
Making Data Storage Efficient in the Era of Cloud Computing

Yang Tang

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/287655268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2020
Yang Tang

All Rights Reserved

ABSTRACT

Making Data Storage Efficient in the Era of Cloud Computing

Yang Tang

We enter the era of cloud computing in the last decade, as many paradigm shifts are

happening on how people write and deploy applications. Despite the advancement of

cloud computing, data storage abstractions have not evolved much, causing inefficiencies

in performance, cost, and security.

This dissertation proposes a novel approach to make data storage efficient in the era

of cloud computing by building new storage abstractions and systems that bridge the

gap between cloud computing and data storage and simplify development. We build four

systems to address four data inefficiencies in cloud computing.

Thefirst system, Grandet, solves the data storage inefficiency caused by the paradigm

shift from upfront provisioning to a variety of pay-as-you-go cloud services. Grandet is

an extensible storage system that significantly reduces storage costs for web applications

deployed in the cloud. Under the hood, it supports multiple heterogeneous stores and

unifies them by placing each data object at the store deemedmost economical. Our results

show that Grandet reduces their costs by an average of 42.4%, and it is fast, scalable, and

easy to use.

The second system, unic, solves the data inefficiency caused by the paradigm shift

from single-tenancy to multi-tenancy. unic securely deduplicates general computations.

It exports a cache service that allows cloud applications running on behalf of mutually

distrusting users to memoize and reuse computation results, thereby improving perfor-

mance. unic achieves both integrity and secrecy through a novel use of code attestation,

and it provides a simple yet expressive API that enables applications to deduplicate their

own rich computations. Our results show that unic is easy to use, speeds up applications

by an average of 7.58×, and with little storage overhead.

The third system, Lambdata, solves the data inefficiency caused by the paradigm shift

to serverless computing, where developers only write core business logic, and cloud ser-

vice providers maintain all the infrastructure. Lambdata is a novel serverless computing

system that enables developers to declare a cloud function’s data intents, including both

data read and data written. Once data intents are made explicit, Lambdata performs a

variety of optimizations to improve speed, including caching data locally and schedul-

ing functions based on code and data locality. Our results show that Lambdata achieves

an average speedup of 1.51× on the turnaround time of practical workloads and reduces

monetary cost by 16.5%.

The fourth system, CleanOS, solves the data inefficiency caused by the paradigm shift

from desktop computers to smartphones always connected to the cloud. CleanOS is a

new Android-based operating system that manages sensitive data rigorously and main-

tains a clean environment at all times. It identifies and tracks sensitive data, encrypts

it with a key, and evicts that key to the cloud when the data is not in active use on the

device. Our results show that CleanOS limits sensitive-data exposure drastically while

incurring acceptable overheads on mobile networks.

Contents

List of Figures iv

List of Tables ix

Acknowledgments xi

Chapter 1 Introduction 1

1.1 Paradigm Shifts in the Era of Cloud Computing 1

1.2 Challenges and Opportunities . 4

1.3 Hypothesis . 5

1.4 Overview of Contributions . 6

1.5 Dissertation Organization . 9

Chapter 2 A Unified, Economical Object Store for Web Applications 11

2.1 Background: Cloud Storage Services . 15

2.2 Extended Motivation and Example . 18

2.3 Architecture . 21

2.4 Deciding Data Object Placement . 27

2.5 File System Interface . 30
i

2.6 Implementation and System Extensibility 32

2.7 Evaluation . 35

2.8 Discussion . 47

2.9 Related Work . 48

2.10 Summary . 50

Chapter 3 Secure Deduplication of General Computations 52

3.1 Security Model and Design . 57

3.2 unic API and Usage . 61

3.3 Leveraging Storage Deduplication . 66

3.4 Implementation . 67

3.5 Evaluation . 70

3.6 Discussion and Limitations . 81

3.7 Related Work . 83

3.8 Summary . 84

Chapter 4 Optimizing Serverless Computing by Making Data Intents Ex-

plicit 85

4.1 Background: Serverless Computing . 88

4.2 A Motivating Example . 91

4.3 Lambdata Overview . 100

4.4 Data-Aware Scheduling . 104

4.5 Optimization: Direct File Access . 107

4.6 Evaluation . 108
ii

4.7 Discussion . 118

4.8 Related Work . 120

4.9 Summary . 121

Chapter 5 Limiting Mobile Data Exposure with Cloud-based Idle Eviction 122

5.1 Case Study: Data Exposure on Android 126

5.2 Goals and Assumptions . 131

5.3 The CleanOS Architecture . 134

5.4 Prototype Implementation . 143

5.5 Applications . 149

5.6 Evaluation . 152

5.7 Security Discussion and Limitations . 163

5.8 Related Work . 165

5.9 Summary . 168

Chapter 6 Conclusion 169

Bibliography 171

iii

List of Figures

Figure 2.1 Monthly cost with (a) variable object size and (b) variable number of

requests. Each line corresponds to a storage service. Assuming (a) has

fixed 100 GET requests and (b) has fixed 1MB object size. Each request

counts as one EBS I/O. 18

Figure 2.2 CDF of file size for Piwigo. 19

Figure 2.3 Grandet deployment scenarios. 22

Figure 2.4 Grandet components. Components with a plug-in symbol mean that

developers can easily extend them. 23

Figure 2.5 An example of PUT request and response. 24

Figure 2.6 Grandet’s PHP SDK and usage examples. 27

Figure 2.7 Implementation of Grandet’s file system interface. Solid arrows are the

data flow. Dashed arrow shows the logical relationship between the

file structure and its content. 31

Figure 2.8 Grandet’s Actor class. 33

Figure 2.9 Comparing the cost of different backends and Grandet. All costs are

normalized to the optimal cost. 38

Figure 2.10 Number of objects at each backend over time. 40
iv

Figure 2.11 Performance of Grandet backend. Evaluated with 4KB and 1MB re-

quests. Error bar is standard deviation. 42

Figure 2.12 Grandet’s end-to-end performance. Time is normalized to the baseline

which uses EBS directly. 43

Figure 2.13 Scalability of Grandet when using single S3 storage. Evaluated with

requests of 4KB in size. The error bar is the standard deviation. 45

Figure 2.14 End-to-end scalability. Evaluated on the FileSender application with

real workload. 45

Figure 3.1 unic protocol. We use | | as the concatenation operator. 60

Figure 3.2 A simple virus scanning application. 62

Figure 3.3 First step: memoize the computation result. 63

Figure 3.4 Final version: use filesystem metadata to further reduce I/O operations. . 64

Figure 3.5 unic architecture. Additional hosts each have the same architecture as

Host 1, and are omitted here due to limited space. 67

Figure 3.6 Misalignment between line and chunk boundaries in grep. Shaded re-

gion is the adjusted chunk for computation. 72

Figure 3.7 Throughput of put() and get() operations. The x-axis is the size of

memoized result. The y-axis is the total time in performing 10,000

put() (solid line) and get() (dashed line) operations. 74
v

Figure 3.8 Relative running time of applications. They-axis is the running time rel-

ative to the original application. For each cluster, the first bar is cache-

miss execution without FS deduplication, the second bar is cache-hit

execution without FS deduplication, the third bar is cache-miss execu-

tion with FS deduplication, and the fourth bar is cache-hit execution

with FS deduplication. The dashed line at 100% shows the running time

for the original application. 76

Figure 3.9 Effectiveness of memoization with evolving data. Solid line is the origi-

nal grep without memoization. Dashed line has the result cache pop-

ulated with v3.0. Dotted line has the result cache populated with the

immediate previous version. 78

Figure 3.10 Effectiveness of memoization across users. For each cluster, the first bar

is the original application, and the second bar is the application mod-

ified to use UNIC. Each bar shows the breakdown of running time on

each group, the number on top showing the total time. 79

Figure 4.1 Example of specifying data intent for a cloud function that generates the

thumbnail of an image. It reads input from pic/1.jpg and writes out-

put to thumb/1.jpg. 86

Figure 4.2 Overview of serverless architecture. 89

Figure 4.3 A photo-sharing application example. Solid arrows indicate triggers.

Dashed arrows represent data flows. 91

Figure 4.4 Example code with four cloud functions. 92
vi

Figure 4.5 Data flow of handling user upload. 93

Figure 4.6 Data flow of making collage. 93

Figure 4.7 Inefficient scheduling on OpenWhisk. 96

Figure 4.8 Dependency between collage and thumbnail. 99

Figure 4.9 Overlapping functions in a pipeline. 99

Figure 4.10 A rare case of overlapping functions in a pipeline. 99

Figure 4.11 Optimized scheduling with Lambdata. 100

Figure 4.12 Example annotations for an invocation of collage. 102

Figure 4.13 Lambdata’s architecture. Components with italic font are Lambdata-

specific. 103

Figure 4.14 Microbenchmark: median time to get and put objects of various sizes to

Amazon S3. Lower is better. 109

Figure 4.15 Time breakdown and speedup of the thumbnail function for various im-

age sizes. 114

Figure 4.16 Timeline for two representative workloads. 116

Figure 5.1 TheCleanOS Architecture. Key components are highlighted in grey. We

add or modify in some way all of the boxed components (except for FS

and kernel). 135

Figure 5.2 The CleanOS SDO API and device-cloud protocol. 138

Figure 5.3 CleanOS Taint Tag Structure. We impose a structure on TaintDroid

taints to support arbitrary numbers of taints. 145

Figure 5.4 Screenshot of Audit Service Log in App Engine. 151
vii

Figure 5.5 Audit precision. Each bar shows the average probability over time that

tainted data was actually exposed, given that the audit log shows its

SDO as exposed. 155

Figure 5.6 Micro-operation Performance (milliseconds). CleanOS Java object field

access times compared with Android, TaintDroid. Times for non-

sensitive and sensitive fields for various eviction states. Averages over

1,000 accesses. 156

Figure 5.7 Application Performance. Performance of various popular app activ-

ities under Android, TaintDroid, and CleanOS for various eviction

states and configurations. Results are averages over 40 runs, in mil-

liseconds. 157

Figure 5.8 Energy Consumption. Hourly energy consumption attributed by Pow-

erTutor to the three apps when running a long-term synthetic work-

load for at least 3 hours over Wi-Fi. Numbers on top of each bar show

energy overhead over default Android in percent. 161

Figure 5.9 Network Traffic Patterns of Apps vs. CleanOS. CleanOS traffic vs. app

traffic for a one-hour trace. The Y axis is in log scale. In our cases,

the phone has background traffic, which is included in both app and

CleanOS lines. 163

viii

List of Tables

Table 2.1 Overview of AWS storage services (May 2016). 16

Table 2.2 Approximate monthly price (US dollars) for select AWS storage services

(May 2016). †S3 infrequent access charges a minimum of 128KB storage

for smaller objects. 17

Table 2.3 List of studied web applications. 19

Table 2.4 Lines of code of Grandet’s components. 32

Table 3.1 Lines of code changed for each application. Parenthesis indicates

whether the adaptation uses file-level or block-level memoization. The

numbers for gcc are based on ccache. 71

Table 3.2 Storage overhead. Columns are: (a) the number of input files, (b) total

size of input files, (c) number of entries in the result cache, (d) size of

the Redis dump file, and (e) relative storage overhead. 81

Table 4.1 Inputs and outputs of each function. 94

Table 4.2 Time spent on each phase of the functions, in milliseconds. The last col-

umn shows the percentage of time spent on getting the data from the

cloud storage. 97
ix

Table 4.3 List of all functions and the parameters used in the experiment. 111

Table 4.4 Breakdown of the phases in each function. All times are in milliseconds.

The last column shows the speedup with cached data. 113

Table 4.5 Description of two representative workflows. 115

Table 4.6 Monetary cost. Numbers are in ×10−6 dollars. 118

Table 5.1 CleanOS Modifications to Android, TaintDroid. 125

Table 5.2 Examples of captured sensitive data. 127

Table 5.3 Exposure of cleartext sensitive data across all 14 apps. A ‘Y’ indicates that

we obtained cleartext copies from RAM/DB. A ‘-’ does not mean that

the data is not on the device, but just that we did not find it in cleartext;

the data could exist in some encrypted form. 128

Table 5.4 Examples of when hoarded sensitive data is being actually used by the apps. 129

Table 5.5 Sensitive data exposure period. Numbers are the fraction of time in

which sensitive data was exposed. 153

Table 5.6 Sensitive data lifetime. Numbers are the maximum sensitive data reten-

tion period. 154

x

Acknowledgments

The work presented in this dissertation would not have been possible without the help

and support of many people.

In particular, I expressmy greatest gratitude tomy advisor, Professor Junfeng Yang, for

his advice and guidance over the past nine years. I would not have been able to complete

this work without his support, encouragement, and inspiration.

I thank Professor Roxana Geambasu for her useful suggestions on the projects I

worked on and the presentations I gave at conferences.

I thank Professor Vishal Misra for his helpful comments on my thesis proposal.

I thank Petros Maniatis and Xi Wang for their valuable feedback on parts of the work

that contributed to this dissertation.

Last but not least, I thank my colleague students Phillip Ames, Sravan Bhamidipati,

Ashish Bijlani, Heming Cui, Gang Hu, Nikhil Sarda, Lingmei Weng, Jingyue Wu, and

Xinhao Yuan, who helped me solve lots of technical issues and proofread many of my

manuscripts.

xi

This dissertation is dedicated to my wife, Yuan Du, for her constant love and

unconditional support, to my daughter, Karen Tang, for all the joy she brings, and to my

parents, Yansheng Tian and Lei Yang, for their encouragement throughout my life.

xii

Chapter 1

Introduction

1.1 Paradigm Shifts in the Era of Cloud Computing

We enter the era of cloud computing in the last decade, when people are changing ways

to write and deploy web applications. Four major paradigm shifts are happening in terms

of cost, resource-sharing, management, and mobility. They bring many benefits to the

developers.

1.1.1 Cost

Traditionally, developers have to provision and pay for all resources they intend to use

upfront, including computing instances, data storage, and network infrastructures. It

is hard to estimate the right amount of resources, causing over- or under-provisioning.

Over-provisioning wastes money, and under-provisioning may lead to service outage or

degradations. Worse, if the workload changes dynamically, the developer has to provision

for the peak scenario, letting resources idle at other times.

In the era of cloud computing, developers can choose from a variety of cloud offer-

ings, paying only for what they use. This pay-as-you-go model brings great flexibility

to the developers and eases their burden of upfront costs. They can scale up or down
1

dynamically based on the current workload.

As a result, many companies are adopting cloud computing to cut costs. A 2016 survey

of 500 business and IT executives reports that over 40% of companies say the benefit of

cutting costs outweighs all other benefits of cloud computing [33]. Goldman Sachs reports

that by moving to the cloud, it has increased productive capacity by 580% while reducing

the total costs by 20% [24].

1.1.2 Sharing resources

Traditionally, developers keep all infrastructures on-premises. They own and control all

the computing and storage resources, and do not share them with other parties.

In the era of cloud computing, resources are shifting from single-tenancy to multi-

tenancy. Mutually distrusting cloud users are now running computations on shared in-

stances and storing data on shared storage. It improves resource utilization and reduces

redundancy. For example, a 2009 study on 162TB disks shows that sharing data can reduce

storage consumption by 68% [92]. Microsoft reports that sharing computation results can

eliminate 35,000 hours of redundant computations per day [69].

1.1.3 Management

Traditionally, developers not only program their business logic, but also have to manage

their infrastructures, including both software (e.g., operating systems and libraries) and

hardware (e.g., machines, disks, and network infrastructures).

In the era of cloud computing, the burden of maintaining infrastructures gradually
2

shifts to cloud providers. The paradigm first shifts to Infrastructure-as-a-Service, where

cloud providers manage the hardware and developers manage the software. In recent

years, serverless computing emerges as a new paradigm to build cloud applications. De-

velopers write small functions that react to cloud infrastructure events, while the cloud

provider maintains all resources and schedules the functions in containers. Thus, devel-

opers only focus on their core business logic, and leave server management and scaling

to the cloud providers.

As a result, many companies, including Netflix, Coca-Cola, and the New York Times,

are adopting serverless computing [35]. A 2018 survey of 600 IT decision-makers shows

that 61% of respondents are already using or plan to use serverless computing by 2020 [57].

1.1.4 Mobility

Traditionally, desktops and servers are the primary computing platforms. They are immo-

bile and connected via wired networks. Mobile phones have few functionalities besides

making phone calls.

In the era of cloud computing, mobile technology is developing at the same time.

Smartphones are replacing desktops as the primary personal computing platform. Net-

work connectivity becomes ubiquitous so that smartphones are always connected to the

cloud.

Some 2017 statistics show that mobile devices generate 67% of all web visits in the

United States [50]. As a result, many developers in the era of cloud computing adopt a

mobile-first strategy.
3

1.2 Challenges and Opportunities

Although cloud computing brings many benefits, one big challenge is that data storage

abstractions have not changedmuch formany decades. The conventional way of handling

data in the era of cloud computing is inefficient. The lack of evolution in data storage

abstractions turns each benefit of cloud computing in §1.1 into great challenges.

First, instead of upfront provisioning, cloud providers offer a variety of cloud stor-

age services in a pay-as-you-go manner. Unfortunately, these services have incompatible

interfaces, such as filesystems and key-value stores. They also have different durability,

availability, and latency guarantees. Worse, their complex pricing schemes make reason-

ing about storage costs difficult. Developers face great challenges in choosing from so

many cloud storage options. Many developers store their data inefficiently on the cloud,

causing poor performance and large bills. This challenge gives us an opportunity to build

a unified and economical cloud data storage.

Second, the multi-tenancy nature of cloud computing means that a significant portion

of the data is redundant. Data deduplication can hugely save storage and simplify man-

agement. However, not only is the data redundant, but the computations on top of the

data are also redundant. Unfortunately, cloud users do not trust one other. It is challeng-

ing for cloud users to share computations with other cloud users that they do not trust.

Traditional deduplication techniques fail to work because they only focus on trusted data.

This challenge gives us an opportunity to deduplicate computations for mutually distrust-

ing cloud users.

Third, in the new paradigm of serverless computing, developers only write core busi-
4

ness logic as cloud functions, while the cloud provider maintains all the infrastructure.

However, cloud functions are ephemeral, with no persistent storage at all. It is chal-

lenging to share data efficiently across cloud functions in serverless computing. Most

developers resort to cloud storage systems for persisting states. However, this practice

is an inefficient compromise suffering from long latency and high cost, because cloud

storage systems are not designed with serverless computing in mind, and their evolution

lags behind this paradigm shift. Specifically, cloud functions are blind to which data they

read or write, therefore missing potentially huge optimizations. This challenge gives us

an opportunity to design a new data option for serverless computing.

Fourth, smartphones are replacing desktop computers as people’s primary comput-

ing platform. They are prone to losses, yet people store enormous sensitive data there,

such as credit card numbers and private communications. How to manage sensitive data

on mobile devices remains challenging because their operating systems are ported from

desktop computers and are not designed with physical insecurity in mind. If the device

is stolen or lost, all sensitive data are at risk. This challenge gives us an opportunity to

evict idle sensitive data to the cloud since smartphones are almost always connected.

1.3 Hypothesis

The paradigm shift to cloud computing brings many benefits, but the lack of evolution in

data storage abstractions causes many inefficiencies:

1. It is difficult to choose from too many cloud storage options.

2. It is hard to deduplicate computations for mutually distrusting cloud users.
5

3. Cloud functions cannot share data directly.

4. Mobile devices mismanage sensitive data.

Therefore, we propose the following research hypothesis: we can make data storage

efficient in the era of cloud computing by building new storage abstractions and systems

that bridge the gap between modern cloud computing techniques and legacy data storage

solutions, and in the meantime, simplify development.

1.4 Overview of Contributions

In order to address the challenges presented in §1.2 and solve the inefficiencies defined in

§1.3, we have built four systems, forming the four main contributions of this dissertation:

1. Grandet: a unified, economical object store for web applications.

2. unic: secure deduplication of general computations.

3. Lambdata: optimizing serverless computing by making data intents explicit.

4. CleanOS: limiting mobile data exposure with cloud-based idle eviction.

We now briefly overview each system.

1.4.1 Grandet

Our first contribution, Grandet, solves the data storage inefficiency caused by the

paradigm shift from upfront provisioning to a variety of pay-as-you-go cloud services.

Grandet is a novel, extensible storage system that significantly reduces storage costs

for web applications deployed in the cloud. It serves as a layer between web applications
6

and cloud storage. Grandet provides both a file system interface and an S3-like key-value

interface, supporting a broad spectrum of web applications. Under the hood, Grandet

supports multiple heterogeneous stores and unifies them by placing each data object at

the store deemedmost economical. Specifically, for each supported store, Grandetmain-

tains a profile capturing the store’s pricing model, availability, durability, and consistency

guarantees, and performance such as latency. It updates the performance part of this

profile by periodically running its profiler, and the other parts based on crawling or user-

supplied configurations. Given a data object, Grandet runs its predictor to predict the

future workload on the object, and its decider to determine, on a fine-grained, per-object

basis, the most economical store that meets the default or developer-specified quality

of service (QoS) requirements—even the default is better than the typical web practice.

Grandet preserves the availability, durability, and consistency that the cloud stores pro-

vide. When the workloads or pricing models change, Grandet migrates data objects

automatically as needed to reduce costs. We explicitly designed Grandet to be extensi-

ble so that developers can add new stores easily.

1.4.2 unic

Our second contribution, unic, solves the data inefficiency caused by the paradigm shift

from single-tenancy to multi-tenancy.

unic is a novel system that securely deduplicates general computations. It serves as

a memoization layer that allows applications running on behalf of mutually distrusting

users to memoize and reuse computation results, thereby improving performance.
7

unic achieves both integrity and secrecy through a novel use of code attestation, a

classic primitive to attest what code is running to a (remote) party [125, 124]. To insert or

query the result cache that unic maintains, unic generates a secure, non-forgeable key

that attests to both the application code and the input data. This key strongly isolates

applications from each other in the result cache.

unic provides a simple yet expressive API that enables applications to deduplicate

their own rich computations. From a high level, this API supports an application to (1)

insert input → result to the result cache unic maintains, and (2) query the cache with

input and get back the cached result if any.

1.4.3 Lambdata

Our third contribution, Lambdata, solves the data inefficiency caused by the paradigm

shift to serverless computing, where developers only write core business logic, and cloud

service providers maintain all the infrastructure.

Lambdata is a novel serverless computing system that adds a cache layer between

cloud functions and cloud storage, enabling developers to declare a cloud function’s data

intents, including both data read and data written. Once data intents are made explicit,

Lambdata performs a variety of optimizations to improve performance and reduce costs.

Operationally, Lambdata works as follows. It leverages Grandet or existing cloud

object storage (e.g., AWS S3) to store data. Lambdata adds a caching layer, where each

computing node has its own object cache. Lambdata schedules cloud functions based on

both code and data locality. It tends to schedule multiple function invocations working
8

on the same data on the same computing node, so they can reuse cached data.

1.4.4 CleanOS

Our fourth contribution, CleanOS, solves the data inefficiency caused by the paradigm

shift from desktop computers to smartphones always connected to the cloud.

CleanOS is a new Android-based mobile operating system, which adds to the mobile

device a cloud-based data management layer that manages sensitive data rigorously and

maintains a clean environment at all times in anticipation of device theft. The crucial

insight in CleanOS is to leverage the tight integration of today’s mobile applications

with trusted cloud-based services in order to evict sensitive in-memory and on-disk data

to those services whenever it is not needed on the device. CleanOS identifies and tracks

sensitive data in memory and on stable storage, encrypts it with a key, and evicts that key

to trusted cloud storage when the data is not in active use on the device. CleanOS thus

ensures that the minimal amount of sensitive data is exposed on the vulnerable device at

any time.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents Grandet,

a unified economical object store for web applications. Chapter 3 presents unic, a system

that securely deduplicates general computations. Chapter 4 presents Lambdata, a server-

less computing system optimized by making data intents explicit. Chapter 5 presents

CleanOS, a mobile operating system that limits data exposure with cloud-based idle evic-
9

tion. Chapter 6 concludes this dissertation.

10

Chapter 2

A Unified, Economical Object Store for Web Applications

Web applications are getting more ubiquitous every day because they offer many useful

services to consumers and businesses. Examples include Instagram and Flickr for hosting,

processing, and sharing images; YouTube and Vimeo for videos; Pandora and Spotify for

music; and Dropbox and Google Drive for files.

Many of these web applications can become quite storage-intensive. At the initial

deployment of these applications, a single server might be enough to host the data from

their limited number of users. However, as they become more successful, hosting images,

videos, files, and other data objects from millions of users, their storage needs increase

dramatically. For instance, Facebook has over 500 million users with 260 billion images,

totaling 20PB [17]. Dropbox has over 50 million users, storing 500 million files daily [41].

Cloud computing provides an attractive, economical choice for meeting the storage

(and computational) needs of web applications. Besides the usual benefits of elastic scal-

ing and no hardware (over-)provisioning, each cloud platform typically supports a range

of storage options with different performance, durability, and price characteristics. For in-

stance, AmazonWeb Services (AWS) supports non-persistent virtual disks (instance store),

persistent virtual disks (elastic block store, or EBS), and key-value object store (simple stor-

age service, or S3). Each of these options typically has more sub-options, such as EBS on
11

SSD or magnetic disks, and S3 with reduced redundancy or infrequent access. This rich

set of choices gives developers the flexibility to pick the best one that meets their appli-

cations’ needs. Unsurprisingly, most web startups today choose to deploy their apps in

the cloud, so that they can focus their scarce manpower and funding on features of their

applications [8].

Unfortunately, despite all these storage options, it remains quite challenging for de-

velopers to best leverage them to minimize cost. For simplicity in programming, it is

common practice for a developer to pick a store she thinks is the best and places all ob-

jects of the same data collection (e.g., all images) within the store. However, at its core,

minimizing cost requires developers to make fine-grained decisions on which store is the

best for which object. The reason is that the pricing models of different stores are quite

complex and subtle, depending on such factors as the size of the object, the number of

various types of access requests, and the direction and amount of network transfers. Two

objects in the same data collection may differ hugely regarding these factors, and there-

fore should be placed at different stores. Consider two AWS stores, EBS on SSD, which

charges a high price for storage and nothing for requests, and S3, which charges a moder-

ate price for both storage and requests. A large but cold (i.e., few read and write requests)

object should be stored in S3, whereas a small but hot object should be stored in EBS. It

is both non-intuitive and impractical to require developers, especially those at startups

with scarce manpower and funding, to make such fine-grained placement decisions on a

per-object basis.

In addition, many of the factors affecting price are highly dynamic, frequently requir-

ing data objects to be migrated from one store to another to minimize cost. For instance,
12

the hotness of an object varies over time; so the best store for the object now may be the

worst fit in the future. Even the pricing models change over time due to technology im-

provements [25] and competitions [15]. It is impractical to require developers to predict

these changes accurately or migrate data objects manually.

Lastly, different stores provide heterogeneous interfaces, and a web application writ-

ten against one storage interface (e.g., the file system interface) may not be able to use

another more economical storage option easily or at all. Many popular web applications,

such as MediaWiki (the most popular wiki app) and WordPress (the most popular blog-

ging app), still store data objects such as images in file systems. To run these applications

in the cloud without significant modifications, developers have to store the data objects,

however large they are, in a file system on top of EBS, an option potentially much more

expensive than storing the objects in S3. While newer web applications tend to adopt S3,

they may still manipulate the data objects using existing utilities that require the file sys-

tem interface. Examples include a photo gallery using ImageMagick to process images or

generate thumbnails, a video sharing application using ffmpeg to convert video formats,

and a file sharing application using bzip2 to compress files. Thus, developers have to

move the objects explicitly between S3 and the file system. These movements, if frequent,

are not only complex to program but also expensive to execute, because S3 charges for

both requests and network transfers.

Because of these reasons, it is difficult for developers to place objects optimally for

minimizing cost. The cost of misplacement can be quite high. At a micro level, each PUT

request on S3 costs as much money as storing 5MB of data for a day; so it is extremely

costly to store frequently accessed data objects on S3. The storage cost on EBS is up to 8×
13

as much as on S3; so putting an infrequently-accessed large object on EBS is expensive,

too. At a macro level, our experiments show that misplacement costs up to 572% more.

We present Grandet, an extensible storage system that significantly reduces storage

costs for web applications deployed in the cloud. Grandet provides both a file system

interface and an S3-like key-value interface, supporting a broad spectrum of web appli-

cations. Under the hood, Grandet supports multiple heterogeneous stores and unifies

them by placing each data object at the store deemed most economical. Specifically, for

each supported store, Grandet maintains a profile capturing the store’s pricing model,

availability, durability, and consistency guarantees, and performance such as latency.

It updates the performance part of this profile by periodically running its profiler, and

the other parts based on crawling or user-supplied configurations. Given a data object,

Grandet runs its predictor to predict the future workload on the object, and its decider to

determine, on a fine-grained, per-object basis, the most economical store that meets the

default or developer-specified quality of service (QoS) requirements—even the default is

better than the typical web practice. Grandet preserves the availability, durability, and

consistency that the cloud stores provide. When the workloads or pricing models change,

Grandet migrates data objects automatically as needed to reduce cost. We explicitly de-

signed Grandet to be extensible so that developers can add new stores easily.

We implemented Grandet in AWS and evaluated Grandet on a diverse set of four

popular open-source web applications, namely CumulusClips, Piwigo, Elgg, and File-

Sender. Our results show that:

1. Grandet significantly reduces the costs spent on storage for web applications. On
14

average, Grandet reduces the storage costs by 42.4%.

2. Grandet has little overhead. It can be deployed with little impact on application

performance.

3. Grandet scales well when the workload increases.

4. Web applications can use Grandet to save cost with no modification at all, and

several lines of changes would reduce the cost even further.

The remainder of this chapter is organized as follows. The next section introduces the

background of cloud storage services. §2.2 extends our motivation with a study and an

example. §2.3 describes Grandet’s architecture. §2.4 shows the data placement strategy.

§2.5 presents the file system interface. §2.6 describes the implementation. §2.7 shows

evaluation results. §2.8 discusses some design implications, §2.9 presents related work,

and §2.10 summarizes this chapter.

2.1 Background: Cloud Storage Services

Thevariety of cloud storage options can bemainly divided into two categories: file storage

and blob storage. File storage generally provides a disk or file system interface. Appli-

cations can mount it and manipulate data using file system operations such as open(),

read(), and write(). Examples of file storage are Amazon elastic block store (EBS),

Microsoft Azure file storage, and Google compute engine persistent disks. On the other

hand, blob storage generally provides a minimal key-value interface, such as PUT, GET,

and DELETE. A blob is normally treated as a whole, and operations such as partially up-
15

Storage service Type Durability Availability Latency
Instance store file ephemeral 99.95% lowest
EBS (SSD) file 99.8-98.9% 99.999% lowest
EBS (magnetic) file 99.8-98.9% 99.999% low
S3 (standard) blob 1 − 10−11 99.99% medium
S3 (reduced) blob 99.99% 99.99% medium
S3 (infrequent) blob 1 − 10−11 99.9% medium
Glacier blob 1 − 10−11 n/a high

Table 2.1: Overview of AWS storage services (May 2016).

dating a blob are absent. Examples of blob storage are Amazon simple storage service

(S3), Microsoft Azure blob storage, and Google cloud storage.

Even more options are available for each category of cloud storage. For instance,

Amazon Web Services (AWS) supports four types of stores (see Table 2.1). Instance store

provides free, non-persistent virtual disks to anAWS elastic compute cloud (EC2) instance.

These virtual disks are non-persistent because they are stored in the physical disks of the

host machine that happens to run the EC2 instance. Elastic block store (EBS) provides

persistent virtual disks, based on either SSD or magnetic. Simple storage service (S3) is

a key-value store for objects, with standard, reduced-redundancy, or infrequent-access

options. Glacier is a backup store with an extremely low cost and long read latency (3–5

hours).

Not only do these storage options have different service levels, but they also have

complex and diverse pricing models. A typical pricing model depends on the total stor-

age size, the number of each type of request, and the direction and amount of network

data transfer. Table 2.2 shows a snippet of the pricing scheme for AWS storage services.

Although they have the same data transfer cost, the discrepancies in storage pricing are
16

Storage Request (/million) Transfer (/GB)
Storage service (/GB) PUT GET In Out
EBS (SSD) 0.1 0 0 0 0.09
EBS (magnetic) 0.05 0.05 0.05 0 0.09
S3 (standard) 0.03 5 0.4 0 0.09
S3 (reduced) 0.024 5 0.4 0 0.09
S3 (infrequent) 0.0125† 10 1 0 0.09
Glacier 0.007 50 50 0 0.09

Table 2.2: Approximate monthly price (US dollars) for select AWS storage services (May
2016). †S3 infrequent access charges a minimum of 128KB storage for smaller objects.

up to an order of magnitude, and those in request pricing can be as large as three orders

of magnitude. No option is cheaper across all dimensions. For example, EBS (SSD) does

not charge for I/O requests, but its storage price is more than three times as high as S3.

By contrast, S3, despite charging less for storage, has high per-request cost.

To further illustrate the pricing discrepancies, let us study how much money it costs

to put one data object on each of these storage services. Figure 2.1 shows the cost with

(a) variable object size and (b) variable number of requests. We exclude data transfer cost

in the figures for better clarity because it is the same for all these services. In each figure,

the optimal choice is the minimum of all lines (shaded), and the threshold points are

marked. We can see that the optimal choice depends on both object size and the number

of requests, let alone each choice also has different durability, availability, and latency.

Thus, the heterogeneity of service levels and pricing schemes lead to extremely tough

decisions that web applications should make when using cloud storage services. Misplac-

ing data at non-optimal storage locations may not only cause service degradation but also

cost a lot of money, negating the benefits that the cloud brings.
17

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7

S
to

ra
g
e
+

re
q
u
e
s
t
c
o
s
t
($

×
1
0

-4
)

(a) Object size (MB)

EBS (SSD)
EBS (magnetic)

S3 (standard)
S3 (reduced)

S3 (infrequent)← 101KB

↑
 1.54MB

↑
5.65MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

S
to

ra
g
e
+

re
q
u
e
s
t
c
o
s
t
($

×
1
0

-4
)

(b) Number of GET requests

EBS (SSD)
EBS (magnetic)

S3 (standard)
S3 (reduced)

S3 (infrequent)

←

11

←

60

↑
999

Figure 2.1: Monthly cost with (a) variable object size and (b) variable number of requests.
Each line corresponds to a storage service. Assuming (a) has fixed 100 GET requests and
(b) has fixed 1MB object size. Each request counts as one EBS I/O.

2.2 Extended Motivation and Example

We motivated the design of Grandet by studying 19 popular open-source web applica-

tions of various kinds, including file sharing, photo and video sharing, shopping, blogging,

news-reading, social networking, wiki, and content management systems (see Table 2.3

for the list). We observed two insights from our study.
18

Web application Category Web application Category
FileSender file sharing selfoss RSS reader
Piwigo photo sharing Tiny Tiny RSS RSS reader
OpenPhoto photo sharing Elgg social network
CumulusClips video sharing MediaWiki wiki
OpenCart shopping LionWiki wiki
PrestaShop shopping Wikka wiki
Zen Cart shopping Drupal CMS
Wordpress blog October CMS
NibbleBlog blog Anchor CMS
Chyrp blog

Table 2.3: List of studied web applications.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 100 1 k 10 k 100 k 1 M 10 M 100 M

C
D

F
 o

f
fi
le

 s
iz

e

File size

↑
original
images

large thumbnails
↓

small thumbnails
↓

temporary files
(generated php, js, css…)

↓

Figure 2.2: CDF of file size for Piwigo.

Our first insight is that data files have diverse yet clustered sizes and access patterns.

For example, the original photo or video files are large, while the thumbnails are small.

Additionally, some files are frequently read, such as a celebrity’s photo, while other files

stay cold after they are stored, and the access pattern of files may change over time. For

example, Figure 2.2 shows the distribution of file size for the Piwigo photo sharing appli-

cation from our evaluation workload based on real-world statistics (see §2.7 for workload

details). About 30% of all files are original images (7–12MB), 13% are large thumbnails
19

(600–800KB), 30% are small thumbnails (90–160KB), and the rest are temporary files. The

reason that there are fewer large thumbnails is that Piwigo generates them lazily, and

many photos are not accessed yet. This diversity creates a great opportunity for optimiza-

tion, because file size and access pattern are two dominating factors on storage costs, as

we have shown in §2.1.

Our second insight is that, despite their complexity, all the 19 applications manipu-

late data files only in simple ways. Each file corresponds to a logical data object, such

as a photo or a video. These files are written sequentially and free of sub-file updates.

Therefore, both file storage and blob storage are capable of storing these data objects.

Because of these two insights, we design Grandet as a transparent gateway for a

variety of heterogeneous storage services. Data objects are always stored at the optimal

service based on the characteristics of the data and workload as well as the pricing and

network condition. They are also automatically migrated among the storage services

when theworkload, pricing, or network condition changes. Next, we present amotivating

example about how the CumulusClips video sharing application [39] stores and uses data,

to illustrate how Grandet can help it reduce storage cost.

When a user uploads a video file, CumulusClips stores it to the file system and calls an

external program, ffmpeg, to convert the file tomultiple formats, such as a high-definition

version for broadband connections and a low-definition version for mobile devices. It

also generates a static thumbnail of the video. All these derived files are stored in the file

system, too. Later, viewers of the CumulusClips website see a list of thumbnails. When

the viewer clicks on a thumbnail, based on her platform, one of the converted videos is

played.
20

Grandet helps CumulusClips by transparently handling the storage for all files. De-

spite internally storing data as key-value objects, Grandet is mounted to CumulusClips’s

uploads directory as a file system, and no modification to CumulusClips’s source code is

required. Whenever CumulusClips wants to write a file to the directory, Grandet puts

the file to its optimal storage service based on its prediction of the file’s workload. For

example, it would put a small thumbnail on EBS if it predicts that the file would frequently

be read but put a large high-definition video on S3. Grandet also migrates data over time

to reflect latest conditions. For example, if an unknown video on S3 suddenly becomes a

sensation (the “slashdot effect”), then Grandet would move it to EBS for cheaper request

cost.

2.3 Architecture

We now give an overview of Grandet’s deployment scenarios and present the architec-

ture of Grandet.

2.3.1 Overview

Grandet unifies multiple heterogeneous cloud storage into a single service. Its primary

goal is to reduce storage costs for web applications. Thus, instead of running as standalone

servers that would incur additional cost, Grandet leverages piggyback deployment.

Figure 2.3 shows two typical deployment scenarios. For single-instance web applica-

tions, the Grandet service simply co-locates on the same machine with the application

(Figure 2.3(a)). Large-scale web applications (e.g., MediaWiki [143]) typically shard their
21

Web App

Grandet

Grandet

Shard 1

Grandet

Shard 2

...
Grandet

Shard n

 (a) single-instance
 web application (b) web application with sharded storage

...

...

Web App

NFS

Figure 2.3: Grandet deployment scenarios.

files into multiple storage servers, each storing a disjoint subset of the files, and mount

them via a distributed file system (e.g., NFS). In this case, each shard independently runs a

Grandet service on it (Figure 2.3(b)). Because the files stored on each shard are disjoint,

Grandet need not worry about consistency among shards.

Grandet does not introduce new availability, durability, or consistency concerns due

to two reasons. First, each object is stored on exactly one cloud storage; so the availability,

durability, and consistency of Grandet’s storage are as good as the underlying cloud

storage. The application developer can specify the minimum availability, durability, and

consistency requirement on a per-object basis (see §2.3.3). Second, since the Grandet

service itself resides on the same server as the web application or the storage shard, they

share the same availability.

2.3.2 Grandet components

Figure 2.4 shows the components of the Grandet service. Grandet’s frontend exports

a key-value SDK for various programming languages and a general file system interface
22

Controller

File System
Interface

Key-value
SDK

EBS Actor S3 Actor

Decider

Profiler

Predictor

EBS S3

EBS
Profile

S3
Profile

Cloud storage services

Grandet
backend

C++
PHP

Python

....

....

....

Decision Store

Grandet
frontend

...

Figure 2.4: Grandet components. Components with a plug-in symbol mean that develop-
ers can easily extend them.

to the web application or storage shards. The frontend and the backend communicate via

Unix domain socket IPC.

The Grandet backend stores data as key-value objects. It consists of five compo-

nents. The Controller handles all requests from the frontend and coordinates all the

other backend components. A set of Actors executes storage actions on a variety of stor-

age backends. The Profiler periodically probes the current pricing model and network

conditions for each storage backend, and stores them as profiles. The Predictor keeps

track of the frequency of all PUT, GET, and DELETE requests, and predicts future request

patterns. The Decider decides upon the best storage option based on the application’s

requirements, the predicted request pattern, and the storage profiles. Decisions are kept

on the decision store in Redis [116] and further persisted on EBS or S3.

We specifically designed Grandet to be extensible, so that developers can easily add
23

Frontend

Controller

Request

type : PUT
key : alice:wedding:photo1
value: <image object>
requirements: {
 min_availability = 99.99%
 min_durability = 99.99%
 min_consistency = eventual
 max_latency = 300ms
}
hints: {user=alice, album=wedding}

Response

status: OK

FS or SDK

Backend

Figure 2.5: An example of PUT request and response.

new stores, support new languages, or change the prediction algorithm (see §2.6).

2.3.3 Grandet workflow

All communications start with the application¹ sending a request to the Controller by

using either the key-value SDK or the file system interface, where the latter internally

represents files as key-value objects (see §2.5). Regardless of frontend, the request is one

of the following:

PUT. The application requests to store a data object to Grandet’s storage (Figure 2.5).

The application should assign a unique key to the data object based on its own needs. For

example, a photo sharing application may assign the image file that Alice uploads to her

Wedding album the key alice:wedding:photo1. The value of the data object can be an

arbitrary length of binary content.

¹If deployed with sharded storage, it is actually the shard that sends the request. However, there is no
difference from Grandet’s view.

24

Along with the PUT request the application can specify its requirements on the storage

service for this particular data object. The requirements include the minimum availability,

durability, and consistency required, as well as the maximum latency allowed. Only the

services that meet these requirements are considered as candidates for storing this data

object (see Table 2.1 for an overview of storage services). Requirements are optional. If the

application does not specify requirements, then Grandet assumes all non-ephemeral (i.e.,

not the EC2 instance store) andmoderate-latency (i.e., not Glacier) services can be chosen.

It is worth mentioning that even this default assumption provides better guarantees than

a typical application’s setup, since both EBS and S3 are at least 20× more reliable than

typical commodity disks [6].

The application can also give hints to Grandet for a better placement decision. Hints

are also optional, and we have implemented two default hints. §2.4 discusses the place-

ment strategy and default hints in detail.

Upon receiving the request, the Controller first asks the Decider for the placement

decision, which in turn looks at the current profile for each storage service and asks the

Predictor for the predicted future request pattern. Based on this, the Decider finds the

most cost-effective storage choice that satisfies all the application’s requirements, memo-

rizes the choice at the decision store, and returns the choice to the Controller Then the

Controller tells the corresponding Actor to store the data object to the actual storage

and notifies the Predictor to bookkeep this action. Finally, it tells the application that

the PUT has completed.

GET. The application requests to retrieve a data object from Grandet’s storage. The
25

Controller asks the Decider to recall the previous placement decision from the decision

store and then asks the corresponding Actor to retrieve the data object from the actual

storage. The Controller also asks the decider to check if the optimal placement decision

would change because the current workload, pricing scheme, and network conditions

may have changed. If not, it notifies the Predictor to bookkeep this action and returns

the data object to the application. Otherwise, it also migrates the data object to the new

storage service and deletes the old copy.

DELETE. The application requests to delete a data object from Grandet’s storage. The

Controller asks the Decider to recall the previous placement decision from the decision

store and then asks the corresponding Actor to delete the data object from the actual

storage. It also notifies the Predictor to bookkeep this action.

2.3.4 Frontend interface

Grandet has two types of frontend interface. The key-value SDK provides bindings for

these requests for various programming languages such as C++, PHP, and Python. For

instance, Figure 2.6 shows Grandet’s PHP interface and examples of putting and get-

ting an image. The interface is similar to current cloud blob storage services such as S3.

Therefore, web applications that are already aware of S3-like blob storage can just switch

to Grandet’s SDK and seamlessly get all the cost-savings that Grandet brings.

For applications that only work with file systems, Grandet also provides a file system

interface using fuse, which applications can mount to their data directory directly. §2.5

describes it in detail.
26

// PHP SDK interface
function put($key, $value, $requirements=[], $hints=[])
function get($key)
function del($key)

// Example: PUT an image with requirements and hints.
require_once 'grandet.phar';
grandet\put('alice:wedding:photo1', $uploaded_image,

['min_availability_required' => 99.99,
'min_durability_required' => 99.99,
'min_consistency_required' => 'eventual',
'max_latency_required' => 300],
['user' => 'alice', 'album' => 'wedding']);

// Example: PUT with no requirements and default hints.
grandet\put('alice:wedding:photo2', $another_image);

// Example: GET an image.
$image = grandet\get('alice:wedding:photo1');

Figure 2.6: Grandet’s PHP SDK and usage examples.

2.4 Deciding Data Object Placement

The cornerstone of Grandet is the decision engine for placing each data object onto the

optimal storage service. It makes a decision each time the application PUTs or GETs a data

object. The decision engine closely follows the pricing model of all storage options. As

mentioned in §2.1, a typical pricing model consists of three factors: storage (data size and

lifetime), request (type and amount), and data transfer. The data size is known, and trans-

fer prices are usually the same for all services within the same cloud region. Therefore,

the key to making placement decision is predicting the future access pattern of the data

object.
27

2.4.1 Prediction of access pattern

Grandet provides a framework that allows developers to use any algorithm to predict

access patterns (see §2.6.2). It also provides a default predictor, which we now describe.

For each request for a certain object, the predictor uses the request’s metadata to

classify the object into the class of objects similar to this object. The metadata includes

the object size, the object name, the requirements of the request, and other hints (see

§2.4.3) provided by the developer.

For each class, the predictor keeps track of the number of GET and PUT requests issued

on the objects in this class recently, and it also records the number of recently accessed

objects and the average lifetime of the objects in this class. Each record is kept for r

seconds (typically a day or a week).

Suppose that for the class the current object belongs to, there are д GET requests and

p PUT requests recently, and there are n objects accessed in this class, then the predictor

would predict that in the following t seconds, there would be дt
nr GET requests and pt

nr

PUT requests for this object. It would also predict the object’s lifetime to be the average

object lifetime in its class. Note that even for objects in the same class, their final storage

decisions may differ, because the numbers (д,p,n) are dynamic and other factors such as

object size may be different.

This default predictor is simple yet effective in our evaluation (see §2.7). We believe

that recent machine learning techniques may empower even better algorithms, which can

be easily plugged into Grandet (detailed in §2.6.2).
28

2.4.2 Decision making

Grandet’s decider works with the predictor to decide where to place the object. It uses

the object size and the predicted access pattern to make the decision. For each backend,

Grandet’s decider uses its pricing model to calculate the storage cost of the object in its

predicted lifetime and chooses the backend with the lowest cost.

The optimal placement decision for an object may change over time because of

changed workload, pricing scheme, or network condition. A migration happens on a

PUT or GET request when the extra cost for migration is less than the cost savings at the

new storage service.

The extra cost for a GET-triggered migration is the total cost of an additional PUT re-

quest, a DELELTE request, and data transfer cost, while a PUT-triggered migration does not

need the extra PUT request. For migration within the same Amazon cloud region, such as

from S3 to EBS, data transfer is free, and DELETE requests are also free.

2.4.3 Hints

The application can give additional hints to Grandet for better prediction. A hint is an

arbitrary set of key-value pairs. For example, a photo sharing application can provide

the hint {user=alice, album=wedding} when storing an image file. The predictor will

predict the workload of this file by considering files with similar hints, such as images

uploaded by the same user in the same album. Hints are optional, and we have imple-

mented two types of default hints if the application does not provide any hint. For the

file system interface (see §2.5), the default hint is the directory hierarchy. For example,
29

if the photo sharing application stores a file at alice/wedding/photo1.jpg, the default

hints would be {hint1=alice, hint2=wedding}. For the SDK interface (see §2.3.4), the

default hints are the object’s key split by colons. We evaluate the effect of hints in §2.7.5.

2.5 File System Interface

Providing POSIX-like file system semantics is arguably the best way to support the widest

range of legacy web applications seamlessly because it does not require modifications to

their source code. Hence, Grandet also implements a file system interface using fuse. It

can be directly mounted to the web application’s data directory.

The design of Grandet’s file system interface follows our insight that most files are

accessed wholly and sequentially by web applications, such as photo and video files. So,

it is best to store each file as one object, as opposed to dividing files into blocks. Besides,

web applications often need to rename files, such as moving a temporary file to its fi-

nal directory. So, it is essential to support fast renaming, although S3 does not support

renaming objects other than a copy followed by a delete. Last but not least, some web

applications generate many intermediate files when doing backend processing, and re-

move them soon. So, it is desirable to skip putting these intermediate files to the backend

storage.

Figure 2.7 shows the implementation of Grandet’s file system interface. At the back-

end, it stores each file as a UUID-keyed object and puts the actual file name in its metadata.

At the frontend, it maintains a cache of file contents on a RAM drive and keeps the file

structure hierarchy and metadata (e.g., UUID, file size) in Redis. Therefore, renaming a file
30

Cache Grandet
Controller

async-upload queue

/a.jpg:
 uuid=0a46dde1...
 size=11,793,094
 mtime=1427400000
 ...
/thumb/a-th.jpg:
 uuid=a84e468c...
 size=145,751
 ...
...

File structures

File 0a46dde1...

(11,793,094 bytes)

... ...
close()

open()

GET

PUT

Redis RAM drive

Frontend Backend

Figure 2.7: Implementation of Grandet’s file system interface. Solid arrows are the data
flow. Dashed arrow shows the logical relationship between the file structure and its con-
tent.

only touches its metadata.

We next describe the file operations. On creat(), we create a file in the cache and

pass the file descriptor to the application. On open(), we GET the file data from the back-

end storage if it does not exist in the cache, then open the cached file and return the file

descriptor. For file manipulations such as read, write, and truncate, we pass them through

to the corresponding file system operations of the cache. We also update our file structure

for the new file size and modification time. On close(), if the file content has been mod-

ified, we append it into an async-upload queue so that the file will be PUT to the backend

storage, and we block on fsync() until the PUT is completed.

Our implementation PUTs file contents to the backend storage asynchronously. It has

two benefits. First, it skips intermediate temporary files if they are deleted before the

actual PUT happens. Second, it allows an application to specify hints as extended attributes

(xattr) efficiently after a file has been closed, which is useful when the creation of the
31

Component LoC Component LoC Component LoC
S3 Actor 120 EBS Actor 236 Decider 230
Predictor 356 Controller 1401 Profiler 235
C++ SDK 159 PHP SDK 168 Python SDK 69
FS interface 1979 Console 349 Misc 1191
Total : 6493

Table 2.4: Lines of code of Grandet’s components.

file is beyond the application’s control, such as files generated externally. For example,

the CumulusClips video sharing application executes ffmpeg to convert a video file to

another format. It can set xattr of the converted file after that.

Since Grandet’s backendmakes the decision on the optimal storage location based on

each file’s predicted usage pattern, the replacement algorithm on the cache is not critical.

A simple LRU algorithm works well in practice.

2.6 Implementation and System Extensibility

We designed Grandet as an extensible framework where each component, such as the

storage services, the prediction algorithm, or the frontend SDK, can be easily replaced

or extended. We implemented the Grandet backend in C++14, the file system interface

with fuse [58], and key-value SDK in various languages. We modified libaws [9] to com-

municate with AmazonWeb Services. Table 2.4 shows the numbers of lines of Grandet’s

components. Metadata such as placement decisions are stored in Redis [116]. All compo-

nents can be easily extended by plugging in a new subclass, or customized by changing a

configuration file. This section describes some implementation details.
32

class Actor {
public:
virtual void ~Actor()=default;

// cloud storage operations
virtual void put(const string& key, shared ptr<Value> val)=0;
virtual shared ptr<Value> get(const string& key)=0;
virtual void del(const string& key)=0;

// updates pricing model, latency, availability, durability, etc.
virtual void profile(shared ptr<Profile> profile)=0;

};

Figure 2.8: Grandet’s Actor class.

2.6.1 Adding a storage service

Grandet’s Actor executes actions, such as PUT, GET, and DELETE, on the storage service.

We implemented Actors for EBS (SSD and magnetic) and S3 (standard, reduced redun-

dancy, and infrequent access). Supporting a new storage service just requires adding a

new subclass of Actor and implementing its interface methods.

Figure 2.8 shows the interface of the Actor class. The put(), get(), and del() are

cloud storage operations. The profile() method, when called by Grandet’s Profiler,

updates the cloud service’s Profile, which includes pricing model and service conditions

such as latency, availability, durability, and consistency.

The Profiler is a cron job that periodically runs. When triggered, it calls every

Actor’s profile() method to update its profile. We implemented crawlers in our EBS

and S3 Actors to fetch and parse the pricing information from the Amazon Web Services

website. Profiles are stored as JSON files so that users can also manually configure the

pricing model or service levels.
33

2.6.2 Adding a prediction algorithm

We implemented the prediction algorithm as described in §2.4. Plugging a new prediction

algorithm into Grandet just requires subclassing the Predictor class.

The Predictor has three listener functions, namely notify_put(), notify_get(),

and notify_del(), which are called whenever there is a PUT, GET or DELETE request. The

Predictor thus keeps track of the current workload. When making a decision, the de-

cider calls the Predictor’s predict_put(), predict_get(), and predict_lifetime()

functions to get the predicted future request frequency and expected lifetime.

2.6.3 Protocol and SDK

Grandet’s frontend and backend communicate through Unix domain socket IPC, and all

messages are serialized in Protocol Buffers [66]. Grandet defines two types of protocol

messages: Request and Response. A Request message is one of three types: PUT, GET,

and DELETE. It also includes the key and value of the data object, the application’s re-

quirements such as minimum durability and maximum latency, and optionally hints for

workload prediction and other metadata. The Response message contains a status code,

and optionally the data object’s value if it is the response to a GET request.

Therefore, the SDK for a programming language is just a wrapper over Protocol Buffer

and socket programming. We have implemented the SDK for C++, PHP, and Python, with

70–170 lines of code each. We believe that supporting a new language would similarly

require little programming effort.
34

2.6.4 Optimization

To further improve performance, we also implemented two optimizations to Grandet’s

basic design.

Shortcut for file access. When PUTting a file object that is already on disk, the request

payload only includes the file name instead of the file content, and the Grandet backend

reads the file directly from disk. Therefore, it avoids sending the entire file from frontend

to backend.

S3 authenticated URL. An application often GETs a data object from Grandet only to

send it verbatim to the user without any processing. For example, when a user clicks

“download original image” on the Piwigo photo sharing application, Piwigo simply re-

trieves the data object for that original image and send it back to the user. Thus, if the

data object is stored on S3, Grandet incurs unnecessary overhead by acting as a proxy

for the data transfer. In order to optimize for this scenario, the application can specify a

special requirement in its GET request in the form of {url=true, expire=600s}; so the

Grandet backend sends the application a pre-authenticated URL for the S3 object with

the specified expiration time (600s here). The application can thus redirect the user to

download the image from the authenticated URL directly.

2.7 Evaluation

We evaluated Grandet on four popular open source web applications: CumulusClips

(video sharing) [39], Piwigo (photo sharing) [109], Elgg (social network) [46], and File-
35

Sender (file sharing) [54]. We modeled the usage data for each application according to

the most popular website of its type, namely YouTube, Flickr, Facebook, and Dropbox.

Section 2.7.1 details how we modeled the usage data. To make cost evaluations manage-

able, we scaled down the usage to 100 users in one month, while preserving real-world

workload characteristics. We ran all experiments on EC2 m3.large instances with EBS

and S3 in the US East region, using Ubuntu Linux 14.04 and Redis with per-second fsync.

Our experiments aim to answer four questions:

§2.7.2 Does Grandet reduce cost?

§2.7.3 Is Grandet fast?

§2.7.4 Is Grandet scalable?

§2.7.5 Is Grandet easy to use?

2.7.1 Workload modeling

We first describe our workload modeling for each app.

CumulusClips. We modeled the usage data of CumulusClips according to YouTube

[146], where a billion users upload 300 hours of video per minute [147] and an aver-

age video has four minutes [98, 34]. So a user uploads 0.19 videos a month on average.

Each month, an average user views 76 videos [34]. The average video size is 8MB [28].

On YouTube’s website, 20 recommendations appear with each video; so in our model,

for each video viewed, 20 thumbnails are also viewed. A typical thumbnail has 400×300

pixels.
36

Piwigo. We modeled the usage data of Piwigo according to Flickr [56], where 87 million

users upload 3.5 million images daily [80]. An average photo has 20 views [84]. On the

Flickr website, an album shows 27 thumbnails. Large thumbnails have 1600×1000 pixels,

and small ones have 640×400 pixels. A typical photo has 5120×3840 pixels.

Elgg. We modeled the usage data of Elgg according to Facebook [51], where 500 million

users upload 120 million photos daily [17]. The average photo size is 60KB [17]. On

Facebook’s website, a pop-up photo has 960×960 pixels and a thumbnail in the timeline

has 300×300 pixels. Each day, 10 billion photos are viewed, and the ratio of views between

thumbnails and original photos is 95% to 5% [17]. In our model, we distribute a user’s

views among her friends following a Pareto distribution with α = 1.5.

FileSender. We modeled the usage data of FileSender according to Dropbox [40], where

50million users upload 500million files daily [41]. We use the average size of files fromfile

sharing servers, 153KB [135]. The popularity of the shared files follows a Zipf distribution

with α = 0.4 [137].

2.7.2 Cost savings

For the monetary cost, we evaluated each application’s end-to-end cost reduction, ana-

lyzed Grandet’s operational cost, and tested its ability to handle dynamic workloads.

End-to-end cost savings

The overarching goal of Grandet is to reduce cost used by web applications. Figure 2.9

shows a comparison of total storage costs of evaluated web applications with different
37

0 %

100 %

200 %

300 %

400 %

500 %

600 %

700 %

CumulusClips Piwigo Elgg FileSender

C
o

s
t

EBS Magnetic

EBS SSD

S3 (Standard)

S3 (Reduced redundancy)

S3 (Infrequent Access)

Grandet

146

108 110 106

Figure 2.9: Comparing the cost of different backends and Grandet. All costs are normalized
to the optimal cost.

storage backends.² For each application, the first five bars are the cost of placing all

objects into a single storage service. The last bar is the result of Grandet’s dynamic

placement. All numbers are normalized by the theoretically optimal placements, i.e., each

object is placed at the best storage if the entire workload was known beforehand (perfect

prediction).

The results show that Grandet always costs less than any single-storage option.

It saves a geometric mean of 42.4% over the best single-storage setting. For example,

Grandet reduces Piwigo’s cost by 56.2%. The reason is that Piwigo converts images into

several resolutions, and images from different users and albums have distinct access pat-

terns that are hard to be programmed statically but easy to be predicted dynamically by

²Storage costs in this dissertation were reported by Grandet based on the precise storage space used
and the number of requests recorded. We did not use Amazon’s billing statement because it was too coarse-
grained.

38

Grandet.

Furthermore, for all but one applications, Grandet’s cost is within 10% of the optimal

cost. For CumulusClips, although it costs 45.7% more than optimal, it is still 48.0% better

than using any single storage backend.

It is worth noting that the cost saving ratio is independent of the number of users be-

cause the cost is proportional to theworkload, which in turn is proportional to the number

of users. Therefore, Grandet is effective in reducing the cost for a broad spectrum of web

applications.

Operational cost

To evaluate the operational cost that the Grandet service itself incurs, we monitored its

memory and CPU usage while running the Piwigo application. Grandet only uses little

memory; so we focus on CPU usage.

Assume that someone sets up a Piwigo instance to serve 100K users. Per our usage

model (see Appendix 2.7.1), users would upload 120K photos and view 2.4M photos in

one month. Meanwhile, 120K thumbnails would be generated, and they would be viewed

64.8M times. Thus, there would be a total of 2.52M large requests (95% read) and 64.92M

small requests (99% read) per month, or 0.972 large requests and 25.1 small requests per

second.

We evaluated Grandet to see how many requests per second (RPS) it can handle per

percent of CPU usage. In the worst case, Grandet can handle 1.54 RPS per percent of

CPU usage with large requests (1MB, 95% read), and 29.5 RPS per percent of CPU usage

with small requests (4KB, 99% read). Plugging it into the above scenario, Grandet would
39

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400

N
u
m

b
e
r

o
f
d
a
ta

 o
b
je

c
ts

Time (s)

Upload phase Download phase

Magnetic

SSD

S3

Figure 2.10: Number of objects at each backend over time.

consume 1.48% CPU to serve all requests. Since an EC2 m3.large instance costs $38 per

month and it has two cores, Grandet only costs $0.28 per month to serve 100K users in

this case, negligible versus the storage cost it saves.

Handling dynamics

We evaluated how Grandet reacts to workload changes by feeding it with an extreme

case: we still send the requests according to real workload, but instead of sending re-

quests like real users, we upload all data first and download afterward. Figure 2.10 shows

how Grandet behaves in this situation by showing the number of data objects stored in

different storage backends over time. We used Piwigo in this experiment.

In the upload phase, Grandet decides to put almost half of the objects on EBS mag-

netic, and most of the other objects on S3. Because there are not many requests, storing

objects on S3 is cheap, and EBS SSD’s advantage of zero request cost does not help much.
40

On the other hand, EBS SSD’s storage cost is high; so few objects are put on SSD.

When the download phase comes, the predictor learns that some objects are frequently

requested; so they are migrated out of EBS magnetic because its cost per request is higher

than EBS SSD. Some objects are rarely requested, and some objects are large; so they are

kept on S3. Some objects are migrated to EBS SSD, which has zero request cost and is

ideal for objects with frequent access. The total number of objects is still increasing in

this phase because some objects are lazily generated when they are accessed.

This experiment shows that Grandet can adapt to workload changes over time, and

the predictor is frequently using new information to optimize placement.

2.7.3 Performance

In order to understand Grandet’s performance, we first measured over a microbench-

mark and then evaluated each application’s end-to-end performance.

Microbenchmark

To evaluate Grandet’s performance on basic operations, we evaluated each storage sep-

arately with a single client and two sizes of requests. Figure 2.11 shows the number of

requests Grandet can handle per second. Because the performance of GET requests is

affected by the file system cache, we also measured the performance in the direct mode

by specifying O_DIRECT on file system operations.

The performance of the EBS backends without cache matches the results of FIO [55],

whichmeasures the performance of the file system itself. Hence, Grandet’s performance

is limited by the hardware and underlying OS, and Grandet itself incurs little overhead.
41

 10

 100

 1000

 10000

SSD(4K)

SSD(1M)

Magnetic(4K)

Magnetic(1M)

S3(4K)
S3(1M)

R
e

q
u
e

s
t

p
e

r
s
e

c
o

n
d

Put

319

78

284

38
26

12

Get

10021

305

10446

303

75

23

Get (direct)
1726

61

1880

49

Figure 2.11: Performance of Grandet backend. Evaluated with 4KB and 1MB requests.
Error bar is standard deviation.

One interesting property of EBS disks is that they have different burst and sustained

performance. For example, EBS SSD disks can reach burst throughput of 150MB/s, close

to Amazon’s specification [7]. But after a few seconds, the throughput drops to about

60MB/s and keeps stable.

The cached GET requests of EBS backends are apparently served from the cache. The

limiting factor here is the CPU speed. If the cloud provided better hardware, Grandet

would have better performance accordingly.

The results are low for S3 because S3 has a high latency for any request. Our profiler

usually records the latency to be 20–30ms, and this latency limits the number of requests

S3 can handle per second. Because S3 is not designed to handle frequent requests and it

has a higher per-request price, it should not handle many requests.
42

0 %

50 %

100 %

150 %

200 %

1300 %

CumulusClips Piwigo Elgg FileSender

C
o

m
p

le
ti
o

n
 t

im
e

FUSE (EBS)
Grandet (EBS)
s3fs
Grandet (S3)
Grandet (all)

≈ ≈≈ ≈ ≈

116
124

108 106

1253

377 416

Figure 2.12: Grandet’s end-to-end performance. Time is normalized to the baseline which
uses EBS directly.

Latency. For all scenarios in the above experiment, we also measured the latency of each

request. Grandet always incurs less than 0.2ms latency, smaller than the standard devi-

ation of latency for each case. Therefore, the Grandet’s impact on latency is negligible.

End-to-end performance

We evaluated Grandet’s end-to-end performance on the same four web applications. Be-

cause we use fuse to implement the file system interface, we also evaluated the overhead

incurred by fuse itself. For comparison, we also ran the evaluation on the state-of-the-art

S3-based file system s3fs [118]. Figure 2.12 shows the time used to complete the work-

load of each application and storage setting. We normalized all results to the baseline

where all files were stored directly on EBS SSD. For the first bar in each cluster, a folder

on the EBS SSD volume was mounted with the loopback fuse file system to the appli-
43

cation’s data folder. The second bar used Grandet with only the EBS backend, so as to

show Grandet’s overhead atop fuse. The third bar used s3fs. As a comparison, the

fourth bar used Grandet with only the S3 backend. Finally, the last bar used Grandet

in the default setting with all backends.

Grandet’s overhead comes from several parts. The first part is incurred by fuse,

which averages to 5.5% (the first bar). The second part is incurred by Grandet itself.

Because using Grandet with only the EBS backend has an average overhead of 8.5%

(the second bar), the overhead incurred by Grandet itself is less than 3%. The third

part is incurred by the S3 backend, due to its higher latency than EBS. Mounting S3 as a

file system with s3fs shows a prohibitive average overhead of 330% due to synchronous

uploads and limited metadata cache (the third bar), whereas Grandet’s average overhead

using only the S3 backend is 18.3% (the fourth bar). Overall, Grandet incurs a geometric

mean of 13.3% overhead (the last bar), which can be offset by the cost it saves.

2.7.4 Scalability

To evaluate Grandet’s scalability, we measured over both a microbenchmark and a web

application.

Microbenchmark

In order to see whether Grandet can scale up, we evaluated Grandet with a variable

number of concurrent threads and variable request sizes on variable storages. The results

are similar, and for brevity, we show a typical one: S3 with request size of 4KB. Figure 2.13

shows the performance of the server when the number of concurrent clients increases.
44

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 8 16 32 64

R
e
q
u
e
s
t
p
e
r

s
e
c
o
n
d

Number of concurrent clients

Put
Get

Figure 2.13: Scalability of Grandet when using single S3 storage. Evaluated with requests
of 4KB in size. The error bar is the standard deviation.

 0

 50

 100

 150

 200

1 2 4 8 16 32 48 64

R
e
q
u
e
s
t
p
e
r

s
e
c
o
n
d

Number of concurrent clients

without Grandet
with Grandet

Figure 2.14: End-to-end scalability. Evaluated on the FileSender application with real
workload.

The number of requests the server can handle per second increases almost linearly. It

implies that the number of requests one client can achieve is limited by the latency of the

S3 service, and the server scales well with the number of clients.
45

End-to-end scalability

We evaluated the end-to-end scalability of Grandet by measuring the number of end-to-

end requests the system can handle when the number of clients increases. The requests

go all the way through Nginx, PHP, fuse and the Grandet backend. We chose the most

scalable application—FileSender—among all the applications we studied, so that if there

were any scalability issues with our system, it would be revealed by the experiment. The

FileSender application is the most scalable application because of its simplicity: it does

not perform any operations on the files, but just lets other users download them.

Figure 2.14 shows the requests per second with a variable number of concurrent

clients. The results show that Grandet scales as well as FileSender. Regardless of

whether using Grandet, FileSender does not scale past 32 concurrent clients, which is

due to limited resource in the EC2 m3.large instance, not Grandet’s limitation.

2.7.5 Usability

Grandet can run aweb application unmodified and automatically save cost. We have also

tested and confirmed that three of today’s most popular web applications—MediaWiki,

Wordpress, and Joomla—work seamlessly with Grandet without any source code modi-

fication.

To further reduce cost, application developers can add hints to data objects. In all our

evaluations, we did not add hints to CumulusClips or Elgg but added one hint to each of

Piwigo and FileSender. We found that compared with using the default predictor, hints

helped reduce cost by 9.3% for Piwigo and 9.4% for FileSender.
46

2.8 Discussion

We now discuss some design implications of Grandet.

Persistence over server crash. If the Grandet server crashes, all data objects that have

been PUT onto EBS or S3 will persist. Metadata (e.g., placement decisions) rely on the

persistence of Redis, which can be configured as AOF (log-based), RDB (snapshot-based;

metadata lost since the last snapshot can be rebuilt from the cloud, similar to fsck), or

both. For the file system interface, the local cache may not persist, which would affect

data objects in the async-upload queue that have not yet been PUT to the backend storage.

Grandet provides the same semantics as a file system by blocking on fsync() until the

PUT is complete.

S3 consistency. S3 provides read-after-write consistency for new objects and eventual

consistency for overwrites. There are two ways to work around it. First, the application

can specify in each object’s requirement to avoid S3. Second, Grandet can use versioning

in S3 placement decisions so that each PUT operates on a new object.

Data replication across cloud regions. Because EBS volumes can only be accessed

within a cloud region, Grandet’s server must reside in the same cloud region as all EBS

volumes. However, since Grandet exposes a general key-value object store interface, it

can be easily extended to multiple cloud regions by overlaying existing geo-replication

solutions atop Grandet.

Migration granularity. Grandet migrates data lazily on a per-object basis; so data

objects that are not accessed would not be migrated, even if better storage choices were
47

available. One way to solve it is to have a thread periodically scan through all objects

to find migration possibilities. In practice, the changes of workload on data objects are

gradual, so that a cold object would already be migrated before its access drops to absolute

zero.

EBS elasticity. Adjusting EBS volume size takesminutes to finish. Grandet can leverage

existing orthogonal strategies (e.g., [115]), or rely on application developers for allocating

EBS volumes. Amazon’s recently-announced elastic file system (EFS) is fully elastic and

does not have this issue. Grandet can support it by just adding an Actor for it.

Metadata overhead. Grandet’s metadata is on the order of tens of bytes per object,

comparable to a regular file system. It is negligible for data files in typical web applica-

tions, but may not be suitable for storing a lot of tiny objects. Cloud database services,

such as Amazon DynamoDB, complements Grandet for database or tiny-object storage.

2.9 Related Work

Grandet builds upon prior work that we now describe.

S3 lifecycle. Amazon has rudimentary support for moving S3 objects to the infrequent-

access option or Glacier. However, such transitions are one-way and limited to S3, and

developers must set rules manually. Grandet supports automatic transitions across all

storage options.

Cloud economics. Some recent work studies the economics of cloud computing. Much

of the work is focused on reducing the cost of computing, not storage. For example, Tak
48

et al. [130] discusses the cost factors for several cloud-based application deployment op-

tions, andConductor [142] optimizes cloud service choices forMapReduces computations.

Other work touches upon storage. CloudCmp [85] provides a microbenchmark suite for

measuring the cost and performance of different cloud service providers. Developers can

then inspect the benchmark results and pick a provider for their application. Grandet

may leverage this microbenchmark suite in its profiler implementation.

Cloud-backed file systems. Several systems provide a file system interface atop a blob

storage such as S3. Open source projects, such as s3fs [118], s3ql [119], and goofys

[62], can mount an S3 bucket as a local file system. The BlueSky network file system [134]

employs a log-structured design on the cloud storage. SCFS [20] enables sharing for cloud-

backed file systems. These systems assume general file system workloads, and the main

challenges they tackle are performance issues, such as how to support randomwrites atop

a blob storage that does not support partial updates. Unlike Grandet, these systems do

not exploit the characteristics of files used by web applications or reduce monetary cost.

Multi-tier storage systems. Multi-tier storage systems are widely used today, such

as FAST [47], Easy Tier [44], 3PAR [72], and some recent work [68, 127, 151, 138]. These

systemsmigrate data among traditional storage, while Grandetworkswith cloud storage

services.

Cloud-of-clouds. Several pieces of work propose the idea of storing data across multiple

clouds. Some do so to replicate the same data multiple times for fault tolerance. For

example, RACS [1] applies the RAID technology to cloud systems. DepSky [19] uses
49

multiple services for dependability and security. MetaStorage [18] uses multiple services

to manage consistency-latency trade-offs. NCCloud [73] applies network coding to cloud

storage for fault tolerance. These systems aim to increase durability and availability, not

to reduce cost. In fact, by storing more copies of data, they increase monetary cost, which

Grandet can help reduce.

Other pieces of work, including FCFS [115], iCostale [2], Scalia [104], and SPANStore

[144], store data across clouds for reducing cost, a goal similar to Grandet’s. FCFS only

has simulations showing potential savings of storing objects across different cloud ser-

vices, which serve as an excellent motivation for Grandet. ICostale and Scalia also do

simulations only, and they consider only blob storage which cannot support many pop-

ular web applications. To the best of our knowledge, none of FCFS, iCostale, or Scalia

provide a system that developers can use. SPANStore also considers only blob storage; so

it also requires modifications to many web applications. In addition, its coarse-grained

placement decisions only consider geographical locations. In contrast to these systems,

Grandet makes fine-grained predictions and decisions based on each data object’s own

characteristics and access pattern, and it works seamlessly with today’s web applications

without modifications.

2.10 Summary

This chapter presented Grandet, an extensible storage system that significantly reduces

storage costs for web applications deployed in the cloud. It unifiesmultiple heterogeneous

stores by placing each data object at the most economical store and provides both a file
50

system interface and a key-value SDK. Evaluation on a diverse set of popular open-source

web applications shows that it reduces costs by an average of 42.4%, and it is fast, scalable,

and easy to use. Its source code is at http://columbia.github.io/grandet.

51

http://columbia.github.io/grandet

Chapter 3

Secure Deduplication of General Computations

Theworld’s data has been fast exploding for many years. It is estimated that in 2011 alone,

1.8 zettabytes of datawere created, and the overall datawill grow by 50× by 2020 [91]. This

massive amount of data comes in greatly varying forms, ranging from personal photos

and videos, to office documents and web pages, to source files, binary programs, and

virtual machine images, and to data collected from user clicks or physical sensors.

Meanwhile, the storage of this data has become highly concentrated. It is common

practice for enterprises to store data on centralized, powerful storage servers for ease

of management [140]. The cloud computing paradigm has migrated data into the cloud

so that the computations can be closer to the data. For instance, several organizations

have put 56 public data sets totaling 761.2TB onto Amazon Web Services [113]. Even

consumers are beginning to aggregate their personal data into the cloud for convenience.

For instance, Google, Dropbox, Amazon, and Microsoft all provide the option for users

to automatically upload pictures and videos shot using their mobile devices. Facebook

stores over 260 billion personal photos [17].

This highly concentrated, massive data poses challenges for storage provisioning and

management. Fortunately, prior work has shown that a significant portion of the data is

redundant [92] and that data deduplication can hugely reduce the storage needed to hold
52

the data and simplify management [43]. For instance, file deduplication detects whenmul-

tiple files have the same data and stores the unique data only once [22]. This scheme is

particularly useful when the same file is copied, such as when a user makes a copy of her

friend’s shared video on Dropbox. Block deduplication breaks files down to variable [99,

90] or fixed [150] size blocks and stores each unique block of data once. This scheme

is particularly useful for files that are similar but not exactly identical, such as differ-

ent versions of a document and virtual machine images built from the same OS family.

These deduplication schemes have been long prevalent in enterprise storage servers [43].

With the trend of moving consumer data into the cloud, these schemes have also become

popular among cloud storage providers such as Dropbox [126].

Not only can data be redundant, the computations on top of the data can also be re-

dundant. For instance, a user may scan her Dropbox files for viruses, while another user

runs the same virus scanner on a similar set of files. Different users may be doing the

same computations on the public data sets in AWS, such as building an inverted index for

the web pages in CommonCrawl [32]. Given the same input data, the same deterministic

computation always produces the same result. Thus, if the computation is slow, it is typ-

ically more efficient to memoize [93] and reuse the result than redoing the computation.

We term this technique computation deduplication.

Several prior systems deduplicate computations (e.g., [26, 69]). However, three main

challenges prevent these systems from effectively deduplicating computations in today’s

cloud or enterprise environments:

First, how can we deduplicate computations done bymutually distrusting users? Stor-

age providers such as Dropbox aggregate data from many users who do not necessarily
53

trust each other. Even in an enterprise setting, users frequently have different data access

permissions. One naïve approach is to memoize computation results in a cache every user

can read or write, but this approach provides neither integrity or security. A malicious

user can easily poison the cache, by for instance marking files that contain viruses safe.

She can also read results in the cache even though she has no permission to access the

actual data in the results. Although this challenge may be solved with information flow

tracking or access control systems, these systems are known to be difficult to configure

and use.

Second, how can we deduplicate general computations? Prior systems deduplicate

computations purely at the system level, assuming no cooperation from application de-

velopers. As a result, they handle only specific computations. For instance, ccache [26]

deduplicates only the compilations of C/C++ programs, and Nectar [69] deduplicates the

computations of programs written only in DryadLINQ [149], a specially designed lan-

guage for large scale data-parallel workloads. However, the computations that users want

to do on their data can be extremely rich, and it is unrealistic to require storage providers

to understand all of them. For instance, while it may be feasible for Amazon to run some

basic virus scanning software on the files it hosts, it is impossible for Amazon to un-

derstand every advanced virus scanner, every compression tool, and every image/video

manipulation utility users want to run on their data.

Third, how can we effectively deduplicate computations on top of deduplicated data?

Prior systems rely on custom methods to detect that data is redundant. For instance,

ccache computes a hash of a preprocessed C/C++ source file and uses this hash to search

its compilation cache. These methods incur unnecessary overhead when the data is dedu-
54

plicated because the underlying storage system already knows what data is redundant.

This chapter presents unic,¹ a system that securely deduplicates general computa-

tions. It exports a cache service that allows applications running on behalf of mutually

distrusting users on local or remote hosts to memoize and reuse computation results. Key

in unic are three new ideas:

First, through a novel use of code attestation, a classic primitive to attest what code is

running to a (remote) party [125, 124], unic achieves both integrity and secrecy. To insert

or query the result cache that unic maintains, unic generates a secure, non-forgeable key

that attests to both the application code and the input data. This key strongly isolates

applications from each other in the result cache. For instance, if a malicious user modifies

the code of a virus scanner in attempt to poison the cached results of this virus scanner, the

attempt would fail because the modified code leads to a different key. In addition, since

this key is not forgeable, a malicious user cannot query unic’s cache without already

knowing the application code and the input. Since the user knows the code and input

already, she can already compute the result by herself.

Second, unic provides a simple yet expressive API that enables applications to dedu-

plicate their own rich computations. From a high level, this API supports an application

to (1) insert input → result to the result cache unic maintains, and (2) query the cache

with input and get back the cached result if any. This application-level computation dedu-

plication design is much more general and flexible than prior system-level designs.

Third, unic explores a cross-layer design that allows the underlying storage system

¹We name our system unic (pronounced “unique”) because it is conceptually similar to the Unix uniq
utility applied to computations.

55

to expose data deduplication information to the applications for speed. Applications thus

do not need to re-detect whether the input data is redundant. For instance, suppose two

files A and B are identical so the filesystem deduplicates them, and unic exposes this

data deduplication information to the applications. After a virus scanner scans file A, it

can immediately skip file B without reading any data from B, significantly increasing its

scanning speed.

Our implementation of unic stores cached results in Redis, a fast, scalable, replicated

key-value store [116]. unic implements code attestation in a dynamically loadable Linux

kernel module and considers the kernel to be trusted. It implements the computation

deduplication API as a library, which applications link with. unic leverages ZFS [150], a

file system that supports both file and block deduplication, to detect when data is dedu-

plicated on behalf of the applications running with unic.

Evaluation of unic on four popular open-source applications shows that (1) it is easy

to use (to support each application, we needed to change fewer than 1% lines of source

code); (2) it is fast (it sped up applications by up to 21.4×); and (3) it incurs little storage

overhead (it needed only 3.45% additional storage to cache the results).

The remainder of this chapter is organized as follows. The next section discusses the

security model and unic’s design. §3.2 describes unic’s API and usage. §3.3 presents

how unic leverages deduplicated data. §3.4 describes the implementation. §3.5 shows

evaluation results. §3.6 discusses unic’s security implications, §3.7 describes relatedwork,

and §3.8 summarizes this chapter.
56

3.1 Security Model and Design

We begin with unic’s assumptions, threat model, and the design of unic’s protocol.

3.1.1 Assumptions and Non-assumptions

First, unic relies on a code attestation mechanism for integrity and secrecy of the cached

results. It leverages this mechanism to bind a result to the code and input data that to-

gether produce the result. This mechanism can be implemented in multiple ways with

different security strengths. For instance, unic could use TPM and isolation technologies

such as Intel TXT [76] to realize code attestation, but doing so would incur both deploy-

ment and runtime overhead, negating our goal of being easy to use and fast. Therefore,

for practical reasons, unic assumes that the OS is trusted and provides a function to at-

test the application code, and that the user does not have superuser privileges to interfere

with that mechanism. This assumption matches well with many of today’s mobile devices

that run Chrome OS [64], iOS, and Android.

Second, unic assumes correct application code. For instance, when using unic, an

application developer should use unic’s API correctly. She should only memoize compu-

tations with deterministic results. unic also assumes that the application is free of vul-

nerabilities such as buffer overflows. We note that this assumption is common to almost

all prior code attestation work.

Third, unic assumes that its underlying storage system provides reasonable security

guarantees. To reuse results across sessions, unic persists them in an underlying storage

system such as a file system. unic assumes that this storage system is properly config-
57

ured such that an attacker cannot access the data stored without going through unic.

This guarantee and unic’s security mechanisms described in §3.1.3 together ensure the

integrity and secrecy of its cache of computation results.

3.1.2 Threats

unic enables deduplicating computation among mutually distrusting users. Two attacks

are particularly serious for unic: cache poisoning attacks unic’s integrity, and query forg-

ing attacks unic’s secrecy.

Cache poisoning. A malicious user may write a new application or modify an existing

application in an attempt to poison the result cache. Her application may attempt to

insert or overwrite entries belonging to a legitimate application. unic prevents this attack

by isolating applications in the result cache: it guarantees that the cached data for one

application can never be accessed by another application. Specifically, unic securely binds

the computation code and the input data to the computation result leveraging a code

attestation mechanism.

Query forging. A malicious user may write a new application or modify an existing

application in attempt to query entries in the result cache that she cannot access, and

gain information. unic prevents this attack again by isolating applications. When an

application queries the cache, unic generates a search key that attests to both the code

and the input data that generate the query. This key is unique to each application. One

application thus cannot query entries of another application.

Several other attacks are possible, some of which can be prevented using simple mech-
58

anisms such as rate-limiting queries sent to unic. We briefly describe how they can be

prevented in §3.6, and leave the implementation for future work.

3.1.3 Design

unic novelly leverages code attestation to cryptographically bind the result with the code

and the input that produced the result, preventing cache poisoning and query forging

attacks.

unic assumes a trusted OS that securely computes SHA-1 hash and HMAC. A secret

key K is shared among trusted OSes. (Existing work [125] details how to distribute this

key. We use symmetric key for efficiency; however asymmetric key works, too.) An

attacker cannot forge HMAC(data,K) without knowing K .

unic leverages code attestation to bind result to code and input that produced result.

Specifically, it uses code attestation to compute two things:

(1) result = code(input)

// Run code on input to compute result.

(2) sig = HMAC(hash(code)| |hash(input)| |result,K)

// Bind code, input, and result. We use | | as the concatenation operator.

The assumptions on trusted OS, unprivileged user, and correct application code to-

gether guarantee that result is the correct result of running code on input. This code at-

testation mechanism further guarantees that (a) sig cryptographically attests that result

is indeed produced by running code on input, which anyone with access to code, input,

result, and K can verify; and (b) sig cannot be forged.
59

application

hash(code)||hash(input)

UNIC cache

result

application

hash(code)||hash(input)

UNIC cache

cache does not exist

hash(code)||hash(input), result, sig

compute result = code(input)
and sig = HMAC(hash(code)||hash(input)||result, K)

validate sig and update cache

(a) cache hit

(b) cache miss

Figure 3.1: unic protocol. We use | | as the concatenation operator.

UNIC protocol. The unic cache is a mapping of

hash(code)| |hash(input) → result

Since the hash function is collision resistant, the cache space for different computations

are isolated.

When an application wants to compute code(input), it sends hash(code)| |hash(input)

to the unic cache. If cache exists (Figure 3.1(a)), unic sends back result. If cache

does not exist (Figure 3.1(b)), the application computes both result and sig, and sends

hash(code)| |hash(input), result, and sig to the unic cache. The unic cache validates that

sig is indeed HMAC(hash(code)| |hash(input)| |result,K), and updates the cache.
60

3.1.4 Security Analysis

The design of unic prevents cache poisoning as follows. Suppose an attacker replaces

result with bad_result when inserting into unic. Because of code attestation, she can-

not forge sig, so unic cannot validate sig. Suppose she modifies code into bad_code and

computes bad_result to poison the cache. Because unic validates sig, she can only insert

hash(bad_code)| |hash(input) → bad_result

which cannot affect the cache entry of hash(code)| |hash(input). To avoid amalicious client

from polluting the cache space, unic can employ a quota mechanism to limit the cache

space for each client application.

This design also prevents an attacker from forging a query to steal result. To query

cache, she must send hash(code)| |hash(input), so she must already have code and input

because otherwise she would not be able to compute the hashes. Once an attacker has

code and input, she can already compute result simply by running code on input herself.

Thus, she cannot gain additional information with this query other than whether there is

a result in the cache. §3.6 further discusses its implications.

3.2 unic API and Usage

unic provides a simple yet expressive API for applications to deduplicate their own rich

computations. We first motivate our API design through an example, and then formally

describe its interface.
61

1: void simple virus scanner(file, options) {
2: buffer = read(file);
3: result = scan signature(buffer, options);
4: print(result);
5: }

Figure 3.2: A simple virus scanning application.

3.2.1 Example

We motivate the design of unic API through a step-by-step example showing how a sim-

ple virus scanning application could use memoization to deduplicate computation. Con-

ceptually, the application works like Figure 3.2. It reads the file content into a buffer,

executes virus scanning algorithm on the buffer, and outputs the result.

In this piece of code, line 2 reads the file content from disk, potentially a time-

consuming I/O operation. Line 3 performs some CPU-bound virus signature matching

algorithm, potentially another time-consuming operation. Line 4 prints the result, which

is relatively fast because the length of the scanning result (e.g., “no virus found”) is much

smaller than the original file content. Therefore, we want to improve the performance on

lines 2 and 3.

Memoizing Computations. We first examine how to use memoization to avoid dupli-

cate computation on line 3. Since scan_signature() is a deterministic function over the

input buffer and the signature-scanning options, if we could memoize the result the first

time we perform the computation, we would be able to safely reuse the result later on the

same input. To do so, we modify the application into Figure 3.3, using three functions

that unic provides: exists(), get(), and put(). It first checks if the computation for
62

1 : void simple virus scanner(file, options) {
2 : buffer = read(file);
3 : if (exists(scan signature, buffer, options)) {
4 : result = get(scan signature, buffer, options);
5 : } else {
6 : result = scan signature(buffer, options);
7 : put(scan signature, buffer, options, result);
8 : }
9 : print(result);
10: }

Figure 3.3: First step: memoize the computation result.

the given buffer and options exists in the result cache (line 3). If so, it simply gets the

memoized result (line 4). Otherwise, it performs the computation as before (line 6) and

then puts the result into the cache (line 7).

As discussed in §3.1.3, the cache is not merely a mapping from the input to the result,

but binds the computation code together with them. unic internally computes a non-

forgeable authentication code that guarantees that the result (result) is indeed generated

by the computation code (scan_signature()) over the input (buffer and options). The

result cache is updated only if it can verify this authentication code.

Reducing I/O Operations. Memoizing the computation is good, but it would be better

if we could also eliminate the need of reading the file content on line 2. This is not trivial

because if we did not read the file in the first place, we would never know if the signature

scanning is performed on the same content. Fortunately, it is possible if the file is stored

on a deduplication-enabled storage.

A deduplication-enabled filesystem, such as ZFS [150], stores all files with the same

content as a single copy. It does so by identifying the file content using a cryptographically
63

1 : void simple virus scanner(file, options) {
2 : hash = get file hash(file);
3 : if (exists(scan signature, hash, options)) {
4 : result = get(scan signature, hash, options);
5 : } else {
6 : buffer = read(file);
7 : result = scan signature(buffer, options);
8 : put(scan signature, hash, options, result);
9 : }
10: print(result);
11: }

Figure 3.4: Final version: use filesystem metadata to further reduce I/O operations.

collision-resistant hash (e.g., SHA-256), and mapping all files with the same content to the

same hash. These hashes are stored on the filesystem metadata, separate from the actual

file content. Therefore, it creates a perfect opportunity for our application to tell if the file

contents are the same without actually reading them.

Figure 3.4 shows the final version of the application. Instead of reading the file con-

tent up front, it now gets the unique hash of the file directly from the filesystem metadata

using unic’s get_file_hash() function (line 2), and uses the hash to identify the mem-

oization (lines 3, 4, and 8). Since getting the hash is much faster than reading the whole

file, we have further avoided the slow I/O operation when reusing a previously cached

computation.

In practice, when using unic, the application developer does not need to worry

whether the storage has deduplication enabled or not — she should always follow the

final version in Figure 3.4 and use hash to identify the memoization. This is because unic

transparently leverages storage deduplication information. Where such information is

absent, unic computes and caches the hash by itself. This process is detailed in §3.3.
64

3.2.2 The API

The previous example illustrates the usage of the unic API which we now formally de-

scribe. It wraps OS- and filesystem-specific details by exporting the following functions:

• init() initializes unic.

• get_file_hash(file) returns the hash of a file, where file can be the name of a

file, a file descriptor, or an inode number. If the underlying filesystem has dedupli-

cation enabled (e.g., ZFS), it gets the hash of the file from the filesystem metadata

without reading the file content. Otherwise, it computes the hash from the file

content using libcrypto.

• get_block_hash(file, block) is similar as above, but returns the hash of a block

of a file, where block specifies the block number. This is particularly useful if the

application’s computation is based on blocks, such as a bzip2 compression. The

application should decide whether to use get_file_hash() or get_block_hash()

based on its own logic, which is discussed in §3.3.

• exists(computation, hash, id) checks if a given computation and input exists

in the result cache. The parameter hash is the hash of input data. The parameter

id is an optional string identifier defined by the application, used for differentiat-

ing multiple computations performed on the same input. For example, the virus

scanning application may let id be the signature-scanning options.

• get(computation, hash, id) gets the result of a given computation and input

from the result cache.

• put(computation, hash, id, result, ttl) puts an entry of computation, in-
65

put, and result into the result cache. An optional ttl specifies its time-to-live in

seconds, and the result cache automatically deletes the entry upon expiration.

3.3 Leveraging Storage Deduplication

unic explores a cross-layer design allowing underlying storage system to expose data

deduplication information to the applications.

Typically, a deduplication-enabled filesystem maintains the hash of each file as its

metadata. Since unic also uses hash to identify the memoization input, it is both conve-

nient and efficient to leverage such filesystem metadata. Therefore, when an application

needs to get a hash, unic automatically detects the underlying storage system type, and

returns the hash directly from the metadata if the filesystem has enabled deduplication. If

not, unic reads the file content and computes the hash itself. In this way, unic provides a

consolidated interface for both scenarios, making the storage system details transparent

to the applications.

Furthermore, the application does not need to know whether the underlying stor-

age system is file-level or block-level deduplicated. It should decide whether to use

get_file_hash() or get_block_hash() solely based on the application’s own logic.

Generally, if the application’s computation works with the file on a block-by-block basis,

such as the bzip2 compression algorithm, it should use get_block_hash(). Otherwise,

if the application’s computation uses the file as a whole or randomly accesses the file,

such as an anti-virus program, it should use get_file_hash().
66

Application

UNIC

Master cache server

Host 1

async

Host n

...

Users

Slave cache

Figure 3.5: unic architecture. Additional hosts each have the same architecture as Host 1,
and are omitted here due to limited space.

3.4 Implementation

We now describe unic’s components and implementation details.

3.4.1 unic Components

Figure 3.5 shows the architecture of unic. It is deployed on a network of multiple hosts.

Each user can log into multiple hosts, and each host can have many users logged in.

Because of unic’s security design (§3.1), different users do not need to mutually trust

each other.

The unic module on each host handles application’s memoization requests. Since

memoization works best when the reuses of computations are frequent, reading data from

the result cache should be more common than writing data to it. In light of this, we design

unic to make read operations as fast as possible. A trusted master cache server handles all
67

write operations. It can be either standalone or co-located with the enterprise’s storage

(e.g., NFS) server. Each host has an optional read-only slave cache, which periodically

syncs from the master cache server. If the slave cache is present, all read operations

happen locally. For security, all network communications are encrypted with SSL/TLS.

To reduce the handshake latency, the unic module on each host establishes a connection

with the master cache server when the host boots up, and keeps the connection alive.

Because data updates on the slave caches happen asynchronously, it is possible that a

host does not have the latest cached results. However, we point out that memoized com-

putations are deterministic (§3.1.1), therefore the consistency on the slave caches should

not affect the integrity of computations. The only contingency would be that an appli-

cation may not be able to leverage recently cached results but have to compute on its

own.

unic inserts a kernel module into the Linux kernel as a virtual device for computing

hash(code) and sig. It represents code by the image of the executable process, with all

libraries statically linked. The secret key K is inaccessible to the user space. The user-

space application talks to the kernel module via ioctl. For improved performance, the

kernel module internally caches hash(code) for each caller.

unic uses a modified Redis key-value store [116] as the result cache. It modifies Redis

to support unic’s protocol (§3.1.3), and removes nonessential functions (such as KEYS

which can list all cache entries) from Redis for security. Therefore, users cannot access

the result cache except through unic.
68

3.4.2 Opportunistic Memoization

When using unic, the application developer needs to judge the best opportunity to use

memoization because of two reasons. First, memoizing an already-fast computation may

not justify the overhead of accessing the result cache. Second, abusing memoization

for low-redundancy computations could result in exceeded overhead for entries that are

never reused later. However, making the optimal decision at compile time is usually

hard because input data cannot be predicted. Therefore, unic provides an optimization to

opportunistically enable memoization only when the computation is slow and its reuse

happens to be frequent at runtime.

To do so, unic internally has a model of Tput(result_size) and Tget(result_size), mean-

ing how long it would take to put and get a certain size of result, respectively. This model

is independent of the actual content of the result, and it can be learned from amicrobench-

mark upon the installation of unic (see §3.5.2 for our evaluation). unic also maintains an

accumulator tsave for each computation, initialized to 0, for the total time that could have

been saved for the future.

unic further provides two functions for an application to mark the boundary of a

computation. An application calls begin() to indicate that a computation starts, and

unic records the current timestamp as tbegin. An application calls end() to indicate that

the computation has finished, and unic records the current timestamp as tend. When

put() is called, unic does not put the data into the result cache immediately, but updates

tsave to be

tsave = tsave + tend − tbegin −Tget(result_size)
69

Therefore, the slower and the more frequent a computation is, the larger tsave becomes.

unic only performs the put() operation when tsave is greater than Tput(result_size), i.e.,

the time that could have been saved from a computation is greater than the time that

would be spent for memoizing the computation. In the case that tsave < Tput(result_size),

unic ignores the put() request, and simply updates tsave.

3.5 Evaluation

We evaluated unic on a workstation with an Intel Core i7-2600 CPU and 32GB RAM,

running Fedora 20 with Linux 3.16.2. The cache server was running Redis 2.6.17. Our

goal is to show that unic significantly improves performance with memoization while

requiring minimal developers’ effort and storage space.

The rest of this section focuses on three questions:

§3.5.1 Is unic easy to use?

§3.5.2 Does unic reduce computation time?

§3.5.3 What is unic’s storage overhead?

3.5.1 Application Adaptation Effort

To evaluate whether unic is easy to use, we picked four popular open-source applica-

tions that we use daily: (1) clamav-0.98.1, an anti-virus software that scans a directory

for viruses [30]; (2) pbzip2-1.1.8, a multi-threaded compression utility that compresses a

single file [105]; (3) grep-2.18, a tool that searches for a regular expression within one or
70

Application Total LoC Changes Percentage
clamav (file) 1,732,762 12 <0.01%
pbzip2 (block) 4,376 18 0.41%
grep (file) 9,658 35 0.36%
grep (block) 9,658 69 0.71%
gcc (file) 29,023 30 0.10%

Table 3.1: Lines of code changed for each application. Parenthesis indicates whether the
adaptation uses file-level or block-level memoization. The numbers for gcc are based on
ccache.

many files; and (4) the compiler gcc-4.8.3. We adapted them to use unic’s API². We used

file-level memoization for grep, clamav, and gcc, and block-level memoization for grep

and pbzip2.

Table 3.1 shows the lines of changed code for each application to use unic’s APIs.

Changing dozens of lines (<1% of total lines) suffices for all these applications.

To further illustrate, we next present how we adapted grep, the application with the

most code changes.

Case Study: grep

GNU grep is a line-based pattern searching utility. To invoke grep, the user specifies a

search pattern and the path to a file or directory. Then grep iterates through all files in

the directory and search for the pattern.

Common to all applications, the first step is to add a call to init() at the beginning

of main() in order to initialize unic. For grep specifically, there are two design choices:

we can memoize either at file-level or at block-level. Memoizing at file-level is faster

when the whole file is unchanged, whereas memoizing at block-level can exploit sub-file

²Our adaptation of gcc is based on ccache [26].

71

.........................

......\nThis line crosses

chunk boundary\n.........
.........................
...........\nAnother line

Chunk 1

Chunk 2

crosses chunk boundary\n.
.........................

Chunk 3

residue

partial

Figure 3.6: Misalignment between line and chunk boundaries in grep. Shaded region is the
adjusted chunk for computation.

similarities for different files. Next we discuss each of them.

File-level Memoization. Adapting grep for file-level memoization is relatively straight-

forward. When grep works on a new file, we call get_file_hash() to get the hash of

the file from ZFS and call exists() to check if there is a corresponding entry in the result

cache. If so, we call get() to retrieve the memoized result, output it, and move on to the

next file. If not, we follow the original algorithm and call put() to memoize whatever is

output. We also call put() to memoize the number of matched lines in the current file,

which grep uses for internal bookkeeping purposes.

Block-levelMemoization. Adapting grep to memoize at block-level requires tighter in-

tegration with its workflow. For each file, grep reads its content in 32KB chunks, and per-

forms pattern searching one chunk at a time. However, since the searching is line-based

(delimited by ‘\n’), it is possible that lines are not well-aligned with chunk boundaries.

For example, one line may span across the end of the previous chunk and continue at the

following chunk. In this case, grep adjusts its chunk boundary to include the residue of

the line in the previous chunk and exclude the partial line at the end of current chunk, as
72

shown in the shaded region in Figure 3.6.

Unfortunately, this poses a challenge to using unic directly, because ZFS keeps hash

metadata only for entire aligned 32KB disk blocks. On the other hand, we cannot simply

use the hash of the unadjusted chunk to address the cache, because this would err if two

chunks were the same but their residues in the previous chunk differed. Our solution is to

combine the hash of all chunks from the beginning of the residue until the current chunk.

Note that this may lose the rare opportunity of reusing memoized results for chunks who

only differ at the last partial line, but it preserves correctness nevertheless.

Our experience with adapting the other three applications were straightforward.

Overall, we found unic easy to use and the adaptation effort was generally little.

3.5.2 Performance

To understand the performance of unic, we first use microbenchmarks to evaluate the

throughput of unic’s basic operations. We then run unic on four real-world applications

to see how unic reduces application running time. Next, we study how unic is able to

reuse previous computation results for some evolving data. Finally, we study how unic

performs with a group of multiple users whose data are similar yet different.

Microbenchmark

We first use microbenchmarks to evaluate the throughput of the get() and put() opera-

tions. We wrote a program that calls put() 10,000 times followed by calling get() 10,000

times. The hashes of the 10,000 entries are all different, and we varied the result size from

1KB to 1MB.
73

 0.1

 1

 10

 100

 1 10 100 1000

T
im

e
 f
o
r

1
0
,0

0
0
 c

a
lls

 (
s
)

Result size (KB)

put()
get()

0.30

0.53

2.65

22.03

0.22 0.26

0.66

3.33

Figure 3.7: Throughput of put() and get() operations. The x-axis is the size of memoized
result. The y-axis is the total time in performing 10,000 put() (solid line) and get()
(dashed line) operations.

Figure 3.7 shows the results, where each data point is an average of 10 individual

experiments with an error bar showing the maximum and minimum value in the 10 ex-

periments. The x-axis is the size of the memoized result. The y-axis is the total time in

performing the 10,000 operations. The solid line is for put() and the dashed line is for

put(). From the results we find that the time for an operation is on the order of ten

microseconds when the memoized result is small in size (<10KB), which is mostly the

case (see §3.5.3). Even if the memoized result is as large as 1MB, the time to get a memo-

ized entry is only 0.33ms, which is normally much faster than doing real computation on

that size of data. Therefore, unic’s basic operations are sufficiently fast for doing useful

caching of computations.
74

Application Performance

We next show how real-world applications benefit from unic, and how storage deduplica-

tion further helps. We conducted the following experiments. (1) We used clamav to scan

for viruses on two data sets. The first is the linux-3.12 kernel source code tree. The second

is the Dropbox folder for one of the co-authors, which contains 10.8GB of documents, mu-

sic, pictures, videos, and applications. (2) We used pbzip2 to compress linux-3.12.tar

into linux-3.12.tar.bz2. (3) We ran grep on two data sets. The first is the linux-3.12

kernel source code tree, which consists of 47,336 small files totaling 508MB. The second

is the tags file of the linux-3.12 kernel source code generated by ctags -R, which is a

single text file of 250MB. For each data set, we ran a simple query (‘void’) and a complex

query (‘^\s*struct\s+\w+\s+**\s*\w+\s*=\s*\w+\((\ w+(,)*)+\);’ for the source

code tree, which matches declaring and initializing a structure pointer to the return value

of a function, such as “struct task_struct *task = get_proc_task(inode);”, and

‘/[A-Za-z]+\.c.*d.*file’ for the tags file, which matches a specific type of tag). (4)

We used gcc to compile linux-3.12 kernel with the allnoconfig configuration. Because

gcc has a nontrivial way to represent input dependencies for cache reusability rather than

a file hash, our adaptation does not leverage storage deduplication information. All data

files are on a freshly-formatted ZFS disk with cold buffer cache.

For each application, we compared the running time (1) without unic (the baseline),

(2) with unic but without filesystem deduplication (the first and second bars on Fig-

ure 3.8), and (3) with both unic and filesystem deduplication support (the third and fourth

bars). For experiments with unic, we further compared the running time (1) for execution
75

 0

 50

 100

 150

 200

 250

 300

 350

cla
m

a
v (L

in
u
x)

cla
m

a
v (D

ro
p
b
o
x)

p
b
zip

2

g
re

p
 lin

u
x (sim

p
le

)

g
re

p
 lin

u
x (co

m
p
le

x)

g
re

p
 ta

g
s (sim

p
le

)

g
re

p
 ta

g
s (co

m
p
le

x)

g
cc

R
e

la
ti
v
e
 r

u
n

n
in

g
 t

im
e

 (
%

)

19
5

13

37 31 35

10

30

w/o dedup (cache miss)
w/o dedup (cache hit)
w/ dedup (cache miss)
w/ dedup (cache hit)

Figure 3.8: Relative running time of applications. The y-axis is the running time relative
to the original application. For each cluster, the first bar is cache-miss execution with-
out FS deduplication, the second bar is cache-hit execution without FS deduplication, the
third bar is cache-miss execution with FS deduplication, and the fourth bar is cache-hit
execution with FS deduplication. The dashed line at 100% shows the running time for the
original application.

on an initially empty result cache, causing cache misses and thus putting entries to the

cache (the first and third bars), and (2) for execution when the result cache had already

been pre-populated, causing cache hits (the second and fourth bars).

Figure 3.8 shows the running time for each experiment. Each number is an average

of 10 individual runs. Although running applications on an empty result cache incurs
76

an average overhead of 68.2%, running them on a warm result cache gives an average

speedup of 2.39×. If filesystem deduplication is available, the average overhead of cache-

miss execution drops to 59.3% and the average speedup with memoization increases to

7.58×. Furthermore, complex computations (e.g., scanning for viruses or compressing a

file) benefit the most frommemoization (up to 21.4× speedup), while simple computations

(e.g., searching for a short string) suffer more from the cache-miss overhead. Therefore,

opportunistically enabling memoization would be the best practice. With our strategy

described in §3.4.2, memoization is enabled at the second occurrence of put() for one

application (“grep tags” with simple query), and at the first occurrence for all other ap-

plications.

Effectiveness with Evolving Data

The previous evaluation focused on the memoization benefit on exactly the same com-

putation. Next we show the effectiveness of memoization if the input data is evolving,

i.e., if unic has memoized computation on an old version of data, how it can speed up

computation on a new version of the data.

We used grep to search for ‘void’ on thirteen major versions of the Linux kernel

source code, from v3.0 to v3.12. All files are on a freshly-formatted deduplication-enabled

ZFS disk with cold buffer cache. We performed three sets of experiments. The first one

used the original grep without unic. In the second experiment, we first populated the

result cache when running grep on v3.0, and then measured the time for running grep on

each version based on the samememoization of v3.0. In the third experiment, we ran grep

on each version in a “rolling” manner, i.e., each execution was based on the memoization
77

 0

 10

 20

 30

 40

 50

3.0
3.1

3.2
3.3

3.4
3.5

3.6
3.7

3.8
3.9

3.10
3.11

3.12

R
u
n
n
in

g
 t
im

e
 (

s
)

Linux kernel source code version

original
memoized v3.0
memoized previous version

Figure 3.9: Effectiveness of memoization with evolving data. Solid line is the original grep
without memoization. Dashed line has the result cache populated with v3.0. Dotted line
has the result cache populated with the immediate previous version.

of the immediate previous version, which resembles a more practical scenario.

Figure 3.9 shows the running time for all executions, where each number is an average

of 10 runs. With a single memoization of v3.0, the speedup is significant for running on

v3.1 (1.61×), but diminishes along the increment of version number, and eventually be-

comes ineffective after v3.8, because the source code differs significantly from the mem-

oized version and the cache hit rate drops below 0.3. On the other hand, when memoized

the immediate previous version, the speedup is almost constant, with an average of 1.50×.

The reason is that the amount of source code difference is almost constant between each

two consecutive versions, and many memoized results can be reused (hit rates are be-

tween 0.73 and 0.81). Therefore, unic is more effective when the divergence of the actual

input data from the memoized data is small, which is likely true in a practical scenario.
78

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

original UNIC original UNIC

R
u

n
n

in
g

 t
im

e
 (

s
)

grep clamav

326.6

111.1

772.3

285.2

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7

Figure 3.10: Effectiveness of memoization across users. For each cluster, the first bar is the
original application, and the second bar is the application modified to use UNIC. Each bar
shows the breakdown of running time on each group, the number on top showing the
total time.

Effectiveness with Multiple Users

We next evaluate the memoization effectiveness for multiple users with similar yet differ-

ent data. We took the project directories of seven groups of students in a graduate-level

operating system course offered by our university. The average size of each directory is

1.6GB. We performed two executions on each group’s directory: (1) use grep to search

for ‘void’, and (2) use clamav to scan for viruses. This resembles the enterprise setting

where multiple people working on the same project have similar data and perform com-

mon computing tasks such as virus scanning. The result cache was originally empty, and

was gradually filled by unic during the process.
79

Figure 3.10 shows the breakdown of each application’s running time on each group.

The trend is that the original application takes almost the same amount of time for all

groups. With unic, although the first group takes longer time to execute (24.1% for grep

and 51.9% for clamav), all subsequent groups consistently take a much shorter time (5.17×

speedup for grep and 5.57× speedup for clamav). This is because for the first group, all

computations are new and unic needs to insert them to the result cache. Once this is

done, all subsequent groups can benefit from it. The overall speedups for the executions

on all seven groups are 2.94× for grep and 2.71× for clamav. We foresee that with more

number of groups the overall speedup should be even higher. Therefore, unic is practical

for a group of users working together or doing similar tasks.

3.5.3 Storage Space

We now evaluate the storage overhead of unic. For each application we used for the

performance evaluation in §3.5.2, we examined the number of entries in the result cache.

To study the total space used for memoization, we also let Redis dump a snapshot of all

data and measured the size of the dump file.

Table 3.2 shows the results. Column (a) is the number of input files. Column (b) is the

total size of input files. Column (c) is the number of entries in the result cache. Column

(d) is the size of the Redis dump file. The relative storage overhead is thereby Column (d)

divided by Column (b), which is shown in Column (e). The results depict that the average

overhead of the memoization storage for all applications is 3.45%, negligible compared

with the storage of all file data. Therefore, unic incurs little storage overhead.
80

Application (a) #File (b) File size (c) #Entry (d) Dump size (e) Overhead

clamav (Linux) 47,336 508.1MB 44,277 2.8MB 0.55%
clamav (Dropbox) 2,792 10.8GB 82,061 4.4MB 0.04%
pbzip2 1 544.0MB 4,151 106.4MB 19.55%
grep linux (simple) 47,336 508.1MB 70631 11.2MB 2.21%
grep linux (complex) 47,336 508.1MB 51532 4.2MB 0.83%
grep tags (simple) 1 250.0MB 2 5.3MB 2.13%
grep tags (complex) 1 250.0MB 2 4.5MB 1.80%
gcc³ 47,336 508.1MB 522 2.3MB 0.46%

Table 3.2: Storage overhead. Columns are: (a) the number of input files, (b) total size of
input files, (c) number of entries in the result cache, (d) size of the Redis dump file, and (e)
relative storage overhead.

3.6 Discussion and Limitations

We discuss unic’s security implications and limitations.

Denial-of-service attacks. Amalicious usermay issue a large number of put requests on

manufactured inputs, and pollute the result cachewith useless results. Several approaches

can be used to defend against it. For example, unic may rate-limit puts to the result cache,

employ a quota mechanism to limit the cache space for each client application, or enforce

time-to-live limits on cached results. We argue that even if the result cache is full, the

worst outcome would be that future computations cannot be memoized and have to be

recomputed, yet the secrecy and integrity of computations are not violated.

Side-channel information leakage. A malicious user may enumerate through a large

set of inputs on an application, and observe if some executions are significantly faster

than others. Based on the observed timings, she may infer what computations have been

done by other users and what have not. While defending against this side-channel attack

is out of the scope of this dissertation, we note that the application developers may defend
81

against it by rate-limiting queries to the result cache or randomly forcing cache misses

even if the result exists in the cache.

Brute-force attacks. A malicious user may enumerate through all possible hash values

of the application code and input, in hopes of getting cached results. We argue that the

possibility for an unprivileged user to get a valid hash is minimal. Even if she manages

to get an entry, she only knows the result, but she cannot generate the original code and

input from the hash. In the example of virus scanning, she might brute-force a hash and

discover the result of scanning some file, but she cannot determine the original content of

that file. Again, unic may defend against this attack by rate-limiting queries to the result

cache. Furthermore, if the result is sensitive by itself (e.g., cat), the application developer

may encrypt it before putting it to the result cache, or the system administrator may

disable unic for such applications.

Application bugs. Ensuring bug-free code is a hard problem orthogonal to unic and

code attestation. If the application contains a bug such as buffer overflow, a malicious user

may exploit the bug to poison the result cache. Existing systems such as baggy bounds

checking [5] and AddressSanitizer [121] can prevent many memory access bugs. Other

countermeasures include letting the application rerun the computation and verify the

cached result periodically, and purging the result cache when a bug is found. In addition,

using hardware-enforced isolation mechanisms such as Intel TXT [76] with TPM, or Intel

SGX [78, 16] may avoid this issue.

³Not all files are used for compilation due to our experiment configuration.

82

3.7 Related Work

Storage deduplication. Storage deduplication reduces data redundancy at either file-

level [92] or block-level [42, 133]. ZFS [150] is a widely used cross-platform filesystem that

does block deduplication at the time data is written. These works are orthogonal to unic,

and unic’s cross-layer design allows it to transparently leverage storage deduplication

information.

Ad-hoc caching. Many applications use ad-hoc caching to improve performance, but

they either trust all users, or simply disallow cross-user caching. For example, ccache [26]

caches compiler outputs on the local filesystem, but the cache can be easily exploited or

poisoned by any user. On the other hand, clamav [30] only caches virus scanning results

within a single session, rendering cross-session and cross-user caching impossible. unic

improves the status quo with strong security guarantees.

Memoization. Memoization [93, 114, 87] is a technique that reuses prior computation

results of functions without side effects. Vesta [71] uses memoization for software config-

uration management. Nectar [69] memoizes intermediate results from DryadLINQ [149]

programs. Incoop [21] uses memoization to build a MapReduce framework for incremen-

tal computations. However, these systems handle only specific computations, and it is

nontrivial to generalize their use cases. unic can be used to deduplicate general compu-

tations.

Code attestation. Many code attestation techniques exist to provide integrity of com-

putations. For example, result-checking [139] verifies the result produced by a program
83

by computing it in two ways. Secure boot mechanisms [13, 14] verify the integrity of the

software stack after booting. BIND [125] ties the proof of what computation has been run

to the result that the computation has produced. Pioneer [124] provides code integrity

guarantees for running software on an untrusted system. unic makes novel use of the

code attestation mechanism to protect the secrecy and integrity of memoization.

3.8 Summary

This chapter presented unic, a general system for applications to securely deduplicate

their rich computations. It uses code attestation mechanism to achieve both secrecy and

integrity. It explores a cross-layer design that allows applications to leverage storage

deduplication information for speed. Evaluation results show that unic is easy to use,

speeds up applications by up to 21.4×, and incurs little storage overhead.

84

Chapter 4

Optimizing Serverless Computing by Making Data Intents

Explicit

Serverless computing emerges as a new paradigm to build cloud applications. Developers

write small functions, called cloud functions, that react to cloud infrastructure events,

while the cloud providermaintains all resources and schedules the functions in containers.

Thus, developers can focus on their core business logic, and leave server management and

scaling to the cloud providers.

Besides ease of programming, serverless computing provides more efficient and fine-

grained scaling than traditional clouds, because containers are more lightweight than

virtual machines. It adjusts to dynamic workload at a per-function level and scales up or

down in a second.

As a result, many companies, including Netflix, Coca-Cola, and the New York Times,

are adopting serverless computing [35]. A 2018 survey of 600 IT decision-makers shows

that 61% of respondents are already using or plan to use serverless computing by 2020 [57].

Practically, all major cloud providers provide serverless computing services, namely AWS

Lambda, Google Cloud Functions, Microsoft Azure Functions, and IBM Cloud Functions.

Unfortunately, existing serverless computing systems suffer from a key limitation that

deprives them of enjoying significant speedups. Specifically, they treat each cloud func-
85

thumbnail(params={
"get_data": ["pic/1.jpg"],
"put_data": ["thumb/1.jpg"]

})

Figure 4.1: Example of specifying data intent for a cloud function that generates the thumb-
nail of an image. It reads input from pic/1.jpg and writes output to thumb/1.jpg.

tion as a black box and are blind to which data the function reads or writes, therefore

missing potentially huge optimization opportunities. For instance, they schedule mul-

tiple functions working on the same data to run on different machines, neglecting data

locality. Thus, each machine has to fetch a copy of the data, resulting in a 42% slowdown

and 19.2% more monetary cost.

We present Lambdata, a novel serverless computing system that enables develop-

ers to declare a cloud function’s data intents, including both data read and data written.

Figure 4.1 shows an example that a thumbnail function intents to read pic/1.jpg and

write thumb/1.jpg. Once data intents are made explicit, Lambdata performs a variety of

optimizations to improve speed, such as colocating functions working on the same data.

These intents are hints only: if a developer misses an intent or specifies an incorrect one,

performance may be affected but not correctness.

Our design of Lambdata is strongly motivated by two key insights in serverless com-

puting. First, a cloud function is almost always small doing a single task; therefore, de-

velopers can easily specify its inputs and outputs before executing it, as illustrated in

Figure 4.1. In other words, the paths to input and output data are typically not calculated

on the fly amid the execution of a cloud function. While current serverless clouds allow a

developer to write a large monolithic function that dynamically computes data locations
86

and accesses the data, such use would defeat the main benefit of serverless computing.

Second, based on our study of open-source serverless applicants and our own expe-

rience building such applications, a cloud function tends to be functional in the sense

that it outputs an immutable object: once the object is written, the application does not

mutate it. If an update is needed, the application simply writes a new object under a

new path. This approach avoids complicating cloud functions with tricky concurrent and

partial update handling logic, and it is a natural fallout from the idempotency require-

ment of the underlying serverless cloud (the cloud may kill and restart a cloud function

without notification due to resource constraints or tail latencies). This insight enables

Lambdata to aggressively cache data objects throughout the system to improve locality

without concerning consistency issues.

Operationally, Lambdata works as follows. It leverages existing cloud object storage

(e.g., AWS S3) to store data. Lambdata adds a caching layer, where each computing node

has its own object cache. Lambdata schedules cloud functions based on both code and

data locality. It tends to schedule multiple function invocations working on the same data

on the same computing node so that they can reuse cached data.

Compared with Pocket [82], we choose to build Lambdata on top of existing cloud

object storage. The benefits are two folds. First, using cloud storage is the best practice

recommended by Amazon [122] and Google [63], since data objects enjoy the high dura-

bility they offer. Second, developers are familiar with this programmingmodel, since they

do not need to decide what data should be durable and what data can be put on ephemeral

storage.

Our evaluation of Lambdata on an Instagram-like application and an online class-
87

room application shows that on average, Lambdata achieves 1.51× speedup on the

turnaround time of practical workloads and reduces monetary cost by 16.5%.

The remainder of this chapter is organized as follows. The next section introduces

the background of serverless computing. §4.2 motivates Lambdata’s design through an

example. §4.3 gives an overview of Lambdata. §4.4 describes Lambdata’s data-aware

scheduling algorithm. §4.5 describes the optimization of direct file access. §4.6 shows

evaluation results. §4.7 discusses some design implications. §4.8 presents related work,

and §4.9 summarizes this chapter.

4.1 Background: Serverless Computing

In serverless computing, the basic building block is a function. A cloud function is similar

to a function in a computer program, in that it takes some parameters, performs a task,

and returns a result. A cloud function can be triggered by another function, by a RESTful

API, or by a cloud event, such as when the cloud storage receives a new file or a database

gets a new entry.

With serverless computing, developers do not need to manage any infrastructure. The

cloud service provider handles all resource management. It runs a function in a container,

and each container is isolated from one another. When a function ends, its container is

paused for a fewminutes before being terminated. If the same function gets invoked again

while the container is paused, the same container will be resumed, which we call a warm

start. Otherwise, it is a cold start.

Cloud functions cannot rely on containers to persist any state, because containers are
88

Controller

Invoker

Container Container …
…

Invoker

Container Container …

Pub-sub
messaging

Invocation
message

Acknowledgment
message

Cloud
storage

Figure 4.2: Overview of serverless architecture.

ephemeral. Cloud service providers also limit the size of function parameters and return

values to a few hundred kilobytes, making it impossible to pass large data this way. As a

result, cloud functions have to leverage cloud storage services (e.g., AWS S3) to store or

pass any non-trivial data.

The price for using serverless computing services typically consists of two parts: a flat-

rate cost per function invocation (“request cost”), plus a cost proportional to the function’s

run time (“duration cost”). The request cost is only a fraction of the duration cost. Hence,

it is desirable to minimize the function run time.

4.1.1 Overview of serverless architecture

A typical serverless cloud (e.g.Apache OpenWhisk [103, 31]) consists of two fundamental

entities: one Controller and multiple Invokers (Figure 4.2). The Controller is the or-

chestrator of the system, and the Invokers are the executors. They communicate through
89

a publish-subscribe messaging system (e.g., Apache Kafka [81]).

To invoke a function, the Controller schedules the invocation to run on an Invoker

and publishes an invocation message. When the Invoker receives an invocation message,

it publishes an acknowledgment message, and starts or resumes a container to run the

function.

4.1.2 Life of a cloud function

A typical lifecycle of a cloud function consists of four phases: start, get, compute, and put.

The start phase is starting up the function. For a cold start, the cloud starts a new

container, downloads the function code to the container, and invokes the function. The

function may then install additional packages (e.g., OpenCV, FFmpeg, or LATEX) or make

one-time network connections (e.g., to a database). For a warm start, the cloud resumes

an existing container and invokes the function. A warm start takes less than 20ms, while

a cold start usually takes more than 1s, depending on the function.

The get phase is getting the input data from the cloud storage service. The typical

time spent on getting the data is between 100ms and 5s, depending on the data size.

The compute phase is performing the actual computation on the data. Although dif-

ferent functions have vastly different computations, most functions are quick tasks that

finish within 3 seconds, the default time limit on AWS Lambda.

The put phase is putting the output data back to the cloud storage. Different functions

generate different sizes of data, which usually takes between 100ms and 5s to upload.

A special case is if a function performs a classification task, such as malware detection
90

malware

compress thumbnail

collage

Upload

Make
collage Triggers

Data flows

Cloud
storage

Figure 4.3: A photo-sharing application example. Solid arrows indicate triggers. Dashed
arrows represent data flows.

or image recognition, it usually leverages the function’s return value or uses a database

service (e.g.. DynamoDB) instead, without putting data back to the cloud storage.

4.2 A Motivating Example

4.2.1 Example and insights

We motivate the design of Lambdata through an example of a photo-sharing application

with four cloud functions: malware, compress, thumbnail, and collage. We compose

these functions into two major workflows: handling user upload and making collage. Fig-

ure 4.3 shows the triggering of functions and how the data flows in and out of the cloud

storage. Figure 4.4 shows the source code that handles each function.

Handling user upload. The user uploads an image using a front-end application (e.g.,

a smartphone app), which puts the image on the cloud storage. As the cloud storage
91

def malware(params):
bucket, key = params["get_data"][0]
file = get(bucket, key)
result = do_scan_malware(file)
return {"result": result}

def compress(params):
bucket, key = params["get_data"][0]
image = get(bucket, key)
small_image = do_compress_image(image)
put_bucket, put_key = params["put_data"][0]
put(put_bucket, put_key, small_image)

def thumbnail(params):
bucket, key = params["get_data"][0]
image = get(bucket, key)
thumbnail = do_generate_thumbnail(image)
put_bucket, put_key = params["put_data"][0]
put(put_bucket, put_key, thumbnail)

def collage(params):
images = []
for bucket, key in params["get_data"]:

images.append(get(bucket, key))
collage = do_generate_collage(images)
put_bucket, put_key = params["put_data"][0]
put(put_bucket, put_key, thumbnail)

Figure 4.4: Example code with four cloud functions.

receives the data, it automatically triggers malware for next-stage processing. Figure 4.5

shows the data flow graph.

Function malware is a malware-detectionmodule. It is triggered by a file-upload event

of the cloud storage service. When triggered, this function fetches the data from the

cloud storage and runs a malware-detection program. If the file is clean, then it triggers

both compress and thumbnail simultaneously for next-stage processing. Otherwise, it

discards the file.
92

malware

compress

thumbnail

pic/1.jpg

small/1.jpg

thumb/1.jpg

Figure 4.5: Data flow of handling user upload.

compress

thumbnail

pic/1.jpg
small/col1.jpg

thumb/col1.jpg

collage
pic/2.jpg

pic/5.jpg

… collage/col1.jpg

Figure 4.6: Data flow of making collage.

Function compress gets an image file from the cloud storage, compresses it, and puts

it back to the cloud storage. Similarly, Function thumbnail gets an image from the cloud

storage, generates a thumbnail, and puts it back to the cloud storage.

Making collage. The user can also make a collage out of several existing images. Fig-

ure 4.6 shows the data flow graph. The front-end application sends a REST request to

the cloud gateway, which triggers collage with a list of image keys. Function collage

gets each image file from the cloud storage, generates a collage image, and puts it back to

the cloud storage. It also triggers compress and thumbnail to compress the collage and

generate a thumbnail of the collage.

Insights. From the example, we observe two key insights in serverless computing. We

have also studied over a dozen open-source serverless applications on Github and built
93

Input Output
Workflow: handle user upload
malware pic/1.jpg none (return value only)
compress pic/1.jpg small/1.jpg
thumbnail pic/1.jpg thumb/1.jpg
Workflow: make collage
collage pic/1.jpg—pic/5.jpg collage/col1.jpg
compress collage/col1.jpg small/col1.jpg
thumbnail collage/col1.jpg thumb/col1.jpg

Table 4.1: Inputs and outputs of each function.

two serverless applications ourselves.¹ All these applications share the same insights.

Our first insight is that a cloud function is almost always small doing a single task;

therefore, developers can easily determine its inputs and outputs before executing it,

rather than calculate the object names on the fly. For example, Table 4.1 shows an ex-

ample of inputs and outputs of each function.

If a function is triggered by a cloud storage event, then the input is just the object that

emits the event. For example, in the Upload workflow, malware is triggered by the cloud

storagewhen it receives a new image (e.g., pic/1.jpg), so the input is just pic/1.jpg. The

developer can easily calculate the output objects deterministically before executing the

function. Function malware only appends an entry in the database and does not generate

new data objects, so the output is empty. If the function wrote to the cloud storage instead

of the database, then it would specify something like result/1.txt as the output.

If a function is triggered by another function or a REST request, then the developer can

specify the inputs and outputs based on her intent of invoking the function. For example,

¹Because serverless computing is a relatively new paradigm, we could only find a few real-world open-
source serverless projects beyond demos and tutorials.

94

in the Collage-making workflow, the front-end application invokes collage via a REST

request to combine a list of images into a collage. So the inputs are the list of image objects

(pic/1.jpg. . .pic/5.jpg), and the output is the intended filename of the collage object

(collage/collage1.jpg). Function collage further invokes compress and thumbnail

to compress the image and generate a thumbnail, so it specifies the collage file as the

input, and the outputs are just the same filename prepended with buckets small/ and

thumb/, respectively.

Our second insight is that a cloud function tends to be functional in the sense that it

outputs an immutable object: once the object is written, the application does not mutate

it. Because the serverless computing providers may kill a function or run a function more

than once without any notice, they require that all functions be idempotent. Therefore,

most developers write functions in a purely functional way, so that it is much easier to

reason about the behaviors and handle failures.

For example, all of our four functions are purely functional, in that they never mutate

data, and always generate the same output for the same input. Specifically, the image-

compression function does not modify the input object in-place but rather writes the

result as a new object. Otherwise, if the function is invoked twice, it would end up with

double-compressing the image.

These two insights enable Lambdata to cache data aggressively without worrying

about data inconsistency and schedule function invocations by considering both code

and data locality.
95

malware(pic/1.jpg)

malware(pic/2.jpg)

compress(pic/1.jpg)

compress(pic/2.jpg)

thumbnail(pic/1.jpg)

thumbnail(pic/2.jpg)

Invoker 1 Invoker 2

Figure 4.7: Inefficient scheduling on OpenWhisk.

4.2.2 Inefficiencies with existing serverless clouds

Existing serverless clouds regard a function as a black box, and treat all invocations of a

function in the same way. When scheduling functions, they only consider the function

code, but not the data that the function computes. As a result, they tend to schedule

multiple invocations of the same function on the same Invoker. For example, we ran the

workload of handling user uploads on two images, using OpenWhisk with two Invokers.

Figure 4.7 shows the scheduling of all function invocations: the first Invoker handles all

invocations of malware, and the second Invoker handles all invocations of compress and

thumbnail, because this schedule is optimized for reusing warm containers.

Unfortunately, this scheduling is inefficient, because functions in both Invokers need

to get both images from the cloud storage. As cloud functions are typically small, the

time a function spent on getting data is significant. Table 4.2 shows that the functions in

our example spend 40% of the time getting duplicate data from the cloud storage. Besides

wasting time, it also costs moremoney because the cloud storage charges for each request.
96

Function start get compute put %(get)
malware 402 208 69 n/a 44%
compress 132 216 117 83 39%
thumbnail 137 201 79 48 40%

Table 4.2: Time spent on each phase of the functions, in milliseconds. The last column shows
the percentage of time spent on getting the data from the cloud storage.

The fundamental cause of this inefficiency is that existing serverless clouds have no

way of knowing a function’s data intents (i.e., what data the function needs to read and

write); therefore, they cannot leverage such information for scheduling.

4.2.3 Lambdata’s optimizations

Lambdata optimizes for this inefficiency by making a cloud function’s data intents ex-

plicit. Developers or cloud events can easily annotate the input and output data when

invoking a function, using two special fields in the function’s parameter list: get_data

for input and put_data for output. These annotations enables the serverless cloud’s

Controller to see through the black box when scheduling a function invocation. For

example, the previous two invocations of thumbnail now look different with Lambdata:� �
thumbnail(params={

"get_data": ["pic/1.jpg"],

"put_data": ["thumb/1.jpg"]

})

thumbnail(params={

"get_data": ["pic/2.jpg"],

"put_data": ["thumb/2.jpg"]

97

})� �
Under the hood, Lambdata securely caches data locally on each Invoker, and the

Controller takes into account both code and data locality when scheduling function in-

vocations. We noticed three common data usage patterns of cloud functions while study-

ing open-source serverless applications and writing our own applications, and designed

Lambdata accordingly.

Temporal locality of data. A data is often reused by multiple functions within a short

period of time. For example, in the workflow of handling user upload, immediately after

malware finishes computation on a file, both compress and thumbnail perform compu-

tations on the same file concurrently. Lambdata securely caches the file locally on the

Invoker, and schedules all three function invocations on the same Invoker according to

their data intents (if it deems worthy, see §4.4). Therefore, only malware needs to get the

data from the cloud, while compress and thumbnail read the cached data, reducing both

time and monetary cost.

Spatial locality of data. Many tasks or workflows involve multiple functions computing

on a small set of closely-related data. For example, a user often uploads several images in a

row and then creates a collage from these images. Therefore, even a small cache provides

many benefits.

Data pipelining. Multiple functions often process data as a pipeline. For example, in

the collage-making workflow, functions collage and thumbnail form a pipeline, i.e.,

collage triggers thumbnail, and the output of collage directly becomes the input of
98

start get compute put

start

collage

thumbnail get compute put

Figure 4.8: Dependency between collage and thumbnail.

start get compute put

start compute put

collage

thumbnail

Figure 4.9: Overlapping functions in a pipeline.

start get compute put

start

collage

thumbnail get

Figure 4.10: A rare case of overlapping functions in a pipeline.

thumbnail. With existing serverless clouds, thumbnail cannot start until collage fin-

ishes putting the data to the cloud storage. However, the real dependency between the

two functions only lies in the actual computation of the data (the compute phase), as

shown in Figure 4.8. Because Lambdata caches both input and output data, it schedules

the next-stage function on the same Invoker as soon as the previous function enters the

put phase (if worthy, see §4.4), effectively overlapping functions in a pipeline. Figure 4.9

shows Lambdata’s scheduling for this example: thumbnail starts when collage finishes

computing, and it gets the collage output from the cache rather than going through the

cloud storage.

In the rare case, if Lambdata schedules thumbnail on a different Invoker but

thumbnail enters the get phase before collage finishes the put (Figure 4.10), then Lamb-

data would fail this invocation and retry it. Because serverless computing providers may
99

malware
get_data: [pic/1.jpg]
put_data: []

malware
get_data: [pic/2.jpg]
put_data: []

compress
get_data: [pic/1.jpg]
put_data: [small/1.jpg]

thumbnail
get_data: [pic/1.jpg]
put_data: [thumb/1.jpg]

compress
get_data: [pic/2.jpg]
put_data: [small/2.jpg]

thumbnail
get_data: [pic/2.jpg]
put_data: [thumb/2.jpg]

Invoker 1 Invoker 2

Figure 4.11: Optimized scheduling with Lambdata.

kill and restart a function without notice, and thus require all cloud functions to be idem-

potent, Lambdata’s behavior does not impose any new limitations.

We ran the same workload from §4.2.2 on Lambdata, and got the scheduling shown

in Figure 4.11: the first Invoker handles all invocations related to 1.jpg, and the sec-

ond Invoker handles those related to 2.jpg. As a result, Lambdata reduced the overall

turnaround time by 29.6%, a 1.42× speedup, and reduced the monetary cost by 19.2%. We

show more case studies in §4.6.

4.3 Lambdata Overview

We give an overview of Lambdata’s API and architecture.

4.3.1 Lambdata API

Lambdata exports a simple yet effective API for serverless functions to deal with cloud

storage systems.
100

Basic cloud storage methods. Lambdata’s API for basic cloud storage methods resem-

bles the cloud storage’s original API, such as get and put.� �
object = get(bucket, key)

put(object, bucket, key)� �
Developers simply import the Lambdata library and use these methods in the same

familiar way.

Data intents. Lambdata lets a function specify in its parameters what data it needs to

get and put. A function in current serverless computing services represents all parame-

ters as a single JSON string. Lambdata inserts three new fields get_data, put_data, and

num_threads into the JSON. The developer specifies by get_data and put_data all data it

needs to get and put, both as an array of (bucket, key) pairs, and by num_threads the num-

ber of threads it uses to connect to the cloud storage for parallel downloads. Figure 4.12

shows an example annotation of invoking the collage function to make a collage from

two images, using up to 5 threads for getting the data. Therefore, the scheduler knows

each function’s data intents by peeking at the JSON string, before running the function.

We note that many existing serverless functions already include an equivalent of

get_data and put_data in their parameters, but there is no standard on how they would

name these fields. For those functions, developers simply need to change the names of

these fields into get_data and put_data, and enjoy the benefits of Lambdata.

All annotations are hints only. If a developer misses an intent or specifies an incor-

rect one, performance may be affected but not correctness. For example, if get_data

is missing, Lambdata may not schedule the function on the best Invoker, but the func-
101

{
"get_data": [

{
"bucket": "pic",
"key": "1.jpg"

},
{

"bucket": "pic",
"key": "2.jpg"

}
],
"put_data": [

{
"bucket": "collage",
"key": "col1.jpg"

}
],
"num_threads": 5

}

Figure 4.12: Example annotations for an invocation of collage.

tion can still opportunistically benefit from cached data. If put_data is missing, Lamb-

data can provide all benefits except that it would not overlap functions in a pipeline. If

num_threads is missing, Lambdata assumes the function gets data sequentially.

4.3.2 Architecture

We modified OpenWhisk and added Lambdata functionalities to several components.

Figure 4.13 shows the architecture.

Controller. We implement a data-aware scheduler in the Controller, which consists of

a cache registry, a data size registry, and some profiling results. The cache registry keeps a

list of cached data keys for each Invoker, possibly stale. The data size registry maintains

the size of all data objects. The profiling results contain the recent performance of the
102

Controller

Data-aware scheduler

Invoker 1

Container Container Container…

Lambdata service & API

Lambdata cache

Identity 1 Identity 2 Identity n…

mount

Invoker n
…

Invocation
message

Cache-aware
acknowledgment

message

Cloud
storagePub-sub

messaging

Cache registry
Invoker1: {obj1, obj2}
Invoker2: {obj3}
…

Data size registry
obj1: 12,345 bytes
obj2: 42 bytes
…

Profiling results
Container start time
Cloud storage performance
…

Profiler

get(), put()

Figure 4.13: Lambdata’s architecture. Components with italic font are Lambdata-specific.

cloud, including the time to start a container, the time to get and put a file from the cloud

storage. The Controller does not actively probe any information, but only bookkeeps

information sent by Invokers.

Invoker. Each Invoker independently manages its own cache and sends a list of all cur-

rently cached data keys and the size of each data object to the Controller by piggybacking

it with the acknowledgment message of each function invocation. It also monitors the time

to resume a warm container or start a cold container for each function. Whenever it gets

or puts a data object to the cloud storage, it monitors the time it takes, in order to estimate

the time of cloud storage operation for various data sizes. It sends these profiling results

to the Controller via the acknowledgment message, too.

Each Invoker exports the Lambdata API via Unix domain socket. Each container on

the Invoker has access to the API socket, and optionally mounts a portion of the cache

that the function’s identity has access to (§4.5).
103

4.4 Data-Aware Scheduling

In existing serverless cloud architectures such as OpenWhisk, each Invoker individually

manages containers, and the Controller does not know where the warm containers are.

Thus, the Controller only uses a deterministic hash of the function to pick an Invoker.

Although this method has a good chance of picking a warm container, it fails to consider

data locality.

By contrast, Lambdata employs a data-aware scheduling algorithm. Among the four

phases of a serverless function, the compute and put phases are essential computations,

unaffected by scheduling. Therefore, Lambdata’s scheduling algorithm aims to pick an

Invoker in order tominimize the lead time, the time spent in the start and the get phases.

We denote them by Tstart and Tget, respectively.

Unfortunately,Tstart andTget do not always align. For example, consider two Invoker

candidates, one with a warm container but no cached data, the other with cached data but

no warm containers. Scheduling the function on the first Invokermeans a smallTstart but

a large Tget, while scheduling on the second Invoker means a large Tstart but a small Tget.

In order to minimize T = Tstart +Tget, we need to estimate both times.

4.4.1 Estimating the lead time

The start phase. Let us name the function f . We denote by Twarm the time to resume a

warm container, and notice that it is fast regardless of what function is in it. We denote by

Tcold the time of Phase 1 if we have to start a new container, and find that it is relatively

stable for the same function but varies greatly from function to function, so we model
104

it as a function of f . We notice that Tcold is not determined by the static size of the f

that the developer submits because some functions install additional packages or make

one-time network connections after the initialization of the container. To deal with this

issue, Lambdata monitors Tcold(f) from the initialization to the f ’s first Lambdata API

call of the get method. If Lambdata has never seen f before, it estimates Tcold(f) by

other functions with similar static size as f . Therefore, the time spent in the start phase

is

Tstart =


Twarm if a warm container is available

Tcold(f) otherwise

The get phase. Let D = {d1,d2, . . . ,dn} be the set of data that f needs. We denote by

Tdata(d) the time to get data d from the cloud storage. We notice that Tdata(d) is mainly

determined by the size of d and the region of the cloud storage, so Lambdata monitors

the time spent on recent cloud storage requests to track the relationship between Tdata

and object size dynamically. Let Dc ⊆ D be the subset of cached data and Da = D \Dc the

subset of data absent. If di ∈ Dc , then the function can read it immediately. Otherwise, if

di ∈ Da , the function needs to get it from the cloud storage, using n concurrent threads (n

is an optional annotation provided by the developer, see §4.3.1). In order to calculate the

total time to get all the data, we consider two cases. If |Da | ≤ n, meaning that there are

enough threads to download all data in parallel, then the time is dominated by the slowest

thread (i.e., getting the largest data). If |Da | > n, then the time is approximately the total

time for getting all data over n threads. Therefore, the time spent in the get phase is
105

Tget =


maxd∈Da Tdata(d) if |Da | ≤ n

Σd∈Da
Tdata(d)

n otherwise

Total lead time. As a result, the total lead time is

T = Tstart +Tget

Lambdata tries to schedule the function on the Invoker with the smallest T . If the

best Invoker is offline or overloaded, then it picks the next one, and so forth. Lambdata

uses the same load-detection mechanism as existing serverless computing services.

4.4.2 Collecting bookkeeping data

When an Invoker receives a function invocation, it sends an acknowledgment message

to the Controller. Lambdata piggybacks with this message a list of all data that it has

currently cached, as an array of (bucket, key, size) pairs. The reason to include data size is

to help the scheduling algorithm determine how long it would take to get the data from

the cloud storage, on other Invokers that has not cached the data or on the same Invoker

if the data is evicted from the cache.

The Controller has a cache registry that maintains a global view of all data cur-

rently cached at each Invoker as a dictionary of Invoker → Set[(bucket, key)]. It

also maintains the size of all data as a dictionary of (bucket, key) → size. Both dic-

tionaries may be stale or incomplete, which only affects scheduling efficiency but not the
106

correctness of the system. For example, the Controller may think a data is cached on

an Invoker, but it has actually been evicted since the last acknowledgment message. In

this case, the function simply gets the data from the cloud storage again. If any dictionary

grows too large, the Controller just purges old entries.

In order to estimate Twarm, Tcold, and Tdata, the Invoker also monitors the time when-

ever it starts a container or handles a cloud storage operation, and sends them to the

Controller via the acknowledgment message. The Controller bookkeeps recent pro-

filing results, and interpolate them for estimation.

4.5 Optimization: Direct File Access

It is common that a function represents data as files, and processes data by reading and

writing files. The typical workflow of such a function is first downloading the source

file from the cloud storage to local disk, then processing the file to generate an output,

and finally uploading the output file to the cloud storage. However, due to container

isolations, even if Lambdata has already cached the source file, by using the Lambdata

API, the function still needs to transfer the file from Lambdata’s cache into its local disk

inside the container, and transfer the output file out of the container to Lambdata’s cache.

These copies are the unfortunate overhead because Lambdata aims to maintain source

code compatibility with the cloud storage service’s API.

As an optimization, Lambdata allows the function container to mount a portion of

the cache as a file system, so that the function can manipulate cached files directly. With

the cache mounted, the Lambdata API’s getmethod returns a file name instead of the file
107

content, so the function can directly read the file in the cache. Lambdata also promises

not to evict the cached file that the function has called get on, until the end of the func-

tion’s life. In addition, the function can also write new files to the cache, and the Lamb-

data API’s put method takes a file name in place of the argument of value.

Lambdata limits the access of files by the function’s identity, which is the same access-

control mechanism current cloud services employ. Therefore, multiple functions under

the same identity can access one another’s data, while functions of different identities are

isolated.

4.6 Evaluation

We deployed Lambdata on Amazon EC2 in the us-east-1 region, with an m5a.large in-

stance as the Controller and five m5a.2xlarge instances as Invokers. All instances are

running Ubuntu 18.04 and Docker CE 17.03.3. We used Amazon S3 as the cloud storage.

We implemented Lambdata in Scala 2.12 atop OpenWhisk and wrote all cloud functions

in Python 3.6. We limit each function’s memory usage to 512MB.

Our experiments aim to answer four research questions:

§4.6.1 Is Lambdata fast handling cloud storage requests?

§4.6.2 Does Lambdata speed up function invocations?

§4.6.3 Does Lambdata speed up multi-function workflows?

§4.6.4 Does Lambdata reduce monetary cost?
108

 0

 1

 2

 3

 4

 5

 6

1 2 4 8 16 32 64 128 256

T
im

e
 (

s
)

Object size (MB)

boto3 get
boto3 put
Lambdata get (miss)
Lambdata get (hit)
Lambdata put

Figure 4.14: Microbenchmark: median time to get and put objects of various sizes to Amazon
S3. Lower is better.

4.6.1 Microbenchmark

We first evaluate Lambdata’s performance of basic cloud storage operations. We get and

put data objects of various sizes, from 1MB to 256MB, to Amazon S3, using both Boto3,

the official AWS Python library, and Lambdata. Figure 4.14 shows the median time for

each operation.

For the get operation, if the data is cached, Lambdata takes less than 1ms, because it

is simply accessing files on the local disk, and Lambdata does not need to do anything. If

the data is missing, Lambdata’s performance is comparable to Boto3’s up to 16MB, and it

shows a speedup of up to 1.6×with larger data. For the put operation, Lambdata’s perfor-

mance is comparable to Boto3’s for small data, and it shows a 1.85× speedup for 256MB

data. These speedups are because Boto3 connects to the cloud storage in the Python run-
109

time inside a container, whereas Lambdata connects to the cloud storage in the Invoker,

using a Java runtime outside of containers. Since the Lambdata is just a wrapper over the

underlying AWS SDK, we do not claim any contribution on the speedups. Nevertheless,

the results show that Lambdata performs well for basic cloud storage operations.

4.6.2 Function performance

To evaluate Lambdata’s performance on running functions, we wrote two serverless ap-

plications modeled from real-world applications, each with 10 functions. Table 4.3 lists

all functions and shows the parameters used in the experiment. We now briefly describe

these two applications.

Photo sharing. We modeled this application according to Instagram, a popular photo-

sharing application. Users can upload images, create short video stories from images,

apply filters or add special effects, and publish them. The application also includes func-

tions to scan for malware, compress images, and transcode videos. Although Instagram

performs many computations (e.g., apply filters) locally on a mobile phone, we implement

everything as cloud functions to demonstrate the feasibility. We used images from the

Div2K dataset [3, 132] as the workload.

Online classroom. We modeled this application according to Canvas, a popular online

learning management system. Teachers can manage lecture notes, assign homework,

prepare exams, and grade them. We used documents at one author’s institution as the

workload.

110

Fu
nc

tio
n

D
es
cs
rip

tio
n

Pa
ra
m
et
er
su

se
d
in

th
is

ex
pe

rim
en

t
A
pp

1:
Ph

ot
o
sh

ar
in
g

ma
lw

ar
e

Sc
an

a
fil
e
fo
rm

al
w
ar
e,

us
in
g
ye

xt
en

d
[1
45

].
Us

ed
m
al
w
ar
e
ru

le
sf

or
m

Bi
na

ry
Al

er
t
[4
].

co
mp

re
ss

Co
m
pr

es
sa

n
im

ag
e,

us
in
g
Pi

ll
ow

[1
08

].
O
ut
pu

tJ
PE

G
qu

al
ity

=
75

%.
th

um
bn

ai
l

Ge
ne

ra
te

a
th
um

bn
ai
lo

fa
n
im

ag
e,

us
in
g
Pi

ll
ow

.
Th

um
bn

ai
ls

iz
e
=
32
0
×
32
0.

im
ag

e_
fi

lt
er

A
pp

ly
a
fil
te
ro

n
an

im
ag

e,
us

in
g
Pi

ll
ow

an
d
nu

mp
y
[1
01

].
A
pp

lie
d
an

In
st
ag

ra
m

“A
m
ar
o”
-li

ke
fil
te
r.

cr
ea

te
_s

to
ry

Ge
ne

ra
te

a
vi
de

o
fro

m
a
lis

to
fi
m
ag

es
,u

sin
g
Op

en
CV

[1
02

].
19
20

×
10
80

M
-JP

EG
,5

se
co

nd
sp

er
im

aa
ge

.
ad

d_
te

xt
Ad

d
a
te
xt

la
be

lt
o
a
vi
de

o,
us

in
g
Op

en
CV

.
Ad

de
d
a
la
be

lw
ith

ra
nd

om
te
xt
.

ad
d_

au
di

o
Ad

d
an

au
di
o
tra

ck
to

a
vi
de

o,
us

in
g
FF

mp
eg

[5
3]
.

Us
ed

a
po

p
m
us

ic
tra

ck
in

M
P3

fo
rm

at
.

tr
an

sc
od

in
g

Co
nv

er
ta

vi
de

o
to

an
ot
he

rc
od

ec
,u

sin
g
FF

mp
eg

.
Tr

an
sc
od

ed
in
to

th
e
ms

mp
eg

4v
2
fo
rm

at
.

vi
de

o_
fi

lt
er

A
pp

ly
a
fil
te
ro

n
a
vi
de

o,
us

in
g
Op

en
CV

.
A
pp

lie
d
a
ca

rto
on

-li
ke

fil
te
r.

pu
bl

is
h

Pu
bl
ish

an
im

ag
e
or

a
vi
de

o
in
to

a
de

di
ca

te
d
bu

ck
et
.

Bo
ok

ke
ep

in
g
on

ly
,n

o
co

m
pu

ta
tio

n
on

da
ta
.

A
pp

2:
O
nl
in
e
cl
as

sr
oo

m
le

ct
ur

e_
no

te
Co

m
pi
le

a
le
ct
ur

e
no

te
in

LA T
EX

be
am

er
to

PD
F.

Th
e
le
ct
ur

e
no

te
ha

d
10

sli
de

s.
me

rg
e_

no
te

s
M
er
ge

a
lis

to
fP

D
F
fil
es

in
to

on
e
PD

F.
M
er
ge

d
10

le
ct
ur

e
no

te
s.

wa
te

rm
ar

k
Ad

d
a
w
at
er
m
ar
k
to

al
lp

ag
es

of
a
PD

F
fil
e.

Us
ed

“le
ct
ur

e
no

te
s”

as
th
e
w
at
er
m
ar
k.

sp
li

t_
no

te
Sp

lit
a
PD

F
fil
e
in
to

tw
o
fil
es

(sl
id
es

an
d
sp

ea
ke

rn
ot
es
).

Sp
litt

ed
a
10

-p
ag

e
PD

F
in
to

tw
o
5-
pa

ge
PD

Fs
.

wr
it

e_
ho

me
wo

rk
Co

m
pi
le

a
LA T

EX
ho

m
ew

or
k
do

cu
m
en

tt
o
PD

F.
Th

e
PD

F
ha

d
th
re
e
qu

es
tio

ns
,o

ne
pe

rp
ag

e.
gr

ad
e_

ho
me

wo
rk

Ge
ne

ra
te

pe
r-
qu

es
tio

n
PD

F
fil
es

fo
ra

ll
su

bm
iss

io
ns

.
Us

ed
th
re
e
qu

es
tio

ns
,2

0
st
ud

en
ts

ub
m
iss

io
ns

.
qu

es
ti

on
_p

oo
l

Cr
ea

te
a
qu

es
tio

n
po

ol
fo
ra

n
ex

am
fro

m
a
PD

F
re
po

sit
or

y.
Ra

nd
om

ly
ch

os
e
5
ou

to
f1

5
qu

es
tio

ns
.

ma
ke

_e
xa

m
Ge

ne
ra
te

pe
r-
st
ud

en
tp

ro
bl
em

se
tf

ro
m

th
e
qu

es
tio

n
po

ol
.

Ra
nd

om
ly

ch
os

e
3
ou

to
f5

qu
es
tio

ns
.

an
sw

er
_e

xa
m

Co
m
pi
le

a
LA T

EX
do

cu
m
en

ta
nd

att
ac

h
it
to

th
e
ex

am
PD

F.
Th

e
do

cu
m
en

th
ad

10
pa

ge
s.

gr
ad

e_
ex

am
A
tta

ch
a
gr

ad
e
on

ea
ch

pa
ge

of
a
PD

F
fil
e.

Th
e
do

cu
m
en

th
ad

10
pa

ge
s.

Ta
bl
e
4.3

:L
is
to

fa
ll
fu

nc
tio

ns
an

d
th

e
pa

ra
m
et
er
s
us

ed
in

th
e
ex

pe
ri
m
en

t.

111

Speedup of function invocations

To evaluate the speedup of function invocations, we instrumented the time spent on each

phase of a function invocation. Table 4.4 shows the breakdown of each phase’s time, and

the speedup of Lambdata compared with OpenWhisk, where all numbers are the median

of 100 invocations. In order to eliminate the variance in the start time and make a fair

comparison, we pre-warmed the container before each invocation,

First, we find that cloud functions are small and short-running. With practical work-

loads, all function invocation times are shorter than 10 seconds, and the majority shorter

than 2 seconds.

We further find that the time spent on each phase varies significantly across functions.

Both get and put phases take hundreds of milliseconds for most functions. They are

mainly determined by the number of data objects and each object’s size. For example,

create_story and merge_notes have longer get time because they need to get multiple

files from the cloud storage; video_filter has longer put time because the size of a video

file is large. The times of the compute phase are diverse, ranging from 0 to 8 seconds.

They are mainly determined by the function’s business logic. For example, the publish

function only performs some bookkeeping and does not modify the data, so it spends

less than a millisecond in the compute phase. On the other hand, image_filter and

video_filter perform heavy numerical computations on the data, resulting in about 8

seconds.²

We compared the run time of Lambdata with OpenWhisk and found no statistically

²We implemented both functions in Python. The time could be shorter if it used native code or GPU.

112

Function get compute put speedup
App 1: Photo sharing
malware 208 69 0 3.99×
compress 216 117 83 2.08×
thumbnail 201 79 48 2.58×
image_filter 130 8129 111 1.02×
create_story 651 865 418 1.51×
add_text 353 938 392 1.27×
add_audio 419 70 249 2.31×
transcoding 414 591 154 1.56×
video_filter 398 7600 461 1.05×
publish 299 0 423 1.71×
App 2: Online classroom
lecture_note 116 1345 122 1.08×
merge_notes 615 1436 145 1.39×
watermark 129 513 116 1.20×
split_note 65 89 157 1.27×
write_homework 98 1470 123 1.06×
grade_homework 711 904 311 1.58×
question_pool 101 83 102 1.54×
make_exam 129 61 114 1.74×
answer_exam 115 1340 143 1.08×
grade_exam 133 856 139 1.13×
Geometric mean 1.50×

Table 4.4: Breakdown of the phases in each function. All times are in milliseconds. The last
column shows the speedup with cached data.

significant difference if the data is not in the cache. If the data is cached, Lambdata gives

an average speedup of 1.50×. Of all functions, the speedup is higher if the get phase

dominates, and lower if the compute phase dominates. For example, malware has 3.99×

speedup because its computation is fast, and Lambdata’s cache eliminates its need to get

data from the cloud storage. On the other hand, the speedup of image_filter is only

1.02× because it spends most of its time doing the computation, and the cache helps little.

Overall, our experiment shows that Lambdata offers significant speedup over existing

serverless clouds.
113

4032x3024

3840x2160

1920x1080

1024x768

 0 100 200 300

2.59x

2.40x

2.03x

2.67x

Time (ms)

Baseline get
Baseline process
Baseline put
Lambdata get
Lambdata process
Lambdata put

Figure 4.15: Time breakdown and speedup of the thumbnail function for various image sizes.

Case study

In order to understand how data matters to Lambdata’s performance, we show a case

study on thumbnail, a typical cloud function. This function gets an image file, generates

its thumbnail, and puts it on the cloud storage. We study how various image size affects

both OpenWhisk and Lambdata’s run time in each phase.

We pre-warmed the container and ran thumbnail with input images of four popular

dimensions: 1024×768 (web quality, 460KB), 1920×1080 (full HD, 1.2MB), 3840×2160 (4K

UHD, 4.7MB), and 4032×3024 (12 megapixel iPhone photo, 7MB). Figure 4.15 shows the

timeline of each function invocation. Each cluster represents an image dimension, of

which the top bar is the timeline of OpenWhisk, and the bottom bar is the timeline of

Lambdata.

We observe that all phases’ run time increase with the image dimension, but the ratio

of these increases is non-linear. For example, the compute time on an iPhone image is 6.9

times as long as on a web image, while the get time is only 2.6 times as long. Lambdata

shortens the get time to almost zero, but the compute time remains the same. Therefore,
114

Workflow Descsription Functions
App 1: Photo sharing
Slideshow

The user creates a short 1080P M-JPEG video
with five recently-uploaded images, and then
adds some text to the video. The application
then transcodes the video to the msmpeg4v2
format and publishes the converted video.

create_story
add_text
transcoding
publish

App 2: Online classroom
Distribute handouts

The user compiles 10 lecture notes from LATEX
beamer source codes to PDFs. When all com-
pilations finish, the application merges all
lecture notes into one PDF file, applies a wa-
termark on each page, and splits the notes
into two PDF files: one with all slides, the
other with speaker notes.

lecture_note
merge_notes
watermark
split_note

Table 4.5: Description of two representative workflows.

the speedup Lambdata provides is non-linear with regard to the image dimension. We

find that while Lambdata gives speedup for all images, it works best with iPhone photos.

The same observation applies for all functions. We find that Lambdata works well

with all practical real-world data.

4.6.3 Workflow performance

To evaluate Lambdata’s performance on real-world usage involving multiple functions,

we simulated 10 workflows that resemble practical scenarios and used synthetic work-

loads derived from real-world parameters to trigger these functions. We show case stud-

ies of the two most representative workflows, and the rest is similar. Table 4.5 lists

these workflows. We ran each workload 15 times and chose the result with the median

turnaround time.

Figure 4.16 shows the timeline of each workflow. In each graph, the top cluster is the

baseline running on OpenWhisk, and the bottom cluster is of Lambdata.
115

Lambdata

Baseline

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

create story
add text

transcoding
publish

(a) Slideshow

Lambdata

Baseline

 0 2 4 6 8 10 12

Time (s)

lecture note 0
lecture note 1
lecture note 2
lecture note 3
lecture note 4
lecture note 5
lecture note 6
lecture note 7
lecture note 8
lecture note 9
merge notes

watermark
split note

(b) Distribute handouts

Figure 4.16: Timeline for two representative workloads.

Slideshow. This workflow has four functions chaining into one pipeline. Since the user

has just uploaded the source images, the data cache is warm. For each individual function,

Lambdata’s run time is shorter than the baseline, because it reuses data from the cache.

The difference is most significant with create_story and less so with add_text, for the
116

same reason described in §4.6.2.

For the orchestration of the four functions, the baseline schedules each function in-

vocations consecutively, whereas Lambdata overlaps the next-stage functions with put

phase of the previous function, further reducing the turnaround time. We notice that at

around the 2s time mark, three functions overlap, possible because transcoding’s com-

putation is so fast that add_text has not finished its put phase yet.

As a result, Lambdata reduces both the time in each individual function because of

caching, and the turnaround time because of overlapping. Overall, Lambdata achieves a

2.16× speedup to finish the workflow.

Distribute handouts. In the first stage of this workflow, the user invokes 10 concurrent

functions computing distinct files. Because our Invoker machines have 8 cores, both the

baseline and Lambdata effectively schedule 8 invocations on Invoker1 and the rest on

Invoker2, which is why the first 8 invocations take slightly longer time than the last two

in the timeline.

In the second stage, merge_notes gathers the 10 output data objects and merges them

together. OpenWhisk schedules this invocation on Invoker3, whereas Lambdata sched-

ules it on Invoker1. Therefore, Lambdata reuses 8 of the 10 data objects from the cache

and gets the remaining two objects from the cloud storage.

The remainder of this workflow forms a pipeline, and Lambdata both reuses cached

data and overlaps functions, similar to the slideshow workflow. As a result, Lambdata

achieves a 1.22× speedup to finish the workflow.

All workflows. Overall, Lambdata achieves an average of 1.51× speedup across all
117

Workflow Baseline Lambdata Savings
Workflow 1: slideshow
Serverless cost 40.8 24.1
Storage cost 21.6 20.4
Total 62.4 44.5 28.6%
Workflow 2: distribute handouts
Serverless cost 276.8 256.0
Storage cost 73.8 65.8
Total 350.6 321.7 8.2%

Table 4.6: Monetary cost. Numbers are in ×10−6 dollars.

workflows.

4.6.4 Cost savings

Lambdata’s cost savings come from two factors. First, Lambdata shortens the run time

of cloud functions, thus reducing cost on the serverless computing service. Second, Lamb-

data eliminates redundant requests to the cloud storage, thus reducing cost on the storage

service. We applied the current pricing model of AWS Lambda and AWS S3 and calculated

the cost savings for all workflows.³

Table 4.6 shows the cost savings for the two workflows in §4.6.3, where Lambdata re-

duces their cost by 28.6% and 8.2%. Across all workflows, Lambdata’s achieves an average

cost savings of 16.5%.

4.7 Discussion

We now discuss some design implications of Lambdata.

³We did not use AWS’s billing statement because it was too coarse-grained.

118

Cache coherence. Lambdata requires that data are immutable, so the cache is never in-

coherent. This requirement follows our insights (§4.2.1) and is the best practice of writing

serverless applications. If a function needs to mutate data, it should store the data with a

new key and delete the old data.

Concurrent writes. Writing different data to the same object from multiple functions

violates our requirement that data are immutable, and is a bad practice in any serverless

computing. Lambdata does not prevent concurrent writes but leaves it to the developer

to use distinct object keys.

Cache eviction policy. The cache eviction policy is orthogonal to Lambdata’s design.

Lambdata can use any policy to evict cache. Because data in serverless computing are

small and demonstrate good temporal and spatial locality, the cache need not be large. In

practice, we found a simple LRU algorithm works well.

Data prefetching. By making a cloud function’s data intents explicit, one further op-

timization is that the Invoker can prefetch data on behalf of a function, while the con-

tainer is being initialized. Lambdata did not implement this optimization, because cloud

providers charge users by the duration a container runs, and this prefetching happens

outside a container’s lifetime, thus complicating the billing model.

Security. Lambdata maintains the same container isolations as in existing serverless

clouds, except for the cache. It leverages existing cloud services’ identity and access man-

agement (IAM) policies to restrict what cache a function can access. Only functions under

the same identity can see one another’s cached data. A malicious function could try to
119

cache a lot of data in the hope of exhausting the cache space and evicting other identities’

cached data. Lambdata can mitigate this impact by imposing a limit on the maximum

cache size per identity.

4.8 Related Work

Lambdata builds upon prior work that we now describe.

Memoization for dataflow programs. Memoization [87, 114, 93] is a technique that

reuses prior computation results of pure functions. Nectar [69] manages data and com-

putation in the traditional data center setting. It memoizes intermediate computation

results of Dryad programs. Incoop [21] uses memoization on the MapReduce framework.

However, these systems only work for specific programming models, and it is non-trivial

to generalize their use cases to the serverless computing setting. Lambdata generalizes

the idea of memoization to cloud functions.

Scheduling workflows. Workflow execution engines coordinate multiple tasks. For ex-

ample, Oozie [79] manages workflows for Hadoop systems, and Yu et al. [148] schedules

workflows for grid computing. Unfortunately, their models do not fit serverless program-

ming.

Serverless function orchestration. AWS Step Functions [123]manages serverless com-

putingworkflows by describing functions as a state machine. Although it maintains states

for serverless applications, the 32KB size limit is insufficient for large data objects. IBM

Composer [74] and Azure Durable Functions [94] let developers write function compo-
120

sitions with special library functions, and allow larger state size. Nevertheless, these

frameworks do not consider data locality, and their states are only for intermediate data,

not persisted in the cloud storage. Besides, they all require new programming models

unfamiliar to developers. By contrast, with Lambdata, developers write functions and

manipulate data objects in a familiar way.

Data systems for serverless computing. Pocket [82] introduces a multi-tier storage

system for interactive serverless data-analytic applications. However, it focuses on inter-

mediate data and does not provide high data durability. By contrast, we choose to build

Lambdata on top of existing cloud storage so that data are highly durable, and developers

are familiar with this programming model.

4.9 Summary

This chapter presented Lambdata, a novel serverless computing system that enables de-

velopers to declare a cloud function’s data intents, including both data read and data

written. It caches data locally, and its data-aware scheduling algorithm considers both

code and data locality. Evaluation on two practical applications with 20 cloud functions

shows that it achieves an average of 1.51× speedup on the turnaround time and reduces

monetary cost by 16.5%. The source code of Lambdata and the applications used for

evaluations are at http://columbia.github.io/lambdata.

121

http://columbia.github.io/lambdata

Chapter 5

Limiting Mobile Data Exposure with Cloud-based Idle Eviction

The final paradigm shift in the era of cloud computing happens in mobility. Mobile tech-

nology is replacing desktops as the primary personal computing platform and is being

used in increasingly sensitive contexts. For example, today’s users rely on smartphones

and tablets to access their personal and corporate email, prepare tax returns, and review

customer documents [110]. Even the US military recently announced that it will equip

soldiers with Android devices for accessing classified documents [97]. The draw to new

mobile technology is justifiable: mobile devices offer convenient and constant connec-

tivity, increase productivity, and provide access to feature-rich, cloud-based applications

(a.k.a. “apps”).

Despite these advantages, the transition to mobile devices raises serious and yet un-

resolved concerns, particularly with respect to data security in the event of device theft

and loss. Unlike desktops, generally assumed to be physically secure, mobile devices are

extremely prone to theft and loss. Statistics here are staggering: 49% of the New York City

population has experienced mobile phone loss/theft [88], and the FCC recently declared

mobile theft an “epidemic” in major US cities [52].

Though alarming, these statistics have yet to prompt mobile OSes to address the seri-

ous data-security threats posed by device theft or loss. Like their desktop precursors, such
122

as Linux and Mac OS X, mobile OSes let sensitive data accumulate uncontrollably on the

device. For example, the OS accumulates significant amounts of data in cleartext mem-

ory, and the file system retains deleted files by not purging their contents. Despite being

backed by clouds, applications hoard sensitive data – such as emails, documents, and

banking information – on the vulnerable device. Although encrypted file systems [96],

encrypted RAM [112], and remote-wipeout systems [12, 77] help protect this data, they

are imperfect stopgaps for OSes that were simply not designed with physical insecurity in

mind. For example, a recent study shows that 57% of corporate users employ no locking

mechanisms on their smartphones, rendering encryption useless [110].

This chapter presents CleanOS, a new Android-based mobile operating system¹ de-

signed to manage sensitive data rigorously and maintain a clean environment at all times

in anticipation of device theft. The crucial insight in CleanOS is to leverage the tight inte-

gration of today’s mobile applications with trusted cloud-based services in order to evict

sensitive in-memory and on-disk data to those services whenever it is not needed on the

device. CleanOS thus ensures that the minimal amount of sensitive data is exposed on

the vulnerable device at any time.

CleanOS extends Android in two major ways. First, it introduces sensitive data ob-

jects (SDOs), a new abstraction that facilitates management of sensitive data on mobile

devices. An SDO is a logical collection of Java objects, files, and database items that ap-

plications create and use to manage their sensitive data, such as emails, financial data, or

documents. SDOs and their data “disappear” from the device unless they are frequently

¹We view the OS notion broadly in this dissertation to include both the traditional OS and the entire
Android framework on which apps run.

123

used by an application. For example, if an email app adds an email’s content to an SDO,

any “trace” of that content automatically disappears from RAM and stable storage un-

less the user is actively reading that email on an unlocked screen. Recovering the email

requires interaction with the cloud.

Second, to evict idle SDOs, CleanOS modifies Android’s Java interpreter (Dalvik) to

introduce a new type of Java garbage collector (GC), called an evict-idle GC (eiGC). While

a traditional GC deallocates only those objects guaranteed to never be used in the fu-

ture (i.e., no pointers to them exist), eiGC eliminates objects that have not been used for

a period of time even if they might be used again in the future (i.e., pointers to them

still exist). To do so, eiGC walks through all Java objects in an idle SDO and encrypts

their data-bearing fields, such as primitives and arrays of primitives, with a key that is

escrowed in the cloud. Our modified Dalvik interpreter then faults when a bytecode in-

struction executes on an evicted object, retrieves the key from the cloud, and decrypts the

object. Thus, data eviction in CleanOS is logical; the data itself remains on the device in

encrypted form, while the key is shipped to the cloud.

The major security benefit of CleanOS stems from the value-added services that app

clouds can build on top of it. For example, a cloud could revoke data access following a

theft report, provide an audit log of data exposed upon theft, or monitor data access to

detect anomalous uses. Building such services on today’s “dirty” deviceswould be tremen-

dously challenging and likely require sacrificing semantics or performance. For example,

Gmail allows email access revocation [67], but emails cached on the device remain ex-

posed. Conversely, not caching sensitive data on the device degrades performance over

slow mobile networks. CleanOS provides device-side OS support for building robust,
124

Component New or changed features
Dalvik (JVM) Evict-idle Garbage Collector (eiGC)

Eviction-aware bytecode interpretation
Secure deallocation of interpreted stacks

Android SDK SDO API
Default SDO heuristics

TaintDroid Support for millions of taints
SQLite vulnerability fix

SQLite Taint tracking in database
Webkit Screen-buffer purging
Bionic (libc) Secure user-space deallocation
Linux kernel Secure page deallocation with grsecurity

Table 5.1: CleanOS Modifications to Android, TaintDroid.

secure, and efficient value-added cloud services.

We built CleanOS inAndroid using the TaintDroid taint-tracking system [49] and also

implemented a value-added cloud service that provides post-theft data-exposure auditing.

To do so, we modified several core components in Android and TaintDroid, summarized

in Table 5.1. Together, our changes provide: (1) eviction of idle Java objects, (2) heuristics

for identifying sensitive data without requiring app changes, (3) support for millions of

taints in TaintDroid, and (4) multi-layer secure deallocation of freed data in Java, native,

and kernel space. While CleanOS’s design extends in-memory eviction to stable storage,

this dissertation and our current prototype focus on in-memory data eviction.

Overall, we make the following contributions:

1. We demonstrate the sensitive data exposure problem by analyzing 14 popular An-

droid apps.

2. We define SDOs, a new abstraction for managing sensitive data on theft-prone de-
125

vices.

3. We implement CleanOS, an Android OS extension that combines known

encryption-based data destruction [23, 61, 106] with a new GC process that evicts

idle sensitive data.

4. We present a set of valuable add-on services that clouds could build on top of

CleanOS.

The remainder of this chapter is organized as follows. The next section presents a case

study on the data exposure issue. §5.2 describes CleanOS’s goals and assumptions. §5.3

shows the architecture. §5.4 describes the implementation. §5.5 demonstrates CleanOS’s

applications. §5.6 shows evaluatation results. §5.7 discusses some security implications.

§5.8 presents related work, and §5.9 summarizes this chapter.

5.1 Case Study: Data Exposure on Android

We selected for analysis 14Android apps according to their popularity in five sensitive cat-

egories: email, finance, document editing, password management, and social networking.

We define as exposed any data that persists on the device – either in RAM or on storage

– for a prolonged period of time, such as 10 minutes (§5.2 describes our rationale for this

threat model). Our goal in the analysis was to answer three questions: (1) Is sensitive-data

exposure a real problem? (2) If so, what are its causes? and (3) Is the exposure necessary?

We tackle each question using examples from our analysis.

Is Data Exposure a Real Problem? We installed the 14 apps on a rooted Nexus S phone
126

App Extracted cleartext data
Email Password, email contents, subjects, from/to, contacts
OI Notepad (doc) Document and metadata
KeePass (password manager) App password, all stored passwords & descriptions
Pageonce (finance) Password, transactions, bank account information
Facebook (social) Wall posts and messages

Table 5.2: Examples of captured sensitive data.

with Android 2.3.4 and asked the following question: what kinds of sensitive data can one

find by dumping RAM and database contents while apps run in the background? Our ac-

quisition process was vastly simplified by our rooted phone and the lack of encryption on

the default Android configuration. Nevertheless, we believe that our findings indicate the

level of data exposure on better-protected phones in face of realistic, albeit sophisticated,

attacks, such as cold boot RAM imaging [70]. We created a stable-state environment –

akin to the one a thief might find on a lost device – by ensuring that apps had not been

used for 10 minutes prior to taking RAM and DB dumps.

The answer to our question is eye-opening: with simple techniques, we retrieved

cleartext copies of sensitive information from all but one app. Table 5.2 shows exam-

ples of cleartext sensitive data we extracted from a select subset of the apps. Table 5.3,

column “Extracted Cleartext Data,” expands the result set to all 14 apps and categorizes

data in three classes of varied sensitivity: passwords, contents (e.g., email body, docu-

ment content, bank account), and metadata (e.g., email subject, document title). Overall,

we captured passwords in 5/14 apps, contents in 11/14 apps, and metadata in 13/14 apps.

What Causes Data Exposure? Given these results, an obvious question is what leads

to so much leakage. There are several possible answers:
127

App Description

Extracted Cleartext data hoarding
cleartext data RAM SQLite DB

Pass Cont Meta Pass Cont Meta Pass Cont Meta
word ents data word ents data word ents data

Email Email (default) Y Y Y Y - Y Y Y Y
Gmail Email - Y Y - - - - Y Y
Y! Mail Email Y Y Y - - - - Y Y
GDocs Documents - - Y - - Y - Y Y
OI Notepad Documents - Y Y - Y Y - - -
Dropbox Documents - - Y - - Y - - Y
KeePass Password mgr Y Y Y Y Y Y - - -
Keeper Password mgr Y Y Y Y - Y - - -
Amazon Commerce - - - - - - - - -
Pageonce Finance Y Y Y Y Y Y - - Y
Mint Finance - Y Y - Y Y - Y Y
Google+ Social - Y Y - - - - Y Y
Facebook Social - Y Y - - - - Y Y
LinkedIn Social - Y Y - - Y - Y Y

Table 5.3: Exposure of cleartext sensitive data across all 14 apps. A ‘Y’ indicates that we
obtained cleartext copies from RAM/DB. A ‘-’ does not mean that the data is not on the
device, but just that we did not find it in cleartext; the data could exist in some encrypted
form.

Insecure Deletion: The Android OS, including the kernel, system libraries, and the Java

framework, leaks sensitive information by not erasing data securely after it is deallo-

cated or by not securely erasing files when an app asks it to do so. These problems are

well known in desktop and server settings and have been addressed with secure deallo-

cation [29] and assured deletion [106, 131], respectively.

OS Data Buffering: Recent work shows that OSes and device drivers retain data in

buffers past its intended life. It also shows how to limit OS-buffered data exposure [45].

App Data Hoarding: Although most of the apps are cloud-based, our experiments show

that they hoard significant amounts of cleartext sensitive information on the device, either
128

App Data When app uses data
Email Password User/automatic refresh

Subjects On the email list screen
Contents User opens the email

OI Notepad Note title On the note list screen
Note body User edits the note

KeePass Master password App launches
Entry name On the entry list screen
Entry password User opens the entry

Table 5.4: Examples of when hoarded sensitive data is being actually used by the apps.

in RAM or in the local database. For example, the default Android email appmaintains the

email account password in cleartext RAM at all times, while KeePass, a popular password

manager, loads its entire password database into RAM at startup and keeps it there. Col-

umn “Cleartext Data Hoarding” in Table 5.3 shows the persistent, app-intended cleartext

data we found in RAM or DBs.² It demonstrates that the hoarding behavior is pervasive:

all but one of the 14 apps permanently maintain at least one type of sensitive data either in

RAM or in the database, while 6/14 apps permanently maintain their passwords or some

sensitive content in RAM.

Memory Leaks: Beyond the scope of our experiments is the well-known ease of unwit-

tingly introducing memory leaks into Android applications [11]. If small, these leaks may

go undetected and expose sensitive information.

Is Data Exposure Necessary? Although apps hoard significant amounts of sensitive

data on mobile devices, they tend to access this data fairly infrequently, suggesting that

²For RAM, we conservatively assume an object to be persistent if it always appears in the app’s Java
object dump.

129

data is often exposed longer than it needs to be. By way of example, Table 5.4 identifies

situations where three of our most problematic apps use hoarded sensitive data. For ex-

ample, the password in the default Android Email app, which we know is exposed in RAM

at all times, is in fact used only during inbox refreshes (the default is every 15 minutes).

Similarly, each email’s content is exposed in SQLite at all times but accessed only when

the user opens that particular email. While the frequency of these operations depends on

the workload, intuitively it should be relatively rare, making prolonged exposure unnec-

essary.

Implications for Mobile OS Design. Secure deletion for storage, RAM, and OS buffers

has been acknowledged as, and developed into, a primary OS function [29, 106, 45]; how-

ever, themanagement of app-driven data hoarding or leakage has thus far been considered

an app’s own responsibility. For example, faced with similar data-hoarding practices in

desktop and server applications, Chow, et al. [29] conclude that “little can be done without

modifying the application” and that “leaks are recognized as bugs by application program-

mers, so they are actively sought after and fixed.” Unfortunately, relying on the app to

manage sensitive data is problematic. Sensitive-data caching presents tradeoffs between

security on one hand and performance, usability, and energy/bandwidth consumption

on the other hand. Without solid abstractions, calibrating these tradeoffs is challenging.

For example, should a document-editing app cache the documents locally for good per-

formance over cellular networks (as recommended in some mobile app guidelines [59]),

or should it not do so for security reasons (as recommended in other guidelines [136])?

Should it cache the user’s password for convenience, or should it prompt the user for it
130

whenever it is needed?

We argue that mobile OSes can and should offer abstractions for apps to manage their

sensitive data rigorously without sacrificing their performance, usability, or other prop-

erties. This dissertation introduces one such abstraction in CleanOS, whose goals we next

describe.

5.2 Goals and Assumptions

Goals. Theprimary goal of CleanOS is to minimize the exposure of an app’s allocated sen-

sitive data by evicting it from the device whenever the data is idle (i.e., not being actively

used by the application). The key insight that makes this possible is the tight integration

between today’s mobile apps and cloud services. CleanOS leverages clouds to create a

new abstraction, called a sensitive data object (SDO). SDOs track sensitive information as

it flows through RAM and stable storage. As soon as they become idle, they are automat-

ically evicted to the cloud and are recovered only when the app needs them again.

Specific design goals of CleanOS include:

1. Eviction: SDOs should “disappear” as soon as they become idle whether or not they

are expected to be used by an application in the future.

2. Reasonable performance: We seek to provide reasonable performance for popular

mobile apps despite data eviction over Wi-Fi or cellular networks.

3. Reasonable defaults: While we admit app changes for best performance and seman-

tics, we aim to offer reasonable defaults even for unmodified apps.
131

4. Leverage technology trends: CleanOS must integrate naturally with existing tech

trends, such as the tight integration of mobile apps with cloud services.

5. Design for mobiles: CleanOS’ design should target mainstreammobile technologies,

such as Android.

Eviction of idle data (Goal 1) is our primary goal and contribution in CleanOS. We

strive to ensure that a thief cannot get a “free lunch” by capturing a device. Rather, he

should be required to contact the cloud in order to access data of interest, at which time

the cloud could deny access, log it, rate-limit it, etc. However, enforcement of precise

timeouts on idle sensitive data is a non-goal. From a performance perspective (Goal 2),

wewish to ensure that popular apps remain usable despite eviction acrossWi-Fi or cellular

networks (e.g., 3G/4G).

A common pitfall when proposing new OS abstractions is to require application

changes to gain any benefit. To avoid this, CleanOS should include heuristics to con-

struct default SDOs that provide reasonable eviction and performance properties even for

unmodified apps (Goal 3). Finally, we aim to exploit unique properties of popular mobile

technologies in CleanOS’ design (Goals 4 and 5). First, we leverage the tight integration

betweenmost mobile apps and trusted cloud services to evict device data to those services.

For local-only apps, however, the user can still integrate them with his own CleanOS ser-

vice. Second, while the data eviction concept is applicable to any mobile OS, we focus our

design on Android, which lets us leverage its technological properties to facilitate data

eviction. For example, since all Android apps are written in Java, we decided to tap into

the garbage collector to evict idle sensitive Java objects.
132

Threat Model. Our threat model considers any data on a mobile device to be vulnerable

to data-driven thieves. While many data protection systems exist – including encrypted

file systems [96, 129, 48], encrypted RAM [112, 86, 107], and data wipeout systems [12,

77] – they are imperfect when confronted with negligent users or (sophisticated) physi-

cal attacks. First, users can foil any protection system by not locking their devices [110],

assigning trivial PINs or passwords [75], or writing passwords down in easily retriev-

able locations [120]. Second, mobile devices are prone to physical attacks, which are

notoriously difficult to protect against. For example, an attacker could use cold boot at-

tacks [70] to retrieve in-RAM decryption keys or data, break the seal of tamper-resistant

hardware [10, 117], or shield the device from the network to prevent remote wipeout [12].

Such threats are especially relevant for corporate, government, and military users, who

interact with particularly sensitive data, such as trade secrets, customer data, health data,

or state secrets.

To maintain post-loss control over data despite such threats, CleanOS evicts data to a

cloud service, which is assumed to be trusted and non-compromisable. In reality, mobile

users are already required to trust the clouds on which their apps rely, so our assumption

is reasonable. Depending on the deployment model, these clouds could integrate directly

into CleanOS to help cleanse their apps automatically. For apps without a cloud compo-

nent, we assume that users can evict data to a trusted community or self-administered

CleanOS service. Finally, we assume that the cloud learns about a monitored device’s

theft, either directly from the user or via an automatic mobile-theft detection mechanism.

CleanOS explicitly assumes that the mobile device, along with all software running

on it, is trusted until it is lost. For example, the thief cannot install malware on a user’s
133

device, tamper with the device physically, or inspect it prior to stealing the device. After

loss, we trust neither the hardware nor the software on the device.

We assume that disconnection is the exception rather than the rule. With pervasive

wireless and cellular network coverage, this assumption is becoming increasingly real-

istic. Moreover, CleanOS is especially geared toward cloud-based apps, which typically

require connectivity for full functionality. Nevertheless, we present techniques to allow

disconnected operation in certain cases.

CleanOS is most applicable to long-lived daemon-like apps, whose execution consists

of brief computation sessions interspersed with long periods of inactivity. Most of today’s

mobile apps follow this model, including email, browsers, document editors, and social

apps. CleanOS disables exposure during periods of inactivity.

Finally, we explicitly assume the existence of robust secure deallocation andOS buffer-

cleanup techniques [29, 106, 45] and do not aim to improve the state of the art in these

intensely-researched directions. Rather, we focus on limiting the exposure of sensitive

data that applications hoard or leak, a problem previously thought intractable from an OS

perspective (see §5.1).

5.3 The CleanOS Architecture

We now describe our CleanOS design for Android. We focus initially on in-RAM data

eviction, after which we show how to extend SDOs to stable storage.
134

Linux Kernel

App 1
(active)

eiGCDalvik
(JVM)

Android
SDK

SQLite libc

App 2
(inactive)

SDO3

SDO4SDO5

TrustedCloud(s)

SDO
ID

SDO
Description

SDO
Key

App
Name

SDO Database

Available
SDO

Evicted
SDO

Available
Java object

Evicted
Java object

Mobile Device

SDO1
SDO2

SDO API

App Code

J ava Heap

Libs

Na
tiv

e
Ja
va

FS

Cl
ea

nO
S
Pr
ot
oc

ol
Figure 5.1: The CleanOS Architecture. Key components are highlighted in grey. We add or
modify in some way all of the boxed components (except for FS and kernel).

5.3.1 CleanOS Overview

Figure 5.1 shows the CleanOS architecture, which includes three major components: (1)

the sensitive data object (SDO) abstraction, (2) a modified, eviction-aware version of the

Dalvik interpreter, along with an evict-idle garbage collector (eiGC), and (3) the SDO cloud

store. Briefly, apps create SDOs and place their sensitive Java objects in them. The mod-

ified Dalvik tracks their propagation across RAM with TaintDroid and monitors their

bytecode-level accesses. The eiGC evicts SDOs to the cloud if they remain idle for a spec-

ified period.

An SDO is a logical collection of Java objects, such as string objects representing the

emails in a thread or objects pertaining to a bank account in a finance app. Upon creation,

SDOs are assigned app-wide unique IDs and encryption keys (KSDO), and are registered
135

with the cloud.

We implement three functions for SDOs. First, we track objects in an SDO with a

modified TaintDroid system, using the ID as a taint. As objects are tainted with an SDO’s

ID, they become part of the SDO. For example, SDO1 in Figure 5.1 includes three objects

added to it either explicitly by the app or automatically by our modified Android frame-

work. Second, we monitor accesses to SDOs and record their timings. Whenever an app

accesses an object in an SDO (e.g., to compute on it, send it over the network, or display

it on screen), that SDO is marked as used. Third, we evict SDOs when they are idle for a

time period (e.g., one minute).

To evict idle SDOs, the eiGC eliminates unused Java objects from RAM even if they

are still reachable. It periodically sweeps through Java objects and evicts them if they are

tainted with an idle SDO’s ID. In Figure 5.1, the active app (App 1) has one available SDO

(SDO1) and one evicted SDO (SDO2). For example, an SDO associated with an email thread

might be available while the user reads emails in that thread, but the password SDOmight

remain evicted. When the app goes into the background, all of its SDOs might be evicted,

as shown for App 2. An SDO is evicted when all Java objects in it have been evicted;

however, an available SDO may have both evicted and available Java objects.

Conceptually, eviction occurs at the level of logical SDOs. In practice, however,

CleanOS must eliminate the actual data-bearing objects from the vulnerable device. To

do so, eiGC leverages encryption-based data destruction from assured-delete file sys-

tems [106, 61] and applies it to the memory subsystem. Specifically, eiGC replaces data-

bearing fields in objects, such as primitives and arrays of primitives, with encrypted ver-

sions and then securely destroys the encryption key. To encrypt a data field F , eiGC uses
136

a key KF that is uniquely generated from the SDO’s key KSDO in the cloud (see §5.4 for

details). We modified Dalvik to fault when an app attempts to access the evicted data, at

which time it retrieves KSDO from the cloud, generates KF , and decrypts the data. KSDO

is then cached onto the device and securely removed when the SDO as a whole is again

evicted.

We next provide more detail on the two main contributions of CleanOS: the SDO

abstraction and the eiGC.

5.3.2 The SDO Abstraction

SDOs fulfill two functions in CleanOS. First, they let CleanOS identify sensitive data and

focus its cleansing on that data for improved performance. Indeed, evicting all Java objects

indiscriminately would be prohibitively expensive, while evicting a few at random would

diminish security benefits. Second, SDOs are instrumental in supporting some of our

envisioned add-on cloud services, such as the auditing service described in §5.5, as they

identify and classify sensitive data for the auditor.

APIs. Figure 5.2 shows the SDO API. To realize the data-control benefits of CleanOS,

apps create SDOs and add/remove Java objects to/from them. To create an SDO, an app

specifies a description, which is a short, human-readable string that describes the sensitive

data associated with the SDO. For example, our modified email app, CleanEmail, creates

an SDO using “password” for the description and adds the password object to it. It also

creates one SDO for each email thread, specifying the thread’s subject as the description,

and adds each email in the thread to it. Section 5.5 describes two apps that we trivially
137

SDO API:

class SDO {
SDO(String description, SDOLevel level) // new SDO
void add(Object o) // adds object to SDO
void remove(Object o) // removes object fromSDO

}

CleanOS Protocol:

registerSDO(sdoID, appName, description, key)
// registers SDO with DB

fetchKey(appName, sdoID, bucketID) → key || null
// fetches the key for a bucket in the SDO
// bucketID = 0 returns the SDO's key

sdoEvicted(appName, sdoID)
// announces an SDO's eviction to the cloud

Figure 5.2: The CleanOS SDO API and device-cloud protocol.

ported to CleanOS with minimal modifications (fewer than 10 LoC).

Figure 5.2 also shows the protocol used to register SDOs, retrieve their keys after

eviction, and report their eviction to the cloud. To create an SDO, the app registers it

with the cloud database using the SDO API, specifying its ID, the app’s package name

(such as com.android.email), the description, and the encryption key. For example,

the description for an SDO associated with a certain thread might be the subject of that

thread. In the database (whose schema is included in Figure 5.1), the tuple ⟨app package

name, SDO ID⟩ is a phone-wide unique identifier. Although not implemented in our

current prototype, the database can use the app user id to restrict access to keys only to the

apps that created them. Finally, to enable auditing services such as Keypad [60], CleanOS

notifies the cloud asynchronously whenever it evicts an SDO (message sdoEvicted). The
138

notification is needed because, unlike Keypad, CleanOS does not forcibly evict keys at an

exact time after they were fetched; rather, it does so when convenient, depending on load

and networking conditions (see §5.3.5 and §5.4).

Default SDOs. As mentioned in §5.2 (Goal 3), we aim not to rely on app modifications

to gain tangible benefit from CleanOS. To this end, we modified the Android framework

to register a set of default SDOs and use simple heuristics to identify and classify Java

objects coarsely on behalf of the apps. For example, our current prototype creates several

default SDOs by plugging into various core classes in the SDK: a User Input SDO for all

input a user types into the keypad (class InputConnection), a Password SDO for any Java

objects that capture input a user types into a password field (based on attributes of class

TextView), a coarse SSL SDO for all objects read from incoming SSL connections (class

SSLSocket), and SDOs for input from particularly sensitive sensors, such as the camera.

Some of these heuristics (e.g., SSL) were inspired by priorwork on automatic identification

of sensitive data [38]. Although default SDOs are coarse and may potentially include

many non-sensitive objects (particularly SSL), we believe that they offer comprehensive

identification of most sensitive data in unmodified apps. For example, all the sensitive

data we analyzed in §5.1 would be capturable by a default SDO. For apps willing to adapt,

CleanOS allows the overriding of default assignments of objects to SDOs.

Eviction Granularities and Buckets. Thus far, eviction granularities have been de-

termined by SDOs, which is problematic for two reasons. First, it forces app writers to

consider granularities and taint propagation when they design their SDOs. Second, our

default SDOs, such as SSL, are coarse. In our view, CleanOS should offer eviction benefits
139

even when an app dumps all of its sensitive objects into one big SDO, e.g., “sensitive.”

To support fine-grained eviction with coarse-grained SDOs, we introduce buckets.

Specifically, an SDO is “split” into several disjoint buckets, which are evicted indepen-

dently. Java objects added to the SDO – either by the app or by our framework – are

placed in random buckets. Eviction occurs at the bucket level: when a bucket has been

idle for a period, all objects in it will be evicted using a bucket key, which is derived from

the SDO’s key using a key derivation function [83]. For example, in an unmodified email

app, we would place all emails into the SSL SDO. With buckets, different emails would

be placed into different buckets of the SSL SDO and might therefore be evicted indepen-

dently. Also, with bucketing, we cache bucket keys instead of SDO keys on the device.

5.3.3 The Evict-Idle Garbage Collector

A simple but important innovation in CleanOS is the evict-idle GC (eiGC). At its core

(and independent of CleanOS), eiGC implements for a managed language what swaping

implements for OSes: it monitors when objects are being accessed during bytecode inter-

pretation and evicts them when they have not been used for a while. We believe that the

eiGC concept has applications beyond CleanOS, such as limiting the amount of memory

used by Java applications on memory-constrained devices at a finer grain than OS-level

paging would be able to sustain. In the context of CleanOS, however, eiGC evicts Java

objects in idle SDO buckets.

Using the GC to evict sensitive data is not the only design worth considering when

building a “clean” OS. We contemplated modifying the kernel’s paging mechanism to
140

swap idle pages to a Keypad-like encrypted file system [60], which at its core achieves for

files a similar eviction function to the one we achieve for RAM.We chose the GC approach

for two reasons. First, evicting Java objects provides finer-grained control over sensitive-

data lifetime than full-page eviction. Second, by evicting at the JVM level we can leverage

TaintDroid, the only taint tracking system for Android. Tracking sensitive data is vital for

constructing the SDO abstraction, which in turn is the base for building powerful add-on

services, such as auditing. However, our decision has a downside: coverage. By evicting

Java objects, we may miss data intentionally maintained by native libraries. We discuss

this limitation further in §5.7.

5.3.4 SDO Extension to Stable Storage

Like RAM, stable storage requires sanitization. At first glance, systems such as Key-

pad [60] could be directly leveraged to evict unused files in CleanOS. Unfortunately, we

found that eviction at file granularity is unsuitable for Android, where apps typically rely

on a database layer to manage their data. For example, 11 of the 14 apps in Figure ⁇(b)

store their data in SQLite, which maps entire databases as single files in the FS. As a

result, if the DB file were exposed, then all of its items would be exposed, including long-

unaccessed emails and documents.

CleanOS tailors storage eviction specifically for Android by extending the in-RAM

SDO abstraction to include files and individual database items. For this, we use twomech-

anisms. First, we propagate SDO taints to files and database items. Unfortunately, Taint-

Droid supports only the former, not the latter, an important vulnerability we discuss in
141

§5.4. We fixed this in CleanOS by modifying the SQLite DB. Specifically, we automatically

alter the schema of any table to include for each data column,C , a new column,Taint_C ,

which stores the taint for each item in that column (SDO ID and bucket ID). Second, be-

fore storing a tainted data object in a DB, we first evict that object, i.e., encrypt it with its

eviction key. When the database needs the object, it must decrypt it.

5.3.5 Disconnected Operation

While we assume that disconnection is the exceptional case, we present techniques to deal

with two types of disconnection: (1) short-term disconnection, such as temporary con-

nectivity glitches, and (2) long-term, predictable disconnection, such as a disconnection

during a flight. To address short-term disconnection, we can extend eviction of already

available SDOs by a bounded amount of time (e.g., tens of minutes). This allows an app to

continue executing normally while temporarily disconnected until it reaches an evicted

object. For example, a user might be able to load recently accessed emails, but not older

ones.

To address long-term disconnection, such as during air travel, we hoard SDO keys

before entering into disconnection mode. For example, our prototype implements Dalvik

support for hoarding SDOkeys upon receipt of a signal. We plan towrap this functionality

into a privileged app that provides users with a “Prepare for Disconnection” button, which

they can press before boarding a flight. To prevent a thief fromusing this button to retrieve

all SDO keys, the cloud would require the user to enter a password. While we generally

shun user-configured passwords in CleanOS, we believe that long-term disconnection is
142

a sufficiently rare case to warrant enforcement of particularly strong password rules with

limited impact on usability [95]. In contrast, imposing such rules on frequent unlock

operations would be impractical.

5.3.6 Deployment Models

CleanOS presents multiple deployment opportunities. First, security-conscious apps can

use their own, dedicated clouds to host keys and provide add-on services, such as auditing.

In such cases, we expect that the mobile side of apps would define meaningful SDOs.

Second, users who are particularly concerned with apps that have not yet integrated with

CleanOS might use a CleanOS cloud offered by a third party or that they host themselves.

For example, our prototype hosts all keys for all apps on a Google App Engine service

that we implemented.

5.4 Prototype Implementation

We built a CleanOS prototype by modifying Android 2.3.4 and TaintDroid in significant

ways (see Figure 5.1). To date, our prototype fully implements eviction of in-memory

SDOs and propagates taints to SQLite, but it does not yet encrypt sensitive items in SQLite.

Doing so will require changing the native part of the SQLite library – a single, massive,

over-100K-LoC file – the major deterrant we encountered thus far. We next describe

modifications we made to components of particular interest.

TaintDroid with Millions of Taints. Most dynamic taint-tracking systems, includ-

ing TaintDroid, support limited numbers of taints, which would prevent CleanOS from
143

scaling to many SDOs. For example, TaintDroid supports only 32 taints by representing

them as 32-bit shadow tags, where each taint corresponds to one tag bit. This limitation

allows propagation of multiple taints on one object for tracking completeness and secu-

rity against malicious applications. For CleanOS, which trusts applications, we modified

propagation to allow many taints.

We rely on a simple observation, which we validate experimentally: in practice, when

multi-tainting occurs, we can usually define a strict, natural ranking for taints in terms

of their sensitivity. As intuitive examples, a Password SDO should be more sensitive than

a generic User Input SDO, and a KeePass secret’s SDO should be more sensitive than its

description SDO. In these cases, “losing” the less sensitive taint would be admissible, be-

cause it does not weaken the user’s perception of the gravity of an object’s exposure.

Using a 24-hour real-usage trace for the Email app (see §5.6.1), we confirmed that 98.8%

of the tainted objects were either assigned a single taint during their lifetimes or received

multiple taints whose sensitivity could be strictly ordered using a simple, static, three-

level ranking system: HIGH, MEDIUM, and LOW. The remaining 1.2% of the objects received

multiple taints of undecidable ordering within this ranking system (i.e., equal sensitiv-

ity levels). Similar traces for Facebook and Mint indicated even fewer undecidable cases

(< 0.01%).

Based on this observation, we introduce the concept of sensitivity level for taints and

use it to propagate a single taint per object. Apps specify a sensitivity level for each

SDO upon its creation. If an object were added to two SDOs during taint propagation,

CleanOS retains the one with the higher sensitivity level. For equal sensitivities (the rare

case), CleanOS retains the most recent taint. Figure 5.3 illustrates the revised structure for
144

 31 30 29 28 4 3 0

 E Level SDO ID Bucket

Figure 5.3: CleanOS Taint Tag Structure. We impose a structure on TaintDroid taints to
support arbitrary numbers of taints.

the taint tag, in which we pack together the sensitivity level, SDO ID, and bucket ID into

32 bits while supporting up to 225 SDOs. In our experience, assigning sensitivity levels to

SDOs is natural, as demonstrated in §5.5. The idea of propagating a single taint was used

before in hardware-based taint tracking systems for improved performance [27].

Eviction-Aware Interpretation in Dalvik. We reserved the most significant bit in the

taint tag to denote the eviction state of a field. We modified the Dex bytecode instructions

that access object instance fields and array members. This includes instructions such as

OP_AGET, OP_IGET, OP_SGET (used to retrieve array members, instance fields, and static

fields, respectively). Our new instruction implementations first test the value of the evic-

tion bit in the field’s taint tag. When the bit is set, we request the aforementioned KSDO

and decrypt the value before allowing the instruction to proceed. If a key is not available,

execution is suspended.

The Evict-Idle Garbage Collector. While eiGC walks the reachable objects, we inspect

the taint tag for each object field and retrieve its idle time. If it exceeds the configured

threshold, then eiGC retrieves the key associated with the tag and encrypts the value.

Only fields that represent actual data are evicted (primitives and arrays of primitives);

fields implemented as pointers are not evicted, as a pointer is not in and of itself sensitive.

To evict data, we use AES in counter mode to generate a keystream, which we use
145

as input to an XOR operation with each byte of the data to be evicted. The size of the

keystream depends on the data’s type. For primitives, it is either 4 bytes (for char, int,

float, etc.) or 8 bytes (for double or long). For arrays, many bytes may be necessary. We

use the bucket key to generate an appropriately sized keystream. For primitives, we re-

place the data with a pointer to a structure containing metadata necessary for decryption

(e.g., initialization vectors) and the resulting ciphertext. For arrays, we evict the contents

in place and store the necessary metadata inside the ArrayObject.

Running the eiGC continuously would prevent the CPU from turning off when the

mobile device is idle, thereby wasting energy. Fortunately, eiGC needs to run only while

sensitive objects are left unevicted. Hence, in our prototype, eiGC stops executing as

soon as it has evicted all data, which should occur shortly after the app goes idle. The

eiGC resumes execution once the app faults on an evicted object or assigns a new taint to

an object. Hence, eiGC runs only while the app also runs.

Optimizations: Bulk Eviction and Prefetching. Performance and energy are major

concerns with CleanOS, for two reasons. First, garbage collection is expensive; hence per-

forming it frequently hurts app performance and energy (e.g., the eiGC’s full-heap scans

block interpretation for 1-2s). Second, our reliance on the network to fetch decryption

keys causes app delays and dissipates energy.

To address the first problem, we developed bulk eviction, in which the eiGC evicts

sensitive Java objects all at once, soon after the app itself becomes idle. More specif-

ically, while the app is executing, we evict nothing and perform no GC; once the app

has remained idle for a predefined time (e.g., one minute), the eiGC performs a full-heap
146

scan-through and evicts all cleartext tainted objects. This technique reduces the number

of heavyweight GCs to just one per app execution session, thereby minimizing the eiGC’s

impact on performance and energy.

To address the second problem, we developed bulk key prefetch, which prefetches all

keys that were accessed during the last eviction period upon the app’s first miss on a key.

For example, if a user opened his inbox subject list and read two emails during a previous

interaction session with his email app, then the next time the user brings the app into the

foreground, CleanOS will fetch the decryption keys for the subjects and the two emails’

contents – all in one network request. If the user views only his subject list but reads no

emails in a previous session, then the next time around, CleanOS will fetch only subject

keys again, not any email content keys. This technique improves app launches and the

latency of repeated operations, such as re-reading an email. It can be extended to prefetch

keys used in the last N sessions.

Although these optimizations may improve performance and energy, they may also

increase sensitive-data exposure. For example, prefetching previously-used keys may ex-

pose some sensitive data needlessly. We quantify this performance/exposure tradeoff in

§5.6.2.

Multi-Level Secure Memory Deallocation. Android goes to great lengths to keep an

application running in the background so it can re-launch quickly. This can cause an

accumulation of sensitive data in areas of memory that are no longer in use but have not

been returned to the kernel. The object heap in Dalvik is implemented using dlmalloc

mspaces and relies on the implementation of free() in dlmalloc to return memory to the
147

mspace. To implement secure deallocation, we changed both free() and an Android-

specific modification to dlmalloc that merges chunks of adjacent free memory. These

functions now overwrite the space being released with a fixed pattern. We also modified

Dalvik to overwrite interpreted stack frames on method exit, scrubbing them of sensitive

data. Finally, when assigning default taints to Java objects, we made explicit efforts to

taint objects as soon as they enter Java space from native libraries.

Addressing a TaintDroid Vulnerability. When implementing CleanOS, we uncovered

a surprising implication of a known limitation in TaintDroid. Specifically, TaintDroid

does not track changes in native libraries, which, as acknowledged by its authors, may

allow a malicious library to leak tainted data without triggering an audit log. To address

this problem, TaintDroid prevents untrusted apps from loading any native libraries other

than system libraries (e.g., SQLite and WebKit), which are included in Android itself and

are therefore trusted. This measure has thus far been thought sufficient.

Nevertheless, we discovered that even trusted system libraries can be exploited by

a malicious app to expose tainted data with no alarms. For example, because SQLite is

written in native code, a malicious app could wash taints off a tracked data item simply by

storing it into the database and reading it back. More generally, any stateful libraries that

provide the ability to put and later retrieve data are vulnerable to attacks. Since disabling

system libraries is impractical (e.g., 12/14 apps in §5.1 depend on SQLite), we instead

suggest identifying and modifying all stateful system libraries to propagate taints.

To date, we modified two such libraries: SQLite and WebKit. For SQLite, we imple-

mented taint propagation by persisting taints along with the data (see §5.3.4). ForWebKit,
148

we disabled caching of rendered Web pages. While important for security, we leave iden-

tifying and fixing other libraries for future work and for now suggest notifying the cloud

about a potential leak if sensitive data were handed over to an unchecked native library.

We suggest that TaintDroid proceed similarly. We discuss the coverage limitation further

in §5.7.

5.5 Applications

We ported three of our “dirtiest” apps from §5.1 onto CleanOS and built a proof-of-

concept, add-on service.

5.5.1 Extending Apps with SDOs

Although unmodified apps can benefit from the coarse default SDOs that CleanOS offers,

they can also define their own SDOs for fine-grained control of sensitive data. To demon-

strate how apps can be “ported” to our API, we modified two open-source apps – Email

and KeePass – to define fine-grained SDOs. Changes for both apps were trivial. For Email,

we added these seven lines of code:� �
SDO subjectSDO = new SDO("Subject", SDO.LOW);

subjectSDO.add(mSubject);

SDO bodySDO = new SDO("Content␣of␣" + mSubject, SDO.MED);

bodySDO.add(mTextContent);

bodySDO.add(mHtmlContent);

bodySDO.add(mTextReply);

149

bodySDO.add(mHtmlReply);� �
We added each email’s subject to a global, low-sensitivity SDO and created a medium-

sensitivity content SDO for its body, using the subject itself as the description. Passwords,

already embedded in an SDO by our default heuristics, needed no changes.

For KeePass, changes were similarly trivial (7 lines):� �
SDO masterSDO = new SDO("Master␣key", SDO.MED);

SDO entrySDO = new SDO("Entry", SDO.HIGH);

masterSDO.add(mPassword); // In SetPassword.java

masterSDO.add(masterKey); // In PwDatabase.java

entrySDO.add(password); // In PwEntryV3.java

entrySDO.add(pass); // In EntryEditActivity.java

entrySDO.add(conf); // In EntryEditActivity.java� �

5.5.2 Add-on Cloud Services

CleanOS evicts sensitive data to the cloud to prevent unmediated accesses by device

thieves. However, by itself, CleanOS cannot guarantee data security. For example, a

thief could interact with the apps in an unlocked device or force all SDOs to decrypt.

Therefore, CleanOS provides device-side mechanisms necessary for clouds to build clean-

semantic security add-ons, such as assured remote wipeout or data exposure auditing.

Such services already exist today (e.g., Apple’s iCloud and Gmail’s two-step verification),

but we maintain that their semantics are unclear given the state of today’s devices. We
150

Figure 5.4: Screenshot of Audit Service Log in App Engine.

next describe an add-on service we trivially built on CleanOS.

Prototype Auditing Service. Inspired by Keypad [60], we implemented an auditing

service on CleanOS. Its goal is to provide users with audit logs of what was on the device

at the time of theft and what has been accessed since. The auditing service integrates with

the CleanOS service and both are hosted on App Engine. When a device registers an SDO

or requests a decryption key, the cloud logs that operation with the app name, SDO, and

current time. In this way, the user can learn from the audit log exactly what data was

leaked. For instance, Figure 5.4 shows a sample audit log that contains entries for SDO

registration and key fetching. Were these operations to occur after the device was stolen,

the user will know that the email password and KeePass entry may have been leaked.

Crucial to any auditing system is precision. In the audit log, data in different buckets

of the same SDO are indistinguishable. Thus, accessing the data in one bucket may cause

false alarms for evicted buckets of the same SDO. Using a finer SDO granularity helps

reduce false positives. We evaluate audit precision in §5.6.1.

Further Examples. A cloud could build many other useful services on CleanOS. For

example, the cloud could: allow its mobile users to revoke data access from their missing
151

devices, disable access to sensitive data while the phone is outside the corporate network,

and perform theft detection based on access patterns. A variety of entities would find

such services useful to host. For example, a company might integrate with CleanOS on

the device for all corporate apps (e.g., corporate email, customer database), to access its

auditing, revocation, and geography-constrained services. Similarly, Gmail could inte-

grate with CleanOS to prevent email exposure after authentication-token revocation.

5.6 Evaluation

We next quantify CleanOS’ security, performance, and energy characteristics. Our goal

is to show that CleanOS significantly reduces sensitive data exposure while providing

reasonable performance and energy consumption, even over cellular networks. We con-

ducted all experiments on rooted Samsung Nexus S phones running CleanOS on Android

2.3.4 and TaintDroid 2.3.

5.6.1 Data Exposure Evaluation

To evaluate the data exposure benefits of CleanOS, we pose three questions: How much

does eviction limit exposure of sensitive data? How much do default SDO heuristics limit

exposure? How effective is the auditing service? To answer these questions, we recorded

a 24-hour trace of one of the authors’ phone running CleanOS as it was used to interact

with regular apps, including Email, Facebook, andMint. For Email, we experimented with

both the unmodified app and our modified version of it, which we call CleanEmail (see

§5.5.1). The Email app was configured with the author’s personal account, which receives
152

Password Content Metadata
Email without CleanOS 100% 95.5% 99.0%
Email with default SDOs 6.5% 5.9% 5.9%
CleanEmail (fine SDOs) 6.5% 0.3% 1.6%

Table 5.5: Sensitive data exposure period. Numbers are the fraction of time in which sen-
sitive data was exposed.

about ten new mails daily, and with the default 15-minute refresh period. Facebook and

Mint had widgets enabled, which made them continuous services.

Sensitive Data Exposure Period. We measured the exposure period for three types

of tainted data (password, content, and metadata) in the Email app. Table 5.5 shows the

fraction of time that each type of tainted data was exposed in RAM. Without CleanOS,

the password was maintained in RAM all the time, and the content and metadata were

exposed over 95% of the time. CleanOS reduced password exposure to 6.5%. For email

content, the unmodified Email app with default SDOs reduced exposure time from 95.5%

to 5.9%, and modifying the app to support fine-grained SDOs further reduced it to 0.3%.

Similar observations held for metadata. To be clear, these results depend on workloads.

From another, much more intensive email workload – that registered for many mailing

lists and Twitter feeds – we obtained a result of 7.3% and 12.7% for content and meta-

data, respectively. Overall, results demonstrate a significant reduction in exposure times

for tainted data. Moreover, they show that our default heuristics protect sensitive data

reasonably well.

Sensitive Data Lifetime. As SDO lifetime is critical to system security, we must also

examine the maximum period that a tainted object could be retained in RAM. Table 5.6
153

App Without CleanOS
With CleanOS

1 bucket 32 buckets 1024 buckets
Email (password) 22.5h 1h 28m 1h 19m 1h 11m
Email (contents) 20.9h 3 min 1 min 1 min
Email (Metadata) 20.9h 18 min 6 min 6 min
Facebook 24h 3h 54m 3h 51m 3h 29m
Mint 24h 1h 10m 1h 2m 55 min

Table 5.6: Sensitive data lifetime. Numbers are the maximum sensitive data retention
period.

shows the retention time for the longest-lived tainted object in three applications, where

we break down email into three types. Without CleanOS, all observed applications re-

tained certain tainted objects for more than 20 hours. With CleanOS, the maximum SDO

lifetime was dramatically reduced. For instance, the Email app kept some metadata ob-

jects for as long as 20.9 hours, which CleanOS reduced to only 6 minutes when using

1024 buckets. For Facebook and Mint, the impact of bucketing on sensitive data lifetime

was more limited because these apps tend to use most objects in an SDO at the same

time. Overall, these results indicated that the mobile device was significantly cleaner

with CleanOS.

Audit Precision. We next evaluated the effectiveness of the auditing service we built on

CleanOS (see §5.5.2). We compared audit precision across four levels of SDO granularity

in Email: (1) mono-SDO, where we marked data as only “sensitive” or “non-sensitive,” (2)

default SDOs, where we used default heuristics, (3) coarse SDOs, where the application

defined one content SDO and one metadata SDO for all emails, and (4) fine SDOs, where

each email had its own content and metadata SDOs. We define audit precision as the

average probability over time that the tainted data is actually exposed on the device, given
154

 0

 20

 40

 60

 80

 100

mono
SDO

default
SDOs

coarse
SDOs

fine
SDOs

A
u
d
it
 p

re
c
is

io
n
 (

%
)

Password
Contents
Metadata

Figure 5.5: Audit precision. Each bar shows the average probability over time that tainted
data was actually exposed, given that the audit log shows its SDO as exposed.

that the audit log shows its SDO has not been evicted.

Figure 5.5 shows audit precision for the Email app’s password, content, and metadata.

Password auditing was 50.0% precise with mono-SDO but increased to 95.1% with default

SDOs. The content and metadata, however, had poor precision (<3%) without applica-

tion support: CleanOS could not differentiate data coming from the Internet and hence

added every incoming object to the SSL SDO. With coarse, application-specific SDOs, au-

dit precision for email content and metadata was 9.1% and 61.3%, respectively. When

fine application-specific SDOs were available, audit precision reached 100%. Thus, our

default SDOs were effective in auditing password exposure, but application adaptation

was needed to provide precise auditing for other types of sensitive data.

5.6.2 Performance Evaluation

We next evaluate the performance impact of CleanOS under different workloads and

networking conditions. Here, we aim to: (1) quantify raw performance overheads, (2)
155

Android
2.3.4

TaintDroid
2.3

CleanOS

not
evicted

evicted,
cached

evicted,
Wi-Fi

evicted,
3G

Untainted Primitive 0.00021 0.00022 0.00026 - - -

Tainted Primitive - 0.00023 0.00056 1.24 22.844 336.07

Untainted Array 0.00027 0.00029 0.00035 - - -

Tainted Array (S) - 0.00030 0.00075 1.4 21.652 308.71

Tainted Array (M) - 0.00030 0.00075 1.331 21.702 316.79

Tainted Array (L) - 0.00030 0.00075 2.355 22.365 317.97

Figure 5.6: Micro-operation Performance (milliseconds). CleanOS Java object field access
times compared with Android, TaintDroid. Times for non-sensitive and sensitive fields
for various eviction states. Averages over 1,000 accesses.

demonstrate that CleanOS is practical over Wi-Fi for popular apps, and (3) show how our

optimizations make CleanOS practical even over slow, cellular networks. In our experi-

ence, obtaining reliable and repeatable results from the cellular network is tremendously

difficult; hence, our results used emulated Wi-Fi and 3G networks with RTTs configured

at 20ms and 300ms, respectively. Because our transmission units were tiny (keys were

16-byte long), we did not enforce bandwidth restrictions.

Micro-operation Performance Overheads. To evaluate raw performance overheads,

we measured Java object field-access times for Android, TaintDroid, and CleanOS. Fig-

ure 5.6 compares them for four field types: primitives (int), small arrays (16 bytes),

medium arrays (4KB), and large arrays (16KB). For CleanOS, we show access times both

for non-sensitive fields (the vast majority) and sensitive fields under various eviction

states. CleanOS’ access overhead for non-sensitive fields was small compared with Taint-

Droid (16%), which itself was close to raw Android (6% overhead for TaintDroid). The

overhead for sensitive field access increased to 141% over TaintDroid: CleanOS performed
156

Application Action Android
2.3.4

TaintDroid
2.3

CleanOS Optimized
CleanOS

not evicted evicted, Wi-Fi evicted, 3G evicted, 3G*

Email
Launch 197 202 241 312 919 589

Read Message 212 254 387 501 1165 379

CleanEmail
Launch - - 291 315 902 598

Read Message - - 452 526 1472 421

KeePass
Launch 173 192 217 221 527 672

Read Entry 125 150 146 155 479 135

Browser

Launch 130 151 160 144 222 138
Load Page

(iana)
Wi-Fi 488 483 658 605 - -
3G 2067 2114 2125 - 2136 2031

Load Page
(GNews)

Wi-Fi 1072 1043 1270 1160 - -
3G 1717 2475 2475 - 3536 2942

Load Page
(CNN)

Wi-Fi 1065 1136 1394 1446 - -
3G 4570 4709 4325 - 4619 4538

* Actions were performed before.

Figure 5.7: Application Performance. Performance of various popular app activities under
Android, TaintDroid, and CleanOS for various eviction states and configurations. Results
are averages over 40 runs, in milliseconds.

last-time-of-use bookkeeping on every Dalvik field access instruction (e.g., OP_AGET,

OP_IGET) that involved a tainted field. Further, when evicted, CleanOS access overhead

spiked dramatically, especially when the evicted field’s key was not cached on the device

but was fetched over Wi-Fi or 3G. Moreover, unlike in Android and TaintDroid, access

times for evicted arrays in CleanOS depended on the array’s size because decryption times

increase with data size. For example, the “evicted, cached” column shows that decrypting

a tainted array grew by 68% when the array’s size increased from 16B to 16KB. Fortu-

nately, in practice, sensitive fields are extremely rare compared with non-sensitive fields.

For example, our email trace showed an average of 102,907 fields at any time, of which

merely 1,889 were tainted (or 1.83%). Hence, CleanOS should acceptably affect real app

performance, as shown next.

Application Performance. Figure 5.6.2 shows the time to launch several popular apps
157

(i.e., bring them into the foreground) and perform typical actions, such as opening an

email, viewing a KeePass entry, or loading a Web page. We chose three Web pages: a

simple one (https://iana.org/domains/example) and two popular and more complex

ones (https://news.google.com and https://cnn.com). For CleanOS, results labeled

“not evicted” correspond to cases where all accessed objects were decrypted, while results

labeled “evicted” correspond to cases where objects were all evicted.

In the “not evicted” case, interaction with the apps incurred a limited performance

penalty compared with both TaintDroid and Android. For example, 8/13 operations

incurred less than 100ms penalties over TaintDroid, and 7/13 did so over Android.

Such penalties will likely go unnoticed by users, who are known to perceive delays

coarsely [100]. Hence, when users interact with a recently used app, they should not

feel CleanOS’ presence.

When users interact with a cold app (“evicted” columns for unoptimized CleanOS),

however, performance degraded but remained usable for Wi-Fi networks. Our cheapest

app is the browser, for which CleanOS incurred 8-23% overheads over Android for all

operations. The reason is two-fold: (1) the browser deals with little sensitive data, and

(2) during page loads, the browser fetches large amounts of data over Wi-Fi, which dwarf

CleanOS’ key traffic delays. The most expensive app for CleanOS is CleanEmail, which

incurred a larger penalty than Email for “evicted” launches due to more granular tainting.

For example, while Email needed to fetch 2 keys to load an email, CleanEmail needed to

fetch 3 keys.

Over 3G, CleanOS penalties after eviction became significant. While some operations

remained within reasonable bounds (e.g., launching the browser and loading iana.org or
158

https://iana.org/domains/example
https://news.google.com
https://cnn.com
iana.org

cnn.com), many operations incurred overheads in excess of 100%. For example, loading

an email onto the screen jumped from 197ms to 1.1s for Email and 1.4s for CleanEmail.

Such delays likely affect usability.

Effect of Optimizations onApplication Performance. Column “Optimized CleanOS”

in Figure 5.6.2 shows the elapsed time of repeat operations under our bulk prefetching

optimization (see §5.4). All timed operations were invoked in the previous application

session; therefore, all of their relevant keys were prefetched together as part of one bulk

request during the timed session. The results show dramatic improvements in perfor-

mance for both launching and interacting with the apps. For example, CleanEmail – our

most expensive application – launched in 589ms over 3G compared with 919ms on unop-

timized CleanOS (35.9% improvement) and loaded a previously read email in 420ms com-

pared with 1.4s (71% improvement). In general, this optimization lets an app re-launch

incur little more than one RTT over non-evicted CleanOS, while subsequent repeat oper-

ations incur no RTT. Naturally, our optimization will not benefit non-repeat operations,

such as loading a brand new or long-unread email. However, one type of operation that

will always benefit is app launch, a latency-sensitive operation on mobiles.

Despite their performance benefits, our optimizations may increase data exposure.

When applying these optimizations to the workloads in §5.6.1, we obtained limited, but

non-trivial, exposure impact. The period for each type of tainted data increased by up to

0.9 percentage points for the workload in Table 5.5, and by up to 23.2 percentage points

for our intensive Email workload. Prefetching keys from multiple sessions would cause

further exposure. Hence, CleanOS should best apply this optimization only in specific
159

cnn.com

cases (e.g., over 3G).

Overhead Estimation for SDO Stable Storage Extension. Thus far, our results show

CleanOS’ overheads for eviction of in-RAM SDOs. While we have not fully implemented

the SDO extension to stable storage, we now offer rough estimates for the extra overheads

to expect from such an extension. We expect the major sources of overhead to be: (1) the

key fetches required to access encrypted database items, and (2) the extra encryption/de-

cryption that occurs when accessing these items. To account for (1), we ran experiments

with our test applications that instruct CleanOS to fetch the appropriate decryption keys

for any tainted database items being accessed. To account for (2), we added an extra

20% overhead per query, a number reported by CryptDB [111], which also does per-item

encryption.

With this methodology, we estimate that extending SDOs to SQLite would result in

additional overheads ranging between 0-65% on 3G over CleanOSwith in-RAM SDOs. We

predict that these operations will suffer the most: KeePass Launch (869ms, or 64.9% addi-

tional overhead), CleanEmail Read (1887ms, or 28.2% additional overhead), and Browser

Load (2542ms, 4086ms, and 4573ms for iana.org, news.google.com, and cnn.com, re-

spectively, or 15-19% additional overhead). Most of these overheads (82-99% across all

apps) are due to extra RTTs incurred by necessary key fetches, which are optimizable

via batch prefetching. Thus, overall, we believe that our system will be practical from a

performance perspective even when implemented in full.
160

iana.org
news.google.com
cnn.com

A T C A T C A T C
0

20
40
60
80

100
120
140
160
180

Network
CPU
LCD

E
ne

rg
y

(J
ou

le
s/

ho
ur

)

A – Android
T – TaintDroid
C – CleanOS

0 6.4 8.4 0 2.9 8.6 0 3.8 8.2

CleanEmail KeePassBrowser

Figure 5.8: Energy Consumption. Hourly energy consumption attributed by PowerTutor
to the three apps when running a long-term synthetic workload for at least 3 hours over
Wi-Fi. Numbers on top of each bar show energy overhead over default Android in percent.

5.6.3 Energy and Network Evaluation

CleanOS’ encryption, network traffic, and extra GCs raise concerns about its impact on

energy consumption. To evaluate this impact, we ran coarse-grained experiments that

drove a simple, long-term workload against each app (CleanEmail, Browser, and KeeP-

ass) using MonkeyRunner [65] and measured consumption using the PowerTutor online

power monitor [152]. The workload repeatedly launched an app, performed a set of typ-

ical tasks (such as reading emails, accessing entries in KeePass, and visiting Web pages

in the browser), sent the app into the background, and then slept for 15 minutes. Each

app interaction lasted for 36-46s, after which we promptly turned off the LCD. We ran

the workload continuously for at least 3 hours and plotted per-app power consumption

as reported by PowerTutor.
161

Figure 5.6.3 shows energy consumption for Android, TaintDroid, and CleanOS over a

real homeWi-Fi network. For each app, we show the energy consumed by the LCD, CPU,

and Wi-Fi. Results show that CleanOS’ total energy overheads over Wi-Fi were small

compared with both Android and TaintDroid: 8.2-8.4% over Android (see labels above

bars) and 1.9-5.5% over TaintDroid. Drilling down on resource overheads, we observe

that CleanOS increased energy consumption of both the network (44-45%) and the CPU

(32-74%), but those overheads were dwarfed by the LCD energy draw. In general, our

overheads were smallest for the browser, which itself consumed relatively more CPU and

network energy, and largest for KeePass, a lightweight application that performed little

computation and had no network traffic.

Over 3G, energy overheads due to network traffic will likely increase. Our experience

shows that experimenting with 3G networks leads to very unstable and unrepeatable re-

sults; hence, for these networks, we rely on an analytic evaluation grounded in a study

of CleanOS’ network traffic. Figure 5.9 compares CleanOS’ traffic patterns to those of the

three apps using one-hour traces from our energy experiments. It shows that CleanOS’

network consumption depends on the application’s own network profile. For networked

apps, such as email and browser, CleanOS’ traffic closely follows the app’s own traffic

distribution over time. For example, for email, of the 24 minutes during which CleanOS

issued some traffic, only 9 of those had no accompanying app traffic; for the browser,

only 1 out of 5 one-minute periods did so. From an energy perspective, this means that

CleanOS usually piggybacks on the app’s own use of the network and only rarely needs

to hold the interface up for its own purposes. On the other hand, for local-only apps, such

as KeePass, CleanOS uses the network mostly for its own purpose; but even in such cases,
162

D
at

a
tra

ns
m

itt
ed

 (K
B

/m
in

)

Figure 5.9: Network Traffic Patterns of Apps vs. CleanOS. CleanOS traffic vs. app traffic for
a one-hour trace. The Y axis is in log scale. In our cases, the phone has background traffic,
which is included in both app and CleanOS lines.

however, its traffic will be rare, brief, and small (≤ 10KB/min). Thus, we expect CleanOS

to be practical from an energy perspective.

5.7 Security Discussion and Limitations

We now discuss CleanOS’ security implications and limitations. There are two types of

data that an attacker might seek: unevicted data and evicted data. CleanOS does not

protect unevicted data on a stolen device; instead, it seeks to minimize the amount of

such data. An audit-enabled cloud service can provide users with a robust audit trail of

data exposed at the time of loss and data retrieved since. For evicted data, clouds can
163

do much more. For example, after theft has been detected, they can revoke the device’s

access to still evicted data. They can also monitor accesses to keys to detect anomalous

behavior.

A thief might also try to retrieve keys for all evicted SDOs before the cloud disables

them. Such aggressive attackers could be identified via anomalous access-pattern detec-

tion. To evade detection, the attacker could retrieve SDO keys only for objects of interest,

such as emails with tempting subjects. While some attackers may be unwilling to do so

for fear of revealing their identities, the cloud can provide an audit log of such accesses.

Attackers might also attempt to break the disconnection password to hoard keys for

apps of interest without raising suspicion. CleanOS could enforce sufficient entropy to

make the disconnection password, which is extremely rarely used, much stronger than a

regular password (which a user must type every time he unlocks his device). However,

even if the password were broken, the cloud could provide evidence of the attacker’s

behavior.

Adversaries may perform network attacks to sniff or disrupt CleanOS device-cloud

traffic. To prevent sniffing of keys from network traffic, we encrypt connections and

authenticate the device to the cloud using a pre-established secret key (akin to the device

token in Gmail’s two-factor verification) and the cloud using public key cryptography.

An attacker could also disrupt CleanOS device-cloud communication to induce CleanOS

into an accumulation mode, where it defers eviction until cloud connectivity returns. To

defend, CleanOS bounds its eviction delay for temporary disconnections. Moreover, a

thief could prevent evictionmessages from arriving at the cloud. However, dropping those

messages will not affect confidentiality since data eviction will complete as planned, but
164

it might raise auditing false positives.

One CleanOS limitation is its limited coverage outside the Java realm. To be clear,

expunging sensitive data from Java is an important contribution: 9/14 apps in Figure⁇(b)

would expose some sensitive data permanently in RAM if we did not do so. Moreover,

we have incorporated some basic multi-level secure deallocation techniques and have

modified two popular native libraries to limit exposure (SQLite and WebKit). However,

any data retained in other buffers or caches in the OS or native libraries remains exposed.

To limit this exposure, we recommend: (1) incorporating additional OS data scrubbing

mechanisms [45], (2) inspecting all remaining system libraries for caches as we do for

SQLite and WebKit, and (3) either disabling all third-party libraries (an approach similar

to TaintDroid’s [49]) or informing the cloud about any data leakages to uninspected third-

party libraries.

5.8 Related Work

CleanOS builds upon prior work that we now describe.

Encrypted File Systems. Encrypted file systems [48] and full-disk encryption [96, 129]

are designed to protect data stored on a vulnerable device, but they do not protect data in

RAM.Moreover, as discussed in §5.2 (Threat Model) and in prior work [60, 141], these sys-

tems can fail in the real world due to human factors (e.g., non-existent or poor passwords)

and physical attacks (e.g., key retrieval from RAM via cold-boot attacks [70]). CleanOS

recognizes these limitations and promptly removes unused data from the vulnerable de-

vice.
165

Encrypted RAM Systems. Encrypted RAM systems – such as XOM [86], Crypt-

Keeper [107], and encrypted swap [112] – encrypt data while it sits in RAM. CryptKeeper

resembles the CleanOS model by encrypting all memory pages except for a small work-

ing set, thereby achieving a similar encrypted-unless-in-use effect as CleanOS. However,

while the data is encrypted in these systems, the decryption keys themselves are still

available in RAM and potentially accessible to memory-harvesting unless extra hardware

is deployed. Moreover, if the device were unlocked or the thief found the user’s password,

encrypted RAM would have no effect.

ZIA [37, 36] encrypts mobile data in RAM and on disk whenever a device is not near its

owner. The user wears a beaconing token at all times, whose presence is detected by the

mobile. Like ZIA, CleanOS encrypts data after a period of non-use, but the granularities,

method, and usage model are different. For example, we disable unused data at the Java

object level as opposed to the device level, evict data to clouds for increased post-theft

control, and do not require users to carry (and secure!) tokens.

Mobile Wipe-Out Systems. Varied commercial wipe-out systems exist and help in-

crease users’ post-theft data control. For example, remote wipe-out systems, such as

iCloud [12], let the users send “kill” messages to lost devices. Unfortunately, these systems

require network connectivity to function correctly. If the thief prevents device connec-

tivity (e.g., by wrapping it into a Faraday cage), the device will not receive the message

and therefore not complete its wipeout. Moreover, configuring the device to self-destruct

after a number of failed authentication attempts helps prevent access to file system data,

but it does not preclude memory harvesting attacks, such as coldboot imaging [70]. Such
166

attacks are particularly problematic on mobile devices, which hardly ever power off.

Cloud-based Mobile Security Services. The value of the cloud for increased data con-

trol is being increasingly recognized. Examples of cloud-based security services include:

online data access revocation with two-step verification [67], location-based access con-

trol with location-aware encryption [128], and cloud-based authentication with capture-

resilient cryptography [89]. Generally, these systems prevent the compromise of data

not already exposed on the device, but they do not guarantee security for mobile-resident

data. For example, none of these systems takes RAM-resident data into account, and the

Google two-step verification does not even consider storage. CleanOS cleanses device

RAM and storage in support of such security services.

Keypad. Particularly relevant is Keypad [60], an auditing file system for old-generation

mobile devices, such as laptops and USB sticks, that achieves file-level, strong-semantic

auditing. CleanOS shares Keypad’s threat model, and our auditing service was inspired by

it. However, in addition to its support for in-RAM data auditing, CleanOS also differs from

Keypad in its focus on new-generation mobile technologies, such as Android, which have

distinct auditing granularity requirements. For example, file-level auditing in Keypad

would be ineffective for apps using the SQLite database since they all would be stored

within one single file. Instead, CleanOS defines SDOs, an abstraction that encompasses

fine-grained objects, database items, and sdcard files.

Secure-Deletion Systems. Secure deletion has been recognized as a key OS primitive.

It erases data in memory [29], OS buffers [45], and stable storage [106, 131, 23] once the
167

data is not needed by the application. CleanOS explicitly assumes the existence and ro-

bustness of such systems, but addresses a distinct, important part of the sensitive data

exposure problem for the first time: securing data explictly hoarded by applications for

performance or convenience. CleanOS SDOs resemble the self-destructing data abstrac-

tion in Vanish [61] in that they “disappear” over time, but the setting is different: Vanish

makes Web data disappear after a specified time post-creation, whereas SDOs make mo-

bile data disappear if they are unused for a specified time.

5.9 Summary

This chapter presented CleanOS, a new design for the Android OS that manages sensitive

data rigorously and keeps mobile devices clean at any point in time. Unlike Android,

which lets sensitive data accumulate in cleartext RAM and on disk, CleanOS eliminates

it from the vulnerable device by evicting it to the cloud whenever it is not needed on the

device. It provides a clean-semantic foundation for clouds to build add-on services, such

as data access revocation after a device has been lost or post-theft data exposure auditing.

We implemented CleanOS by instrumenting Android’s Java virtual machine to securely

evict sensitive data objects after a specified period of non-use. On top of CleanOS, we built

a sample auditing cloud service. Our experiments demonstrate that CleanOS limits data

exposure significantly while imposing acceptable performance overheads and offering

sound semantics for cloud-based applications.

168

Chapter 6

Conclusion

This dissertation presented a novel approach to make data storage efficient in the era of

cloud computing, by building new storage abstractions and systems that bridge the gap

between modern cloud computing techniques and legacy data storage solutions, and in

the meantime, simplify development.

We have built four systems to solve four data inefficiencies in cloud computing. The

first system, Grandet, is a unified, economical object store for web applications. It serves

as a layer betweenweb applications and cloud storage, significantly reducing storage costs

for web applications deployed in the cloud.

The second system, unic, is a system that securely deduplicates general computations.

It serves as a memoization layer that allows applications running on behalf of mutually

distrusting users to memoize and reuse computation results, thereby improving perfor-

mance.

The third system Lambdata, is a serverless computing system optimized by making

data intents explicit. It adds a cache layer between cloud functions and cloud storage,

enabling a variety of optimizations to improve performance and reduce cost.

The fourth system CleanOS, is a mobile operating system that limits data exposure

with cloud-based idle eviction. It adds to the mobile device a cloud-based data manage-
169

ment layer that manages sensitive data rigorously and maintains a clean environment at

all times.

170

Bibliography

[1] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. “RACS: a
case for cloud storage diversity.” In: Proceedings of the 1st ACM symposium onCloud
computing (SoCC ’10). 2010.

[2] Sandip Agarwala, Divyesh Jadav, and Luis A Bathen. “iCostale: Adaptive Cost
Optimization for Storage Clouds.” In: 2011 IEEE International Conference on Cloud
Computing (CLOUD ’11). 2011.

[3] Eirikur Agustsson and Radu Timofte. “NTIRE 2017 Challenge on Single Image
Super-Resolution: Dataset and Study.” In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops. 2017.

[4] Airbnb. BinaryAlert. https://github.com/airbnb/binaryalert.

[5] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. “Baggy bounds
checking: an efficient and backwards-compatible defense against out-of-bounds
errors.” In: Proceedings of the USENIX Security Symposium. 2009.

[6] Amazon. Amazon EBS Product Details. http://aws.amazon.com/ebs/details.

[7] Amazon. Amazon EBS Volume Types. http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/EBSVolumeTypes.html.

[8] Amazon. Startups and Amazon Web Services. http://aws.amazon.com/start-
ups.

[9] An Amazon Web Services C++ Library. http://libaws.sourceforge.net.

[10] Ross Anderson andMarkus Kuhn. “Tamper resistance: A cautionary note.” In: Pro-
ceedings of the USENIX Workshop on Electronics Commerce. 1996.

[11] Android Developers Blog. Avoiding Memory Leaks. https : / / android -
developers.blogspot.com/2009/01/avoiding-memory-leaks.html. 2009.

[12] Apple iCloud. Find my iPhone, iPad, and Mac. https://www.apple.com/icloud/
features/find-my-iphone.html. 2012.

171

https://github.com/airbnb/binaryalert
http://aws.amazon.com/ebs/details
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
http://aws.amazon.com/start-ups
http://aws.amazon.com/start-ups
http://libaws.sourceforge.net
https://android-developers.blogspot.com/2009/01/avoiding-memory-leaks.html
https://android-developers.blogspot.com/2009/01/avoiding-memory-leaks.html
https://www.apple.com/icloud/features/find-my-iphone.html
https://www.apple.com/icloud/features/find-my-iphone.html

[13] W. A. Arbaugh, D. J. Farber, and J. M. Smith. “A Secure and Reliable Bootstrap
Architecture.” In: Proceedings of the 1997 IEEE Symposium on Security and Privacy
(SP ’97). 1997.

[14] William A. Arbaugh, Angelos D. Keromytis, David J. Farber, and Jonathan M.
Smith. Automated Recovery in a Secure Bootstrap Process. 1998.

[15] Matt Asay. Amazon Web Services leads war on cloud price reductions. http://www.
techrepublic.com/article/amazon- web- services- lead- the- war- on-
cloud-price-reductions. 2014.

[16] Andrew Baumann, Marcus Peinado, and Galen Hunt. “Shielding Applications
from an Untrusted Cloud with Haven.” In: Proceedings of the Eleventh Symposium
on Operating Systems Design and Implementation (OSDI ’14). Oct. 2014.

[17] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. “Finding
a Needle in Haystack: Facebook’s Photo Storage.” In: Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (OSDI ’10). 2010.

[18] David Bermbach, Markus Klems, Stefan Tai, and Michael Menzel. “Metastorage: A
federated cloud storage system to manage consistency-latency tradeoffs.” In: IEEE
International Conference on Cloud Computing (CLOUD ’11). 2011.

[19] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo
Sousa. “DepSky: dependable and secure storage in a cloud-of-clouds.” In: ACM
Transactions on Storage Systems 9.4 (2013).

[20] Alysson Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Neves, Miguel Correia,
Marcelo Pasin, and Paulo Verissimo. “SCFS: A Shared Cloud-backed File System.”
In: Proceedings of the USENIX Annual Technical Conference (USENIX ’14). 2014.

[21] Pramod Bhatotia, AlexanderWieder, Rodrigo Rodrigues, Umut A. Acar, and Rafael
Pasquin. “Incoop: MapReduce for Incremental Computations.” In: Proceedings of
the 2nd ACM Symposium on Cloud Computing (SoCC ’11). 2011.

[22] William J. Bolosky, Scott Corbin, David Goebel, and John R. Douceur. “Single In-
stance Storage in Windows 2000.” In: Proceedings of the 4th Conference on USENIX
Windows Systems Symposium - Volume 4 (WSS ’00). 2000.

[23] Dan Boneh and Richard Lipton. “A Revocable Backup System.” In: Proceedings of
the USENIX Security Symposium. 1996.

[24] Dan Butcher. This is how Goldman Sachs is cutting staff through cloud computing.
https://news.efinancialcareers.com/us-en/263066/this-goldman-md-
has-his-head-in-the-cloud-for-a-few-good-reasons. 2016.

172

http://www.techrepublic.com/article/amazon-web-services-lead-the-war-on-cloud-price-reductions
http://www.techrepublic.com/article/amazon-web-services-lead-the-war-on-cloud-price-reductions
http://www.techrepublic.com/article/amazon-web-services-lead-the-war-on-cloud-price-reductions
https://news.efinancialcareers.com/us-en/263066/this-goldman-md-has-his-head-in-the-cloud-for-a-few-good-reasons
https://news.efinancialcareers.com/us-en/263066/this-goldman-md-has-his-head-in-the-cloud-for-a-few-good-reasons

[25] Brandon Butler. Amazon speeds up its cloud with SSD block storage. http://www.
networkworld.com/article/2364506/cloud-storage/amazon-speeds-up-
its-cloud-with-ssd-block-storage.html. 2014.

[26] ccache. http://ccache.samba.org.

[27] Shimin Chen, Michael Kozuch, Theodoros Strigkos, and et.al. “Flexible Hardware
Acceleration for Instruction-Grain ProgramMonitoring.” In: Proceedings of the An-
nual International Symposium on Computer Architecture (ISCA). 2008.

[28] Xu Cheng, C. Dale, and Jiangchuan Liu. “Statistics and Social Network of YouTube
Videos.” In: International Workshop on Quality of Service (IWQoS ’08). 2008.

[29] Jim Chow, Ben Pfaff, Tal Garfinkel, and Mendel Rosenblum. “Shredding your
garbage: Reducing data lifetime through secure deallocation.” In: Proceedings of
the USENIX Security Symposium. 2005.

[30] Clam AntiVirus. http://www.clamav.net.

[31] IBM Cloud. IBM Cloud Functions: Platform Architecture. https://cloud.ibm.
com/docs/openwhisk?topic=cloud-functions-openwhisk_about.

[32] CommonCrawl. http://commoncrawl.org.

[33] CompTIA. Trends in Cloud Computing. https://www.comptia.org/about-
us/newsroom/press-releases/2016/09/27/companies-becoming-more-
measured-in-use-of-cloud-computing-options-new-comptia-study-
finds. 2016.

[34] Comscore. Comscore Releases January 2014 U.S. Online Video Rankings. http :
/ / www . comscore . com / Insights / Press - Releases / 2014 / 2 / comScore -
Releases-January-2014-US-Online-Video-Rankings. 2014.

[35] Ken Corless, Mike Kavis, and Kieran Norton. NoOps in a serverless world. https:
//www2.deloitte.com/insights/us/en/focus/tech-trends/2019/noops-
serverless-computing-transforming-it-operations.html. 2019.

[36] Mark D. Corner and Brian D. Noble. “Protecting applications with transient au-
thentication.” In: Proceedings of the International Conference on Mobile Systems,
Applications, and Services (MobiSys). 2003.

[37] Mark D. Corner and Brian D. Noble. “Zero-interaction authentication.” In: Pro-
ceedings of the ACM Annual International Conference on Mobile Computing and
Networking. 2002.

173

http://www.networkworld.com/article/2364506/cloud-storage/amazon-speeds-up-its-cloud-with-ssd-block-storage.html
http://www.networkworld.com/article/2364506/cloud-storage/amazon-speeds-up-its-cloud-with-ssd-block-storage.html
http://www.networkworld.com/article/2364506/cloud-storage/amazon-speeds-up-its-cloud-with-ssd-block-storage.html
http://ccache.samba.org
http://www.clamav.net
https://cloud.ibm.com/docs/openwhisk?topic=cloud-functions-openwhisk_about
https://cloud.ibm.com/docs/openwhisk?topic=cloud-functions-openwhisk_about
http://commoncrawl.org
https://www.comptia.org/about-us/newsroom/press-releases/2016/09/27/companies-becoming-more-measured-in-use-of-cloud-computing-options-new-comptia-study-finds
https://www.comptia.org/about-us/newsroom/press-releases/2016/09/27/companies-becoming-more-measured-in-use-of-cloud-computing-options-new-comptia-study-finds
https://www.comptia.org/about-us/newsroom/press-releases/2016/09/27/companies-becoming-more-measured-in-use-of-cloud-computing-options-new-comptia-study-finds
https://www.comptia.org/about-us/newsroom/press-releases/2016/09/27/companies-becoming-more-measured-in-use-of-cloud-computing-options-new-comptia-study-finds
http://www.comscore.com/Insights/Press-Releases/2014/2/comScore-Releases-January-2014-US-Online-Video-Rankings
http://www.comscore.com/Insights/Press-Releases/2014/2/comScore-Releases-January-2014-US-Online-Video-Rankings
http://www.comscore.com/Insights/Press-Releases/2014/2/comScore-Releases-January-2014-US-Online-Video-Rankings
https://www2.deloitte.com/insights/us/en/focus/tech-trends/2019/noops-serverless-computing-transforming-it-operations.html
https://www2.deloitte.com/insights/us/en/focus/tech-trends/2019/noops-serverless-computing-transforming-it-operations.html
https://www2.deloitte.com/insights/us/en/focus/tech-trends/2019/noops-serverless-computing-transforming-it-operations.html

[38] Landon P. Cox and Peter Gilbert. RedFlag: Reducing Inadvertent Leaks by Personal
Machines. Tech. rep. TR-2009-02. Duke University, 2009.

[39] CumulusClips. http://cumulusclips.org.

[40] Dropbox. https://www.dropbox.com.

[41] Dropbox. Dropbox Fact Sheet. https : / / www . dropbox . com / static / docs /
DropboxFactSheet.pdf.

[42] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech Kil-
ian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu, and Michal
Welnicki. “HYDRAstor: A Scalable Secondary Storage.” In: Proccedings of the 7th
Conference on File and Storage Technologies (FAST ’09). 2009.

[43] Laura DuBois, Marshall Amaldas, and Eric Sheppard. Key considerations as dedu-
plication evolves into primary storage. White Paper 223310. Mar. 2011.

[44] Bertrand Dufrasne, Peter Kimmel, Matthew Houzenga, and Dennis Robertson.
IBM DS8000 Easy Tier. https://www.redbooks.ibm.com/abstracts/redp4667.
html.

[45] Alan M. Dunn, Michael Z. Lee, Suman Jana, Sangman Kim, Mark Silberstein,
Yuanzhong Xu, Vitaly Shmatikov, and Emmett Witchel. “Eternal Sunshine of the
SpotlessMachine: Protecting Privacywith Ephemeral Channels.” In: Proceedings of
the USENIX Symposium on Operating Systems Design and Implementation (OSDI).
2012.

[46] Elgg. http://www.elgg.org.

[47] EMC. Fully Automated Storage Tiering (FAST). http://www.emc.com/corporate/
glossary/fully-automated-storage-tiering.htm.

[48] EncFS. https://www.arg0.net/encfs. 2010.

[49] William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. “TaintDroid: An Information-Flow Track-
ing System for Realtime Privacy Monitoring on Smartphones.” In: Proceedings of
the USENIX Symposium on Operating Systems Design and Implementation (OSDI).
2010.

[50] Eric Enge. Where is the Mobile vs. Desktop Story Going? https : / / www .
perficientdigital.com/insights/our- research/mobile- vs- desktop-
usage-study. 2019.

174

http://cumulusclips.org
https://www.dropbox.com
https://www.dropbox.com/static/docs/DropboxFactSheet.pdf
https://www.dropbox.com/static/docs/DropboxFactSheet.pdf
https://www.redbooks.ibm.com/abstracts/redp4667.html
https://www.redbooks.ibm.com/abstracts/redp4667.html
http://www.elgg.org
http://www.emc.com/corporate/glossary/fully-automated-storage-tiering.htm
http://www.emc.com/corporate/glossary/fully-automated-storage-tiering.htm
https://www.arg0.net/encfs
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study
https://www.perficientdigital.com/insights/our-research/mobile-vs-desktop-usage-study

[51] Facebook. http://www.facebook.com.

[52] Federal Communications Commission.Announcement of New Initiatives to Combat
Smartphone and Data Theft. https://www.fcc.gov/document/announcement-
new-initiatives-combat-smartphone-and-data-theft. 2012.

[53] FFmpeg. https://ffmpeg.org.

[54] FileSender. http://www.filesender.org.

[55] Flexible I/O Tester. https://github.com/axboe/fio.

[56] Flickr. http://www.flickr.com.

[57] Cloud Foundry. Where PaaS, Containers and Serverless Stand in a Multi-Platform
World. https://www.cloudfoundry.org/multi-platform-trend-report-
2018. 2018.

[58] FUSE: Filesystem in Userspace. http://fuse.sourceforge.net.

[59] Future of Privacy Forum, Center for Democracy & Technology. Best Practices
for Mobile Applications Developers. http://www.futureofprivacy.org/wp-
content/uploads/Apps-Best-Practices-v-beta.pdf. 2011.

[60] Roxana Geambasu, John P. John, Steven D. Gribble, Tadayoshi Kohno, and Henry
M. Levy. “Keypad: An auditing file system for theft-prone devices.” In: Proceedings
of the ACM European Conference on Computer Systems (EuroSys). 2011.

[61] Roxana Geambasu, Tadayoshi Kohno, Amit Levy, and Henry M. Levy. “Vanish:
Increasing Data Privacy with Self-Destructing Data.” In: Proceedings of the USENIX
Security Symposium. 2009.

[62] Goofys: a high-performance, POSIX-ish Amazon S3 file system written in Go. https:
//github.com/kahing/goofys.

[63] Google. Cloud Functions Execution Environment. https://cloud.google.com/
functions/docs/concepts/exec.

[64] Google. Google Chrome OS. http://www.google.com/chromeos/index.html.

[65] Google. MonkeyRunner. https : / / developer . android . com / tools / help /
monkeyrunner_concepts.html. 2012.

[66] Google. Protocol Buffers. https : / / developers . google . com / protocol -
buffers.

175

http://www.facebook.com
https://www.fcc.gov/document/announcement-new-initiatives-combat-smartphone-and-data-theft
https://www.fcc.gov/document/announcement-new-initiatives-combat-smartphone-and-data-theft
https://ffmpeg.org
http://www.filesender.org
https://github.com/axboe/fio
http://www.flickr.com
https://www.cloudfoundry.org/multi-platform-trend-report-2018
https://www.cloudfoundry.org/multi-platform-trend-report-2018
http://fuse.sourceforge.net
http://www.futureofprivacy.org/wp-content/uploads/Apps-Best-Practices-v-beta.pdf
http://www.futureofprivacy.org/wp-content/uploads/Apps-Best-Practices-v-beta.pdf
https://github.com/kahing/goofys
https://github.com/kahing/goofys
https://cloud.google.com/functions/docs/concepts/exec
https://cloud.google.com/functions/docs/concepts/exec
http://www.google.com/chromeos/index.html
https://developer.android.com/tools/help/monkeyrunner_concepts.html
https://developer.android.com/tools/help/monkeyrunner_concepts.html
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

[67] Google. Two-step verification. https://support.google.com/accounts/bin/
topic.py?hl=en&topic=28786. 2012.

[68] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini, and Raju Ran-
gaswami. “Cost Effective Storage Using Extent Based Dynamic Tiering.” In: Pro-
ceedings of the 9th USENIX Conference on File and Stroage Technologies (FAST ’11).
2011.

[69] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan
Yu, and Li Zhuang. “Nectar: Automatic Management of Data and Computation in
Datacenters.” In: Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI ’10). 2010.

[70] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W.
Felten. “Lest We Remember: Cold Boot Attacks on Encryption Keys.” In: Proceed-
ings of the USENIX Security Symposium. 2008.

[71] Allan Heydon, Roy Levin, and Yuan Yu. “Caching Function Calls Using Precise De-
pendencies.” In: Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation (PLDIL ’00). 2000.

[72] HP. HPE 3PAR StoreServ 7000 Storage. http://www8.hp.com/us/en/products/
disk-storage/product-detail.html?oid=5335712.

[73] YuchongHu,HenryCHChen, Patrick PC Lee, and Yang Tang. “NCCloud: applying
network coding for the storage repair in a cloud-of-clouds.” In: Proceedings of the
10th USENIX Conference on File and Storage Technologies (FAST ’12). 2012.

[74] IBM. Composer. https://github.com/ibm-functions/composer.

[75] Imperva. Consumer Password Practices. https://www.imperva.com/docs/WP_
Consumer_Password_Worst_Practices.pdf. 2010.

[76] Intel. Intel Trusted Execution Technology: White Paper. http://www.intel.com/
content/www/us/en/trusted-execution-technology/trusted-execution-
technology-security-paper.html.

[77] Intel. Laptop Security with Intel Anti-Theft Technology. http://www.intel.com/
content/www/us/en/architecture-and-technology/anti-theft/anti-
theft-general-technology.html. 2012.

[78] Intel. Software Guard Extensions Programming Reference. https://software.
intel.com/sites/default/files/329298-001.pdf.

176

https://support.google.com/accounts/bin/topic.py?hl=en&topic=28786
https://support.google.com/accounts/bin/topic.py?hl=en&topic=28786
http://www8.hp.com/us/en/products/disk-storage/product-detail.html?oid=5335712
http://www8.hp.com/us/en/products/disk-storage/product-detail.html?oid=5335712
https://github.com/ibm-functions/composer
https://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
https://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/architecture-and-technology/anti-theft/anti-theft-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/anti-theft/anti-theft-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/anti-theft/anti-theft-general-technology.html
https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf

[79] Mohammad Islam, Angelo K. Huang, Mohamed Battisha, Michelle Chiang, San-
thosh Srinivasan, Craig Peters, Andreas Neumann, and Alejandro Abdelnur.
“Oozie: Towards a Scalable Workflow Management System for Hadoop.” In: Pro-
ceedings of the 1st ACM SIGMODWorkshop on ScalableWorkflow Execution Engines
and Technologies (SWEET ’12). 2012.

[80] Adrianne Jeffries. The man behind Flickr on making the service ’awesome again’.
http://www.theverge.com/2013/3/20/4121574/flickr-chief-markus-
spiering-talks-photos-and-marissa-mayer. 2013.

[81] Apache Kafka. A distributed streaming platform. https://kafka.apache.org.

[82] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. “Pocket: Elastic Ephemeral Storage for Serverless Analyt-
ics.” In: 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’18). 2018.

[83] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). tools.ietf.org/html/rfc5869. 2010.

[84] Kristina Lerman and Laurie A. Jones. “Social Browsing on Flickr.” In: International
Conference on Weblogs and Social Media. 2007.

[85] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. “CloudCmp: Compar-
ing Public Cloud Providers.” In: Proceedings of the 10th ACM SIGCOMM Conference
on Internet Measurement. 2010.

[86] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. “Architectural Support for Copy and Tamper
Resistant Software.” In: Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). 2000.

[87] Yanhong A. Liu, Scott D. Stoller, and Tim Teitelbaum. “Static Caching for Incre-
mental Computation.” In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 20.3 (May 1998), pp. 546–585.

[88] Lookout Mobile Security. Lost and Found: The Challenges of Finding Your Lost or
Stolen Phone. http://blog.mylookout.com/blog/2011/07/12/lost-and-
found-the-challenges-of-finding-your-lost-or-stolen-phone. 2011.

[89] Philip MacKenzie and Michael K. Reiter. “Networked cryptographic devices re-
silient to capture.” In: Proceedings of the USENIX Security Symposium. 2001.

[90] Udi Manber. “Finding Similar Files in a Large File System.” In: Proceedings of the
USENIX Winter 1994 Technical Conference (WTEC ’94). 1994.

177

http://www.theverge.com/2013/3/20/4121574/flickr-chief-markus-spiering-talks-photos-and-marissa-mayer
http://www.theverge.com/2013/3/20/4121574/flickr-chief-markus-spiering-talks-photos-and-marissa-mayer
https://kafka.apache.org
tools.ietf.org/html/rfc5869
http://blog.mylookout.com/blog/2011/07/12/lost-and-found-the-challenges-of-finding-your-lost-or-stolen-phone
http://blog.mylookout.com/blog/2011/07/12/lost-and-found-the-challenges-of-finding-your-lost-or-stolen-phone

[91] Lucas Mearian. World’s data will grow by 50X in next decade, IDC study predicts.
http://www.computerworld.com/s/article/9217988/World_s_data_will_
grow_by_50X_in_next_decade_IDC_study_predicts. 2011.

[92] Dutch T. Meyer and William J. Bolosky. “A Study of Practical Deduplication.” In:
ACM Transactions on Storage (TOS) 7.4 (Jan. 2012), 14:1–14:20.

[93] Donald Michie. ““Memo” Functions and Machine Learning.” In: Nature 218 (Apr.
1968), pp. 19–22.

[94] Microsoft. About Durable Functions. https://docs.microsoft.com/en-us/
azure/azure-functions/durable/durable-functions-overview.

[95] Microsoft. Create strong passwords. http://www.microsoft.com/security/
online-privacy/passwords-create.aspx. 2012.

[96] Microsoft. Windows 7 BitLocker Executive Overview. https : / / technet .
microsoft.com/en-us/library/dd548341(WS.10).aspx. 2009.

[97] Mark Milian. U.S. government, military to get secure Android phones. https://
www.cnn.com/2012/02/03/tech/mobile/government- android- phones/
index.html. 2012.

[98] MiniMatters. The Best Video Length for Different Videos on YouTube. http://www.
minimatters.com/blog/youtube-best-video-length.

[99] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. “A Low-Bandwidth
Network File System.” In: Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01). 2001.

[100] Jacob Nielsen. Usability Engineering. Morgan Kaufmann, 1994.

[101] NumPy. https://www.numpy.org.

[102] OpenCV. https://opencv.org.

[103] Apache OpenWhisk.Open Source Serverless Cloud Platform. https://openwhisk.
apache.org.

[104] Thanasis G. Papaioannou, Nicolas Bonvin, and Karl Aberer. “Scalia: An Adaptive
Scheme for Efficient Multi-cloud Storage (SC ’12).” In: Proceedings of the Interna-
tional Conference on High Performance Computing, Networking, Storage and Anal-
ysis. 2012.

[105] Parallel BZIP2 (PBZIP2). http://compression.ca/pbzip2. 2011.
178

http://www.computerworld.com/s/article/9217988/World_s_data_will_grow_by_50X_in_next_decade_IDC_study_predicts
http://www.computerworld.com/s/article/9217988/World_s_data_will_grow_by_50X_in_next_decade_IDC_study_predicts
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
http://www.microsoft.com/security/online-privacy/passwords-create.aspx
http://www.microsoft.com/security/online-privacy/passwords-create.aspx
https://technet.microsoft.com/en-us/library/dd548341(WS.10).aspx
https://technet.microsoft.com/en-us/library/dd548341(WS.10).aspx
https://www.cnn.com/2012/02/03/tech/mobile/government-android-phones/index.html
https://www.cnn.com/2012/02/03/tech/mobile/government-android-phones/index.html
https://www.cnn.com/2012/02/03/tech/mobile/government-android-phones/index.html
http://www.minimatters.com/blog/youtube-best-video-length
http://www.minimatters.com/blog/youtube-best-video-length
https://www.numpy.org
https://opencv.org
https://openwhisk.apache.org
https://openwhisk.apache.org
http://compression.ca/pbzip2

[106] Radia Perlman. “File System Design with Assured Delete.” In: Proceedings of the
Annual Network and Distributed System Security Symposium (NDSS). 2007.

[107] Peter A. H. Peterson. “Cryptkeeper: Improving security with encrypted RAM.”
In: Proceedings of the IEEE International Conference on Technologies for Homeland
Security (HST). 2010.

[108] Pillow. https://pillow.readthedocs.io/en/stable.

[109] Piwigo. http://piwigo.org.

[110] Ponemon Institute. The Lost Smartphone Problem. https://www.mcafee.com/us/
resources/reports/rp-ponemon-lost-smartphone-problem.pdf. 2011.

[111] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. “CryptDB: Protecting Confidentiality with Encrypted Query Processing.”
In: Proceedings of the ACM Symposium on Operating Systems Principles (SOSP).
2011.

[112] Niels Provos. “Encrypting virtual memory.” In: Proceedings of the USENIX Security
Symposium. 2000.

[113] Public Data Sets. http://aws.amazon.com/datasets.

[114] William Pugh and Tim Teitelbaum. “Incremental Computation via Function
Caching.” In: Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL ’89). 1989.

[115] Krishna PN Puttaswamy, Thyaga Nandagopal, and Murali Kodialam. “Frugal stor-
age for cloud file systems.” In: Proceedings of the 2012 ACM European Conference
on Computer Systems (EUROSYS ’12). 2012.

[116] Redis. http://redis.io.

[117] Jordan Robertson. Security chip that does encryption in PCs hacked. https://www.
usatoday.com/tech/news/computersecurity/2010-02-08-security-chip-
pc-hacked_N.htm. 2010.

[118] s3fs. https://github.com/s3fs-fuse/s3fs-fuse.

[119] s3ql. https://bitbucket.org/nikratio/s3ql.

[120] Michael Savage. NHS ‘loses’ thousands of medical records. https : / / www .
independent . co . uk / news / uk / politics / nhs - loses - thousands - of -
medical-records-1690398.html. 2009.

179

https://pillow.readthedocs.io/en/stable
http://piwigo.org
https://www.mcafee.com/us/resources/reports/rp-ponemon-lost-smartphone-problem.pdf
https://www.mcafee.com/us/resources/reports/rp-ponemon-lost-smartphone-problem.pdf
http://aws.amazon.com/datasets
http://redis.io
https://www.usatoday.com/tech/news/computersecurity/2010-02-08-security-chip-pc-hacked_N.htm
https://www.usatoday.com/tech/news/computersecurity/2010-02-08-security-chip-pc-hacked_N.htm
https://www.usatoday.com/tech/news/computersecurity/2010-02-08-security-chip-pc-hacked_N.htm
https://github.com/s3fs-fuse/s3fs-fuse
https://bitbucket.org/nikratio/s3ql
https://www.independent.co.uk/news/uk/politics/nhs-loses-thousands-of-medical-records-1690398.html
https://www.independent.co.uk/news/uk/politics/nhs-loses-thousands-of-medical-records-1690398.html
https://www.independent.co.uk/news/uk/politics/nhs-loses-thousands-of-medical-records-1690398.html

[121] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. “AddressSanitizer: A Fast Address Sanity Checker.” In: Proceedings of the
USENIX Annual Technical Conference (USENIX ’12). 2012.

[122] Amazon Web Services. AWS Lambda Developer Guide: Programming Model.
https://docs.aws.amazon.com/lambda/latest/dg/programming-model-
v2.html.

[123] Amazon Web Services. AWS Step Functions. https://aws.amazon.com/step-
functions.

[124] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep Khosla. “Pioneer: Verifying Code Integrity and Enforcing Untampered
Code Execution on Legacy Systems.” In: Proceedings of the 20th ACM Symposium
on Operating Systems Principles (SOSP ’05). 2005.

[125] E. Shi, A. Perrig, and L. van Doorn. “BIND: a fine-grained attestation service for
secure distributed systems.” In: IEEE Symposium on Security and Privacy (SP ’05).
2005.

[126] Christopher Soghoian. How Dropbox sacrifices user privacy for cost savings. http:
/ / paranoia . dubfire . net / 2011 / 04 / how - dropbox - sacrifices - user -
privacy-for.html. 2011.

[127] Richard P. Spillane, Pradeep J. Shetty, Erez Zadok, Sagar Dixit, and Shrikar Archak.
“An Efficient Multi-tier Tablet Server Storage Architecture.” In: Proceedings of the
2nd ACM Symposium on Cloud Computing (SoCC ’11). 2011.

[128] Ahren Studer and Adrian Perrig. “Mobile User Location-specific Encryption
(MULE): Using Your Office as Your Password.” In: Proceedings of the ACM Con-
ference on Wireless Network Security (WiSec). 2010.

[129] Symantec Corporation. PGP Whole Disk Encryption. https://www.symantec.
com/whole-disk-encryption. 2012.

[130] Byung Chul Tak, Bhuvan Urgaonkar, and Anand Sivasubramaniam. “To Move
or Not to Move: The Economics of Cloud Computing.” In: Proceedings of the 3rd
USENIX Conference on Hot Topics in Cloud Computing (HotCloud ’11). 2011.

[131] Yang Tang, Patrick P. C. Lee, John C. S. Lui, and Radia Perlman. “FADE: Secure
overlay cloud storage for file assured deletion.” In: Proceedings of the Interna-
tional ICST Conference on Security and Privacy in Communication Networks (Se-
cureComm). 2010.

180

https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
https://docs.aws.amazon.com/lambda/latest/dg/programming-model-v2.html
https://aws.amazon.com/step-functions
https://aws.amazon.com/step-functions
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html
http://paranoia.dubfire.net/2011/04/how-dropbox-sacrifices-user-privacy-for.html
https://www.symantec.com/whole-disk-encryption
https://www.symantec.com/whole-disk-encryption

[132] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, Lei Zhang,
Bee Lim, et al. “NTIRE 2017 Challenge on Single Image Super-Resolution: Methods
and Results.” In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops. 2017.

[133] Cristian Ungureanu, Benjamin Atkin, Akshat Aranya, Salil Gokhale, Stephen
Rago, Grzegorz Calkowski, Cezary Dubnicki, and Aniruddha Bohra. “HydraFS:
A High-throughput File System for the HYDRAstor Content-addressable Storage
System.” In: Proceedings of the 8th USENIX Conference on File and Storage Technolo-
gies (FAST ’10). 2010.

[134] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. “BlueSky: A Cloud-
backed File System for the Enterprise.” In: Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies (FAST ’12). 2012.

[135] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. “Cumulus: Filesystem
Backup to the Cloud.” In: Trans. Storage 5.4 (Dec. 2009), 14:1–14:28.

[136] W3C. Mobile App Best Practices. https://www.w3.org/TR/mwabp. 2010.

[137] Kevin Walsh and Emin Gün Sirer. “Experience with an Object Reputation System
for Peer-to-peer Filesharing.” In: Proceedings of the 3rd Conference on Networked
Systems Design & Implementation - Volume 3 (NSDI ’06). 2006.

[138] HuiWang and Peter Varman. “Balancing Fairness and Efficiency in Tiered Storage
Systems with Bottleneck-aware Allocation.” In: Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST ’14). 2014.

[139] Hal Wasserman and Manuel Blum. “Software Reliability via Run-time Result-
checking.” In: Journal of the ACM (JACM) 44.6 (Nov. 1997), pp. 826–849.

[140] Webopedia. Enterprise storage. http : / / www . webopedia . com / TERM / E /
enterprise_storage.html.

[141] Alma Whitten and J.D. Tygar. “Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0.” In: Proceedings of the USENIX Security Symposium. 1999.

[142] Alexander Wieder, Pramod Bhatotia, Ansley Post, and Rodrigo Rodrigues. “Or-
chestrating the Deployment of Computations in the Cloud with Conductor.” In:
Proceedings of the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI ’12). 2012.

[143] Wikimedia. Media storage. https://wikitech.wikimedia.org/wiki/Media_
storage.

181

https://www.w3.org/TR/mwabp
http://www.webopedia.com/TERM/E/enterprise_storage.html
http://www.webopedia.com/TERM/E/enterprise_storage.html
https://wikitech.wikimedia.org/wiki/Media_storage
https://wikitech.wikimedia.org/wiki/Media_storage

[144] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V.
Madhyastha. “SPANStore: Cost-effective Geo-replicated Storage Spanning Mul-
tiple Cloud Services.” In: Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP ’13). 2013.

[145] yextend. https://github.com/BayshoreNetworks/yextend.

[146] YouTube. http://www.youtube.com.

[147] YouTube. Statistics - Youtube. https : / / www . youtube . com / yt / press /
statistics.html.

[148] Jia Yu, Rajkumar Buyya, and Kotagiri Ramamohanarao. “Workflow Scheduling
Algorithms for Grid Computing.” In: Metaheuristics for Scheduling in Distributed
Computing Environments. Ed. by Fatos Xhafa and Ajith Abraham. Springer Berlin
Heidelberg, 2008, pp. 173–214.

[149] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson, Pradeep
Kumar Gunda, and Jon Currey. “DryadLINQ: A System for General-Purpose Dis-
tributed Data-Parallel Computing Using a High-Level Languag.” In: Proceedings
of the Eighth Symposium on Operating Systems Design and Implementation (OSDI
’08). 2008.

[150] ZFS: the last word in file systems. http://www.sun.com/2004-0914/feature.

[151] Gong Zhang, Lawrence Chiu, and Ling Liu. “Adaptive data migration in multi-
tiered storage based cloud environment.” In: IEEE 3rd International Conference on
Cloud Computing (CLOUD ’10), 2010.

[152] Lide Zhang, Birjodh Tiwana, ZhiyunQian, ZhaoguangWang, Robert Dick, Z.Mor-
ley Mao, and Lei Yang. “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones.” In: Proceedings of the
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-
tem Synthesis. 2000.

182

https://github.com/BayshoreNetworks/yextend
http://www.youtube.com
https://www.youtube.com/yt/press/statistics.html
https://www.youtube.com/yt/press/statistics.html
http://www.sun.com/2004-0914/feature

	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction
	1.1 Paradigm Shifts in the Era of Cloud Computing
	1.2 Challenges and Opportunities
	1.3 Hypothesis
	1.4 Overview of Contributions
	1.5 Dissertation Organization

	2 A Unified, Economical Object Store for Web Applications
	2.1 Background: Cloud Storage Services
	2.2 Extended Motivation and Example
	2.3 Architecture
	2.4 Deciding Data Object Placement
	2.5 File System Interface
	2.6 Implementation and System Extensibility
	2.7 Evaluation
	2.8 Discussion
	2.9 Related Work
	2.10 Summary

	3 Secure Deduplication of General Computations
	3.1 Security Model and Design
	3.2 unic API and Usage
	3.3 Leveraging Storage Deduplication
	3.4 Implementation
	3.5 Evaluation
	3.6 Discussion and Limitations
	3.7 Related Work
	3.8 Summary

	4 Optimizing Serverless Computing by Making Data Intents Explicit
	4.1 Background: Serverless Computing
	4.2 A Motivating Example
	4.3 Lambdata Overview
	4.4 Data-Aware Scheduling
	4.5 Optimization: Direct File Access
	4.6 Evaluation
	4.7 Discussion
	4.8 Related Work
	4.9 Summary

	5 Limiting Mobile Data Exposure with Cloud-based Idle Eviction
	5.1 Case Study: Data Exposure on Android
	5.2 Goals and Assumptions
	5.3 The CleanOS Architecture
	5.4 Prototype Implementation
	5.5 Applications
	5.6 Evaluation
	5.7 Security Discussion and Limitations
	5.8 Related Work
	5.9 Summary

	6 Conclusion
	Bibliography

