
Submodular Secretary Problem with Shortlists under General Constraints

Mohammad Shadravan

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/287655264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© 2020

Mohammad Shadravan

All Rights Reserved

Abstract

Submodular Secretary Problem with Shorlitsts under General Constraints

Mohammad Shadravan

In submodular k-secretary problem, the goal is to select k items in a randomly ordered input so as

to maximize the expected value of a given monotone submodular function on the set of selected

items. In this paper, we introduce a relaxation of this problem, which we refer to as submodular

k-secretary problem with shortlists. In the proposed problem setting, the algorithm is allowed to

choose more than k items as part of a shortlist. Then, after seeing the entire input, the algorithm

can choose a subset of size k from the bigger set of items in the shortlist. We are interested in

understanding to what extent this relaxation can improve the achievable competitive ratio for the

submodular k-secretary problem. In particular, using an O(k) shortlist, can an online algorithm

achieve a competitive ratio close to the best achievable online approximation factor for this

problem? We answer this question affirmatively by giving a polynomial time algorithm that

achieves a 1 − 1/e − ε −O(k−1) competitive ratio for any constant ε > 0, using a shortlist of size

ηε (k) = O(k). Also, for the special case of m-submodular functions, we demonstrate an algorithm

that achieves a 1 − ε competitive ratio for any constant ε > 0, using an O(1) shortlist. Finally, we

show that our algorithm can be implemented in the streaming setting using a memory buffer of

size ηε (k) = O(k) to achieve a 1 − 1/e − ε −O(k−1) approximation for submodular function

maximization in the random order streaming model. This substantially improves upon the

previously best known approximation factor of 1/2 + 8 × 10−14 [Norouzi-Fard et al. 2018] that

used a memory buffer of size O(k log k).

We further generalize our results to the case of matroid constraints. We design an algorithm that

achieves a 1/2(1 − 1/e2 − ε −O(1/k)) competitive ratio for any constant ε > 0, using a shortlist

of size O(k). This is especially surprising considering that the best known competitive ratio for

the matroid secretary problem is O(log log k). An important application of our algorithm is for the

random order streaming of submodular functions. We show that our algorithm can be

implemented in the streaming setting using O(k) memory. It achieves a

1/2(1 − 1/e2 − ε −O(1/k)) approximation. The previously best known approximation ratio for

streaming submodular maximization under matroid constraint is 0.25 (adversarial order) due to

[Feldman et al.], [Chekuri et al.], and [Chakrabarti et al.]. Moreover, we generalize our results to

the case of p-matchoid constraints and give a 1
p+1 (1 − 1/ep+1 − ε −O(1/k)) approximation using

O(k) memory, which asymptotically approaches the best known offline guarantee 1
p+1

[Nemhauser et al.]. Finally we empirically evaluate our results on real world data sets such as

YouTube video and Twitter stream.

Table of Contents

List of Tables . iv

List of Figures . v

Acknowledgments . vi

Dedication . vii

Introduction or Preface . 1

Chapter 1: Introduction and Background . 2

1.1 Submodular Functions . 4

1.1.1 Examples of submodular function maximization 5

1.1.2 Maximizing Monotone Submodular Functions under Cardinality Constraint 7

1.2 Matroid constraints . 9

1.3 Streaming Submodular Functions . 10

1.4 Secretary Problems . 11

1.4.1 Our model: secretary problem with shortlists. 12

1.5 Matroid Secretary Problem . 13

1.6 Our Contribution . 15

i

Chapter 2: Submodular Secretary Problem with Shortlists on Some Special Classes of Sub-
modular Functions . 19

2.1 Introduction . 19

2.2 m-submodular functions . 20

2.3 Approximating submodular with m-submodular 24

2.4 Component-Wise Monotone Subumodular Functions 25

2.5 Extending Kleinberg’s Algorithm to Component-Wise Monotone Subumodular
Functions . 27

2.6 Upperbounds for Online Setting . 30

2.7 Random Order Online Matching . 31

2.8 Random Order Node Weighted Online Matching 32

2.8.1 m is fixed . 33

2.8.2 m is not fixed . 34

Chapter 3: Cardinality Constraints: A Minmax 1/2 − ε Approximation using Shortlist of
Size O(k log2 k) for the Submodular Secetary Problem 35

3.1 Introduction . 35

3.2 The Algorithm . 36

3.3 Analysis of the Algorithm 4 . 37

3.4 Comparison . 43

Chapter 4: Cardinality Constraint: 1 − 1/e − ε Approximation using Shortlist of Size O(k) 46

4.1 Introduction . 46

4.1.1 Problem Definition . 47

4.1.2 Our Results . 49

ii

4.1.3 Comparison to related work . 50

4.1.4 Organization . 52

4.2 Algorithm description . 52

4.3 Bounding the competitive ratio . 57

4.3.1 Preliminaries . 58

4.3.2 Some useful properties of (α, β) windows 59

4.3.3 Bounding E[f (∪wSw)]/OPT . 64

4.3.4 Bounding E[f (A∗)]/OPT . 70

4.4 Streaming . 72

4.5 Impossibility Result (Proof of Theorem 25) . 74

Chapter 5: Matroid constraints . 78

5.1 Introduction . 78

5.1.1 Related Work . 81

5.1.2 Related Work . 82

5.2 Algorithm description . 83

5.3 Preliminaries . 87

5.4 Analysis of the algorithms . 89

5.4.1 Preemption model and Shorlitst of size at most k 96

5.5 p-matchoid constraints . 96

5.6 Streaming . 102

5.6.1 Experiments . 103

Conclusion or Epilogue . 108

iii

List of Tables

3.1 Online algorithms framework . 44

3.2 Random order streaming algorithms framework 45

4.1 submodular k-secretary problem settings . 51

4.2 submodular random order streaming problem . 52

iv

List of Figures

5.1 The plot is for unifrom matroid, α = 6 and β = 2 105

5.2 The plot is for 3-matchoid constraint, and α = 3, β = 2 106

5.3 The plot is for p-matchoid constraint, for p = 1, · · · ,10, and α = 3, β = 2 and
fixed q = 30. 106

v

Acknowledgements

First and foremost, I would like to thank my advisors, Clifford Stein and Shipra Agrawal.

I learned a great deal from their insightful comments on my research and their great advice on

algorithmic thinking and problem solving. They thought me how to conduct research and how to

write an academic paper. I am grateful to them for helping me to clarify my ideas and explanation.

They also gave me the freedom in pursuing different research areas. Moreover, I would like to

thank them for carefully reading this thesis.

I would like to thank the other members of my thesis committee, Jay Sethuraman, Tim Rough-

garden, and Amin Karbasi, for taking the time and effort to read my thesis. I would also thank Jay

for always being available to give helpful advice. Before coming to Columbia, I was fortunate to

go to university of Waterloo and Sharif university of technology, where I was lucky to work with

many excellent advisors and students in particular Jochen and Zac. Finally, I would like to thank

my parents and my sister, for their support throughout my life.

vi

Dedication

This thesis is dedicated to my parents.

vii

Preface

In chapter 1, we introduce different notions defined in this thesis such as submodularity,

secretary problems, matroid constraints and our model shortlist model. We also briefly take a look

at relevant problems. In the second chapter we study some simpler instances of sumobular

functions under the secretary setting and design near optimal algorithm for these cases. One

special case is the m-submodular functions that will be the building block of our main algorithm

in Chapter 4. We also extend the algorithm for multiple choice secretary problem [35] to a

subclass of submodular functions with near optimal guarantee. In chapter 3, we provide our first

attempt for submodular k-secretary problem with shortlists. We achieve an algorithm with the

same guarantee as it was known previously in the streaming setting, i.e., 1/2 − ε . But we improve

the required memory buffer, in the sense that we remove the dependency on ε . In chapter 4, we

present our main result which is a near optimal algorithm for submodular k-secretary problem

with shortlists, both in terms of competitive ratio and size of shortlist (memory buffer). In the

final chapter, we further generalize our result to the case of matroid constraints and p-mathcoid

constraints.

1

Chapter 1: Introduction and Background

In submodular k-secretary problem, the goal is to select k items in a randomly ordered input

so as to maximize the expected value of a given monotone submodular function on the set of

selected items. In this thesis, we introduce a relaxation of this problem, which we refer to as

submodular k-secretary problem with shortlists. In the proposed problem setting, the algorithm

is allowed to choose more than k items as part of a shortlist. Then, after seeing the entire input,

the algorithm can choose a subset of size k from the bigger set of items in the shortlist. We are

interested in understanding to what extent this relaxation can improve the achievable competitive

ratio for the submodular k-secretary problem. In particular, using an O(k) shortlist, can an online

algorithm achieve a competitive ratio close to the best achievable offline approximation factor for

this problem?

We answer this question affirmatively by giving a polynomial time algorithm that achieves a

1−1/e−ε −O(k−1) competitive ratio for any constant ε > 0, using a shortlist of size ηε (k) = O(k).

This is especially surprising considering that the best known competitive ratio (in polynomial time)

for the submodular k-secretary problem is (1/e −O(k−1/2))(1 − 1/e) [34]. Further, for the special

case of m-submodular functions, we demonstrate an algorithm that achieves 1− ε competitive ratio

for any constant ε > 0, using an O(1) shortlist.

The proposed algorithm also has significant implications for another important problem of sub-

modular function maximization under random order streaming model and k-cardinality constraint.

We show that our algorithm can be implemented in the streaming setting using a memory buffer of

size ηε (k) = O(k) to achieve a 1 − 1/e − ε − O(k−1) approximation. This substantially improves

upon [44], which achieved the previously best known approximation factor of 1/2 + 8 × 10−14

using O(k log k) memory. Furthermore in the random order streaming setting our algorithm is

asymptotically tight due to 1 − 1/e upper bound in [39].

2

Next, we consider more general constraints, namely, matroid constraints. In the matroid secre-

tary problem, which is a generalization of the classic secretary problem, the elements of a matroid

M arrive in random order. Once we observe an item we need to irrevocably decide whether or not

to accept it. The set of selected elements should form an independent set of the matroid. The goal

is to maximize the total sum of the values assigned to these elements. The existence of a constant

competitive algorithm is a long-standing open problem.

In this thesis, we introduce a version of this problem, which we refer to as submodular matroid

secretary problem with shortlists. In this setting, the algorithm is allowed to choose a subset of

items as part of a shortlist, possibly more than k = rk(M) items. Then, after seeing the entire input,

the algorithm can choose an independent subset from the shortlist. Furthermore we generalize the

objective function to any monotone submodular function. The main question is can an online

algorithm achieve a constant competitive ratio using a shortlist of size O(k)?

We design an algorithm that achieves a 1
2 (1 − 1/e2 − ε − O(1/k)) competitive ratio for any

constant ε > 0, using a shortlist of size O(k). This is especially surprising considering that the best

known competitive ratio for the matroid secretary problem is O(log log k). We are also able to get

a constant competitive algorithm using shortlist of size at most k and also a constant competitive

algorithm in the preemption model.

An important application of our algorithm is for the random order streaming of submodular

functions. We show that our algorithm can be implemented in the streaming setting using O(k)

memory. It achieves a 1
2 (1−1/e2−ε −O(1/k)) approximation. The previously best known approx-

imation ratio for streaming submodular maximization under matroid constraint is 0.25 (adversarial

order) due to [19], [12] and [11]. Moreover, we generalize our results to the case of p-matchoid

constraints and give a 1
p+1 (1 − 1/ep+1 − ε − O(1/k)) approximation using O(k) memory. which

asymptotically (as p and k increase) approaches the best known offline guarantee 1
p+1 [43]. In the

next few subsections we introduce the basic notions and definitions that we will use in this thesis.

3

1.1 Submodular Functions

Submodularity is a property of set functions. Most natural functions that we see in real world

satisfy this property [46, 8]. Thus the study of optimization problems for such functions lead to

many applications. Submodularity has many similarities to concavity, in other ways it resembles

convexity. It has many applications in different areas of computer science such as image segmen-

tation, data summarising, etc.

Submodularity is a property of set functions, i.e., functions f : 2V → R that assign each subset

S ⊆ V a value f (S). The set V is called the ground set. Also we assume that f (∅) = 0, i.e., the

empty set has zero value.

The definition of submodulairty is based on a notion of marginal gain, which is defined below

Definition 1. (Marginal Value) For a set function f : 2V → R, S ⊆ V , and e ∈ V , let ∆ f (e|S) :=

f (S ∪ {e}) − f (S) be the discrete derivative of f at S with respect to e.

Definition 2. (Submodularity) A function f : 2V → R is submodular if for every A ⊆ B ⊆ V and

e ∈ V \ B it holds that

∆(e|A) ≥ ∆(e|B).

Equivalently, a function f : 2V → R is submodular if for every A,B ⊆ V ,

f (A ∩ B) + f (A ∪ B) ≤ f (A) + f (B).

An important subclass of submodular functions are those which are monotone, the value of

function on a set would not decrease by adding new elements to it.

Definition 3. (Monotonicity) A function f : 2V → R is monotone if for every A ⊆ B ⊆ V, f (A) ≤

f (B).

Note that a function f is monotone iff all its discrete derivatives are nonnegative, i.e., iff for

every A ⊆ V and e ∈ V it holds that ∆(e|A) ≥ 0.

4

Throughout this thesis we only consider maximization of monotone submodular functions.

There are several different algorithms for minimizing submodular functions. The algorithms for

minimization problems are able to find the optimum in polynomial time. So, similar to convex

functions, minimization is much easier for submodular functions.

As in the literature, we will assume that we have access to a value oracle for submodular

function f . It is a black box that computes f (S) on any input set S. Throughout this thesis, we

assume each oracle access can be done in O(1) time.

1.1.1 Examples of submodular function maximization

Influence maximization

We are given a set of target customers in a social network. The question is how can we choose a

set S of early adopters and market them in order to generate a cascade of adoptions? Starting with

S in a graph G(V,E), we can define influence function f (S) as the expected number of influenced

nodes at the end of the process. Now we want to maximize f (S) subject to upper bound for the

cost of the initial set S.

maximize f (S)

s.t. c(S) ≤ B,

where c(·) is a cost function defined over subsets of nodes. B is and upper bound on the cost of

initial set S.

Theorem 1 (Kempe et al. [33]). In the cascade model defined above, influence maximization is

NP-hard to approximate to a factor of n1−ε for any ε > 0.

Feature selection:

More generally, let V be the finite set of discrete random variables. and F : 2V → R be a set

function, where F(A) measures the residual uncertainty after we observe A ⊆ V . Given, a cost

5

function c : 2V → N and a budget L, we are interested in computing

A∗ = arg max
A⊆V :c(A)≤L

F(A).

A commonly used criterion for measuring uncertainty is the entropy of a distribution P :

{x1, · · · , xd} → [0,1],

H(P) = −
∑

k

xk P(xk) log P(xk).

A major limitation of this approach is that joint entropy is an indirect measure of information:

It aims to maximize the uncertainty about the selected variables, but does not consider prediction

quality for unobserved variables.

A more direct measure of value of information is the information gain I(B; A), which is defined

as

I(B; A) = H(B) − H(B |A).

The analogous subset selection problem for the information gain is to compute

arg max
A⊆V :c(A)≤L

I(V ; A).

Suppose we are given random variables Y,X1, · · · ,Xn , the goal is to predict Y from subset

XA = {Xi1, · · · ,Xik }.

The question is how do we find k most informative features?

f (S) = I(Y ; XS) = H(Y) − H(Y |XS)

f is monotone and submodular if Xi are conditionally independent given Y .

6

1.1.2 Maximizing Monotone Submodular Functions under Cardinality Constraint

Since the functions we’re dealing with are monotone, it is obvious that, for unconstrained

maximization problem, the set with maximum value is always the ground set V . However, we

will impose different types of constraints. The simplest one is a cardinality constraint - that is,

finding the set of size at most k that maximizes the utility. It is well known that maximizing

submodular functions is NP-hard even for cardinality constraints. Thus our focus is on developing

approximation algorithms for maximizing submodular functions under different constraints.

For monotone submodular maximization under cardinality constraints, in one hand Feige et

al. [15] have shown using PCP techniques that unless P = NP, there is no algorithm that approx-

imates maximum coverage better than 1 − 1/e. On the other hand suppose that the submodular

function is given to us as as a value oracle. Nemhauser and Wolsey [43] showed that exponen-

tially many queries to the value oracle is required to achieve an approximation algorithm whose

performance is better than 1 − 1/e.

The greedy algorithm

There is a simple algorithm for maximizing a monotone submodular function under cardinality

constraint which is called the greedy algorithm. It provides a good approximation algorithm for

this problem. It starts with the empty set S0, and in iteration i, adds the element maximizing the

marginal value ∆(e|Si−1).

Si := Si−1 ∪ {arg max
e
∆(e|Si−1)}.

Nemhauser et al. [43] prove that the greedy algorithm provides a 1 − 1/e approximation to the

optimal solution of the NP-hard optimization problem.

Since we will refer to this proof later on in this thesis we give the proof here.

Theorem 2 ([43]). For a nonnegative monotone submodular function f : 2V → R+, the greedy

algorithm defined above is a 1 − 1/e competitive algorithm for maximizing monotone submodular

7

functions under cardinality constraint.

Proof. Let S∗ = {v∗1, · · · , v
∗
k} be the optimal solution in an arbitrary order. Also let OPT = f (S∗)

be the value of optimal solution. Define Si := {v∗1, · · · , v
∗
i }. We show that f (Sk) ≥ (1 − 1/e)OPT .

For every i = 1, · · · , k,

f (S∗) ≤ f (S∗ ∪ Si)

= f (Si) +

k∑
j=1
∆(v∗j |{v

∗
1, · · · , v

∗
j−1})

≤ f (Si) +
∑
z∈S∗
∆(z |Si)

≤ f (Si) +
∑
z∈S∗
∆(vi+1 |Si)

= f (Si) + k∆(vi+1 |Si).

By rearranging we have

∆(vi+1 |Si) ≥
1
k
(OPT − f (Si)).

Now define δi = OPT − f (Si). Therefore,

δi − δi+1 ≥
1
k
δi

δi+1 ≤ (1 − 1/k)δi . (1.1)

By applying equation 1.1 repeatedly we can show

δk ≤ (1 − 1/k)kδ0 ≤
1
e

OPT .

Thus

OPT − f (Sk) ≤
1
e

OPT .

8

Hence,

f (Sk) ≥ (1 − 1/e)OPT .

�

1.2 Matroid constraints

We can generalize cardinality constraints to a class of more general constraints, namely matroid

constraints. A matroid is a combinatorial object satisfying nice properties that are general enough

to capture most of natural constraints that we see in optimization problems, such as cardinality

constraints (called uniform matroids) and they are also specialized enough that allow us to prove

good approximation algorithms for the optimization problems involved these constraints.

Definition 4. (Matroids). A matroid is a finite set system M = (N,I), where N is a set and

I ⊆ 2N is a family of subsets such that: (i) ∅ ∈ I, (ii) If A ⊆ B ⊆ N , and B ∈ I, then A ∈ I, (iii)

If A,B ∈ I and |A| < |B |, then there is an element b ∈ B \ A such that A + b ∈ I. In a matroid

M = (N,I), N is called the ground set and the members of I are called independent sets of the

matroid. The bases ofM share a common cardinality, called the rank ofM.

In this thesis, we further design algorithms for monotone submodular function maximization

subject to p-matchoid constraints. These constraints generalize many basic combinatorial con-

straints such as the cardinality constraint, the intersection of p matroids, and matchings in graphs.

Throughout this section, k would refer to the size of the largest feasible set. A formal definition of

a p-matchoid is as follows:

Definition 5. (Matchoids). LetM1 = (N1,I1), · · · ,Mq = (Nq,Iq) be q matroids over overlapping

groundsets. Let N = N1 ∪ · · · ∪ Nq and I = {S ⊆ N : S ∩ N ∈ Ì ,∀`}. The finite set system

Mp = (N,I) is a p-matchoid if for every element e ∈ N , e is a member ofN for at most p indices

` ∈ [q].

Suppose that the ground set V is partitioned into r parts P1, · · · ,Pr (e.g. Max-SAT, each part

consists of the two possible assignments to each variable). A set is feasible if it contains exactly

9

one point out of each part. This type of constraint is called a partition matroid of rank r . If all parts

contain the same elements then this is the same as optimization over a uniform matroid. In other

words, partition matroids generalize uniform matroids.

The greedy algorithm is also guaranteed to provide good solutions for matroid constraints (but

not optimal). Suppose (V, I) is a matroid, and we wish to solve the problem

max
S∈I

f (S).

Suppose the greedy algorithm starts with the empty set SG and sets SG ← SG∪ arg max
e∈SG :SG∪{e}∈I

∆(e|SG)}

until there is no more e such that SG ∪ {e} ∈ I (i.e., there is no element which can be added to

create a feasible solution). The greedy algorithm is guaranteed to return a solution SG so that

f (SG) ≥ 1/2 maxS∈I f (S) [43].

Even for more general constraints called p-matroid constraints, suppose (V, I1), · · · , (V, Ip) are

p matroids, and I = ∩i Ii. That is, I consists of all subsets of V that are independent in all p

matroids. The greedy algorithm generate a solution so that f (SG) ≥ 1/(p+1)maxS∈I f (S). In fact,

this results holds even more generally whenever (V, I) is a p-extensible system (a combinatorial

notion which generalizes the intersections of p matroids).

Finally [22] present a novel combinatorial algorithm that gives optimal, 1− 1/e approximation

algorithm for monotone submodular optimization over a matroid constraint.

1.3 Streaming Submodular Functions

In recent years, submodular optimization has found applications for numerous machine learn-

ing and data mining applications including news article recommendation, non-parametric learning,

data summarization, network inference, determinantal point processes and influence maximization

in social networks [17, 6, 32].

The streaming model is one way to model the problem of analyzing massive data. The model

assumes that the data is presented as a stream (x1, x2, · · · , xm). Real time data like server logs,

10

user clicks and search queries are modeled by streams. The available memory buffer is much less

than the size of the stream, so a streaming algorithm must process a stream in a single pass using

sublinear space.

In data summarization tasks, the collection of elements is generated continuously, and keeping

a real time summary of the the data seen so far is important. Thus, a series of recent papers

studied streaming algorithms for maximizing a submodular function. The first work to consider a

one-pass streaming algorithm were the work of Badanidiyuru et al. [6], who described a (1/2− ε)-

approximation streaming algorithm for maximizing a monotone submodular function subject to a

k-cardinality constraint, with a memory of size O(1ε k log k). Recently, Kazermi et al. [32] proposed

a new one-pass streaming algorithm with the same approximation ratio but with improved memory

O(k).

[44] give an upper bound of 1/2+ o(1) on the approximation ratio achievable by any algorithm

for streaming submodular maximization that only queries the value of the submodular function on

feasible sets (sets of size at most k) while using o(n) memory [44]. Consequently, they consider

the random order streaming model to go beyond this worst case analysis for the adversarial order

inputs. They achieve a 1/2 + 8 × 10−14 approximation for maximizing a monotone submodular

function in the random order streaming model, using a memory buffer of size O(k log k). In chapter

2, we substantially improve their result to 1 − 1/e − ε − O(1/k) approximation which is close to

the best possible guarantee in the offline setting, i.e., 1 − 1/e (assuming P , NP). Furthermore,

we improve the required memory buffer to only O(k).

1.4 Secretary Problems

In the classic secretary problem, n items appear in random order. We know n, but don’t know

the value of an item until it appears. Once an item arrives we have to irrevocably and immediately

decide whether or not to select it. Only one item is allowed to be selected, and the objective is to

select the most valuable item, or perhaps to maximize the expected value of the selected item [14,

21, 38]. It is well known that the optimal policy is to observe the first n/e items without making

11

any selection and then select the first item whose value is larger than the value of the best item

in the first n/e items [14]. This algorithm, given by [14], is asymptotically optimal, and hires

the best secretary with probability at least 1/e. Hence it is also 1/e-competitive for the expected

value of the chosen item, and it can be shown that no algorithm can beat a 1/e-competitive ratio in

expectation.

Many variants and generalizations of the secretary problem have been studied in the literature,

see e.g., [4, 50, 48, 51, 35, 5]. [35, 5] introduced a multiple choice secretary problem, where the

goal is to select k items in a randomly ordered input so as to maximize the sum of their values; and

[35] gave an algorithm with an asymptotic competitive ratio of 1 −O(1/
√

k). Thus as k →∞, the

competitive ratio approaches 1. Recent literature studied several generalizations of this setting to

multidimensional knapsacks [41], and proposed algorithms for which the expected online solution

approaches the best offline solution as the knapsack sizes becomes large (e.g., [16, 13, 3]).

In another variant of multiple-choice secretary problem, [7] and [27] introduce the submodular

k-secretary problem. In this secretary problem, the algorithm again selects k items, but the value

of the selected items is given by a monotone submodular function f . The algorithm has a value

oracle access to the function, i.e., for any given set T , an algorithm can query an oracle to find its

value f (T) [49]. The algorithm can select at most k items a1 · · · ,ak , from a randomly ordered

sequence of n items. The goal is to maximize f ({a1, · · · ,ak}). Currently, the best result for this

setting is due to [34], who achieve a 1/e-competitive ratio in exponential time, or 1
e (1 −

1
e) in

polynomial time. In this case, the offline problem is NP-hard and hard-to approximate beyond the

factor of 1 − 1/e achieved by the greedy algorithm [42]. However, it is unclear if a competitive

ratio of 1 − 1/e can be achieved by an online algorithm for the submodular k-secretary problem

even when k is large.

1.4.1 Our model: secretary problem with shortlists.

In this thesis, we consider a relaxation of the secretary problem where the algorithm is allowed

to select a shortlist of items that is larger than the number of items that ultimately need to be se-

12

lected. That is, in a multiple-choice secretary problem with cardinality constraint k, the algorithm

is allowed to choose more than k items as part of a shortlist. Then, after seeing the entire input, the

algorithm can choose a subset of size k from the bigger set of items in the shortlist.

This new model is motivated by some practical applications of secretary problems, such as

hiring (or assignment problems), where in some cases it may be possible to tentatively accept a

larger number of candidates (or requests), while deferring the choice of the final k-selections to

after all the candidates have been seen. Since there may be a penalty for declining candidates who

were part of the shortlist, one would prefer that the shortlist is not much larger than k.

Another important motivation is theoretical: we wish to understand to what extent this relax-

ation of the secretary problem can improve the achievable competitive ratio. This question is in the

spirit of several other methods of analysis that allow an online algorithm to have additional power,

such as resource augmentation [30, 45].

The potential of this relaxation is illustrated by the basic secretary problem, where the aim is

to select the item of maximum value among randomly ordered inputs. There, it is not difficult

to show that if an algorithm picks every item that is better than the items seen so far, the true

maximum will be found, while the expected number of items picked under randomly ordered

inputs will be θ(log(n)). Further, we show that this approach can be easily modified to get the

maximum with 1 − ε probability while picking at most O(ln(1/ε)) items for any constant ε > 0.

Thus, with just a constant size shortlist, we can break the 1/e barrier for the secretary problem and

achieve a competitive ratio that is arbitrarily close to 1. In this thesis, we will apply to this model

to more general problems, namely, submodular k-secretary problemand its extension to matroid

constraints. We will also compare this model to the streaming model.

1.5 Matroid Secretary Problem

In the matroid secretary problem the elements of a matroid arrive in random order. When

an element arrives, the algorithm observes its value and make an irrevocable decision regarding

whether or not to accept it. The set of accepted elements should form an independent set of the

13

matroid. The goal is to maximize the total sum of the value of these elements. [35] presents

an O(log k)-competitive algorithm for general matroids. They leave the problem of existence of

an O(1) competitive algorithm as an open problem. Currently, the best known algorithm is a

O(log log k) competitive algorithm [37].

Most of the interesting auctions can be modeled by making the subsets of the bidders to be the

independent sets of a matroid. The matroid secretary problem has application in welfare maxi-

mizing online mechanism design. where a good is sold to agents arriving online. Here, the agents

correspond to the secretaries and they reveal prices that they are willing to pay in an online manner.

For an online algorithm it is usually not possible to achieve exactly the optimum value of its

objective function in the worst case. For example, the Vickrey-Clarke-Groves (VCG), which is the

most important technique for designing truthful offline mechanisms, can not be applied in most

online problems because it requires finding an optimal allocation, which is generally impossible

in the online setting. VCG-based online mechanisms are (dominant-strategy) truthful in the rare

cases where the underlying allocation problem admits an online algorithm with competitive ratio

1.

It has been shown the random order arrival model for these problems make them easier. For

example, for the single-item auction the problem becomes the famous secretary problem. Also

it is known algorithms for secretary problem can be transformed into truthful online mechanisms

which are constant-competitive for agents with random arrival order [5]. The matroid secretary

problem with submodular objective functions has also been considered. For this setting, O(1)-

approximations have been found for knapsack constraints, uniform matroids, and more generally

for partition matroids for monotone submodular functions [7, 27]. Also when the elements of

the ground set are assigned to a set of weights uniformly at random hen a 5.7187-competitive

algorithm is possible for any matroid [47]. Furthermore, a 16(1 − 1/e)-competitive algorithm can

be achieved as long as the weight assignment is done at random, even if we assume the adversarial

arrival order.

14

1.6 Our Contribution

Our main result is an online algorithm for submodular k-secretary problem with shortlists that,

for any constant ε > 0, achieves a competitive ratio of 1− 1
e − ε −O(1k) with η(k) = O(k). Note that

for submodular k-secretary problem there is an upper bound of 1 − 1/e on the achievable approxi-

mation factor, even in the offline setting, and this upper bound applies to our problem for arbitrary

size η(·) of shortlists. On the other hand for online monotone submodular k-secretary problem,

i.e., when η(k) = k, the best competitive ratio achieved in the literature is 1/e − O(k−1/2) [34]

Remarkably, with only an O(k) size shortlist, our online algorithm is able to achieve a competitive

ratio that is arbitrarily close to the offline upper bound of 1 − 1/e.

In the theorem statements below, big-Oh notation O(·) is used to represent asymptotic behavior

with respect to k and n. We assume the standard value oracle model: the only access to the

submodular function is through a black box returning f (S) for a given set S, and each such queary

can be done in O(1) time.

Theorem 3. For any constant ε > 0, there exists an online algorithm (Algorithm 8) for the sub-

modular k-secretary problem with shortlists that achieves a competitive ratio of 1 − 1
e − ε −O(1k),

with shortlist of size ηε (k) = O(k). Here, ηε (k) = O(2poly(1/ε)k). The running time of this online

algorithm is O(n).

Specifically, we have ηε (k) =c log(1/ε)
ε2

(1
ε6 log(1/ε)
1
ε4 log(1/ε)

)
k for some constant c. The running time of our

algorithm is linear in n, the size of the input, which is significant as, until recently, it was not known

if there exists a linear time algorithm achieving a 1 − 1/e − ε approximation even for the offline

monotone submodular maximization problem under cardinality constraint[40]. Another interesting

aspect of our algorithm is that it is highly parallel. Even though the decision for each arriving item

may take time that is exponential in 1/ε (roughly ηε (k)/k), it can be readily parallelized among

multiple (as many as ηε (k)/k) processors.

Further, we show an implementation of Algorithm 2 that uses a memory buffer of size at most

ηε (k) to get the following result for the problem of submodular random order streaming problem

15

described in the previous section.

Theorem 4. For any constant ε ∈ (0,1), there exists an algorithm for the submodular random

order streaming problemthat achieves 1 − 1
e − ε − O(1k) approximation to OPT while using a

memory buffer of size at most ηε (k) = O(k). Also, the number of objective function evaluations for

each item, amortized over n items, is O(1 + k2

n).

The above result significantly improves over the state-of-the-art results in random order stream-

ing model [44], which are an approximation ratio of 1
2+8×10−14 using a memory of size O(k log k).

It is natural to ask whether these k-lists are, in fact, too powerful. Maybe they could actually

allow us to always match the best offline algorithm. We give a negative result in this direction and

show that even if we have unlimited computation power, for any function η(k) = o(n), we can get

no better than 7/8-competitive algorithm using a shortlist of size η(k). Note that with unlimited

computational power, the offline problem can be solved exactly. This result demonstrates that

having a shortlist does not make the online problem too easy - even with a shortlist (of size o(n))

there is an information theoretic gap between the online and offline problem. Note that the 1− 1/e

upperbound for streaming model [39] does not imply an upper bound for the shortlist model.

Theorem 5. No online algorithm (even with unlimited computational power) can achieve a com-

petitive ratio better than 7/8 + o(1) for the submodular k-secretary problem with shortlists, while

using a shortlist of size η(k) = o(n).

Finally, for some special cases of monotone submodular functions, we can asymptotically ap-

proach the optimal solution. The first one is the family of functions we call m-submdular. A

function f is m-submodular if it is submodular and there exists a submodular function F such that

for all S:

f (S) = max
T⊆S,|T |≤m

F(T) .

Theorem 6. If f is an m-submodular function, there exists an online algorithm for the submodular

k-secretary problem with shortlists that achieves a competitive ratio of 1 − ε with shortlist of size

ηε,m(k) = O(1). Here, ηε,m(k) = (2m + 3) ln(2/ε).

16

Another special case is monotone submodular functions f satisfying the following property:

f ({a1, · · · ,ai + α, · · · ,ak}) ≥ f ({a1, · · · ,ai, · · · ,ak}), for any α > 0 and 1 ≤ i ≤ k. We can show

that the algorithm by [35] asymptotically approaches optimal solution for such functions,

Furthermore for matroid and p-matchoid constraints in chapter 4 We design an algorithm that

achieves a 1
2 (1−1/e2−ε−O(1/k)) competitive ratio for any constant ε > 0, using a shortlist of size

O(k) for the matroid secretary problem with shortlists. This is especially surprising considering

that the best known competitive ratio for the matroid secretary problem is O(log log k). We are also

able to get a constant competitive algorithm using shortlist of size at most k and also a constant

competitive algorithm in the preemption model.

Theorem 26. For any constant ε > 0, there exists an online algorithm (Algorithm 8) for the

submodular matroid secretary problem with shortlists that achieves a competitive ratio of 1
2 (1 −

1
e2 − ε −O(1k)), with shortlist of size ηε (k) = O(k). Here, ηε (k) = O(2poly(1/ε)k). The running time

of this online algorithm is O(nk).

Theorem 27. For the matroid secretary problem in the preemption model, and matroid secretary

problem that uses shortlist of size at most η(k) = k, there is an algorithm that achieves a constant

competitive ratio.

Furthermore, for a more general constraint, namely p-matchoid constraints (defined in sec-

tion 5.5) we prove:

Theorem 28. For any constant ε > 0, there exists an online algorithm for the submodular secre-

tary problem with p-matchoid constraints that achieves a competitive ratio of 1
p+1 (1 −

1
ep+1 − ε −

O(1k)), with shortlist of size ηε (k) = O(k). Here, ηε (k) = O(2poly(1/ε)k). The running time of this

online algorithm is O(nκp), where κ = maxi∈[q] rk(Mi).

The proposed algorithm also has implications for another important problem of submodular

function maximization under random order streaming model and matchoid constraints.

Theorem 29. For any constant ε ∈ (0,1), there exists an algorithm for the submodular random

order streaming problem with matroid constraints that achieves 1
2 (1−

1
e − ε −O(1k)) approximation

17

to OPT while using a memory buffer of size at most ηε (k) = O(k). Also, the number of objective

function evaluations for each item, amortized over n items, is O(pk + k2

n).

Theorem 30. For any constant ε > 0, there exists an algorithm for the submodular random order

streaming problem with p-matchoid constraints that achieves 1
p+1 (1 −

1
ep+1 − ε − O(1k)) approxi-

mation to OPT while using a memory buffer of size at most ηε (k) = O(k). Also, the number of

objective function evaluations for each item, amortized over n items, is O(pκ + κp + k2

n), where

κ = maxi∈[q] rk(Mi).

18

Chapter 2: Submodular Secretary Problem with Shortlists on Some Special

Classes of Submodular Functions

2.1 Introduction

In this chapter we study the submodular secretary problem with shortlists, which shows that

it is not possible to design an asymptotically optimal algorithm for submodular secretary problem

with shortlists. In other words there is no online algorithm whose competitive ratio approaches 1 as

k tends to infinity. On the other hand for the simplest case of the classic secretary problem (when

the submodular function is max function) we show that there are 1 − ε approximation algorithm

for the secretary problem with shortlists of size O(log(1/ε)). Thus naturally we ask this question:

are there any other special family of submodular functions that we can design an assymptotically

optimal approximation algorithms for the submodular secretary problem with shortlists. In this

chapter we provide two families of submodular functions that we able to approach the optimal

competitive ratio 1. The first one is a family that we call it m-submodular functions. It is a

generalization of the maximum function in the classic secretary problem and include some other

important instances that we discuss. The other family is a family that we call them component-

wise monotone submodular functions. It is defined over subsets of real numbers. The value of

each subset is a function of real numbers in that subset and increasing each one will increase the

value of the function defined on that subset. We briefly explain each function below. In the next to

subsection we explain the algorithms that we design for these sub classes.

We study the submodular secretary problem with shortlist on some special family of submod-

ular functions. For some special cases of monotone submodular functions, we show that there

are algorithms that asymptotically approach the optimal solution. The first family is the family of

functions we call m-submdular functions. A function f is m-submodular if it is submodular and

19

there exists a submodular function F such that for all S:

f (S) = max
T⊆S,|T |≤m

F(T). (2.1)

Theorem 7. If f is an m-submodular function, there exists an online algorithm for the submodular

k-secretary problem with shortlists that achieves a competitive ratio of 1 − ε with shortlist of size

ηε,m(k) = O(1). Here, ηε,m(k) = (2m + 3) ln(2/ε).

Another special case of monontone submodular functions that we consider in this chapter is a

monotone submodular functions f satisfying the following property:

f ({a1, · · · ,ai + α, · · · ,ak}) ≥ f ({a1, · · · ,ai, · · · ,ak}),

for any α > 0 and 1 ≤ i ≤ k. We can show that the algorithm by [35] asymptotically approaches

the optimal solution for such functions. We call this subclass of submodular functions Component-

wise Monotone Submodular Functions.

2.2 m-submodular functions

We defined m-submodular functions in eq 2.1. There are some examples of m-submodular

functions. Note that maximum node weighted bipartite matching and maximum edge weighted

bipartite matching defined on G = (X × Y) with |Y | = m are m-submodular. In this problem, the

size Y is fixed to be m. The nodes in X arrive in random order. We need to select k nodes from X in

an online manner. At the end the maximum matching (node weighted or edge weighted) between

these k nodes and nodes in Y would be the output of the function.

Now consider the following simple greedy algorithm:

Theorem 8. Suppose S is the output of Algorithm 2 on the input I = {a1, · · · ,an} then F(S) = F(I).

Proof. Suppose Si is the subset selected at iteration i. Since F is submodular, if F(Si∪{ai}) ≤ F(Si)

20

Algorithm 1 Select-If-it-Improves(u)
1: Inputs: number of items n, items in I = {a1, ...,an} arriving sequentially, u ∈ {1, · · · ,n}.
2: S ← ∅
3: for i = 0 to n do
4: if F(S ∪ {ai}) > F(S) then
5: S ← S ∪ {ai}

6: end if
7: end for
8: return S \ {a1, · · · ,au}

then F(S ∪ {ai}) ≤ F(S). Therefore every e ∈ I \ S has marginal value 0 with respect to S, i.e.,

F(S) = F(I). �

Theorem 9. E[|S |] = m log n.

Proof. Suppose F(Si) = f (T), where |T | = m. If ai < T then it is not selected. Because if ai < T

and is selected then it should have positive F marginal value, which means F(Si) = F(Si−1∪{ai}) >

F(Si−1) = f (T), it is a contradiction. Thus only elements in T will be selected at position `.

If you consider all permutations of Si, an element will be selected at position ` if it is subset

of T , the probability is |T |/` = m/`. Therefore the total expected number of selections will be at

most
∑n
`=1

m
` = m ln n �

Theorem 10. Algorithm 2, with parameter u = nε , selects a set S with |S | < m ln(1/ε)+ ln(1/δ)+√
ln2(1/δ) + 2m ln(1/δ) ln(1/ε) and E[F(S)] = (1 − ε − δ)OPT (where OPT is the value of the

optimal solution).

Proof. We use Freedman’s inequality. If {a1, · · · ,ai} has a unique maximum subset of size m,

define Yi to be a random variable indicating whether the algorithm has selected ai or not, where

Yi = 1 − m
i if ai is selected and Yi = −

m
i otherwise. If it has no unique solution define Yi = 0. (ai

will not be selected) Also define Fi = {Yn,Yn−1, · · · ,Yn−i+1}.

Let Xi =
∑n

j=n−i+1 Yj , then {Xi} is a martingle, because E[Xi+1 |Fi] = Xi + E[Yn−i |Fi]. If

{a1, · · · ,ai} has a unique maximum subset of size m, E[Yn−i |Fi] = (m/i)(1 − m/i) + (1 −

m/i)(−m/i) = 0, otherwise E[Yn−i |Fi] = 0. So in both cases E[Xi+1 |Fi] = Xi. let L =

21

∑n
i=nε Var(Yi |Fi−1).

L =
n∑

i=nε

m
i

(
1 −

m
i

)2
+

(
1 −

m
i

) (m
i

)2
=

n∑
i=nε

m
i

(
1 −

m
i

)
<

n∑
i=nε

m
i
= m ln(1/ε).

Therefore using Friedman’s inequality

Pr(Xn−nε ≥ α and L ≤ m ln(1/ε)) ≤ exp
(
−

α2

2m ln(1/ε) + 2α

)
< δ.

Thus we get α > ln(1/δ)+
√

ln2 1/δ + 2m ln(1/δ) ln(1/ε). Also |S | = Xn−nε +m ln(1/ε). Therefore

Pr(|S | ≥ m ln(1/ε) + ln(1/δ) +
√

ln2 1/δ + 2m ln(1/δ) ln(1/ε)) ≤ δ.

So with probability (1 − δ), |S | ≤ m ln(1/ε) + ln(1/δ) +
√

ln2 1/δ + 2m ln(1/δ) ln(1/ε). Since f

is submodular, E[f (OPT ∩ {anε, · · · ,an})] = (1 − ε)OPT . Therefore E[F(S)] ≥ (1 − ε)OPT −

δOPT . �

Theorem 11. Any online algorithm for m-submdoular secretary problem needs to select at least

1
2 log(1/ε) − 1

2 elements, in expectation, to select the maximum element with probability at least

(1 − ε) in a random permutation. (we assume n > 1/ε).

Proof. Let Ii = {a1, · · · ,an/2i−1}, Ti = {an/2i+1, · · · ,an/2i−1}, and Ri = I1\Ii, for i = 1, · · · , log(1/ε).

Suppose Mi is the maximum element in Ii. Let S be the set of selected elements by algorithm at

the end of execution. Suppose εi = E[Mi < S |Mi ∈ Ti], then E[|S ∩ Ti |] ≥
1
2 (1 − εi). Therefore

E[|S |] ≥
∑log(1/ε)

i=1
1
2 (1 − εi). Also w.p. 1

2i , M1 ∈ Ti, thus
∑log(1/ε)

i=1
1
2i εi ≤ ε . (Note that we use

the fact E[Mi < S |Mi ∈ Ti and Mi = M1] ≤ εi, i.e, if algorithm selects one element it will select

it even if we increase its value and keep the rest unchanged. In other words suppose in the input

a1, · · · ,an the algorithm selects ai. Now if we only increase the value of one item ai, it wont

change the decision of the algorithm regarding selection of ai) Now E[|S |] is minimized under

above constraint if 1
2log(1/ε) εlog(1/ε) = ε and the rest are zero. Hence E[|S |] ≥ 1

2 log(1/ε) − 1
2 .

�

22

Proposition 1. For a m-submodular function f , any online algorithm needs to select at least

m
2 log(m/ε) − m

2 elements, in expectation, to select a set S, with |S | ≤ m such that E[f (S)] ≥

(1 − ε)OPT , in a random permutation.

Proof. We apply the previous theorem to m separate 1 to n matching. More precisely, suppose the

first node in Y is connected to n nodes in x, the second node in Y is connected to n different nodes

in X and so on. Now any matching in this graph will connect each of m nodes of Y to a node in X .

Since neighbors of nodes in X are distinct then each would be a 1 to n matching from a node in Y

to its n neighbors. So now we can apply previous theorem. �

Theorem 12. For a general submodular function f , we need to select at least Ω(mε) elements, let’s

say set S, such that E[maxT⊆S,|T |≤m f (T)] ≥ (1 − ε)OPT .

Proof. Suppose S is the set of elements algorithm selects at the end of execution.

Our construction is based on a simple submodular function, namely, when f is a max coverage

function. It is easy to see that f is submodular. There are n elements in the input. In the max

coverage instance, each element of input corresponds to a subset of a ground set X . Consider the

set cover example above. Suppose there is a set A of size 1
δ , also for every a ∈ A, we have a set

Ta = {a}. In addition, we have a set R = {b}, s.t. b < A. The optimal solution is A ∪ R, with size

1/δ + 1. Before we observe A in the input order, we can’t distinguish R from the rest of 1/δ sets

Ta. Furthermore, w.p. 1/2, R shows up before A. Suppose the algorithm selects α fraction of the

sets of size 1 that appear before A, in expectation. Then

E[R ∩ S] = 1/2(1 + α).

In order to get (1 − ε)OPT , we should have

1 − 1/2(1 + α) ≤ ε(1 + 1/δ).

23

Hence,

α > 1 − 2ε(1 + δ)/δ.

The expected number of selections would be α 1
2δ . Thus

E[|S |] ≥
1

2δ
−
ε(1 + δ)
δ2 .

Now by setting δ = 3ε

E[|S |] ≥
1
6ε
−

1 + 3ε
9ε

≥
1
ε
(1/3 − ε/3) .

Therefore, when ε < 1/3 is E[|S |] ≥ 1
4ε = Ω(

1
ε). �

2.3 Approximating submodular with m-submodular

In this section, we overview a result in [20] related to approximation of m-submdoular func-

tions. Suppose we are given monotone submodular f : {0,1}n → [0,1]. We consider the following

algorithm in [20], which gives a method to approximate m-submodular functions (by selecting

more than m items).

Definition 6. (Discrete derivatives). For x ∈ {0,1}n, b ∈ {0,1} and i ∈ n, let xi ← b denote the

vector in {0,1}n that equals x with i-th coordinate set to b. For a function f : {0,1} → R and

index i ∈ [n], define ∂i f (x) = f (xi←1) − f (xi←0).

Algorithm 2 Feldman-Vondrak
1: S = ∅
2: for i=1 to n do
3: if Pr[∂i f (1S(δ)) > α] > 1/2 then
4: S ← S ∪ {ai}

5: end if
6: end for
7: return S

The following is the summary of the argument in [20].

Lemma 1. The number of variables chosen by the Algorithm 2 is |S | ≤ 2
αδ .

24

Lemma 2. (boosting lemma) If δ < 1/2, then for any i ∈ I \ S

Pr[∂i f (1S(1/2)) > α] ≤ 2−1/(2δ).

Theorem 13. m
ε log m

ε selections, f (S) is within ε additive error of OPT , with probability 1 − ε .

Proof. Call xS ∈ {0,1}S bad, if there is i ∈ I \ S such that ∂i f (xS) > α. If xS is not bad then

OPT − f (S) ≤ mα. By boosting lemma the probability that xS is bad is at most 2−1/(2δ). Now set

δ = 1
2 log m

ε
, and α = 1

16ε
2 log m

ε

log 16n
ε

. Note that these parameters are different from [20]. By setting

mα = ε , we get

m
ε2

16
log m

ε

log 16n
ε

= ε

⇐⇒ 2(αδ)m log
m
ε
= ε

⇐⇒ αδ =
ε/2

m log m
ε

.

Therefore,

|S | ≤
2
αδ
=

m
ε

log
m
ε
.

Also the probability that xS is bad is at most 2−1/(2δ) = ε
m . Thus OPT − f (S) ≤ ε with probability

≥ 1 − ε . �

2.4 Component-Wise Monotone Subumodular Functions

In this section we provide another class of submodular functions for which we can design

an online algorithm for submodular secretary problem that asymptotically approaches the opti-

mal solution. More precisely, we find some assumption for sumbmodular functions under which

Kleinberg’s algorithm [35] is able to asymptotically approach the optimal solution. The algo-

rithm is originally designed for the case of multiple-choice secretary problem and it asymptotically

25

achieves the optimal competitive ratio 1 − 1/
√

k.

We consider a class of submodular functions that are defined on real-valued elements. In

other words, submodular function F defined on a ground set X ⊆ R. i.e., f : 2X → R. We

can represent F in a simpler way. Let’s define F(x1, · · · , x j) = f ({x1, · · · , x j}). The value of k

elements a1, · · · ,ak selected from the ground set is f ({a1, · · · ,ak}). We can also represent it by

the symmetric function F(a1, · · · ,ak).

Now we focus on properties of F : Rk → R (Note the domain of f : 2X → R). By making the

following assumptions about f , we will show Kleinberg’s algorithm asymptotically approaches

the optimal solution.

1. f is a monotone submodular function and F(a1, · · · ,ai + α, · · · ,ak) ≥ F(a1, · · · ,ai, · · · ,ak),

for α > 0 and 1 ≤ i ≤ k.

It is a reasonable assumption specially in the online auctions, where increasing someone’s bid

should not decrease the overall valuation function. We claim that the Kleinberg’s algorithm works

under this assumption which means that the competetive ratio of the algortihm assymptotically

approaches 1. Note that in this section we talk about online algorithms and we do not use any

shortlist (selections are irrevocable).

Let’s first review the Kleinberg’s algorithm. Suppose the input sequence is a1, · · · ,an, and we

want to irrevocably select k elements in an online manner, so as to maximize the total sum of the

selected elements. The algorithm recursively divides the input into two halves: It draws a random

variable m from binomial distribution m = B(n,1/2). Recursively select ` = bk/2c elements from

a1, · · · ,am. Suppose y1 > y2 > · · · > ym are the elements in the first half. After observing am,

select every element which exceeds y`, until we have selected k items or have seen all elements of

S.

Theorem 14. The Kleinberrg’s algorithm [35], described above, achieves a competitive ratio of

1 − 1
5
√

k
for submodular secretary problem, where the submodular function is componenet-wise

monotone submodular.

26

2.5 Extending Kleinberg’s Algorithm to Component-Wise Monotone Subumodular Func-

tions

An immediate consequence of this assumption is that the optimal offline solution is the set of

k largest elements in the input (not necessarily unique). Suppose X = {x1 ≥ x2 ≥ · · · ≥ xn}. We

assume the optimal offline solution is {x1, · · · , xk} (not necessarily unique). i.e., f ({x1, · · · , xk}) ≥

f ({x j1, · · · , x jk }). The sketch of our approach is to show that the Kleinberg algorithm in fact selects

(1 − 5/
√

k)k many elements from top k elements of input, i.e., x1, x2, · · · , xk . Suppose we have

two subsets S,U ⊆ X . We say S ≥ U if S = {p1 ≥ p2 ≥ · · · ≥ pr} and U = {q1 ≥ · · · ≥ qr},

and p1 ≥ q1, · · · , pr > qr . Note that because of property (1), f (S) > f (U). We denote by PS

the probability that the algorithm selects all the elements of S from the input. For S,U ⊆ X and

S ≥ U we show that PS ≥ PU . Therefore the expected value of items selected by the algorithm

is at least as much as when we select (1 − 5/
√

k)k many items uniformly at random, in which

case because of monotonicity and submodularity we can say that its expected value is at least

(1 − 5/
√

k) f (x1, · · · , xk).

Let T ⊆ S denote the k largest elements of S.

Theorem 15. Let S be any set of n non-negative real numbers. Let T be the k largest elements of

S, and OPT = f (T). The expected number of elements of T selected by the algorithm is at least

(1 − 5/
√

k)k.

Proof. The proof is by induction on k. Let y1 > y2 > · · · > ym be the first m samples, and

let z1 > z2 > ... > zn−m be the remaining samples; denote these sets by Y and Z respectively.

Conditional on the event |Y ∩ T | = r , the expected number of the top ` = k/2 elements of Y ∩ T is

bounded below by

k∑
r=1

Pr(|Y ∩ T | = r) · (min(r, l)/k)k ≥ (1 −
1

2
√

k
)
k
2
.

Thus the expected number of elements selected from Y ∩ T is at least (1 − 5/
√

k/2)(1 −

27

1/2
√

k)(k/2), by the induction hypothesis.

Similar to Kleinberg define the random variable q which counts the number of elements of Z

exceeding y`. Let qi be the number of elements of Z whose value lies between yi and yi−1. The

qi are stochastically dominated by i.i.d. geometrically distributed random variables each having

mean 1 and variance 2. Thus their sum q =
∑`

i=1 qi satisfies E[|q − ` |] ≤
√

k. Let r = |q − ` |. The

expected number of elements algorithm selects from Z ∩T is at least ` − r (if y` ∈ T the argument

is similar to Kleinberg if y` < T Then all the elements of Z ∩ T will be selected). Removing the

conditioning on r and recalling that E(r) ≤
√

k, the algorithm selects a subset of Z with expected

size ` −
√

k. Combining this with the above paragraph will show that the expected number of

elements selected from Y ∪ Z is (1 − 5/
√

k)k.

�

If the algorithm could select these subsets uniformly at random then because of submodularity

the expected value of function f that the algorithm selects from T will be (1 − 5/
√

k)OPT . The

next lemma will prove the expected value of selected elements by the algorithm is at least as much

as uniform case.

Lemma 3. If T = {a1,a2, · · · ,ak} and a1 > a2 > · · · > ak , the probability that the algorithm

selects ai is larger than the probability it selects a j for i < j.

Proof. Let’s fix the sets Y and Z but not the ordering of elements in Z . The algorithm selects

all the elements of Z greater than y` until it selects ` elements. So among all different possible

permutations for Z , the algorithm will select the first ` elements of Z greater than y`. If the total

number of these elements, t, is less than or equal to ` then regardless of permutation of elements

in Z we select the same subset of Z (the t largest elements of Z).

We will see that which elements of T ∩ Z will be missed by the algorithm, and show that the

smaller an element is the larger the probability of missing that item is. Suppose a ∈ T ∩ Z , it

will be missed by the algorithm if either a ≤ y` or a ≥ y` but there are ` elements larger than y`

appearing before a (after selecting ` elements the rest are truncated).

28

If a, b ∈ Z and a > b the probability that we miss a for the first reason is less than the

probability that we miss b for the first reason. Also if both a and b pass the condition of second

case, i.e., a > y` and b > y` then they are both equally likely to be missed by algorithm (only

depend on their position in the the input). So b is more likely to be missed by the algorithm.

If a, b ∈ Y then by induction you can show the probability that a is selected is larger than the

probability that b is selected.

Now consider the case that one of a or b is in Y and the other is in Z . The probability that

a ∈ Y, b ∈ Z is the same as the probability b ∈ Y,a ∈ Z . By switching the place of a and b

and fixing the rest, the probability that a is selected in Y is larger than the probability b is selected

because if b is larger than threshold, a is too. If a is missed for truncation, b will also be truncated

if we replace it in the same place as a is in Y . For the Z part, if a ∈ Y, b ∈ Z , the threshold y` is

larger than or equal the case b ∈ Y,a ∈ Z . Thus if b is not missed in Z with the larger threshold, a

which is larger than b will not be missed with the smaller threshold.

Hence the probability that the algorithm misses ai is less than or equal the probability that it

misses ai+1.

�

Lemma 4. Assuming the expected number of elements that the algorithm selects is (1 − 5/
√

k).k,

and p1 > p2 > · · · > pk are respectively the probability that each element of T = {a1 > · · · > ak}

is selected, then E[f (S)] > (1 − 5/
√

k)OPT , where S is the subset of T selected by the algorithm.

Proof. First by induction on k, we prove that the probability distribution Π over subsets of T =

{a1, · · · ,ak} that minimizes EΠ,S∈T f (S), is the following distribution: Π({a1, · · · ,at}) = (pt−pt+1),

1 ≤ t ≤ k. Suppose pk+1 = 0, and P(∅) = 1 − p1.

For k = 1, Π({a1}) = p1 and Π(∅) = 1 − p1. Hence EΠ[f (S)] = p1 f ({a1}) = p1.OPT , which

is the only option.

Now we want to show that the above distribution is a minimizer for T . By projecting Π to

subsets of T ′ = {a1, · · · ,ak−1}, say Π′ , we have Π′(S) = Π(S) + Π(S ∪ {ak}), ∀S ⊆ T ′. The

marginal probabilities of elements in T ′ are p1 > · · · > pk−1. By induction the Π′ is the minimizer

29

of EΠ′,S∈T ′[f (S)]. Now we show Π is minimizer of for T . Consider a different distribution Θ.

Suppose Θ′ is its projection to T ′.

EΘ,S∈T f (S) =
∑
S⊆T

Θ(S) f (S) =
∑
S⊆T ′
(Θ(S) f (S) + Θ(S ∪ {ak}) f (S ∪ {ak}))

= EΘ′,S∈T ′ f (S) +
∑
S⊆T ′
Θ(S ∪ {ak})(f (S ∪ {ak}) − f (S))

≥ EΠ′,S∈T ′ f (S) + pk(f (T) − f (T ′)) = EΠ,S∈T f (S).

ThereforeΠ is a minimizer for T . (the last inequality is because of submodularity and induction

hypothesis)

Now we lowerbound EΠ,S∈T f (S).

EΠ,S∈T f (S) =
∑
S⊆T

Π(S) f (S) =
k∑

t=1
f ({a1, · · · ,at})(pt − pt+1)

≥

k∑
t=1

t
k

OPT(pt − pt+1) =
OPT

k

k∑
t=1

pi .

Thus the expected value of the output of Kleinberg’s algorithm is at least OPT
k (

∑k
i=1)pi = (1 −

5/
√

k)OPT

�

2.6 Upperbounds for Online Setting

In this section we give an upper bound on the competitive ratio of any online algorithm for

general submodular secretary problem with a cardinality constraint. Our bound is an information

theoretic bound without any computational complexity assumption and it is only based on the

online nature of the problem. Note that in Chapter 4 we generalize this bound for the shortlist

model.

Our construction is based on a very simple submodular function, namely, when f is a max

30

coverage function. It is easy to see that f is submodular. There are n elements in the input and f

is defined to be 0 on n − 2k + 1 elements and non-zero on 2k − 1 elements, say a1, · · · ,a2k−1. In

the max coverage instance, each element of input corresponds to a subset of a ground set X . For

1 ≤ i ≤ n, ai covers {bi} ⊆ X , and a2k−1 covers a random subset of X = {b1, · · · , b2k−2} with size

k − 1, say {b1, · · · , bk−1}.

The optimal offline solution selects {ak, · · · ,a2k−2,a2k−1}, with size 2(k − 1). We prove an

upper bound on the expected value that any online algorithm can achieve. We even assume the

algorithm is aware of the size of the input elements, i.e., f (ai). But it does not help the algorithm

as opposed to the real valued functions in the last section.

Theorem 16. No online algorithm can achieve competitive ratio better than 7/8 in the above max

coverage instance, assuming the input arrives uniformly at random.

Proof. If algorithm does not select a2k−1, it will cover at most k elements from X . Hence the

competitive ratio will be at most k
2k−2 ∼ 1/2. So suppose the algorithm will select a2k−1. Note that

before we see a2k−1 in the input we don’t know what elements of {b1, · · · , b2k−2} are going to be

covered by a2k−1. Therefore, whatever the algorithm selects from the input before seeing a2k−1,

will be later covered by a2k−1 w.p. (k − 1)/(2k − 2) = 1/2.

Conditional on the position of a2k−1 in the input, say `, the expected number of elements in the

set X \ a2k−1 in the first ` sets is `
n (k − 1). So the expected number of elements algorithm selects

is 1
2
`
n (k − 1) + (k − 1) + (1 − `

n)(k − 1) = (2 − `/2n)(k − 1). Now uncondition on `, the expected

number of elements that the algorithm selects is 1
n
∑n
`=1(2 − `/2n)(k − 1) = (k − 1)(7/4). So the

competitive ratio is 7/4(k − 1)/2(k − 1) = 7/8. �

2.7 Random Order Online Matching

Suppose we are given a bipartite graph G = (X × Y,E), and we receive elements of X in an

online manner. Note that in contrast with the online matching problem, we do not select edges

of the matching, instead we select a subset of vertices in X and find their corresponding maximal

matching.

31

Theorem 17. Consider the following simple algorithm: select an element iff it increases the size

of current matching by one. Then this online algorithm will select all the elements of the optimal

offline solution (and possibly more).

Proof. If the algorithm selects k elements then it is optimal. Thus, suppose the algorithm selects

k′ < k elements. Every rejected element u can not improve the maximum matching on selected

elements before u. We want to show that u will not be in the optimal solution. For a subset S of

elements, suppose M(S) is the maximum matching of S × Y .

Suppose T is the subset of elements selected by the algorithm before observing u, and |M(T)| =

|M(T ∪ {u})| are equal (there is no augmenting path starting from u using M(T)). Now we show

that for any S ⊇ T , also |M′(S ∪ {u})| = |M′(S)|. It is clear that N(U) ⊆ M′(T), and there is no

augmenting path on M(T) starting uv for v ∈ N(U). So there is no augmenting path that includes

uv for M′(S) as well. (Otherwise you could have projected it to one for T , i.e., restrict M′(S) to T ,

say M′(T). v ∈ M′(T) and cut the augmenting path when it meets the first vertex out of M′(T), it

will give a larger matching for T ∪ {u}).

So every vertex u which has not been selected at some point will never create an augmenting

path with respect to the maximum matching that the algorithm will create later in the algorithm.

Therefore at the end of the algorithm we can not find any augmenting path starting from vertices

that are not selected. �

2.8 Random Order Node Weighted Online Matching

We have a bipartite graph G = (X ×Y,E). The elements of Y is given upfront and vertices of X

are arriving in an online manner. Each vertex of x ∈ X has a type tx ⊆ Y , which is represented as

a subset of Y , and a weight w ∈ R. We have to select k vertices of X , say S with maximum node

wighted matching, i.e., with maximum total weight of matched nodes in S. We first consider this

regime that n = |X | and k tends to infinity while m = |Y | is fixed. We provide optimal asymptotic

algorithm for this case. In the next section we prove impossibility result for the case that m is not

fixed.

32

2.8.1 m is fixed

The algorithm is simple, for every y ∈ Y , we reserve k/m many selections for those vertices in

X that are connected to y. Tentatively, for each y ∈ Y , by k/m selections reserved for y, we select

the top m vertices among neighbors of y, N(y). There is a asymptotic optimal algorithm for that

with rate 1 − 1/
√

k/m, similar to the Kleinberg algorithm [35] and the generalization described in

the previous section. Let’s call the algorithm top(m, y, k/m). The algorithm needs to be aware of

N(y). Thus, in the beginning we sample n1/3 of the input to estimate N(y). After observing one

element x ∈ X , for every y ∈ tx , run the algorithm top(m, y, k/m) for the input x and if any of them

selects x, the algorithm will select x. We give pseudocode in Algorithm 3.

Algorithm 3 NodeWeightedOnlineMatching
1: sample the first n1/3 elements to estimate N(y) for each y ∈ Y
2: for each x ∈ X do
3: for y ∈ tx do
4: if top(m, y, k/m) selects x then
5: S ← S ∪ {x}
6: end if
7: end for
8: end for
9: Return S

Theorem 18. Algorithm 3 achieves competitive ratio 1− o(1) for the node weighted online match-

ing problem defined above.

Proof. Suppose the algorithm has selected the top m neighbors of each y ∈ Y . Then the maximum

matching corresponding to the set S selected by the algorithm is optimal. In other words if the

optimal offline matching matches y to M(y) then M(y) is among the top m neighbors of y. If the

number of neighbors of y, N(y) goes to infinity then the algorithm top(m, y, k/m) will select M(y)

with probability at least 1 − 1/
√

k/m. If N(y) does not go to infinity then for large enough k,

k/m > N(y), thereofor we can select all neighbors of y. The only obstacle is to estimate N(y) for

each y ∈ Y , as it is required in top(m, y, k/m). We use sampling to estimate N(y). �

33

2.8.2 m is not fixed

In this section, we assume m is not fixed and provide upper bound which refutes an asymptotic

optimal algorithm.

Theorem 19. There is no online algorithm that achieves better than 5/6 competitive ratio when m

is not fixed.

Proof. Consider the following example. Every type t is set of size one in Y , m = k and every y ∈ Y

has two neighbors one with weight W and the other with weight W + ω w.p. 1/2 or W − ω w.p.

1/2. Assume ω < W . The optimal offline solution has weight W k + 1/2kω. Now in the online

algorithm, for each y ∈ Y , the expected weight matched to y is W . Therefore the expected weight

of online algorithm is W . If the neighbor with weight W appears first in the input and the algorithm

selects it, the weight that is matched to y is W . If it does not select the first one and select the other

neighbor of y, the expected would still be 1/2(W +ω) + 1/2(W −ω) = W . If the algorithm selects

the first one and the second one is W +ω and the algorithm selects it, the associated weight to y is

W +ω. So the weight per element of these two selected elements is (W +ω)/2 = W/2+ω/2 < W .

So if the one with weight W appears first the weight per element of each of the selection is less than

or equal to W so the total expected weight of selected elements is at most W k/2. For those y that

the neighbor with weight appears last the the expected weight per elements is 1/2(W + ω +W) =

W + ω/2 < 3/2W . So the total expected weight for these ys is k/2(3/2W) = 3/4W k. Hence the

competitive ratio is at most (W k/2 + 3/4W k)/(W k + 1/2kω) < 5/6. �

34

Chapter 3: Cardinality Constraints: A Minmax 1/2 − ε Approximation

using Shortlist of Size O(k log2 k) for the Submodular Secetary Problem

3.1 Introduction

In this section we study the submodular secretary problem with shortlists in the most gen-

eral case of monotone submodular functions. Currently, the best result for submodular secretary

problem is due to [34], who achieve a 1/e-competitive ratio in exponential time, or 1
e (1 −

1
e) in

polynomial time. In this case, the offline problem is NP-hard and hard-to approximate beyond the

factor of 1 − 1/e achieved by the greedy algorithm [42]. However, it is unclear if a competitive

ratio of 1 − 1/e can be achieved by an online algorithm for the submodular k-secretary problem

even when k is large. We consider a relaxation of the secretary problem where the algorithm is

allowed to select a shortlist of items that is larger than the number of items that ultimately need

to be selected. That is, in a multiple-choice secretary problem with cardinality constraint k, the

algorithm is allowed to choose more than k items as part of a shortlist. Then, after seeing the entire

input, the algorithm can choose a subset of size k from the bigger set of items in the shortlist.

Our main result in this chapter is an online algorithm for submodular k-secretary problem

with shortlists that, we design a 1/2−O(k−1/4) approximation algorithm for submodular secretary

problem with shortlists. The size of the shortlist is O(k log2 k). The algorithm is as described in

Algorithm 4.

Note that for submodular k-secretary problem there is an upper bound of 1 − 1/e on the

achievable approximation factor, even in the offline setting, and this upper bound applies to our

problem for arbitrary size η(·) of shortlists. On the other hand for online monotone submodular

k-secretary problem, i.e., when η(k) = k, the best competitive ratio achieved in the literature is

1/e − O(k−1/2) [34]. We assume the standard value oracle model: the only access to the submod-

35

ular function is through a black box returning f (S) for a given set S, and each such queary can be

done in O(1) time.

The main theorem in of this chapter is as follows:

Theorem 20. There exists an online algorithm (Algorithm 4) for the submodular k-secretary prob-

lem with shortlists that achieves a competitive ratio of 1/2 − O(k−1/4), using shortlist of size

η(k) = O(k log2 k).

A line of papers studied streaming algorithms for maximizing a submodular function. The

first one-pass streaming algorithm for maximizing a monotone submodular function subject to a

k-cardinality constraint is due to [6], who propose a (1/2− ε)-approximation streaming algorithm,

with a memory of size O(1ε k log k).

The result in this section improves the required memory of the previously best known algorithm

for the streaming setting [6] in the sense that it removes dependency on ε , but it achieves the same

approximation ratio. We compare this algorithm with previous algorithms in the literature at the

end of this chapter. Throughout this section, we also make this assumption that all the marginal

values w.r.t. all the subsets are different.

We significantly improve the result presented in this chapter in the next chapter. We designed

this approximation algorithm before the work of [44, 32] which improved the previously best

known approximation of 1/2.

3.2 The Algorithm

The algorithm divides the input into k equal intervals I1, · · · , Ik . The elements that the algo-

rithm selects consists of two sets S and B. The set S has exactly k elements {a1, · · · ,ak}, ai ∈ Ii.

We denote the first i elements of S by Si. We select ai with the property ai = arg max
e∈Ii

∆(e|Si−1).

Also define Mi = maxe∈Ii ∆(e|Si−1). Note that we can find maximum element using the online

algorithm in the last section with error ε and log(1/ε) many selections.

The set B consists of k subsets B = B1∪· · ·∪Bk . We call Bi the elements blocked by Ii. We mark

Bi once its size exceeds k log k (|Bi | > k log k). An element a ∈ Ii is blocked if ∆(a|Si−1) > th,

36

Algorithm 4 Submodular Secretary
1: I ← I1 ∪ I2 ∪ · · · ∪ Ik (divide input into k equal intervals)
2: th←∞
3: Si ← ∅, i = 0, · · · , k
4: for j = 1 to k do
5: for a ∈ I j do
6: if F(Sj−1 ∪ {a}) − F(Sj−1) ≥ th then
7: Bthi ← Bthi ∪ {a}
8: if |Bthi | > k log k then
9: mark Bthi

10: thi ← argmin{Mi |Bi is not marked} j−1
i=1

11: th← Mthi
12: end if
13: end if
14: end for
15: Sj = Sj−1 ∪ argmaxa∈Ij F(Sj−1 ∪ {a})
16: (can be done with an online algorithm with error ε using log(1/ε) selection)
17: Mj = F(Sj) − F(Sj−1)
18: end for
19: B← ∪k

i=1Bi
20: OPT ← optimal offline solution
21: B′← B ∩OPT
22: if F(Sk) ≥ OPT/2 then
23: return Sk
24: else
25: return Sk−|B′ | ∪ B′

26: end if

where th is a threshold defined as th = min j<i{Mj |B j is not marked}. (we will later use the fact

that for every element a ∈ Ii that is not blocked, its marginal value w.r.t. S is less than every Mj ,

for j < i). If a ∈ Ii is blocked we put a in Bthi where thi = argmin j<i{Mj |B j is not marked}. If

|Bthi | becomes larger than k log k, we mark Bthi.

At the end of the input suppose OPT is the optimal offline solution. If F(S) > OPT/2, we

return S, otherwise we return Sk−|B′ | ∪ B′, where B′ = B ∩OPT .

3.3 Analysis of the Algorithm 4

Lemma 5. If (a0, · · · ,an−1) is a random order of {1, · · · ,n}, and ad is the first element with ad < a0

(or ad = n − 1 if a0 = n), and we have S =
∑n−1

i=0 xi is uniformly distributed on {xi |ai ≥ a0}, i.e.,

37

xi = 0 if ai < a0. Then

E[
d∑

i=0
xi] =

S
n

O(log n).

Proof. With probability 1/n, a0 = i, for i = 1, · · · ,n, and given a0 = i, E[di] =
n−1
a0

. Also the total

value of S is uniformly distributed among n − a0 variable xi, so E[
∑d

i=0 xi |a0 = i] = S
n−a0

. Thus,

E[
d∑

i=0
xi] ≤

1
n

(
n−1∑
a0=1

n − 1
a0

S
n − a0

+ n

)
≤

S
n

(
n−1∑
a0=1
(

1
a0
+

1
n − a0

) + n

)
=

S
n

O(log n).

�

Lemma 6. E[|B |] = O(k log2 k).

Proof. Suppose th j is the threshold th at iteration j, and th j = M`, for some ` < j. Consider the

marginal value of all elements in I` ∪ · · · ∪ Ik w.r.t. S`−1 and among them select the (k − `) log k

elements with the largest marginal value ∆F(e|S`−1). Denote these elements by T`. The probability

that none of the elements in T` appears in I` is

(1 − 1/(k − `))(k−`) log k ≤ (1/e)log k ≤ 1/k .

Thus, the expected number of Bi’s who are marked by the algorithm is 1. For a given interval i,

suppose j is the first interval after i, satisfying

max
a∈Ij
∆F(a|Si−1) < Mi, and Mi is not marked.

Define di = j − i. Suppose Sk = {a1, · · · ,ak} such that ai = Si \ Si−1,∀1 ≤ i ≤ k. Because

maxa∈Ij ∆F(a|Si−1) < Mi, we have

∆F(a j |Si−1) < Mi .

Now since F is submodular

∆F(a j |Sj−1) < Mi, i.e.,Mj < Mi .

38

So

Bi ⊂ Ii ∪ · · · ∪ I j .

Moreover from lemma 5, and by setting x` = |Ti ∩ Ii+` | in the lemma, we get

E[|(Ii ∪ · · · ∪ I j) ∩ Ti |] =
(k − i) log k

k − i
log k = log2 k .

As a result E[|Bi |] ≤ log2 k, since Bi ⊆ (Ii ∪ · · · ∪ I j) ∩ Ti. In addition,

E[|B |] =
∑

Bi is not marked

E[|Bi |] +
∑

Bi is marked

E[|Bi |]

≤ k log2 k + k log k = O(k log2 k).

�

Theorem 21. |B | = O(k log2 k), w.h.p.

Proof. We use Freedman inequality. For i = 1, · · · , k, define Fi = I1 ∪ · · · ∪ Ii, for 1 ≤ i ≤ k. Also

define Yi = |Bi | − E[|Bi | |Fi−1], based on the algorithm we know |Yi | ≤ k log k. Let Xi =
∑i

j=1 Yj ,

for 1 ≤ i ≤ k, then {Xi} is a martingle, because

E[Xi+1 |Fi] = E[Yi+1 + Xi |Fi] = E[Yi+1 |Fi] + E[Xi |Fi] = 0 + Xi .

As in Freedman’s inequality, let L =
∑k

i=1 Var(Yi |Fi−1).

L ≤
k∑

i=1

1
n − i

(
1 −

1
n − i

)
(n − i) log k =

k∑
i=1

(
1 −

1
n − i

)
log k < k log k .

(Since each of (n− i) log k elements of Ti will be in Ii, with probability 1
n−i independently). There-

fore,

Pr(Xk ≥ α and L ≤ k log k) ≤ exp
(
−

α2

2k log k + 2αk log k

)
< δ

39

Thus we get α > k log k log(1/δ) +
√
(k log k log(1/δ))2 + 4. Also |B | ≤ Xk +

∑k
i=1 E[|Bi | |Fi−1] =

Xk + k log2 k. Therefore,

Pr(|B | > k log2 k + 2k log k log(1/δ)) < δ.

�

Lemma 7. The number of elements marked by the algorithm is at most k3/4 w.h.p.

Proof. Let Xi be the random variable indicating whether Ti ∩ Ii = ∅. Also X1, · · · ,Xk are indepen-

dent. Therefore by Bernstein inequality,

P

(
1
k
|

k∑
i=1
(Xi − 1/k)| > ε

)
< 2 exp

(
−

kε2

2(1 + ε/3)

)
.

So

P

(
k∑

i=1
Xi > 1 + k3/4

)
< 2 exp

(
−

√
k

2(1 + 1/(3k1/4))

)
< 2 exp(−k1/4).

�

Lemma 8. If a ∈ OPT \ B, and a ∈ I j then ∆F(a|Sj−1) ≤ Mi,∀i < j that Mi is not marked.

Proof. Since a < B and a ∈ I j , we have

F(Sj−1 ∪ {a}) − F(Sj−1) ≤ min
1≤i< j
{Mi |Mi is not marked}.

�

Lemma 9. Let O j = |OPT ∩ (I1 ∪ · · · ∪ I j)|, then w.h.p., | |O j | − j | ≤ k3/4, for j > k3/4.

Proof. Suppose OPT = {a1, · · · ,ak}. Consider one interval I of size `. Let’s Xi be a random

variable indicating whether ai ∈ I or not, and define Sk =
∑k

i=1 Xi. Thus E[Sk] =
|I |
n k. From

Hoeffding’s inequality,

Pr[|Sk − E[Sk]| > t] < 2 exp
(
−

2t2

k

)
.

40

Pr[|Sk −
|I |
n

k | > k3/4] < 2 exp
(
−

2k3/2

k

)
= 2e−

√
k .

So for k > log2(ε/2), w.p. 1 − ε , | |O j | − j | ≤ k3/4. �

Lemma 10. For A,B,C ⊆ dom(F),

∆F(A|B) ≤ ∆F(A|C) + ∆F(C |B)

Proof.

∆F(A|C) + ∆F(C |B)

=F(A ∪ C) − F(C) + F(C ∪ B) − F(B)

≥F(A) − F(C ∪ B) + F(C) − F(B)

≥F(A ∪ C ∪ B) − F(B)

≥F(A ∪ B) − F(B)

≥F(A ∪ B) − F(B)

=∆F(A|B).

(3.1)

�

There is another folklore lemma that we will use:

Lemma 11. For A,B ⊆ dom(F),∆F(A|B) ≤
∑

a∈A ∆F(a|B).

Theorem 22. Algorithm 4 is a (1/2 −O(k−1/4) − ε) competitive algorithm.

Proof. Suppose R is the output of algorithm. If R = Sk then F(R) ≥ OPT/2. So suppose R =

Sk−|B′ | ∪ B′ and F(Sk) < OPT/2. We remove the elements of OPT in the first k3/4/k fraction

of the input. Suppose OPT ′ = OPT \ (I1 ∪ · · · ∪ Ik3/4). Note that k3/4

k → 0 as k → ∞. Also

E[OPT ′] = (1 − k−1/4)OPT . Applying lemma 9 on I = {I1, · · · , I`} for ` = k3/4, k3/4 + 1, · · · , k

and then applying a union bound on all of them gives with probability 1 − 2ke−
√

k , |OPT ∩ {I1 ∪

· · · ∪ I j}| − j < k3/4 for all j > k3/4. i.e., |OPT ′ ∩ (I1 ∪ · · · ∪ I j)| < j, ∀ j > k3/4, w.h.p.

41

Now the idea is to match the elements of OPT \ B to elements of Sk−|B′ |. We can match

a ∈ OPT \ B, a ∈ I j , to ai ∈ Sk if

∆F(a|Sj−1) ≤ Mi,

then Lemma 8, implies that a can be matched to any ai, i < j. Also lemma 9 implies that if we

remove the first k3/4 elements, w.h.p. all the elements of OPT ′ can be matched to Sk−|B′ |. From

lemma 12

∆F(OPT \ B |Sk) ≤
∑

a∈OPT\B

∆F(a|Sk) ≤
∑

a∈OPT\B,a∈Ij

(F(Sj−1 ∪ {a}) − F(Sj−1)) ≤
∑

a∈OPT\B,a∈Ij

Mj .

Also because of lemma 8, we have

∑
a∈OPT ′\B,a∈Ij

Mj ≤

|OPT ′\B |∑
i=1

Mi ≤

|OPT\B |∑
i=1

Mi .

Hence

∆F(OPT \ B |Sk) ≤

|OPT\B |∑
i=1

Mi .

Now

∆F(OPT |R) = ∆F(OPT \ B |R) ≤ ∆F(OPT \ B |Sk) + ∆F(Sk |R) ≤

|OPT\B |∑
i=1

Mi +

k∑
i=|OPT\B |+1

Mi = F(Sk) < OPT/2.

The first equality is true because OPT∩B ⊆ R. The penultimate inequality is because of lemma 10.

Therefore

∆F(OPT |R) = F(OPT ∪ R) − F(R) < OPT/2.

So

F(R) > F(OPT ∪ R) −OPT/2 ≥ F(OPT) −OPT/2 = OPT/2.

Note that the total loss incurred above is
(
k−1/4 + 2e−k1/4

+ k−1/4 + 2ke−
√

k + ε
)

OPT = O(k−1/4+

ε)OPT . �

42

Proposition 2. Algorithm 4 achieves 1/2 − O(k−1/4) competitive ratio, by selecting O(k log2 k)

many elements in expectation.

Proof. By setting ε = k−1/4. �

Proposition 3. Algorithm 4 achieves 1/2 − O(k−1/4) approximation random order streaming al-

gorithm, with memory of size O(k log2 k) in expectation. The running time is polynomial in n and

exponential in k.

Proof. Among elements of Sk ∪ B with size O(k log2 k), return max0≤i≤k,C⊆B,|C |=k−i F(Si ∪C). �

3.4 Comparison

There are two main frameworks for submodular secretary problem with cardinality constraints:

online algorithms and streaming algorithms. In the online framework, we assume the input has

random order. All of the previous algorithms in this framework irrevocably select a subset of

size k, whose value is close to OPT. The best known algorithm so far is [34], with asymptotic

competitive ratio of 1/e − O(k−1/2). In their algorithm after observing each element, they use

an oracle to compute optimal offline solution on the elements seen so far. Therefore it requires

exponential time in k. Hence the best competitive ratio that they can get in polynomial time is

1
e (1−

1
e)(using an polynomial time (1− 1/e) approximation algorithm to find the offline solution).

On the other hand, in the streaming framework the decision to select an element is not irrevo-

cable, and there is a buffer of limited size and you can add or remove elements from the buffer, i.e.,

you can deselect some elements that you have already selected. Also the random order assumption

in this model is not necessary. The best known algorithm previous to this result was [6], a 1/2 − ε

approximation with a memory of size 1
ε k log k. It does not need random order assumption. Also

note that this algorithm can not be converted into an online algorithm. Streaming algorithms with

a random order assumption have been considered for other problems. But until recently nothing

better than [6] is known for this problem under random order setting.

43

Our algorithm is in the intersection of the above frameworks. We generalize the online model

in the way that we are allowed to select more than k elements, and output a subset of size k whose

value is close to OPT. Note that we are only interested in returning a subset of size at most k

as our output. In algorithms like [20], although the output is close to OPT, it is not restricted

to k elements, and we can’t guarantee that it contains a subset of size k whose value is close

to OPT. Our algorithm selects k log2 k elements and it guarantees that there is a subset of size

k whose value is 1/2 − O(k−1/4). Thus by relaxing the number of selections we improve upon

the best competitive ratio 1/e. Also in terms of computational complexity, our algorithm as in

proposition 3 needs exponential time in k (polytime in n). while [34] needs to find optimal offline

solution n times, each time on subsets of size n.An important aspect of our algorithm is that it is

polynomial time in terms of n, but [34] is not. Both algorithms are not polynomial time in terms

of k, to get a polynomial time in both n and k, one has to use a 1 − 1/e approximation to compute

offline solutions.

Our algorithm can also be considered as a random order streaming algorithm with memory of

size k log2 k. All the computation done by the algorithm to keep blocked set and marked element

can be done in a memory efficient way. It is asymptotically a 1/2 − O(k−1/4) approximation

algorithm. In terms of memory size, it improves upon the previous 1
ε k log k, for k > (1/ε)4. Also

in terms of running time it is polynomial in n, but it requires exponential time in k. Also note that

algorithm [34] can not be converted into a streaming algorithm with nontrivial memory size. In

table 3.1 and 3.2 we compare our algorithm to previously best known results in the online setting

and streaming setting.

#selections Comp ratio Running time Comp ratio in poly(n)
[34] k 1/e −O(k−1/2) exp(n) (1 − 1/e)1/e
this k log2 k 1/2 −O(k−1/4) poly(n), exp(k) 1/2 −O(k−1/4)

Table 3.1: Online algorithms framework

44

Memory size Approximation ratio Running time update time
[6] 1

ε k log k 1/2 − ε poly(n, k,1/ε) 1
ε log k

this k log2 k 1/2 −O(k−1/4) poly(n), exp(k) log k, amortize O(1)

Table 3.2: Random order streaming algorithms framework

45

Chapter 4: Cardinality Constraint: 1 − 1/e − ε Approximation using

Shortlist of Size O(k)

4.1 Introduction

In this chapter, we design a near-optimal algorithm for submodular k-secretary problem with

shortlists. We first review the Shortlist model, and then precisely define the submodular k-secretary

problem with shortlists. After that we describe the algorithm and the analysis of the algorithm. At

the end, we prove an impossibility result.

We introduced the shortlist model in the introduction of this thesis. We explained the potential

of this relaxation by the basic secretary problem, where the aim is to select the item of maximum

value among randomly ordered inputs. There, it is not difficult to show that if an algorithm picks

every item that is better than the items seen so far, the true maximum will be found, while the

expected number of items picked under randomly ordered inputs will be log(n). Further, we show

that this approach can be easily modified to get the maximum with 1 − ε probability while picking

at most O(ln(1/ε)) items for any constant ε > 0. Thus, with just a constant size shortlist, we can

break the 1/e barrier for the secretary problem and achieve a competitive ratio that is arbitrarily

close to 1.

Motivated by this observation, we ask if a similar improvement can be achieved by relaxing

the submodular k-secretary problem to allow a shortlist. That is, instead of choosing k items,

the algorithm is allowed to chose η(k) items as part of a shortlist, for some function η; and at

the end of all inputs, the algorithm chooses k items from the η(k) selected items. Then, what

is the relationship between η(·) and the competitive ratio for this problem? Can we achieve a

solution close to the best offline solution when η(k) is not much bigger than k, for example when

η(k) = O(k)?

46

In this thesis, we answer this question affirmatively by giving a polynomial time algorithm that

achieves 1 − 1/e − ε − O(k−1) competitive ratio for the submodular k-secretary problem using a

shortlist of size η(k) = O(k). This is surprising since 1 − 1/e is the best achievable approximation

(in polynomial time) for the offline problem. Further, for some special cases of submodular func-

tions, we demonstrate that an O(1) shortlist allows us to achieve a 1 − ε competitive ratio. These

results demonstrate the power of (small) shortlists for closing the gap between online and offline

(polynomial time) algorithms.

We also discuss connections of secretary problem with shortlists to the related streaming set-

tings. While a streaming algorithm does not qualify as an online algorithm (even when a shortlist

is allowed), we show that our algorithm can in fact be implemented in a streaming setting to use

η(k) = O(k) memory buffer; and our results significantly improve the available results for the sub-

modular random order streaming problem. Furthermore since the upperbound given in [39] holds

for random order streams, our result is asymptotically tight in this setting.

4.1.1 Problem Definition

We now give a more formal definition. Items from a set U = {a1,a2, . . . ,an} (pool of items)

arrive in a uniformly random order over n sequential rounds. The set U is apriori fixed but un-

known to the algorithm, and the total number of items n is known to the algorithm. In each round,

the algorithm irrevocably decides whether to add the arriving item to a shortlist A or not. The

algorithm’s value at the end of n rounds is given by

ALG = E[max
S⊆A,|S |≤k

f (S)],

where f (·) is a monotone submodular function. The algorithm has value oracle access to this

function.

47

The optimal offline utility is given by

OPT := f (S∗), where S∗ = arg max
S⊆[n],|S |≤k

f (S).

We say that an algorithm for this problem achieves a competitive ratio c using shortlist of size η(k),

if at the end of n rounds, |A| ≤ η(k) and ALG
OPT ≥ c.

Given the shortlist A, since the problem of computing the solution arg maxS⊆A,|S |≤k f (S) can

itself be computationally intensive, our algorithm will also track and output a subset A∗ ⊆ A, |A∗ | ≤

k. We will lower bound the competitive ratio by bounding f (A∗)
f (S∗) .

The above problem definition has connections to some existing problems studied in the litera-

ture. The well-studied online submodular k-secretary problem described earlier is obtained from

the above definition by setting η(k) = k, i.e., it is same as the case when no extra items can be

selected as part of a shortlist. Another related problem is submodular random order streaming

problem studied in [44]. In this problem, items from a set U arrive online in random order and

the algorithm aims to select a subset S ⊆ U, |S | ≤ k in order to maximize f (S). The streaming

algorithm is allowed to maintain a buffer of size η(k) ≥ k. However, this streaming problem is

distinct from the submodular k-secretary problem with shortlists in several important ways. On

one hand, since an item previously selected in the memory buffer can be discarded and replaced

by a new items, a memory buffer of size η(k) does not imply a shortlist of size at most η(k). On

the other hand, in the secretary setting, we are allowed to memorize/store more than η(k) items

without adding them to the shortlist. Thus an algorithm for submodular k-secretary problemwith

shortlist of size η(k) may potentially use a buffer of size larger than η(k). Our algorithms, as de-

scribed in the chapter, do use a large buffer, but we will show that the algorithm presented in this

chapter can in fact be implemented to use only η(k) = O(k) buffer, thus obtaining matching results

for the streaming problem.

48

4.1.2 Our Results

Our main result is an online algorithm for submodular k-secretary problem with shortlists that,

for any constant ε > 0, achieves a competitive ratio of 1− 1
e − ε −O(1k) with η(k) = O(k). Note that

for submodular k-secretary problem there is an upper bound of 1 − 1/e on the achievable approxi-

mation factor, even in the offline setting, and this upper bound applies to our problem for arbitrary

size η(·) of shortlists. On the other hand for online monotone submodular k-secretary problem,

i.e., when η(k) = k, the best competitive ratio achieved in the literature is 1/e − O(k−1/2) [34]

Remarkably, with only an O(k) size shortlist, our online algorithm is able to achieve a competitive

ratio that is arbitrarily close to the offline upper bound of 1 − 1/e.

In the theorem statements below, big-Oh notation O(·) is used to represent asymptotic behavior

with respect to k and n. We assume the standard value oracle model: the only access to the

submodular function is through a black box returning f (S) for a given set S, and each such queary

can be done in O(1) time.

Theorem 23. For any constant ε > 0, there exists an online algorithm (Algorithm 8) for the

submodular k-secretary problem with shortlists that achieves a competitive ratio of 1− 1
e−ε−O(1k),

with shortlist of size ηε (k) = O(k). Here, ηε (k) = O(2poly(1/ε)k). The running time of this online

algorithm is O(n).

Specifically, we have ηε (k) =c log(1/ε)
ε2

(1
ε6 log(1/ε)
1
ε4 log(1/ε)

)
k for some constant c. The running time of our

algorithm is linear in n, the size of the input, which is significant as, until recently, it was not known

if there exists a linear time algorithm achieving a 1 − 1/e − ε approximation even for the offline

monotone submodular maximization problem under cardinality constraint[40]. Another interesting

aspect of our algorithm is that it is highly parallel. Even though the decision for each arriving item

may take time that is exponential in 1/ε (roughly ηε (k)/k), it can be readily parallelized among

multiple (as many as ηε (k)/k) processors.

Further, we show an implementation of Algorithm 2 that uses a memory buffer of size at most

ηε (k) to get the following result for the problem of submodular random order streaming problem

49

described in the previous section.

Theorem 24. For any constant ε ∈ (0,1), there exists an algorithm for the submodular random

order streaming problemthat achieves an
(
1 − 1

e − ε −O(1k)
)
-approximation to OPT while using a

memory buffer of size at most ηε (k) = O(k). Also, the number of objective function evaluations for

each item, amortized over n items, is O(1 + k2

n).

The above result significantly improves over the state-of-the-art results in random order stream-

ing model [44], which are an approximation ratio of 1
2+8×10−14 using a memory of size O(k log k).

It is natural to ask whether these k-lists are, in fact, too powerful. Maybe they could actually

allow us to always match the best offline algorithm. We give a negative result in this direction and

show that even if we have unlimited computation power, for any function η(k) = o(n), we can get

no better than 7/8-competitive algorithm using a shortlist of size η(k). Note that with unlimited

computational power, the offline problem can be solved exactly. This result demonstrates that

having a shortlist does not make the online problem too easy - even with a shortlist (of size o(n))

there is an information theoretic gap between the online and offline problem. Note that the 1− 1/e

upperbound for streaming model [39] does not imply an upper bound for the shortlist model.

Theorem 25. No online algorithm (even with unlimited computational power) can achieve a com-

petitive ratio better than 7/8 + o(1) for the submodular k-secretary problem with shortlists, while

using a shortlist of size η(k) = o(n).

4.1.3 Comparison to related work

We compare our results (Theorem 23 and Theorem 29) to the best known results for submodu-

lar k-secretary problem and submodular random order streaming problem, respectively.

The best known algorithm so far for submodular k-secretary problem is by [34], with asymp-

totic competitive ratio of 1/e − O(k−1/2). In their algorithm, after observing each element, they

use an oracle to compute optimal offline solution on the elements seen so far. Therefore it re-

quires exponential time in n. The best competitive ratio that they can get in polynomial time is

50

1
e (1 −

1
e) − O(k−1/2). In comparison, by using a shortlist of size O(k) our (polynomial time) algo-

rithm achieves a competitive ratio of 1 − 1
e − ε −O(k−1). In addition to substantially improves the

above-mentioned results for submodular k-secretary problem, this closely matches the best possi-

ble offline approximation ratio of 1−1/e in polynomial time. Further, our algorithm is linear time.

Table 4.1 summarizes this comparison. Here, Oε (·) hides the dependence on the constant ε . The

hidden constant in Oε (.) is c log(1/ε)
ε2

(1
ε6 log(1/ε)
1
ε4 log(1/ε)

)
for some absolute constant c.

#selections Comp ratio Running time Comp ratio in poly(n)
[34] k 1/e −O(k−1/2) exp(n) 1

e (1 − 1/e)
this Oε (k) 1 − 1/e − ε −O(1/k) Oε (n) 1 − 1/e − ε −O(1/k)

Table 4.1: submodular k-secretary problem settings

In the streaming setting, [11] provided a single pass streaming algorithm for monotone sub-

modular function maximization under k-cardinality constraint, that achieves a 0.25 approximation

under adversarial ordering of input. Further, their algorithm requires O(1) function evaluations

per arriving item and O(k) memory. The currently best known approximation under adversarial

order streaming model is by [6], who achieve a 1/2 − ε approximation with a memory of size

O(1ε k log k). There is an upper bound of 1/2 + o(1) on the competitive ratio achievable by any

algorithm for streaming submodular maximization that only queries the value of the submodular

function on feasible sets while using o(n) memory [44].

[29] initiated the study of submodular random order streaming problem. Their algorithm uses

O(k) memory and a total of n function evaluations to achieve 0.19 approximation. The state of

the art result in the random order input model is due to [44] who achieve a 1/2 + 8 × 10−14

approximation, while using a memory buffer of size O(k log k).

Table 4.2 provides a detailed comparison of our result in Theorem 29 to the above-mentioned

results for submodular random order streaming problem, showing that our algorithm substantially

improves the existing results on most aspects of the problem.

There is also a line of work studying the online variant of the submodular welfare maximization

problem (e.g., [36, 9, 31]). In this problem, the items arrive online, and each arriving item should

51

Memory size Approximation ratio Running time update time
[29] O(k) 0.19 O(n) O(1)
[44] O(k log k) 1/2 + 8 × 10−14 O(n log k) O(log k)
[6] O(1ε k log k) 1/2 − ε poly(n, k,1/ε) O(1ε log k)
this Oε (k) 1 − 1/e − ε −O(1/k) Oε (n) amortized Oε (1 + k2

n)

Table 4.2: submodular random order streaming problem

be allocated to one of m agents with a submodular valuation functions wi(Si) where Si is the subset

of items allocated to i-th agent). The goal is to partition the arriving items into m sets to be

allocated to m agents, so that the sum of valuations over all agents is maximized. This setting is

incomparable with the submodular k-secretary problem setting considered here.

4.1.4 Organization

The rest of the chapter is organized as follows. Section 5.2 describes our main algorithm

(Algorithm 8) for the submodular k-secretary problem with shortlists, and demonstrates that its

shortlist size is bounded by ηε (k) = O(k). In Section 5.4, we analyze the competitive ratio of

this algorithm to prove Theorem 23. In Section 5.6, we provide an alternate implementation of

Algorithm 8 that uses a memory buffer of size at most ηε (k), in order to prove Theorem 29. Finally,

in Section 4.5, we provide a proof of our impossibility result stated in Theorem 25. The proof of

Theorem 7 along with the relevant algorithm appears in the appendix.

4.2 Algorithm description

Before giving our algorithm for submodular k-secretary problem with shortlists, we describe a

simple technique for secretary problem with shortlists that achieves a 1 − δ competitive ratio for

with shortlists of size logarithmic in 1/δ. Recall that in the secretary problem, the aim is to select

an item with expected value close to the maximum among a pool of items I = (a1, . . . ,aN) arriving

sequentially in a uniformly random order. We will consider the variant with shortlists, where we

now want to pick a shortlist which contains an item with expected value close to the maximum.

We propose the following simple algorithm. For the first nδ/2 rounds, don’t add any items to the

52

shortlist, but just keep track of the maximum value seen so far. For all subsequent rounds, for any

arriving item i that has a value ai greater than or equal to the maximum value seen so far, add

it to the shortlist if the size of shortlist is less than or equal to L = 4 ln(2/δ). This algorithm is

summarized as Algorithm 5. Clearly, for contant δ, this algorithm uses a shortlist of size L = O(1).

Further, under a uniform random ordering of input, we can show that the maximum value item will

be part of the shortlist with probability 1 − δ. (See Proposition 6 in Section 5.4.)

Algorithm 5 Algorithm for secretary with shortlist (finding max online)
1: Inputs: number of items N , items in I = {a1, . . . ,aN } arriving sequentially, δ ∈ (0,1].
2: Initialize: A← ∅, u = nδ/2, M = −∞
3: L ← 4 ln(2/δ)
4: for i = 1 to N do
5: if ai > M then
6: M ← ai
7: if i ≥ u and |A| < L then
8: A← A ∪ {ai}

9: end if
10: end if
11: end for
12: return A, and A∗ := maxi∈A ai

There are two main difficulties in extending this idea to the submodular k-secretary problem

with shortlists. First, instead of one item, here we aim to select a set S of k items using an O(k)

length shortlist. Second, the contribution of each new item i to the objective value, as given by the

submodular function f , depends on the set of items selected so far.

The first main concept we introduce to handle these difficulties is that of dividing the input into

sequential blocks that we refer to as (α, β) windows. Below is the precise construction of (α, β)

windows, for any postivie integers α and β, such that k/α is an integer.

We use a set of random variables X1, . . . ,Xm defined in the following way. Throw n balls into

m bins uniformly at random. Then set X j to be the number of balls in the jth bin. We call the

resulting X j’s a (n,m)-ball-bin random set.

Definition 7 ((α, β)windows). Let X1, . . . ,Xkβ be a (n, kβ)-ball-bin random set. Divide the indices

{1, . . . ,n} into kβ slots, where the j-th slot, s j , consists of X j consecutive indices in the natural

53

Algorithm 6 Algorithm for submodular k-secretary with shortlist
1: Inputs: set Ī = {ā1, . . . , ān} of n items arriving sequentially, submodular function f , parameter
ε ∈ (0,1].

2: Initialize: S0 ← ∅,R0 ← ∅, A ← ∅, A∗ ← ∅, constants α ≥ 1, β ≥ 1 which depend on the
constant ε .

3: Divide indices {1, . . . ,n} into (α, β) windows as prescribed by Definition 11.
4: for window w = 1, . . . , k/α do
5: for every slot s j in window w, j = 1, . . . , αβ do
6: Concurrently for all subsequences of previous slots τ ⊆ {s1, . . . , s j−1} of length |τ | < α

in window w, call the online algorithm in Algorithm 5 with the following inputs:

• number of items N = |s j | + 1, δ = ε
2 , and

• item values I = (a0,a1, . . . ,aN−1), with

a0 := max
x∈R1,...,w−1

∆(x |S1,...,w−1 ∪ γ(τ))

a` := ∆(s j(`)|S1,...,w−1 ∪ γ(τ)),∀` = 1, . . . ,N − 1

where s j(`) denotes the `th item in the slot s j .

7: Let A j(τ) be the shortlist returned by Algorithm 5 for slot j and subsequence τ. Add
all items except the dummy item 0 to the shortlist A. Let’s A(j) =

⋃
τ A j(τ). That is,

A← A ∪ (A(j) ∩ s j)

8: end for
9: After seeing all items in window w, compute Rw,Sw as defined in (5.5) and (5.6) respec-

tively.
10: A∗ ← A∗ ∪ (Sw ∩ A)
11: end for
12: return A, A∗.

way, that is, slot 1 contains the first X1 indices, slot 2 contains the next X2, etc. Next, we define

k/α windows, where window i consists of αβ consecutive slots, in the same manner as we assigned

slots.

Thus, qth slot is composed of indices {`, . . . ,r}, where ` = X1+...+Xq−1+1 and r = X1+...+Xq.

Further, if the ordered the input is ā1, . . . , ān then we say that the items inside the slot sq are

ā`, ā`+1, . . . , ār To reduce notation, when clear from context, we will use sq and w to also indicate

the set of items in the slot sq and window w respectively.

When α and β are large enough constants, some useful properties can be obtained from the

54

construction of these windows and slots. First, roughly α items from the optimal set S∗ are likely

to lie in each of these windows; and further, it is unlikely that two items from S∗ will appear in

the same slot. (These statements will be made more precise in the analysis where precise setting

of α, β in terms of ε will be provided.) Consequently, our algorithm can focus on identifying a

constant number (roughly α) of optimal items from each of these windows, with at most one item

coming from each of the αβ slots in a window. The core of our algorithm is a subroutine that

accomplishes this task in an online manner using a shortlist of constant size in each window.

To implement this idea, we use a greedy selection method that considers all possible α sized

subsequences of the αβ slots in a window, and aims to identify the subsequence that maximizes the

increment over the best items identified so far. More precisely, for any subsequence τ = (s1, . . . , s`)

of the αβ slots in window w, we define a ‘greedy’ subsequence γ(τ) of items as:

γ(τ) := {i1, . . . , i`} (4.1)

where

i j := arg max
i∈sj∪R1,...,w−1

f (S1,...,w−1 ∪ {i1, . . . , i j−1} ∪ {i}) − f (S1,...,w−1 ∪ {i1 . . . , i j−1}). (4.2)

In (5.3) and in the rest of the paper, we use shorthand S1,...,w to denote S1 ∪ · · · ∪ Sw, and R1,...,w

to denote R1 ∪ · · · ∪ Rw, etc. We also will take unions of subsequences, which we interpret as

the union of the elements in the subsequences. We also define Rw to be the union of all greedy

subsequences of length α, and Swto be the best subsequence among those. That is,

Rw = ∪τ:|τ |=αγ(τ) (4.3)

and

Sw = γ(τ∗), (4.4)

55

where

τ∗ := arg max
τ:|τ |=α

f (S1,...,w−1 ∪ γ(τ)) − f (S1,...,w−1). (4.5)

Note that i j (refer to (5.3)) can be set as either an item in slot s j or an item from a previous greedy

subsequence in R1 ∪ · · · ∪ Rw−1. The significance of the latter relaxation will become clear in the

analysis.

As such, identifying the sets Rw and Sw involves looking forward in a slot s j to find the best

item (according to the given criterion in (5.3)) among all the items in the slot. To obtain an online

implementation of this procedure, we use an online subroutine that employs the algorithm (Al-

gorithm 5) for the basic secretary problem described earlier. This online procedure will result in

selection of a set Hw potentially larger than Rw, while ensuring that each element from Rw is part

of Hw with a high probability 1 − δ at the cost of adding extra log(1/δ) items to the shortlist. Note

that Rw and Sw can be computed exactly at the end of window w.

Algorithm 8 summarizes the overall structure of our algorithm. In the algorithm, for any item

i and set V , we define ∆ f (i |V) := f (V ∪ {i}) − f (V).

The algorithm returns both the shortlist A which we show to be of size O(k) in the following

proposition, as well as a set A∗ = ∪w(Sw ∩ A) of size at most k to compete with S∗. In the next

section, we will show that E[f (A∗)] ≥ (1− 1
e−ε−O(1k)) f (S

∗) to provide a bound on the competitive

ratio of this algorithm.

Proposition 4. Given k,n, and any constant α, β and ε , the size of shortlist A selected by Algo-

rithm 8 is at most 4kβ
(αβ
α

)
log(2/ε) = O(k).

Proof. For each window w = 1, . . . , k/α, and for each of the αβ slots in this window, lines 6

through 9 in Algorithm 8 runs Algorithm 5 for
(αβ
α

)
times (for all α length subsequences). By

construction of Algorithm 5, for each run it will add at most L ≤ 4 log(2/ε) items each time to the

shortlist. Therefore, over all windows, Algorithm 8 adds at most k
α × αβ

(αβ
α

)
L = O(k) items to the

shortlist. �

56

4.3 Bounding the competitive ratio

In this section we show that for any ε ∈ (0,1), Algorithm 8 with an appropriate choice of con-

stants α, β, achieves the competitive ratio claimed in Theorem 23 for the submodular k-secretary

problem with shortlists.

Recall the following notation defined in the previous section. For any collection of sets

V1, . . . ,V`, we use V1,...,̀ to denote V1∪ · · · ∪V`. Also, recall that for any item i and set V , we denote

∆ f (i |V) := f (V ∪ {i}) − f (V).

Proof overview. The proof is divided into two parts. We first show a lower bound on the ratio

E[f (∪wSw)]/OPT in Proposition 5, where Sw is the subset of items as defined in (5.6) for every

window w. Later in Proposition 5.4, we use the said bound to derive a lower bound on the ratio

E[f (A∗)]/OPT, where A∗ = A ∩ (∪wSw) is the subset of shortlist returned by Algorithm 8.

Specifically, in Proposition 5, we provide settings of parameters α, β such that of E[f (∪wSw)] ≥(
1 − 1

e −
ε
2 −O(1k)

)
OPT. A central idea in the proof of this result is to show that for every window

w, given R1,...,w−1, the items tracked from the previous windows, any of the k items from the optimal

set S∗ has at least αk probability to appear either in window w, or among the tracked items R1,...,w−1.

Further, the items from S∗ that appear in window w, appear independently, and in a uniformly at

random slot in this window. (See Lemma 35.) This observation allows us to show that, in each

window, there exists a subsequence τ̃w of close to α slots, such that the greedy sequence of items

γ(τ̃w) will be almost “as good as" a randomly chosen sequence of α items from S∗. More precisely,

denoting γ(τ̃s) = (i1, . . . , it), in Lemma 40, for all j = 1, . . . , t, we lower bound the increment in

function value f (· · ·) on adding i j over the items in S1,...,w−1 ∪ i1,...,j−1 as:

E[∆ f (ij |S1,...,w−1∪{i1, . . . , ij−1})|T1,...,w−1, i1, . . . , ij−1] ≥
1
k

(
(1 −

α

k
) f (S∗) − f (S1,...,w−1 ∪ {i1, . . . , ij−1})

)
.

We then deduce (using standard techniques for the analysis of greedy algorithm for submodular

57

functions) that

E[
(
1 −

α

k

)
f (S∗) − f (S1,...,w−1 ∪ γ(τ̃w))|S1,...,w−1] ≤ e−t/k

((
1 −

α

k

)
f (S∗) − f (S1,...,w−1)

)
.

Now, since the length t of τ̃w is close to α (as we show in Lemma 25) and since Sw = γ(τ∗) with

τ∗ defined as the “best" subsequence of length α (refer to definition of τ∗ in (5.8)), we can show

that a similar inequality holds for Sw = γ(τ∗), i.e.,

(
1 −

α

k

)
f (S∗) − E[f (S1,...,w−1 ∪ Sw)|S1,...,w−1] ≤ e−α/k (1 − δ′)

((
1 −

α

k

)
f (S∗) − f (S1,...,w−1)

)
,

where δ′ ∈ (0,1) depends on the setting of α, β. (See Lemma 45.) Then repeatedly applying

this inequality for w = 1, . . . , k/α, and setting δ,α, β appropriately in terms of ε , we can obtain

E[f (S1,...,W)] ≥
(
1 − 1

e −
ε
2 −

1
k

)
f (S∗), completing the proof of Proposition 5

However, a remaining difficulty is that while the algorithm keeps a track of the set Sw for every

window w, it may not have been able to add all the items in Sw to the shortlist A during the online

processing of the inputs in that window. In the proof of Proposition 5.4, we show that in fact the

algorithm will add most of the items in ∪wSw to the short list. More precisely, we show that given

that an item i is in Sw, it will be in shortlist A with probability 1− δ, where δ is the parameter used

while calling Algorithm 5 in Algorithm 8. Therefore, using properties of submodular functions it

follows that with δ = ε/2, E[f (A∗)] = E[f (∪wSw ∩ A)] ≥ (1 − ε
2)E[f (∪wSw)] (see Proposition

5.4). Combining this with the lower bound E[f (∪wSw)]
OPT ≥ (1 − 1

e −
ε
2 − O(1k)) mentioned earlier, we

complete the proof of competitive ratio bound stated in Theorem 23.

4.3.1 Preliminaries

The following properties of submodular functions are well known (e.g., see [10, 15, 19]).

Lemma 12. Given a monotone submodular function f , and subsets A,B in the domain of f , we

use ∆ f (A|B) to denote f (A ∪ B) − f (B). For any set A and B, ∆ f (A|B) ≤
∑

a∈A\B ∆ f (a|B)

58

Lemma 13. Denote by A(p) a random subset of A where each element has probability atleast p to

appear in A (not necessarily independently). Then E[f (A(p))] ≥ (1 − p) f (∅) + (p) f (A)

We will use the following well known deviation inequality for martingales (or supermartin-

gales/submartingales).

Lemma 14 (Azuma-Hoeffding inequality). Suppose {Xk : k = 0,1,2,3, ...} is a martingale (or

super-martingale) and |Xk − Xk−1 | < ck, almost surely. Then for all positive integers N and all

positive reals r ,

P(XN − X0 ≥ r) ≤ exp

(
−r2

2
∑N

k=1 c2
k

)
.

And symmetrically (when Xk is a sub-martingale):

P(XN − X0 ≤ −r) ≤ exp

(
−r2

2
∑N

k=1 c2
k

)
.

Lemma 15 (Chernoff bound for Bernoulli r.v.). Let X =
∑N

i=1 Xi, where Xi = 1 with probability pi

and Xi = 0 with probability 1 − pi, and all Xi are independent. Let µ = E(X) =
∑N

i=1 pi. Then,

P(X ≥ (1 + δ)µ) ≤ e−δ
2µ/(2+δ)

for all δ > 0, and

P(X ≤ (1 − δ)µ) ≤ e−δ
2µ/2

for all δ ∈ (0,1).

4.3.2 Some useful properties of (α, β) windows

We first prove some useful properties of (α, β) windows, defined in Definition 11 and used in

Algorithm 8. The first observation is that every item will appear uniformly at random in one of the

kβ slots in (α, β) windows.

59

Definition 8. For each item e ∈ I, define Ye ∈ [kβ] as the random variable indicating the slot in

which e appears. We call vector Y ∈ [kβ]n a configuration.

Lemma 16. Random variables {Ye}e∈I are i.i.d. with uniform distribution on all kβ slots.

This follows from the uniform random order of arrivals, and the use of the balls in bins process

to determine the number of items in a slot during the construction of (α, β) windows. It folllows

from the following lemma.

Lemma 17. For each y ∈ [kβ]n, Pr{Y = y} = (1
kβ)

n.

Proof. Consider pair (π,ψ), where π : I → [n] defines the random order on I. Throw n balls

uniformly into kβ bins. Let ψ j be the bin that j-th ball goes into. Note that ψ and π are independent.

Now consider

(
1

kβ
s1 + · · · +

1
kβ

skβ)
n =

(
1

kβ

)n ∑
t1,··· ,tkβ

Qt1,··· ,tkβ s1
t1 · · · skβ

tkβ .

For a given y ∈ [kβ]I , suppose ti is the number of elements in slot si. Then from above expansion

the probability that ψ divides input into slots of size t1, · · · , tkβ is

(
1

kβ

)n

Qt1,··· ,tkβ =

(
1

kβ

)n (
n

t1, t2, · · · , tkβ

)
.

Now for such a ψ, the probability that permutations π satisfy Y = y is

t1! · · · tkβ!
n!

.

Thus the probability that Y = y is

(
1

kβ

)n (
n

t1, t2, · · · , tkβ

)
t1! · · · tkβ!

n!
=

(
1

kβ

)n

.

�

60

Next, we make important observations about the probability of assignment of items in S∗ in

the slots in a window w, given the sets R1,...,w−1,S1,...,w−1 (refer to (5.5), (5.6) for definition of these

sets). To aid analysis, we define the following new random variable Tw that will track all the useful

information from a window w.

Definition 9. Define Tw := {(τ, γ(τ))}τ, for all α-length subsequences τ = (s1, . . . , sα) of the αβ

slots in window w. Here, γ(τ) is a sequence of items as defined in (5.2). Also define Supp(T1,··· ,w) :=

{e|e ∈ γ(τ) for some (τ, γ(τ)) ∈ T1,··· ,w} (Note that Supp(T1,··· ,w) = R1,...,w).

Lemma 18. For any window w ∈ [W], T1,...,w and S1,...,w are independent of the ordering of

elements within any slot, and are determined by the configuration Y .

Proof. Given the assignment of items to each slot, it follows from the definition of γ(τ) and Sw

(refer to (5.2) and (5.6)) that T1,...,w and S1,...,w are independent of the ordering of items within a

slot. Now, since the assignment of items to slot are determined by the configuration Y , we obtain

the desired lemma statement. �

Following the above lemma, given a configuration Y , we will some times use the notation

T1,...,w(Y) and S1,...,w(Y) to make this mapping explicit.

Lemma 19. For any item i ∈ S∗, window w ∈ {1, . . . ,W}, and slot s in window w, define

pis := P(i ∈ s ∪ Supp(T)|T1,...,w−1 = T). (4.6)

Then, for any pair of slots s′, s′′ in windows w,w + 1, . . . ,W ,

pis′ = pis′′ ≥
1

kβ
. (4.7)

Proof. If i ∈ Supp(T) then the statement of the lemma is trivial, so consider i < Supp(T). For such

i, pis = P(Yi = s |T1,...,w−1 = T).

61

We show that for any pair of slots s, s′, where s is a slot in first w − 1 windows and s′ is a slot

in window w,

P(T1,...,w−1 = T |Yi = s) ≤ P(T1,...,w−1 = T |Yi = s′) . (4.8)

And, for any pair of slots s′, s′′ in windows {w,w + 1, · · · ,W},

P(T1,...,w−1 = T |Yi = s′) = P(T1,...,w−1 = T |Yi = s′′). (4.9)

To see (4.8), suppose for a configuration Y we have Yi = s and T1,··· ,w−1(Y) = T . Since i < Supp(T),

then by definition of T1,...,w−1 we have that i < γ(τ) for any α length subsequence τ of slots in any

of the windows 1, . . . ,w − 1. Therefore, if we remove i from windows 1, · · · ,w − 1 (i.e., consider

another configuration where Yi is in windows {w, . . . ,W}) then T1,··· ,w−1 would not change. This

is because i is not the output of argmax in definition of γ(τ) (refer to (5.2)) for any τ, so that

its removal will not change the output of argmax. Also by adding i to slot s′, T1,··· ,w−1 will not

change since s′ is not in window 1, · · · ,w − 1. Suppose configuration Y ′ is a new configuration

obtained from Y by changing Yi from s to s′. Therefore T1,··· ,w−1(Y ′) = T . Also remember that from

lemma 17, P(Y) = P(Y ′). This mapping shows that P(T1,...,w−1 = T |Yi = s) ≤ P(T1,...,w−1 = T |Yi =

s′).

The proof for (4.9) is similar.

By applying Bayes’ rule to (4.8) we have

P(Yi = s |T1,...,w−1 = T)
P(T1,...,w−1 = T)
P(Yi = s)

≤ P(Yi = s′|T1,...,w−1 = T)
P(T1,...,w−1 = T)
P(Yi = s′)

.

Also from Lemma 33, P(Yi = s) = P(Yi = s′) thus

P(Yi = s |T1,...,w−1 = T) ≤ P(Yi = s′|T1,...,w−1 = T) .

Now, for any pair of slots s′, s′′ in windows w,w+1, · · · ,W , by applying Bayes’ rule to the equation

(4.9), we have pis′ = P(Yi = s′|T1,...,w−1 = T) = P(Yi = s′′|T1,...,w−1 = T) = pis′′. That is, i

62

has as much probability to appear in s′ or s′′ as any of the other (at most kβ) slots in windows

w,w + 1, . . . ,W . As a result pis′′ = pis′ ≥
1

kβ .

�

Lemma 20. For any window w, i, j ∈ S∗, i , j and s, s′ ∈ w, the random variables 1(Yi =

s |T1,··· ,w−1 = T) and 1(Yj = s′|T1,··· ,w−1 = T) are independent. That is, given T1,··· ,w−1 = T , items

i, j ∈ S∗, i , j appear in any slot s in w independently.

Proof. To prove this, we show that P(Yi = s |T1,··· ,w−1 = T) = P(Yi = s |T1,··· ,w−1 = T and Yj = s′).

Suppose Y ′ is a configuration such that Y ′i = s and Y ′j = s′, and T1,··· ,w−1(Y ′) = T . Assume

there exists another feasible slot assignment of j, i.e., there is another configuration Y ′′ such that

T1,··· ,w−1(Y ′′) = T and Y ′′j = s′′ where s′′ , s′. (If no such configuration Y ′′ exists, then 1(Yj =

s′)|T is always 1, and the desired lemma statement is trivially true.) Then, we prove the desired

independence by showing that there exists a feasible configuration where slot assignment of i is s,

and j is s′′. This is obtained by changing Yj from s′ to s′′ in Y ′, to obtain another configuration

Ȳ . In Lemma 37, we show that this change will not effect T1,··· ,w−1, i.e., T1,··· ,w−1(Ȳ) = T . Thus

configuration Ȳ satisfies the desired statement. �

Lemma 21. Fix a slot s′, T , and j < Supp(T). Suppose that there exists some configuration Y ′

such that T1,··· ,w−1(Y ′) = T and Y ′j = s′. Then, given any configuration Y ′′ with T1,...,w−1(Y ′′) = T ,

we can replace Y ′′j with s′ to obtain a new configuration Ȳ that also satisfies T1,...,w−1(Ȳ) = T .

Proof. Suppose the slot s′ lies in window w′. If w′ ≥ w then the statement is trivial. So suppose

w′ < w. Create an intermediate configuration by removing the item j from Y ′′, call it Y−. Since

j < Supp(T1,··· ,w−1(Y ′′)) = Supp(T) we have T1,··· ,w−1(Y−) = T . In fact, for every subsequence τ,

the greedy subsequence for Y ′′, will be same as that for Y−, i.e., γY ′′(τ) = γY−(τ). Now add item j

to slot s′ in Y−, to obtain configuration Ȳ . We claim T1,··· ,w−1(Ȳ) = T .

By construction of T1,...,w, we only need to show that j will not be part of the greedy sub-

sequence γȲ (τ) for any subsequence τ, |τ | = α containing the slot s′ when the input is in con-

figuration Ȳ . To prove by contradiction, suppose that j is part of greedy subsequence for some

63

τ ending in the slot s′. For this τ, let γY−(τ) := {i1, · · · , iα−1, iα} = γY ′′(τ). Note that

since the items in the slots before s′ are identical for Ȳ and Y−, we must have that γȲ (τ) =

{i1, · · · , iα−1, j}, i.e., ∆ f (j |S1,...,w′−1 ∪ {i1, . . . , iα−1}) ≥ ∆ f (iα |S1,...,w′−1 ∪ {i1, . . . , iα−1}). On the

other hand, since T1,··· ,w′−1(Y ′) = T1,··· ,w′−1(Y ′′) = T(restricted to w′ − 1 windows), we have that

γY ′(τ) = {i1, · · · , iα}. However, Y ′j = s′. Therefore j was not part of the greedy subsequence γY ′(τ)

even though it was in the last slot in τ, implying ∆ f (j |S1,...,w′−1 ∪ {i1, . . . , it−1}) < ∆ f (it |S1,...,w′−1 ∪

{i1, . . . , it−1}). This contradicts the earlier observation.

�

4.3.3 Bounding E[f (∪wSw)]/OPT

In this section, we use the observations from the previous sections to show the existence

of a random subsequence of slots τ̃w of window w such that we can lower bound f (S1,...,w−1 ∪

γ(τ̃w)) − f (S1,...,w−1) in terms of OPT − f (S1,...,w−1). This will be used to lower bound increment

∆ f (Sw |S1,...,w−1) = f (S1,...,w−1 ∪ γ(τ
∗)) − f (S1,...,w−1) in every window.

Definition 10 (Zs and γ̃w). Create sets of items Zs,∀s ∈ w as follows: for every slot s, add every

item from i ∈ S∗ ∩ s independently with probability 1
kβpis

to Zs. Then, for every item i ∈ S∗ ∩ T ,

with probability α/k, add i to Zs for a randomly chosen slot s in w. Define subsequence τ̃w as the

sequence of slots with Zs , ∅.

Lemma 22. Given any T1,...,w−1 = T , for any slot s in window w, all i, i′ ∈ S∗, i , i′ will appear in

Zs independently with probability 1
kβ . Also, given T , for every i ∈ S∗, the probability to appear in

Zs is equal for all slots s in window w. Further, each i ∈ S∗ occurs in Zs of at most one slot s.

Proof. First consider i ∈ S∗ ∩ Supp(T). Then, Pr(i ∈ Zs |T) = α
k ×

1
αβ =

1
kβ by construction. Also,

the event i ∈ Zs |T is independent from i′ ∈ Zs |T for any i′ ∈ S∗ as i is independently assigned to a

Zs in construction. Further, every ∈ S∗ ∩ T is assigned with equal probability to every slot in s.

Now, consider i ∈ S∗, i < Supp(T). Then, for all slots s in window w,

Pr(i ∈ Zs |T) = Pr(Yi = s |T)
1

piskβ
= pis ×

1
piskβ

=
1

kβ
,

64

where pis is defined in (5.10). We used that pis = Pr(Yi = s |T) for i < Supp(T). Independence

of events i ∈ Zs |T for items in S∗\Supp(T) follows from Lemma 36, which ensures Yi = s |T and

Yj = s |T are independent for i , j; and from independent selection among items with Yi = s into

Zs.

The fact that every i ∈ S∗ occurs in at most one Zs follows from construction: i is assigned to

Zs of only one slot if i ∈ Supp(T); and for i < Supp(T), it can only appear in Zs if i appears in slot

s. �

Lemma 23. Given the sequence τ̃w = (s1, . . . , st) defined in Definition 15, let γ(τ̃s) = (i1, . . . , it),

with γ(·) as defined in (5.2). Then, for all j = 1, . . . , t,

E[∆ f (ij |S1,...,w−1 ∪ {i1, . . . , ij−1})|T1,...,w−1, i1,..., j−1] ≥
1
k

(
(1 −

α

k
) f (S∗) − f (S1,...,w−1 ∪ {i1, . . . , ij−1})

)
.

Proof. For any slot s′ in window w, let {s : s �w s′} denote all the slots s′ in the sequence of slots

in window w.

Now, using Lemma 38, for any slot s such that s �w s j−1, we have that the random variables

1(i ∈ Zs |Zs1 ∪ . . . ∪ Zsj−1) are i.i.d. for all i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}. Next, we show that the

probabilities Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1) are identical for all i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}:

Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1) =
∑

s:s�w sj−1

Pr(i ∈ Zs, s = sj |Zs1 ∪ . . . ∪ Zsj−1)

=
∑

s:s�w sj−1

Pr(i ∈ Zs |s = sj, Zs1 ∪ . . . ∪ Zsj−1)Pr(s = sj |Zs1 ∪ . . . ∪ Zsj−1) .

Now, from Lemma 38, the probability Pr(i ∈ Zs |s = s j, Zs1 ∪ . . . ∪ Zsj−1) must be identical for all

i < Zs1 ∪ . . . ∪ Zsj−1 . Therefore, from above we have that for all i, i′ ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1},

Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1) = Pr(i′ ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1) ≥
1
k
. (4.10)

The lower bound of 1/k followed from the fact that at least one of the items from S∗\{Zs1 ∪ . . . ∪

65

Zsj−1} must appear in Zsj for s j to be included in τ̃w. Thus, each of these probabilities is at least

1/k. In other words, if an item is randomly picked from Zsj , it will be i with probability at least

1/k, for all i ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1}.

Now, by definition of γ(·) (refer to (5.2)), i j is chosen greedily to maximize the increment

∆ f (i |S1,...,w−1 ∪ i1,...,s−1) over all i ∈ s j ∪ Supp(T1,...,w−1) ⊇ Zsj . Therefore, we can lower bound the

increment provided by i j by that provided by a randomly picked item from Zsj .

E[∆ f (i j |S1,...,w−1 ∪ {i1, . . . , i j−1}|T1,...,w−1 = T, i1, . . . , i j−1]

(using (5.12)) ≥
1
k
E[

∑
i∈S∗\{Z1,...Zsj−1 }

E[∆ f (i |S1,...,w−1 ∪ {i1, . . . , i j−1}|T, i1, . . . , i j−1]]

(using Lemma 12, monotonicity of f) ≥
1
k
E[

(
f (S∗\{Z1, . . . Zsj−1}) − f (S1,...,w−1 ∪ i1,...,s−1)

)
|T]

(using monotonicity of f) ≥
1
k
E[

(
f (S∗\ ∪s′∈w Zs′) − f (S1,...,w−1 ∪ i1,...,s−1)

)
|T]

(using Lemma 38 and Lemma 13) ≥
1
k

((
1 −

α

k

)
f (S∗) − f (S1,...,w−1 ∪ i1,...,s−1)

)
The last inequality uses the observation from Lemma 38 that given T , every i ∈ S∗ appears in

∪s′∈wZs′ independently with probability α/k, so that every i ∈ S∗ appears in S∗\ ∪s′∈w Zs′ inde-

pendently with probability 1 − α
k ; along with Lemma 13 for submodular function f . �

Using standard techniques for the analysis of greedy algorithm, the following corollary of the

previous lemma can be derived: given any T1,...,w−1 = T :

Lemma 24.

E
[(

1 −
α

k

)
f (S∗) − f (S1,...,w−1 ∪ γ(τ̃w))|T

]
≤ E

[
e−
|τ̃w |
k | T

] ((
1 −

α

k

)
f (S∗) − f (S1,...,w−1)

)
Proof. Let π0 = (1 − α

k) f (S
∗) − E[f (S1,...,w−1)|T1,...,w−1 = T], and for j ≥ 1,

π j := (1 −
α

k
) f (S∗) − E[f (S1,...,w−1 ∪ {i1, . . . , i j})|T1,...,w−1 = T, i1, . . . , i j−1],

66

Then, subtracting and adding (1 − α
k) f (S

∗) from the left hand side of the previous lemma, and

taking expectation conditional on T1,...,w−1 = T, i1, . . . , i j−2, we get

−E[π j |T, i1, . . . , i j−2] + π j−1 ≥
1
k
π j−1

which implies

E[π j |T, i1, . . . , i j−2] ≤

(
1 −

1
k

)
π j−1 ≤

(
1 −

1
k

) j

π0 .

By martingale stopping theorem, this implies:

E[πt |T] ≤ E
[(

1 −
1
k

) t

|T
]
π0 ≤ E

[
e−t/k |T

]
π0 .

where stopping time t = |τ̃w |. (t = |τ̃w | ≤ αβ is bounded, therefore, martingale stopping theorem

can be applied).

�

Next, we compare γ(τ̃w) to Sw = γ(τ∗) . Here, τ∗ was defined has the ‘best’ greedy subsequence

of length α (refer to (5.6) and (5.8)). To compare it with τ̃w, we need a bound on size of τ̃w.

Lemma 25. For any real δ ∈ (0,1), and if k ≥ αβ, α ≥ 8 log(β) and β ≥ 8, then given any

T1,...,w−1 = T ,

(1 − δ)
(
1 −

4
β

)
α ≤ |τ̃w | ≤ (1 + δ)α,

with probability 1 − exp(− δ2α
8β).

Proof. By definition,

|τ̃w | = |s ∈ w : Zs , φ| .

Again, we use s′ ≺w s to denote all slots before s in window w. Then, from Lemma 38, given

T1,...,w−1 = T , for all i ∩ S∗ and slot s in window w, Pr[i ∈ Zs |Zs′, s′ ≺w s,T] is either 0 or 1/(kβ).

67

Therefore,

Pr[Zs , φ|T, Zs′, s′ ≺w s] ≤
∑
i∈S∗

1
kβ
=

1
β
.

Therefore Xs = |s′ �w s : Zs′ , φ| −
s
β is a super-martingale, with Xs − Xs−1 ≤ 1. Since there are

αβ slots in window w, Xαβ = |s ∈ w : Zs , φ| − α. Applying Azuma-Hoeffding inequality to Xαβ

(refer to Lemma 14) we get that

Pr (|s ∈ w : Zs , φ| ≥ (1 + δ)α |T) ≤ exp
(
−
δ2α

2β

)
(4.11)

which proves the desired upper bound.

For lower bound, first observe that every i ∈ S∗ appears in ∪s∈wZs independently with prob-

ability α
k . Using Chernoff bound for Bernoulli random variables (Lemma 15), for any δ ∈ (0,1)

Pr(| | ∪s∈w Zs | − α | > δα) ≤ exp(−δ2α/3) . (4.12)

Also, from independence of i ∈ Zs |T and i′ ∈ Zs |T for any i, i′ ∈ S∗, i , i′ (refer to Lemma 38),

Pr(i, i′ ∈ Zs |T, i, i′ < Zs′ for any s′ ≺w s) ≤
1

k2β2

for any s ∈ w; so that

Pr (|Zs | = 1|T, Zs′, s′ ≺w s) ≥
k − |Zs′ : s′ ≺w s |

kβ
−

1
β2 ≥

(
1 −

2α
k

)
1
β
−

1
β2 − e−

α
4 =: p . (4.13)

where in the last inequality we substituted the upper bound on |Zs′ : s′ ≺w s | from (4.12). Specifi-

cally, using (4.12) with δ = 3/4, we obtained that |Zs′ : s′ ≺w s | ≤ (1 + 3
4)α ≤ 2α with probability

exp(−α/4). Also if α ≥ 8 log(β), and k ≥ αβ, we have p :=
(
1 − 2α

k −
1
β

)
1
β − e−

α
4 ≥ (1 − 4

β)
1
β .

Now, applying Azuma-Hoeffding inequality (Lemma 14), the total number of slots (out of αβ

68

slots) for which |Zs | = 1 can be lower bounded by:

Pr (|{s ∈ w : |Zs | = 1}| ≤ (1 − δ)pαβ |T) ≤ exp
(
−
δ2p2αβ

2

)
. (4.14)

Substituting p ≥ (1 − 4
β)

1
β ,

Pr
(
|{s ∈ w : |Zs | = 1}| ≤ (1 − δ)(1 −

4
β
)α |T

)
≤ exp

(
−
δ2(1 − 4/β)2α

2β

)
.

We further substitute β ≥ 8 in the right hand side of the above inequality, to bound the probability

by exp(−δ2α/8β).

�

Lemma 26 (Corollary of Lemma 25). For any real δ′ ∈ (0,1), if parameters k, α, β satisfy k ≥ αβ,

β ≥ 8
(δ′)2

, α ≥ 8β2 log(1/δ′), then given any T1,...,w−1 = T , with probability at least 1 − δ′e−α/k ,

|τ̃w | ≥ (1 − δ′)α .

Proof. We use the previous lemma with δ = δ′/2 to get lower bound of (1 − δ′)α with probability

1 − exp(−(δ′)2α/32β). Then, substituting k ≥ αβ ≥ 64β
(δ′)2

log(1/δ′) so that using β ≤ k(δ′)2

64 log(1/δ′) we

can bound the violation probability by

exp(−(δ′)2α/32β) ≤ exp(−(δ′)2α/64β) exp(−α/k) ≤ δ′e−α/k .

where the last inequality uses α ≥ 8β2 log(1/δ′) and β ≥ 8/(δ′)2. �

Lemma 27. For any real δ′ ∈ (0,1), if parameters k, α, β satisfy k ≥ αβ, β ≥ 8
(δ′)2

, α ≥

8β2 log(1/δ′), then

E

[
k − α

k
OPT − f (S1,...,w)|T1,...,w−1

]
≤ (1 − δ′)e−α/k

(
k − α

k
OPT − f (S1,...,w−1)

)
.

Proof. The lemma follows from substituting Lemma 44 in Lemma 43. �

69

Now, we can deduce the following proposition.

Proposition 5. For any real δ′ ∈ (0,1), if parameters k, α, β satisfy k ≥ αβ, β ≥ 8
(δ′)2

, α ≥

8β2 log(1/δ′), then the set S1,...,W tracked by Algorithm 8 satisfies

E[f (S1,...,W)] ≥ (1 − δ′)2(1 − 1/e)OPT.

Proof. By multiplying the inequality Lemma 45 from w = 1, . . . ,W , where W = k/α, we get

E[f (S1,...,W)] ≥ (1 − δ′)(1 − 1/e)(1 −
α

k
)OPT.

Then, using 1 − α
k ≥ 1 − δ′ because k ≥ αβ ≥ α

δ′ , we obtain the desired statement. �

4.3.4 Bounding E[f (A∗)]/OPT

Here, we compare f (S1...,W) to f (A∗), where A∗ = S1...,W∩A, with A being the shortlist returned

by Algorithm 8. The main difference between the two sets is that in construction of shortlist A,

Algorithm 5 is being used to compute the argmax in the definition of γ(τ), in an online manner.

This argmax may not be computed exactly, so that some items from S1...,W may not be part of the

shortlist A. We use the following guarantee for Algorithm 5 to bound the probability of this event.

Proposition 6. For any δ ∈ (0,1), and input I = (a1, . . . ,aN), Algorithm 5 returns A∗ =

max(a1, . . . ,aN) with probability (1 − δ).

The proof of the above proposition appeared in the m-submodular chapter. Intuitively, it follows

from the observation that if we select every item that improves the maximum of items seen so far,

we would have selected log(N) items in expectation. The exact proof involves showing that on

waiting nδ/2 steps and then selecting maximum of every item that improves the maximum of items

seen so far, we miss the maximum item with at most δ probability, and select at most O(log(1/δ))

items with probability 1 − δ.

70

Lemma 28. Let A be the shortlist returned by Algorithm 8, and δ is the parameter used to call

Algorithm 5 in Algorithm 8. Then, for given configuration Y , for any item a, we have

Pr(a ∈ A|Y,a ∈ S1,··· ,w) ≥ 1 − δ .

Proof. From Lemma 34 by conditioning on Y , the set S1,··· ,W is determined. Now if a ∈ S1,...,w,

then for some slot s j in an α length subsequence τ of some window w, we must have

a = arg max
i∈sj∪R1,...,w−1

f (S1,...,w−1 ∪ γ(τ) ∪ {i}) − f (S1,...,w−1 ∪ γ(τ)).

Let w′ be the first such window, τ′, s j ′ be the corresponding subsequence and slot. Then, it must

be true that

a = arg max
i∈sj ′

f (S1,...,w′−1 ∪ γ(τ
′) ∪ {i}) − f (S1,...,w′−1 ∪ γ(τ

′)).

(Note that the argmax in above is not defined on R1,··· ,w′−1). The configuration Y only determines

the set of items in the items in slot s j ′, the items in s j ′ are still randomly ordered (refer to Lemma

34). Therefore, from Proposition 6, with probability 1 − δ, a will be added to the shortlist A j ′(τ
′)

by Algorithm 5. Thus a ∈ A ⊇ A j ′(τ
′) with probability at least 1 − δ.

�

Proposition 7.

E[f (A∗)] := E[f (S1,··· ,W ∩ A)] ≥ (1 −
ε

2
)E[f (S1,··· ,W)]

where A∗ := S1,··· ,W ∩ A is the size k subset of shortlist A returned by Algorithm 8.

Proof. From the previous lemma, given any configuration Y , we have that each item of S1,··· ,W is

in A with probability at least 1− δ, where δ = ε/2 in Algorithm 8. Therefore using Lemma 13, the

expected value of f (S1,··· ,W ∩ A) is at least (1 − δ)E[F(S1,··· ,W)]. �

Proof of Theorem 23. Now, we can show that Algorithm 8 provides the results claimed in The-

orem 23 for appropriate settings of α, β in terms of ε . Specifically for δ′ = ε/4, set α, β as smallest

71

integers satisfying β ≥ 8
(δ′)2

, α ≥ 8β2 log(1/δ′). Then, using Proposition 5 and Proposition 5.4, for

k ≥ αβ we obtain:

E[f (A∗)] ≥ (1 −
ε

2
)(1 − δ′)2(1 − 1/e)OPT ≥ (1 − ε)(1 − 1/e)OPT.

This implies a lower bound of 1− ε − 1/e−αβ/k = 1− ε − 1/e−O(1/k) on the competitive ratio.

The O(k) bound on the size of the shortlist was demonstrated in Proposition 8.

4.4 Streaming

In this section, we show that Algorithm 8 can be implemented in a way that it uses a memory

buffer of size at most η(k) = O(k); and the number of objective function evaluations for each

arriving item is O(1 + k2

n). This will allow us to obtain Theorem 29 (restated below) as a corollary

of Theorem 23.

Theorem 24. For any constant ε ∈ (0,1), there exists an algorithm for the submodular random

order streaming problemthat achieves an
(
1 − 1

e − ε −O(1k)
)
-approximation to OPT while using a

memory buffer of size at most ηε (k) = O(k). Also, the number of objective function evaluations for

each item, amortized over n items, is O(1 + k2

n).

In the current description of Algorithm 8, there are several steps in which the algorithm poten-

tially needs to store O(n) previously seen items in order to compute the relevant quantities. First,

in Step 6, in order to be able to compute γ(τ) for all less than α length subsequences τ of slots

s1, . . . , s j−1, the algorithm should have stored all the items that arrived in the slots s1, . . . , s j−1.

However, this memory requirement can be reduced by a small modification of the algorithm, so

that at the end of iteration j − 1, the algorithm has already computed γ(τ) for all such τ, and stored

them to be used in iteration j. In fact, this can be implemented in a memory efficient manner,

in the following way. For every subsequence τ of slots s1, . . . , s j−1 of length < α, consider prefix

τ′ = τ\s j−1. Assume γ(τ′) is available from iteration j−2. If τ′ = τ, then γ(τ) = γ(τ′). Otherwise,

in Step 6 of iteration j − 1, the algorithm must have considered the subsequence τ′ while going

72

through all subsequences of length less than α of slots s1, . . . , s j−2. Now, modify the implementa-

tion of Step 6 so that the algorithm also tracks the (true) maximum Mj−1(τ
′) of a0,a1, . . . ,aN for

each τ′. Then, γ(τ) can be obtained by extending γ(τ′) by Mj−1(τ
′), i.e., γ(τ) = {γ(τ′),Mj−1(τ

′)}.

Thus, at the end of iteration j − 1, γ(τ) would have been computed for all subsequences τ relevant

for iteration j, and so on. In order to store these γ(τ) for every subsequence τ (of at most α slots

from αβ slots), we require a memory buffer of size at most α2 (αβ
α

)
= O(1).

Secondly, across windows and slots, the algorithm keeps track of Rw,Sw,w = 1, . . . , k/α where

W = k/α. In the current description of Algorithm 8, these sets are computed after seeing all

the items in window w in Step 9. Thus, all the items arriving in that window would be needed

to be stored in order to compute them, requiring O(n) memory buffer. However, the alternate

implementation discussed in the previous paragraph reduces this memory requirement to O(k) as

well. Using the above implementation, at the end of iteration αβ for the last slot sαβ in window w,

we would have computed and stored γ(τ) for all the subsequences τ of length α of slots s1, . . . , sαβ.

Rw is simply defined as union of all items in γ(τ) over all such τ (refer to (5.5)). And, Sw = γ(τ∗)

for the best subsequence τ∗ among these subsequences (refer to (5.6)). Thus, computing Rw and

Sw does not require any additional memory buffer. Storing Rw and Sw for all windows requires a

buffer of size at most
∑

w |Rw | + |Sw | = k
α × α

(αβ
α

)
+ k = O(k). Therefore, the total buffer required

to implement Algorithm 8 is of size O(k).

Finally, let’s bound the number of objective function evaluations for each arriving item. Each

arriving item is processed in Step 6, where objective function is evaluated twice for each τ to

compute the corresponding ai. Since there are atmost
(αβ
α

)
subsequences τ for which this quantity

is computed, the total number of times this computation is performed is bounded by 2
(αβ
α

)
= O(1).

However, for each τ, we also compute a0 in the beginning of the slot. Computing a0 for each τ

involves taking max over all items in R1,...,w−1, and requires 2|R1,...,w−1 | ≤ 2k
(αβ
α

)
evaluations of the

objective function. Due to this computation, in the worst-case, the update time for an item can be

2k
(αβ
α

)2
+ 2

(αβ
α

)
= O(k). However, since a0 is computed once in the beginning of the slot for each

τ, the total update time over all items is bounded by 2k
(αβ
α

)2
× kβ+

(αβ
α

)
×n = O(k2+n). Therefore

73

the amortized update time for each item is O(1 + k2

n). This concludes the proof of Theorem 29.

4.5 Impossibility Result (Proof of Theorem 25)

In this section we provide an upper bound showing the following:

Theorem 25. No online algorithm (even with unlimited computational power) can achieve a com-

petitive ratio better than 7/8 + o(1) for the submodular k-secretary problem with shortlists, while

using a shortlist of size η(k) = o(n).

In the following proof, for simplicity of notation, we prove the desired bound for submodular

(k + 1)-secretary problem. For any given n, k, we construct a set of instances of the submodular

(k + 1)-secretary problem with shortlists such that any online algorithm that uses a shortlist of size

η(k + 1) will have competitive ratio of at most 7
8 +

η(k+1)
2n on a randomly selected instance from this

set.

First, we define a monotone submodular function f as follows. The ground set consists of

n
2k + n− 1 items. There are two types of items, C and D, with L := n/2k items of type C and n− 1

items of type D. We define f (φ) := 0, f ({c}) := k for c ∈ C, and f ({d}) := 1 for all d ∈ D. Also

there is a collection of L disjoint sets T` = {c`, d`1, · · · , d
`
k}, ` = 1,2, . . . L, such that c` ∈ C and

d`j ∈ D. We define f (T`) := 2k for all ` = 1, . . . , L. Now, let

g(t) := k +
k
2
+ · · · +

k
2i−1 +

(t − ik)
2i ,

where i = bt/kc. It is easy to see that g is a monotone submodular function.

Now, define f on the remaining subsets of the ground set as follows. For all S with |S | ≥ 1,

• |S ∩ C | ≥ 2 =⇒ f (S) := 2k + 1

• |S ∩ C | = 0 =⇒ f (S) := 1 + g(|S | − 1)

74

• |S ∩ C | = 1 =⇒ S ∩ C = {c`} for some ` ∈ [L] =⇒

f (S) := min{2k + 1, k +
1
2
g(|S | − 1) +

k′

2i+1 },

where k′ = |S ∩ {d`1, · · · , d
`
k}|, i = b(|S | − 1)/kc.

Observe that since g(k) = k, for any subset S of size at most k +1, we have f (S) ≤ k + k
2 +

k
2 =

2k.

Lemma 29. f is a monotone submodular function.

Proof. We have to show that for any item x and subsets S ⊆ T , ∆ f (x |S) ≥ ∆ f (x |T). We consider

the following cases:

• if |T ∩ C | ≥ 2 =⇒ ∆ f (x |T) = 0, so it is trivial.

• if |T ∩ C | = 0 =⇒ |S ∩ C | = 0 =⇒ ∆ f (x |S) ≥ ∆ f (x |T) because of submodularity of g.

• if |T ∩ C | = 1 =⇒ |S ∩ C | ≤ 1

– if |S ∩ C | = 1 then S ∩ C = T ∩ C = {c`} for some `:

* x ∈ {d`1, · · · , d
`
k} =⇒ ∆ f (x |S) = 1/2i+1 + 1/2i+1 for i = b(|S | − 1)/kc, and

∆ f (x |T) = 1/2 j + 1/2 j for some j = b(|T | − 1)/kc and j ≥ i + 1.

* x < {d`1, · · · , d
`
k} =⇒ ∆ f (x |S) = 1/2i+1 for i = b(|S | − 1)/kc and ∆ f (x |T) = 1/2 j

for some j ≥ i + 1.

– if |S∩C | = 0 =⇒ ∆ f (x |T) ≤ 1/2 j+1+1/2 j+1 for j = b(|T |−1)/kc and ∆ f (x |S) = 1/2i

for some i ≤ j.

Thus ∆ f (x |S) ≥ ∆ f (x |T).

Monotonicity follows trivially from the definition of f . �

75

Now, denote D` := T ` ∩ D = {d`1, · · · , d
`
k} for ` = 1,2, . . . , L. Also, let D′ = D \ (

⋃L
`=1 D`).

Now define L input instances {I`}`=1,...,L , each of size n, as follows. For any arbitrary subset

D̃ ⊆ D′ of size n − Lk − 1, define I` =
⋃

i=1,...,L Di ∪ D̃ ∪ {c`}, for ` = 1, . . . , L. Thus, for instance

I`, the the optimal k + 1 subset is T ` with value f (T `) = 2k.

Now consider any algorithm for the submodular secretary problem with shortlists and cardi-

nality constraint k + 1. We denote by Alg the set of η(k + 1) items selected by the algorithm as

part of the shortlist. Let Ī denote an instance chosen uniformly at random from I`, ` = 1, . . . , L.

Let π denote a random ordering of n items in Ī. We denote by random variable (Ī, π) the randomly

ordered input instance to the algorithm. Also we denote by T̄, D̄ and c̄, the corresponding T `, D`

and c`.

Now we claim

Lemma 30. E(Ī,π)[|Alg ∩ D̄ |] ≤ k/2 + η(k + 1)/L.

Proof. Suppose (e1, · · · , en) indicates the ordered input according to random ordering π on Ī. Now

let t be the random variable indicating the index of c` in (e1, · · · , en), i.e., et = c`. Then, due to

random ordering, and random choice of Ī from I1, . . . , I`, we have

E(Ī,π)[|Alg ∩ {e1, · · · , et−1} ∩ D1 |] = · · · = E[|Alg ∩ {e1, · · · , et−1} ∩ DL |] .

Also, since D`, ` = 1, . . . , L are disjoint,

L∑̀
=1
E[|Alg ∩ {e1, · · · , et−1} ∩ D` |] ≤ η(k + 1) .

Since D̄ = D` with probability 1/L, we have

H := E[|Alg ∩ {e1, · · · , et−1} ∩ D̄ |] =
1
L

L∑̀
=1
E[|Alg ∩ {e1, · · · , et−1} ∩ D` |] ≤

1
L
η(k + 1) .

76

Now define G := E[|Alg ∩ {et, · · · , en} ∩ D̄|]. We have

G ≤ E[|D̄ ∩ {et, · · · , en}|] ≤ k/2 .

Thus

E[|Alg ∩ D̄ |] ≤ G + H ≤ k/2 + η(k + 1)/L .

�

Now on input Ī, if the algorithm doesn’t select c̄ as part of shortlist Alg, then by definition of

f for sets that do not contain any item of type C, we have

f (A∗) := max
S⊆Alg:|S |≤k+1

f (S) ≤ 1 + g(k) = k +
k
2

Otherwise, if algorithm selects c̄ then by definition of f

f (A∗) := max
S⊆Alg:|S |≤k+1

f (S) ≤ max
S⊆Alg\(D̄∪{c̄}):|S |≤k−|Alg∩D̄ |

f (S ∪ D̄ ∪ {c̄}) = k +
k
2
+

1
2
|Alg ∩ D̄ |

therefore

E[f (A∗)] ≤ k +
k
2
+

k
4
+
η(k + 1)

2L
=

7k
4
+

kη(k + 1)
n

.

Since the optimal is equal to E[f (T̄)] = 2k, the competitive ratio is upper bounded by

7
8
+
η(k + 1)

2n

This proves competitive ratio upper bound of 7
8 + o(1) when η(k + 1) = o(n), to complete the

proof of Theorem 25.

77

Chapter 5: Matroid constraints

5.1 Introduction

In recent years, submodular optimization has found applications for different machine learning

and data mining applications including data summarization, sparsity, active learning, recommen-

dation, high-order graphical model inference, determinantal point processes [17, 6, 32], network

inference, network design [25, 23], and influence maximization in social networks [32].

In data summarization tasks, the collection of elements is generated continuously, and keeping

a real time summary of the the data seen so far is important. Thus, a series of recent papers

studied streaming algorithms for maximizing a submodular function. The first work to consider a

one-pass streaming algorithm were the work of Badanidiyuru et al. [6], who described a (1/2− ε)-

approximation streaming algorithm for maximizing a monotone submodular function subject to a

k-cardinality constraint, with a memory of size O(1ε k log k). Recently, Kazermi et al. [32] proposed

a new algorithm with the same approximation ratio but with improved memory O(k).

[44] give an upper bound of 1/2+ o(1) on the approximation ratio achievable by any algorithm

for streaming submodular maximization that only queries the value of the submodular function on

feasible sets (sets of size at most k) while using o(n) memory [44]. Consequently, they consider

the random order streaming model to go beyond this worst case analysis for the adversarial order

inputs. They achieve a 1/2 + 8 × 10−14 approximation for maximizing a monotone submodular

function in the random order model, using a memory buffer of size O(k log k). Subsequently, [2]

substantially improve their result to 1 − 1/e − ε − O(1/k) approximation which is close to the

best possible guarantee in the offline setting, i.e., 1 − 1/e (assuming P , NP). Furthermore, they

improve the required memory buffer to only O(k).

In addition to the simple cardinality constraint, more general constraints have been studied

78

in the literature. Chakrabarti and Kale [11] give a 1/4p approximation algorithm for streaming

monotone submodular functions maximization subject to the intersection of p matroid constraints.

Chekuri et al. [12] extend it to p-matchoids constraints. p-matchoids generalize many basic com-

binatorial constraints such as the cardinality constraint, the intersection of p matroids, and match-

ings in graphs and hyper-graphs. A formal definition of a p-matchoid is given in Section 5.5.

Recently, [17] designed a more efficient algorithm with lower number of function evaluations

achieving the same approximation 1/4p.

The algorithms of [17], [11] and [12] for monotone submodular objective functions require

only O(k) memory (k is the size of the largest feasible set) and using only O(kq) value and inde-

pendence oracle queries for processing a each element of the stream (q is a the number of matroids

used to define the p-matchoid constraint).

Furthermore, the greedy algorithm yields a ratio of 1/(p + 1) for p-independent systems [43].

These ratios for greedy are tight for all p even when the p-independent system is obtained as an

intersection of p matroids. For large but fixed p, the p-dimensional matching problem is NP-hard

to approximate to within an Ω(log p/p) factor [28].

The submodular matroid secretary problem with shortlists. Motivated by the improvements

of the competitive ratio for the submodular k-secretary problem in the shortlist model, we ask if

a similar improvement can be achieved by relaxing the submodular matroid secretary problem to

allow a shortlist. That is, instead of choosing an independent set of a matroidM with rk(M) = k,

the algorithm is allowed to chose η(k) items as part of a shortlist, for some function η; and at

the end of all inputs, the algorithm chooses an independent subset of items from the η(k) selected

items. Then what is the best competetive ratio that we can achieve in this model for example when

η(k) = O(k)? Is it possible to improve the best known competetive ratio for matroid secretary

problem in this model?

Problem definition. We now give a more formal definition. We are given matroidM = (N,I).

Items from a set U = {a1,a2, . . . ,an} (pool of items) arrive in a uniformly random order over n

79

sequential rounds. The set U is apriori fixed but unknown to the algorithm, and the total number

of items n is known to the algorithm. In each round, the algorithm irrevocably decides whether to

add the arriving item to a shortlist A or not. The algorithm’s value at the end of n rounds is given

by

ALG = E[max
S⊆A,S∈I

f (S)],

where f (·) is a monotone submodular function. The algorithm has value oracle access to this

function. The optimal offline utility is given by

OPT := f (S∗), where S∗ = arg max
S⊆[n],S∈I

f (S).

We say that an algorithm for this problem achieves a competitive ratio c using shortlist of size η(k),

if at the end of n rounds, |A| ≤ η(k) and ALG
OPT ≥ c.

Given the shortlist A, since the problem of computing the solution arg maxS⊆A,S∈I f (S) can

itself be computationally intensive, our algorithm will also track and output a subset A∗ ⊆ A, |A∗ | ≤

k.

Our results. We design an algorithm that achieves a 1
2 (1 − 1/e2 − ε −O(1/k)) competitive ratio

for any constant ε > 0, using a shortlist of size O(k) for the matroid secretary problem with

shortlists. This is especially surprising considering that the best known competitive ratio for the

matroid secretary problem is O(log log k). We are also able to get a constant competitive algorithm

using shortlist of size at most k and also a constant competitive algorithm in the preemption model.

Theorem 26. For any constant ε > 0, there exists an online algorithm (Algorithm 8) for the

submodular matroid secretary problem with shortlists that achieves a competitive ratio of 1
2 (1 −

1
e2 − ε −O(1k)), with shortlist of size ηε (k) = O(k). Here, ηε (k) = O(2poly(1/ε)k). The running time

of this online algorithm is O(nk).

Theorem 27. For the matroid secretary problem in preemption model, and matroid secretary prob-

lem that uses shortlist of size at most η(k) = k, there is an algorithm that achieves competitive ratio

80

1
2 (1 − 1/e)(1 − 1/e2 − ε).

Furthermore, for a more general constraint, namely p-matchoid constraints (defined in sec-

tion 5.5) we prove:

Theorem 28. For any constant ε > 0, there exists an online algorithm for the submodular secre-

tary problem with p-matchoid constraints that achieves a competitive ratio of 1
p+1 (1 −

1
ep+1 − ε −

O(1k)), with shortlist of size ηε (k) = O(k). Here, ηε (k) = O(2poly(1/ε)k). The running time of this

online algorithm is O(nκp), where κ = maxi∈[q] rk(Mi).

The proposed algorithm also has implications for another important problem of submodular

function maximization under random order streaming model and matchoid constraints. We show

that our algorithm can be implemented in the streaming setting using O(k) memory. It achieves

1
p+1 (1 − 1/ep+1 − ε −O(1/k)) approximation.

Theorem 29. For any constant ε ∈ (0,1), there exists an algorithm for the submodular random

order streaming problem with matroid constraints that achieves 1
2 (1−

1
e − ε −O(1k)) approximation

to OPT while using a memory buffer of size at most ηε (k) = O(k). Also, the number of objective

function evaluations for each item, amortized over n items, is O(pk + k2

n).

Theorem 30. For any constant ε > 0, there exists an algorithm for the submodular random order

streaming problem with p-matchoid constraints that achieves 1
p+1 (1 −

1
ep+1 − ε − O(1k)) approxi-

mation to OPT while using a memory buffer of size at most ηε (k) = O(k). Also, the number of

objective function evaluations for each item, amortized over n items, is O(pκ + κp + k2

n), where

κ = maxi∈[q] rk(Mi).

5.1.1 Related Work

In this section, we overview some of the related online problems. In the submodular k-

secretary problem introduced by [7] and [27], the algorithm selects k items, but the value of

the selected items is given by a monotone submodular function The algorithm can select at most

81

k items S = {a1 · · · ,ak}, from a randomly ordered sequence of n items. The goal is to maximize

f (S). Currently, the best result for this setting is due to [34], who achieve a 1/e-competitive ratio

in exponential time in k, or 1
e (1−

1
e) in polynomial time in n and k. Submodular functions also has

been used in the network design problems [25, 24]. There are also some related online coloring

problems in the literature [26, 1].

In the matroid secretary problem, the elements of a matroidM arrive in random order. Once

we observe an item we need to irrevocably decide whether or not to accept it. The set of selected

elements should form an independent set of the matroid. The goal is to maximize the total sum of

the values assigned to these elements. It has applications in online mechanism design, in particular

when the set of acceptable agents form a matroid [5].

The existence of a constant competitive algorithm is a long-standing open problem. [37]

provides the first O(log log(k))- competitive algorithm (the hidden constant is 2234
). [18] give a

simpler order-oblivious 2560(log log 4k +5)-competitive algorithm for the matroid secretary prob-

lem, by knowing only the cardinality of the matroid in advance. There are some O(1)-competitive

algorithms for special variants of the matroid secretary problem. For example, the elements of the

ground set are assigned to a set of weights uniformly at random hen a 5.7187-competitive algo-

rithm is possible for any matroid [47]. Furthermore, a 16(1 − 1/e)-competitive algorithm can be

achieved as long as the weight assignment is done at random, even if we assume the adversarial

arrival order.

Recently, [10] considered a different relaxation which is called preemptions model. In this

model, elements added to S can be discarded later. The main result of [10], is a randomized

0.0893-competitive algorithm for cardinality constraints using O(k) memory.

5.1.2 Related Work

In this section, we overview some of the related online problems. In the submodular k-

secretary problem introduced by [7] and [27], the algorithm selects k items, but the value of

the selected items is given by a monotone submodular function The algorithm can select at most

82

k items S = {a1 · · · ,ak}, from a randomly ordered sequence of n items. The goal is to maximize

f (S). Currently, the best result for this setting is due to [34], who achieve a 1/e-competitive ratio

in exponential time in k, or 1
e (1 −

1
e) in polynomial time in n and k.

In the matroid secretary problem, the elements of a matroidM arrive in random order. Once

we observe an item we need to irrevocably decide whether or not to accept it. The set of selected

elements should form an independent set of the matroid. The goal is to maximize the total sum of

the values assigned to these elements. It has applications in online mechanism design, in particular

when the set of acceptable agents form a matroid [5].

The existence of a constant competitive algorithm is a long-standing open problem. Lachish [37]

provides the first O(log log(k))- competitive algorithm (the hidden constant is 2234
). Feldman et

al. [18] give a simpler order-oblivious 2560(log log 4k + 5)-competitive algorithm for the matroid

secretary problem, by knowing only the cardinality of the matroid in advance. There are some

O(1)-competitive algorithms for special variants of the matroid secretary problem. For example,

the elements of the ground set are assigned to a set of weights uniformly at random then a 5.7187-

competitive algorithm is possible for any matroid [47]. Furthermore, a 16(1 − 1/e)-competitive

algorithm can be achieved as long as the weight assignment is done at random, even if we assume

the adversarial arrival order.

Recently, [10] considered a different relaxation which is called preemptions model. In this

model, elements added to S can be discarded later. The main result of [10], is a randomized

0.0893-competitive algorithm for cardinality constraints using O(k) memory.

5.2 Algorithm description

Before describing our main algorithm we design a subroutine for a problem that we call it

secretary problem with replacement: we are given a matroidM = (E,I) and an independent set

S ∈ I. A pool of items I = (a1, · · · ,aN) arriving sequentially in a uniformly random order, find an

element e from I that can be added to S after removing possibly one element e′ from S such that

the set remains independent, i.e., S+ e− e′ ∈ I. The goal is to choose element e and e′ in an online

83

manner with maximum marginal increment g(e,S) = f (S + e − e′) − f (S). More precisely define

function g as:

g(e,S) := f (S + e − θ(e,S)) − f (S), (5.1)

where θ is defined as:

θ(e,S) := arg max
e′∈S
{ f (S + e − e′)|S + e − e′ ∈ I}

We will consider the variant in which we are allowed to have a shortlist, where the algorithm can

add items to a shortlist and choose one item from the shortlist at the end.

For the secretary problem with replacement, we give Algorithm 7 which is a simple modifica-

tion of the online max algorithm in [2].

Lemma 31. Algorithm 7 returns element e with maximum g(e,S) with probability 1 − δ, thus it

achieves a 1 − δ competitive ratio for the secretary problem with replacement. The size of the

shortlist that it uses is logarithmic in 1/δ.

Algorithm 7 Secretary Problem with Replacement
1: Inputs: number of items N , an independent set S, items in I = {a1, . . . ,aN } arriving sequen-

tially, δ ∈ (0,1].
2: Initialize: A← ∅, u = nδ/2, M = −∞
3: L ← 4 ln(2/δ)
4: for i = 1 to N do
5: if g(ai,S) > M then
6: M ← g(ai,S)
7: if i ≥ u and |A| < L then
8: A← A ∪ {ai}

9: end if
10: end if
11: end for
12: return A, and A∗ := maxi∈A g(ai,S)

Similar to [2], we divide the input into sequential blocks that we refer to as (α, β) windows.

Here k = rk(M).

84

Algorithm 8 Algorithm for submodular matroid secretary with shortlist
1: Inputs: number of items n, submodular function f , parameter ε ∈ (0,1].
2: Initialize: S0 ← ∅,R0 ← ∅, A ← ∅, A∗ ← ∅, constants α ≥ 1, β ≥ 1 which depend on the

constant ε .
3: Divide indices {1, . . . ,n} into (α, β) windows.
4: for window w = 1, . . . , k/α do
5: for every slot s j in window w, j = 1, . . . , αβ do
6: Concurrently for all subsequences of previous slots τ ⊆ {s1, . . . , s j−1} of length |τ | < α

7: in window w, call the online algorithm in Algorithm 7 with the following inputs:

• number of items N = |s j | + 1, δ = ε
2 , and

• item values I = (a0,a1, . . . ,aN−1), with

a0 := max
x∈R1,...,w−1

∆(x |S1,...,w−1 ∪ γ(τ) \ ζ(τ))

a` := ∆(s j(`)|S1,...,w−1 ∪ γ(τ) \ ζ(τ)),∀0 < ` ≤ N − 1

where s j(`) denotes the `th item in the slot s j .

8: Let A j(τ) be the shortlist returned by Algorithm 7 for slot j and subsequence τ. Add
9: all items except the dummy item 0 to the shortlist A. That is,

A← A ∪ (A(j) ∩ s j)

10: end for
11: After seeing all items in window w, compute Rw,Sw and S̄w as before
12: S1,··· ,w ← S1,··· ,w−1 ∪ Sw \ S̄w
13: A∗ ← A∗ ∪ (Sw ∩ A) \ Ŝw
14: end for
15: return A, A∗.

Definition 11 ((α, β) windows). Let X1, . . . ,Xkβ be a (n, kβ)-ball-bin random set. Divide the in-

dices {1, . . . ,n} into kβ slots, where the j-th slot, s j , consists of X j consecutive indices in the

natural way, that is, slot 1 contains the first X1 indices, slot 2 contains the next X2, etc. Next, we

define k/α windows, where window i consists of αβ consecutive slots, in the same manner as we

assigned slots.

Intuitively, for large enough α and β, roughly α items from the optimal set S∗ are likely to lie

in each of these windows, and further, it is unlikely that two items from S∗ will appear in the same

slot.

85

The algorithm can focus on identifying a constant number (roughly α) of optimal items from

each of these windows, with at most one item coming from each of the αβ slots in a window.

Similar to [2], the core of our algorithm is a subroutine that accomplishes this task in an online

manner using a shortlist of constant size in each window. But the difference is that adding items

from a new window to the current solution S could make it a non-independent set of M. In

order to make the new set independent we have to remove some items from S. The removed item

corresponding to e will be θ(e,S). We need to take care of all the removals for newly selected

items in a window. Therefore we have to slightly change the definitions in [2]. We introduce

ζ(τ) which is counterpart of γ(τ) for the removed elements. More precisely, for any subsequence

τ = (s1, . . . , s`) of the αβ slots in window w, recall the greedy subsequence γ(τ) of items as:

γ(τ) := {i1, . . . , i`} (5.2)

where

i j := arg max
i∈sj∪R1,...,w−1

g(i,S1,...,w−1 ∪ {i1, . . . , i j−1}) (5.3)

now define ζ(τ) := {c1, . . . , c`} where

c j := θ(i j,S1,...,w−1 ∪ {i1, . . . , i j−1}) (5.4)

Recall the definition of Rw in [2], which is the union of all greedy subsequences of length α,

and Sw to be the best subsequence among those. That is,

Rw = ∪τ:|τ |=αγ(τ) (5.5)

and

Sw = γ(τ∗), (5.6)

86

now define

S̄w = ζ(τ∗), (5.7)

where

τ∗ := arg max
τ:|τ |=α

f ((S1,...,w−1 ∪ γ(τ)) \ ζ(τ)) − f (S1,...,w−1). (5.8)

also define

Ŝw = {c j1, · · · , c jt },where (Sw ∩ A) = {i j1, · · · , i jt } (5.9)

In other words, Ŝw is counterpart of elements of Sw ∩ A that are removed by g. Also note that

in the main Algorithm 8, we remove ζ(τ∗) from S1,··· ,w−1 ∪ Sw at the end of window w and make

S1,··· ,w an independent set ofM.

In order to find the item with the maximum g value (5.3), among all the items in the slot. We

use an online subroutine that employs the algorithm (Algorithm 7) for the secretary problem with

replacement described earlier. Note that Rw, Sw and S̄w can be computed exactly at the end of

window w.

The algorithm returns both the shortlist A which similar to [2] is of size O(k) as stated in the

following proposition, as well the set A∗. Note that we remove Ŝw from A∗ at the end of window

w. In the next section, we will show that E[f (A∗)] ≥ (1 − 1
e2 − ε −O(1k)) f (S

∗) to provide a bound

on the competitive ratio of this algorithm. As it is proved in [2],

Proposition 8. Given k,n, and any constant α, β and ε , the size of shortlist A selected by Algo-

rithm 8 is at most 4kβ
(αβ
α

)
log(2/ε) = O(k).

5.3 Preliminaries

Definition 12. (Matroids). A matroid is a finite set system M = (N,I), where N is a set and

I ⊆ 2N is a family of subsets such that: (i) ∅ ∈ I, (ii) If A ⊆ B ⊆ N , and B ∈ I, then A ∈ I, (iii)

If A,B ∈ I and |A| < |B |, then there is an element b ∈ B \ A such that A + b ∈ I. In a matroid

M = (N,I), N is called the ground set and the members of I are called independent sets of the

87

matroid. The bases ofM share a common cardinality, called the rank ofM.

Lemma 32. (Brualdi) If A,B are any two bases of matroid M then there exists a bijection π from

A to B, fixing A ∩ B, such that A − x + π(x) ∈ M for all x ∈ A.

In [2], we proved some useful properties of (α, β) windows, defined in Definition 11 and used

in Algorithm 8. which we summarize it in this section.

The first observation is that every item will appear uniformly at random in one of the kβ slots

in (α, β) windows.

Definition 13. For each item e ∈ I, define Ye ∈ [kβ] as the random variable indicating the slot in

which e appears. We call vector Y ∈ [kβ]n a configuration.

Lemma 33. Random variables {Ye}e∈I are i.i.d. with uniform distribution on all kβ slots.

This follows from the uniform random order of arrivals, and the use of the balls in bins process

to determine the number of items in a slot during the construction of (α, β) windows.

Next, we make important observations about the probability of assignment of items in S∗ in

the slots in a window w, given the sets R1,...,w−1,S1,...,w−1 (refer to (5.5), (5.6) for definition of these

sets). To aid analysis, we define the following new random variable Tw that will track all the useful

information from a window w.

Definition 14. Define Tw := {(τ, γ(τ))}τ, for all α-length subsequences τ = (s1, . . . , sα) of the αβ

slots in window w. Here, γ(τ) is a sequence of items as defined in (5.2). Also define Supp(T1,··· ,w) :=

{e|e ∈ γ(τ) for some (τ, γ(τ)) ∈ T1,··· ,w} (Note that Supp(T1,··· ,w) = R1,...,w).

Lemma 34. For any window w ∈ [W], T1,...,w and S1,...,w are independent of the ordering of

elements within any slot, and are determined by the configuration Y .

Following the above lemma, given a configuration Y , we will some times use the notation

T1,...,w(Y) and S1,...,w(Y) to make this mapping explicit.

88

Lemma 35. For any item i ∈ S∗, window w ∈ {1, . . . ,W}, and slot s in window w, define

pis := P(i ∈ s ∪ Supp(T)|T1,...,w−1 = T). (5.10)

Then, for any pair of slots s′, s′′ in windows w,w + 1, . . . ,W ,

pis′ = pis′′ ≥
1

kβ
. (5.11)

Lemma 36. For any window w, i, j ∈ S∗, i , j and s, s′ ∈ w, the random variables 1(Yi =

s |T1,··· ,w−1 = T) and 1(Yj = s′|T1,··· ,w−1 = T) are independent. That is, given T1,··· ,w−1 = T , items

i, j ∈ S∗, i , j appear in any slot s in w independently.

Lemma 37. Fix a slot s′, T , and j < Supp(T). Suppose that there exists some configuration Y ′

such that T1,··· ,w−1(Y ′) = T and Y ′j = s′. Then, given any configuration Y ′′ with T1,...,w−1(Y ′′) = T ,

we can replace Y ′′j with s′ to obtain a new configuration Ȳ that also satisfies T1,...,w−1(Ȳ) = T .

5.4 Analysis of the algorithms

In this section we show that for any ε ∈ (0,1), Algorithm 8 with an appropriate choice of

constants α, β, achieves the competitive ratio claimed in Theorem 23 for the submodular matroid

secretary problem with shortlists.

First, we use the observations from the previous sections to show the existence of a random

subsequence of slots τ̃w of window w such that we can lower bound f ((S1,...,w−1∪ γ(τ̃w)) \ ζ(τ̃w)) −

f (S1,...,w−1) in terms of OPT− f (S1,...,w−1). This will be used to lower bound increment f (S1,...,w−1∪

γ(τ∗) \ ζ(τ∗)) − f (S1,...,w−1) in every window.

Definition 15 (Zs and γ̃w). Create sets of items Zs,∀s ∈ w as follows: for every slot s, add every

item from i ∈ S∗ ∩ s independently with probability 1
kβpis

to Zs. Then, for every item i ∈ S∗ ∩ T ,

with probability α/k, add i to Zs for a randomly chosen slot s in w. Define subsequence τ̃w as the

sequence of slots with Zs , ∅.

89

Similar to [2], we have the following property for Zs:

Lemma 38. Given any T1,...,w−1 = T , for any slot s in window w, all i, i′ ∈ S∗, i , i′ will appear in

Zs independently with probability 1
kβ . Also, given T , for every i ∈ S∗, the probability to appear in

Zs is equal for all slots s in window w. Further, each i ∈ S∗ occurs in Zs of at most one slot s.

Lemma 39. We can show that for all i, i′ ∈ S∗\{Zs1 ∪ . . . ∪ Zsj−1},

Pr(i ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1) = Pr(i′ ∈ Zsj |Zs1 ∪ . . . ∪ Zsj−1) ≥
1
k
. (5.12)

Proof. The proof is similar to Lemma 12 in [2], and it is based on Lemma 38, �

In the following lemma we lower bound the marginal gain of a randomly picked element of

optimal solution in slot s j with respect to previously selected items.

Lemma 40. Suppose the sequence τ̃w = (s1, . . . , st) defined as in Definition 15, let γ(τ̃s) =

(i1, . . . , it), with γ(·) as defined in (5.2). Then, for all j = 1, . . . , t,

E[∆ f (a|S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1})|T1,...,w−1, i1,..., j−1,a ∈ S∗ ∩ Zsj]

≥
1
k

(
(1 −

α

k
) f (S∗) − f (S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1})

)
Proof. We can lower bound the increment assuming a is randomly picked item from Zsj ∩ S∗:

E[∆ f (a,S1,...,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1})|T1,...,w−1 = T, i1, . . . , i j−1,a ∈ S∗ ∩ Zsj]

≥
1
k
E[

∑
a∈S∗\{Z1,...Zsj−1 }

E[∆ f (a,S1,...,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1})|T, i1, . . . , i j−1]]

≥
1
k
E[

(
f (S∗\{Z1, . . . Zsj−1}) − f (S1,...,w−1 ∪ i1,...,s−1 \ {c1, · · · , c j−1})

)
|T]

≥
1
k
E[

(
f (S∗\ ∪s′∈w Zs′) − f (S1,...,w−1 ∪ i1,...,s−1 \ {c1, · · · , c j−1})

)
|T]

≥
1
k

((
1 −

α

k

)
f (S∗) − f (S1,...,w−1 ∪ i1,...,s−1 \ {c1, · · · , c j−1})

)
90

The last inequality uses the observation from Lemma 38 that given T , every i ∈ S∗ appears in

∪s′∈wZs′ independently with probability α/k, so that every i ∈ S∗ appears in S∗\ ∪s′∈w Zs′ inde-

pendently with probability 1 − α
k ; along with Lemma 13 for submodular function f . �

Lemma 41. Suppose the sequence τ̃w = (s1, . . . , st) defined as in Definition 15, let γ(τ̃s) =

(i1, . . . , it), with γ(·) as defined in (5.2). Moreover, let S′ be the extension of S1,··· ,w−1∪{i1, · · · , i j−1}\

{c1, · · · , c j−1} to an independent set in M, and π be the bijection from Brualdi lemma (refer to

Lemma 32) from S∗ to S′. Then, for all j = 1, . . . , t,

E[f (S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1, π(a)})|T1,...,w−1, i1,..., j−1,a ∈ S∗ ∩ Zsj]

≥ (1 −
1

k − α
) f (S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1})

Proof. Since π is a bijection from S∗ to S′, from Brualdi’s lemma (lemma 32), there is an onto map-

ping π′ from S∗ to S1,··· ,w−1∪{i1, · · · , i j−1} \ {c1, · · · , c j−1}∪{∅} such that S1,··· ,w−1∪{i1, · · · , i j−1} \

{c1, · · · , c j−1} − π
′(a) + a ∈ M , for all a ∈ S∗. Further, π′(a) = π(a) if π(a) ∈ S1,··· ,w−1 ∪

{i1, · · · , i j−1} \ {c1, · · · , c j−1} and π′(a) = ∅ otherwise.

Recall the definition of Zsj . Suppose a is a randomly picked item from S∗∩ Zsj . Note that from

Lemma 38, conditioned on T1,··· ,w−1, the element a can be equally any element of S∗\{Z1, . . . Zsj−1}

with probability at least 1/(k − α). Therefore, π′(a) would be any of S1,··· ,w−1 ∪ {i1, · · · , i j−1} \

{c1, · · · , c j−1} with probability at most 1/(k − α) (since π′ might map some elements of S∗ to the

empty set). Now based on the definition of π and lemma 13 we have:

Ea[f (S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1, π(a)})|T1,...,w−1, i1,..., j−1,a ∈ S∗ ∩ Zsj]

≥ (1 −
1

k − α
) f (S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1})

91

�

Lemma 42. Suppose function g is as defined in equation 5.1. For the sequence τ̃w = (s1, . . . , st),

and γ(τ̃s) = (i1, . . . , it). Then, for all j = 1, . . . , t,

E[g(ij,S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1})|T1,...,w−1, i1,..., j−1]

≥
1
k

(
(1 −

α

k − α
) f (S∗) − 2 f (S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1})

)

Proof. In the algorithm 8, at the end of window w, we set S1,··· ,w = S1,··· ,w−1 ∪ Sw \ S̄w. Suppose

a ∈ s j ∩ S∗. Moreover, let S′ be the extension of S1,··· ,w−1 ∪ {i1, · · · , i j−1} \ {c1, · · · , c j−1} to an

independent set inM, and π be the bijection from Brualdi lemma (refer to Lemma 32) from S∗ to

S′. Thus the expected value of the function g on the element selected by the algorithm in slot s j

(the element with maximum g in the slot s j) would be

E[f (S1,...,w−1 ∪ {i1, . . . , i j} \ {c1, · · · , c j}|T1,...,w−1, i1,...,j−1]

≥ E[f (S1,...,w−1 ∪ {i1, . . . , i j−1,a} \ {c1, · · · , c j−1, π(a)}|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

≥ E[f (S1,...,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1, π(a)})|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

+E[∆ f (a|S1,··· ,w−1 ∪ {i1, · · · , i j−1} \ {c1, · · · , c j−1, π(a)})|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

≥ E[f (S1,...,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1, π(a)})|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

+E[∆ f (a|S1,··· ,w−1 ∪ {i1, · · · , i j−1} \ {c1, · · · , c j−1})|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

The first inequality is from the definition of function g as it is defined in equation 5.1. The last

92

inequality from submoularity of f . Now from the last inequality and lemma 41 we have

E[f (S1,...,w−1 ∪ {i1, . . . , i j} \ {c1, · · · , c j}|T1,...,w−1, i1,...,j−1)]

≥ (1 −
1

k − α
) f (S1,··· ,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1})

+ E[∆ f (a|S1,...,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1}})| |T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj].

Now from lemma 40 and the above inequality we can show

E[f (S1,...,w−1 ∪ {i1, . . . , i j} \ {c1, · · · , c j}|T1,...,w−1, i1,...,j−1)]

≥ (1 −
1

k − α
) f (S1,··· ,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1})

+
1
k

(
(1 −

α

k
) f (S∗) − f (S1,...,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1})

)
.

Thus,

f (S1,...,w−1 ∪ {i1, . . . , i j} \ {c1, · · · , c j}) − f (S1,··· ,w−1 ∪ {i1, . . . , i j−1} \ {c1, · · · , c j−1}) (5.13)

≥
1
k

(
(1 −

α

k
) f (S∗) − 2 f (S1,...,w−1 ∪ {i1, · · · , i j−1} \ {c1, · · · , c j−1})

)
. (5.14)

�

Using standard techniques for the analysis of greedy algorithm, the following corollary of the

previous lemma can be derived,

Lemma 43.

E
[(

1 −
α

k

)
f (S∗) − 2 f (S1,...,w−1 ∪ γ(τ̃w) \ ζ(τ̃w))|T

]
≤ E

[
e−

2 |τ̃w |
k | T

] ((
1 −

α

k

)
f (S∗) − 2 f (S1,...,w−1)

)
Proof. Let π0 = (1 − α

k) f (S
∗) − 2E[f (S1,...,w−1)|T1,...,w−1 = T], and for j ≥ 1,

π j := (1 −
α

k
) f (S∗) − 2E[f (S1,...,w−1 ∪ {i1, . . . , i j} \ {c1, · · · , c j})|T1,...,w−1 = T, i1, . . . , i j−1],

93

Then, subtracting and adding 1
2 (1 −

α
k) f (S

∗) from the left hand side of lemma 42, and taking

expectation conditional on T1,...,w−1 = T, i1, . . . , i j−2, we get

−
1
2
(E[π j |T, i1, . . . , i j−2] + π j−1) ≥

1
k
π j−1

which implies

E[π j |T, i1, . . . , i j−2] ≤

(
1 −

2
k

)
π j−1 ≤

(
1 −

2
k

) j

π0 .

By martingale stopping theorem, this implies:

E[πt |T] ≤ E
[(

1 −
2
k

) t

|T
]
π0 ≤ E

[
e−2t/k |T

]
π0 .

where stopping time t = |τ̃w |. (t = |τ̃w | ≤ αβ is bounded, therefore, martingale stopping theorem

can be applied).

�

Next, we compare γ(τ̃w) to Sw = γ(τ∗) . Here, τ∗ was defined has the ‘best’ greedy subsequence

of length α (refer to (5.6) and (5.8)). To compare it with τ̃w, we need a bound on size of τ̃w. We

use concentration inequalities proved in [2]:

Lemma 44 (proved in [2]). For any real δ′ ∈ (0,1), if parameters k, α, β satisfy k ≥ αβ, β ≥ 8
(δ′)2

,

α ≥ 8β2 log(1/δ′), then given any T1,...,w−1 = T , with probability at least 1 − δ′e−α/k ,

|τ̃w | ≥ (1 − δ′)α .

Lemma 45. For any real δ′ ∈ (0,1), if parameters k, α, β satisfy k ≥ αβ, β ≥ 8
(δ′)2

, α ≥

8β2 log(1/δ′), then

E

[
k − α

k
OPT − 2 f (S1,...,w)|T1,...,w−1

]
≤ (1 − δ′)e−2α/k

(
k − α

k
OPT − 2 f (S1,...,w−1)

)
.

Proof. The lemma follows from substituting Lemma 44 in Lemma 43. �

94

Theorem 26. For any constant ε > 0, there exists an online algorithm (Algorithm 8) for the

submodular matroid secretary problem with shortlists that achieves a competitive ratio of 1
2 (1 −

1
e2 − ε −O(1k)), with shortlist of size ηε (k) = O(k). Here, ηε (k) = O(2poly(1/ε)k). The running time

of this online algorithm is O(nk).

Proof. Now from Lemma 45, we have, for any real δ′ ∈ (0,1), if parameters k, α, β satisfy k ≥ αβ,

β ≥ 8
(δ′)2

, α ≥ 8β2 log(1/δ′), then the set S1,...,W tracked by Algorithm 8 satisfies

E[f (S1,...,W)] ≥ (1 − δ′)2(
1
2
(1 − 1/e2))OPT.

Now, we compare f (S1...,W) to f (A∗), where A∗ = S1...,W∩A, with A being the shortlist returned

by Algorithm 8. The main difference between the two sets is that in construction of shortlist A,

Algorithm 7 is being used to compute the argmax in the definition of γ(τ), in an online manner.

This argmax may not be computed exactly, so that some items from S1...,W may not be part of the

shortlist A.

Similar to Lemma 16 in [2], we can show that each element in A gets selected by the algorithm

with probability at least 1− δ. More precisely, let A be the shortlist returned by Algorithm 8, and δ

is the parameter used to call Algorithm 7 in Algorithm 8. Then, for given configuration Y , for any

item a, we have

Pr(a ∈ A|Y,a ∈ S1,··· ,w) ≥ 1 − δ .

Therefore using Lemma 13,

E[f (A∗)] := E[f (S1,··· ,W ∩ A)] ≥ (1 −
ε

2
)E[f (S1,··· ,W)]

where A∗ := S1,··· ,W ∩ A is the subset of shortlist A returned by Algorithm 8. The proof is similar

to the proof in [2].

�

95

5.4.1 Preemption model and Shorlitst of size at most k

Finally we focus on the special case where the size of shortlist is at most k. We can get a

constant competitive algorithm even with the slight relaxation of the matroid secretary problem to

the case that we allow the algorithm to select a shortlist of size at most k = rk(M). The algorithm

finally outputs an independent subset of this shortlist of size k. There was no constant compettetive

algorithm even for this natural relaxation of matroid secretary problem. Also we are not aware of

any direct way to prove a constant factor guarantee for this simple relaxation without using the

techniques that we develop using (α, β)-windows.

Theorem 27. For the matroid secretary problem in preemption model, and matroid secretary prob-

lem that uses shortlist of size at most η(k) = k, there is an algorithm that achieves competitive ratio

1
2 (1 − 1/e)(1 − 1/e2 − ε).

Proof. We show that algorithm 8 with parameter α = β = 1 satisfies the above mentioned proper-

ties. Firstly, algorithm 8 (with α = 1, and β = 1) uses shortlist of size η(k) ≤ k. The reason is that

the algorithm divides the input into exactly k slots. Also each window contains exactly one slot.

The function γ tries all α-subsequences of a window which is exactly one slot. Thus γ returns one

element in that slot with hight value of g(e,S) as defined in 5.1, which might cause removal of at

most one element θ(S, e) from the current solution S. Therefore the algorithm has shortlist size at

most k and also satisfies the preemption model. Now by setting α = 1, β = 1 we can get a constant

compettetive ratio that the error rate comes from lemma 45.

�

5.5 p-matchoid constraints

In this section, we present algorithms for monotone submodular function maximization subject

to p-matchoid constraints. These constraints generalize many basic combinatorial constraints such

as the cardinality constraint, the intersection of p matroids, and matchings in graphs. Throughout

96

this section, k would refer to the size of the largest feasible set. A formal definition of a p-matchoid

is as follows:

Definition 16. (Matchoids). LetM1 = (N1,I1), · · · ,Mq = (Nq,Iq) be q matroids over overlap-

ping groundsets. Let N = N1 ∪ · · · ∪ Nq and I = {S ⊆ N : S ∩N ∈ Ì ,∀`}. The finite set system

Mp = (N,I) is a p-matchoid if for every element e ∈ N , e is a member ofN for at most p indices

` ∈ [q].

There are some subtle differences in the algorithm as well as in the analysis. The main differ-

ence in the algorithm is that instead of removing one item from the current independent set S, we

might remove up to p items form S. Each removed item corresponds to different ground sett Ni,

in which the new item lies (based on the definition of p-matchoid constraints, Definition 16, there

are at most p such elements).

For each index ` ∈ [q] define:

Ω`(e,S) := {e′ ∈ S |S + e − e′ ∈ Ì } (5.15)

For an element e in the input, suppose e ∈ N`i , for i = 1, · · · , p. Define

λ(e,S) :=
p∏

i=1
Ω`i (e,S). (5.16)

For a combination vector r = (r1, · · · ,rp) ∈ λ(e,S), where ri ∈ Ω`i (e,S), define:

µ(r) := {r1, · · · ,rp}, (5.17)

and

gr(e,S) := f (S + e − µ(r)) − f (S). (5.18)

Also define:

θ(e,S) := µ(arg max
r∈λ(e,S)

gr(e,S)). (5.19)

97

Furthermore define,

g(e,S) := max
r∈λ(e,S)

gr(e,S). (5.20)

As in the online subroutine for the main algorithm, we run Algorithm 7 with the new function

g defined in equation 5.20. It returns element e with maximum g(e,S), and it achieves a 1 − δ

competitive ratio with shortlists of size logarithmic in 1/δ.

Additionally, we make some changes in the main algorithm 8. In particular, we define γ similar

to equation 5.2 but using the new definition of g in equation 5.20. Moreover, for a subsequence

τ = (s1, . . . , s`) define

ζ(τ) :=
⋃̀
j=1

Cj, (5.21)

where each Cj is a set defined as

Cj := θ(i j,S1,...,w−1 ∪ {i1, . . . , i j−1}). (5.22)

Note that in contrast with the definition of ζ(τ) for the matroid constraints equation 5.22, in which

c j is only one item, now each Cj is a subset of the current independent set S. Further, the definition

of S̄w, in equation 5.7, will be updated accordingly using the new definition of ζ(τ).

Now we can generalize Lemma 41 to p-matchoid constraints.

Lemma 46. Suppose the sequence τ̃w = (s1, . . . , st) defined as in Definition 15, let γ(τ̃s) =

(i1, . . . , it), with γ(·) as defined in (5.2). For any j ∈ {1, . . . , t}, and element b ∈ N`, let S′
`

be the extension of S1,··· ,w−1 ∪ {i1, · · · , i j−1} \
⋃

r≤ j−1 Cr to an independent set inM`, and π` be

the bijection from Brualdi lemma (refer to Lemma 32) from S∗ to S′
`
. Further, let’s denote by

π(b) := {π`(b)|b ∈ N`}, then

E[f (S1,...,w−1 ∪ {i1, . . . , ij−1} \ (
⋃

r≤ j−1
Cr ∪ π(a)|T1,...,w−1, i1,..., j−1,a ∈ S∗ ∩ Zsj]

≥ (1 −
p
k
) f (S1,...,w−1 ∪ {i1, . . . , ij−1} \ {c1, · · · , cj−1}).

Proof. The proof is similar to the proof of Lemma 41. For ` ∈ [q], since π` is a bijection from

98

S∗ ∩ N` to S′
`
, from Brualdi’s lemma (lemma 32), there is an onto mapping π′

`
from S∗ ∩ N` to

S1,··· ,w−1∪{i1, · · · , i j−1} \ (
⋃

r≤ j−1 Cr ∪π(a))∪ {∅} such that S1,··· ,w−1∪{i1, · · · , i j−1} \ (
⋃

r≤ j−1 Cr ∪

π(a)) − π′
`
(a) + a ∈ M`, for all a ∈ S∗. Further, π′

`
(a) = π`(a) if π`(a) ∈ S1,··· ,w−1 ∪ {i1, · · · , i j−1} \⋃

r≤ j−1 Cr and π′
`
(a) = ∅ otherwise.

Recall the definition of Zsj (refer to definition 15). Suppose a is a randomly picked item

from S∗ ∩ Zsj . Note that from Lemma 38, conditioned on T1,··· ,w−1, the element a can be equally

any element of S∗\{Z1, . . . Zsj−1} with probability at least 1/k. Therefore, π′
`
(a) would be any

of S1,··· ,w−1 ∪ {i1, · · · , i j−1} \
⋃

r≤ j−1 Cr with probability at most 1/k (since π′
`

might map some

elements of S∗ to the empty set).

For element e ∈ S1,··· ,w−1 ∪ {i1, · · · , i j−1} \
⋃

r≤ j−1 Cr , let N(e) be the set of indices ` such that

e ∈ N`. Because of the p-matchoid constraint, we have |N(e)| ≤ p. Define

π−1(e) := {t |t ∈ N`, for some ` ∈ N(e) and π`(t) = e}.

We have also |π−1(e)| ≤ p. Thus, each element e ∈ S1,··· ,w−1 ∪ {i1, · · · , i j−1} \
⋃

r≤ j−1 Cr belongs

to π(a) with probability at most p/k:

Pr(e ∈ π(a)|a ∈ S∗ ∩ Zsj) = Pr(a ∈ S∗ ∩ Zsj ∩ π
−1(a)) ≤

p
k
.

Now we apply Lemma 13. It is crucial to note that in Lemma 13 each element do not need to be

selected necessarily independently. Definition of π and lemma 13 imply the lemma. �

Furthermore the main difference in the analysis is that instead of recursion 5.13, we get the

following new recursion:

Lemma 47. Suppose function g is as defined in equation 5.20. For the sequence τ̃w = (s1, . . . , st),

and γ(τ̃s) = (i1, . . . , it). Then, for all j = 1, . . . , t,

99

E

g(ij,S1,...,w−1 ∪ {i1, . . . , ij−1} \
⋃

r≤ j−1
Cr)|T1,...,w−1, i1,..., j−1

≥

1
k

©«(1 − αk) f (S∗) − (p + 1) f (S1,...,w−1 ∪ {i1, . . . , ij−1} \
⋃

r≤ j−1
Cr)

ª®¬
Proof. The proof is similar to the proof of Lemma 42 with some changes regarding matchoid

constraints. In the algorithm 8, at the end of window w, we set S1,··· ,w = S1,··· ,w−1 ∪ Sw \ S̄w.

Suppose a ∈ s j ∩ S∗. Moreover, let S′
`

be the extension of S1,··· ,w−1 ∪ {i1, · · · , i j−1} \
⋃

r≤ j−1 Cr to

an independent set inM`, and π` be the bijection in Brualdi lemma (refer to Lemma 32) from S∗
`

to S′
`
. Thus the expected value of the function g on the element selected by the algorithm in slot s j

(the element with maximum g in the slot s j) would be

E[f (S1,...,w−1 ∪ {i1, . . . , i j} \
⋃

r≤ j Cr)|T1,...,w−1, i1,...,j−1]

≥ E[f (S1,...,w−1 ∪ {i1, . . . , i j−1,a} \
⋃

r≤ j−1 Cr ∪ π(a)|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

≥ E[f (S1,...,w−1 ∪ {i1, . . . , i j−1} \
⋃

r≤ j−1 Cr ∪ π(a))|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

+E[∆ f (a|S1,··· ,w−1 ∪ {i1, · · · , i j−1} \
⋃

r≤ j−1 Cr ∪ π(a))|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

≥ E[f (S1,...,w−1 ∪ {i1, . . . , i j−1} \
⋃

r≤ j−1 Cr ∪ π(a))|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

+E[∆ f (a|S1,··· ,w−1 ∪ {i1, · · · , i j−1} \
⋃

r≤ j−1 Cr)|T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

The first inequality is from the definition of function g as it is defined in equation 5.20 and the fact

that the algrotihm selects an element in slot s j with maximum value of g. The second inequality is

from submodularity and the last inequality is from monotonicity of f . Now from the last inequality

100

and Lemma 47, we can show,

E[f (S1,...,w−1 ∪ {i1, . . . , i j} \
⋃
r≤ j

Cr)|T1,...,w−1, i1,...,j−1]

≥ (1 −
p
k
) f (S1,··· ,w−1 ∪ {i1, . . . , i j−1} \

⋃
r≤ j−1

Cr)

+ E[∆ f (a|S1,...,w−1 ∪ {i1, . . . , i j−1} \
⋃

r≤ j−1
Cr)| |T1,...,w−1, i1,...,j−1,a ∈ S∗ ∩ Zsj]

Now from lemma 40 and the above inequality we can show

E[f (S1,...,w−1 ∪ {i1, . . . , i j} \
⋃
r≤ j

Cr)|T1,...,w−1, i1,...,j−1]

≥ (1 −
p
k
) f (S1,··· ,w−1 ∪ {i1, . . . , i j−1} \

⋃
r≤ j−1

Cr)

+
1
k

©«(1 − αk) f (S∗) − f (S1,...,w−1 ∪ {i1, . . . , i j−1} \
⋃

r≤ j−1
Cr)

ª®¬ .

Thus,

f (S1,...,w−1 ∪ {i1, . . . , i j} \
⋃
r≤ j

Cr) − f (S1,··· ,w−1 ∪ {i1, . . . , i j−1} \
⋃

r≤ j−1
Cr) (5.23)

≥
1
k

©«(1 − αk) f (S∗) − (p + 1) f (S1,...,w−1 ∪ {i1, · · · , i j−1} \
⋃

r≤ j−1
Cr)

ª®¬ . (5.24)

�

By solving the recursion and similar to the analysis for matroid constraints we can show the

following theorem:

Theorem 28. For any constant ε > 0, there exists an online algorithm for the submodular secre-

tary problem with p-matchoid constraints that achieves a competitive ratio of 1
p+1 (1 −

1
ep+1 − ε −

O(1k)), with shortlist of size ηε (k) = O(k). Here, ηε (k) = O(2poly(1/ε)k). The running time of this

online algorithm is O(nκp), where κ = maxi∈[q] rk(Mi).

101

5.6 Streaming

In this section, we show that Algorithm 8 can be implemented in a way that it uses a memory

buffer of size at most η(k) = O(k); also we compute the number of objective function evaluations

for each arriving item as follows.

Theorem 29. For any constant ε ∈ (0,1), there exists an algorithm for the submodular random

order streaming problem with matroid constraints that achieves 1
2 (1−

1
e − ε −O(1k)) approximation

to OPT while using a memory buffer of size at most ηε (k) = O(k). Also, the number of objective

function evaluations for each item, amortized over n items, is O(pk + k2

n).

Similarly for p-matchoid constraint we have the following result for the streaming setting:

Theorem 30. For any constant ε > 0, there exists an algorithm for the submodular random order

streaming problem with p-matchoid constraints that achieves 1
p+1 (1 −

1
ep+1 − ε − O(1k)) approxi-

mation to OPT while using a memory buffer of size at most ηε (k) = O(k). Also, the number of

objective function evaluations for each item, amortized over n items, is O(pκ + κp + k2

n), where

κ = maxi∈[q] rk(Mi).

Proof. Th difference between Algorithm 8 in this paper and the main Algorithm in [2] is that,

we remove elements of S̄w from S at the end of each window w. Therefore, with the same argu-

ment in the proof of Theorem 2 in [2], we keep track of all parameters in Algorithm 8 including

S̄w,Sw,Rw, Ŝw in a memory efficient way using memory O(k). The other difference between the

two algorithms is in the subroutine 7 that finds the element with maximum g in a slot. In [2], g(e,S)

can be computed using only one oracle access, whereas in the new definition of g in equation 5.20,

we need access to independence oracle of p matroids that e belongs to, in order to check the in-

dependence of S + e − e′ for each e′ ∈ S. At most pκ elements of S are eligible (they are in the

ground set of a matroid that e also member of). Hence, in order to create Ω`(e,S), for each arriving

element e in the input, we need O(pκ) access to Independence oracle. Similarly the total access to

the value oracle is O(pκ). In order to compute λ(e,S), we need to consider all κp combinations and

102

have access to value oracle. Therefore the number of access to the value oracle is O(pκ + κp) per

element. But, since the first element a0 is computed in the beginning of each slot for each τ, we

would have in average an additional O(k2/n) function evaluation per element. �

In the next section, we empirically compare our streaming algorithms with the state of the art

algorithms in the streaming setting.

5.6.1 Experiments

In this section, we consider different types of constraints including uniform matroid, intersec-

tion of partition matroids and p-matchoid constraints. We compare our algorithm with state of the

art algorithm for each type of constraint using YouTube dataset and Twitter dataset described in

the next section.

DataSets

The experiments will be on a Twitter stream summarization task and a YouTube Video sum-

marization task similar to the one in Kazemi et al. [32].

Twitter Stream Summarization In this application, we want to produce real-time summaries

for Twitter feeds. It is valuable to create a succinct summary that contains all the important infor-

mation. We use the dataset created by [32]. They gather recent tweets from 30 different popular

news accounts, to collect a total of 42,104 unique tweets. They also define a monotone submodular

function f that measure the redundancy of important stories in a set S. It is defined as follows on

a set S ⊆ V of tweets:

f (S) :=
∑
w∈W

√∑
e∈S

score(w, e),

where function f is defined over a ground set V of tweets. Each tweet e ∈ V consists of a

positive value vale denoting its number of retweets and a set of `e keywords We = {we,1, · · · ,we,̀ e}

from a general set of keywords W . The score of a word w ∈ We for a tweet e is defined by

score(w, e) = valee. If w < We. Define score(w, e) = 0.

103

YouTube Video Summarization For the YouTube dataset, we want to select a subset of frames

from video feeds which are representative of the entire video. We use the same dataset as in [32],

which is YouTube videos of New Year’s Eve celebrations from ten different cities around the world.

They compresses each frame into a 4-dimensional representative vector. Given a ground set

V of such vectors, define a matrix M such that Mi j = e − dist(vi, v j) , where dist(vi, v j) is the

euclidean distance between vectors vi, v j ∈ V . Intuitively, Mi j encodes the similarity between the

frames represented by vi and v j . They define a function that intuitively measure the diversity of the

vectors in a set S as follows: f (S) = log det(I + αMS), where I is the identity matrix, α > 0 and

MS is the principal sub-matrix of M indexed by S.

Uniform Matroid

The simplest constraint that we can impose is the uniform matroid or equivalently the cardi-

nality constraint. In the simplest form our algorithm is similar to [2]. We compare our algorithm

to the state of the art algorithm in the streaming setting [32]. As we established an upper bound

on the constant factor ηε (k) in theorem 29, the performance of our algorithm crucially depends on

the choice of α and β. The running time also is a function of α and β, and it grows rapidly as we

increase α and β. Surprisingly, our algorithm outperforms [32] substantially even with relatively

small choices of α = 6 and β = 2. We also observe that the utility of the output returned by our

algorithm can be very close to what the optimal offline algorithm, namely the Greedy algorithm

achieves. In Figure 5.1, we have plotted the performance of all three algorithms on the YouTube

dataset. Note that in our experiment we use a simplistic version of our algorithm in which we sub-

sample from the shortlist in beginning of each window and only use that subsample rather than the

entire shortlist. Furthermore we observe that our algorithm is slower than [32], but the interesting

fact about our algorithm as stated in Theorem 29 is that it is highly parallel thus it has the potential

to become ηε (k) times faster.

104

Figure 5.1: The plot is for unifrom matroid, α = 6 and β = 2

p-matchoid constraints

For the case of p-matchoid constraints, state of the art algorithm for general streaming setting

is due to Feldman et al. [17]. In our experiment, we divide the elements of input into q categories

N = N1∪· · · ,∪Nq. We assign p tags to each element e. Each tag belongs to one of the catergories

1, · · · ,q (generated randomly). Further, we impose a cardinality constraint 3 for each category (i.e,

Ì is a cardinality constraint). The objective is to select at most 3 elements from each category. In

other words, an independent set of p-matchoid is defined as

I = {S ⊆ N : |S ∩ Ni | ≤ 3,∀i ∈ [q]}.

In our algorithm, we set α = 3 and β = 2. We have plotted the performance of our algorithms

and [17] on the Twitter dataset below. The first plot, Figure 5.2, is for fixed p = 3 and different

number of categories q. The second plot, Figure 5.3, is for fixed number of categories q = 30

and different values of p from 1, · · · ,10. As the competitive ratio of our algorithm suggests, by

increasing p the ratio of our utility versus the utility of [17] increases. Furthermore, as the plots

shows we outperform the state of the art algorithm [17] for different values of p even with relatively

small α and β.

105

Figure 5.2: The plot is for 3-matchoid constraint, and α = 3, β = 2

Figure 5.3: The plot is for p-matchoid constraint, for p = 1, · · · ,10, and α = 3, β = 2 and fixed
q = 30.

106

Conclusion

In this thesis, we studied the submodular secretary problem. We introduce a version of this

problem in which we relax the selection criteria and let the algorithm to return a subset of the

shortlist as output. We further showed the link between this new model and the random order

streaming model, and converted our algorithms to the random order streaming model. We

improved state of the art result in this setting. Our main result is an online algorithm for

submodular k-secretary problem with shortlists that, for any constant ε > 0, achieves a

competitive ratio of 1 − 1
e − ε −O(1k) with η(k) = O(k). Remarkably, with only an O(k) size

shortlist, our online algorithm is able to achieve a competitive ratio that is arbitrarily close to the

offline upper bound of 1 − 1/e. We further generalized our results to the case of matroid and

p-matchoid constraints. We design an algorithm that achieves a 1
2 (1 − 1/e2 − ε −O(1/k))

competitive ratio for any constant ε > 0, using a shortlist of size O(k). This is especially

surprising considering that the best known competitive ratio for the matroid secretary problem is

O(log log k). We are also able to get a constant competitive algorithm using shortlist of size at

most k and also a constant competitive algorithm in the preemption model. An important

application of our algorithm is for the random order streaming of submodular functions. We show

that our algorithm can be implemented in the streaming setting using O(k) memory. It achieves a

1
2 (1 − 1/e2 − ε −O(1/k)) approximation. The previously best known approximation ratio for

streaming submodular maximization under matroid constraint is 0.25 (adversarial order) due to

[17], [12] and [11]. Moreover, we generalize our results to the case of p-matchoid constraints and

give a 1
p+1 (1 − 1/ep+1 − ε −O(1/k)) approximation using O(k) memory, which asymptotically (as

107

p and k increase) approaches the best known offline guarantee 1
p+1 [43]. Finally we evaluated our

algorithm on real world datasets such YouTube video and Twitter streams. We empirically

compared our results with state of the art results in each settings.

108

References

[1] M. Abam, M. Rezaei Seraji, and M Shadravan, “Online conflict-free coloring of intervals”,
Scientia Iranica, vol. 21, no. 6, pp. 2138–2141, 2014.

[2] S. Agrawal, M. Shadravan, and C. Stein, Submodular secretary problem with shortlists,
2018. arXiv: 1809.05082 [cs.DS].

[3] S. Agrawal, Z. Wang, and Y. Ye, “A dynamic near-optimal algorithm for online linear pro-
gramming”, Operations Research, vol. 62, no. 4, pp. 876–890, 2014.

[4] M. Ajtai, N. Megiddo, and O. Waarts, “Improved algorithms and analysis for secretary prob-
lems and generalizations”, SIAM J. Discret. Math., vol. 14, no. 1, pp. 1–27, Jan. 2001.

[5] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg, “Online auctions and generalized
secretary problems”, SIGecom Exch., vol. 7, no. 2, 7:1–7:11, Jun. 2008.

[6] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause, “Streaming submodular
maximization: Massive data summarization on the fly”, ser. KDD ’14, New York, New York,
USA: ACM, 2014, pp. 671–680.

[7] M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam, “Submodular secretary problem and
extensions”, ACM Trans. Algorithms, vol. 9, no. 4, 32:1–32:23, Oct. 2013.

[8] N. Buchbinder and M. Feldman, “Submodular functions maximization problems”, 2017.

[9] N. Buchbinder, M. Feldman, and M. Garg, “Online submodular maximization: Beating 1/2
made simple”, arXiv preprint arXiv:1807.05529, 2018.

[10] N. Buchbinder, M. Feldman, J. S. Naor, and R. Schwartz, “Submodular maximization with
cardinality constraints”, ser. SODA ’14, Portland, Oregon: Society for Industrial and Ap-
plied Mathematics, 2014, pp. 1433–1452.

[11] A. Chakrabarti and S. Kale, “Submodular maximization meets streaming: Matchings, ma-
troids, and more”, Mathematical Programming, vol. 154, no. 1, pp. 225–247, 2015.

[12] C. Chekuri, S. Gupta, and K. Quanrud, “Streaming algorithms for submodular function
maximization”, in Automata, Languages, and Programming, M. M. Halldórsson, K. Iwama,
N. Kobayashi, and B. Speckmann, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 318–330, ISBN: 978-3-662-47672-7.

109

https://arxiv.org/abs/1809.05082

[13] N. Devanur and T. Hayes, “The adwords problem: Online keyword matching with budgeted
bidders under random permutations”, in ACM EC, 2009.

[14] E. B. Dynkin, “The optimum choice of the instant for stopping a Markov process”,
Soviet Math. Dokl, vol. 4, 1963.

[15] U. Feige, V. S. Mirrokni, and J. Vondrák, “Maximizing non-monotone submodular func-
tions”, SIAM J. Comput., vol. 40, no. 4, pp. 1133–1153, Jul. 2011.

[16] J. Feldman, M. Henzinger, N. Korula, V. Mirrokni, and C. Stein, “Online stochastic packing
applied to display ad allocation”, Algorithms–ESA 2010, pp. 182–194, 2010.

[17] M. Feldman, A. Karbasi, and E. Kazemi, “Do less, get more: Streaming submodular maxi-
mization with subsampling”, in Advances in Neural Information Processing Systems, 2018,
pp. 732–742.

[18] M. Feldman, O. Svensson, and R. Zenklusen, “A simple o (log log (rank))-competitive al-
gorithm for the matroid secretary problem”, SIAM, 2014, pp. 1189–1201.

[19] M. Feldman and R. Zenklusen, “The submodular secretary problem goes linear”, ser. FOCS
’15, Washington, DC, USA: IEEE Computer Society, 2015, pp. 486–505.

[20] V. Feldman and J. Vondrak, “Optimal bounds on approximation of submodular and xos
functions by juntas”, ser. FOCS ’13, Washington, DC, USA: IEEE Computer Society, 2013,
pp. 227–236.

[21] T. S. Ferguson et al., “Who solved the secretary problem?”, Statistical science, vol. 4, no. 3,
pp. 282–289, 1989.

[22] Y. Filmus and J. Ward, “A tight combinatorial algorithm for submodular maximization sub-
ject to a matroid constraint”, 2012 Symposium on Foundations of Computer Science, 2012.

[23] Z. Friggstad, J. Könemann, Y. Kun-Ko, A. Louis, M. Shadravan, and M. Tulsiani, “Linear
programming hierarchies suffice for directed steiner tree”, in IPCO, Springer, 2014, pp. 285–
296.

[24] Z. Friggstad, J. Könemann, and M. Shadravan, “A Logarithmic Integrality Gap Bound for
Directed Steiner Tree in Quasi-bipartite Graphs ”, in (SWAT 2016), ser. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), 2016, 3:1–3:11.

[25] R. Ghuge and V. Nagarajan, “Quasi-polynomial algorithms for submodular tree orienteer-
ing and other directed network design problems”, in Symposium on Discrete Algorithms,
SIAM, pp. 1039–1048.

110

[26] D. Gijswijt, V. Jost, and M. Queyranne, “Clique partitioning of interval graphs with sub-
modular costs on the cliques”, RAIRO-Operations Research, vol. 41, no. 3, pp. 275–287,
2007.

[27] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar, “Constrained non-monotone submod-
ular maximization: Offline and secretary algorithms”, ser. WINE’10, Stanford, CA, USA:
Springer-Verlag, 2010, pp. 246–257.

[28] E. Hazan, S. Safra, and O. Schwartz, “On the complexity of approximating k-set packing”,
computational complexity, vol. 15, no. 1, pp. 20–39, 2006.

[29] T. Hess and S. Sabato, “The submodular secretary problem under a cardinality constraint
and with limited resources”, CoRR, vol. abs/1702.03989, 2017. eprint: 1702.03989.

[30] B. Kalyanasundaram and K. Pruhs, “Speed is as powerful as clairvoyance”, J. ACM, vol. 47,
no. 4, pp. 617–643, 2000.

[31] M. Kapralov, I. Post, and J. Vondrák, “Online submodular welfare maximization: Greedy
is optimal”, ser. SODA ’13, New Orleans, Louisiana: Society for Industrial and Applied
Mathematics, 2013, pp. 1216–1225.

[32] E. Kazemi, M. Mitrovic, M. Zadimoghaddam, S. Lattanzi, and A. Karbasi, “Submodular
streaming in all its glory: Tight approximation, minimum memory and low adaptive com-
plexity”, arXiv preprint arXiv:1905.00948, 2019.

[33] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a social
network”, 2003, pp. 137–146.

[34] T. Kesselheim and A. Tönnis, “Submodular secretary problems: Cardinality, matching, and
linear constraints”, 2017.

[35] R. Kleinberg, “A multiple-choice secretary algorithm with applications to online auctions”,
in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
ser. SODA ’05, Vancouver, British Columbia: Society for Industrial and Applied Mathe-
matics, 2005, pp. 630–631.

[36] N. Korula, V. Mirrokni, and M. Zadimoghaddam, “Online submodular welfare maximiza-
tion: Greedy beats 1/2 in random order”, ser. STOC ’15, Portland, Oregon, USA: ACM,
2015, pp. 889–898.

[37] O. Lachish, “O(log log rank) competitive-ratio for the matroid secretary problem”, CoRR,
vol. abs/1403.7343, 2014. arXiv: 1403.7343.

[38] D. V. Lindley, “Dynamic programming and decision theory”, vol. 10, no. 1, pp. 39–51, 1961.

111

1702.03989
https://arxiv.org/abs/1403.7343

[39] A. McGregor and H. T. Vu, “Better streaming algorithms for the maximum coverage prob-
lem”, in 20th International Conference on Database Theory, 2017.

[40] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák, and A. Krause, “Lazier than
lazy greedy”, in Proceedings of the Twenty-Ninth Conference on Artificial Intelligence,
ser. AAAI’15, Austin, Texas: AAAI Press, 2015, pp. 1812–1818.

[41] M. Moser, D. P. Jokanovic, and N. Shiratori, “An algorithm for the multidimensional
multiple-choice knapsack problem”, IEICE transactions on fundamentals of electronics,
vol. 80, no. 3, pp. 582–589, 1997.

[42] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating the maximum of
a submodular set function”, Mathematics of operations research, vol. 3, no. 3, pp. 177–188,
1978.

[43] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for max-
imizing submodular set functions—i”, Mathematical programming, vol. 14, no. 1, pp. 265–
294, 1978.

[44] A. Norouzi-Fard, J. Tarnawski, S. Mitrovic, A. Zandieh, A. Mousavifar, and O. Svens-
son, “Beyond 1/2-approximation for submodular maximization on massive data streams”,
in Proceedings of the 35th International Conference on Machine Learning, vol. 80, PMLR,
2018, pp. 3829–3838.

[45] C. A. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-critical scheduling via re-
source augmentation”, Algorithmica, vol. 32, pp. 163–200, 2001.

[46] B. Sankaran, M. Ghazvininejad, X. He, D. Kale, and L. Cohen, “Learning and optimization
with submodular functions”, arXiv preprint arXiv:1505.01576, 2015.

[47] J. A. Soto, “Matroid secretary problem in the random-assignment model”, vol. 42, no. 1,
pp. 178–211, 2013.

[48] R. J. Vanderbei, “The optimal choice of a subset of a population”, Math of OR, vol. 5, no. 4,
pp. 481–486, 1980.

[49] J. Vondrak, “Optimal approximation for the submodular welfare problem in the value oracle
model”, in Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
ser. STOC ’08, Victoria, British Columbia, Canada: ACM, 2008, pp. 67–74.

[50] J. G. Wilson, “Optimal choice and assignment of the best m of n randomly arriving items”,
Stochastic Processes and their Applications, vol. 39, no. 2, pp. 325 –343, 1991.

[51] J. G. Wilson, “Optimal choice and assignment of the best m of n randomly arriving items”,
Stochastic processes and their applications, vol. 39, no. 2, pp. 325–343, 1991.

112

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Introduction or Preface
	Introduction and Background
	Submodular Functions
	 Examples of submodular function maximization
	Maximizing Monotone Submodular Functions under Cardinality Constraint

	Matroid constraints
	Streaming Submodular Functions
	Secretary Problems
	Our model: secretary problem with shortlists.

	Matroid Secretary Problem
	Our Contribution

	Submodular Secretary Problem with Shortlists on Some Special Classes of Submodular Functions
	Introduction
	m-submodular functions
	Approximating submodular with m-submodular
	Component-Wise Monotone Subumodular Functions
	Extending Kleinberg's Algorithm to Component-Wise Monotone Subumodular Functions
	Upperbounds for Online Setting
	Random Order Online Matching
	Random Order Node Weighted Online Matching
	m is fixed
	m is not fixed

	Cardinality Constraints: A Minmax 1/2- Approximation using Shortlist of Size O(klog2 k) for the Submodular Secetary Problem
	Introduction
	The Algorithm
	Analysis of the Algorithm 4
	Comparison

	Cardinality Constraint: 1-1/e- Approximation using Shortlist of Size O(k)
	Introduction
	Problem Definition
	Our Results
	Comparison to related work
	Organization

	Algorithm description
	Bounding the competitive ratio
	Preliminaries
	Some useful properties of (,) windows
	Bounding E[f(w Sw)]/OPT
	Bounding E[f(A*)]/OPT

	Streaming
	Impossibility Result (Proof of Theorem 25)

	Matroid constraints
	Introduction
	 Related Work
	Related Work

	Algorithm description
	Preliminaries
	Analysis of the algorithms
	Preemption model and Shorlitst of size at most k

	 p-matchoid constraints
	Streaming
	Experiments

	Conclusion or Epilogue

