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ABSTRACT

Development of small-angle scattering pair
distribution function analysis techniques and

application to nanoparticles assemblies

Chia-Hao Liu

With the improvement in synthesis method, a variety of nanoparticles (NPs) with nearly

uniform distribution in size and morphology are now available to scientists. This progress

opens a new opportunity of assembling these high quality nanoparticles into metamaterial -

nanoparticle assemblies (NPAs). The properties of NPA depend on the interactions between

constituent NPs, therefore NPA offer a distinct advantage in designing material properties

that are not available in the bulk phase (crystal) or discrete phase (nanoparticle). Novel ap-

plication of NPA in modern devices, such as solar cells and field effect transistors, had also

been demonstrated. The spatial arrangements of NPs is the key factor to their interactions,

therefore, it is crucial to characterize the structure of NPA quantitatively. The technique of

diffraction plays an unique role for characterizing NPA structure, as it not only offers the

structural type, which may also be obtained from imagine technique, but also yields struc-

tural information in three-dimension, such interparticle distance and the range of structural

coherence of the packing order. Traditionally, the diffraction analysis is based on crystallog-

raphy and is carried out in reciprocal space. However, it is known that the local structure

is overlooked in this kind of crystallographic analysis, which places a challenge for have a

comprehensive understanding of the NPA structure.



The pair distribution function (PDF) analysis, which is powerful in probing local struc-

tures for atomic systems, serves as a promising tool for characterizing NPA structure. How-

ever, the approach of using PDF analysis for NPA structure characterization has barely

been explored. In this thesis, I will present the methodological developments of the PDF

technique. Starting from presenting a machine-learning-assisted approach for predicting the

space group of its structure from the PDF, I will be focusing on the aspect of accelerating

the structure modeling steps with PDF. Next, the development of pair distribution function

analysis in small-angle scattering domain sasPDF will be introduced, including software

package PDFgetX3 which is aiming to facilitate the extraction of PDF from small-angle

scattering data quickly. The approach of sasPDF is validated against three representa-

tive structures across different levels of structural order. Finally, the example of applying

sasPDF method to identify the jamming transition signature in polymer-ligated NPA is

introduced, followed by another example of discovering multiply-twinned structure from the

reprogramming of DNA-ligated NPA.
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CHAPTER 1. APPLICATION OF NANOPARTICLES AND THEIR ASSEMBLIES

Chapter 1

Application of nanoparticles and their

assemblies

1.1 Introduction

Nanoparticles (NPs) are generally regarded as objects in the size of 1 to 100 nanometers.

In the last few decades, research about NPs growths exponentially as on this length scale

exciting phenomena such as superparamagnetism in magnetic NPs [15; 121], carrier mul-

tiplication in semiconductor NPs [130; 119] and tunable band gap [32; 91] emerge due to

quantum mechanical effects. Those properties are attributed to a wide range of factors,

such as size, morphology, chemical composition and surface chemistries of the NPs [177;

99]. With the advent of high degrees of control over nanoparticle synthesis, narrow size-

distribution and extensive tunability in its morphology, chemical, electronic and magnetic

properties had been reported [129; 77; 47]. Since then, attention start turning to integrating

NPs with modern applications, ranging from light emitting [156; 81], energy harvesting [131;

206], to biomedical sensing [72; 154] devices, which were reported to have lower cost and

1



CHAPTER 1. APPLICATION OF NANOPARTICLES AND THEIR ASSEMBLIES

higher efficiency than the traditional devices based on bulk crystals [159; 2].

1.1.1 Nanoparticle assemblies (NPA)

The progress in synthesizing nearly uniform NPs brings up attention of assembling them

as metamaterials; nanoparticle assemblies, NPAs. The research of assembling microscopic

objects into ordered 2D and 3D structures can be traced back to the mid 1980s, when

researchers studied the super structures formed by colloidal polystyrene particles between

two smooth glass boundaries [143; 188]. At that time, external confinements were still

required for the assemblies of ordered structure and the yield was still low. In the early

1990s, pioneered work on the formations of ordered 2D networks of Au [61] and Ag2S [125]

NPs was reported. In the mid 1990s, after the seminal work on assembling CdSe NPs into 2D

and 3D ordered structures along with a control in lattice constant for the NPAs formed [127],

research about NPAs has grown exponentially. In the following years, ordered assemblies

from TiO2 [33], Ag [195; 123], SiO2 [1] NPs has been reported. More recently, diversified

structures from NPAs based on binary NPs [166] or anisotropic NPs [126; 124] had also been

observed.

NPAs can directly form in its colloidal solution, or on a substrate after evaporation or

dewetting [144; 108; 39]. The NP and ligand attached (or “linkers” in some literature) are

the building block of the NPA. The formation of NPA depends closely on the interactions

between its building blocks and environmental factors of the synthesis process [122; 124].

So far, a wide range of interactions, such as van der Waals force, Coulomb force due to

surface charge or electric dipoles between NPs and hard-sphere repulsions between the ligand,

had been reported to be the driving force for the assembly of different NPs. [103; 180;

179] In addition, environmental factors like capillary force [39], ambient temperature [207]

and external magnetic field [144] had also been reported as the key to the formation of

2
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certain NPA systems. For most of the systems, ligands are non-biological molecules that can

be covalently bonded to the NPs of interest, while providing functionality at the opposite

end [145]. Work had shown ligands can not only stabilize the growth of NPs but also guide

the formation of NPAs [44; 108; 28] For example, the structure of Au NPAs is altered between

body-centered cubic (bcc) and hexagonal closest packed (hcp) structure depending on the

ratio ligand length and particle radius [28].

1.1.2 DNA-ligated nanoparticle assemblies

Instead of non-biological ligands that are commonly seen in NPA systems, a seminal work

in the late 1990s demonstrated the realization of 3D ordered assemblies of Au NPs with

thiol-modified DNA as the ligands [123]. A good control in the size and morphology of

the assemblies formed had been predicted as the interaction between DNA sequence were

well understood and the length of discrete DNA sequences can be specifically tailored [3;

112]. Work had also shown the formation DNA-based NPAs is reversible [123]. There has

been a rich body of literature about synthesizing DNA-based NPAs with different levels of

control in morphologies and structure types [133; 6; 112]. Recently, progress in synthesizing

ordered assemblies that depend merely on the DNA ligands but not the NP had also been

reported and structures that are not previously accessible (including noncrystalline phase)

had been observed [8; 181]. The programmability of DNA-based NPAs make this technique

a promising approach for synthesizing and engineering artificial materials.

1.1.3 Polymer-ligated nanoparticle assemblies

Soft molecules such as polymers can also be used as the ligands for NPAs. Work had

shown the ordered structures in 2D and 3D, which are commonly observed from NPAs,

can be achieved with polymer-ligated Au NPAs system [205; 204]. Polymeric ligands offer

3
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a control of the effective size through changes to the polymers molecular weight, chemical

nature, architecture, persistence length and surrounding solvent [200]. Rather diversified

morphologies, ranging from stings (1D), sheets (2D) and spherical clusters (3D), had been

observed in SiO2 NPAs with polystyrene ligands, by simply changing the length and density

of the polymer ligand [1]. Furthermore, by carefully designing the morphology of the ligands,

anisotropic structures can be formed with spherical constituent NPs [1]. In addition to the

advantage of programmability, the polymer-ligated NPAs are also suitable for industrial-scale

applications such as filled rubbers and membranes for gas separations [101].

1.1.4 Properties of NPA-based materials

The properties of NPA-based materials, such as mechanical [1], optical [173] electrical [128]

and magnetic [174] properties, had been shown to be highly tunable. Applications of NPA-

based devices such as solar cells and field effect transistors have been demonstrated [178;

164; 177]. It is known that the overall properties of NPA-based materials are based on the

interactions between constituent particles [145; 112]. This allows NPA-based materials to

achieve unique properties that are not observed in its discrete phase (NP) or in its bulk phase.

The spatial arrangements of constituent particles play an important role for the interaction

between NPs. For example, by changing the separation of adjacent Ag NPs, the plasmonic

frequency of the DNA-ligated Ag NPA was shifted across the spectrum of visible lights [201]

and the magnetic properties such as the remanent magnetization and coercive field can

be tuned by varying the interpaticle distance of dodecanediol-capped Fe3O4 NPAs [198].

Given such rich tunablility in terms of material properties and the great potential for device

application, it is then crucial to characterize the structures of NPAs quantitatively if their

properties are to be optimized.
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1.2 Current status of structural characterization tech-

niques for NPs and NPAs

Scattering and electron microscopy (EM) have been the major techniques for studying the

structure of NP and NPAs [128; 179; 54]. In particular, the technique of transmission electron

microscopy (TEM) is commonly used as it directly yields high-resolution images of the NPs

and NPAs. However, for both the case of NPs and NPAs, it is necessary to either analyze the

images manually [192; 171] or match observed images with patterns algorithmically generated

from known structures [166; 104] to obtain quantitative structural information about the

sample . This approach can yield the structure types [104; 208] but does not typically result

in the kind of quantitative 3D structural information we are used to obtaining for atomic

structures of crystals, including accurate inter-particle vectors and distributions of inter-

particle distances, or the range of structural coherence of the packing order. It is desirable

to explore scattering approaches that can yield structural information in 3D.

Depending on the measured range of scattering vector Q, scattering data can be cate-

gorized into wide-angle and small-angle regimes. The wide-angle x-ray (WAXS) scattering

data is typically collected at the range of Q ≥ 0.1 Å
−1

. The information encoded in this

range corresponds to the inter-atomic distances present in a material, which is usually at

the length scale of angstroms to nanometers. The technique of wild-angle scattering is an

invaluable method for studying the crystalline structure of NPs [14; 155; 157]. On the other

hands, the small-angle x-ray scattering (SAXS) data is usually collected at Q < 0.1 Å
−1

. In

this range, the scattering data yields information about the material on nano- to micrometer

scales. The technique of small-angle scattering started as a tool for studying the intrinsic

shape, size distributions and scattering density of NPs on these scales [63; 191; 17] and it was

later used to study the particle arrangement in the NPAs as the correlation peaks appear in
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the small-angle scattering data resembling atomic-scale interference peaks (Diffuse scatter-

ing and Bragg peaks) when NPs aggregate, yield information about particle packing [128;

133].

Although developments of modeling diffraction patterns from WAXS and SAXS data

had been reported [169; 98; 197], the analysis in reciprocal space, which is based on crys-

tallography, is less favorable when the structure is only short-range ordered [24; 34; 92], as

is the case for NPs and NPAs [163; 113] For materials that are only ordered in short-range,

structural information can quantitatively extracted by the atomic pair distribution function

(PDF) analysis [149; 50; 210; 92]. However, there has been barely attempt for extending the

powerful PDF technique to the small-angle scattering data for characterizing the structure

of NPAs.

1.3 Outline of this thesis

This thesis will be centered around the method developments for different aspects of PDF

analysis. This thesis will be structured as follows: In Chapter 2, basic theory, along with

an overview on the data collection and data analysis steps, of the PDF technique will be

reviewed. In Chapter 3, an approach of using machine learning method to assist structure

solution with PDFs will be presented. In Chapter 4, the PDF method in small-angle regime

sasPDF and its software implementation PDFgetS3 will be introduced, followed by Chap-

ter 5, which is about the application of sasPDF method to systems with different levels of

structure order.
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Chapter 2

Pair-distribution function (PDF)

technique

2.1 Introduction

There are various techniques for characterizing the atomic structure in a material. The

technique of powder diffraction has been heavily used in this aspect. For a powder diffraction

experiment, the sample is illuminated by a beam of neutron or x-ray. The incident beam is

then diffracted by the scatterers in the sample (nuclei for neutron beam and atom for x-ray)

and a 2D diffraction pattern which can be further reduced to a 1D spectrum [23]. The 1D

powder diffraction pattern contains signal from diffuse scattering and Bragg diffraction [194].

In the conventional crystallographic analysis, material structure is determined solely by

the information encoded in Bragg peaks [194], where their positions yield the symmetry

information and lattice constants of the structure and their intensities yield information

about the arrangement of atoms in the structure [138]. However, the diffuse scattering

signal, which provides the information of local structure is often ignored. As a result, in
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crystallographic analysis which assumes periodicity in atomic arrangement, only the average

structure (long-range) is characterized but not the local structure (short-ranged). The later

is commonly observed in finite objects such as NPs and NPAs [24; 92]. Therefore it is

desired to have a analysis approach, which both Bragg diffraction and diffuse scattering are

considered (“total scattering”).

The pair distribution function (PDF) is the Fourier transform of total scattering struc-

ture factor [50]. This technique was firstly used for studying the structures of amorphous

materials, such as glasses and liquids [49; 193]. Recently, it has been applied to study struc-

ture of disordered crystalline materials and nanomaterials [142; 117; 30]. By considering

both Bragg (long range) and diffuse (short range) scattering, PDF is favorable for obtaining

a comprehensive understanding of the structure in question. In this chapter, we will briefly

review the theoretical and experimental aspects of PDF technique, followed by the discussion

on the data analysis approach.

2.2 PDF theory

To derive the formalism of atomic PDF, we will start from the scattering of an atom m. In

the kinematical limit, the scattering amplitude is [22]

Ψm(Q) = fm(Q) exp [iQ · rm] (2.1)

where Q is the scattering vector, namely the difference between incoming Ki and scattered

beam Ks, Q = (Ks −Ki). rm and fm(Q) is the position and atomic form factor of the

atom respectively. For an atom with volume V and electron density as a function of position

ρ(rm), the atomic form factor is defined as [65]

fm(Q) =

∫
V

ρ(rm) exp (iQ · r) dr, (2.2)
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Consider a unit cell with Ns atoms, the coherent scattering intensity Ic(Q) is [50; 65]

Ic(Q) =
Ns∑
m=1

Ns∑
n=1

Ψ∗m(Q)Ψn(Q) (2.3)

=
Ns∑
m=1

Ns∑
n=1

f ∗m(Q)fn(Q) exp [iQ · (rm − rn)] , (2.4)

where fm(Q) and rm are the atomic form factor amplitude and position of m-th atom in the

unit cell, respectively.

If the scattering from a sample is isotropic, for example, it is an untextured powder

or a liquid with no anisotropy, the observed scattering intensity will depend only on the

magnitude of Q, |Q| = Q and not its direction in space. The observed scattering intensity

in this case will depend on the orientationally averaged Ic(Q),

Ic(Q) =

〈
Ns∑
m=1

Ns∑
n=1

f ∗m(Q)fn(Q) exp [iQ · (rm − rn)]

〉
, (2.5)

where 〈·〉 denotes the orientational average. In situations where there is the electron density

of the scatterer is uncorrelated with the structure Eq. 2.5 may be further arranged as [65;

50]

Ic(Q) = Ns

〈
f 2(Q)

〉
+

Ns∑
m=1

Ns∑
n6=m

〈f ∗m(Q)〉 〈fn(Q)〉 〈exp [iQ · (rm − rn)]〉 . (2.6)

Since the PDF is a Fourier transform of the reduced structure function F (Q) = Q [S(Q)− 1],

we will start deriving the definition of S(Q). From the Faber-Ziman formalism [51], the

structure function S(Q) is defined as

S(Q) =
Ic(Q)

Ns〈f(Q)〉2
− 〈f

2(Q)〉 − 〈f(Q)〉2

〈f(Q)〉2
, (2.7)

We note that if we assume the atomic form factor exhibits no orientational preference and

plug in 〈f 2(Q)〉 = 〈f(Q)〉2, Eq. 6 becomes

Ic(Q) = Ns〈f 2(Q)〉S(Q). (2.8)
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This expression is equivalent to representing the atoms as points at the position of their

scattering center, convoluted with their electron distributions. The resulting structure func-

tion, S(Q), yields the arrangement of scatterers in the sample. To express Eq. 5 in a similar

fashion as the Faber-Ziman formalism, we first normalize Eq. 5 with total number of scatters

Ns, subtract 〈f(Q)〉2 and normalize it with 〈f 2(Q)〉 and we arrive

S(Q)− 1 =
Ic(Q)

Ns〈f(Q)〉2
− 〈f

2(Q)〉
〈f(Q)〉2

(2.9)

=
1

Ns〈f(Q)〉2
Ns∑
m=1

Ns∑
n6=m

〈f ∗m(Q)〉 〈fn(Q)〉 〈exp [iQ · (rm − rn)]〉 . (2.10)

The orientational average of the exponential term in Eq. 2.9 can be further evaluated if the

scattering is isotropic, which is the case of powder diffraction [50]

〈exp [iQ · (rm − rn)]〉 =
sin (Qrmn)

Qrmn
, (2.11)

where rmn = |rm − rn|. Plugging Eq. 2.11 back to Eq. 2.9 and substitute in the definition

of PDF F(r) [50]

F(r) =
2

π

∫ ∞
0

Q [S(Q)− 1] sin (Qr) dQ (2.12)

=
2

π

∫ ∞
0

1

Nsrmn〈f(Q)〉2
Ns∑
m=1

Ns∑
n6=m

〈f ∗m(Q)〉 〈fn(Q)〉 sin (Qrmn) sin (Qr) dQ. (2.13)

Since sine function forms a orthogonal basis, the integration over Q in Eq. 2.13 results in

delta-functions [22]∫ ∞
0

sin (Qrmn) sin (Qr) dQ =
π

2
[δ(r − rmn)− δ(r + rmn)] . (2.14)

By constraining our attention on the positive axis, Eq. 2.13 can be rewritten as

F(r) =
1

rNs〈f(Q)〉2
Ns∑
m=1

Ns∑
n6=m

〈f ∗m(Q)〉 〈fn(Q)〉 δ(r − rmn). (2.15)
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We note that above formalism can be extended to systems with multiple types of atoms. In

this case, the 〈f(Q)〉2 term should be treated as the sample-averaged, squared form factors

from all atoms in the unit cell [50].

The PDF is purely based on the inter-atomic distances rmn presented in the structure

and no periodicity is assumed, which makes it is a general tool to study both crystalline and

nanomaterials. The information in PDF is in the real space, which yields an intuitive way

to interpret the information directly from the spectrum or to construct structure model for

testing hypothesis.

2.3 Data collection for PDF

In the modern x-ray diffraction experiments, the rapid-acquisition PDF (RA-PDF) setup is

commonly used as it can significantly shorten the data collection time [38]. In this setup, the

sample is mounted perpendicular to the incident x-ray beam, with a large 2D area detector

placed behind. The detector is usually located close to the sample so that the momentum

transfer Q is maximized (Fig. 2.1). In practice, the sample may not be exactly perpendic-

ular to the area detector and the oblique incidence, along with detector geometry, can be

calibrated by measuring the standard materials, such as Ni or CeO2, and comparing the

position of measured Debye-Scherrer rings with known results. Once the calibration is done,

each pixel on the area detector can be assigned to a certain Q value and the 2D diffrac-

tion image can be reduced into 1D diffraction pattern by correcting experimental factors,

like the electronic noise from the detector, background scattering, multiple scattering etc.,

and performing azimuthal averaging along Q-values. There are several industry-standard

softwares packages like Fit2D, pyFAI, that provide the capability of calibration and in-

tegration. Once the diffraction pattern is obtained, there are software tools for carrying
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Area detector

Incident x-ray beam

K

K’

2𝜃

K

K’
Q

Sample

Figure 2.1: Schematic of the RA-PDF experimental setup.K and K ′ is the wave vector for

the incident and scattered x-ray beam respectively. Q is the momentum transfer vector,

which is showing in the inset.
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out the transformation of PDF from x-ray scattering data PDFgetX3 [87] and neutron

scattering PDFgetN [90] in a fast and reliable way.

2.4 Data analysis for PDF

Because of physical constraints in the experiment, only the scattering intensities from the

interval [Qmin, Qmax] are accessible. So the PDF measured G(r) is in fact

G(r) = F(r)− 2

π

{∫ Qmin

0

+

∫ ∞
Qmax

}
F (Q) sin (Qr) dQ (2.16)

= F(r)− 2

π

∫ Qmin

0

F (Q) sin (Qr) dQ. (2.17)

The contribution from the interval [Qmax,∞] is dropped because work had shown the errors

introduced by the high Q signal is minimal for high quality experiment [182]. The contribu-

tion from the interval [0, Qmin] is originated from the small-angle scattering signal, yielding

a baseline which is a straight line for a bulk material and a function for a nanomaterial,

depending its morphologies and size [52]. The delta-functions in Eq. 2.15 also broaden into

Gaussian peaks in the measured signal to account for the thermal motion of atoms [50].

2.4.1 Structure modeling

The structural information encoded in a measured PDF can be extracted directly by ana-

lyzing the peaks. For a given peak, its position yields average separation of the atomic-pair

in question, its integrated intensity (area under the peak) gives the coordination number of

the atomic pair and its width and shape give the probability distribution of atomic position.

Though a good amount of information can be extracted with model-independent ap-

proaches, “structure modeling” is probably the most common approach as it yields fully

quantitative information about the structure in question. Work had been devoted to under-
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standing the structural and experimental factors that may appear in the measured PDF [182;

141; 83], therefore it is possible to compare a calculated PDF directly with the measured one.

By varying the parameter values so that the difference between the measured and calculated

PDF is minimized, it is then possible to draw inference about the structure in question based

on the best-fit parameters. This process can be formulated as an optimization problem

arg min
θ
‖G(r)−Gcalc(r; θ)‖22 , (2.18)

where G(r), Gcalc(r; θ) stands for measured and calculated PDF respectively, θ is a vector

of length p, where p is the total number of parameters considered in the model, and ‖·‖2 is

L-2 norm. There are script-based [89] and GUI-based [148; 53] programs for carrying the

structure modeling step for PDF.
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Chapter 3

Machine learning approach to

determine the space group of a

structure from the atomic PDF

3.1 Introduction

Crystallography is used to determine crystal structures from diffraction patterns [60], includ-

ing patterns from powdered samples [138]. The analysis of single crystal diffraction is the

most direct approach for solving crystal structures. However, powder diffraction becomes

the best option when single crystals with desirable size and quality are not available.

A crystallographic structure solution makes heavy use of symmetry information to suc-

ceed. The first step is to determine the unit cell and space group of the underlying structure.

Information about this is contained in the positions (and characteristic absences) of Bragg

peaks in the diffraction pattern. This process of determining the unit cell and space group of

the structure is know as “indexing” the pattern [60]. Indexing is inherently challenging for
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powder diffraction due to the loss of explicit directional information in the pattern, which is

the result of projecting the data from three-dimensions into a one-dimensional pattern [48;

120]. However, there are a number of different algorithms available that work well in different

situations [190; 41; 29; 5] Once the unit cell information is determined, an investigation on

systematic absences of diffraction peaks is carried out to identify the space group. Various

methods in determining space group information, based on either statistical or brute-force

searches, have been used [132; 116; 4; 42].

The problem is even more difficult when the structural correlations only extend on

nanometer length-scales as crystallography breaks down [24]. In this case progress can be

made using atomic pair distribution function (PDF) methods for structure refinements [149;

50; 36; 210; 92]. PDFs may also be used for studying structures of bulk materials.

There has been some success in using PDF for structure solution [86; 25; 88; 40]. However,

a major challenge for PDF structure solution is that, unlike powder diffraction case, a peak

in the PDF simply indicates a characteristic distance existing in the structure but no overall

information about the underlying unit cell [50]. Therefore, the symmetry information can not

be inferred by the traditional indexing protocols that are predicated on the crystallography.

However, to date there has not been a theory for identifying the space group directly given

the PDF. Being able to determine the symmetry information based on the PDF will lead to

more possibilities of solving structures from a wider class of materials.

Recently, machine learning (ML) has emerged as a powerful tool in different fields, such

as in image classification [100] and speech recognition [73]. Moreover, ML models even

outperform a human in cases such as image classifications [70] and the game of Go [168]. ML

provides an platform of exploring the predictive relationship between the input and output

of a problem, given a considerable amount of data is supplied for a ML model to “learn”.

We know that the symmetry information is present in the powder diffraction pattern, and
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that the PDF is simply a Fourier transform of that pattern. We therefore reason that the

symmetry information survives in the PDF though we do not know explicitly how it is

encoded. We can qualitatively deduce that a higher symmetry structure, such as cubic, will

produce a lower density of PDF peaks than a lower symmetry structure such as tetragonal.

However, to date, there has not been a theory for identifying the space group directly, given

the PDF. Here we attempt to see whether a ML algorithm can be trained to recognise the

space group of the underlying structure, given a PDF as input. We note a recent paper

that describes an attempt to determine the space group from powder diffraction pattern

[137]. In this case a promising accuracy of 81 % was obtained in determining space group

on simulated data, but the convolutional neural network (CNN) model they used was not

able to determine space group from experimental data selected in their work.

To prepare data for training a ML model, we compute PDFs from 45 space groups,

totaling 101, 802 structures, deposited in the Inorganic Crystal Structure Database (ICSD)

[18]. The space groups chosen were the most heavily represented, accounting for more than

80% of known inorganic compounds [187].

The first ML model we tried was logistic regression (LR), which is a rather simple ML

model. Although quite successful, we explored a more sophisticated ML model, a convolu-

tional neural network (CNN). The CNN model outperforms the LR model by 15 %, reaching

an accuracy of 91.9 % for obtaining the correct space group in the top-6 predicted results

on the testing set. In particular, the CNN showed a significant improvement over LR in

classifying challenging cases such as structures with lower symmetry.

The CNN model is also tested on experimental PDFs where the underlying structures

are known but the data are subject to experimental noise and collected under various in-

strumental conditions. High accuracy in determining space groups from experimental PDFs

was also demonstrated.
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3.2 Machine Learning experiments

Machine learning (ML) is centered around the idea of exploring the predictive but oftentimes

implicit relationship between inputs and outputs of a problem. By feeding considerable

amount of input and output pairs (training set) to a learning algorithm, we hope to arrive

at a prediction model which is a good approximation to the underlying relationship between

the inputs and outputs. If the exact form of the output is available, either discrete or

continuous, before the training step, the problem is categorized as “supervised learning”

under the context of ML. The space-group determination problem discussed in this paper

also falls into the supervised learning category. In the language of ML, the inputs are often

denoted as “features” of the data and the outputs are usually called the “labels”. Both

inputs and outputs could be a scalar or a vector. After learning the prediction model is

then tested against a set of input and output pairs which have not seen by the training

algorithm (the so-called testing set) in order to independently validate the performance of

the prediction model.

In the context of the space group determination problem, the input that we want to

interrogate is PDF data. We can select any feature or features from the data, for example,

the feature we choose could be the PDF itself. The label is the space group of the structure

that gave rise to the PDF. The database we will use to train our model is a pool of known

structures. Strictly, we choose all the known structures from 45 most heavily represented

space groups in the ICSD, which accounts for 80 % of known inorganic compounds [187].

These were further pruned to remove duplicate entries (same composition and same struc-

ture). The space groups considered and the number of unique structures in each space group

are reproduced in Table 3.1.

Table 3.1: Space group and corresponding number of entries considered in this study.
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Space group (order) # of entries

P 1̄(2) 4615

P21(4) 581

Cc(9) 489

P21/m(11) 1247

C2/m(12) 3529

P2/c(13) 442

P21/c(14) 7392

C2/c(15) 3704

P212121(19) 701

Pna21(33) 743

Cmc21(36) 525

Pmmm(47) 646

Pbam(55) 745

Pnnm(58) 477

Pbcn(60) 478

Pbca(61) 853

Pnma(62) 6930

Cmcm(63) 2249

Cmca(64) 575

Cmmm(65) 513

Immm(71) 754

I4/m(87) 569

I41/a(88) 397

I 4̄2d(122) 373
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P4/mmm(123) 1729

P4/nmm(129) 1376

P42/mnm(136) 870

I4/mmm(139) 4028

I4/mcm(140) 1026

I41/amd(141) 700

R3̄(148) 1186

R3m(160) 482

P 3̄m1(164) 1005

R3̄m(166) 2810

R3̄c(167) 1390

P63/m(176) 1289

P63mc(186) 849

P6/mmm(191) 3232

P63/mmc(194) 3971

Pa3̄(205) 447

F 4̄3m(216) 2893

Pm3̄m(221) 2933

Fm3̄m(225) 4860

Fd3̄m(227) 4382

Ia3̄d(230) 455

total 101,802

We then computed the PDF from each of 101, 802 structures. The parameters capturing

finite Q-range and instrumental conditions, are reproduced in Table 3.2. Those parameters
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Table 3.2: Parameters used to calculate PDFs from atomic structures. All parameters follow

the same definitions as in [53].

Parameter Value

rmin (Å) 1.5

rmax (Å) 30.0

Qmax (Å−1) 0.5

Qmin (Å−1) 23.0

rgrid (Å) π
Qmax

ADP (Å2) 0.008

Qdamp (Å−1) 0.04

Qbroad (Å−1) 0.01

are chosen such that they are close to the values that is practically attainable at most

synchrotron facilities. With the r-grid and r-range reported in Table 3.2, each computed

PDF is a 209× 1 vector, denoted G. Depending on the atom types in the compounds, the

amplitude of the PDF may vary drastically, which is inherently problematic for most ML

algorithms [79] To avoid this problem, we determine a normalized form of each G, X defined

according to

X =
G−min(G)

max(G)−min(G)
, (3.1)

where min(·) and max(·) mean taking the minimum and maximum value of G respectively.

Since min(G) is always a negative number for the reduced PDF, G(r), that we compute from

the structure models, this definition results in the value of X always ranging between 0 and

1. An example of X from Li18Ta6O24 (sapce group P2/c) is shown in Fig. 3.1(a).

For our learning experiments, we randomly select 80% of the data entries from each space
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Figure 3.1: Example of (a) normalized PDF X and (b) its quadratic form X2 of compound

Li18Ta6O24 (space group P2/c).
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group as the training set and reserve the remaining 20% of data entries as the testing set.

All learning experiments were carried out on one or multiple computation nodes of Ha-

banero shared high performance cluster (HPC) at Columbia University. Each computation

node consists of 24 cores of CPUs (Intel Xeon Processor E5-2650 v4), 128GB memory and

2 GPUs (Nvidia K80 GPUs).

3.2.1 Space Group Determination based on Logistic Regression

(LR) model

We start our learning experiment with a rather simple model, logistic regression (LR). In the

setup of the LR model the probability of a given feature being classified as a particular space

groups is parametrized by a “logistic function” [69]. Forty-five space groups are considered

in our study, therefore there are the same number of logistic functions, each with a set of

parameters left to be determined. Since the space group label is known for each data in the

training set, the learning algorithm is then used to find an optimized set of parameters to

each of the forty-five logistic functions such that the overall probability of determining the

correct space group on all training data is maximized. As a common practice, we also include

“regularization” [69] to reduce overfitting in the trained model. The regularization scheme

chosen in our implementation is “elastic net” which is known for encouraging sparse selections

on strongly correlated variables [211]. Two hyperparameters α and Λ are introduced under

the context of our regularization scheme. The explicit definition of these two parameters is

presented in the Appendix section. Our LR model is implemented through scikit-learn

[140]. The optimum α,Λ for our LR model is determined by cross-validation [69] in the

training stage.

The best LR model with X as the input yields an accuracy of 20 % at (α,Λ) =
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(10−5, 0.75). This result is better than a random guess from 45 space groups (2 %) but

is still far from satisfactory. We reason that the symmetry information depends not on the

absolute value of the PDF peak positions, which depend on specifics of the chemistry, but

on their relative positions. This information may be more apparent in an autocorrelation of

the PDF with itself, which is a quadratic feature in ML language. Our quadratic feature,

X2, is defined as

X2 = {XiXj | i, j = 1, 2, . . . d, j > i} (3.2)

where d is the dimension of X and X2 is a vector of dimension d(d−1)
2
× 1. An example of

the quadratic feature from Li18Ta6O24 (space group P2/c) is shown in Fig. 3.1(b).

The best LR model with X2 as the input yields an accuracy of 44.5 % at (α,Λ) =

(10−5, 1.0). This is much better than for the linear feature, but still quite low. However, the

goal of space-group determination problem is to find the right space group, not necessarily

to have it returned in the top position in a rank ordered list of suggestions. We therefore

define alternative accuracy (A6) that allow the correct space group to appear at any position

in the top-6 space groups returned by the model. The values of Ai (i = 1, 2, . . . 6) and

their first discrete differences ∆Ai = Ai − Ai−1 (i = 2, 3, . . . , 6) of our best LR model are

shown in Fig. 3.2. We observed a more than 10 % improvement in the alternative accuracy

after considering top-2 predictions from the LR model (∆A2) and the improvement (∆Ai)

diminishes monotonically when more predictions are considered, as expected. Top-6 estimate

is yielding a good accuracy (77 %) and this is still a small enough number of space groups

that could be tested manually in any structure determination.

The ratio of correctly classified structures vs. space group number is shown Fig. 3.3(a).

The space group numbering follows standard convention [67]. Higher space group number

means a more symmetric structure and we find, in general, the LR model yields a decent

performance in predicting space groups from structures with high symmetry but it performs
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Figure 3.2: Accuracy in determining space group when top-i predictions are considered (Ai).

Inset shows the first discrete differences (∆Ai = Ai−Ai−1) when i predictions are considered.

Blue represents the result of the logistic regression model with X2 and red is the result from

the convolutional neural network model.
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Figure 3.3: The ratio of correctly classified structures v.s. space group number from (a) lo-

gistic regression model (LR) with quadratic feature X2 and (b) convolutional neural network

(CNN) model. Marker size reflects the relative frequency of space group in the training set.

Markers are color coded with corresponding crystal systems (triclinic (dark blue), monoclinic

(orange), orthorhombic (green), tetragonal (blue), trigonal (grey), hexagonal (yellow) and

cubic (dark red).
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poorly on classifying low symmetry structures.

3.2.2 Space group determination based on convolutional neural

network (CNN)

The result from the linear ML model (LR) is promising, prompting us to move to a more

sophisticated deep learning model. Deep learning models [106; 64] have been successfully

applied to various fields, ranging from computer vision [71; 100; 150], natural language

processing [10; 175; 94] to material science [152; 209]. In particular, we sought to use a

convolutional neural network (CNN) [105].

The performance of a CNN depends on the overall architecture as well as the choice of

hyperparameters such as the size of kernels, number of channels at each convolutional layer,

the pooling size and the dimension of the fully-connected (FC) layer [64]. However there is

no well-established protocol for selecting these parameters, which is a largely trial-and-error

effort for any given problem. We build our CNN by tuning hyperparameters and validating

the performance on the testing data, which is just 20% of the total data.

The resulting CNN built for the space-group determination problem is illustrated in

Fig. 3.4. The input PDF is a 1D signal sequence of dimension 209 × 1 × 1. We first apply

a convolution layer of 256 channels with kernel size 32× 1 to extract the first set of feature

maps [105] of dimension 209×1×256. It has been shown that applying a nonlinear activation

function to each output improves not only the ability for a model to learn complex decision

rules but also the numerical stability during the optimization step [106]. We chose rectified

linear unit (ReLU) [43] as our activation function for the network. After the first convolution

layer, we apply 64-channel kernel of size 32 × 1 to the first feature map and generate the

second set of feature maps of dimension 209× 1× 64. Similar to the first convolution layer,
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Figure 3.4: Schematic of our convolutional neural network (CNN) architecture.

the second feature map is also activated by ReLU. This is followed by a max-pooling layer

[82] of size 2, which is applied to reduce overfitting. After the subsampling process in the

max-pooling layer, the output is of size 104 × 1 × 64 and it is then flattened to size of

6556× 1 before two fully-connected layers of size 128 and 45 are applied. The first FC layer

is used to further reduce the dimensionality of output from the max-pooling layer and it is

activated with ReLu. The second FC layer is activated with softmax function [64] to output

the probability of the input PDF being one of the 45 space groups considered in our study.

Categorical cross entropy loss [27] is used for training our model. It is apparent from

Table 3.1 that the number of data entries in each space group are not evenly distributed,

varying from 373 (I 4̄2d) to 7392 (P21/c) per space group. We would like to avoid the

possibility of obtaining a neural network that is biased towards space groups with abundant

data entries. To mitigate the effect of the unbalanced data set, loss from each training

sample is multiplied by a class weight [95] which is the inverse of the ratio between the
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number of data entries from the same space group label in the training sample and the

size of entire training set. We then use Adaptive Moment Estimation (Adam) [96] as the

stochastic optimization method to train our model with a mini-batch size of 64. During the

training step, we follow the same protocol outlined in [71] to perform the weight initialization

[70] and batch normalization [78]. A dropout strategy [170] is also applied in the pooling

layer to reduce over-fitting in our neural network. The parameters in the CNN model are

iteratively updated through the stochastic gradient descent method (Adam).

Learning rate is a parameter that affects how drastically the parameters are updated at

each iteration. A small learning rate is preferable when the parameters are close to some

set of optimal values and vice versa. Therefore, an appropriate schedule of learning rate

is crucial for training a model. Our training starts with a learning rate of 0.1, and the

value is reduced by a factor of 10 at epochs 81 and 122. With the learning rate schedule

described, the optimization loss against the testing set, along with the prediction accuracy

on the training and testing sets, are plotted with respect to the number of epochs in Fig. 3.5.

Our training is terminated after 164 epochs when the training accuracy, testing accuracy

and optimization loss all plateau, meaning no significant improvement to the model would

be gained with further updates to the parameters. Our CNN model is implemented with

Keras [37] and trained on a single Nvidia Tesla K80 GPU.

Under the architecture and training protocol discussed above, our best CNN model yields

an accuracy of 70.0 % from top-1 prediction and 91.9 % from top-6 predictions, which

outperforms the LR model by 15 %. Similarly, from Fig. 3.2, we observe a more than 10 %

improvement in the alternative accuracy after considering top-2 predictions (∆A2) in the

CNN model and the improvement (∆Ai) decreases monotonically, even in a more drastic

trend than the case of LR model, when more predictions are considered.
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Figure 3.5: Accuracy of the CNN model on the training set (blue), the testing set (red) and

the optimization loss against the testing set (green) with respect to number of epochs during

the training step.
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3.3 Results and discussion

3.3.1 Space group determination on calculated PDFs

The main result of the work is that, for the CNN model and defining success that the

correct space-group is found in the top-6 choices, we achieve greater than 90% success rate

(the correct space-group is returned in the top position 70 % of the time) when just the

normalized PDF is given to the ML model. This success rate is much greater than random

guessing and suggests that this approach may be a practically useful way of getting space-

group information from PDFs. Below we explore in greater detail the performance of the

CNN, including analyzing how it fails when it gets the answer wrong.

In general, it is fair to expect a ML model to achieve a higher accuracy on a space group

with abundant training samples. However, from Fig. 3.3, it is clear that the LR model even

fails to identify well represented space groups across all space group numbers. On the other

hand, a positive correlation between the size of training data and the classification ratio is

observed in the CNN model. Furthermore, except for space group Ia3̄d which is the most

symmetric space group, the classification ratios on the rarely seen groups are lower than

the well represented groups in our CNN model. However, the main result is that the CNN

performs significantly better than the LR model for all space groups, especially on structures

with lower symmetry. There is an overall trend towards increase in the prediction ability as

the symmetry increases, and there are outliers, but there seems to be a trend that the CNN

model is better at predicting space groups for more highly populated space groups.

The confusion matrix [172] is a common tool to assess the performance of a ML model.

The confusion matrix, M, is an N by N matrix, where N is the number of labels in the

dataset. The rows of M identify the true label (correct answer) and the columns of M

mean the label predicted by the model. The numbers in the matrix are the proportion
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of results in each category. For example, the diagonal elements indicate the proportion of

outcomes where the correct label was predicted in each case, and the matrix element in the

Fd3̄m row and the F 4̄3m column (value 0.05) is the proportion of PDFs from an Fd3̄m

space group structure that were incorrectly classified as being in space group F 4̄3m. For an

ideal prediction model, the diagonal elements of the confusion matrix should be 1.0 and all

off-diagonal elements would be zero. The confusion matrix from our CNN model is shown

Fig. 3.6.

We observe “teardrop” patterns in the columns of P 1̄, P21/c and Pnma, meaning the

CNN model tends to incorrectly assign a wide range of space groups into these groups.

On the surface, this behavior is worrying but the confusions actually correspond to the

real group-subgroup relation which has been known and tabulated in literature [7; 31; 67].

For the case of P 1̄, the major confusion groups (P21/c, C2/c and P2/c) are in fact minimal

non-isomorphic supergroups of P 1̄. Moreover, P212121 shares the same subgroup (P21) with

P21/c and Pbca is a supergroup of P212121 while Pbcn is a supergroup of P21/c. Similar

reasoning can be applied to the case of P21/c and Pnma as well. The statistical model

appears to be picking up some real underlying mathematical relationships.

We also investigate the cases with low classification accuracy (low value in diagonal

elements) from the CNN model. P21 is the group with the lowest accuracy (27 %) among all

labels. The similar group-subgroup reasoning also holds for this case as well. P21/c (32 %

error rate) is, again, a supergroup of P21 and C2/c (10 % error rate) is a supergroup of

P21/c. The same reasoning holds for other confusion cases and we will not explicitly iterate

through it here, but this suggests that these closely group/sub-group related space groups

should also be considered whenever the CNN model returns another one in the series. It is

possible to train a different CNN model which focuses on disambiguating space groups that

are closely related by the group/sub-group relationship. However, we did not implement this
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kind of hierarchical model in our study.

3.3.2 Space Group Determination on Experimental PDFs

The CNN model is used to determine the space group of 15 experimental PDFs and the

results are reported in Table 3.3. For each experimental PDF, structures are known from

previous studies which are also referenced in the table. Both crystalline (C) or nanocrys-

talline (NC) samples with a wide range of structural symmetries are covered in this set of

experimental PDFs. It is worth noting that the sizes of the NC samples chosen are roughly

equal to or larger than 10 nm, at which size in our measurements the PDF signal from the

NC material falls off roughly at the same rate as that from crystalline PDFs in the training

set. Every experimental PDF is subject to experimental noise and collected under various

instrumental conditions that result in aberrations to the PDF that are not identical to pa-

rameter values used to generate our training set (Table 3.2). It is therefore expected that

the CNN classifier will work less well than on the testing set. From Table 3.3, it is clear

that the CNN model yields an overall satisfactory result in determining space groups from

experimental data with the space group from 12 out of 15 test cases properly identified in

the top-6 predictions.

Here we comment on the performance of the CNN. In the cases of IrTe2 at 10 K, the

material has been reported in the literature in both C2/m and P 1̄ space groups [118; 183],

and it is not clear which is correct. The CNN returned both space groups in the top six.

Furthermore, for data from the same sample at room temperature, the CNN model identifies

not only the correct space group (P 3̄m1), but also the space groups that the structure will

occupy below the low-temperature symmetry lowering transition (C2/m, P 1̄). For the case

of BaTiO3 nanoparticles, the CNN model identifies two space groups that are considered in

the literature to yield rather equivalent explanatory power (R3m, P4/mmm) [102; 136]. It
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Figure 3.6: The confusion matrix of our CNN model. The row labels indicate the correct

space group and the column labels the space group returned by the model. An ideal model

would result in a confusion matrix with all diagonal values being 1 and all off-diagonal values

being zero. The numbers in parentheses are the space-group number.
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is encouraging that the CNN appears to be getting the physics right in these cases.

Investigating the failing cases from the CNN model (entries with a dagger in Table 3.3)

also reveals insights about the decision rules learned by the model. Sr2IrO4, was firstly

identified as a perovskite structure with space group I4/mmm [153], but later work pointed

out that a lower symmetry group I41/acd is more appropriate due to correlated rotations

of the corner-shared IrO6 octahedra about the c-axis [76; 167]. There is a long-wavelength

modulation of the rotations along the c-axis resulting a supercell with a five-times expansion

along that direction (a = 5.496 Å, c = 25.793 Å). The PDF will not be sensitive to such a

long-wavelength superlattice modulation which may explain why the model does not identify

a space group close to the I41/acd space group, reflecting additional symmetry breaking due

to the supermodulation. It is not completely clear what the space group would be for the

rotated octahedra without the supermodulation, so we are not sure if this space group is

among the top-6 that the model found.

Somewhat surprisingly the CNN fails to find the right space group for wurtzite CdSe,

which is a very simple structure, but rather finds space groups with low symmetries. One

possible reason is that we know there is a high degree of stacking faulting in the bulk CdSe

sample that was measured. This was best modelled as a phase mixture of wurtzite (space

group P63mc) and zinc-blende (space group F 4̄3m) [117]. The prediction of low symmetry

groups might reflect the fact the underlying structure can not be described with a single

space group.

3.4 Conclusion

We demonstrate an application of machine learning (ML) to determine the space group

directly from an atomic pair distribution function (PDF). We also present a convolutional

35



CHAPTER 3. MACHINE LEARNING APPROACH TO DETERMINE THE SPACE
GROUP OF A STRUCTURE FROM THE ATOMIC PDF

Table 3.3: Top-6 space-group predictions from the CNN model on experimental PDFs. Bold-

faced prediction is the most probable space group from existing literatures listed in the Refs.

column. More than one predictions are highlighted when these space groups are regarded

as highly similar in literatures. Details about these cases will be discussed in the text. The

Note column specifies if the PDF is from a crystalline (C) or nanocrystalline (NC) sample.

The experimental data were collected under various instrumental conditions which are not

identical to the training set and experimental data were measured at the room temperature,

unless otherwise specified. Dagger is used to label the data that the CNN model fails to

predict the correct space group.

Sample 1st 2nd 3rd 4th 5th 6th Refs. Note

Ni Fm3̄m Pm3̄m Fd3̄m F 4̄3m P4/mmm P63/mmc [135] C

Fe3O4 Fd3̄m I41/amd R3̄m Fm3̄m F 4̄3m P63/mmc [56] C

CeO2 Fm3̄m Fd3̄m Pm3̄m F 4̄3m Pa3̄ P4/mmm [199] C

Sr2IrO
†
4 Fm3̄m P6/mmm P63/mmc Pm3̄m Fd3̄m R3̄m [76; 167] C

CuIr2S4 Fd3̄m Fm3̄m F 4̄3m R3̄m Pm3̄m R3m [58] C

CdSe† P21/c P 1̄ C2/c Pnma Pna21 P212121 [117] C

IrTe2 C2/m P 3̄m1 P21/c P 1̄ P21/m C2/c [118; 202] C

IrTe2@10K C2/m P63/mmc P6/mmm P4/mmm P 1̄ P21/c [118; 183] C

Ti4O7 P 1̄ C2/c P21/c C2/m Pnnm P42/mnm [114] C

MAPbI3@130K P 1̄ P21/c C2/c P212121 Pnma Pna21 [176] C

MoSe2 P63/mmc R3m R3̄m P63mc P4/mmm Fd3̄m [80] C

TiO2(anatase) I41/amd C2/m P21/m C2/c P 1̄ P21/c [74] NC

TiO2(rutile) P42/mnm C2/m P21/c P 1̄ P21/m Pnma [13] NC

Si† P63mc I 4̄2d R3m C2/c P 1̄ Pbca [160] NC

BaTiO3 R3m P4/mmm C2/m P63/mmc Pnma Cmcm [102; 136]] NC
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neural network (CNN) model which yields a promising accuracy (91.9 %) from the top-6

predictions when it is evaluated against the testing data. Interestingly, the trained CNN

model appears to capture decision rules that agree with the mathematical (group-subgroup)

relationships between space groups. The trained CNN model is tested against 15 experimen-

tal PDFs, including crystalline and nanocrystalline samples. Space groups from 12 of these

experimental data were successfully found in the top-6 predictions by the CNN model. This

shows great promise for preliminary, model-independent assessment of PDF data from well

ordered crystalline or nanocrystalline materials.

3.5 Appendix

3.5.1 Logistic Regression and Elastic Net Regularizations

Consider a dataset with total M structures and K distinct space-group labels. Each structure

has a space group and we denote the space group of m-th structure as km where km ∈

{1, 2, . . . K}, our complete set of space groups. In the setup of LR model, the probability

of a feature xm of dimension d, which is a computable from m-th structure, belongs to a

specific space group km is parametrized as

Pr(km|xm, βkm) =

exp

(
βkm0 +

d∑
i=1

βkmi xm,i

)
1 + exp

(
βkm0 +

d∑
i=1

βkmi xm,i

) , (S1)

where βkm = {βkm0 , βkm1 , . . . , βkmd } is a set of parameters to be determined. The index km

runs from 1 to 45 which corresponds total number of space groups considered in our study.

Since the space group k and feature x are both known for the training data, the learning

algorithm is then used to find a optimized set of β = {βkm : km = 1, 2, . . . , K} which

maximizes the overall probability in determining correct space group Pr(km|xm, βkm) on all
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M training data.

For each of the M structures, there will be a binary result for classification; Either

the space group label is correctly classified or not. This process can be regarded as M

independent Bernoulli trials. The probability function for a single Bernoulli trial is expressed

as

f(km|xm,βkm) =
[
Pr(km|xm,βkm)

]γm
(S2)[

1− Pr(km|xm,βkm)
]1−γm

,

where γ is an indicator. γm = 1 if the space-group label km is correctly predicted and γm = 0

if the prediction is wrong. Since each classification are independent, the joint probability

function for M classifications on the space-group label, fM(K|x,β), is written as

fM(K|x,β) =
M∏
m=1

f(km|xm,βkm), (S3)

where K = {km} and x = {xm}. Furthermore, since both the label and features are known

in the training set, Eq. S3 is just a function of β,

L(β) = fM(K|x,β) (S4)

Logarithm is a monotonic transformation. Taking logarithm of Eq. S4 does not change the

original behavior of the function and it improves the numerical stability as the product of

probabilities is turned into sum of logarithm of probabilities and extreme values from the

product can still be computed numerically. We therefore arrive the “log-likelihood” function

l(β) = log(L(β)) (S5)

It is common to include “regularization” [69] for reducing overfitting in the model. The

regularization scheme chosen in our implementation is “elastic net” which is known for
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encouraging sparse selections on strongly correlated variables [211]. The explicit definitions

of the log-likelihood function with elastic regularization is written as

lt(β) = l(β) + α
(

Λ ‖β‖1 + (1− Λ) ‖β‖22
)
, (S6)

where ‖·‖ and ‖·‖22 stands for L1 and L2 norm [75] respectively. Two hyperparameters α and

Λ are introduced under this regularization scheme. α is a hyperparameter that determines

the overall “strength” of the regularization and Λ governs the relative ratio between L1 and

L2 regularization [211]. Detailed steps on optimizing Eq. S6 is beyond the scope of this

paper, but they are available in most of standard ML reviews [69; 27].

3.5.2 Robustness of the CNN model

The classification accuracies from CNN models with different sets of hyperparameters, such

as number of filters, kernel size and pooling size, are reproduced in Table S1. The classifica-

tion accuracy only vary modestly across different sets of hyperparameters and this implies

the robustness of our CNN architecture. We determined the desired architecture of our CNN

model based on the classification accuracy on the testing set and the learning curves (loss,

training accuracy and testing accuracy) reported in Fig. 3.5.
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Table S1: Accuracies of CNN model with different sets of hyper parameters. Accuracy is

abbreviated as accu. in the table. The last row specifies the optimum set of hyperparmeters

for our final CNN model.

# filters kernel size # hidden units # ensembles Top-1 accu. (%) Top-6 accu. (%)

128, 32 24 128 2 64.1 90.7

256, 64 24 128 2 68.6 91.6

64, 64 24 128 2 67.4 91.1

128, 64 32 128 2 69.0 91.7

128, 64 16 128 2 66.6 91.3

128, 64 24 256 2 69.2 91.6

128, 64 24 64 2 66.4 91.2

128, 64 24 128 1 65.7 91.1

128, 64 24 128 3 68.2 91.6

256,64 32 128 3 70.0 91.9
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Chapter 4

sasPDF: pair distribution function

analysis of nanoparticle superlattice

assemblies from small-angle-scattering

data

4.1 Introduction

With the advent of high degrees of control over nanoparticle synthesis [129; 77; 47] attention

is turning to assembling superlattices of them as metamaterials [28; 35] and applications of

nanoparticle assemblies (NPA) based devices such as solar cells and field effect transistors

have been demonstrated [178; 164; 177]. It is crucial to study the structures of these NPAs if

their properties are to be optimized. For example, it has been shown that the mechanical [1],

optical [201], electrical [189] and magnetic [174] properties can be further engineered by

controlling the spatial arrangement of the constituents in the NPA.
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Getting detailed quantitative structural information from NPAs, especially in 3D, is a

challenging and largely unsolved problem. Small angle scattering and electron microscopy

(EM) have been the major techniques for studying the structure of NPAs [128; 179]. The

technique of TEM yields high-resolution images of NPAs. To obtain quantitative structural

information it is necessary to either analyze the images manually [192] or match observed

images with patterns that are algorithmically generated from known structures [166]. This

approach can yield the structure types [208] but does not typically result in the kind of

quantitative 3D structural information we are used to obtaining for atomic structures of

crystals, including accurate inter-particle vectors and distributions of inter-particle distances,

or the range of structural coherence of the packing order. It is desirable to explore scattering

approaches that can yield that kind of information.

The technique of small-angle x-ray or neutron scattering (SAS) has been an important

tool to study objects that have sizes from nano- to micrometer length-scales [186; 63; 66;

97], such as large nanocrystals [147] and biological molecules [97], yielding information about

the intrinsic shape, size distributions and scattering density of objects on these scales [63;

16; 139; 191; 17].

When these nanoscale objects aggregate, correlation peaks appear in the SAS data re-

sembling atomic-scale interference peaks (Diffuse scattering and Bragg peaks), but encod-

ing information about particle packing rather than atomic packing [128; 133]. Obtain-

ing structural information about the NPAs from these correlation peaks appears to be a

promising approach. Although the recent developments in SAS modeling demonstrates

the ability to account for phase, morphology and orientations of NPs in a lattice [197;

111], fitting the SAS data with robust structural models to obtain quantitative information

about the structure has barely been explored [112]

On the other hand, the atomic pair distribution function (PDF) analysis of x-ray and
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neutron powder diffraction has proven to be a powerful tool for characterizing local order

in materials, and for extracting quantitative structural information [149; 50; 210; 92] when

the atoms are not long-range ordered, as is the case in nanoparticles. Here we extend PDF

analysis to handle correlation peaks in the small angle scattering data, allowing us to study

the arrangement of particles in nanoparticle assemblies using the same quantitative modeling

tools that are available for studying the atomic arrangements in nanoparticles themselves.

We describe the extension of the PDF equations in the small-angle scattering (SAS) regime

and describe the data collection protocol for optimum data quality. We also present the

PDFgetS3 software package that can be readily used to extract the PDF from small-angle

scattering data. We then apply the sasPDF method to investigate structures of some

representative NPA samples with different levels of structural order.

4.2 Samples

To test the method we obtained SAS data from the samples listed in Table 1. Synthesis

details of these NPA samples can be found in the references listed in the table.

4.3 sasPDF method

The data were collected using a standard SAXS setup at an x-ray synchrotron source, with

a 2D area detector mounted perpendicular to the beam in transmission geometry. Both the

Cu2S NPA and the SiO2 NPA samples were measured at beamline 11-BM at the National

Synchrotron Light Source-II (NSLS-II). The Cu2S NPA powders were sealed between two

rectangular Kapton tapes with a circular deposited area of diameter about 3 mm and thick-

ness about 0.2 mm. The SiO2 NPA formed a circular, free-standing stable film of diameter

about 5 mm and thickness about 1 mm which was mounted perpendicular to the beam and
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Table 1: Nanoparticle assemblies (NPA) considered in this study. Building block indicates

the NP and surfactant linkers used to build the assemblies. D is the particle diameter

(one standard deviation in parentheses) estimated from TEM images and reported in the

original publications listed in the Ref. column. Beamline is the x-ray beamline where the

SAXS data were measured (see text for details). PMA is Poly(methyl acrylate) and DDT is

dodecanethiol.

Sample Building block D (nm) Beamline Ref.

Au NPA DNA-capped Au NP 11.4(1.0) X21 [133]

Cu2S NPA DDT-capped Cu2S NP 16.1(1.3) 11-BM [68]

SiO2 NPA PMA-capped SiO2 NP 14(4) 11-BM [21]

no further sealing was carried out. The scattering data of the Cu2S NPA and SiO2 NPA sam-

ples were collected with a Pilatus 2M (Dectris, Switzerland) detector with a sample-detector

distance 2.02 m using an x-ray wavelength of 0.918 Å. An example of the diffraction image

from the Cu2S NPA is shown in the inset of Fig. 4.1. The scattering from these samples is

isotropic as the sample consists of powders of randomly oriented NPA crystallites, and the

2D diffraction images can be reduced to a 1D diffraction pattern, Im(Q), by performing an

azimuthal integration around rings of constant scattering angle on the detector. This was

done using pyFAI [93]. This requires a calibration of the experiment geometry described

below, but the integrated 1D pattern from the 2D diffraction image is shown in Fig. 4.1.

The relative positions and intensities of sharp peaks in the Im(Q) originate from the Debye-

Scherrer rings in the 2D image. We need to use a data acquisition strategy that mitigates

effects of x-ray beam-damage to the sample. The linkers that connect nanoparticles in the

assemblies play a crucial role for the NPA structure formed but are susceptible to degrada-
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Fig. 4.1: Example of the 1D diffraction pattern Im(Q) from the Cu2S NPA sample. The

data were collected with the spot exposure time and scan exposure time reported in the text.

The inset shows the corresponding 2D diffraction image. The horizontal stripes in the image

are from the dead zone between panels of the detector. The diagonal line is the beam-stop

holder.

45



CHAPTER 4. SASPDF: PAIR DISTRIBUTION FUNCTION ANALYSIS OF
NANOPARTICLE SUPERLATTICE ASSEMBLIES FROM
SMALL-ANGLE-SCATTERING DATA

tion in the intense x-ray beam that may result in changes in the NPA structure. To describe

the strategy we separate the concepts of a “spot exposure time” and the “scan exposure

time”. The latter is the total integrated exposure time to obtain a dataset with sufficient

statistics. The former is the length of time that any spot on the sample is exposed. The

scan exposure then consists of multiple spot exposures, where the sample is translated after

each spot exposure so that a fresh region of sample is exposed. For ease of experimentation

we would like to determine a spot exposure time that is as long as possible whilst ensuring

that the sample has not degraded significantly during that exposure. We have found that

the maximum safe spot exposure time depends on the nature of the NPA sample, as well

as experimental conditions such as x-ray energy, flux and sample temperature. It therefore

requires a trial-and-error approach to determine it. To choose the optimal spot exposure

time we locate the beam on a fixed spot of the sample and take a sequence of short expo-

sures, monitoring for significant changes in the intensity of the strongest correlation peak in

Im(Q). The spot exposure time determined this way for our experimental setup was 30 s for

both Cu2S NPA and SiO2 NPA samples and the scan exposure time was 5 minutes (30 s, 10

spots) for the Cu2S NPA sample and 10 minutes (30 s, 20 spots) for the SiO2 NPA sample.

The scan exposure time is estimated based on an assessment of noise in the PDF given

a desired Qmax, but it depends sensitively on the counting statistics in the high-Q region

of the diffraction pattern, which is easiest to assess by looking in the high-Q region of the

reduced structure function F (Q). For illustration purposes, the effect of scan exposure time

on the F (Q) (and the resulting PDF) is illustrated in Fig. 4.1 of Appendix section.

For the calibration of the experimental geometry, such as sample-detector distance and

detector tilting we use the calibration capability in the Python package pyFAI [93]. We

first measured silver behenate (AgBh) [62] as a well characterized calibration sample. The

d-spacing of the calibration sample, the x-ray wavelength and the pixel dimensions of the
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detector are known, which allows the geometric parameters to be refined in pyFAI. We

found that selecting the strongest few rings (even just two or three work well) in the image

allowed a stable refinement of the calibration parameters.

Finally, in this study we also consider legacy data from measurements carried out previ-

ously [133]. The data of the Au NPA sample were collected at beamline X21 at the National

Synchrotron Light Source (NSLS) from a sample loaded into a wax-sealed 1 mm diameter

quartz capillary. The scattering data were collected with a MarCCD (Rayonix, USA) area

detector using an x-ray wavelength of 1.55 Å. Details of the measurements are reported

in [133].

The PDF, denoted G(r), is a truncated sine Fourier transform of the reduced structure

function F (Q) = Q [(S(Q)− 1)] [50]

G(r) =
2

π

∫ Qmax

Qmin

F (Q) sin(Qr) dQ. (1)

Since F (Q) can be easily computed once S(Q) is available, we will first focus on describing

the precise definition of S(Q) and its relation to the measured diffraction pattern Im(Q).

The measured intensity, Im(Q), depends on experimental details such as the flux, and beam

size of the x-ray source, the data collection time and the sample density. From the point

of developing the sasPDF formalism, we will focus on the coherent scattering intensity

Ic(Q) [50] which is obtained after correcting Im(Q) for the experimental factors as we describe

below.

The coherent scattering intensity Ic(Q) from a unit cell with Ns atoms is [50; 65]

Ic(Q) =
Ns∑
m=1

Ns∑
n=1

f ∗m(Q)fn(Q) exp [iQ · (rm − rn)] , (2)

where Q is the scattering vector, fm(Q) and rm are the atomic form factor amplitude and

position of m-th atom in the unit cell, respectively.
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If the scattering from a sample is isotropic, for example, it is an untextured powder

or a liquid with no anisotropy, the observed scattering intensity will depend only on the

magnitude of Q, |Q| = Q and not its direction in space. The observed scattering intensity

in this case will depend on the orientationally averaged Ic(Q),

Ic(Q) =

〈
Ns∑
m=1

Ns∑
n=1

f ∗m(Q)fn(Q) exp [iQ · (rm − rn)]

〉
, (3)

where 〈·〉 denotes the orientational average.

This formalism is readily extended to the case where the scattering objects are not atoms,

but are some other finite-sized object, for example, nanoparticles. In this case, the atomic

form-factor would be replaced with the form-factor for the scattering objects in question.

The form factor f(Q) for a generalized scatterer, with volume V and its electron density as

a function of position ρ(r) is [65]

f(Q) =

∫
V

[ρ(r)− ρ0] exp (iQ · r) dr, (4)

where ρ0 is the average electron density of the ambient environment of the scatterers.

In situations where there is only one type of scatterer we pull the form factors out of the

sum, and if the electron density of the scatterer is approximately spherical Eq. 2.5 may be

further simplified to [65; 50]

Ic(Q) = Ns

〈
f 2(Q)

〉
+ 〈f(Q)〉2

〈
Ns∑
m=1

Ns∑
n6=m

exp [iQ · (rm − rn)]

〉
. (5)

Following the Faber-Ziman formalism [51],

S(Q) =
Ic(Q)

Ns〈f(Q)〉2
− 〈f

2(Q)〉 − 〈f(Q)〉2

〈f(Q)〉2
, (6)

we plug in 〈f 2(Q)〉 = 〈f(Q)〉2 and Eq. 6 becomes

Ic(Q) = Ns〈f 2(Q)〉S(Q). (7)
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This expression is equivalent to representing the scatterers as points at the position of their

scattering center, convoluted with their electron distributions. The resulting structure func-

tion, S(Q), yields the arrangement of scatterers in the sample. This expression is often

expressed in the SAS literature as [65]

S(Q) =
Ic(Q)

NsP (Q)
. (8)

Where P (Q) is equivalent to 〈f 2(Q)〉 [65], the orientational average of the square of the

form-factor. We note that, as with the atomic PDF, the above analysis can be generalized

to the cases of scattering from multiple types of scatterers [98; 197; 165] and in the SAS

case approximate corrections for asphericity of the electron density [85; 162; 207], may be

applied.

To determine S(Q) we need to have P (Q). P (Q) can be computed from a given electron

density, or directly measured. For the case of a NPA sample, the precise scattering properties

of the NP ensemble in the sample, including any polydispersity or distribution of geometric

shapes, are not always known, therefore it is best to measure the form factor directly, as

described below. In general we do not know Ns and all of the experimental factors (for

example, the incident flux, multiple scattering and so on). The algorithm [26] that is widely

used for carrying out corrections for these effects in the atomic PDF literature [87] is also

suitable for the SAS data. It takes advantage of our knowledge of the asymptotic behavior

of the S(Q) function to obtain an ad hoc but robust estimation of S(Q) from the measured

Im(Q). This is described in detail in [87]. The resulting scale of the PDF is not well

determined, but when fitting models to the data this is not a problem [141], and in practice

it gives close to a correct scale for high quality measurements. Here we show that we can

take the same approach to obtain the PDF from the measured SAS data here.

In the test experiments we describe here, in each case the form factor of the nanoparticles

was obtained from a measurement. The NPs are suspended in solvent at a sufficient dilution
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to avoid significant inter-particle correlations. The SAS signal of the dilute NP solution is

measured with good statistics over the same range of Q as the measurement of the nanopar-

ticle assemblies themselves, and ideally on the same instrument. The signal of the solvent

and its holder is also measured and then subtracted from the SAS signal of the dilute NP

solution to obtain the correct particle form factor signal. We emphasize that it is important

to measure exactly the same batch of NPs to have an accurate form factor for the NPA

sample considered.

A form factor measured with high statistics is crucial as the signal in Ic(Q) is weak in

the high-Q region and noise from the P (Q) measurement can be significant in this region.

Fig. 4.2 shows the effect on F (Q) (and the resulting PDF), when processed using P (Q) from

different scan exposure times. It is clear that the statistics of the form-factor measurement

has a significant effect on the results. In cases where any signal in P (Q) does not change

rapidly it may be smoothed to reduce the effects of limited statistics, at the cost of possibly

introducing bias if the smoothing is not done ideally. This will be particularly relevant when

the nanoparticles are not monodisperse, as is somewhat common.

The experimental PDF G(r) is then obtained via the Fourier transformation, Eq. 1.

The success of the sasPDF method depends heavily on the good statistics (high signal-to-

noise ratio) throughout the entire diffraction pattern Ic(Q) and the form factor P (Q), as

important information about the structure may reside in the high-Q region where the signal

intensity is weak. It is recommended to use intense radiation sources such as synchrotrons.

A comparison in data quality from an in-house instrument and a synchrotron source is shown

in Fig. 4.3 of Appendix section.
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4.4 Software

To facilitate the sasPDF method, we implemented a PDFgetS3 software program for

extracting the sasPDF from experimental data. Information about obtaining the software

is on the diffpy organization website (https://www.diffpy.org). The software is currently

supported in Python 2 (2.7) and Python 3 (3.4 and above). It requires a license and is free

for researchers conducting open academic research, but other uses require a paid license.

The PDFgetS3 program takes in a measured diffraction pattern Im(Q) and a form

factor, P (Q), as the inputs and applies a series of operations such as subtraction of exper-

imental effects and form factor normalization and outputs the PDF, G(r). If the square of

the orientationally averaged form-factor 〈f(Q)〉2 is available, both P (Q) and 〈f(Q)〉2 can

be specified in the program, and the S(Q) will be computed based on Eq. 6 which accounts

for the anisotropy of scatterers in the material. Processing parameters used in PDFgetS3

operations, such as the form-factor file, the Q-range of the Fourier transformation on F (Q)

and the r-grid of the output G(r), can be set in a configuration file in the same way detailed

in [87]. Similar to PDFgetX3, an interactive window for tuning these processing parame-

ters, is also available in PDFgetS3. An illustration of such interactive interface is shown

in the Fig. 4.2. Sliders for each processing parameter allow the user to inspect the effect on

the output PDF data immediately.

Once the optimal processing parameters are determined based on the quality of the PDF,

those parameter values will be stored as part of the metadata in the output G(r) file. The

final values of Qmin and Qmax should be used when calculating PDF from a structure model,

as these parameters contribute to the ripples in the PDF [141]. Full details on how to use

the program is available on the diffpy organization website.
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Fig. 4.2: Illustration of the interactive interface for tuning the process parameters in the

PDFgetS3 program.
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4.5 PDF method

The PDF gives the scaled probability of finding two scatterers in a material a distance r

apart [50]. For a macroscopic object with N scatterers, the atomic pair density, ρ(r), and

G(r) can be calculated from a known structure model using

ρ(r) =
1

4πr2N

∑
m

∑
n6=m

fm(Q)f ∗n(Q)

〈f(Q)〉2s.a.
δ(r − rmn), (9)

and

G(r) = 4πr [ρ(r)− ρ0] . (10)

Here, ρ0 is the number density of scatters in the object. fm(Q) = 〈fm(Q)〉 is the orienta-

tionally averaged form-factor of the m-th scatterer. 〈f(Q)〉s.a. =
∑N

m=1(
Nm

N
)fm(Q) denotes

the sample average of f(Q) over all scatterers in the material, where Nm is the number of

scatterers that are of the same kind as the m-th scatter. Finally, rmn is the distance between

the m-th and n-th scatterer. We use Eq. 10 to fit the PDF generated from a structure model

to a PDF determined from experiment.

PDF modeling, where it is carried out, is performed by adjusting parameters of the struc-

ture model, such as the lattice constants, positions of scatterers and particle displacement

parameters (PDPs), to maximize the agreement between the theoretical and an experimen-

tal PDF. In practice, the delta functions in Eq. 10 are Gaussian-broadened to account for

thermal motion of the scatterers and the equation is modified with a damping factor to

account for instrument resolution effects. The modeling of sasPDF can be done seamlessly

with tools developed in the atomic PDF field, with parameter values scaled accordingly.

We outline the modeling procedure using PDFgui [53], which is widely used to model the

atomic PDF. In PDFgui, the nanoparticle arrangements can simply be treated analogously

as atomic structures, with a unit cell and fractional coordinates, but the lattice constants

reflect the size of the NPA, which is usually at the order of 100 nm = 1000 Å. The atomic
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displacement parameters (ADPs) defined in PDFgui can be directly mapped to the particle

displacement parameters (PDPs) in the sasPDF case and, empirically, we find the PDP

values are roughly four to five orders of magnitude larger than the values of its counter-

part on the atomic scale, therefore starting values of 500 Å2 are reasonable. These will be

adjusted to the best-fit values during the refinement. The PDF peak intensity depends on

the scattering length of relevant particle, which in the case of x-rays scattering off atoms,

is the atomic number of the atom. For the sasPDF case we do not know explicitly how

to scale the scattering strength of the particles, but for systems with a single scatterer, this

constitutes an arbitrary scale factor that we neglect.

The measured sasPDF signal falls off with increasing r. The damping may originate

from various factors, for example, the instrumental Q-space resolution [50] and finite range

of order in the superlattice assembly. In PDFgui there is a a Gaussian damping function

B(r),

B(r) = exp

[
−(rQdamp)

2

2

]
. (11)

We define a rdamp parameter

rdamp =
1

Qdamp

, (12)

which is the distance where about one third of the sasPDF signal disappears completely.

It is also possible to generalize the modeling process to the case of a customized damping

function and non-crystallographic structure with Diffpy-CMI [89], which is a highly flexible

PDF modeling program. In the following section, we use PDFgui for modeling data from

more ordered samples (Au NPA and Cu2S NPA) and Diffpy-CMI for modeling data from a

disordered sample (SiO2 NPA).
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4.6 Application to representative structures

To illustrate the sasPDF method we have applied it to some representative nanoparticle

assemblies from the literature [133; 68; 21]. The first example is from DNA templated gold

nanoparticle superlattices, originally reported in [133]. The measured intensity, Im(Q), the

reduced total structure function F (Q) = Q[S(Q) − 1], and the PDF G(r) are shown in

Fig. 4.3(a), (b) and (c), respectively. It is clear that the data corrections and normalizations

to get F (Q) result in a more prominent signal in the high-Q regime of the scattering data,

and a highly structured PDF after the Fourier transform (Fig. 4.3(c)).

The PDF signal dies off around 350 nm, which puts a lower bound on the size of the

NPA. The first peak in the PDF is located at 30.07 nm which corresponds to the nearest

inter-particle distance in the assembly. This distance is expected because the shortest inter-

particle distance can be approximated as the average size of Au NPs (11.4 nm) plus the

average surface-to-surface distance (dss) between nearest neighbor NPs (18 nm) [133]. Peaks

beyond the nearest neighbor give an indication of characteristic inter-particle distances in

the assembly and codify the 3D arrangement of the nanoparticles in space.

A semi-quantitative interpretation of conventional powder diffraction data suggested the

Au NPA forms a body-centered cubic (bcc) structure [133]. We therefore test the bcc model

against the measured PDF. The fit is shown in Fig. 4.3(c) and the refined parameters are

reproduced in Table 2. The agreement between the bcc model and the measured data is

good. We refine a lattice parameter that is ∼3 % smaller than the value reported from

the semi-quantitative analysis. Additionally, the PDF gives information about the disorder

in the system in the form of the crystallite size (∼350 nm) and the particle displacement

parameter (PDP), the nanoparticle assembly version of the atomic displacement parameter

(ADP) in atomic systems. The PDF derived crystallite size is drastically smaller than the
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Fig. 4.3: Measured (a) scattering intensity Im(Q) (grey) and form factor P (Q) (blue), (b)

reduced total structure function F (Q) (red) and (c) PDF (open circle) of Au NPA. In (c),

the PDF calculated from body-center cubic (bcc) model is shown in red and the difference

between the measured PDF and the bcc model is plotted in green with an offset.
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Table 2: Refined parameters for NPA samples. Model column specifies the structural model

used to fit the measured PDF. a is the lattice constant of the unit cell, PDP stands for

particle displacement parameters, which is an indication of the uncertainty in position of

the nanoparticles. rdamp is the standard deviation of the Gaussian damping function defined

in Eq. 12. Scale is a constant factor being multiplied to the calculated PDF. Rw is the

residual-function, commonly used as a measure for the goodness of fit.

Au NPA Cu2S NPA

Model bcc fcc

a (nm) 34.73 26.55

PDPs (nm2) 4.78 0.253

rdamp (nm) 83.3 61.4

Scale 0.537 0.361

Rw 0.172 0.221
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value (∼500 nm) estimated from the FWHM of the first correlation peak [133] and it is clear

by visual inspection of the PDF that the ∼500 nm value is an overestimate. These results

suggest that even in the case where it is straightforward to infer the geometry of underlying

assembly using qualitative and semi-quantitative means there is an advantage to carrying

out a more fully quantitative sasPDF analysis.

Next we consider a dataset from a dodecanethiol (DDT)-capped Cu2S NPA [68]. In this

case the form factor is measured on an in-house Cu Kα instrument. This was necessary in

the current case because the instability of the nanoparticles in suspension prevented a good

measurement to be made at the synchrotron. As a result the form factor measurement was

somewhat noisy (Fig. 4.4(a), blue curve) and we elected to smooth it by applying a Savitzky-

Golay filter [134]. The smoothing parameters of window size and polynomial order were

selected as 13 and 2, respectively, based on a trial and error approach optimized to result in

a good smoothing without changing the shape of the signal. The smoothed curve is shown in

Fig. 4.4(a). It is worth noting that in general, a smoothing process may start failing when the

signal-to-ratio in the data exceeds a certain threshold, and so good starting data is always

desirable. A conventional semi-quantitative analysis on diffraction data from the sample

collected on an in-house Cu Kα instrument is shown in Fig. 4.5. It suggests the NPA forms

a face-centered cubic (fcc) structure with an inter-particle distance of 18.8 nm. The SAS

PDF obtained from the same NPA sample is shown in Fig. 4.4. It clearly shows that peaks

die out at around 300 nm, which again signifies the crystallite size of the assembly. The first

peak of the measured PDF is at 18.5 nm, corresponding to the inter-particle distance in the

NPA. This value is about 1.6 % smaller than the value estimated from the semiquantitative

analysis.

The best-fit PDF of a close-packed face-centered cubic (fcc) structural model is shown in

red in the figure and refined structural parameters are presented in Table 2. The fcc model
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Fig. 4.4: Measured PDF (open circle) of a Cu2S NPA sample with the best fit PDF from

the fcc model (red line). The Difference curve between the data aAs a result, nd model is

plotted offset below in green. The inset shows the region of the first four nearest neighbor

peaks of the PDF along with the best-fit fcc model.
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yields a rather good agreement with the measured PDF of Cu2S NPA in the short-range (up

to ∼130 nm). Interestingly, the refined lattice parameter of this cubic model is 26.55 nm,

from which we can calculate an average inter-particle spacing of 18.78 nm, which is much

closer to the value estimated from the in-house data than directly extracting the position

of the first peak in the PDF. The first peak in the PDF calculated from the model lines up

with that from the data at 18.5 nm, which means that the position of the peak, as extracted

from the peak maximum, underestimates the actual inter-particle distance by ∼ 1.5%, which

may be due to the sloping background in the G(r) function [50]. Quatntiative modeling is

always preferred for obtaining the most precise determination of inter-particle distance.

The region of the first four nearest-neighbor peaks in the PDF, together with the fit, is

shown in the inset to Fig. 4.4. A close investigation of this region shows subtle shifts in

peak positions between the measured PDF and the refined fcc model. At around 26 nm

(second peak), the peak from refined model is shifted to higher-r compared to the measured

data, while at around 33 nm (third peak), the relative shift in peak position is towards the

low-r direction. These discrepancies suggest the NPA structure is more complicated than a

simple fcc structure and may reflect the presence of internal twined defects, for example [12].

Furthermore, it is clear that signal persists in the measured PDF in the high-r region that is

not captured by the single-phase damped fcc model. There is clearly more to learn about the

structure of the NPA by finding improved structural models and fitting them to the PDF,

though this is beyond the scope of the current paper.

It is worth noting that the refined PDP value of DDT-capped Cu2S NPA is significantly

smaller than that of the DNA-templated Au NPA described above. A small PDP means the

positional disorder of the NPs is small which would be expected with shorter, more rigid,

linkers between the particles. The inter-particle distance (18.8 nm) can be decomposed into

the sum of the average particle diameter (16.1 nm) and the particle-surface to particle-
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surface distance dss = 2.7 nm. Based on the chemistry the linker would have length 1.7 nm

in the fully stretched out state, which would result in a maximal dss = 3.4 nm if the linkers

were stretched out and oriented radially. Half the observed surface-surface distance, dss/2 =

1.4 nm. This result is reasonable, suggesting the linkers are either not straight, or not radial,

or possibly partially interleaved. Nonetheless, this shorter linker would be expected to be

more rigid and therefore consistent with our observation of a smaller PDP value from the

sasPDF analysis.

4.7 Appendix

4.7.1 Illustration of of data acquisition strategy

In this section, important effects related to the data quality are illustrated. In general,

for a successful sasPDF experiment, it is crucial to achieve a high signal-to-noise ratio

throughout the entire Q-range for both the form factor and sample measurements. Figs. S4.1

and S4.2 show the effect of insufficient counting statistics in the sample and form factor

measurements, respectively. Fig. S4.3 compares the data quality from an in-house instrument

and a synchrotron source. Finally, Fig. S4.4 shows the remedial effect of smoothing data

from in-house measured form factor with insufficient statistics. The proper remedy is to

measure with sufficient statistics in the first place.
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Fig. S4.1: (a) Reduced structure functions F (Q) and (b) PDFs G(r) of the SiO2 NPA sample

with different scan exposure times. Blue is from data with 1 s scan exposure time and red is

from data with 30 s scan exposure time. In both panels, data are plotted with a small offset

for ease of viewing. In both cases the form factor was measured with an scan exposure time

of 600 s.
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Fig. S4.2: (a) Reduced structure functions F (Q) and (b) PDFs G(r) of the SiO2 NPA sample

processed with form factor P (Q) from different scan exposure times. Blue is made with a

form-factor measured for 30 s and red is with a form factor collected for 600 s. In both cases

the scan exposure time for the NPA sample was 600 s. In both panels, data are plotted with

a small offset for ease of viewing.
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Fig. S4.3: (a) Reduced structure functions F (Q) and (b) PDFs G(r) of the SiO2 NPA sam-

ple. Blue is from data collected at Columbia University using a SAXSLAB (Amherst, MA)

instrument with a 2-hour (7200 s) scan exposure time for both I(Q) and P (Q) measure-

ments. Red is from data collected at beamline 11-BM, NSLS-II with 30 s scan exposure time

for both Im(Q) and P (Q) measurements.
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Fig. S4.4: (a) Form factor signal from Cu2S NPs. Blue is the raw data collected at an

in-house instrument and red is the data smoothed by applying a Savitzky-Golay filter with

window size 13 and fitted polymer order 2. (b) reduced structure functions, F (Q), and (c)

PDFs, G(r) from the Cu2S NPA sample. In both panel, blue represents the data processed

with raw form factor signal and red represents the data processed with smoothed form factor

signal. Curves are offset from each other slightly for ease of view.
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Fig. S4.5: Semi-quantitative structural analysis on Cu2S NPA sample.
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Chapter 5

Applications of sasPDF method on

nanoparticle assemblies

5.1 A structural signature for jamming in polymer-

ligated nanoparticle assemblies

5.1.1 introduction

There has been considerable interest in the jamming transition, especially as it relates to

unusual properties of materials such as foams, toothpaste etc [109; 185; 20]. A jammed

state is defined as one that is microscopically disordered and can support weight with only

elastic deformation. While much work has focused on the dynamics of these materials [45;

46], there has been continuing interest in obtaining a structural signature of this transition.

In this context we study the systems of matrix-free polymer grafted nanoparticles (PGNs)

which show enhanced gas transport and a suppression in physical aging relative to the neat

polymer [158; 146; 151]. Grafting the polymers onto the surface of the inorganic nanopar-
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ticles circumvents the challenge of reproducibly obtaining uniformly dispersed nanoparti-

cles [107]. Previous work had shown that at fixed grafting density (a specific case is 0.47

chains/nm2), the gas permeation of these materials is always higher than that of the pure

polymer. The permeation displays a maximum as a function of the graft chain length, in

this case at a molecular weight in the vicinity of ≈ 90 kDa. In addition, independent linear

oscillatory shear rheology shows that this maximum corresponds to a jamming-unjamming

“transition” as a function of chain molecular weight [84]. Here we show through the analysis

of x-ray scattering that there is a structural signature of this proposed jamming transition.

As we reduce the chain length of the grafts we find that the first peak of the pair distribution

function between NP centers shows a significant narrowing, while leaving the total number

of neighbors effectively unchanged. This picture, which is consistent with the idea that force

chains are a signature of jamming, suggest that this dynamic transition is associated with

static signatures.

5.1.2 Experiment

The samples we consider are spherical silica NP cores (14 ± 4 nm) grafted with poly(methyl

acrylate) (PMA) chains at a fixed grafting density of ≈ 0.47 chains/nm2 (medium) and

≈ 0.66 chains/nm2 (high). The NPA formed a circular, free-standing stable film of diameter

about 5 mm. Details of synthesis is reported in [21]. The chain length of the grafted chains

are varied systematically in a series of experiments and the details information of measured

samples is reported in Table 1. The samples were measured at the DUBBLE beam line

(BM26) at the European synchrotron radiation facility (ESRF) and at the Complex Materials

Scattering (CMS, 11-BM) beamline of the National Synchrotron Light Source II (NSLS-II)

at Brookhaven National Laboratory (BNL). Both experiments were conducted using the

rapid acquisition PDF approach [38]. Films of the polymer-ligated NPs were supported
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Table 1: Polymer-grafted silica NP samples. Mn is the molecular weight of the grafted

chain in kg/mol and Σ is the polymer graft density on the surface of the nanoparticles in

chains/nm2.

Sample Σ Mn Sample Σ Mn

H-31 0.66 31 M-29 0.47 29

H-41 0.66 41 M-41 0.47 41

H-62 0.66 62 M-65 0.47 65

H-80 0.66 80 M-78 0.47 78

H-106 0.66 106 M-101 0.47 101

H-129 0.66 129 M-132 0.47 132

by a bracket with the surface of films perpendicular to incident x-ray beam. At DUBBLE

beamline, area detecor in use was Pilatus 1M (Dectris, Switzerland) and sample-detector

distance was 2.37 m with x-ray wavelength of 0.979 Å. At CMS beamline, area detecor in

use was Pilatus 2M (Dectris, Switzerland) and sample-detector distance was at 2.02 m with

x-ray wavelength of 0.918 Å. Both setups were chosen such that the maximumly accessible

momentum transfer (Qmax) is about 0.15 Å−1. The “spot exposure time”, which is the length

of time that any spot on the sample is exposed, was set to 30 s for both experiments at CMS

and at BM26. This value was determined by locating the beam on a fixed spot of the sample

and taking a sequence of short exposures, while ensuring there is no significant changes in

the intensity of the strongest correlation peak in the diffraction pattern. Fro desired data

statistics, 20 images, collected with spot exposure time, were summed together (accounting

for “scan exposure time”). Detailed discussion about the affects of these two parameters to

the data quality is presented in greater detail elsewhere [110].

These systems have amorphous arrangements of the nanoparticles [21], which is advanta-
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geous for studying the jamming transition as it eliminates effects due to specific inter-particle

contacts and correlations coming from the packing; However, it also presents challenges for

detailed study of the structure. To obtain a quantitative analysis of these systems we have

extended the application of atomic pair distribution function (PDF) analysis, which is the

structural approach of choice for studying atomic liquids and amorphous materials [59; 203;

196; 19], to the small-angle scattering regime (sasPDF). This required a significant develop-

ment of the methods and software, which will be presented in detail in a separate paper [110],

but is summarized in the Method section below.

5.1.3 Method

The PDF is experimentally accessible as the Fourier transform of the properly corrected and

normalized diffraction intensity from an isotropically scattering sample such as a uniform

crystalline powder or an amorphous material or liquid. It yields the probability of finding

a neighboring scattering object (atoms in regular PDF) at a distance r away from another

object. For the case of our polymer-ligated NPs, the scattering contrast between the NP

cores and grafted polymer – thus the G(r) obtained – corresponds to the ensemble average

of the center-to-center separation between the NPs. This is accomplished by dividing the

coherent scattering signal by the form factor of the particles, which we measure directly.

The PDFs from high graft density samples are shown in Fig. 5.1. The PDF yields a measure

of the probability of finding a scattering object, in this case a silica nanoparticle, at some

distance-r away from another one. The PDF can be computed by locating a particle at

the origin, moving our in the radial direction from that particle and counting the density

of particles at r away from the particle at the center. The PDF can be understood as a

histogram of inter-atomic distances [50].
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Fig. 5.1: Measured PDFs of, from top to bottom, H-31, H-41, H-62, H-80, H-106, H-129

samples.

5.1.4 Results

We find that the polymer-ligated NPs arrange in an isotropic packing about a central particle

and there is no evidence of close-packing such as face-centered cubic (fcc) or icosahedral

structures for all graft polymer lengths and grafting densities that we studied. This is

evidenced by the fact that the PDF signal is well fit by a single-frequency sine-wave (Fig. 5.2),

which is evidence that the packing of particles around the central particle is isotropic in

space. If it were not, for example if there were a tendency towards fcc packing, the inter-

particle distances would be different in different directions, and multiple Fourier components
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Fig. 5.2: Measured PDF (open circle) of H-31 sample and calculated PDFs (solid lines) from

(a) fcc, (b) hcp, (c) icosahedral (d) damped sine-wave models. In each panel, the line in dark

red is the PDF calculated from the corresponding model with optimum parameters. From

(a) to (c), the line in grey is the PDF calculated from the same model but with small ADPs.

In (d), the line in grey is the PDF calculated from the undamped sine-wave model. Dashed

lines indicate maxima of the sharper PDFs in each panel.
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Fig. 5.3: PDFs of, from top to bottom, H-31, H-41, H-62, H-80, H-106, H-129 plotted on a

renormalized r-axis, r/λ, where λ is the refined wavelength of the best-fit damped sine-wave

model.

would be needed to explain the measured PDF. Therefore, the nanoparticle assemblies, at all

graft polymer lengths, are in structural terms much closer to a random liquid or amorphous

material with no directional packing.

It is evident from Fig. 5.1 that the average particle-particle separation grows with grafting

polymer length, as one might expect. However, for all molecular weights, the PDFs are self-

similar: scaling the r-axis by the mean inter-particle separation results in all the curves

collapsing onto each other (Fig. 5.3.) There is no appearance of order such as fcc in the local

packing for shorter grafting polymers, which might be a structural signature of jamming and

correlate with the enhanced gas separation properties of the materials.
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However, close inspection of the scaling figure indicates that small changes are evident

in the width of the first peak. The width of PDF peaks indicates the level of disorder

of the system [50]. Liquids and amorphous materials that are dense random packings of

hard spheres have nearest neighbor shells that are significantly sharper than higher-neighbor

shells [57; 55; 184; 185], meaning the motions of nearest neighbors are highly correlated [83].

This scenario is indeed true for the the low Mn samples, but interestingly, less so for the

high Mn samples. To investigate the change of the 1st peak width across samples, we

define an order parameter ξ, which is presented in the following way. We investigate the

correlation of nearest neighbors by testing a partial sine-wave model , that is fitted at higher-

r range, against the first neighbor peak in the measured PDFs (high-r fit.) The partial

sine-wave model describes the first neighbor peak well for longest chain length sample (M-

132) (red in Fig. 5.4(c)), signifying the motions of nearest neighbors in the sample are not

highly correlated. However, the partial sine-wave model does not describe the first neighbor

peak well for the short chain length sample (M-41) (red in Fig. 5.4(a)). A sample with

an intermediate graft-polymer chain length appears to have behavior in between these two

(red in Fig. 5.4(b)). The first peak in the data is much sharper than the damped sine-

wave peak, as we would expect for something behaving like a hard-sphere random packed

solid. The different graft polymer length samples have well dispersed but randomly packed

structures. This observation indicates that the nature of the spheres is crossing over from

more hard-sphere behavior to soft spheres. In the former case, we presume that there is

little inter-penetration of the grafted molecules of neighboring silica spheres, whereas in the

latter, there is a greater degree of inter-penetration. The behavior of the NPA is crossing

over from hard to soft on going from sample H-41 to H-129. Similar behavior is observed for

medium graft density sample as well and results are shown in Figs. 5.6 to 5.8.

To explore this crossover in greater detail, we consider the whole series of graft-polymer
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lengths. To quantify this behavior we define a “hard-sphere parameter” that is a measure

of the degree of hard-sphere behavior. When we fit the damped sine-waves, the wavelength

and damping factor are varied to give the best agreement, or lowest Rw. In Fig. 5.4, we

exclude the first peak when carrying out the damped sine wave fitting and we used the same

refined parameters to plot the sine-wave all the way to below the first peak. We call this the

high-r fit. It is also possible to carry out the fit including the first peak. We call this the

full-r fit. Because the nearest neighbor peak in the PDF is the strongest feature, the full-r

fit parameters are heavily weighted towards fitting this peak well. As we discuss above, we

therefore expect the high-r and full-r fits to be quite different for the hard-sphere case, but

to become much more similar for a soft-sphere model. We can use Rw as a measure of this.

We therefore define our hard-sphere parameter, ξh as

ξh =
Rh
w(Mn)−Rf

w(Mn)

Rh
w(Mn0)−Rf

w(Mn0)
, (1)

where Rh
w(Mn) is the Rw from the high-r fit for the sample with polymer graft length Mn,

and Rf
w(Mn) is the full-r fit equivalent. This parameter will be large when the system is

behaving as a hard-sphere system, and will become zero in the soft-sphere limit and Mn0 is

the molecular weight of the shortest polymers in the sample. By normalizing it to the value

for our smallest polymer chain lengths we give it the characteristic of an order parameter,

that crosses between 1 and 0. The PDFs obtained by the full-r fits are shown in Fig. 5.4 as the

solid grey lines, showing the much better fit to the first peak in these fits. The hard-sphere

parameter ξh for the high graft density samples is shown as the red-dashed line in Fig. 5.5.

The ξh crosses over smoothly from large to small with increasing Mn reaching close to zero

at around Mn = 110 kg/mol. By this point the nanoparticle assembly is behaving like a soft-

sphere system. This cross-over is close to the region where the dynamic jamming transition

has been observed [84] in a similar system and the jamming transition therefore appears to

be the loss of collectivity/coherent dynamics of the near-neighbor shell. We also plot on
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Fig. 5.5 a shaded region which corresponds to the region of an anomalous enhancement in

gas permeability has been reported for similar membranes [21]. The values shown here are

our own measurements of gas permeability from samples similar to those measured in the

x-ray measurements. Enhancement in permeability ratio is defined as the permeability of

the target gas in the composite membrane, Pφ, normalized to the permeability of that gas

in a membrane of the pure polymer, denoted Pb. There is an enhancement in permeability

ratio Pφ/Pb of CO2 in the intermediate Mn region, which coincides with the region where

the NPA crosses over from hard-sphere to soft-sphere behavior.

5.1.5 Conclusion

By applying pair distribution function analysis to small-angle x-ray scattering data from

polymer-ligated nanoparticle assemblies, we identify a structural signature of jamming tran-

sition, which is associated with the change of the first peak width in the PDF. The identified

region agree well with the region from dynamical characterization tools. In addition, the

jamming transition region also maps to the region where enhancement in gas separation

was reported. The jamming transition can be understood as the cross-over from hard- to

soft-sphere behavior in the system, which leads to the loss of collectivity dynamics of the

near-neighbor shell.

5.1.6 Appendix

In this section, we present similar analysis results from the medium graft density samples.
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5.2 Multiply twinned structure in DNA-ligated Au nanopar-

ticle assemblies

In this section, we will briefly discuss a legacy data of DNA-ligated Au nanoparticle assem-

blies published in [207]. Previous work had shown this system can be gradually transformed

from the body-centered cubic (bcc) phase into face-centered cubic (fcc) phase after inputting

specific DNA strands. The entire reaction was reported to take about 800 minutes and the

diffraction patterns were collected throughout the process. From the analysis reported before

(which was done in reciprocal space), the transformation from fcc to bcc phase was due to

the nucleation and growth of fcc embryos within the bcc starting phase and no intermediate

phases were involved.

5.2.1 Results

To start our analysis, we first transform the diffraction patterns collected throughout the

reaction into pair distribution functions (PDFs) (Fig. 5.9). We observer a gradual change in

the signal between two end members. We first fit the bcc and fcc model throughout the data.

We find that for the data collected at earlier reaction time, the agreement factor (Rw) [50]

from the bcc fits (blue in Fig. 5.10) is better, however it gradually degrades and after reaction

time = 280 mins., for fcc fits (red in Fig. 5.10) takes over the bcc fits. However even for

the end member (reaction time = 800 mins), which was reported to be pure fcc phase, the

Rw value of best fit fcc model is still at the higher end (0.3) and considerable residual is

presented from the fit (green in Fig. 5.11), which implies the fcc model might be far from

the correct structure model. To have a clearer idea about the underlying structure of the

end member (reaction time = 800 mins), we employ the “cluster-mining” approach [11],

which is based on fitting the measured data in a highly constrained manner, against an
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algorithmically generated pool of candidate structures. This approach had been reported to

be promising in finding and evaluating structural models of small metallic nanoparticles.

In our cluster-mining approach, we consider candidate structures from three motifs, octa-

hedron, decahedron and icosahedron and the scatter plot of Rw for the candidate structures,

along with the Rw value from our previous fcc fit is shown in Fig. 5.12. It is clear that

the cluster-mining approach discovers a series of decahedral structures (green pentagons in

Fig. 5.12) that are more optimal than the fcc structure model we considered before. The fit

from the best decahedron structure (number of particles = 192) is shown in Fig. 5.13. Based

on the residual, we find the best-fit decahedron model indeed remove significant portion of

misfit presented in the fcc model, however a further investigation is needed for solving the

structure entirely.

5.2.2 Conclusion

Multiply-twinned structures have been observed and extensively studied in fcc metal such

as Au, Ag, Pt and Pd [115; 161] and similar structure was also observed in PdSe and DNA-

ligated NPA [163; 9]. The identification of non-fcc model at the end member implies the

reprogramming process of DNA-ligated Au NPA might be mapped to the same crystallization

process observed in other NPA or crystals, which offers a new angle for understanding the

reprogramming process.
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Fig. 5.4: Measured PDFs (open circles), full-r fit (grey) and high-r fit (red) of (a) H-41, (b)

H-80, and (c) H-129 samples. The difference between two models (brown) is plotted below

in each panel.
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Fig. 5.5: Hard-sphere parameter, ξh, for medium (blue) and high (red) graft density samples.

The shaded area is the region of Mn where an anomalous enhancement in gas permeability

was previously reported. This enhancement is reproduced in our samples as shown in the

inset where the permeability ratio Pφ/Pb is plotted from samples with graft densities Σ =

0.43 chains/nm2 (blue) and Σ = 0.66 chains/nm2 (red) similar to the ones in the x-ray

experiments. The horizontal dashed line in the inset is Pφ/Pb = 1 for reference.
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Fig. 5.6: Measured PDFs of, from top to bottom, M-29, M-41, M-65, M-78, M-101, M-132

samples.
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Fig. 5.7: PDFs of, from top to bottom, M-29, M-41, M-65, M-78, M-101, M-132 plotted on a

renormalized r-axis, r/λ, where λ is the refined wavelength of the best-fit damped sine-wave

model.
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Fig. 5.8: Measured PDFs (open circles), full-r fit (grey) and high-r fit (red) of (a) M-41, (b)

M-78, and (c) M-132 samples. The difference between two models (brown) is plotted below

in each panel.

83



CHAPTER 5. APPLICATIONS OF SASPDF METHOD ON NANOPARTICLE
ASSEMBLIES

100 200 300
r (nm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
G

 (n
m

)

Fig. 5.9: Measured PDFs from the fcc-bcc phase transition. From bottom to top, each PDF

corresponds to data collected at 0, 40, 80, 120, 160, 220, 280, 360, 480 and 800 minutes after

the extra DNA strands was added.
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Fig. 5.10: Scatter plot of agreement factors (Rw) of fcc model (red) and bcc model (blue)

vs data collected at different reaction time.
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Fig. 5.11: Measured PDF (blue) at reaction time = 800 mins and PDF from best-fit fcc

model (red). The difference (green) is plotted with an offset for the ease of reading.
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Fig. 5.12: Scatter plot of agreement factors (Rw) for decahedron (green), octahedron (red)

and icosahedron (blue) fit to the PDF collected at reaction time = 800 mins, plotted as a

function of the number of particles per model. The agreement factor from crystalline model

(fcc) to the same PDF is labeled in a dashed line.
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Fig. 5.13: Measured PDF (blue) at reaction time = 800 mins and PDF from best-fit dec-

ahedron cluster model (red). The difference curve (green) is plotted with an offset for the

ease of reading. The shaded area of difference curve labels the improvement of decahedron

cluster from fcc model.
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