

continuous for every 1 ≤ i ≤ p, the mean value theorem implies that there exist ζi and ξi that lie

between x and x̃ such that [Y4(x)]i − [Y4(x̃)]i = ∇[Y4(ζi)]>i (x − x̃) and

(
[Y1(x)]i − 0.5{[Y2(x)]i + [Y3(x)]i}

)
−

(
[Y1(x̃)]i − 0.5{[Y2(x̃)]i + [Y3(x̃)]i}

)
= {∇

(
[Y1(ξi)]i − 0.5{[Y2(ξi)]i + [Y3(ξi)]i}

)
}>(x − x̃).

Therefore, we may write

E‖W (x, v1) −W (x̃, v1)‖22 =
p∑

i=1
2E{∇[Y4(ζi)]>i (x − x̃)}2

+

∞∑
n=0

p∑
i=1

2
p̃n
E
({
∇
(
[Y1(ξi)]i − 0.5{[Y2(ξi)]i + [Y3(ξi)]i}

)>(x − x̃)
}2
|N = n

)
≤

p∑
i=1

2‖x − x̃‖22E‖∇[Y4(ζi)]i‖
2
2

+

∞∑
n=0

p∑
i=1

2‖x − x̃‖22
p̃n

E
{
‖∇

(
[Y1(ξi)]i − 0.5{[Y2(ξi)]i + [Y3(ξi)]i}

)
‖22 |N = n

}

=

p∑
i=1

2‖x − x̃‖22E‖∇[Y4(ζi)]i‖
2
2

+

∞∑
n=0

p∑
i=1

p∑
j=1

2‖x − x̃‖22
p̃n

E
{
‖[∇Y1(ξi)]i j − 0.5{[∇Y2(ξi)]i j + [∇Y3(ξi)]i j }‖

2
2 |N = n

}
, (5.34)

109

where the last inequality uses the Cauchy-Shwartz inequality. Next, we first obtain an upper bound

for E‖∇[Y4(ζi)]i‖
2
2 and then bound E

{
‖∇

(
[Y1(ξi)]i − 0.5{[Y2(ξi)]i + [Y3(ξi)]i}

)
‖22 |N = n

}
using a

function of n in order to analyze the infinite sum above.

To obtain an upper bound for E‖[∇Y4(ζi)]i‖
2
2 , we first note that

∇{[Y4(ζi)]i}

= {[∇2g(x; 1, 2n0)]::i}
>∇ fv1 {ḡ(x; 1, 2n0)} + {∇g(x; 1, 2n0)}>∇2 fv1 (ḡ(x; 1, 2n0))[∇g(x; 1, 2n0)]i:.

Therefore by (5.14),

‖∇{[Y4(ζi)]i}‖
2
2 ≤ 2‖{[∇2g(x; 1, 2n0)]::i}

>∇ fv1 {ḡ(x; 1, 2n0)}‖22

+ 2‖{∇g(x; 1, 2n0)}>∇2 fv1 (ḡ(x; 1, 2n0))[∇g(x; 1, 2n0)]i:‖
2
2

≤ 2‖[∇2g(x; 1, 2n0)]::i‖
2
F ‖∇ fv1 {ḡ(x; 1, 2n0)}‖22

+ 2‖∇g(x; 1, 2n0)‖2F ‖∇
2 fv1 (ḡ(x; 1, 2n0))‖2F ‖[∇g(x; 1, 2n0)]i:‖

2
2 .

By Assumptions 4 and 5,

‖[∇2g(ζi; 1, 2n0)]::i‖
2
F ≤ pd‖[∇2g(ζi; 1, 2n0)]::i‖

2
∞ ≤ pdl2

g,2,

‖∇ fv1 {ḡ(ζi; 1, 2n0)}‖22 ≤ p‖ fv1 {ḡ(ζi; 1, 2n0)}‖2∞ ≤ dl2
f ,1,

‖∇g(ζi; 1, 2n0)‖2F ≤ pd‖∇g(ζi; 1, 2n0)‖2∞ ≤ pdl2
g,1,

‖∇2 fv1 (ḡ(ζi; 1, 2n0))‖2F ≤ d2‖∇2 fv1 (ḡ(ζi; 1, 2n0))‖2∞ ≤ d2l2
f ,2, and

‖[∇g(ζi; 1, 2n0)]i:‖
2
2 ≤ d‖[∇g(ζi; 1, 2n0)]i:‖

2
∞ ≤ dl2

g,1.

Therefore

‖∇{[Y4(ζi)]i}‖
2
2 ≤ 2pd2 f 2

g,2l2
f ,1 + 2pd4l4

g,1l2
f ,2.

110

Hence

2‖x − x̃‖22E‖∇[Y4(ζi)]i‖
2
2 ≤ {4pd2 f 2

g,2l2
f ,1 + 4pd4l4

g,1l2
f ,2}‖x − x̃‖22 . (5.35)

To bound the second term in (5.34), we let n̄0 = n + n0 and n̄+0 = n + n0 + 1 and note that

conditioned on N = n,

[∇Y1(ξi)]i j = [J]i j {∇g(ξi; 1, 2n̄+0), ḡ(ξi; 1, 2n̄+0),∇2g(ξi; 1, 2n̄+0)}

= [J]i j {Ew∇gw (ξi),Ewgw (ξi),Ew∇2gw (ξi)}

+ ∇[J]i j {Ew∇gw (ξi),Ewgw (ξi),Ew∇2gw (ξi)}[∇g(ξi; 1, 2n̄+0) − Ew∇gw (ξi),

ḡ(ξi; 1, 2n̄+0) − Ewgw (ξi),∇2g(ξi; 1, 2n̄+0) − Ew∇2gw (ξi)]+

R
{
∇g(ξi; 1, 2n̄+0),Ew∇gw (ξi), ḡ(ξi; 1, 2n̄+0),Ewgw (ξi),∇2g(ξi; 1, 2n̄+0),Ew∇2gw (ξi)

}
,

[∇Y2(ξi)]i j = [J]i j {∇g(ξi; 1, 2n̄0), ḡ(ξi; 1, 2n̄0),∇2g(ξi; 1, 2n̄0)}

= [J]i j {Ew∇gw (ξi),Ewgw (ξi),Ew∇2gw (ξi)}

+ ∇[J]i j {Ew∇gw (ξi),Ewgw (ξi),Ew∇2gw (ξi)}[∇g(ξi; 1, 2n̄0) − Ew∇gw (ξi),

ḡ(ξi; 1, 2n̄0) − Ewgw (ξi),∇2g(ξi; 1, 2n̄0) − Ew∇2gw (ξi)]+

R
{
∇g(ξi; 1, 2n̄0),Ew∇gw (ξi), ḡ(ξi; 1, 2n̄0),Ewgw (ξi),∇2g(ξi; 1, 2n̄0),Ew∇2gw (ξi)

}
, and

[∇Y3(ξi)]i j = [J]i j {∇g(ξi; 2n̄0 + 1, 2n̄+0), ḡ(ξi; 2n̄0 + 1, 2n̄+0),∇2g(ξi; 2n̄0 + 1, 2n̄+0)}

+ ∇[J]i j {Ew∇gw (ξi),Ewgw (ξi),Ew∇2gw (ξi)}[∇g(ξi; 2n̄0 + 1, 2n̄+0) − Ew∇gw (ξi),

ḡ(ξi; 2n̄0 + 1, 2n̄+0) − Ewgw (ξi), ∇2g(ξi; 2n̄0 + 1, 2n̄+0) − Ew∇2gw (ξi)]

+ R{∇g(ξi; 2n̄0 + 1, 2n̄0
+

), Ew∇gw (ξi), ḡ(ξi; 2n̄0 + 1, 2n̄0
+

), Ewgw (ξi),

∇2g(ξi; 2n̄0 + 1, 2n̄0
+

), Ew∇2gw (ξi)}.

111

Therefore, condition on N = n, we have

[∇Y1(ξi)]i j − 0.5{[∇Y2(ξi)]i j + [∇Y3(ξi)]i j }

= R
{
∇g(ξi; 1, 2n̄+0),Ew∇gw (ξi), ḡ(ξi; 1, 2n̄+0),Ewgw (ξi),∇2g(ξi; 1, 2n̄+0),Ew∇2gw (ξi)

}
−

1
2

R
{
∇g(ξi; 1, 2n̄0),Ew∇gw (ξi), ḡ(ξi; 1, 2n̄0),Ewgw (ξi),∇2g(ξi; 1, 2n̄0),Ew∇2gw (ξi)

}
−

1
2

R{∇g(ξi; 2n̄0 + 1, 2n̄+0), Ew∇gw (ξi), ḡ(ξi; 2n̄0 + 1, 2n̄+0),

Ewgw (ξi),∇2g(ξi; 2n̄0 + 1, 2n̄+0), Ew∇2gw (ξi)}.

Then, by (5.14)

E
{(

[∇Y1(ξi)]i j − 0.5{[∇Y2(ξi)]i j + [∇Y3(ξi)]i j }
)2��N = n

}

≤ 3E
(
R
{
∇g(ξi; 1, 2n̄+0),Ew∇gw (ξi), ḡ(ξi; 1, 2n̄+0),Ewgw (ξi),∇2g(ξi; 1, 2n̄+0),Ew∇2gw (ξi)

}2)
+

3
4
E
(
R
{
∇g(ξi; 1, 2n̄0),Ew∇gw (ξi), ḡ(ξi; 1, 2n̄0),Ewgw (ξi),∇2g(ξi; 1, 2n̄0),Ew∇2gw (ξi)

}2)
+

3
4
E
(
R{∇g(ξi; 2n̄0 + 1, 2n̄+0),Ew∇gw (ξi), ḡ(ξi; 2n̄0 + 1, 2n̄+0),

Ewgw (ξi),∇2g(ξi; 2n̄0 + 1, 2n̄+0), Ew∇2gw (ξi)}2
)
.

Now, applying Lemma 5.4.13 on the three terms on the right-hand-side of the inequality above,

E
{(

[∇Y1(ξi)]i j − 0.5{[∇Y2(ξi)]i j + [∇Y3(ξi)]i j }
)2��N = n

}

≤
3L2

J

4
{E‖∇g(ξi; 1, 2n0+n+1) − Ew∇gw (ξi)‖4F + E‖ḡ(ξi; 1, 2n0+n+1) − Ewgw (ξi)‖4F

+ E‖∇2g(ξi; 1, 2n0+n+1) − Ewgw (ξi)‖4F } +
3L2

J

16
{E‖∇g(ξi; 1, 2n0+n) − Ew∇gw (ξi)‖4F+

E‖ḡ(ξi; 1, 2n0+n) − Ewgw (ξi)‖4F + E‖∇2g(ξi; 1, 2n0+n) − Ew∇2gw (ξi)‖4F }+

3L2
J

16
{E‖∇g(ξi; 2n0+n + 1, 2n0+n+1) − Ew∇gw (ξi)‖4F

+ E‖ḡ(ξi; 2n0+n + 1, 2n0+n+1) − Ewgw (ξi)‖4F

+ E‖∇2g(ξi; 2n0+n + 1, 2n0+n+1) − Ew∇2gw (ξi)‖4F }.

112

Then applying Lemma 5.4.11 to the right-hand-side of the above inequality, we have

E
{(

[∇Y1(ξi)]i j − 0.5{[∇Y2(ξi)]i j + [∇Y3(ξi)]i j }
)2��N = n

}

≤
3L2

J

4
(
(C0 + C1 + C2)

{log(4n+n0+1)}2

4n+n0+1
)
+

3L2
J

8
(
(C0 + C1 + C2)

{log(4n0+n)}2

4n0+n
)

=
3L2

J (C0 + C1 + C2)

4n0+n+1 {
1
4
{log(4n+n0+1)}2 +

1
2
{log(4n0+n)}2}

≤
3L2

J (C0 + C1 + C2)

4n0+n+1 {
3
2

(n0 + n + 1)2}, (5.36)

where the last inequality is the result of log 4 < 2.

Now we are ready to obtain a bound for (5.34). Using (5.35) and (5.36), we have

E‖W (x, v1) −W (x̃, v1)‖22

≤

p∑
i=1

2‖x − x̃‖22E‖∇[Y4(ζi)]i‖
2
2

+

∞∑
n=0

p∑
i=1

p∑
j=1

2‖x − x̃‖22
p̃n

E
{
‖[∇Y1(ξi)]i j − 0.5{[∇Y2(ξi)]i j + [∇Y3(ξi)]i j }‖

2
2 |N = n

}

≤

p∑
i=1
{4pd2 f 2

g,2l2
f ,1 + 4pd4l4

g,1l2
f ,2}‖x − x̃‖22

+

∞∑
n=0

p∑
i=1

p∑
j=1

2‖x − x̃‖22
p̃n

3L2
J (C0 + C1 + C2)

4n0+n+1 {
3
2

(n0 + n + 1)2}

= ‖x − x̃‖22
{
4p2d2 f 2

g,2l2
f ,1 + 4p2d4l4

g,1l2
f ,2 + 9L2

J p2(C0 + C1 + C2)
∞∑

n=0

(n0 + n + 1)2

p̃n4n0+n+1

}
.

Since p̃n = (1 − 0.5γ)0.5γn and 1 < γ < 2, we have

∞∑
n=0

(n0 + n + 1)2

p̃n4n0+n+1 =
1

(1 − 0.5γ)4n0+1

∞∑
n=0

(n0 + n + 1)2

2(2−γ)n

=
(n0 + 1)2

1 − 2γ−2 +
2(n0 + 1)2γ−2

(1 − 2γ−2)2 +
23γ−6 + 2γ−2

(1 − 2γ−2)3 .

113

Therefore

E‖W (x, v1) −W (x̃, v1)‖22 ≤ CD ‖x − x̃‖22,

where

CD = 4p2d2 f 2
g,2l2

f ,1 + 4p2d4l4
g,1l2

f ,2

+ 9L2
J p2(C0 + C1 + C2)

((n0 + 1)2

1 − 2γ−2 +
2(n0 + 1)2γ−2

(1 − 2γ−2)2 +
23γ−6 + 2γ−2

(1 − 2γ−2)3
)
.

�

5.4.5 Convergence of the Simulated Variance Reduced Gradient Algorithm

In this section we prove the convergence of Algorithm 11. We make use of the constant CD

defined in Lemma 5.4.14 and Assumption 3 that F (·) is µ-strongly convex.

Lemma 5.4.15. Let F : Rp → R be a convex function with L-Lipschitz gradient and x? =

arg min
x∈Rp

F (x) be the global minimizer of F (·). Then for any x ∈ Rp,

1
2L
‖∇F (x)‖22 ≤ F (x) − F (x?).

We omit the proof for this lemma since it is a well known result.

Theorem 5.4.16. Consider Algorithm 11 with option II. Let λ be sufficiently small and M be

sufficiently large so that

α =
1

µ(1 − 4
µCDλ)λM

+
(4
µCD + 2L)λ

1 − 4
µCDλ

< 1. (5.37)

114

Then under Assumptions 1-5, we have geometric convergence in expectation for the SimVRG :

E[F (x̃s)] ≤ F (x?) + αs[F (x̃0) − F (x?)]

Proof. It follows from Lemma 5.4.15 that

‖∇F (x) − ∇F (x?)‖22 = ‖∇F (x)‖22 ≤ 2L[F (x) − F (x?)] (5.38)

. Now conditioning on xt , we can take expectation with respect to vt ∈ Ωv to obtain

E[‖ρt ‖
2
2 | xt] ≤2E[‖W (xt, vt) −W (x̃s, vt)‖22 | xt] + 2∇‖F (x̃s)‖22

≤2CD ‖xt − x̃s‖
2
2 + 4L[F (x̃s) − F (x?)]

≤4CD (‖xt − x?‖22 + ‖ x̃s − x?‖22) + 4L[F (x̃s) − F (x?)]

≤
8
µ

CD[F (xt) − F (x?)] + (
8
µ

CD + 4L)[F (x̃s) − F (x?)]. (5.39)

where the second inequality follows from Lemma 5.4.14 and equation (5.38). The last inequality

follows from the strong convexity of F (·). Thus, by the contraction property of the projection

operator ΠD ,

E[‖xt+1 − x?‖22 | xt]

≤‖xt − x?‖22 − 2λ(xt − x?)ᵀE[ρt |xt] + λ2E[‖ρt ‖
2
2 |xt]

≤‖xt − x?‖22 − 2λ(xt − x?)ᵀ∇F (xt) +
8
µ

CDλ2[F (xt) − F (x?)] + (
8
µ

CD + 4L)λ2[F (x̃s) − F (x?)]

≤‖xt − x?‖22 − 2λ[F (xt) − F (x?)] +
8
µ

CDλ2[F (xt) − F (x?)] + (
8
µ

CD + 4L)λ2[F (x̃s) − F (x?)]

=‖xt − x?‖22 − 2λ(1 −
4
µ

CDλ)[F (xt) − F (x?)] + (
8
µ

CD + 4L)λ2[F (x̃s) − F (x?)]. (5.40)

where the third line follows from the unbiasedness of the simulated gradient and the fourth line

follows from the convexity of F (·). Since x̃s+1 is selected uniformly after all M updates are

115

completed and x0 = x̃s, summing over the previous inequality over t = 0, ..., M − 1 and taking

expectation and using option II at stage s, we obtain

E[‖xM − x?‖22] + 2λ(1 −
4
µ

CDλ)ME[F (x̃s+1) − F (x?)]

≤E[‖x0 − x?‖22] + (
8
µ

CD + 4L)λ2ME[F (x̃s) − F (x?)]

=E[‖ x̃s − x?‖22] + (
8
µ

CD + 4L)λ2ME[F (x̃s) − F (x?)]

≤
2
µ
E[F (x̃s) − F (x?)] + (

8
µ

CD + 4L)λ2ME[F (x̃s) − F (x?)]

=(
2
µ
+ (

8
µ

CD + 4L)λ2M)E[F (x̃) − F (x?)]. (5.41)

Thus we obtain

E[F (x̃s+1) − F (x?)] ≤
[1
µ(1 − 4

µCDλ)λM
+

(4
µCD + 2L)λ

1 − 4
µCDλ

]
E[F (x̃s) − F (x?)]. (5.42)

This implies that E[F (x̃s) − F (x?)] ≤ αsE[F (x̃0) − F (x?)]. The conclusion follows. �

As we mentioned, the sample complexity becomes difficult to analyze in the presence of batch

size randomization. However, the corollary below provides an estimate of the total number of

samples that are needed to achieve and ε-accurate solution for the finite sample SCO problems

using Algorithm 11.

Corollary 5.4.17. In Algorithm 11, let Tε = min{n ≥ 0 | F (x̃k) − F (x?) ≤ ε } and let Nk,t be

the geometric random number that is generated when calling SimulatedGradient procedure at t-th

epoch and k-th iteration. Then we have

E{

Tε∑
k=1

M∑
t=1

(2n0+Nk,t+1 + 1)} = O(log(1/ε)).

116

Proof. Since Tε is a stopping time, by Wald’s identity and Proposition 5.4.7, we have

E{

Tε∑
k=1

M∑
t=1

2Nk,t+1} = M ETε E(2n0+Nk,t+1 + 1)

= M {1 + 2n0+1(1 − 0.5γ)(1 − 21−γ)−1}ETε .

Next, we analyze ETε . Since Tε is non- negative, we have

exp(ETε) ≤ E exp(Tε) =
∫ ∞

0
P{exp(Tε) ≥ x}dx = 1 +

∫ ∞

1
P{Tε ≥ log(x)}dx

≤ 1 +
∫ ∞

1
P{Tε ≥ blog(x)c}dx ≤ 3 +

∫ ∞

3
P{Tε ≥ blog(x)c}dx.

By the definition of Tε ,Markov’s inequality and Theorem 5.4.16 , we have

P(Tε ≥ k) ≤ P{F (x̃k) − F (x?) ≥ ε } ≤
1
ε
E{F (x̃k) − F (x?)} ≤

1
ε
αk {F (x̃0) − F (x?)}.

Therefore,

exp{ETε } ≤ 3 +
1
ε

∫ ∞

3
{F (x̃0) − F (x?)}αblog(x)cdx ≤ 3 +

F (x̃0) − F (x?)
αε

∫ ∞

3
xlog(α)dx.

If we choose M and λ in Algorithm 11 such that log α < −1, we have

exp{ETε } ≤ 3 +
F (x̃0) − F (x?)
αε (− log α − 1)

3log α+1.

Therefore ETε = O(log(1/ε)). Consequently, E{
∑Tε

k=1
∑M

t=1(2n0+Nk,t+1 + 1)} = O(1/ε). �

Corollary 5.4.18. Let { x̃s}s≥0 be the sequence of outputs from each epoch of the SimVRG algo-

rithm. Then, with probability 1, x̃s converges exponentially fast to x?.

Proof. It follows from Theorem 5.4.16 that we can find 0 < α < 1 such that E[F (x̃s)] ≤ F (x̃?) +

αs[F (x̃0) − F (x̃?)]. Pick any α < ρ < 1. Define the set As = {F (x̃s) − F (x?) > ρs}. We have

P(As) ≤ (αρ)sE[F (x̃0) − F (x?)], which implies that
∑

s≥0 P(As) < ∞. It then follows from the

117

Borel-Cantelli lemma that

P(As occurs infinitely often) = P
(

lim sup
s→∞

As
)
= P(

∞⋂
t=0

∞⋃
s=t

As) = inf
t≥0
P(
∞⋃
s=t

As)

≤ inf
t≥0

∑
s≥t

P(As) = 0. (5.43)

Thus with probability 1, F (x̃s)−F (x?) < ρs for s large enough (depending on each the probability

path), which implies ‖ x̃s − x?‖22 ≤
2
µ ρ

s in the presence of µ-strong convexity. �

5.4.6 Convergence of the Stochastically Controlled Simulated Gradient Algorithm

In this section we prove the convergence of Algorithm 12.

Lemma 5.4.19. Fix x ∈ D and K, B ≥ 1, and sample a batch I ⊂ Ωv with |I | = B following the

distribution of v and independently generate

hk (x) =
1
B

∑
vi∈I

UnibasedGradient(x, vi, n0, γ)

for 1 ≤ k ≤ K . Let C′
D

be the constant in the proof of Proposition 5.4.6, where E‖W (x, v)‖22 ≤ C′
D

for arbitary v ∈ Ωv. Defining h̃(x) = 1
K

∑K
i=1 hi (x), we have

E[h̃(x)] = ∇F (x) and V ar[h̃(x)] ≤
C′
D

K B
+ 4pd2l4

D (
1
K
+

1
B

), (5.44)

so V ar[h̃(x)] can be made arbitrarily small for any x ∈ D by making K and B sufficiently large.

Proof. First we have

E[h̃(x)] = E[h1(x)] = E[E[h1(x) |I]] =
1
B
E[E[

∑
vi∈I

UnibasedGradient(x, vi) |I]]

=
1
B
E[

∑
vi∈I

∇(fvi (Ewgw (x)))] = ∇F (x).

Second, for any v ∈ Ωv, denote Wi = UnbiasedGradient(x, vi), hv = ∇(fv (Ewgw (x))) and h(I) =

118

E[h1(x) |I] = 1
B
∑

vi∈I hvi . We have

V ar[h̃(x)] =E[V ar[h̃(x) |I]] + V ar[E[h̃(x) |I]] =
1
K
E[V ar[h1(x) |I]] + V arI[h(I)]

=
1
K
E
[
E[(h1(x) − h(I))ᵀ (h1(x) − h(I)) |I]

]
+

1
B

V arv[hv]

=
1

K B2E
[
E[(

B∑
i=1

Wi − hvi + hvi − h(I))ᵀ (
B∑

i=1
Wi − hvi + hvi − h(I)) |I]

]
+

1
B

V arv[hv]

=
1

K B2E
[
E[

B∑
i=1
‖Wi − hvi ‖

2
2 +

B∑
i=1

B∑
j=1

(hvi − h(I))ᵀ (hvj − h(I)) |I]
]
+

1
B

V arv[hv]

≤
C′
D

K B
+ 4pd2l2

f ,1l2
g,1(

1
K
+

1
B

),

where the last inequality follows from the definition of C′
D

and the fact that each component of

hv is bounded by dl f ,1lg,1 for any v ∈ Ωv, according to the definition of lD and hv. The equality

above it follows from the independence between the Wi’s given I. �

Theorem 5.4.20. Consider the Simulated SCSG Algorithm 12 with option II. Fix ε > 0 as the level

of accuracy. Let λ be sufficiently small and M be sufficiently large so that

α =
2

µ(1 − 8
µCDλ)λM

+
(8
µCD + 8L)λ

1 − 8
µCDλ

< 1, (5.45)

while making either K or B large enough so that

4(λ + 1
2µ)

1 − 8
µCDλ

V ar[h̃(x̃s)] < ε. (5.46)

Then

E[F (x̃s) − F (x?)] ≤ αsE[F (x̃0) − F (x?)] +
1

1 − α
ε. (5.47)

119

Proof. Conditioning on xt , we can take expectation with respect to vt ∈ Ωv to obtain

E[‖ρt ‖
2
2 | xt]

≤2E[‖W (xt, vt) −W (x̃s, vt)‖22 | xt] + 4‖∇F (x̃s)‖22 + 4‖ h̃(x̃s) − ∇F (x̃s)‖22

≤2CD ‖xt − x̃s‖
2
2 + 8L[F (x̃s) − F (x?)] + 4‖ h̃(x̃s) − ∇F (x̃s)‖22

≤4CD (‖xt − x?‖22 + ‖ x̃s − x?‖22) + 8L[F (x̃s) − F (x?)] + 4‖ h̃(x̃s) − ∇F (x̃s)‖22

≤
8
µ

CD[F (xt) − F (x?)] + (
8
µ

CD + 8L)[F (x̃s) − F (x?)] + 4‖ h̃(x̃s) − ∇F (x̃s)‖22 . (5.48)

where the second inequality follows from Lemma 5.4.14 and equation (5.38). The last inequality

follows from the strong convexity of F (·). Now following (5.48), using the distance contraction

property of projection operator ΠD (·) we can write

E[‖xt+1 − x?‖22 | xt]

≤‖xt − x?‖22 − 2λ(xt − x?)ᵀE[ρt |xt] + λ2E[‖ρt ‖
2
2 |xt]

≤‖xt − x?‖22 − 2λ(xt − x?)ᵀ (∇F (xt) − ∇F (x̃s) + h̃(x̃s)) +
8
µ

CDλ2[F (xt) − F (x?)]

+ (
8
µ

CD + 8L)λ2[F (x̃s) − F (x?)] + 4λ2‖ h̃(x̃s) − ∇F (x̃s)‖22

≤‖xt − x?‖22 − 2λ[F (xt) − F (x?)] + 2λ(xt − x?)ᵀ (h̃(x̃s) − ∇F (x̃s))

+
8
µ

CDλ2[F (xt) − F (x?)] + (
8
µ

CD + 8L)λ2[F (x̃s) − F (x?)] + 4λ2‖ h̃(x̃s) − ∇F (x̃s)‖22

=‖xt − x?‖22 − 2λ(1 −
4
µ

CDλ)[F (xt) − F (x?)] + (
8
µ

CD + 8L)λ2[F (x̃s) − F (x?)]

+ 4λ2‖ h̃(x̃s) − ∇F (x̃s)‖22 + 2λ(xt − x?)ᵀ (h̃(x̃s) − ∇F (x̃s)), (5.49)

where the third line follows from the convexity of F (·). Now we consider a fixed stage s, so that

x0 = x̃s and x̃s+1 is selected uniformly after all M updates are completed. Summing the previous

120

inequality over t = 1, ..., M , taking expectation and using option II at stage s, we obtain

E[‖xM − x?‖22] + 2λ(1 −
4
µ

CDλ)ME[F (x̃s+1) − F (x?)]

≤E[‖x0 − x?‖22] + (
8
µ

CD + 8L)λ2ME[F (x̃s) − F (x?)]

+ 4λ2M ‖ h̃(x̃s) − ∇F (x̃s)‖22 + 2λME[(x̃s+1 − x?)ᵀ (h̃(x̃s) − ∇F (x̃s))]

≤E[‖ x̃s − x?‖22] + (
8
µ

CD + 8L)λ2ME[F (x̃s) − F (x?)]

+ 4λM (λ +
1

2µ
)‖ h̃(x̃s) − ∇F (x̃s)‖22 +

µ

2
λME[‖ x̃s+1 − x?‖22]

≤E[‖ x̃s − x?‖22] + (
8
µ

CD + 8L)λ2ME[F (x̃s) − F (x?)]

+ 4λM (λ +
1

2µ
)‖ h̃(x̃s) − ∇F (x̃s)‖22 + λME[F (x̃s+1) − F (x?)], (5.50)

where the second inequality follows from 2aᵀb ≤ β‖a‖22+
1
β ‖b‖

2
2 , while β = µ

2 . The last inequality

follows from the strong convexity of F (·). Finally, taking expectation over the randomness of

h̃(x̃s), we have

λ(1 −
8
µ

CDλ)ME[F (x̃s+1) − F (x?)]

≤E[‖ x̃s − x?‖22] + (
8
µ

CD + 8L)λ2ME[F (x̃s) − F (x?)] + 4λM (λ +
1

2µ
)V ar[h̃(x̃s)]

≤
2
µ
E[F (x̃s) − F (x?)] + (

8
µ

CD + 8L)λ2ME[F (x̃s) − F (x?)] + 4λM (λ +
1

2µ
)V ar[h̃(x̃s)]

=(
2
µ
+ (

8
µ

CD + 8L)λ2M)E[F (x̃s) − F (x?)] + 4λM (λ +
1

2µ
)V ar[h̃(x̃s)]. (5.51)

Thus we obtain

E[F (x̃s+1) − F (x?)]

≤

[2
µ(1 − 8

µCDλ)λM
+

(8
µCD + 8L)λ

1 − 8
µCDλ

]
E[F (x̃s) − F (x?)] +

4(λ + 1
2µ)

1 − 8
µCDλ

V ar[h̃(x̃s)]

≤αE[F (x̃s) − F (x?)] + ε . (5.52)

121

This implies that E[F (x̃s) − F (x?)] ≤ αsE[F (x̃0) − F (x?)] + ε
1−α . The conclusion follows. �

Corollary 5.4.21. Let { x̃s}s≥0 be the sequence of outputs from each epoch of the SCSimG algorithm

(Algorithm 12) and define ỹs = min
t≤s
{F (x̃t)−F (x?)} for s ≥ 0 to be the lowest objective value after

epoch s. Then, with probability 1, we have inf
s≥0

ỹs ≤
ε

1−α .

Proof. It follows from Theorem 5.4.20 that we can find 0 < α < 1 where E[F (x̃s) − F (x?)] ≤

αsE[F (x̃0) − F (x?)] + ε
1−α . We also have sup

x∈D
{F (x) − F (x?)} ≤ 2lD from the definition of lD . It

follows that for any x̃0 ∈ D, we have that E[F (x̃s) − F (x?) | x̃0] ≤ αs · 2lD + ε
1−α . For any ρ > 0,

picking N large enough so that δ = (αN · 2lD + ε
1−α)(ε

1−α + ρ)−1 < 1, we have

P(ỹN ≥
ε

1 − α
+ ρ) ≤ P(F (x̃N) − F (x) ≥

ε

1 − α
+ ρ) ≤ E[F (x̃0) − F (x)](

ε

1 − α
+ ρ)−1 ≤ δ.

However, if we denoteXN to be the distribution of x̃N conditioned on ỹN ≥
ε

1−α + ρ, then it follows

from the Markov Property that

P(ỹ2N ≥
ε

1 − α
+ ρ)

=P(ỹ2N ≥
ε

1 − α
+ ρ| ỹN ≥

ε

1 − α
+ ρ)P(ỹN ≥

ε

1 − α
+ ρ)

=P(min
N+1≤s≤2N

{F (x̃s) − F (x?)} ≥
ε

1 − α
+ ρ| ỹN ≥

ε

1 − α
+ ρ)P(ỹN ≥

ε

1 − α
+ ρ)

=(Px̃N∼XNP(min
N+1≤s≤2N

{F (x̃s) − F (x?)} ≥
ε

1 − α
+ ρ| x̃N)) · P(ỹN ≥

ε

1 − α
+ ρ)

≤(Px̃N∼XNP(F (x̃2N) − F (x?) ≥
ε

1 − α
+ ρ| x̃N)) · δ

≤(Px̃N∼XNE[F (x̃2N) − F (x?) | x̃N]) · (
ε

1 − α
+ ρ)−1 · δ

=(Px̃0∼XNE[F (x̃N) − F (x?) | x̃0]) · (
ε

1 − α
+ ρ)−1 · δ

≤Px̃0∼XN (αN · 2lD +
ε

1 − α
) · (

ε

1 − α
+ ρ)−1 · δ ≤ δ2.

We can prove that P(ỹk N ≥
ε

1−α + ρ) ≤ δk . Thus if we define the setAρ = {inf
s≥0

ỹs ≥
ε

1−α + ρ} and

122

A = {inf
s≥0

ỹs >
ε

1−α } in probability space, we have

P(Aρ) = P(inf
s≥0

ỹs ≥
ε

1 − α
+ ρ) ≤ P(ỹk N ≥

ε

1 − α
+ ρ) ≤ δk, (5.53)

for any k ≥ 1. Since δ < 1, we have P(Aρ) = 0 for any ρ > 0, which implies P(A) =

P(
⋃

n≥1
A 1

n
) ≤

∞∑
n=1
P(A 1

n
) = 0. So, with probability 1, inf

s≥0
ỹs ≤

ε
1−α . �

5.5 Numerical Experiments

In our numerical experiments, all algorithms were implemented in C++, and were performed

on an Intel i5-5200U processor using Ubuntu 16.04.

5.5.1 Cox’s Partial Likelihood

We implemented Algorithms 9(SGD),11(SimVRG) and 12(SCSimG) to minimize a regular-

ized Cox’s negative partial log- likelihood and compared their performance with the Compositional-

SVRG-1 algorithm (Comp-SVRG-1) in [51], the Stochastic Compositional Gradient Descent algo-

rithm (SCGD) in [17] and Gradient Descent(GD) algorithm. The optimization problem in Section

5.3 combined with L2 regulation can be written as:

min
β∈Rp

1
n

n∑
i=1
∆i[−X>i β + log{

n∑
j=1
I(Yj ≥ Yi) exp(X>j β)}] +

1
2
‖ β‖22, , (5.54)

where (Xi,Yi,∆i) and Ti,Ci for i = 1, . . . , n come from the Cox’s model as in the setting of Section

5.3. Here, we generated our dataset by seting n = 104, p = 103 and letting Xi follow the i.i.d.

standard normal distribution. Moreover, Ti was generated according to the standard exponential

base line hazard function and Ci was generated independent of Ti with a 30% censoring rate. One

can check that each component function is strongly convex with Lipschitz continuous gradients.

The numerical results are presented below in Figure 5.1.

123

In Figure 5.1, the upper plot is the logarithm of the objective value minus the optimal value

versus the number of iterations while the lower plot is the logarithm of the same difference versus

the CPU running time. We compare both the running time and the iteration number to give a

more comprehensive review of each algorithm since the iteration time for each algorithm could

be drastically different due to different update rules. Moreover, the parameters in each algorithm

were selected and tuned to achieve a relatively optimal performance without heavily increasing the

computational cost. In Algorithm 11, we set λ = 0.01, γ = 3/2 M = 100 and n0 = 0, in Algorithm

12, λ = 0.0005, M = 100, B = 100, K = 50 and n0 = 2, in Compositional SVRG-1, we set

λ = 0.001, M = 100 and B = 500, and in Gradient Descent we set λ = 0.01.

As we can see, in the upper plot, the SimVRG and Compositional-SVRG-1 algorithms per-

formed best amongst all algorithms while SimVRG also had better performance in the lower plot.

Algorithm 12, SCSimG was slightly less effective due to the lack of full gradient computation, but,

as expected from the theorems in Section 5.4, Algorithm 11 also converged linearly to the optimal

solution. Algorithm SimGD is ploted for every 50 iterations for the sake of fairness (to account

for the inner loop in the other algorithms) and it also showed satisfactory performance without the

presence of variance reduction techinques.

124

number of iterations

0 100 200 300 400 500 600 700 800 900 1000

lo
g

(f
(x

k
)

-
f(

x
*
))

-7

-6

-5

-4

-3

-2

-1

0

1

2
Iteration comparisons of the algorithms on maximizing negative partial likelihood

SimVRG

SCSimG

Comp-SVRG-1

GD

SimGD

SCGD

cpu time (s)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
g
(f

(x
k
)

-
f(

x
*
))

-7

-6

-5

-4

-3

-2

-1

0

1

2
Time comparisons of the algorithms on maximizing partial likelihood

SimVRG

SCSimG

Comp-SVRG-1

GD

SimGD

SCGD

Figure 5.1: Performance plots for different algorithms on Cox’s partial likelihood dataset.

125

5.5.2 Conditional Random Fields

We implemented Algorithms 9 (SimGD),11 (SimVRG) and 12 (SCSimG) to train conditional

random field models and compared their performance with the Compositional-SVRG-1 algorithm

(Comp-SVRG-1) in [51], the Stochastic Compositional Gradient Descent algorithm (SCGD) in

[17] and Gradient Descent(GD) algorithm. In our tests, we used the optical character recognition

(OCR) data in [89], which provides labelling for letters in a image composed of words. The

numerical results are summarized in Figure 5.2.

Once again, to make comparisons fair, the performance of algorithms was measured both by the

number of iterations and CPU time. For the parameters, in Algorithm 11, we set λ = 0.001,γ = 3/2

M = 200 and n0 = 0, in Algorithm 12, λ = 0.0001, M = 200, B = 100, K = 10 and n0 = 2,

in Gradient Descent, λ = 0.01. In the other algorithms, the parameters were chosen according

to their convergence theorem with scaling factor 0.5. For example, basic SCGD corresponds to

Theorem 6 in [17].

As we can see from the figures, once again, the SimVRG (Algorithm 11) has the best per-

formance amongst the group. However, in this example, the gradient descent algorithm actually

outperforms Algorithm 12 in terms iteration complexity. This is possibly due to the lack of accu-

rate gradient estimation in Algorithm 12. Specifically, as the dataset grows large, it becomes more

costly to obtain accurate gradient estimate. On the other hand, the SimGD in Algorithm 9 outper-

forms SCGD in terms of iterations and CPU time for both datasets. We note that the occasional

increase of function value in some executions of the SimGD algorithm is caused by the variance

of our gradient simulation.

5.6 Conclusion and Future Work.

In this chapter, we introduced unbiased gradient simulation algorithms that are based on a mul-

tilevel Monte Carlo technique for solving stochastic compositional optimization (SCO) problems

126

0 50 100 150 200 250 300 350 400 450 500

number of iterations

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

lo
g
(f

(x
k
)

-
f(

x
*
))

Iteration comparisons of the algorithms for CRF on OCR data

SimVRG

SCSimG

Comp-SVRG-1

GD

SimGD

SCGD

0 100 200 300 400 500 600 700 800 900 1000

cpu time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

lo
g
(f

(x
k
)

-
f(

x
*
))

Time comparisons of the algorithms for CRF on OCR data

SimVRG

SCSimG

Comp-SVRG-1

GD

SimGD

SCGD

Figure 5.2: Performance plots for different algorithms on the OCR dataset.

127

and proved convergence of our algorithms and applied them to a number of different statistical and

machine learning problems.

There are several directions where we can expand upon our work. For example, different ac-

celerating schemes and second-order methods usually show fast convergence in practice, and can

be extended using simulated gradients for SCO problems. Another direction is to extend our ap-

proach to adaptive step size schemes. A limitation of our unbiased gradient simulation algorithm

is the requirement for smoothness of the objective function. Therefore, developing unbiased sim-

ulation of sub-gradient methods and utilizing them for optimizing non-smooth functions is also of

great interest. Analyzing the sample complexity of our algorithms and the optimal choice of the

parameters are also interesting problems for future work.

128

References

[1] D. Goldfarb, G. Iyengar, and C. Zhou, “Linear convergence of stochastic Frank-Wolfe vari-
ants,” ArXiv preprint arXiv:1703.07269,

[2] C. Zhou, W. Gao, and D. Goldfarb, “Stochastic adaptive quasi-Newton methods for mini-
mizing expected values,” in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, JMLR. org, 2017, pp. 4150–4159.

[3] J. Blanchet, D. Goldfarb, G. Iyengar, F. Li, and C. Zhou, “Unbiased simulation for optimiz-
ing stochastic function compositions,” ArXiv preprint arXiv:1711.07564, 2017.

[4] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex optimization.,” in ICML
(1), 2013, pp. 427–435.

[5] S. Lacoste-Julien and M. Jaggi, “On the global linear convergence of Frank-Wolfe opti-
mization variants,” in Advances in Neural Information Processing Systems, 2015, pp. 496–
504.

[6] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive vari-
ance reduction,” in Advances in Neural Information Processing Systems 26, C. Burges, L.
Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds., 2013, pp. 315–323.

[7] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with the stochastic average
gradient,” Mathematical Programming, pp. 1–30, 2013.

[8] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives,” in Advances in Neural Infor-
mation Processing Systems, 2014, pp. 1646–1654.

[9] A. Rodomanov and D. Kropotov, “A superlinearly-convergent proximal Newton-type method
for the optimization of finite sums,” in International Conference on Machine Learning,
2016, pp. 2597–2605.

[10] M. J. D. Powell, “Some global convergence properties of a variable metric algorithm for
minimization without exact line searches,” vol. IX, R. Cottle and C. Lemke, Eds., 1976.

[11] R. H. Byrd, J. Nocedal, and Y.-X. Yuan, “Global convergence of a class of quasi-Newton
methods on convex problems,” SIAM. J. Numer. Anal., no. 5, pp. 1171–1190, 1987.

[12] W. Gao and D. Goldfarb, “Quasi-Newton methods: Superlinear convergence without line
search for self-concordant functions,” In review. arXiv:1612.06965, 2016.

129

[13] C. G. Broyden, “Quasi-Newton methods and their application to function minimisation,”
Mathematics of Computation, vol. 21, no. 99, pp. 368–381, 1967.

[14] R. Fletcher, “A new approach to variable metric algorithms,” The Computer Journal, vol.
13, no. 3, pp. 317–322, 1970.

[15] D. Goldfarb, “A family of variable-metric methods derived by variational means,” Mathe-
matics of computation, vol. 24, no. 109, pp. 23–26, 1970.

[16] D. F. Shanno, “Conditioning of quasi-Newton methods for function minimization,” Mathe-
matics of computation, vol. 24, no. 111, pp. 647–656, 1970.

[17] M. Wang, E. X. Fang, and H. Liu, “Stochastic compositional gradient descent: Algorithms
for minimizing compositions of expected-value functions,” Mathematical Programming,
vol. 161, no. 1-2, pp. 419–449, 2017.

[18] A. W. van der Vaart and J. A. Wellner, Eds., Weak Convergence and Empirical Processes
With Applications to Statistics. Springer, 1996.

[19] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval Research Logis-
tics Quarterly, vol. 3, 95–110, 1956.

[20] Y. Nesterov, “Complexity bounds for primal-dual methods minimizing the model of ob-
jective function,” Université catholique de Louvain, Center for Operations Research and
Econometrics ´ (CORE), Tech. Rep., 2015.

[21] E. Levitin and B. T. Polyak, “Constrained minimization methods,” USSR Computational
Mathematics and Mathematical Physics, vol. 6, no. 5, 787–823, 1966.

[22] D. Garber and E. Hazan, “Faster rates for the Frank-Wolfe method over strongly-convex
sets,” in Proceedings of the 32nd International Conference on Machine Learning (ICML
2015), 2015, 541–549.

[23] J. Abadie, Ed., Integer and Nonlinear Programming. Amsterdam: North-Holland, 1970.

[24] J. Guelat and P. Marcotte, “Some comments on Wolfe’s ‘away step’,” Mathematical Pro-
gramming, vol. 35, no. 1, 110–119, 1986.

[25] D. Garber and E. Hazan, “A linearly convergent conditional gradient algorithm with appli-
cations to online and stochastic optimization,” ArXiv:1301.4666, 2013.

[26] S. Lacoste-Julien and M. Jaggi, “An affine invariant linear convergence analysis for Frank-
Wolfe algorithms,” ArXiv:1312.7864v2, 2014.

130

[27] A. Beck and S. Shtern, “Linearly convergent away-step conditional gradient for non-strongly
convex functions,” ArXiv: 1504.05002, 2015.

[28] G. Lan, “The complexity of large-scale convex programming under a linear optimization
oracle,” ArXiv:1309.5550, 2013.

[29] J. Lafond, H. Wai, and E. Moulines, “Convergence analysis of a stochastic projection-free
algorithm,” ArXiv:1510.01171, 2015.

[30] H. Luo and E. Hazan, “Variance-reduced and projection-free stochastic optimization,” in
Proceedings of the 33rd International Conference on Machine Learning (ICML 2016),
vol. 48, 2016.

[31] H. Ouyang and A. Gray, “Fast stochastic Frank-Wolfe algorithms for nonlinear SVMs,” in
SDM, 2010, 245–256.

[32] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-coordinate Frank-Wolfe
optimization for structural svms,” In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), vol. 28, 53–61, 2013.

[33] A. Osokin, J. B. Alayrac, I. Lukasewitz, P. K. Dokania, and S. Lacoste-Julien, “Minding the
gaps for block Frank-Wolfe optimization of structured svms,” ArXiv:1605.09346, 2016.

[34] C. Mu, Y. Zhang, J. Wright, and D. Goldfarb, “Scalable robust matrix recovery: Frank-Wolfe
meets proximal methods,” ArXiv:1403.7588, 2015.

[35] X. Lin and T. Zhang, “A proximal stochastic gradient method with progressive variance
reduction,” SIAM Journal on Optimization, vol. 24, no. 4, pp. 2057–2075, 2014.

[36] M. Lichman, UCI machine learning repository, 2013.

[37] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million song dataset,” in
Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR
2011), 2011.

[38] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient projections onto the l
1-ball for learning in high dimensions,” in Proceedings of the 25th international conference
on Machine learning, ACM, 2008, pp. 272–279.

[39] M. Philipp, N. Robert, and I. J. Michael, “A linearly-convergent stochastic L-BFGS algo-
rithm,” in Proceedings of the Nineteenth International Conference on Artificial Intelligence
and Statistics, 2016, pp. 249–258.

[40] R. Gower, D. Goldfarb, and P. Richtárik, “Stochastic block BFGS: Squeezing more curva-
ture out of data,” in International Conference on Machine Learning, 2016, pp. 1869–1878.

131

[41] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, “Sample size selection in optimization
methods for machine learning,” Mathematical Programming, vol. 134, no. 1, pp. 127–155,
2012.

[42] M. P. Friedlander and G. Goh, “Tail bounds for stochastic approximation,” ArXiv preprint
arXiv:1304.5586, 2013.

[43] Y. Nesterov and A. Nemirovski, “Interior-point polynomial algorithms in convex program-
ming,” 1994.

[44] Y. Zhang and L. Xiao, “DiSCO: Distributed optimization for self-concordant empirical
loss,” vol. 32, pp. 362–370, 2015.

[45] Q. Tran-Dinh, A. Kyrillidis, and V. Cevher, “Composite self-concordant minimization,”
Journal of Machine Learning Research, vol. 16, no. Mar, pp. 371–416, 2015.

[46] J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Math. Comp., vol. 35,
no. 151, pp. 773–782, 1980.

[47] A. Griewank and P. L. Toint, “Local convergence analysis for partitioned quasi-Newton
updates,” Numer. Math., vol. 39, pp. 429–448, 1982.

[48] J. E. Dennis Jr. and J. J. Moré, “Characterization of superlinear convergence and its appli-
cation to quasi-Newton methods,” Math. Comp., vol. 28, no. 106, pp. 549–560, 1974.

[49] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approximation ap-
proach to stochastic programming,” SIAM Journal on optimization, vol. 19, no. 4, pp. 1574–
1609, 2009.

[50] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford, “Competing with the empirical risk mini-
mizer in a single pass,” in Conference on learning theory, 2015, pp. 728–763.

[51] X. Lian, M. Wang, and J. Liu, “Finite-sum composition optimization via variance reduced
gradient descent,” in Proceedings of the 20th International Conference on Artificial Intel-
ligence and Statistics, A. Singh and J. Zhu, Eds., ser. Proceedings of Machine Learning
Research, vol. 54, Fort Lauderdale, FL, USA: PMLR, 2017, pp. 1159–1167.

[52] L. Lei and M. I. Jordan, “Less than a single pass: Stochastically controlled stochastic gradi-
ent method,” ArXiv preprint arXiv:1609.03261, 2016.

[53] M. Wang and J. Liu, “Accelerating stochastic composition optimization,” in Advances In
Neural Information Processing Systems, 2016, pp. 1714–1722.

[54] S. Ghadimi, A. Ruszczyński, and M. Wang, “A single time-scale stochastic approximation
method for nested stochastic optimization,” ArXiv preprint arXiv:1812.01094, 2018.

132

[55] C.-H. Rhee and P. W. Glynn, “Unbiased estimation with square root convergence for sde
models,” Operations Research, vol. 63, no. 5, pp. 1026–1043, 2015. eprint: http://dx.
doi.org/10.1287/opre.2015.1404.

[56] J. H. Blanchet and P. W. Glynn, “Unbiased monte carlo for optimization and functions of
expectations via multi-level randomization,” in Proceedings of the 2015 Winter Simulation
Conference, IEEE Press, 2015, pp. 3656–3667.

[57] M. B. Giles, L. Szpruch, et al., “Antithetic multilevel monte carlo estimation for multi-
dimensional sdes without lévy area simulation,” The Annals of Applied Probability, vol. 24,
no. 4, pp. 1585–1620, 2014.

[58] X. Li and J. Liu, “A multilevel approach towards unbiased sampling of random elliptic
partial differential equations,” ArXiv preprint arXiv:1605.06349, 2016.

[59] S. Dereich and F. Heidenreich, “A multilevel monte carlo algorithm for lévy-driven stochas-
tic differential equations,” Stochastic Processes and their Applications, vol. 121, no. 7,
pp. 1565–1587, 2011.

[60] M. B. Giles and C. Reisinger, “Stochastic finite differences and multilevel monte carlo for a
class of spdes in finance,” SIAM Journal on Financial Mathematics, vol. 3, no. 1, pp. 572–
592, 2012.

[61] D. F. Anderson and D. J. Higham, “Multilevel monte carlo for continuous time markov
chains, with applications in biochemical kinetics,” Multiscale Modeling & Simulation, vol.
10, no. 1, pp. 146–179, 2012.

[62] M. B. Giles, “Multilevel monte carlo path simulation,” Operations Research, vol. 56, no. 3,
pp. 607–617, 2008.

[63] ——, “Multilevel monte carlo methods,” in Monte Carlo and Quasi-Monte Carlo Methods
2012, Springer, 2013, pp. 83–103.

[64] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, “Multilevel monte carlo meth-
ods and applications to elliptic pdes with random coefficients,” Computing and Visualization
in Science, vol. 14, no. 1, p. 3, 2011.

[65] J. Charrier, R. Scheichl, and A. L. Teckentrup, “Finite element error analysis of elliptic
pdes with random coefficients and its application to multilevel monte carlo methods,” SIAM
Journal on Numerical Analysis, vol. 51, no. 1, pp. 322–352, 2013.

[66] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent methods for regularized
loss minimization,” Journal of Machine Learning Research, vol. 14, no. Feb, pp. 567–599,
2013.

133

http://dx.doi.org/10.1287/opre.2015.1404
http://dx.doi.org/10.1287/opre.2015.1404

[67] N. L. Roux, M. Schmidt, and F. R. Bach, “A stochastic gradient method with an exponential
convergence rate for finite training sets,” in Advances in Neural Information Processing
Systems, 2012, pp. 2663–2671.

[68] P. Zhao and T. Zhang, “Stochastic optimization with importance sampling for regularized
loss minimization,” in International Conference on Machine Learning, 2015, pp. 1–9.

[69] Z. Allen-Zhu and Y. Yuan, “Improved SVRG for non-strongly-convex or sum-of-non-convex
objectives,” arXiv preprint, Tech. Rep., 2016.

[70] R. Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J. Konečnỳ, and S. Sallinen, “Stop-
wasting my gradients: Practical SVRG,” in Advances in Neural Information Processing Sys-
tems, 2015, pp. 2251–2259.

[71] P. Gong and J. Ye, “Linear convergence of variance-reduced stochastic gradient without
strong convexity,” ArXiv preprint arXiv:1406.1102, 2014.

[72] A. Nitanda, “Stochastic proximal gradient descent with acceleration techniques,” in Ad-
vances in Neural Information Processing Systems, 2014, pp. 1574–1582.

[73] S. Lacoste-Julien, M. Schmidt, and F. Bach, “A simpler approach to obtaining an o (1/t) con-
vergence rate for the projected stochastic subgradient method,” ArXiv preprint arXiv:1212.2002,
2012.

[74] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data,” 2001.

[75] C. Sutton, A. McCallum, and K. Rohanimanesh, “Dynamic conditional random fields: Fac-
torized probabilistic models for labeling and segmenting sequence data,” Journal of Machine
Learning Research, vol. 8, no. Mar, pp. 693–723, 2007.

[76] F. Sha and F. Pereira, “Shallow parsing with conditional random fields,” in Proceedings of
the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, Association for Computational Lin-
guistics, 2003, pp. 134–141.

[77] A. McCallum and W. Li, “Early results for named entity recognition with conditional ran-
dom fields, feature induction and web-enhanced lexicons,” in Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003-Volume 4, Association for
Computational Linguistics, 2003, pp. 188–191.

[78] S. Nowozin, C. H. Lampert, et al., “Structured learning and prediction in computer vision,”
Foundations and Trends® in Computer Graphics and Vision, vol. 6, no. 3–4, pp. 185–365,
2011.

134

[79] F. Barahona, “On the computational complexity of ising spin glass models,” Journal of
Physics A: Mathematical and General, vol. 15, no. 10, p. 3241, 1982.

[80] V. Chandrasekaran, N. Srebro, and P. Harsha, “Complexity of inference in graphical mod-
els,” ArXiv preprint arXiv:1206.3240, 2012.

[81] G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp. 268–
278, 1973.

[82] S. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy, “Accelerated train-
ing of conditional random fields with stochastic gradient methods,” ACM, 2006, pp. 969–
976.

[83] M. Schmidt, R. Babanezhad, M. Ahmed, A. Defazio, A. Clifton, and A. Sarkar, “Non-
uniform stochastic average gradient method for training conditional random fields,” pp. 819–
828, 2015.

[84] R. T. Rust and A. J. Zahorik, “Customer satisfaction, customer retention, and market share,”
Journal of Retailing, vol. 69, no. 2, pp. 193–215, 1993.

[85] F. Shahrokhi and D. W. Matula, “The maximum concurrent flow problem,” Journal of the
ACM (JACM), vol. 37, no. 2, pp. 318–334, 1990.

[86] R. D. Cox, “Regression models and life tables (with discussion),” Journal of the Royal
Statistical Society, vol. 34, pp. 187–220, 1972.

[87] D. R. Cox, “Partial likelihood,” Biometrika, vol. 62, no. 2, pp. 269–276, 1975.

[88] ——, “Regression models and life-tables,” in, Springer, 1992, pp. 527–541.

[89] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov networks,” in Advances in
Neural Information Processing Systems, 2004, pp. 25–32.

135

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Introduction and Background
	Overview
	The Empirical Processes Framework
	The Frank-Wolfe Algorithm and Its Variants
	Local Curvature Based Adaptive Step-size Algorithms
	Unbiased Simulation Method for Stochastic Composition Optimization Problems

	An Empirical Processes Framework
	The Framework
	Proof of Theorem 2.1.1
	From Convergence in Expectation to Almost Sure Convergence.

	Linear Convergence of Stochastic Frank Wolfe Variants
	Motivation
	Contribution
	Related Work
	Problem description.
	The Frank-Wolfe Algorithms.
	Variants of Stochastic Frank-Wolfe Algorithm

	Convergence Proof
	Numerical Experiments
	Simulated Data
	Million Song Dataset

	Conclusion and Future Work

	Local Curvature Based Adaptive Step-size Algorithms
	Introduction
	Assumptions and Notation
	Stochastic Framework
	Self-Concordant Functions and Adaptive Methods
	Stochastic Adaptive Methods
	Stochastic Adaptive GD
	Stochastic Adaptive BFGS

	Numerical Experiments
	Conclusion and Future works

	Using Unbiased Simulation for Solving Stochastic Composition Optimization Problems
	Introduction
	Contributions
	Related work
	 Organization

	Problem Description and Algorithms
	Problem Description and Notation
	Unbiased Stochastic Gradient Simulation
	Optimization Algorithms

	Examples
	Conditional Random Fields (CRF)
	Softmax Optimization
	Cox's Partial Likelihood

	Theory
	Definitions, Assumptions and Lemmas
	Properties of the Unbiased Gradient Simulation Algorithm
	Convergence of the Simulated Gradient Descent Algorithm
	Lipschitz Continuity of the Simulated Variance Reduced Gradient
	Convergence of the Simulated Variance Reduced Gradient Algorithm
	Convergence of the Stochastically Controlled Simulated Gradient Algorithm

	Numerical Experiments
	Cox's Partial Likelihood
	Conditional Random Fields

	Conclusion and Future Work.

	References

