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ABSTRACT

Reconfigurable Optically Interconnected Systems

Yiwen Shen

With the immense growth of data consumption in today’s data centers and high-

performance computing systems driven by the constant influx of new applications, the

network infrastructure supporting this demand is under increasing pressure to enable

higher bandwidth, latency, and flexibility requirements. Optical interconnects, able to

support high bandwidth wavelength division multiplexed signals with extreme energy

efficiency, have become the basis for long-haul and metro-scale networks around the

world, while photonic components are being rapidly integrated within rack and chip-

scale systems. However, optical and photonic interconnects are not a direct replacement

for electronic-based components. Rather, the integration of optical interconnects with

electronic peripherals allows for unique functionalities that can improve the capacity,

compute performance and flexibility of current state-of-the-art computing systems. This

requires physical layer methodologies for their integration with electronic components,

as well as system level control planes that incorporates the optical layer characteristics.

This thesis explores various network architectures and the associated control plane, hard-

ware infrastructure, and other supporting software modules needed to integrate silicon

photonics andMEMS based optical switching into conventional datacomnetwork systems

ranging from intra-data center and high-performance computing systems to the metro-

scale layer networks between data centers. In each of these systems, we demonstrate

dynamic bandwidth steering and compute resource allocation capabilities to enable sig-



nificant performance improvements. The key accomplishments of this thesis are as fol-

lows.

In Part 1, we present high-performance computing network architectures that inte-

grate silicon photonic switches for optical bandwidth steering, enabling multiple recon-

figurable topologies that results in significant system performance improvements. As

high-performance systems rely on increased parallelism by scaling up to greater num-

bers of processor nodes, communication between these nodes grows rapidly and the in-

terconnection network becomes a bottleneck to the overall performance of the system. It

has been observed that many scientific applications operating on high-performance com-

puting systems cause highly skewed traffic over the network, congesting only a small

percentage of the total available links while other links are underutilized. This mismatch

of the traffic and the bandwidth allocation of the physical layer network presents the op-

portunity to optimize the bandwidth resource utilization of the system by using silicon

photonic switches to perform bandwidth steering. This allows the individual processors

to perform at their maximum compute potential and thereby improving the overall sys-

tem performance. We show various testbeds that integrates both microring resonator

and Mach-Zehnder based silicon photonic switches within Dragonfly and Fat-Tree topol-

ogy networks built with conventional equipment, and demonstrate 30-60% reduction in

execution time of real high-performance benchmark applications.

Part 2 presents a flexible network architecture and control plane that enables au-

tonomous bandwidth steering and IT resource provisioning capabilities between metro-

scale geographically distributed data centers. It uses a software-defined control plane

to autonomously provision both network and IT resources to support different quality of



service requirements and optimizes resource utilization under dynamically changing load

variations. By activelymonitoring both the bandwidth utilization of the network and CPU

or memory resources of the end hosts, the control plane autonomously provisions back-

ground or dynamic connections with different levels of quality of service using optical

MEMS switching, as well as initializing live migrations of virtual machines to consolidate

or distribute workload. Together these functionalities provide flexibility and maximize

efficiency in processing and transferring data, and enables energy and cost savings by

scaling down the system when resources are not needed. An experimental testbed of

three data center nodes was built to demonstrate the feasibility of these capabilities.

Part 3 presents Lightbridge, a communications platform specifically designed to pro-

vide a more seamless integration between processor nodes and an optically switched net-

work. It addresses some of the crucial issues faced by the works presented in the previous

chapters related to optical switching. When optical switches perform switching opera-

tions, they change the physical topology of the network, and they lack the capability to

buffer packets, resulting in certain optical circuits being unavailable. This prompts the

question of whether it is safe to transmit packets by end hosts at any given time. Light-

bridge was developed to coordinate switching and routing of optical circuits across the

network, by having the processors gain information about the current state of the optical

network before transmitting packets, and being able to buffer packets when the optical

circuit is not available. This part describes details of Lightbridge which is constituted by

a loadable Linux kernel module along with other supporting modifications to the Linux

kernel in order to achieve the necessary functionalities.
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Introduction

0.1 Communication Growth in High-Performance

Computing Systems

The computational capability of high performance computing (HPC) systems is reliant on

the ability to parallelize computational resources. With the stalling of Moore’s Lawwhere

compute power per individual CPU has reached near its maximum, additional increases

in performance have relied on using multiple CPU cores and other discrete components

to form powerful microprocessors that are integrated with memory, accelerators, storage,

and network interconnects [1]. While developments in parallelism through these archi-

tectures have produced performance growth, the scalability of these system depends on

the underlying interconnection network to continue to provide sufficient bandwidth re-

sources and minimal latency to enable the full computation potential of each processor.

However, over the last few years the growth of interconnect bandwidth capacity has

not been able to match the pace of the increase in raw processing power gained through

parallelism. The byte/flop ratio, or the ratio of bandwidth between each node to intrinsic

processing power of per node of the Top500 [2] top performing high-performance com-

puting (HPC) systems, have decreased by a factor of over 6× since June 2010 [3] despite

1



the rising peak computing performance. As of June 2019, the most powerful supercom-

puter, Summit, achieved 200.8 PFlops using 4608 servers, which means each server per-

forms 43 TFlops. However, each node only receives 25 GB/s bandwidthwith dual NVLINK

bricks resulting in a 0.0006 byte/FLOP ratio [4]. This trend cannot continue indefinitely;

such low byte/FLOP ratio means processors that are constantly starved for data to process

and therefore are not operating at their full computation potential, resulting in an overall

sub-optimal system performance and energy efficiency.

This effect can be seen quantitatively when we observe the performance of HPC sys-

tems when operating the High Performance Gradients (HPCG) benchmark instead of the

traditionally used High Performance Linpack (HPL) benchmark. Summit performed only

2.9 PFlops with HPCG (compared to 148.6 PFlops with HPL). This is because the Lin-

pack program performs compute-rich algorithms to multiply dense matrices, called Type

1 patterns, favoring systems with high computational capabilities [5]. However, most

current applications require lower computation-to-data-access ratios, referred to as Type

2 patterns, which require higher bandwidth communications with the memory subsys-

tem [6]. The HPL program focuses only on Type 1 patterns, while the HPCG benchmark

has emerged as a new metric for HPC systems that is designed to evaluate systems with

both Type 1 and Type 2 patterns. As such, performance of the top ranked supercomputers

operating HPCG show much more modest results compared to their HPL counterparts. If

we look at the performance in terms of energy efficiency, Summit showed 14.7 GFlops/W

with HPL but only 0.3 GFlops/W with HPCG. Overall, this large decrease in Summit’s

performance between the two benchmarks highlights the crucial role that the intercon-

nection network plays in supplying a system’s computational resources with sufficient

2



Figure 0.1. Transforming the highly connected static HPC network into a reconfigurable
network by integrating SiP switches in between global inter-rack links

traffic to memory and other computing nodes in order to bring forth the system’s full

performance potential.

In order to address the growing challenge of providing high bandwidth capacity net-

work interconnects, today’s HPC systems follow a best-for-all approach that is charac-

terized by over-provisioned, static networks, with components with high communication

placed close together [7]. However, such an approach is expensive and inefficient, and

lacks the scalability tomeet the rising demand in computational power [3]. This is because

a majority of HPC applications produce skewed traffic patterns over the network infras-

tructure, where the traffic demand is concentrated within only a small percentage of the

total available links, and this traffic characteristic varies slowly over the entire runtime

of the application [8]–[10]. Each application feature a characteristic traffic matrix, and

operating the application with such a traffic pattern on a general-purpose, static network

results in both congested links that limit the rate in which data feeds the processors, as

well as under-utilized links wastes energy usage [11].

3



This mismatch between the application traffic distribution and the bandwidth allo-

cation of the physical infrastructure presents the opportunity to build adaptive networks

that can reconfigure the physical layer network topology to optimize bandwidth resources

between highly intensive communicating nodes. This can be achieved by integrating op-

tical circuit switching through the means of microelectromechanical systems (MEMS)

switches or silicon photonic switches within the traditional network infrastructure of

electronic packet switches (EPSs). These optical switches can be controlled to change the

network endpoints that of optical links, which allows the network to dynamically steer the

bandwidth of available links to match an application’s unique traffic demands, in a pro-

cess called bandwidth steering. This concept is illustrated in Figure 0.1. The management

of these switches can be performed with a modified software-defined networking (SDN)

control plane combined with external hardware such as Field-Programmable Gate Arrays

(FPGAs) for sending electronic bias signals to the photonic switches. On the network

layer, the SDN control application has knowledge of the global network traffic charac-

teristics, and can manage the routing tables in all Layer 2 or Layer 3 (L2/L3) electronic

packet switches (EPSs) as well as control the configuration of the optical switches.

0.2 The Need for Photonic Interconnects

Energy Challenges and Opportunities

Optical interconnects have become the leading technology to support future-proof data

rates with extremely high energy efficiency. A single optical fiber or silicon waveg-

4



Figure 0.2. Power dissipation plotted over distance for electronic interconnects [12]

uide can terabit-scale bandwidths through the means of wavelength division multiplexing

(WDM) over large distances. While there has been considerable work for electronic in-

terconnects to provide sub-pJ/bit energy efficiencies over gigabit data rates [12], such

performance is only possible on a chip-scale range (under 300 mm). Figure 0.2 shows the

energy efficiency over distance for state-of-the-art electronic interconnects, categorized

by clocking architecture (external clock, forward, or embedded). It can be observed that

as distances increase beyond 300 mm, energy consumption increases to tens of pJ/bit or

greater, meaning that conventional electronic links operating at high frequency have dif-

ficulty maintaining sub pJ/bit efficiencies due to physical effects such as the skin effect

and the dielectric loss, both of which scales with frequency. Electrical interconnects are

also limited by wiring density, which is worsened by smaller cross-sectional sizes due to

higher resistive and capacitive effects [13].
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Figure 0.3. Power dissipation of data movement to different memory types (left) and dif-
ferent distances (right) [14]–[16]

These physical limitations have given rise to the ”bandwidth taper” phenomenon,

which refers to the orders of magnitude decrease in bandwidth provided by electronic

interconnects as data travels over distances ranging beyond on-chip scales, to off-chip,

inter-node and inter-rack [14], [15]. This translates to a proportional increase in en-

ergy consumption, as displayed in Figure 0.3 which lists the energy requirements for data

movement to different types of memory types and to varying distances [17].

The general system requirements for optical interconnects are approximately 1 pJ/bit

for rack-to-rack distances, and less than 0.1 pJ/bit for chip-to-chip scales. The energy

consumption of an optical link depends primarily on the laser source, data modulation

and its associated drivers. After the data has been transformed into its optical format

and transmitted onto the waveguide or fiber, the losses, while still distance dependent,

are much lower than electrical interconnects, and they are not data rate dependent. The

break-even distance where optical interconnects become more power efficient than their

electrical counterparts is approximately 1 mm at a data rate of 10 Gbps [15].

Recent developments in optical interconnects have enabled silicon photonics (SiP) to
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transform existing network design paradigms. With recent developments that enable

photonic components to be tightly integrated with electronic processing and memory

peripherals [18], [19], SiP interconnects can potentially enable truly scalable extreme-

scale computating platforms and opportunities for ultra-low energy transmission of close-

proximity electronic driver circuitry integrated on-chip.

Optical Switches

In this thesis the primary form of optical interconnect used are silicon photonic andMEMS

switches, which are used for redirecting optical signals carrying high bandwidth traffic

that are traveling on commercial optic fibers that are coupled into the switch. All optical

transmission or modulation is performed with commercial transceivers. In Part 1 of this

work, both Mach-Zehnder Interferometer (MZI) and microring-resonator (MRR) based

SiP switches are used for intra-rack switching. Part 2 will feature commercial MEMS

switches in the testbed for inter-data center switching. Part 3 applies to all forms of

optical switches.

Silicon photonic (SiP) switches have the advantages of low power consumption, small

area footprint, low fabrication costs at large scales, and the potential for nanosecond range

dynamic connectivity [20]. Their physical operation is based on the strong thermo-optic

(T-O) coefficient (1.8×10−4 /K) of silicon which can be leveraged to tune the phase of

light passing through the switch in timescales of tens of microseconds, as well as using

the plasma dispersion effect through carrier injection or depletion for nanosecond scale

switching times.
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From the point of view of the network operator integrating SiP switches for server or

rack scale interconnects, the means to which an SiP switch (whether MZI or MRR type)

performs its switching operation can be treated as a black box for the most part. Both

types of switches also use the same control mechanism - electronic bias signals input

to drive the thermo-optic heaters or electro-optic drivers for carrier injection/depletion.

However, the fundamental difference between MZI and MRR SiP switches that network

operators needs to be aware of is their wavelength bandwidth characteristics. MZI

switches are broadband switches, and their bandwidth spans nearly the entirety of the

C-band or O-band (depending on fabrication parameters), while MRR switches are nar-

rowband devices that will only allow for a small range of wavelengths to pass (typically

only a single channel), while other wavelength channels are supressed. Therefore, when

using signal sources that feature multiple channels, such as the commercial 100G QSFP28

CWDM4 transceivers, in which a single fiber contains four 25 Gbps WDM signals at typ-

ical wavelengths of 1271 nm, 1291 nm, 1311 nm, and 1331 nm, an MRR switch would not

be a viable choice as a single MRR would not cover all these channels, but an MZI switch

may be possible. However, if the signal source was from a commercial SFP+ transceiver

which is a single 10G signal at a particular wavelength, then MRR switches are a viable

choice.

Compared to free-space and silica-based switches such as 3D-MEMS or liquid crys-

tal optical switches, both MZI and MRR SiP switches have the disadvantages of fewer

ports and higher losses due to challenges in coupling, crosstalk, and polarization [21].

The current record for thermo-optic silicon switches is a 64×64 implementation of MZI

elements in the Beneš topology [22], while 3D-MEMS switch can easily have hundreds
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of ports, such as this 512×512 port switch from [23]. These switches are also lower loss,

polarization insensitive and are broadband. However, SiP switches, which have yet to be

commercialized and still under a research phase, are promised to provide high density,

low power, much faster switching, and much lower costs in bulk, making them a much

more sensible option for future on-chip interconnects.

0.3 Flexible Metro-Scale Distributed Data Center

Networks

The capability for networks to be reconfigurable and enable remote management is fun-

damental to next generation inter-data center networks as well. Metro data centers are

undergoing drastic transformations in order to meet the predicted explosive demand of

traffic over the next few years, driven by newly emerging technologies including a seven-

fold increase in mobile data traffic and 12-fold increase in virtual reality and augmented

reality traffic from 2017 to 2022, as well as other applications such as Internet video to

TV, video surveillance traffic, gaming, coinciding with the advent of 5G and the Internet

of Things [24]. Altogether, it is predicted that global IP traffic will triple to 4.8 zettabytes

by 2022 from 1.5 zettabytes during 2017, and a third of this will be carried by the metro-

capacity of total service provider network capacity [25].

To meet this demand, enterprises and cloud-providers have drastically increased the

deployment of data centers. Due to the construction and maintenance costs of managing

data centers as well as the increased adoption of content distribution networks (CDNs) us-
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ing edge data centers, enterprises are moving towards deploying small- to mid-sized data

centers to bring data and services closer to the user to reduce latency [26], [27]. These data

centers are separated by metro-scale distances and are connected with a fiber network.

Such cloud-based and 5G systems will place strict demands on the network infrastructure

to support specific levels of quality of service (QoS) in terms of bandwidth and latency re-

quirements. For example, migration of virtualized Evolved Packet Cores (vEPCs), virtual

machines and many virtual reality gaming applications require strict end-to-end laten-

cies [28]. Other applications such as high definition television require large bandwidths.

Like HPC systems, current inter-data center networks also use static, overprovisioned

networks. In this case, adding or removing a new optical connection in the physical layer

can take days or weeks to occur. With the use of software-defined networking (SDN)

having global awareness of traffic throughput and potential hotspots, and using optical

switches to allow physical topology reconfiguration, we enable remote management of

network components in the data plane from the higher layers. This allows for dynamic

networks that can support connections with different bandwidth and latency require-

ments on the fly. Additionally, it provides the capability for the system to be autonomous

and less error-prone than human-operated systems.

10



Part I

Bandwidth Steering for

High-Performance Computing Systems
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Chapter 1

Network Architecture for Photonic Switch Integration

1.1 Introduction

The emergence of data-intensive high-performance computing (HPC) applications where

large quantities of data needs to be processed and communicated have caused the network

infrastructure of these systems to become a bottleneck to overall system performance.

This is due to the fact that as more and more nodes are used to parallelize workloads,

common operations such as gathering and reducing as well as general coordination be-

tween nodes cause communication among nodes to increase. Current systems use a best-

for-all approach characterized by over-provisioning static links with highly-connected

topologies [7]. However, many HPC applications are characterized by skewed communi-

cation patterns that concentrate traffic within only a small percentage of total available

links, resulting in both under-utilized links that wastes power as well as over-subscribed

links that limit system performance [9]. This is explicitly shown in the traffic matrices

of various HPC applications depicted in Figure 1.1, which were obtained in simulations

on SST/macro [9]. The x and y axis represent the source and destination node groups,

and the various colors indicate the intensity of traffic between these nodes. As can be

seen, each application has a unique pattern. In each one there are significant parts of the
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Figure 1.1. Traffic matrices of various HPC applications, showing the intensity of traffic
between different groups of nodes [9]

matrix that is black, indicating that no traffic occurs between these nodes at all, and any

links connecting these nodes would be wasting energy. At the same time, the diagrams

show that these examples of HPC applications feature heavy direct neighbor-to-neighbor

traffic, which means the links between neighboring groups are likely to be congested.

For current fixed topologies, this mismatch in traffic distribution and system band-

width allocation is mitigated through global or adaptive routing. Numerous routing

strategies have been proposed [29]–[35], but in general these result in longer-distanced

paths and cross-group interference [36], [37]. Instead, our approach is the development

of flexible, reactive networks that can utilize the available network resources optimally

depending on the traffic characteristics. This is enabled by the advent of software-defined

networking (SDN) which disseminates control plane intelligence to the physical network
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entities from the higher layers. At the physical layer, novel interconnect technologies

such as silicon photonics (SiP) enable the movement of large amounts of traffic while

providing low power consumption and low fabrication costs at large scales with CMOS

compatibility. While the integration of silicon photonic switching technologies into basic

network systems has been shown with experimental prototypes [9], [38]–[41] and theo-

retical works that examine the scalability of SiP switches [42], [43], there has been little

study on a control plane to integrate and synergistically utilize SiP switching within a

large DC or HPC packet-switched network environment.

In the past there have been many efforts in software-defined elastic optical networks

(SD-EONs) which feature a similar control plane architecture to this work, but integrates

bandwidth variable wavelength selective switches (BV-WSSs) instead of SiP switches in

the data plane to allocate variable spectrums for dynamic optical path provisioning [44]–

[47]. While the control planes for using BV-WSSs to allocate wavelength/spectrum are

well-developed, most research efforts into control planes for SiP switches still remain at

the physical layer, and the arbitration strategies required to utilize SiP switches in a large

scale experimental Datacom testbed has been a relatively unexplored area. We attempt to

address this by developing a scalable SDN control plane to utilize SiP switches to perform

optical circuit switch based bandwidth steering on a system level testbed operating real

traffic from open-source HPC benchmark applications.
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Figure 1.2. Network architecture divided into the control plane and data plane. The SDN
Controller manages all the active switching elements in the system, including the SiP
switches at the physical layer and the EPSs at Layer 2/3 switching

1.2 Control Plane Overview

In this section the control plane and data plane that integrates SiP switches for optical

circuit switching within a conventional datacom environment is presented. Interfaces

between various software components with data plane hardware devices are described

[48]–[50].

Control Plane Overview

Theoverview of the network architecture describing the integration between the software

control plane and the electronic packet switches (EPSs) and silicon photonic (SiP) switches

and servers is shown in Figure 1.2. Beginning at the top is the central management com-

ponent - the software-defined networking (SDN) controller, which manages the behavior

of all the active switching elements in the network. From there, the network architecture

15



is divided horizontally into the control plane and data plane layers, and vertically into

the physical layer switching and layer 2/3 switching parts. The data plane layer consists

of the electronic and optical switch fabric which are composed of the SiP elements and

electronic packet switches. Servers are connected to the EPSs first, and the SiP switches

are placed in-between EPS connections to serve as dynamic inter-rack connections.

During a switching operation, both the EPS and SiP switch must work in tandem to

create an end-to-end path for packets to travel between nodes. While the SiP switch cre-

ates the physical route, the EPS must update its routing table to reflect the new change in

the topology. Otherwise, even if the packet is able to travel through the optical switch and

reach the endpoint, the packet switch will drop this packet if it has no flows instructions

to handle this packet. To synchronize the operations of the SiP switch and EPS, the SDN

controller is designated to be the central point of management that sends a command to

both switches in parallel to minimize the delay between the switching modality of the

electronic packet switches and SiP switches.

1.3 Layer 2/3 Electronic Packet Switching

The routing tables in the EPSs dictates the path taken by TCP/IP packets in between the

servers. Their behavior ismanaged by the SDN controller through theOpenFlow protocol,

which is a standard southbound application programming interface (API) protocol used

commonly by SDN applications [51]. The SDN application plays the role of adding or

deleting layer 2 or layer 3 flow rules to the flow tables of the EPSs. Layer 3 flow rules

consist of the in-port and out-port values, as well as the IP source or destination address.
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These three fields determine the route that is taken by the packets from the source node to

the destination node. Asmentioned previously, since the SiP switchesmodify the physical

topology of the network and connects different endpoints together that change over time,

the SDN controller must be able to add/delete flows to coordinate the correct in-port and

out-port values as well as the IP destination address with the topological change caused by

the SiP switch. If the routing table has not been updated in time or correctly, the packets

will be dropped by the EPS connected to the destination compute node, as its fields do not

correspond to any known flows in its routing tables.

Each source-destination node pair that is the minimum distance (1 hop) from each

other requires 4 individual flows in the flow table - the IP flow, ARP flow, and the same

flows butwith the in-port and out-port flipped and a different IP destination for the reverse

direction as to make the connection bidirectional. These flow rules on the EPS allow

the switch to forward IP and ARP traffic, both of which are required for two servers to

communicate with each other. The first packet sent by a source server is the broadcast

type ARP request to learn the MAC address of the server corresponding to the destination

IP address, and only then can the two servers exchange IP data packets. A hop refers to

the connection between EPSs, which may or may not span across the SiP switch. Each

additional hop to another EPS in the path requires 4 additional flows.

The number of bytes required to send a single flow modification message to the EPS

averages around 150 bytes, which we found usingWireshark [52] which tracks individual

packets over a network. A flow table modification is performed by sending the OpenFlow

FlowMod message type from the SDN controller to the EPS, whose frame structure is

outlined in [53]. This includes various key fields, namely:
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• Header (4 bytes) - identifying as the type of packet

• flow priority (2 bytes) - determines the order of the filter, where higher priority pri-

ority flows are used instead of lower priority flows if the two flows have overlapping

matches

• out_port (4 bytes) - representing the outgoing port on the EPS

• match (4 bytes) which can consist of various fields that match incoming packets to

the flow (such as in_port and source and destination IP addresses

• instruction (4 bytes) for how to route an incoming packet (such as providing an

out_port value

1.4 Physical Layer Silicon Photonic Switching

Control of the SiP switch(es) were performed through interfacing the SDN controller ap-

plication southbound with a distributed FPGA network, which is capable of directly ap-

plying pre-defined voltage bias signals to the SiP switches. The network used for com-

municate messages by the SDN application is the general campus Internet connection,

which is a 1G out-of-band Ethernet network. By using an Ethernet network for the con-

trol mechanism as opposed to a serial network, we future-proof the system for scalability.

If additional SiP elements due to additional switches or larger radix switches are used that

exceeds the control capabilities of the current available numbers of FPGAs, additional FP-

GAs can simply be connected to an off-the-shelf Ethernet router, making the system easily

adaptable to scale. Details of the control mechanism is shown in Figure 1.3.

Each FPGA unit is equipped with Digital-to-Analog Converter (DAC) chips, which
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Figure 1.3. SiP switch state change command being sent from the SDN controller, and
converted to an Ethernet packet to arrive at the specific FPGA in the distributed FPGA
network to control a given SiP switch

allows per-defined voltages/currents to be applied to the SiP switches. For the SDN appli-

cation to control the FPGA network, an in-house C++ application was developed, called

the FPGA Controller. The FPGA Controller acts as an intermediary to allow the SDN

controller to communicate with the FPGAmicrocontroller. To do this, the SDN controller

application first connects to the FPGA Controller with a TCP socket connection. During

a physical topology change, the SDN application simultaneously modifies both the flow

rules on the EPS and sends a flow mod message to the FPGA Controller to set a given

SiP switch to a specific configuration by sending which input and output port numbers

of the SiP are to be connected. The format of this message is described in the follow-

ing section. When the FPGA Controller application obtains the message from the SDN

controller, it prepares a flow update Ethernet packet that contains the input and output

port numbers to the FPGA unit that controls the relevant SiP element. Once the packet is

received by the FPGA microcontroller, the device port numbers that are to be connected
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are read and mapped to a set of pre-defined voltages hardcoded into individual registers

of the FPGA. These voltage values are then applied to the DACs of the FPGA in order to

bias the SiP switch to change its configuration. A 5× amplification is required to deliver

enough power the cause the SiP element to perform the state change. This amplification

is performed by a DAC gain stage implemented on a printed circuit board (PCB). The am-

plified bias signals maintain their voltage levels until a new state change command from

the SDN controller has been received.

While the in-house FPGA Controller software serves the purposes to communicate

with the FPGA network to control SiP switches in this work, in future works an Open-

Flow client for the FPGAs can be developed so that the control plane unifies its south-

bound APIs to the EPSs and the SiP switches to improve compatibility and scalability.

This will also enable further reductions in latency as the SDN controller will be able to

directly communicate with the FPGA without an intermediary module. Additional per-

formance improvements can be done by integrating ARM processors to run the OpenFlow

client and use hardware to decode extracted flow updates and offloading the tasks needed

to be performed by the FPGA CPU. This can raise the performance and reduce latency

in processing flow modification commands to what is achievable by application-specific

integrated circuits (ASICs) without significantly raising costs or limiting reconfigurability

options.

Silicon Photonic Switch Control Messaging Protocol

A packet protocol under the Ethernet II frame format was developed to provide com-

munication between the SDN controller and the distributed FPGA network nodes. This
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common frame format allows for ease of use and scalability as additional FPGAs can be

integrated into the system by connecting it to an Ethernet switch that connects all the

FPGAs to the SDN controller.

The format of the custom Ethernet frames is presented below in Table 1.1 and 1.2.

Two types of custom protocols are used: the FPGA Ethernet Protocol and the Register

Ethernet Protocol. The FPGA Ethernet Protocol is for communication between nodes

(server to FPGA, or between FPGAs), and contains rudimentary features to handle packet

loss using theMessage ID field to allow for retransmission. The Register Ethernet Protocol

is used during reading to or writing from the FPGA’s memory-mapped registers. The data

from the Register Ethernet Protocol is placed in the payload section of the FPGA Ethernet

packet. Inside the Register Ethernet Protocol, the payload section contains two integers,

each contained within 8 bits, that represent the input and output port values of the SiP

switch that are to be connected.

The number of bytes used to communicate between the FPGA Controller and FPGAs

using the FPGAEthernet Protocol has aminimum size of 60 bytes (for a single pair of input

and output ports), not counting the frame check sequence (FCS) that is 4 bytes long. 8

bytes are needed for every additional pair of input and output ports in the same packet.

FPGA Operation Workflow

The procedures performed by the FPGA after receiving a flow update packet are depicted

in Figure 1.4. During the initialization phase, the voltage values associated with each

possible configuration of the SiP switch is hardcoded into the FPGA’s registers. Once the
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Figure 1.4. FPGA operation workflow for handling an incoming flow update packet from
the FPGA Controller
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Table 1.1. FPGA Ethernet Protocol

Byte Position Bit Position Field Name Description

0 to 13 Ethernet header Source MAC Address and the Destination
MAC Address, plus the EtherType.

14 7 REQ/ACK Bit

Indicates if a message is a request
or response (=0) or an acknowledgement to
such a request or response
(=1).

14 6 to 0 Message Type
Indicates the type of protocol that send the
packet. The Register Ethernet protocol uses the
value 0.

15 to 17 Message ID

The sequence number of the message. Both
communicating nodes keep a counter for both
the other’s message ID and their own. Each new
transaction raises the counter by 2.

18 to 1514 (max) Payload

Table 1.2. Register Ethernet Protocol

Byte Position Bit Position Field Name Description

0 to 1 Address Address being written to or read from. The
register interface is 32 bit addressed.

2 to 3 0 to 13 Count Number of 32 bits being read or written or sent
as a response in this command.

3 6 to 0 Response Bit 1 if the command is a response type, else 0.
3 7 Write Bit 1 if command is a write type, else 0.

4 to 4+(4*Count-1) Payload In case of a WRITE or RESPONSE command
the 4 byte command is followed by the data.

FPGA receives flow update packets from the FPGA Controller, it parses the port numbers

that are to be connected and uses it to determine the new switch configuration, which

are saved using flip-flops so that it functions as a Moore finite state machine (FSM). From

there, the switch configuration is mapped to the addresses of the registers that contain the

voltage values associated with the new switch configuration. Therefore, the FSM is used

to select the corresponding registers whose voltage values are then read in parallel and

applied to the DACs. DAC voltage values can be read in parallel because separate memory

registers are used to hold the voltage values (see Figure 1.4). In the figure shown, two

registers containing the hardcoded volt age values are assigned to each, but in general

multiple registers containing multiple voltage values can be assigned to each DAC for
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larger SiP devices with a greater number of possible configurations. In fact, a single FPGA

can be used to house hundreds of configurations given the size of its memory blocks used

to hold voltage values in the registers. For example, a typical FPGA holds hundreds to

thousands of memory blocks, each of which has tens of kilobits per block, which can

be configured to have various widths and depths. If we configure an Altera M20K block

which has 20× 1024 bits into blocks that are 36 wide and 512 deep, and using 12-bit DACs,

samples for 3 DACs and 512 unique configurations can be stored per memory block. With

plentiful amount of memory available to store voltage values, we can be assured that

voltage values can be stored in separate registers in the memory block which can be read

in parallel, so that as the network scales up andmore SiP devices are added, the latency for

switching will not increase as more SiP elements are required to change configurations.

Control Hardware Scalability

The amount of control hardware required for scaling with larger SiP devices is related

to the number of switching elements of the device, which is dependent on the driving

scheme, the switch architecture and the port count of the device. Generally, there are two

driving schemes for electro-optic Mach-Zehnder type switches - single-armed and push-

pull control [54]. Single-armed bias is where only one electro-optic phase modulator of

the MZI element is used for switching, and this often requires an additional thermal-optic

phase shifter for calibration so that the MZI element is in the cross/bar configuration. In

the single-arm drive case, the bias voltage will be Vπ to switch to the opposite state. This

method requires higher drive voltage and induces higher electro-absorption loss, but it is
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favorable as it only requires one DAC to control an MZI element. On the other hand, the

push-pull scheme requires to control both arms and thus requires two DACs to control

one switch element. The driving voltage required is below Vπ.

The architecture of the device determines the number of switching elements. Com-

monly applied architectures for optical switches include crossbar, Beneš, dilated Beneš,

Banyan, N-stage planar, etc. The Beneš architecture requires the least number of switch-

ing elements to achieve non-blocking connections for anN ×N switch [55]. TheN ×N

Beneš switch has a total number of switching elements as N
2
(2 log2N − 1). Together

with the single-arm driving scheme, we can therefore determine the number of DACs to

control an N ×N switch scales N
2
(2 log2N − 1).
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Chapter 2

Reconfiguration of the Dragonfly and Fat-Tree Network

Topologies

In this chapter two commonly used network topologies in HPC are introduced - the Drag-

onfly topology and the Fat-Tree topology. Their weaknesses are identified and the way to

improve their connectivity and bi-directional bandwidth through the integration of SiP

switches within these topologies are discussed.

2.1 Dragonfly Topology

A commonly used network topology for HPC systems is the Dragonfly topology. The

Dragonfly topology [56] is a hierarchical topology that organizes the network into groups

of top-of-rack (ToR) packet switches, with each ToR switch connecting to server nodes.

Within the group, ToR switches are fully connected with each other. Each group is

connected to every other group with at least one link. This topology provides high-

connectivity with all-to-all global links at the inter-group level to minimize hop count.

The advantages of high-connectivity, however, are diluted by low per-link bandwidth.

In particular, the bandwidth of inter-group (global) links, carrying all the traffic between

two large sets of routers groups, becomes the most scarce resource and can create a bot-
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tleneck for the entire network. The highly skewed traffic characteristic in nearly every

HPC application will create a scenario where some of the inter-group links are highly

congested, while others are severely underutilized, and remain so for a large portion of

the application’s runtime, or even for its entirety. Therefore, the static Dragonfly’s highly

connected yet diluted per-link bandwidths will become a bottleneck for next generation

extreme-scale computing platforms [57]–[60].

In response to this observation, we use optical circuit switching by distributing low-

radix SiP switches to enable significant performance improvements, transforming the

static Dragonfly network to a flexible Dragonfly, or Flexfly [9]. The Flexfly topology does

not introduce new bandwidth - it takes under-utilized links and reassigns them to inten-

sively communicating group pairs using bandwidth steering with the SiP switches. This

is illustrated in Figure 2.1, which shows the standard Dragonfly topology with all-to-all

connectivity on the left reconfigured to focusing on more neighbor-to-neighbor connec-

tivity on the right. In general, the bandwidth steering concept rests upon the assumption

that there are both congested links and under-utilized links at the same time during an

application run, which occurs due to a skewed traffic pattern. If an application’s traffic is

evenly distributed across the entire network, then bandwidth steering would not be able

to provide any performance benefit.

The insertion of SiP switches allows us to take advantage of its near data rate trans-

parent property to perform bandwidth steering on the large quantities of aggregateWDM

traffic of entire Dragonfly router groups per each input port. As the optical switch per-

forms its switching functions purely on the physical layer, it is transparent to higher

network layers and applications, which reduces the latency, energy consumption, and
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Figure 2.1. Standard Dragonfly topology with all-to-all inter-group links (left) and re-
configured topology after bandwidth steering focusing on neighbor-intensive traffic
(right)

Table 2.1. Number of switches and connectors per blade for differentG (Dragonfly groups)
and r (groups per cabinet row)

G r # of supergroups # of switches # of connectors
8 4 2 7 56
16 4 4 15 120
16 8 2 15 240
32 4 8 31 248
32 8 4 31 496

routing complexity compared to performing the same task in with another electronic

packet switch. Additionally, unlike previous optical switching solutions that rely on large

port counts [61], [62], Flexfly is designed to support the use of low-radix silicon photonic

switches, realizable through low-cost CMOS fabrication technology.

Figure 2.2 shows how the physical connections of the network topology (first five

plots) approaches the traffic matrix of the GTC benchmark application (last bottom right

plot), becoming increasingly optimized for this application’s traffic characteristics. With
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Figure 2.2. The first five traffic matrices shows the physical network topology adapting
to the traffic matrix of the GTC application [63] (shown at bottom right) with increasing
silicon photonic switch radices.

increasing switch radix, more links can be connected to the photonic switch and resulting

in the network becoming more flexible as a whole. As can be seen in the bottom right of

Figure 2.2, the trafficmatrix for the network at a switch radix of 32 is identical to the traffic

matrix of the GTC application [63]. Although it seems that there is little difference in the

traffic matrix diagrams of radix = 8 to radix = 32, the colors for each graph are normalized

despite different number of links. With a switch of radix = 8 there are a maximum of 8

links available to be steered from under-utilized connections (any white squares) and be

given to the most intensive traffic shown at the diagonal. With a switch of radix = 32

however, there are 20 links available to be allocated to the most intensive traffic, which

means that not only more bandwidth can be steered, it also allows the network controller

to have finer granularity in its resource allocation.

The scalability of the Flexfly architecture is described as follows: We divide a total of
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G Dragonfly groups into r groups per cabinet row, resulting in G
r
supergroups. A Flexfly

switch blade is associated with each supergroup, which contains all the SiP switches as-

sociated with the inter-group links of that supergroup. This switch blade will have G− 1

switches. With r groups per supergroup, each supergroup will have r(G − 1) links that

fully connect toG− 1 switches, each with r ports, and 2r(G− 1) fiber connectors. Table

2.1 shows the number of switches and connectors per blade for different G and r values.

The compatibility of SiP with CMOS foundries allows for a large number of SiP switches

to be placed on a single chip. Looking at the values shown in Table 2.1, the cost and

space needed for incorporating G
r
switch blades in a Dragonfly topology HPC system are

deemed to be scalable.

2.2 Fat-Tree Topology

The Fat-Tree topology is a type of multi-tiered interconnect topology that consists of

routers placed at different tiers and connected in a tree structure, with the processors

are connected at the very bottom layer. Fat-Trees and their variants are extensively used

in datacenters [64]–[66] and HPC [67]–[70] due to their favorable wiring properties and

their ability to provide full throughput for any traffic pattern, assuming perfect load bal-

ancing and full bisection bandwidth (i.e., the higher layers of the Fat-Tree have the same

total bandwidth as the lower layers) [71]. A recent example in HPC is the HyperX topol-

ogy that is similar to a Fat-Tree [67].

In a regular Fat-Tree, the number of links going down to its siblings is equal to the

number of links going up to its parent. However, to reduce costs, ”bandwidth tapering” is
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Figure 2.3. Measured data fromNERSC’s Cori shows that fragmentation is both persistent
and dynamic. In this graph, fragmentation is defined as the observed number of Aries
(Dragonfly) groups that an application spans, divided by the smallest possible number of
groups that the application would fit in

often employed, where the bandwidth of the top-layer links are removed. This is because

that bandwidth covers larger physical distances and therefore tends to be more costly

[72]. This leads to oversubscription and reducing system efficiency [73]. Examples of

large-scale deployed systems using bandwidth tapering include Google’s Jupiter topology

with 20k nodes that uses a 2:1 oversubscription at the top-of-rack (ToR) uplink layer [66],

as well as Microsoft’s data center networks which have a 5:1 oversubscription at the ToR

layer [74]. These cost-cutting measures result in network congestion that is well known

to create “long tail” communication latencies, which severely diminish the performance

of interactive and bulk-synchronous parallel applications [75].

The issue of job placement fragmentation is another well-documented challenge in
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Figure 2.4. Bandwidth steering through SiP switch integration between the ToR and ag-
gregation layer EPSs in a 3-layer Fat-Tree topology

HPC systems that creates detriments in Fat-Tree topologies [76]–[79]. This refers to the

phenomenon that arises from multiple applications operating on the HPC system, which

are initiating and terminating continuously at different points in time. As a result, ap-

plications often receive processor allocations that are physically distant from each other.

This means that even the nodes are assigned consecutive message processing interface

(MPI) ranks, the nodes themselves are not neighboring and communications between

these ranks will require traveling through multiple hops. Figure 2.3 illustrates that in

NERSC’s Cori fragmentation is both persistent and dynamic. A possible solution to this

issue is to migrate the tasks to physically contiguous endpoints, but such migrations take

on the order of seconds to complete [80].

The integration of SiP switches allow us to reconfigure the Fat-Tree topology by en-

abling dynamic controlled bandwidth tapering without introducing additional latency

[81], [82]. This is done by using the SiP switches to migrate connections between the

ToR and aggregation layer EPSs, which is the lower layer of the Fat-Tree, illustrated in

Figure 2.4. By steering the bandwidth at this layer, we can minimize the use of the higher
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layers (links between the aggregation and core level EPSs), which allows the higher lay-

ers to be bandwidth tapered more aggressively. The overall concept of this method is to

reconstruct the locality that was lost due to system fragmentation. Our network will both

reduce the cost through bandwidth tapering as well as be less affected by task fragmenta-

tion than the static baseline Fat-Tree network with no bandwidth steering. Additionally

similar to the Dragonfly topology, bandwidth steering in the Fat-Tree topology also im-

proves the throughput and latency of the network. The throughput is improved through

the optimization of bandwith allocation, and the latency is reduced due to packets being

able to directly travel between pods (groups of ToR and aggregation EPSs) without having

to travel up the tree to the core switches before traveling down again.
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Chapter 3

Physical Testbed

3.1 Hardware Setup

Various testbeds were built to demonstrate the feasibility of integrating SiP switches

within a conventional HPC environment and to evaluate its performance metrics.

Testbeds incorporating both Mach-Zehnder type and microring resonator type switches

have been constructed. Additionally, both the Dragonfly topology and Fat-Tree topology

have been used with different advantages shown from the integration of the SiP switches,

which will be described in more detail in the following subsections. A snapshot of the

testbed is shown in Figure 3.1.

In this chapter the different software and hardware components of the testbeds will

be described, as well as how they interface and integrate with each other. Additionally

this section will also describe the network topologies that were used for experimental

evaluation.

Electronic Hardware

For each of the different versions of the testbeds mentioned, we use 16 physical servers

equipped with two NetXtreme II BCM57810 10 Gigabit Ethernet Network Interface Cards
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Figure 3.1. Snapshot of the testbed hardware, including the FPGA for controlling the SiP
switch, DAC gain stage for amplifying electronic bias signals, EPSs and servers nodes in
a rack, and the SiP switch

(NICs), with Intel Xeon 6-core processor and 24 GB of RAM, running Ubuntu. The servers

are connected to two top-of-rack (ToR) PICA8 EPSs, which are OpenFlow compatible

that allows it to communicate with the SDN controller application. Using the 1G out-of-

band campus Ethernet network, the SDN controller sends OpenFlowmessages to the EPSs

for traffic monitoring and flow table management. Both EPSs have forty-four 10G ports

and four 40G ports. Depending on the various topologies used, the EPSs are virtually

partitioned into smaller switches. The intra-cluster/pod links are connected with 10G

Direct-Attached copper cables, while the inter-group links use SFP+ DWDM transceivers

with 24 dB power budget transmitting wavelengths in the C band ranging from C28 to

C38 (1554.94 nm to 1546.92 nm). The SDN controller used is Ryu, written in Python [83].

Testbed Topologies

Figure 3.2 shows the system testbed in a Dragonfly topology consisting of 4 groups of 4

EPSs each, with 2 nodes connected to each EPS, for a total of 32 nodes. Each node is a
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Figure 3.2. Testbed in a Dragonfly topology with two SiP switches for inter-group recon-
figuration

Figure 3.3. Testbed in a Fat-Tree topology with four SiP switches. Here the SiP switches
are configured to allow packets from one pod to travel to another without needing to
travel to the core level EPSs first, thereby keeping traffic within the lower layer and thus
allowing for direct connections for reduced latency and more aggressive bandwidth ta-
pering in the upper layers

virtual machine (VM) on a physical server, with each server hosting 2 VMs. There are

up to two SiP switches that connects the four groups of the DragonFly through the EPSs

with circulators between each connection. Both MRR and MZI type SiP switches have

been used.

Figure 3.3 shows the testbed arranged in a standard three-layer Fat-Tree topology

with k = 2 (two lower-level switches connect to a higher-level switch). It is also divided
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into two pods with 16 nodes per pod, making a total of again, 32 nodes using VMs. Four

nodes are connected to each top-of-rack (ToR) packet switch. Each ToR switch has two

uplinks to a SiP switch. Therefore, each ToR EPS can have both of its uplinks connect to

the EPSs of its own pod, or directly to pod EPSs in the other pod. This allows for flexibility

in the network depending on the traffic communication pattern. If the inter-pod traffic is

dominant, then the network can be configured to have both uplinks connect to the EPS in

the other pod. Of course it also has the capability to be configured as a standard Dragonfly

if needed. Note that only uplink fibers are connected to SiP OCSs, not downlink fibers.

In this testbed, two of the SiP switches are physical, and the other two are emulated by

manually connecting different fibers.

Photonic Switch Integration

Figure 3.4 shows a detailed view of how the servers and EPSs are connected to an MRR

switch with four rings, for both the Dragonfly or Fat-Tree topology described previously.

Similar to Figure 1.2 we can observe the control plane and data planes, with the SDN

controller using OpenFlow to communicate with the EPSs on the left, and using the FPGA

Controller to communicate with FPGAs that send bias signals to the SiP switch. In this

specific case, as the MRR switch is a wavelength selective switch, each virtual EPS acts

as the ToR for a specific rack of servers, and each EPS transmits a specific wavelength

- C26 (1556.55 nm), C28 (1554.94 nm), C34 (1550.12 nm), and C38 (1546.92 nm). Each

wavelength is multiplexed together and amplified entering the optical bus waveguide of

the SiP switch. Depending on how the microrings are tuned with the input bias signals,
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Figure 3.4. Interfaces between the control plane and data plane components. It also shows
how the 4 racks of servers are connected to the SiP switch, in this case a 4-ringed MRR
device

Figure 3.5. Each 4-ringed SiP microring device is capable of these three switching config-
urations

different wavelengths can be received on a chosen ring. Each ring’s output connects back

to the receiving end of the optical transceiver that is connected to the EPS. Figure 3.5

shows the possible connections provided by a four-ringed MRR switch for bidirectional

connections between four racks of servers.
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Figure 3.6. Bar and cross configurations for two different MZI SiP switches

We have also used MZI based SiP switches to steer bandwidth between Dragonfly

groups, shown in Figure 3.2. Two MZI SiP switches can connect the four groups of the

Dragonfly topology through the EPSs with circulators between each connection to create

the same flexible topology as MRR based SiP switches described previously. In their de-

fault bar state, Switch 1 provides improved connectivity between the left and right halves

of the network, while Switch 2 provides improved connectivity between the top and bot-

tom halves. The SiP switches are re-arrangeably non-blocking MZI based 4 × 4 Beneš

topology, with 6 individual MZI elements in each switch. For this work, both switches

performs as a 2 × 2, biased to either bar or cross states. The biasing for these configura-

tions are shown in Figure 3.6. Extinction ratios for both switches range between 10–15

dB.
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Figure 3.7. Traffic matrix of the GTC benchmark application, showing traffic intensity be-
tween different source and destination groups (in a simulated standard Dragonfly topol-
ogy on SST/macro) [9]

3.2 High-Performance Computing Benchmark

Configuration

The testbed uses the Message Passing Interface (MPI) protocol for communication and

synchronization of rank assignments over the physical machines. Specifically, MPICH

[84] was used. MPI distributes partitions of a given job (ranks) over a network of physical

machines, as well as facilitates the coordination of communication between these ma-

chines. MPI requires the user to provide the number of ranks to split the job into, as well

as a machinefile, which contains a list of the IP addresses of the physical machines that
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the ranks will be distributed to. Finally, each machine will have a copy of the executable

file that is the application. After all of this has been setup, the user can run the HPC

benchmark application over a distributed system by arbitrarily choosing a master node

and running the MPI command, providing the machine file, number of ranks, and exe-

cutable file name, upon which the slave nodes outlined by the machinefile will being to

work on their given ranks. By default, MPI uses a round-robin approach to distributing

ranks among the IP addresses listed in the machinefile, which allows us to control how

jobs are distributed over the network and thereby the traffic. In a real deployment situa-

tion, this would not be possible; however, for experiments, there is occasionally the need

to purposefully congest links in order to mimic a specific traffic pattern that is causing a

congested network, which can be done by entering the IP addresses in the machinefile in

a specific order manually.

The application that we operate over the testbed is the Gyrokinetic Toroidal Code

(GTC) [63], [85], [86]. As can be seen in Figure 3.7 which shows a heat map of the traf-

fic intensity between different source and destination Dragonfly groups obtained using

simulations performed on the SST/macro, the yellow oval highlights the fact that the ap-

plication displays strong +1/-1 neighbor to neighbor traffic, typical of many other HPC

applications. We use a skeletonized version of the GTC benchmark code obtained from

the public domain. The process of skeletonization is to remove computation routines

while keeping the communication characteristics (packet sizes, destinations, and timing)

the same. An example of skeletonization is shown in [87]. This allows for the application

to run faster but maintain the same communication pattern (packet sizes, timing, etc.),

which translates to a greater bandwidth demand over time. Greater bandwidth demand
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was necessary to create congestion in some of the links, in order to show the benefits

in performance from relieving this congestion through bandwidth steering with the SiP

switches.
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Chapter 4

High-Performance Computing Testbed Evaluation

In this chapter we will present various experimental results relating to different aspects of

the HPC testbed. This includes topology-agnostic evaluations including the control sys-

tem latency where each control mechanism latency is shown, and culminating in the end-

to-end switching latency [49]. Then we show the system improvements due to bandwidth

steering for the Dragonfly and Fat-Tree topologies, by operating the GTC HPC bench-

mark application on the testbed and comparing their performance between the standard

”vanilla” topology to the bandwidth-steered topology [10], [88], [89]. The performance

is evaluated on the basis of the application execution time. A faster execution time of

the application means that more work can be done on the system, or equivalently more

energy saved due to the application finishing earlier.

4.1 Control Plane and Hardware Latency Evaluation

The control plane and its connection to the relevant control hardware was evaluated by

measuring the end-to-end latency experienced by packets during a synchronized circuit

and packet switching operation. This latency is a combination of software control plane

based latencies, and hardware latencies from the EPS and SiP switching time. A visual

depicting these latencies is shown in Figure 4.1, and listed in Table 4.1 as well. First, the
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Figure 4.1. Timeline showing control plane and hardware latencies

Figure 4.2. Real-time delay between four electronic control signals sent simultaneously

control plane latencies consist of 1) the flow insertion latency, 2) the time for the SDN

controller to send a SiP flow update message to the FPGA Controller, 3) the time taken for

FPGA Controller to generate an Ethernet packet and send it to the FPGA microcontroller,

and 4) the time for the FPGA microcontroller to process the packet and apply the voltage

to the DACs. The flow insertion latency from the Ryu SDN controller to a Pica8 switchwas

evaluated by sending 800 flows in parallel and an average of 78.5 µs per flowwas observed.

Next, 223 µs was measured for one-half of the Round Trip Time (RTT) of the TCP socket

connection that was used for the SDN controller to send a flow update message to the

FPGA Controller. This delay occurs in parallel with the EPS flow update latency. The

FPGA Controller then takes 702 ns to form the Ethernet packet and send it to the FPGA

microcontroller. The latency required for the FPGA microcontroller to process the packet

and apply the voltages was measured to be 120 µs, which was found by viewing the Signal
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(a) (b)

Figure 4.3. (a) Flow insertion time on an OpenFlow-enabled EPS (Layer 3 switching time),
(b) total end-to-end switching time (a majority of which is due to the switch polling time)

Tap logic analyzer and finding the difference between the moment that the flow update

packet was received to the moment that the voltages were written to the DACs. The delay

between sending multiple electronic control signals simultaneously in software was also

measured. Figure 4.2 shows that the four electronic control signals overlap and the delay

between them is negligible in real-time.

The hardware latencies consist of 1) the layer 3 switching time of the Pica8 EPSs,

and 2) the SiP switching time. The layer 3 switching time of the EPS was measured by

performing a data transfer between Servers 2 and 3 on an indirect path, and changing it to

a direct path with the same number of hops, and tracking the number of dropped packets

with the program tcpdump, shown in Figure 4.3(a) [90]. In this figure, each dot represents

a single packet in time. The output of tcpdump shows the timestamp of each packet that

was sent which is graphed in the x-axis, and the window size at the receiver side over

this transmission in the y-axis. The window size itself is not an important metric, but the

focus of this graph is to show the gap in the middle of the graph which represents the link

unavailability time. For MZI switches, the switching time was measured for both bar to
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(a) (b)

(c) (d)

Figure 4.4. ON and OFF switching time for MZI (top) and MRR (bottom) SiP switches

cross and vice versa, which are shown from Figure 4.4(a) and 4.4(b). Each of these were

measured to be 3.5 µs. For MRR switches, the switching time was measured to be 20 µs

for a given ring to either receive the signal or let the signal pass by the ring (Figure 4.4(c)

and 4.4(d)).

We measured the total control plane latency to be 344 µs, which begins from the mo-

ment that the SDN controller begins the switching operation by sending flow updates to

the EPS and configuration message to the FPGA Controller, to the point where the FPGA

microcontroller has applied the voltage to the DACs. Having evaluated all the individual

delays of the switching latency, we performed a switching operation on the testbed dur-

ing a 10 Gbps data transfer and monitored the end-to-end switching latency by observing
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Figure 4.5. Testbed in Dragonfly topology, which is a 2-D version of Figure 3.2 with certain
relevant servers and EPS nodes referenced in the experiments labeled

the total packets dropped, using the software tool iperf to perform the data transfer [91].

Referring to Figure 4.5, this was done by initially sending data from Server 1 to Server 4

with Switch 1 in the bar configuration, so that the path was an indirect route that passed

through EPS 3 before reaching Server 4. Following this, Switch 1 was set to the cross

configuration which provides a direct path from Server 1 to 4. Figure 4.3(b) shows the

tcpdump traces for this operation, and show that no packets were transmitted for a du-

ration of 204.138 ms. The reason for this large delay of an extra 203.794 ms (obtained by

subtracting the latency of the control plane from the total end-to-end switching latency)
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Table 4.1. List of all software and hardware latencies

Control Plane Latency Hardware Latency
SDN controller per flow update 78 µs (parallel 1) EPS L3 Switching 49 ms (parallel 2)

SDN controller sending SiP flow update
message to FPGA Controller 223 µs (parallel 1)

SiP Switching 3.5 µsFPGA Controller to process message and
to send packet to FPGA microcontroller 702 ns

FPGA microcontroller to process the packet
and apply bias signals to FPGA DACs 120 µs

Total Control Plane 344 µs
Transceiver locking and switch polling 204 ms (parallel 2)

Total end-to-end switching 204.3 ms

Figure 4.6. Spectra of the four input wavelengths signals seen by the receiver side of the
transceivers after being received by the microring resonators of the SiP switch

is due to the transceiver locking and switch polling time, which refers to the time taken

by the transceivers at the source and destination ports connected to Server 1 and 4 to rec-

ognize each other’s signals and to configure their mode of operation over a link, as well

as the time for the Pica8 switch to poll the status of the transceivers and to report the link

up status that allows the data stream to flow.

We measured the MRR switch performance under commercial transceiver signals be-
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ing passed through it. Figure 4.6 shows the spectra of the four input wavelengths for each

switch configuration as seen by the receiver side of the commercial 10G SFP+ transceiver

that is plugged into the EPS, without amplification. There are four peaks corresponding

to the input signals from each group, and the highest peak is the desired signal that is

received by tuning the microring resonator to that wavelength, while the other peaks are

crosstalk. For the signal to be received properly, there is a minimum of 10 dB extinction

ratio between the two highest peaks. The fiber-to-fiber loss of the SiP switch is approx-

imately 10 to 15 dB, so that an optical amplifier is required to amplify the input signals

before entering the SiP device.

Basic Demonstration of Network Congestion Relief

Lastly, to demonstrate the potential benefit in data throughput by relieving congestion

over the network by our control plane, we show network optimization through bandwidth

steering for each SiP switch individually and in a combined operation. These experiments

were performed using the two MZI switches. Because the control plane latency is much

higher than the switching latency of the SiP switches, using MRR or MZI switches to per-

form the following experiments described will not have changed the shape of the output

graph.

Figure 4.7(a) shows throughput over time for Servers 1 and 2, which are labeled in

Figure 4.5. Initially, Switch 1 is in the bar configuration, and Server 1 is transmitting to

Server 4 via the path EPS 3 - EPS 10 - EPS 5 - EPS 4. Meanwhile, Server 2 is transmitting

to Server 5 via the path EPS 2 - EPS 3 - EPS 10 - EPS 5. This causes the two data streams
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(a) Switch 1 (b) Switch 2

(c) Switch 1 and 2 combined

Figure 4.7. Throughput increase by bandwidth steering to relief congestion

to share the same path from EPS 10 to EPS 5, which causes their throughput to be limited

to half the link capacity, or approximately 5 Gbps. After 6 seconds, the state of Switch

1 is changed to cross, which allows Server 1 to send data to Server 4 directly (through

EPS 1 and EPS 4), while the route for Server 2 to transmit to Server 5 remains unchanged.

Now that these data streams have their own dedicated inter-group link, both senders can

transmit at near the full link capacity.

A similar scenario is shown for Figure 4.7(b), with Switch 2 initially in the bar con-

figuration. In this case, Server 6 is transmitting data to Server 8 via EPS 7 and EPS 8,

while Server 7 is transmitting to Server 9 via EPS 8 and EPS 9. Therefore they share the
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link between EPS 7 and EPS 8, and transmit at a limited throughput of approximately 5

Gbps. By configuring Switch 2 into the cross state, Server 6 has a direct inter-group link

to Server 8 and Server 7 has a separate dedicated link to Server 9, allowing both of the

data streams to transmit near full link capacity.

Figure 4.7(c) shows the same initial and final configurations as described previously,

but with both switches performing a bar-to-cross switching operation simultaneously.

We can observe that the throughputs in both cases change from the limited rate to near

full link capacity at the same time, which shows that our control plane performs its task of

controlling multiple SiP switches along with the associated flow deletions and insertions

correctly. The fluctuations in the throughput while the flows are shared in the first few

seconds compared to that of the previous figures are purely random and do not have any

significance.

Discussion of System Control Plane Latencies

The SiP switch with a 3.5 µs switching time for MZI switches and 20 µs switching time for

MRR switches is satisfactory for physical layer reconfiguration with an approximate 50

ms latency for the EPS OpenFlow flow update and 204 ms transceiver locking and switch

polling delay. The main challenge discovered in our approach is the transceiver locking

and switch polling delay, which dominates overall link unavailability time. Delay times

vary for different equipment models and data rates, but typical transceiver locking times

range in the tens of microseconds, comparable to the switching latency of the SiP switch,

while the switch polling delay for various EPSs are in the hundreds of millisecond range.
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Because commercial EPS vendors work with physical wiring of input and output ports to

the EPS that do not change, and are not able to manipulate the polling rate in the EPS’s

operating system, current EPSs are ill-equipped to handle scenarios where devices such

as SiP switches that manipulates the optical signal to reconfigure the physical topology

thus causing frequent link state up and down changes are used alongside them. This is

addressed in Part 3 of this thesis, where we modify the kernel of the end hosts to buffer

packets if an optical circuit is not available instead of recklessly transmitting. In addi-

tion, the development of commercial EPSs with microsecond polling time will allow for

the reduction of the overall end-to-end switching latency to sub-millisecond ranges that is

equivalent to a fewhundred Kb packet drops on a 10G link for online switching. The devel-

opment of commercial burst-mode receivers with microsecond transceiver locking time

will also reduce the end-to-end latency. For example, [92] has demonstrated nanosecond

locking time burst-mode transceivers with data rates up to 25 Gbps. As we move from

static topologies to optical networks with more flexibility and dynamic switching, EPS

manufacturers will deploy ToR systems with lower link up times that are comparable to

the switching times of the SiP devices. In the meantime, fast electronic ToR switching

that can operate alongside SiP devices will have to require modification such as the ones

described in Part 3 to be made, or using custom packet switch designs.

Despite the millisecond range link unavailability time due to the current EPS polling

rate, optical circuit switching can still greatly benefit HPC applications that have well-

known traffic characteristics between neighbors of nodes. As it is unlikely that the HPC

application require rapid circuit switching due to the fact that traffic characteristics of

HPC applications do not vary much over time (which will be shown in the following
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System Performance Improvements section), optical circuit switching will be used in a

mostly preliminary manner to configure the network topology to optimally benefit the

application’s traffic matrix before the application’s actual runtime, or it can be used to

switch between major phases of the application. The average runtime of multiple HPC

applications occupying an HPC system are in the range of hours, which means that an

end-to-end switching delay in the hundreds of millisecond range is acceptable.

4.2 System Performance Improvements

In this section we will present the system performance improvements enabled through

SiP switch enabled bandwidth steering on the testbed. The system is operating the GTC

application with MPI as mentioned in the previous section. We constantly monitor the

throughput over the links in the network using the SDN controller, which is able to com-

municate with the OpenFlow-enabled EPSs which automatically keeps track of the byte

count of each flow. This allows us to gain insight into the congested or underutilized links

in the network, as well as how the traffic distribution over links can change over time.

But most importantly, we compare the application execution times between the standard

static topology to the bandwidth-steered topology. The percentage result is the ultimate

indication of overall system improvement, as all other factors in both runs are the same

(identical processing nodes, physical bandwidth, and how the application is operated over

the system). The only factor that changes is the network topology.
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Table 4.2. Performance increase for various job sizes

Number
of Ranks

Execution Time (s) Performance
Increase %

Standard Dragonfly
Topology

Bandwidth
Steered
Topology

64 30 20 40%
128 46 30 42%
256 105 70 40%
512 252 186 30%

Dragonfly Topology

First we set the testbed in the standard Dragonfly topology, which is described in Section

2.1. The SiP switches used are either one or two 4-ringed MRR SiP switches as described

in Figure 3.4, and whose spectra performance is shown in Figure 4.6.

Performance Improvement with a Single SiP Switch

In the first set of experiments, a single SiP switch is integrated into the testbed, and we

ran various job sizes (Table 4.2) of our skeletonized GTC application through different

number of ranks over a standard Dragonfly topology and a bandwidth-steered topology

enabled by the SiP switch. For the skeletonized GTC application, increasing the number

of ranks also increases the job size. To demonstrate the bandwidth steering process in

more detail, the assignment of ranks to physical machines was done during runtime to

purposely cause congestion between Groups 1 and 2, and between Groups 3 and 4. Figure

4.8 shows the throughput over time of the various inter-group links of the testbed network

over the total execution time of the GTC application with 256 ranks. The top plot shows

this for the standard Dragonfly topology. It can be seen that the links between Groups 1

and 2, and between Groups 3 and 4 are congested (red and blue), while the links between
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Figure 4.8. Throughput over time comparing a standard Dragonfly topology to a
bandwidth-steered topology with a single SiP switch
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Groups 1 andGroups 4, as well as betweenGroups 2 and 3 show approximately zero usage,

which matches the rank assignment. The execution time of GTC under this topology is

105 seconds.

Through the identification of the congested as well as the underutilized links from

running the application over the standard all-to-all Dragonfly topology, it is clear that

the links between Groups 1 to 4 and Groups 2 to 3 should be switched to relieve the

congestion between Groups 1 and 2 and Groups 3 and 4, which is done in the bandwidth-

steered topology. The result of running the same exact application is plotted on the lower

graph. Now with two links each between these pairs of communicating groups, the total

bandwidth available between them is increased to a maximum of 20 Gbps, which is re-

flected in the y-axis of the plot. As can be seen, the traffic between Groups 1 and 2 and

Groups 3 and 4 does indeed take advantage of this newly available bandwidth, and its

throughput rises to 18 Gbps. We also align the time x-axis of the top and bottom plots

and show that the increase in throughput due to bandwidth steering also allowed for the

execution time of the application to be reduced by approximately 40%, from 105 seconds

to 70 seconds.

Performance Improvement with Two SiP Switches

In the next set of experiments, two 4-ring SiP switches were inserted into the testbed net-

work, in order to demonstrate the increased flexibility of the network to match its topol-

ogy to the application traffic pattern. For this experiment, rank assignment to physical

machines was done in a way to create intensive traffic between immediate neighboring
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Figure 4.9. Throughput over time comparing different configured topologies enabled
through two SiP switches
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groups, matching the real GTC traffic matrix shown in Figure 3.7. Under this traffic, we

set up three different topologies as shown in Figure 4.9 - unoptimized, partial match, and

optimized topologies, and run the GTC application to see the difference in system perfor-

mance that is achieved due to bandwidth steering.

In the unoptimized topology, the two switches are both set to cross configuration,

which does not help support the traffic pattern that is occurring on the outer edges. It

leads to the longest execution time of 85 seconds. In the partial match topology, one of the

SiP switches is configured to match the traffic, while the other one remains in the cross

configuration. This allows for 20 Gbps of bandwidth to be available between Groups 1 and

2, and Groups 3 and 4. Yet despite this newly available bandwidth, the traffic barely takes

advantage of it. It can be seen that some spikes in the traffic throughput do rise above 10

Gbps, but it does not use nearly the full capacity available. We theorize that this is due to

the 10 Gbps bottleneck that is present between Groups 1 and 3, and Groups 2 and 4. Since

computations must wait for nodes communicating between these groups, it slows down

traffic in other parts of the system despite higher available network bandwidth. This is

reflected in the application execution time of 82 seconds, which is only approximately

3% lower than for the unoptimized topology. This is an interesting result as it shows that

simply provisioning additional bandwidth between nodes does not necessarily mean that

the traffic throughput will increase if there are bottlenecks elsewhere in the network.

Instead it is necessary to route the packets to minimize hotspots according to the new

topology created by the optical switch. Finally in the optimized topology, both switches

have been configured to match the traffic pattern, allowing for 20 Gbps bandwidth on all

sides. This time there is a clear benefit, and the traffic rises to more than 16 Gbps, and the

58



Figure 4.10. Throughput of upper-layer links (between aggregation and core EPSs) over
the entire runtime of the GTC application for the standard Fat-Tree topology (top) and
the bandwidth-steered Fat-Tree topology (bottom)

execution time is reduced to 57 seconds, a 39% reduction compared to the unoptimized

topology and a 36% reduction compared to the partial match topology.

Fat-Tree Topology

For the following results, the testbed is configured into the Fat-Tree topology as described

in Figure 3.3. Once again, two 4-MRR SiP switches are used, and another two of the same

types of switches with the same switching capabilities are emulated.

Figure 4.10 plots the throughput of the links in the upper Fat-Tree layer (between the

aggregation and core EPSs) over the entire runtime of the GTC application. Once again,

each colored line shows the throughput inside one link, identified in the legend through
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Figure 4.11. Throughput of upper-layer links (between aggregation and core packet
switches) over the runtime of the GTC application for the standard Fat-Tree topology
(top) and the bandwidth-steered Fat Tree topology (bottom) with some upper layer links
removed for reducing power consumption

its source and destination EPSs. Traffic intensity in the upper-layer links illustrates the

effect of configuring SiP switches to keep traffic in the lower-layer links (between ToR

and aggregation EPSs). For the purposes of demonstrating our bandwidth steering con-

cept, we place MPI ranks in a way that maximizes traffic at the top layer of the Fat-Tree.

Therefore as can be seen in the top plot of Figure 4.10, when we run the GTC application,

each of the upper layer links of the standard Fat-Tree topology are heavily utilized.

In the bandwidth-steered topology, SiP switches are configured in a way that allows

both uplinks from each ToR switch to be directly connected to the destination’s aggrega-
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tion EPS, and therefore bypass the core layer, reducing packet switch hops by two. How-

ever, this topology causes any traffic that flows within the same pod to use upper layer

links. However, as stated previously, the traffic generated is heavily inter-pod, which

means that the bandwidth-steered topology is a better fit. This is reflected in the bottom

plot of Figure 4.10, wherewe observemuch lower bandwidth demand in upper-layer links.

Only four of the upper layer links have traffic which ranges between 2 to 5 Gbps. The

other links are virtually unused, because the bandwidth-steered topology has isolated the

traffic to lower-layer links. We also notice that the application executes about 25% faster

with the bandwidth-steered topology with 56 seconds, over the standard Fat-Tree topol-

ogy with 72 seconds.

Following this observation, we can taper the bandwidth of the top-level links by re-

moving links. Thus, we remove the links between EPS 10 and 13, EPS 12 and 13, EPS 9

and 14, and EPS 11 and 14 and perform a similar experiment to the previous paragraph.

The results are shown in Figure 4.11. We note that with half its upper links removed,

the standard Fat-Tree topology now takes 115 seconds as opposed to 72 seconds to finish

running the same application (69% difference). Also we observe that the links that are left

are congested, with bandwidth demand reaching over 9 Gbps.

Comparing this to the bandwidth-steered topology of Figure 4.10, we observe that it

still takes the same amount of time of 56 seconds to finish, which matches expectations

as we observed that the bandwidth steered topology did not use some of the upper layer

links in the previous experiment. Therefore, the bandwidth-steered topology can tolerate

more tapering with no performance penalty.

It is important to note that while real deployed HPC systems use much higher band-
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width links (e.g. 100G InfiniBand), the benefits of the bandwidth steering still apply,

regardless of link data rate.
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Chapter 5

Conclusion and Discussion

In the first part of this thesis we introduced the concept of bandwidth steering using

low-radix silicon photonic switches for HPC systems. The motivation arises from the

mismatch in HPC application traffic and the physical distribution of bandwidth resources

in the interconnection network, due to the skewness of many HPC applications as well

as defragmentation of rank placement to physical machines over time. This results in

a suboptimal usage of network resources, lowering performance and increasing energy

usage.

We address this problem by inserting low-radix silicon photonic switches into theHPC

network, so that the network becomes flexible and can reconfigure its physical topology

to the network traffic. The integration of these photonic switches into the system was de-

scribed in Chapter 1, where we used an SDN control plane to coordinate the states of both

the photonic switches and the top-of-rack electronic packet switches to realize intelligent

adaptation to traffic. We targeted the Dragonfly and Fat-Tree network topologies (Chap-

ter 2, which are widely used topologies in deployed HPC systems. A physical testbed

was built for both types of topologies and different types of photonic switches (Chapter

3, and we evaluated each of these in Chapter 4 for feasibility and performance compared

to standard static topologies.
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Through the experimental demonstrations presented in Chapter 4, we showed that

the bandwidth steering concept is feasible for a conventional electronic system and can

be realized using the low-radix SiP switches, with performance improvements of 40% for

Dragonfly and 69% for Fat-Tree topologies. The insertion of SiP switches in Fat-Tree

topologies also allow for bandwidth tapering in the Fat-Tree without any detriments to

performance. Through the demonstrations of these experiments, we can conclude that

not only can the execution time of the system be significantly affected by the bandwidth

available between each processing node, but that it is also proportional to the amount of

throughput increase that is gained through bandwidth steering.

One may question the of use of SiP switches over additional electronic packet switch

for bandwidth steering. The primary motivation for using SiP switches over an EPS is

the fact that the SiP switch can not only take advantage of the WDM capability of optical

communications to carry a large amount of channels from electronic router groups, but

also switch them in a simple manner that requires little changes on the software side

because it occurs purely on the physical layer. The network architecture features a flat

topology where the SiP switches are layer 1 devices that are invisible to the electronic

system, and the only part that needs to be potentially changed is the flow rules on the

EPSs as it dictates routing. In terms of using SiP switches over other types of optical

switches such as MEMS, SiP switches are limited in their port count but have much lower

energy consumption, cost, and footprint. However their main advantage over MEMS

switches is their ability to be closely integrated with electronic control drivers and other

peripherals.
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5.1 Future Work

Future work related to the topic of bandwidth steering using silicon photonic switches

can be expanded on many fronts. The methodology of photonic switch integration with

conventional datacom environments can be improved with lower latecy by using special-

ized application-specific integrated circuits (ASICs) that can be interfaced with the SDN

controller. The ASICs can communicate with the SDN controller using OpenFlow just

like the electronic packet switches do, so that the SDN controller will use to the same

language to communicate with all switching devices, photonic or electronic, making op-

erations simpler for the user.

In terms of applications, the concept of bandwidth steering is not limited to HPC, but

can be applied to any application, such as data center applications and machine-learning

applications. However, the application traffic characteristics must be suitable for band-

width steering to provide performance improvement in all of these applications. This

means that the traffic is skewed, so that some links are congested while others are un-

derutilized at the same time. This allows for the uncongested links to be ”moved” by

switching the silicon photonic switches to relieve congested links. If the traffic is evenly

distributed over the system, then switching links around will not improve performance.

Second, the volatility of the traffic pattern (how frequent the traffic pattern changes over

the system) relative to the end-to-end switching speed must be taken into account. In

essence, the benefits of switching to relieve congestion must outweigh the detriment of

dropping packets during switching. This is the main reason why the applications targed

in this thesis were HPC applications, as their traffic pattern either never changes over the
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entire runtime of the application, or only during major phases of the application, which is

on the order of hours, while the end-to-end switching time was hundreds of milliseconds.
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Part II

Autonomous Network and IT Resource

Management for Geographically

Distributed Data Centers
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Chapter 6

Network Architecture and Control Strategy

6.1 Introduction

Data centers (DCs) have become essential infrastructure for commercial businesses across

all industries, with increasing demand for connectivity due to emerging applications con-

tinuously driving the need for robust, high bandwidth and low latency data interconnect

solutions. Cisco predicts a sevenfold increase in mobile data traffic and 12-fold increase

in virtual reality and augmented reality traffic from 2017 to 2022, as well as other appli-

cations such as Internet video to TV, video surveillance traffic, gaming, coinciding with

the advent of 5G and the Internet of Things. Metro data centers will have to carry a third

of the total global IP traffic that is expected to triple to 4.8 zettabytes by 2022 from 1.5

zettabytes during 2017 [25].

Driven by this traffic demand as well as the growing trend of using Content Distri-

bution Networks (CDNs) by an increasing number of businesses to deliver content to

users with much lower latency, enterprises are moving towards deploying a vast num-

ber of small- to mid-sized DCs separated by metro-scale distances connected with a fiber

network [27], [93]–[95]. Because DC networks form the groundwork that supports this

growth, contention and low utilization of shared network and compute resources in DC
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networks can be a major contributor to performance degradation. This is especially true

for cloud computing services built on a virtualized infrastructure, where much of the

compute resources are shared among multiple end-users and can show significant load

fluctuations due to user demand. Specifically, DC workload patterns have been found

to have weekend/weekday variations [96] but exhibit burstiness and are generally un-

predictable on shorter time scales [97], [98]. To maximize utilization of the underlying

physical infrastructure for unpredictable traffic behavior, an adaptive DC resource man-

agement strategy that provisions resources on-demand is required [99], [100]. There are

two types of targeted resources: network resources, primarily link bandwidth, and IT

resources, including CPU, physical memory, and hard disk capacity. Network resources

can be effectively managed at the flow level over the DC network, and IT resources are

managed through allocation and migration of virtual machines (VMs) in a cloud data cen-

ter.

The distribution and management of network and IT resources is a task suited to

Software-defined networking (SDN) [101], [102]. An SDN controller essentially collects

network resource information and disseminates control plane intelligence to the phys-

ical network entities to adapt the network to current load conditions. This is enabled

by the separation of the data and control planes which allows centralized management

of network components from the higher layers. We have shown in the first part of this

thesis that the SDN controller is capable of regular monitoring of network domain traffic

behavior as well as the ability to mitigate network congestion by intelligently allocat-

ing dynamic bandwidth resources to heavily subscribed links. Additional modifications

to the SDN application allows the controller to obtain IT resource usage statistics of the
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servers in the DC and subsequently control Virtual Machine (VM) placement to achieve

high server utilization. The combination of these capabilities allows the SDN controller to

perform IT resource management with awareness of the bandwidth usage of the compute

elements and links in the network, creating an additional degree of control for network-

wide performance optimization.

In this part of the thesis, we show an autonomous and on-demand network and IT re-

source provisioning SDN control plane built for an optically converged network architec-

ture for metro-scale data center networks [94], [103]. A converged network architecture

can setup dynamic lightpaths between racks in different data centers. This guarantees

lower delays for transferring data between DCs with respect to conventional metro and

DC networks. However, our network architecture combines both network and IT re-

source provisioning capabilities to support specificQuality of Service (QoS) requirements

and optimizes resource utilization under rapid and dynamically changing load variations.

At the same time, it aims tominimize cost and energy usage of the distributed DC comput-

ing elements by consolidating server workloads. This is achieved through i) second-scale

monitoring of both the link bandwidth usage of the network and IT resources usage of the

racks, ii) enabling connections with various QoS through two types of links, namely back-

ground and dynamic, iii) triggering autonomous live-migrations of VMs operating in the

servers to consolidate workload, and iv) managing network connections in both explicit

operations (request by operator) and implicit operations (automated assignment based on

traffic characteristics) by the SDN control plane. An experimental testbed of three data

center nodes, two fully emulated and one in the control plane, was built to demonstrate

the capability to provision both network and IT resources under several scenarios.
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While there have been many related works investigating dynamic provisioning of

bandwidth in DC networks or server-resource aware VM consolidation for managing IT

resources, there has not yet been any that combines the allocation of both types of re-

sources. Works that feature VM consolidation use two types: static and dynamic. Static

consolidation uses historical resource utilization as input to predict future resource use

trends in order to map VMs to physical hosts, whereupon the assignment remain un-

changed for months [104]. Dynamic server consolidation is useful for a more unpre-

dictable workload and is carried out on a shorter timescale. Examples of this include

[105], [106] and [107]. [105] presents a framework for the placement of VMs to minimize

network power reduction by turning off unused ToR switches while satisfying as many

network requests as possible.

Network bandwidth is a resource crucial to the performance of the majority of cloud-

based services. There are a large number of strategies proposed for fine-grained network

resource provisioning for DC networks. [108] describes a flexible-grid inter-data center

network architecture and investigates efficient support of cloud and big data applications.

[109] presents a flexible optical metro node architecture and discusses methods and chal-

lenges in providing dynamic transport services in a distributed data center environment.

[110] and [111] demonstrated optical burst/packet switched network architectures capa-

ble of setting up direct lightpaths between racks in different metro data centers, which

reduces inter-DC latency and provides better resource usage compared to conventional

networks.

In these works, different methods for adaptive provisioning IT or network resources

are shown, but each focuses on only one type of resource, either IT or network band-
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Figure 6.1. Control plane provisioning network and IT resources over a optical converged
intra- and inter-data center network, providing quality of service (QoS) differentiation
through background and dynamic connections, and consolidation of VMs

width. Works involved in the management of IT resources use the current state of the

network traffic to make decisions on provisioning VMs, but do not influence the net-

work’s physical topology or network capacity with additional resources. On the other

hand, works involved in provisioning dynamic bandwidth do not address the issues of

overusing server CPU or memory. We seek to create a comprehensive control plane that

manages both types of resources in a synergistic manner.

6.2 Data Plane

The data plane consists of the inter/intra network and the racks/pods of the data centers,

shown in Figure 6.1. The inter-DC connectivity is provided by a data center gateway,

which can be through the EPS, or using an optical gateway that is a Colorless, Direction-

less, Contentionless, Reconfigurable Optical Add/Drop Multiplexer (CDC-ROADM). The

EPS network provides both the intra-DC connectivity as well. The network architecture

supports two types of connections: i) background (shown in red), which provide basic
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DC-to-DC connectivity and are present at all times, and ii) dynamic (shown in green),

which provides direct rack/pod connections between DCs, which transmits through the

DC gateway. In the single-rate scenario, all connections are at the same rate and in multi-

rate scenario dynamic connections are at higher rates (40G, 100G, etc.).

The background connections are shared by several traffic flows from different Top-of-

Rack (ToR) switches. As these flows share the total bandwidth of the link, their throughput

is proportionately limited by the number of flows sharing the link. Therefore, background

connections are intended for short-lived and low data rate traffic flows, which require no

strict requirement in terms of bandwidth or latency. A set of background connections is

always active to provide basic connectivity among all the distributed data centers. On the

other hand, dynamic connections are used to perform large data rate transfers between

racks in different data centers. They are provisioned on-the-fly directly between racks or

pods through the DC gateway and are used for applications with strict latency or large

bandwidth requirements. At high network loads, it is possible that a dynamic connec-

tion is blocked due to the lack of wavelength resources. When this happens, the setup

of the dynamic connection is rescheduled at a later time, which increases the total time

required to complete the data transfer. However, as this would negatively affect criti-

cal data transfers such as the migration of virtualized 5G network services, we assign a

priority to each dynamic connection and we employ a control algorithm for efficiently

manage the priority levels. The direct rack-to-rack and/or pod-to-pod connections in this

architecture also enables transparent data center to data center connections without Elec-

trical/Optical/Electrical (OEO) conversions. Optical metro-scale transceivers supporting

a transparent reach up to 80 km provide the direct connections at low cost.
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Algorithm 1 Network and IT resource implicit control algorithm
New connection request R from DC S to DC D;
Monitor the active Background and Dynamic connections, and IT resources usage per-
centage;
if Traffic on Background B DC S to DC D ≥Threshold T₀. then

if SD of traffic on B ≤ 1 then
Create new Background link from DC S to DC D

else if SD of traffic on B > 1 then
Create new Dynamic link from DC S to DC D

end if
end if
if IT resources usage on Server U ≥Threshold T₁
or Dynamic link bandwidth usage on Server Q ≥ Threshold T₂ then

Initialize live VM migration from Server U to next available Server V
else if IT resources usage on Server V≥Threshold T₃ and IT resources usage on Server
U < Threshold T₄
or Dynamic link bandwidth usage on Server V ≥ Threshold T₄ and Dynamic link
bandwidth usage on Server U < Threshold T₅ then

Initialize live VM migration from Server V back to Server U
end if

6.3 Control Plane

The SDN control plane (Figure 6.2) contains three modules: i) the traffic and IT resource

usage monitor, ii) the resource usage optimizer, and iii) the topology and virtual machine

(VM) placement manager. Data center are divided in different subnets based on their size,

e.g. DC1 has the 10.1.x, DC2, 10.2.x, etc. ToRs and/or Pods are SDN-compatible switches

with permanent flow rules for global inter data center connectivity through background

connections. At initial startup, the SDN control plane establishes connections with both

the OpenFlow enabled switches and the DC servers. At regular second-scale intervals, the

SDN controller obtains current rack-to-rack traffic statistics from the OpenFlow switches,

as well as IT resources usage of each server in the DCs. The resource usage optimizer

uses this information to determine whether new background or dynamic connections
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Figure 6.2. SDN control plane workflow showing the system’s ability to monitor and
provision explicit and autonomous (implicit) network and computational resources

are needed, and whether currently operating VMs need to be consolidated. If yes, the

resource usage optimizer invokes the topology and VM placement manager to modify

the flow tables of the relevant ToR switches to establish new links, and/or initiates VM

live migrations to increase or reduce CPU usage on certain servers. Explicit dynamic

connections are made from the application layer directly to the resource usage optimizer

module. The details of the decision making process for establishing dynamic links as well

as VM migrations are as follows.

The algorithm for the implicit operation of provisioning bandwidth and IT resources

is shown in Algorithm 1. To start, the initialization of the network architecture estab-
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lishes the inter-DC background connections necessary for basic connectivity, and the

controller establishes connections to the servers. After that, periodic monitoring obtains

the throughput of the background connections and consumption of IT resources, such as

the CPU, memory, or storage usage. Monitoring of the link throughput is performed by

obtaining the current and previous values of the number of bytes sent by each flow on

the shared link, and dividing this difference by the monitoring interval time.

The first half of Algorithm 1 describes the bandwidth allocation algorithm for the

metro network. The SDN controller uses the throughput values calculated through pe-

riodic traffic monitoring of each flow to determine whether the traffic on background

connections B between source and destination data centers (DC S and DC D) is higher

than a specified threshold. If so, the controller will calculate the standard deviation (SD)

of the throughput between the different flows in B. If the SD ≤ 1, a new background

connection is established between DC S and DC D. If the SD > 1, then a new dynamic

connection is created for the flow that generates the highest traffic (for optical gateways,

a new dynamic connection is created only whenwavelength channels are available - more

below). This allows a dynamic connection to be allocated only if the largest flow has a

significantly higher throughput than the others. Otherwise, if the flows are sharing the

bandwidth of the link with an almost equal demand, then allocating a new background

connection is fairer to each flow.

Note that for optical gateways, when the controller creates a new dynamic connec-

tion, it uses the highest available data rate in the network, limited by the distance between

DC S and DC D to be within the optical reach of the transceivers. It also assigns priori-

ties to each new dynamic connection so that higher priority connections can could push
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existing lower priority connections. A new dynamic connection can be assigned prior-

ity 0 representing a connection for bulk traffic that are tolerant of delays, or priority 1

representing a critical connection that sends delay-sensitive traffic. In such a case, the

controller a force an active dynamic connection with priority 0 to move to a lower data

rate or to a background connection.

The algorithm for explicit bandwidth allocation (by an operator) is designed for single-

rate converged networks and aims at minimizing the blocking probability for dynamic

connections with high priority. According to this algorithm, when the metro network

controller receives a new explicit dynamic connection request (R) between source data

center DC S and destination data center DC D, it runs a routing and wavelength assign-

ment (RWA) algorithm. If the RWA identifies an available lightpath between DC S and

DC D, then R is served using that lightpath. If the RWA does not find an available light-

path and R has priority 0, then R is rescheduled at a later time. If the RWA does not

find an available lightpath and R has priority > 0, the algorithm tries to move an active

connection (R’) with lower priority to a background connection. In this way the optical

resources occupied by R’ can be released and utilized to serve R. Note that this causes an

increment in the transfer time for R’ due to the fact that using a background connection

it will share the channel capacity with other traffic.

The second half of Algorithm 1 describes the mechanism for autonomous VM consoli-

dation. The concept of this algorithm is analogous to the implicit algorithm for bandwidth

allocation discussed previously. In the beginning, requests to the DC are handled by VMs

consolidated onto a small number of active servers. The SDN controller obtains the cur-

rent IT resource usage of each server in the distributed DC network at regular intervals.
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When the workload in a server increases past a certain threshold causing performance

to degrade if left unchecked, the controller will initiate VM live migrations to the next

available server to distribute the workload, which can be located within the same rack

in the same metro DC, or a rack located in another metro DC, which will also prompt a

dynamic link allocation if necessary. This allows the disruption of service caused by lack

of network bandwidth for the VM migration to be reduced to a minimum. On the other

hand, VM migrations can also be used to reduce traffic hotspots. If a dedicated dynamic

link is insufficient to provide the bandwidth necessary to meet demands, the controller

will perform VMmigrations to a second server to relieve network congestion by allowing

part of the traffic to be directed to the second server despite sufficient CPU and memory

resources in the first server.

The last ”else if” statement in Algorithm 1 describes the consolidation process, where

if the second server V that the VM was migrated to is still active but the original server

U where the VM came from is consuming IT resources or dynamic link bandwidth below

a certain threshold, meaning that it is no longer consuming as much resources as before,

then this VM is migrated back to U to maintain high CPU usage of the original server

U. This process allows the second server V to be turned off to save operational costs and

energy consumption.

Overall, our control plane ensures that both network resources and IT resources are

available to the servers in the distributed data center network at all times to mitigate con-

gestion and maintain high CPU usage, while minimizing the number of active computa-

tion nodes. In this way, our architecture eliminates the costs associated with hardware

maintenance and energy usage from keeping unnecessary servers active.
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Chapter 7

Simulation and Testbed Results

An event-driven simulator was developed to evaluate the benefits of the proposed con-

verged architecture and the dynamic network bandwidth allocation portion of the control

algorithm. A testbed was also built to evaluate both the network bandwidth allocation

and IT resource management capabilities of the system.

7.1 Simulations and Numerical Results

For our network simulation the topology is composed of 38 nodes, 59 links and 100 wave-

lengths per fiber. Each node represents a metro data center with 100 racks/pods and

each rack/pod switch is equipped with one 10G and one 40G WDM tunable transceivers

connected to the optical gateway. The EPS is equipped with 25 10G grey transceivers

connected to the optical gateway as well. The control plane employs k-shortest paths

with first-fit wavelength assignment (k-SP FF) algorithm to establish new lightpaths. We

assume that rack/pod switches generate traffic flows with lognormal inter-arrival distri-

bution. We vary the mean of the lognormal distribution to mimic different traffic loads. In

average half of the traffic flows have priority 0 (Bulk) and half have priority 1 (Critical).

The flows represent data transfers with sizes uniformly distributed between 1 and 500

GB. We compared the performance of: (i) Converged Multi-Rate (MR) network, (ii) Con-
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(a) (b)

(c) (d)

Figure 7.1. Simulation results comparing the performance of the proposed Converged
Multi-Rate (MR) and Single-Rate (SR) architectures with implicit control strategy. (a) Av-
erage transfer times, (b) average network resource usage, (c) blocking probability for new
connections, (d) average usage of transceivers at 10G and 40G

verged Single Rate (SR) and (iii) Conventional SR network. In our simulations the three

networks have the same overall capacity. In the ConvergedMR, 40G transceivers are used

for dynamic connections with 10G transceivers are used for background connections. In

SR, only 10G transceivers are available and they are used for both background and dy-

namic connections. The Conventional network relies only on background connections.

To manage different levels of priority in the Conventional network, we employ a traffic

engineering technique that reserves at least 3 Gbps capacity over a background connec-
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tion for Critical transfers. The results are illustrated in Figure 7.1. Figure 7.1(a) shows the

average time required to complete a data transfer between different metro data centers,

as a function of the load. It can be observed that the proposed Converged MR provides

in average 2.5× faster Critical transfers and 2× faster Bulk transfers, with respect to the

Converged SR. This is due to the use of multi-rate transmission that allows for improving

the transmission efficiency on the dynamic connections. In addition, the Converged MR

provides 5× faster Critical and Bulk transfers compared to the Conventional network.

This is due to the combined use of multi-rate transmission and dynamic connections for

performing large data transfers. On the other hand, the Converged SR network provides

in average 2.5× faster Critical transfers and 2× faster Bulk transfers, with respect to the

Conventional, thanks to the use of dynamic connections.

Figure 7.1(b) shows the average number of wavelengths required to carry different

loads. The Converged MR requires at least 20% less wavelengths than the Converged SR

and 25% less wavelengths than the Conventional. On the other hand, the Converged SR

requires between 5% and 10% less wavelengths with respect to the Conventional network.

Consequently, we can conclude that the Converged networks provide a more efficient re-

source usage. The main reasons are that in the Converged architectures the data transfers

are faster and thus occupy network resources for shorter times. In addition, the dynamic

connections are always fully utilized and no bandwidth is wasted.

Figure 7.1(c) shows the blocking probability in the Converged networks. The block-

ing probability indicates the probability that the establishment of a new connection is

blocked due to the lack of wavelength resources or of free transceivers for establishing

the lightpath between the source and destination data centers. It can be observed in the
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Converged architectures the Critical connections have lower blocking probability than

the Bulk connections. This is due to the procedure described in control algorithm that

allows to move Bulk connections to background to serve new Critical connections. In the

Converged MR the blocking probability is slightly higher than in the Converged SR, due

to the fact that less transceivers are employed at the rack/pod switches, which leads to a

slightly higher probability that a new connection will not be served due to the lack of a

free transceiver.

Finally, in Figure 7.1(d) we show the percentage of the time in which the 10G and 40G

transceivers at the racks/pods switches are utilized in the Converged MR network. It is

is shown that, for sufficiently high traffic, the 40G transceivers are utilized almost 100%

of the time. The reason is that in our control strategy we prioritize the use of the 40G

transceivers, which are the most expensive asset, so that the operator can get maximum

outcome from the investment.

7.2 Experimental Prototype

A prototype implementation of 3 data centers (2 fully implemented, 1 emulated) was built

(Figure 7.2). Data centers 1 and 2 consist of 4 racks, are connected to a server. Servers

are equipped with a 6-core Intel Xeon processor, 24 GB memory and a dual-port 10G Net-

work Interface Card (NIC). ToR switches are implemented by logically dividing the two

Pica8 10G OpenFlow switches to 8 bridges. Each ToR has a 10G port to the server and

a 10G port to the EPS switch with a direct-attached copper cable, and a 10G port to the

optical gateway with a 10G optical transceiver. ToR1 also has a 40G uplink. The EPS is
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Figure 7.2. Prototype of the 3-node metro-scale converged data center network. DC1
and DC2 are fully implemented, while DC3 is implemented only on the control plane.
Distances between the data centers range between 5 to 25km

a bridge in a Pica8 10G OpenFlow switch with two 10G transceivers. Optical gateways

are implemented using Calient and Polatis Optical Space Switches (OSS), Nistica Wave-

length Selective Switch (WSS) and DWDM Mux/Demux. The 10G optical transceivers

are 10G SFP+ DWDM with 24 dB power budget. Due to limitations in form-factor single

wavelength DWDM 40G transceivers, we used a (4x10G) QSFP+ with a 18 dB power bud-

get; however commercial single wavelength form-factor 40G, 100G will be available soon

[112].

For the control plane, an controller server runs the SDN Ryu OpenFlow controller

and is connected to the ToR and optical gateways via 1 Gbps Ethernet campus Internet.

Data center 1 and 2 are in 10.0.1.x and 10.0.2.x subnets, respectively. All the control plane

modules are developed in Python and are integrated in a RYU application. Data center 3
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Figure 7.3. Snapshot of the 3-data center metro-network prototype

is only implemented in the control plane to achieve a mesh topology. Distances between

the data centers are 5–25 km.

For managing IT resource usage, virtual machines (VMs) are created on each server

using the Centos VM Manager with 8 Gb of hard disk and 8 Gb of local memory usage

each. IT resource monitoring was performed using the psutil Python library. The SDN

controller sends messages to the servers over an SSH connection. Each servers contains

a script for running the psutil function that returns the current system-wide CPU utiliza-

tion as a percentage, which is then returned to the SDN controller for processing. VM
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migrations were performed using the functions from the libvirt Python library. Once a

decision has been made to migrate a VM, the SDN controller uses the source host and

destination host IP addresses to initiate the VM live migration.

7.3 Dynamic Network Bandwidth Allocation

In this section we first demonstrate the testbed prototype’s ability to perform dynamic

bandwidth allocation only, without the IT resource management capabilities. Figure

7.4(a) shows the evaluation of performing explicit background connections. We show

the throughput as a function of time for the background connection between data centers

1 and 2. At the start, only Rack 1 is transmitting data, and thus they use the full 10 Gbps

bandwidth of the link. At 10s, Racks 2–4 also start data transmission, so the 10 Gbps link

capacity is shared between the 4 Racks. Between, 30-40s, Rack 1 again utilizes the whole

bandwidth. At 40s, the background connection is shared between Racks 1 and 2, each 4.5

Gbps and so on. For low priority services with less stringent bandwidth requirements,

a background connection performs well enough. However for higher priority services

where unpredictable changes on the throughput is not acceptable, a dedicated dynamic

connection is required.

Next, we demonstrate explicit dynamic connections between data centers 1 and 2.

Four Rack-to-Rack connections are established and the throughput is measured. Figure

7.4(b) shows the result that is captured simultaneously on the servers. All connections

are utilizing the maximum available bandwidth of 10 Gbps. The slight difference between

the throughput of Rack 4 connection is due to difference in the brand of the transceiver
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(a) (b)

(c) (d)

Figure 7.4. Experimental results on the prototype: (a) Random traffic change between 4
racks on a background connection, (b) 4 simultaneous dynamic rack-to-rack connections
with an explicit request, (c) Spectrum of DC1 and DC2 links consisting of 5 DWDM con-
nections (1 background and 4 dynamic), (d) Autonomous (Implicit) bandwidth adjustment
on a background connection utilized by 4 racks between DC1 and DC2

module compared to the rest. With dynamic connections, strict latency and bandwidth

demands for high priority services are guaranteed. Figure 7.4(c) shows the spectrum of

the connections after 25km of transmission. Channel C34 is the background connection

and channels C26, C28, C30 and C32 are the four dynamic connections.

We continue the protoype evaluation by demonstrating the control plane capability

to establish implicit connections. The control plane monitors the 4 flows between Racks
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(a) (b)

Figure 7.4. (e) Autonomous (Implicit) bandwidth adjustment by establishing a dynamic
connection between DC1 and DC2 in a single-rate data plane (10G), (f) Autonomous (Im-
plicit) bandwidth adjustment by establishing a dynamic connection between DC1 and
DC2 in a multi-rate data plane (10G and 40G)

1–4 of data centers 1 and 2 on the background connection every 2s and calculates the

total throughout of all four. As shown in Figure 7.4(d), at the beginning Racks 1–4 have

throughput of 0.8, 1, 1.2 and 1.4 Gbps, respectively, which generates 4.4 Gbps in total.

Between 18–36s, the throughput of links 1 and 2 increases; however the overall traffic is

still under the threshold that is about 9 Gbps. At 45s, all racks starting transmitting more

data that results in link saturation at 50s (total traffic: 9.4 Gbps, SD: 0.22). At this point,

the control plane makes a new background connection since the standard deviation (SD)

> 1. Now, there are two background connections having total throughput of 8.87 and 8.60

and the SD of 0.1 and 0.04, respectively.

Next, we evaluate the autonomous dynamic connection establishment on a single-rate

scenario. Figure 7.5(a) shows the racks’ throughput. The experiment starts by having total

4.4 Gbps traffic on the background connection. At 15s, Rack 1 increases its throughput

to the point that the background connection is over the threshold of 9 Gbps with the 4
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flows having SD of 2.25. Since, it is larger than 1, the control plane establishes a new

dynamic connection for the flow with the largest traffic that is Rack 1. At 32s, Rack 2

starts transmitting more data and saturating the background link, thus the control plane

established a new dynamic connection for Rack 2 at 42s. Same trend happens for Racks 3

and 4, and they also get a dedicated background connection.

Finally, we demonstrate an implicit dynamic connection in the multi-rate scenario.

Racks 1–3 are transmitting data at 0.8, 1.2, and 1.4 Gbps, total 4.4 Gbps on the background

connection (Figure 7.5(b)). At 16s, Rack 1 starts increasing the traffic, resulting to back-

ground link saturation at 20s. The SD of the 3 flows is > 1, thus the control plane creates

a new 40G dynamic link for the flow with the largest traffic that is Rack1. Now the 18

Gbps of traffic from Rack 1 is on the dynamic connection and the traffic from Racks 2

and 3 are on the background connection between the two data centers. At 70s, the traffic

from Rack 1 drops to 1 Gbps, hence the dynamic connection is removed and all 3 Racks

transmit data on the background connection.

7.4 Combined IT Resource and Dynamic Bandwidth

Allocation

This section shows the prototype control plane being aware of not only the network band-

width between data centers as well as keeping track of the CPU usage of servers as well.

We performed two sets of experiments (Figure 7.5) with CPU usage as the limiting IT

resource. The top two graphs show the CPU usage percentage over time of the relevant
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servers. The bottom two graphs show the throughput of the servers. The top and bottom

graphs of each experiment take place simultaneously for the same experimental proce-

dure.

In the first scenario (Figure 7.5(a)), we focus on the behavior of the control plane under

varying computational loads. New requests arrive at DC1, causing new VMs to be spun

up in Server 1, reflected in increasing CPU usage over time. The CPU usage of Server

1 continues to increase over time as more VMs are consolidated onto it, until at the 54

second mark (shown by the first dotted black line) when the CPU usage grows above a

maximum threshold of 80%. This increase triggers a VMmigration from Server 1 to Server

5 in DC2, resulting in a decrease in CPU usage of Server 1 while CPU usage increases for

Server 5 due to the offset workload. We also observe the effect on the network, shown

by the short burst of traffic generated by Server 1 (bottom graph). When the CPU usage

of Server 1 has decreased to a sufficient level below 30% while the CPU usage of Server

5 remains at a moderate level of 40%, the controller initiates a migration for this VM to

move back to Server 1 to consolidate the workload, (marked by the second dotted black

line). We observe that Server 5’s CPU usage decreases to 0, while Server 1’s CPU usage

increases slightly, until the request is completed. The traffic created by the migration back

to Server 1 is also shown in the throughput of Server 5 in the bottom graph.

The second experiment (Figure 7.5(b)) shows the effects on CPU usage and network

throughput when the consolidation of VMs onto Server 1 leads to high network usage

and how the control plane handles this situation. To begin, Server 1 is running VMs that

consume a low level amount of CPU capacity and network bandwidth. At the 23 second

mark, new requests cause the workload to increase to over 50% and the throughput to
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(a) (b)

Figure 7.5. Experimental results from the testbed: a) Varying CPU usage triggering im-
plicit VM migrations, and throughput caused by the migrations, b) high bandwidth usage
caused by consolidation of VMs causing dynamic link allocations and VM migration to
relieve congested links and prevent network hotspots

approximately 7.5 Gbps. The CPU usage is not enough to cause a VMmigration, but traffic

demands cause a dynamic link to be allocated. As the CPU usage on Server 1 is still low

enough for new VMs to be created, the bandwidth usage now grows to near full capacity

(90%) of the 10G link, causing a VM migration from Server 1 in DC1 to Server 5 in DC2

at the time marked by the second dotted line at 42 seconds. This VM migration leads to

a reduced bandwidth utilization of approximately 6 Gbps by Server 1, and approximately

4 Gbps by Server 5. Server 1 continues to use the dynamic link, while Server 5 uses the

background connection, both of which are uncongested. We note that the throughput

of Server 1 remains high for approximately 1 second beyond the dotted line instead of

dropping immediately due to the additional traffic generated by the VM migration at that

time. Additionally, since the VM has migrated to a different physical server, there is a

small delay in Server 5’s throughput due to the time required to reestablish connection to
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the VM.

Overall, we demonstrate the feasibility of our control plane algorithm by subjecting

our control plane to handle various different scenarios involving dynamic load variations

on CPU usage as well as both background and dynamic link bandwidth usage. In each

scenario, the results show that the control plane properly detects high resource utilization

for both network bandwidth and CPU usage and performs the appropriate actions to al-

locate resources when the thresholds are reached. Therefore we show that it is possible to

build a reconfigurable and autonomous resource provisioning control plane using com-

modity electronic switches that can steer bandwidth and consolidate VMs for efficient

resource utilization under different application load conditions.
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Chapter 8

Conclusion and Discussion

In this part we propose a network architecture designed to manage IT and network re-

sources for metro-scale networks with distributed small to mid-sized data centers. Lever-

aging SDN, we take advantage of its ability to monitor the entire network domain in order

to centrally aggregate statistics and provision both network and IT resources in an ap-

proximate and globally optimal way. With dynamic links available to be used on-demand,

we provide a simple and effective method to utilize the spare network capacity of the DC

to offload traffic from congested links. Along with capability for dynamic bandwidth

provisioning, we also developed the capability of IT resource management through VM

consolidation for cloud computing applications, using the same principles of monitoring

and provisioning on-demand as used for the network. This is described in Chapter 6. From

there we developed a large scale simulation of 38 data centers to evaluate the performance

of dynamic network provisioning strategy (Chapter 7, which showed 2.5× faster trans-

fer of critical data and 2× faster transfer of bulk data compared to conventional systems,

thanks to the use of dynamic connections. We also show numerous other improvements

in wavelength channel usage, blocking probability, and link utilization. We also devel-

oped an experimental prototype of 3 data centers (2 fully implemented and 1 emulated)

with both network and IT resource provisioning capabilities to demonstrate the feasibility
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of our concept. We showed that this system autonomously maintains an adequate level

of both IT and network resources at all times, and the provisioning of these two types

of resources can occur synergistically to realize overall performance improvements and

reliability.

8.1 Future Work

While SDN provides reliable monitoring of infrastructure information and efficient pro-

visioning of resources, it also generates extra overhead in the network from gathering the

usage statistics of both the switching components and the compute elements in the data

centers. This is a well-known challenge for SDN networks due to the centralized nature

of the network architecture. A possible approach to address the issue can be the follow-

ing: the network can be divided among multiple SDN controllers, where each controller

will perform the same network bandwidth and IT resource allocation algorithm for the

section of the network that it controls. A higher level controller or orchestrator that acts

as a mediator for any coordination would be required between the local controllers.
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Part III

Lightbridge
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Chapter 9

Addressing Network Communication over Optically Switched

Networks

9.1 Introduction

In the previous two parts presented in this thesis, both feature network architectures in-

terconnected with optical switches. However, optically switched networks present a new

challenge that is previously not faced with electronic interconnects - a switching event

in an optical network changes the physical topology of the network, due to the its cir-

cuit switching nature. This property of optical switches, when incorporated in traditional

packet switched environments, leads to a phenomenon where after the photonic switch

has performed its switching operation and the lightwave is now transmitting to a different

port, the packet switch needs to recognize this new change and reestablish the link. This is

equivalent of manually unplugging an optical transceiver and plugging it into a different

port. For current commercial packet switches which are designed under the assumption

that such an action would never be performed after the initial setup and never while an

application is running, it results in a massive delay when an optical switch is introduced.

The mechanism in which an EPS recognizes that a new transceiver has been plugged in is

located in the operating system of the packet switch, which is constantly polling the state
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of its ports every few hundred milliseconds, which corresponds with our own measure-

ments conducted in Part 1 of this thesis (Figure 4.1 and Figure 4.3(b)), which constitutes

an overwhelming part of the overall end-to-end switching latency. In addition, optical

switches lack the fundamental ability to buffer packets unlike electronic packet switches.

While the topic of optical buffering is a heavily researched topic, approaches are gener-

ally limited by component complexity or in the case of slow light devices, the inability to

reach the delay time and data rates required of a practical optical buffer [113].

From these fundamental characteristics, a crucial problem arises in whether it is safe

or not to send a packet at any given point in time in an optically switched network by

any end host. The answer to this question critically depends on coordinated switching,

routing and forwarding operations across the network.

In this part of the thesis we introduce Lightbridge, a software platform designed for

optically switched networks to arbitrate circuit contention safely and efficiently in real-

time. It operates in the problem space where there are more optical circuits that are

desired than can be physically realized at any given point in time, and provides the state

of the interconnect network topology to the processing nodes, so that transmission is only

performed when the physically link is available.

Specifically, Lightbridge is composed of two major parts:

1. A Linux kernel module that integrates the nuances of optically circuit switched

networks into the networking subsystem.

2. A distributed control plane for realizing safe and efficient communications over

optically switched networks.
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Figure 9.1. Change in optical switch state requires arbitration by the control plane to
remove previous connections and buffering of packets whose link is unavailable

The Lightbridge design decomposes the problem space into local buffer management

for each optical circuit, and global circuit coordination. Buffer management is handled

by the Lightbridge kernel module while the coordination of the global circuits is man-

aged by the distributed control plane which will have the capability to provide network

information to each host node. The general premise is that when a host wants to send

packets over the network, it needs to first check whether its outgoing link is available or

not, which is dictated by the state of the optical switch that the circuit is connected to.

If the circuit is not available, then any packets sent over this circuit will be dropped due

to the optical loss. Therefore, these packets must be buffered until the state of the optical

switch has changed to a state where the given circuit for this host has become available,

upon which the packets stored in the buffer can be transmitted. Additionally, when more

circuits are required than are physically possible at a given time, scheduling must take

place. Hosts can also request circuits to the optical switch controller which arbitrates

requests through a consistent scheduling protocol.

A simple example is shown in Figure 9.1. Four end-host servers 1-4 are connected to

an optical switch that is capable of creating only two circuits at a time between the four

connections. Each colored line represents a physical communication line, which can be
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an individual fiber strand (in the case of spatial switching) or a lambda for wavelength

switching. The initial state of this network connects Servers 1 and 3, and Servers 2 and 4.

Now suppose that Server 1 needs to communicate with Server 4. This requires a switching

event to take place, which will remove the current circuit from Server 1 to 3. Therefore,

any packets that needs to transmit between Servers 1 and 3 needs to be buffered.

During a switching event, all end hosts must first confirm that they are ready for the

switch controllers to cause the switch to change states beforehand. At the end hosts this

asserts that they are now buffering packets for the circuit that will become unavailable

once the switch occurs. If there are multiple switch controllers then there will need to be

coordination between them as well.

9.2 Lightbridge Components

Overview

(a) (b)

Figure 9.2. How Lightbridge fits into an optically switched network: a) Lightbridge lo-
cated on each individual end host, and information about the network state is conveyed to
each Lightbridge module by the switch controller b) Lightbridge functionality aggregated
into a single intelligent packet switch, so that the packet switch Lightbridge functionality
on each of its ports
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Figure 9.2 shows the general components of the Lightbridge system. Conventional

servers are able to communicate with each other through an optical switch, but with the

Lightbridge modules loaded within the kernel to provide additional functionalities. The

switch controller manage the state of the optical switch as well as convey the switch

state information to the servers. There are two different versions of this setup. For Fig-

ure 9.2(a), the Lightbridge module is located on each individual server, while in Figure

9.2(b), the LB modules of each server have been aggregated into one unit. Instead of LB

modules on each server network interface card (NIC), it will be on a packet switch and

each port of the packet switch will be aware whether its optical I/O is currently available

or not. This architecture allows for the controller to connect to a single device that ag-

gregates all the traffic instead of having to communicate with each individual host, and

subsequently realizes an ”intelligent” packet switch that is aware of the optical network

topology. Meanwhile, the servers are off-the-shelf general purpose machines that can

be installed in a plug-and-play manner without any modifications. As the Lightbridge

module is a Linux-based kernel submodule, it is simple to implement in current packet

switches, which use Linux operating systems.

Linux Kernel Submodules

In this subsection the various subcomponents comprising the Lightbridge Linux module

is described in detail. The external switch controller is not described in this thesis, as it

has yet to be implemented. Only the Linux module component will be discussed.

The software modules constituting the Lightbridge Linux module functionality is in

99



Figure 9.3. Bootup menu showing kernel modified with Lightbridge

two parts.

1. A Loadable Kernel Module (LKM) that is loaded into the kernel on demand, and is

responsible for the transmission and buffering functionalities

2. A secondary module that is a direct modification of the network protocol section

of the Linux kernel, responsible for handling packet reception to the end host.

The LKM and the secondary module are part of an in-tree build, meaning a modified

kernel needs to be selected during bootup sequence (shown in Figure 9.3). It can be seen

that below the standard Debian kernel, the highlighted box shows the modified Debian

kernel options that has Lightbridge loaded.

When the LKM is loaded, it creates virtual network interfaces that sits on top of the

real physical interface. To test the functionality of this operation, we create 2 Lightbridge

(LB) devices, LB1 and LB2, which can be seen in Figure 9.4. Each LB device acts to control

the transmission and buffering of packets of a single optical channel, by being a virtual

network interface that connects to the physical network interface of the optical channel.

Figure 9.5 shows the operation workflow of the main LKM module. Starting at the
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Figure 9.4. Lightbridge devices lb1 and lb2 in server A, which are virtual devices with
their own IP addresses

top is the initialization of LB devices, a lookup table, buffers, as well as establishing the

connection to the parent interface. The lookup table is the means in which the end hosts

are able to know the availability of its optical circuit, and is also what is being constantly

updated by the switch controller. The implementation of the lookup table is simply a

single 64 bit integer, serving as a bitmap to indicate which links are available or not.

From there, two situations can arise. First, if a packet needs to be transmitted, the lookup

table is checked to see if the circuit for the transmitting server is available. If it is, then

the packet is transmitted. If it is not, the packet is buffered in a circular buffer (circ_buf )

data structure until it is filled, upon which the packets are dropped.

The other situation is when the lookup table is modified by the controller. In this case,

after the lookup table has been updated, we check to see if the buffers have data queued.

If there are buffers that have data queued and the optical circuit corresponding to this

buffer has become available, then we can transmit packets from those buffers until they

are empty or until the circuit becomes unavailable again. This process repeats until the

module exits, upon which the LB devices and buffers are freed.

The workflow for the secondary module responsible for packet reception is shown in
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Figure 9.5. Kernel module (LKM) workflow for packet transmission and buffering

Figure 9.6. Workflow for packet reception and processing by the Lightbridge device

Figure 9.6. It is called upon in the default file in the Linux Debian kernel (net/core/dev.c)

which handles packet reception (header processing), and is inserted at a point before the

default packet reception code so that it intercept the incoming packet so that it can be

processed to see if the packet is meant for a Lightbridge device. The process begins with

an incoming packet, upon which we perform header processing to extract its target IP and

whether it is an ARP or IP packet. We match the target IP with the LB device IP addresses

to see if the packet is meant for an LB device. If it is, then we set the device of the packet
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to the LB device, and update system statistics. If not, we return false and let the packet

pass through the default processing procedure by the existing kernel code.

9.3 Functionality Verification

The functionalities of the two modules were tested in a virtual environment with two

virtual machines that communicate with each other through a virtual optical link. A user

side module was also written to act as a emulated controller that can update the lookup

table bitmap on the kernel side. The following operations were performed to prove the

successful implementation of the aforementioned functionalities.

1. Server A and Server B are present, with Server A having LB1 and LB2 devices acti-

vated by loading the LKM using the modprobe command. LB1 and LB2 have the IP

addresses 10.0.1.1 and 10.0.2.1, respectively, while Server B has interfaces with IP

addresses 10.0.1.2 and 10.0.2.2, respectively.

2. We first verify that both LB devices can ping their corresponding IP addresses on

Server B in the same subnet.

3. We then use the user-side program to set the lookup table so that the circuit for LB1

is blocked, and verify that pinging 10.0.1.2 no longer works.

4. When we use the user program to change the state of the lookup table so that LB1

is no longer blocked and LB2 becomes blocked, we use packet tracing software

tcpdump to see that all the packets buffered at LB1 is suddenly sent all at once to

10.0.1.2, while packets to 10.0.2.2 from LB2 is blocked.
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5. We further verify that the transmission blocking and buffering capabilities, as well

as releasing the buffered data when the lookup table is updated works properly by

using netcat to create a socket to send short text messages from Server A to Server

B. We verify that when the circuit is not available, Server B does indeed not receive

the messages, and when the circuit becomes available, all the text messages are

suddenly received at Server B. This shows that the correct payload is successfully

delivered. A screenshot of this test is shown in Figure 9.7.

In Figure 9.7, the top left screen shows the kernel status messages from the dmesg

command, updating us on the current status of the lookup table. The top right screen is

the user side program that is used to manually update the lookup table in Server A, so

that it is emulating a switch controller. The bottom left screen shows Server A pinging

and sending text messages through netcat, and finally, the bottom right screen shows the

monitoring of received packets on Server B side using tcpdump as well as the receiving

side of the netcat socket.
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Figure 9.7. Screenshot of Lightbridge tests conducted to verify its functionalities.
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Chapter 10

Conclusion and Discussion

This final part of the thesis presented the development of a software solution to address

problem of coordination and control of transmitting packets over an optically switched

network. As an optical switch changes the physical topology of the network without

having the capability to buffer packets, recklessly sending packets by hosts can result in

large quantities of packets being dropped and having to be resent, among other issues.

We developed Lightbridge, which consists of an external control plane that provides in-

formation about the state of the optical switch to the end hosts, as well as kernel-side

modifications to the hosts that utilize this information to halt transmission and buffer

outgoing packets when the optical circuit is unavailable. It also controls packet reception

from the physical interfaces that are connected to the optical switch. This allows packets

incoming packets to be properly received, and outgoing packets to be sent only when the

optical network is in the proper state.

According to the experiments described and depicted in Figure 9.7, we verify that

the Linux Debian kernel has been appropriately modified so that all transmitting packets

will first check whether the optical circuit is available, and buffering of the packet occurs

when the circuit is not available. The blocking and buffering functionality of the virtual

LB devices have also been verified. On the packet reception end we see that incoming
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packets that are meant for the LB devices are appropriately handled, while packets on

other interfaces pass through unaffected.

10.1 Future Work

While currently we have only implemented the basic functionalities of Lightbridge on the

end hosts, future plans will involve the implementation of the distributed control plane

that will not only control the state of the optical switch but also convey the state of the

optical switch to the end hosts.
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Final Conclusion and Remarks

The work presented in this dissertation described various reconfigurable network archi-

tectures that leveraged optical switches to provide increased functionality, flexibility and

performance improvements. Optical switches have the fundamental capability to direct

high bandwidth and low energy optical signals and are crucial for next generation net-

work interconnects, whether it is on the intra-data center scale to the metro and long

haul scale. Their integration with current compute systems such as high-performance

computing and data centers require a system level control plane that can manage the var-

ious hardware of the system to work synergistically with the optical switch, and various

other software and hardware modules to integrate the optical switch within the tradi-

tional Datacom environment of servers and electronic packet switches. After developing

these integration methodologies and demonstrating the capability to relieve congestion

in links with bandwidth steering techniques in Part 1, we made the observation that there

was a mismatch between the application traffic pattern and the network topology due

to the skewness of many high-performance computing applications, which leads to sub-

optimal performance of the compute system, as the processing nodes were either con-

stantly starved of data to process due to congested links, as well as wasting energy on links

that were on but were severely underutilized. With these observations, we determined
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how to utilize energy efficient silicon photonic switches within the network infrastructure

in order to construct flexible network topologies that can adapt to the traffic demands of

the application. This lead to optimized bandwidth allocation and reduced latencies in both

Dragonfly and Fat-Tree topologies, which are commonly used in both high-performance

computing systems and data centers. By constructing various testbeds that were minia-

ture supercomputers and operating an open-source HPC benchmark application called

GTC on the testbed, we were able to show significant performance improvement by ob-

serving the total application execution time.

Optical switches are also a crucial component of metro-scale geographically dis-

tributed data centers. Such data centers have been deployed rapidly in the last decade

due to the explosive increase in traffic demand due to the emergence of novel applica-

tions such as the 5G mobile network, data analytics and cloud computing. In order for

these data centers to meet the required quality of service demands, it is necessary for an

intelligent control plane to manage the allocation of bandwidth and compute resources.

In Part 2 we developed such a control plane and testbed to demonstrate the feasibility

of a converged intra- and inter-data center network architecture that provided dynamic

bandwidth allocation using optical links based on active monitoring of bandwidth and

compute resources. This system demonstrated the capability to provide links to support

various quality of service demands in bandwidth and latency, but also worked in tandem

with autonomous IT resource management through the migration and consolidation of

virtual machines.

Finally, in Part 3 we addressed one of the fundamental issues of optical switching,

which arises from the fact that optical switches change the physical topology of the net-
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work and lack buffering capabilities, meaning that when an optical switch performs a

switching operation, packets in transit will be dropped and current systems relies on

the TCP protocol of retransmission to allow for communication to continue after the

switch operation has been performed. Current packet switches also take a long time

to re-establish a link once it goes down and is reconnected, caused by the optical switch-

ing operation. Therefore, we developed Lightbridge, which is a modification to the Linux

kernel that creates virtual network devices to control the transmission and reception of

packets on an optical circuit. The virtual network devices will also be connected to a

central controller that will update the end hosts on the state of the network so that hosts

will buffer packets instead of transmitting blindly when the optical circuit is not avail-

able. This provides a more seamless integration between optically switched networks

and traditional equipment including servers and electronic packet switches.

All in all, this thesis provides a detailed exploration on concepts, software and hard-

ware components, and evaluations on the topic of integrating optical circuits within

packet switched environments in order to realize next generation compute systems.
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