
Towards Real Time Characterization of Grain
Growth from the Melt

Christopher James Wright

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2020

c© 2020

Christopher James Wright

All Rights Reserved

ABSTRACT

Towards Real Time Characterization of Grain
Growth from the Melt

Christopher James Wright

Single crystal materials have unique properties which are endowed by their long ranging

atomic order. Growing these crystalline materials can be difficult, as entropy favors dis-

ordered grains. The optical floating zone furnace provides an efficient way to make novel

single crystal materials, enabling the study of crystals with complex chemical makeup which

other techniques would not be able to provide. However, the growth mechanisms of these

crystals is poorly understood, leaving the process of making them prone to trial and error

and limiting its application in the broader research community.

This work aims to understand the microstructural dynamics of floating zone growth us-

ing x-ray scattering techniques. These techniques include x-ray diffraction tomography and

two dimensional crystal mapping. One focus of this work is building the computational

infrastructure to process the large stream of heterogeneous data which results from these

techniques. Additionally, this work includes computational and experimental commissioning

of the x-ray diffraction tomography technique, helping to understand the advantages and

limitations of the current approaches. These pieces of infrastructure are then used to char-

acterize the growth of Rutile crystals via a float zone furnace. Particular attention is paid to

the competition amongst the grains, and how certain grains are selected from the plethora

which are created at the beginning of the growth.

Table of Contents

List of Tables . viii

List of Figures . ix

Acknowledgments . xiii

Dedication . xiv

Chapter 1: Float Zone Synthesis . 1

1.1 Introduction . 1

1.1.1 Making Single Crystals . 1

1.1.2 Uses of FZ Crystals . 3

1.2 History . 4

1.3 How FZ Growth is Performed . 4

1.4 Opportunities and Challenges . 5

Chapter 2: X-Ray Diffraction and Tomography . 7

2.1 X-ray Scattering . 7

2.1.1 Diffraction . 7

2.2 Tomography . 10

2.2.1 Introduction . 10

2.2.2 How Tomography Works . 11

2.2.2.1 Data Acquisition . 11

i

2.2.2.2 Reconstruction . 11

2.2.3 Scattering Tomography . 13

2.2.3.1 Introduction . 13

2.2.3.2 Experimental setup . 13

2.2.3.3 Examples . 14

2.2.4 Computed Tomography X-Ray Diffraction Setups 14

2.2.5 The Problems of Linearity and Invariance 14

Chapter 3: Streaming Data Frameworks . 17

3.1 Introduction . 17

3.2 Rapidz . 21

3.2.1 Introduction . 21

3.2.2 rapidz Library Design . 24

3.2.2.1 Architecture . 24

3.2.2.2 Impacts of Architecture . 27

3.2.3 Parallel Streaming . 28

3.2.3.1 Impacts of Parallel Streaming Architecture 31

3.2.4 Simplifying the Construction of Complex Pipelines 37

3.2.5 Advantages and Disadvantages . 39

3.2.5.1 Disadvantages . 39

3.2.5.2 Advantages . 40

3.3 SHED . 41

3.3.1 Introduction . 41

ii

3.3.2 Provenance . 41

3.3.3 Heterogeneity and the Event-Model 43

3.3.4 SHED design . 44

3.3.5 SHED Provenance Tracking . 49

3.3.6 Summary . 51

3.4 Summary . 51

Chapter 4: Streaming Data Reduction and Reconstruction 52

4.1 Introduction . 52

4.2 XPDtools . 53

4.2.1 Introduction . 53

4.2.2 Design . 53

4.2.3 Implementation . 54

4.2.3.1 Function Tools . 54

4.2.3.2 Pipelines . 55

4.2.3.3 CLI . 55

4.2.4 Summary . 56

4.3 xpdAcq and xpdAn . 56

4.3.1 Introduction . 56

4.3.2 xpdAcq . 57

4.3.2.1 Motivation . 57

4.3.2.2 Implementation . 57

4.3.3 xpdAn . 58

iii

4.3.3.1 Motivation . 58

4.3.3.2 Implementation . 59

4.4 Tomographic Reconstruction . 61

4.4.1 Introduction . 61

4.4.2 xpdtools . 61

4.4.3 xpdAcq . 63

4.4.4 xpdAn . 63

Chapter 5: Tomographic Commissioning . 64

5.1 Experimental Setups at the NSLS-II . 64

5.1.1 Beamline Optics . 64

5.1.2 Sample Motors . 65

5.1.3 Detectors and Calibration . 65

5.2 Simulation of Tomography . 66

5.2.1 Introduction . 66

5.2.2 Software design . 66

5.2.3 Reconstruction Impacts on ctXRD Results 68

5.2.3.1 Simulation Procedure . 68

5.2.3.2 Comparison of Reconstruction Order 68

5.2.4 Comparison of Algorithms . 70

5.2.4.1 Introduction . 70

5.2.4.2 Procedure . 71

5.2.4.3 Results . 71

iv

5.2.5 The Parallax Problem . 76

5.2.5.1 Introduction . 76

5.2.5.2 Procedure . 77

5.2.5.3 Results . 77

5.2.5.4 The Parallax Problem . 77

5.3 Phantom . 79

5.3.1 Introduction . 79

5.3.2 Experimental Setup . 79

5.3.3 Data Processing . 81

5.3.4 Results . 81

5.4 Silicon Carbide (SiC) . 83

5.4.1 Introduction . 83

5.4.2 Experimental Setup . 83

5.4.3 Data Processing . 84

5.4.4 Results . 84

5.5 Mars Analog . 88

5.5.1 Introduction . 88

5.5.2 Experimental Setup . 88

5.5.2.1 Sample . 88

5.5.3 ctXRD measurements . 88

5.5.4 Data Processing . 89

5.5.5 Results . 89

5.6 Summary . 91

v

Chapter 6: Mapping the Melt . 92

6.1 Introduction . 92

6.2 Scientific Questions . 93

6.2.1 Required Measurement Capabilities 93

6.2.2 Scope of Current Work . 94

6.3 Methods . 95

6.3.1 Growth Details . 95

6.3.2 Experimental Setup . 95

6.3.3 Data Processing . 96

6.3.3.1 ctXRD . 96

6.3.3.2 Graininess Metric . 96

6.3.3.3 Single Crystal Peak Tracking 96

6.3.3.4 Heat Maps . 97

6.3.3.5 Segmentation and Overlays 97

6.3.3.6 Indexing, Average d-spacing, Azimuthal Angle 97

6.3.3.7 d-spacing and Azimuthal Angle Distributions 98

6.4 Results . 98

6.4.1 Diffraction by Boule A . 98

6.4.2 ctXRD Results . 98

6.4.3 Graininess . 98

6.4.4 Heat Maps . 102

6.4.5 Overlays . 102

6.4.6 Segmentation . 106

vi

6.4.7 d-spacing and Angle Tracking . 106

6.5 Summary . 110

Chapter 7: Conclusion . 111

Bibliography . 112

Appendix : Grain Maps . 126

1 Boule A . 126

2 Boule B . 130

vii

List of Tables

Table 3.1: Data generation rates . 18

Table 5.1: Algorithm peak deviations . 74

Table 5.2: Noisy algorithm peak deviations . 76

viii

List of Figures

Figure 1.1: Float zone schematic . 5

Figure 2.1: Mosaicity . 9

Figure 2.2: Reconstruction via Fourier Transforms 12

Figure 3.1: Example DAG . 23

Figure 3.2: map source . 25

Figure 3.3: combine latest source . 26

Figure 3.4: Parallel DAG . 32

Figure 3.5: Serial pipeline code . 34

Figure 3.6: Parallel pipeline code . 35

Figure 3.7: Pipeline chunk . 38

Figure 3.8: Link function . 39

Figure 3.9: Event-Model documents . 45

Figure 3.10: Example SHED pipeline . 47

ix

Figure 4.1: xpdAn server system . 61

Figure 4.2: xpdtools reconstruction DAG . 62

Figure 5.1: XPD-D CT hardware . 65

Figure 5.2: Sinogram of the summed intensity 68

Figure 5.3: Simulated summed intensity reconstruction 69

Figure 5.4: Representative I(Q) pattern for the reconstruction 69

Figure 5.5: Position sinogram . 70

Figure 5.6: Reconstruction order . 71

Figure 5.7: Reconstruction algorithm comparison 73

Figure 5.8: Reconstruction algorithm comparison with noise 75

Figure 5.9: Peak positions for simulated Ni ctXRD around 3.088 Å and 9.265 Å. 78

Figure 5.10: Peak widths for simulated Ni ctXRD around 3.088 Å and 9.265 Å. . 79

Figure 5.11: Phantom Image . 80

Figure 5.12: Phantom Reconstruction . 82

Figure 5.13: Phantom I(Q) . 82

x

Figure 5.14: SiC Reconstruction . 85

Figure 5.15: SiC I(Q) . 86

Figure 5.16: SiC stacking fault tomogram . 87

Figure 5.17: Mars peak reconstruction . 90

Figure 6.1: Map scattering images . 99

Figure 6.2: Map diffraction patterns . 99

Figure 6.3: Tomographic reconstruction of the first rutile peak intensity for the
Boule A seed region . 100

Figure 6.4: Powder metric as a function of XY position for Boule A, left and
Boule B, right . 101

Figure 6.5: Boule A crystal maps . 103

Figure 6.6: Boule B crystal maps . 104

Figure 6.7: Boule A overlay . 105

Figure 6.8: Boule A crystal segmentation . 107

Figure 6.9: Boule A crystallite d-spacing α . 108

Figure 6.10: Boule A crystallite d-spacing β . 109

Figure 6.11: Boule A crystallite d-spacing γ . 109

xi

Figure .1: Boule A crystal maps 1, spot 5 . 127

Figure .2: Boule A crystal maps 2, spot 5 . 128

Figure .3: Boule A crystal maps 3, spot 5 . 129

Figure .4: Boule B crystal maps 0 . 130

Figure .5: Boule B crystal maps 1 . 131

xii

Acknowledgments

This dissertation represents a rare pleasure, the culmination of many years of work in

the x-ray science and software fields. As such, there are a great many people who deserve

my gratitude for all their help, advice, support and mentorship.

To my parents, the last time I wrote one of these, I said that I doubted if language could

express my gratitude for everything you have done. Having gotten another chance to try

to put into words my feelings, I find that language is just as lackluster a medium as last

time. However, I am eternally thankful that you were able to see this, and all your work

supporting my endeavors, come to fruition.

To my experimental family at the NSLS-II and NSLS, you have always provided fertile

ground for me to grow my ideas, experiments and software. To Dr. Sanjit Ghose, thank

you for introducing me to x-ray science. To Dr. Eric Dooryhee, thank you for your work on

the tomography experiments. To Dr. Dan Olds, I have always appreciated your help, our

conversations and your attitude towards software. To Dr. Milinda Abeykoon, thank you for

your experimental support.

To Dr. Thomas Caswell, Dr. Dan Allen and Dr. Stuart Campbell, thank you for

providing mentorship and a spectacular opportunity to grow my software skills.

To Dr. Anthony Scopatz, thank you for all your support; moral, technical and otherwise.

To my collaborators, especially Dr. Peter Khalifah and Mr. Jonathan Denny, thank you

for your time, samples, insight and most of all patience.

To Dr. David Sprouster, collaborating with you on the tomography projects was a true

joy.

To my committee, thank you very much for your insightful comments, support and

revisions

To Prof Simon Billinge, never before have I had an academic advisor so enthusiastically

invested in my work and vision. Your commitment to this work is staggering, as is your

support for my imagination.

xiii

To Diane D. & Donald G. Wright
And Eternity in an hour

- William Blake

xiv

CHAPTER 1. FLOAT ZONE SYNTHESIS

Chapter 1

Float Zone Synthesis

Introduction

The unique properties of single crystals have made their synthesis and growth important

technologies, impacting industries from computers to aviation. Single crystal materials of-

ten exhibit properties different from their polycrystalline counterparts. For instance, high

temperature mechanical systems use superalloys, because of their durability and strength

retention under high heat load. However, even superalloys can deform under thermal and

mechanical stress. Polycrystalline materials derive much of their strength from grain bound-

aries that trap dislocations and prevent them from propagating through the material. At

high temperatures creep is the predominant mechanism for deformation, and these grain

boundaries become a source of weakness, as they can allow grains to slip past one another.

Single crystal superalloys solve this problem by having a single lattice, allowing operation

at much higher temperatures. The Lockheed SR-71 Blackbird used used these crystalline

superalloys in it engine. Because of the alloy’s ability to withstand temperatures up to up

to 1760 ◦C without deforming, the SR-71 flies at Mach 3.2 and holds the record for fastest

air breathing manned aircraft [Defense Technical Information Center, 1966].

Making Single Crystals

Single crystals are made via several methods:

The oldest method for making single crystals is the Verneuil method, developed to make

1

CHAPTER 1. FLOAT ZONE SYNTHESIS

synthetic rubies and sapphires from a powdered Al2O3 feed. In this method pure oxygen

blows the feed material through a tube. Outside this tube is another tube filled with pure

hydrogen. At the opening of these tubes the two gasses are ignited, melting the Al2O3 into

small droplets. The droplets fall onto a rod, crystallizing. As more droplets fall a larger

crystal forms and the rod moves down to enable new droplets to fall on the crystal and add

to its mass. The rod, or boule, is then be broken off to yield the gemstone [Levin, 1913].

One of the most common methods is the Czochralski (CZ) method, which is used to make

the Si boules that are then cut into wafers for computer chips. In this method raw material

is melted in a crucible, a small seed crystal is lowered into the melt and pulled out, growing

a crystal behind it. However, this approach can lead to side reactions and impurities from

the crucible, which is often made of a compatible oxide like SiO2 or an inert metal like Pt or

Ir. Boules made from this process can be quite large, up to 190 mm for Gd3Ga5O12 [Wang

et al., 2015].

In Flux growth the precursors are dissolved in a compatible solvent called the “flux”.

Once the material is dissolved either the temperature is lowered or the flux evaporated to

result in a supersaturated solution which then nucleates crystals. This is similar to how rock

candy is made from water supersaturated with sugar. This approach can result in lower

defect density crystals as the temperature used to make the crystals is lower than if the flux

had not been used. However, this technique often produces small crystals [Wang et al., 2015;

Janssen et al., 2013]. Flux growth can be combined with floating zone growth, known as

“traveling solvent floating zone growth”[Dbkowska et al., 2015]

In Bridgman growth, the precursors are loaded into a crucible, the crucible is then lowered

into a high temperature furnace where the precursors melt. After melting the crucible is

further lowered into a lower temperature region, which then causes the system to crystallize.

The crystallization gradient can be controlled by the lowering rate and the two furnaces’

temperatures. This method benefits from having a sealed system, so mass transfer out of

the system, like evaporation of precursors, is eliminated. However, similar to flux growth,

2

CHAPTER 1. FLOAT ZONE SYNTHESIS

the crucible in this technique can react with the melt, producing impurities in the crystal. A

method similar to the Bridgman is used to produce the single crystal alloys for jet turbines

[Bridgman, 1925].

In Float Zone (FZ) growth two rods, a seed and a feed rod, are melted at the tip and

brought together to form a molten floating zone. This zone is moved up the feed rod,

creating a crystal on top of the seed rod. FZ growth is the method of choice for crystals of

complex oxides with centimeters long axis and millimeter diameters, especially for precursors

which react with crucible materials since no crucible is used. Additionally, control of the

atmosphere can allow for complex gas environments. FZ growth is limited by: difficult

to control parameters, surface tension limited diameters, and works poorly for high vapor

pressure or high viscosity materials [Muiznieks et al., 2015]. Overall, the FZ method is

amenable to growing novel or chemically complex materials.

Uses of FZ Crystals

FZ grown crystals are used in many contexts, including industrial materials, although

most applications are for novel research materials. The uniformity and size of FZ crys-

tals enable their use in optical applications, including Al2O3 for ruby lasers [Saito, 1986],

Rutile TiO2 for its large refractive index and birefringence for optical communications

[Higuchi and Kodaira, 1992; Higuchi et al., 2000]. Research use of FZ crystals have in-

cluded magnetic materials, like the Ba3Cr2O8 spin dimer system [Aczel et al., 2008] and

superalloy materials using RuAl and TiAl [Dbkowska et al., 2015] and many more. FZ

growth is particularly powerful for research as the technique enables use of a diverse range

of precursor chemistries, atmospheres and growth rates. Control of the growth process

is key to the production of these properties and their end uses, as growth parameters

can impact the atomic and macroscopic structure of the crystal [Koohpayeh et al., 2013;

Prabhakaran et al., 2003]. However, quantitative understanding of the growth-structure-

property relationships remains elusive, as an mechanistic understanding of crystal growth

3

CHAPTER 1. FLOAT ZONE SYNTHESIS

and microstructure is still lacking.

History

The FZ process was initially applied to silicon for use in the semiconductor industry in 1952

as a purification technique [Muiznieks et al., 2015; Keck and Golay, 1953; Theuerer, 1962].

During the FZ process impurities preferentially move into the melt, leaving purer material

behind. This is similar to the production of ice wine via freeze distillation, where the sugars

in the grapes, acting like the impurities in the silicon, are preferentially left in the liquid

as pure ice is frozen out. In the case of silicon, unlike ice wine, the desired material is

the purified silicon. This process made higher quality crystals than the previously used CZ

process, as fewer oxygen impurities were included in the crystal. This lead to silicon crystals

with exceptional carrier lifetimes, which are used in high performance solar panels. However,

limitations in the size of the crystals and tolerance for higher oxygen impurities prevented

wide adoption in semiconductor processing. FZ production of oxide materials started in

1969 with the production of ferrite crystals [Akashi et al., 1969]. FZ synthesis of oxide

materials has since grown to be applied to a wide range of materials, with over 100 listed in

[Dbkowska et al., 2015] as of 2015 with applications to: superconductors [Tanaka et al., 1975;

Takeya et al., 2001; Behr et al., 1999; Revcolevschi and Jegoudez, 1997], magnetic frustration

[Koohpayeh et al., 2013; Anand et al., 2018], optical electronics [Muiznieks et al., 2015;

Frazer et al., 2015; Chang et al., 2013], and superalloys [Dbkowska et al., 2015].

How FZ Growth is Performed

The first step of a FZ growth is the production of the seed and feed rods. The rods are made

by putting the powder precursor(s) into a balloon which is then evacuated. The balloon

serves as a barrier between the powder and the hydraulic liquid which provides hydrostatic

pressure across the entire rod, pressing it into shape. The seed and feed rods are then sintered

4

CHAPTER 1. FLOAT ZONE SYNTHESIS

in a furnace under an atmosphere of the grower’s choice. The rods are then assembled in

an optical floating zone furnace, with the seed on bottom and the feed on top. The tips

of the seed and feed rods are then heated and brought into contact, forming a molten zone

bridge of roughly 0.4cm−3 in volume. Heat is supplied to this bridge by parabolic mirrors

and halogen lamps which are focused onto the zone. The rods can be rotated individually

or together in either the same or opposite directions with rotation rates ranging up to 50

rpm to maintain even heating and mixing. To allow the base of the melt to crystallize the

molten zone is moved into the feed rod by either moving the two rods down or the heaters

up. As the melt moves up the bottom of the melt cools and crystallizes, forming many grains

at the beginning of the growth, eventually a single crystal out competes the others as the

growth progresses, as shown in Fig. 1.1. FZ growth is a dark art and lots of iterative testing

of process parameters is needed to get good results. There are experts at making particular

kinds of crystals, but a general approach to making these crystals is unknown.

Feed

Melt

Seed

Figure 1.1: Schematic of float zone synthesis modified from [Dbkowska et al., 2015] As the
melt, or float zone, moves into the feed rod it leaves crystals in its wake (F). The crystals
compete with one crystal eventually winning. This is signified by a grain termination (GT).

Opportunities and Challenges

FZ synthesis and growth is used produce oxide materials, some of which are quite com-

plex, including high temperature superconductors. However, the growth of each material is

5

CHAPTER 1. FLOAT ZONE SYNTHESIS

unique, requiring its own painstaking parameter optimization, with the difficulty of growing

a material varying such that some may not be made at all. Even when parameters are op-

timized, key process variables are not well understood, like the temperature distribution in

the melt and rods. The temperature can even depend on the composition of the powders,

as some chemicals absorb more light than others. This tuning of parameters like the heater

power, internal temperature, atmosphere composition and pressure, pull rate, rotation rate

and more, stymies use of this technique more broadly. While there have been a few attempts

to understand the dynamics of the oxide molten zone, a unified theory remains elusive.

More in-situ experiments, which have currently been limited to optical imaging, pyrometer

temperature sensing, [Behr et al., 2010] and neutron imaging [Tremsin et al., 2017], could

provide insight. Techniques which are sensitive to the atomic structure of the materials, the

orientation of the crystals, and their microstructure, like x-ray diffraction, atomic pair distri-

bution function analysis, and their associated tomography techniques, could provide insight

into how FZ crystal growth occurs, providing an approach to understanding the impact of

processing parameters on the crystal quality and properties.

6

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

Chapter 2

X-Ray Diffraction and Tomography

X-ray Scattering

X-ray scattering is a phenomena that occurs when x-ray light is shone on a sample. The

x-rays interact with the electron density in the sample, causing the x-rays exiting the sample

to have the Fourier transform of the density encoded [Miao et al., 1999]. Unlike most imaging

methods, where a lens is used to invert the Fourier transform, diffraction analysis often takes

place either in Fourier space, also known as inverse or Q space, or by performing the Fourier

transform computationally.

Diffraction

The phenomena of diffraction occurs when the spacing between the atoms in a material’s

lattice is on the order of the wavelength of the incident x-rays [Misture and Snyder, 2001]. In

this case the scattered x-rays are concentrated along certain directions. In powder diffraction

the sample contains many of the same crystal oriented in all directions, causing the scattered

x-rays to form rings. In single crystal diffraction only one orientation is present, causing

the scattered x-rays to form points. The position of these points or rings is dictated by the

distance between the planes of atoms, giving rise to Bragg’s law d = 2π
q

or 2d sin θ = nλ where

d is the spacing between the lattice planes, q is the scattering vector, λ is the wavelength

of light, θ is the angle between the incoming x-rays and the lattice planes. The relationship

shows that for a given lattice plane distance x-rays will be concentrated at a corresponding

7

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

angle.

X-ray diffraction was discovered in 1912 by Max von Laue and collaborators, winning the

1914 Nobel Prize for Physics [Eckert, 2012]. The capacity for x-ray diffraction to determine

the atomic structure of materials has been applied in many different fields from biology to

condensed matter physics, yielding high impact research.

X-ray diffraction is used to quantify various aspects of the atomic structure of materials,

including: strain [Noyan and Cohen, 2013], orientation [Busing and Levy, 1967], mosaicity

[Sauter et al., 2014], and crystallite size [Patterson, 1939; He, 2018; Yager and Majewski,

2014; Misture and Snyder, 2001]. Residual strain is measured from x-ray diffraction by

comparing the unstrained reference position of the peaks to the position of strained peaks.

Since the peak position is related to the spacing between the lattice planes any compression

or expansion of the lattice will cause a commensurate peak movement. Single crystal and

polycrystalline x-ray diffraction measurements can extract the orientation of the crystal

being measured by determining the angular relationships between detected Bragg spots

[Schmidt, 2014]. Furthermore diffraction can be used to understand the distribution of

crystal orientations which can occur in single crystals. This phenomena is called mosaicity

and describes the extent to which a small piece of the single crystal’s orientation deviates

from the bulk orientation. A schematic of what this does to the diffraction spots is shown in

Fig. 2.1 [Sauter et al., 2014]. Rocking the sample on one of its axes can help to determine

the mosaicity, as the rocking motion brings different parts of the smeared out peaks into the

diffracting condition. Crystallite size, and its analogue number of grains, can be determined

two ways depending on the size of the crystals. The standard approach is the Scherrer

equation, which uses a peak’s width to determine the size. The Scherrer equation is limited

to crystallites on the scale of nanometers, with an upper bound of roughly 100 nm [Patterson,

1939]. As crystallites grow to be larger than 100 nm the central assumption of powder

diffraction breaks down, the sample is no longer diffracting equally in all directions. This

causes azimuthal deviations in the scattered intensity. These deviations can be analyzed via

8

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

statistical or spot counting methods to determine the crystallite size [He, 2018; Yager and

Majewski, 2014].

Figure 2.1: Impact of mosaicity and domain size on the reciprocal lattice and observed
diffraction from [Sauter et al., 2014]. The circle denotes the Ewald sphere, with the reciprocal
lattice in orange and blue. Points in reciprocal space that touch the Ewald sphere, in orange,
are in the diffraction condition and will show up as spots on the detector Mosaicity has the
effect of smearing out delta functions into Gaussians, whose size and shape describes the
distribution of orientations and grain size of the single crystal.

Synchrotrons produce x-rays by accelerating electrons through a nearly circular pipe.

The electrons are turned by magnetic fields created by bending magnets, with each field

causing the electrons to give off x-rays. Synchrotrons also incorporate insertion devices that

produce strong oscillatory magnetic fields. These fields produce higher energy photons with

greater brilliance by accelerating the electrons more. In this way a single synchrotron can

support many experiments at once by providing each experiment, usually called a beamline,

with a dedicated magnetic field. X-ray diffraction and scattering beamlines usually fall into

one of two categories based on their experimental setup. High resolution beamlines like

11BM at the Advanced Photon Source used point detectors to measure the x-ray scattering

pattern. The point detectors travel along a particular angular trajectory to capture the

scattered photons. Because the motors moving the detectors can move in small increments,

these beamlines provide high resolution data. The detectors are sometimes equipped with

crystals designed to only accept one energy of x-ray, further enhancing the resolution of the

9

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

instrument. Point detector based approaches can be too slow for techniques which require

many scattering patterns, like tomography, or in-situ techniques where time resolution is of

the essence. For these experiments area detectors are used to capture the data. Since each

pixel is similar to its own point detector the area detector can perform upwards of 4 million

measurements at once [Chupas et al., 2003].

Tomography

Introduction

Tomography is a mathematical method to construct cross sectional images of a sample from

a series of projections of the sample. Tomography has been successful in the medical field,

where absorption tomography, called a “CAT scan”, provides an in depth view of the body,

enabling diagnosis of diseases without the need of exploratory surgery. While any kind of

radiation can be used for tomography, provided that it penetrates the sample, x-rays ability

to penetrate most materials make them the most commonly used. Additionally x-ray to-

mography images have contrast based on the electron density of the material, with materials

containing light elements, like soft tissues, showing less contrast than heavier elements, like

bones. The contrast can even be modulated via specific contrast agents containing heavy

atoms.

Many pieces of tomography have been around since the early to mid 20th century, with

publication of the Radon transform in 1917 [Radon, 1986] and x-ray tomography for exam-

ination of the lungs in 1953 [Pollak, 1953]. However, the technique truly took off with the

advent of modern computing, which enabled the reconstruction of features with unprece-

dented speed and ease of use [Herman, 2009].

As previously mentioned the application of tomography to medical imaging has been

extensive, winning the Nobel Prize in 1979. Tomography has also been applied to engineering

materials, providing insight into the structure of nuclear fuel cladding during simulated

10

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

accidents [Grosse et al., 2013], understanding of the structure in concrete [du Plessis and

Boshoff, 2019], and evaluation of aerospace titanium castings [du Plessis and Rossouw, 2015].

Tomographic techniques have even been applied to electrons [Frank, 2006], enabling 3D cross

sections of nanoparticles to be made [Yang et al., 2017].

How Tomography Works

Data Acquisition

The fundamental unit of tomography data is the sinogram. A sinogram tracks the intensity,

or any other scalar, as a function of translation and rotation and is obtained by perform-

ing measurements at a series of rotations and translations. While often this is performed

sequentially, some recent work has shown that interleaving the rotation angles can speed up

the acquisition, as fewer projections are needed when using an optimal strategy [Vamvakeros

et al., 2016; Bicer et al., 2017]. In most imaging applications translations are not performed,

instead a imaging detector is used to sample multiple translations at once. This is possible

if the beam is larger than the sample and speeds the data acquisition considerably.

Reconstruction

The crux of tomography is the reconstruction algorithm. This algorithm provides the trans-

formation of a series of projections taken at various angles into the cross-sectional image. Of

course there is no such thing as a free lunch, so the transformation does not provide addi-

tional dimensions, it takes a translation dimension and a rotation dimension and transforms

them into two orthogonal translation dimensions. Reconstruction algorithms usually fall un-

der one of three designations: Fourier or Radon based, which use mathematical transforms

to perform the reconstruction, Algebraic, which take a linear algebra based approach, and

iterative or model based, where a model of the expected output is generated, usually via a

physics model of the scattering and refined iteratively.

11

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

Figure 2.2: This figure shows the procedure for reconstructing a cross section from a series
of measurements via a pair of Fourier transforms, adapted from [Selinger, 2018]. This is
accomplished using the Fourier Slice Theorem. a) shows the series of projections taken at
various angles b) shows the stack of Fourier Transformed projections c) shows the angular
construction of the 2D representation d) shows the image resulting from the 2D Inverse
Fourier Transformation of the representation

In transform based reconstruction the cross-sectional image is a function f(x, y) with

values at every point on the sample. The 2D Fourier transform of this function is

F (kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−2πi(xkx+yky)dxdy

, where kx and ky represent the inverse coordinates. This can be rewritten as two 1D Fourier

transforms

F (kx, ky) =

∫ ∞
−∞

[∫ ∞
−∞

f(x, y)e−2πiykydx

]
e−2πixkxdy

Thus if we choose a single slice where ky is zero

F (kx, 0) =

∫ ∞
−∞

[∫ ∞
−∞

f(x, y)dx

]
e−2πixkxdy

where the bracketed expression ∫ ∞
−∞

f(x, y)dx

is the definition of a single projection and the unbracketed portion is the Fourier Trans-

form. This process can be performed for each projection angle and is called the Fourier

Slice Theorem, stating that the 2D Fourier Transform of f(x, y) is the same as the Fourier

Transform of a series of projection slices. This can be used to reconstruct the cross-sectional

12

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

image by taking a series of projections, Fourier Transforming them, stacking them in 2D and

performing the Inverse Fourier Transform. This is shown visually in Fig. 2.2.

The algebraic technique constructs a grid of pixels, based on the translation resolution.

Each of these pixels is a single scalar value and each projections of through the sample is a

sum of those scalar values. The reconstruction then consists of a set of linear equations to

be solved.

Scattering Tomography

Introduction

X-ray scattering offers an alternative contrast mechanism to absorption. Unlike absorption,

which is primarily dependent on the atomic number of the material, x-ray scattering depends

on the atomic structure of the material. This enables x-ray scattering tomography to provide

contrast for materials whose constituents have similar or identical atomic numbers but dif-

fering structures. Furthermore, as each pixel in the reconstructed cross section is associated

with an entire scattering pattern, quantitative information about the atomic structure can

be extracted for each pixel. For instance, each pixel can be associated with a nanoparticle

size or defect concentration.

Experimental setup

The experimental setup for x-ray scattering tomography is similar to absorption tomography.

A sample is translated and rotated in the beam to produce multiple projections which are

then reconstructed. However, in the case of ctXRD and ctPDF a pencil beam is used rather

than a wide beam. This requires the sample to be translated, rather than simply rotated

causing the experiments to take more time. At each translation and rotation position a

scattering image is taken and processed with standard x-ray scattering data processing. The

resulting processed data is then reconstructed.

13

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

Examples

X-ray diffraction tomography was first developed in 1987 by Harding et.al. [Harding et

al., 1987] Atomic pair distribution function analysis (ctPDF) was developed in 2013 by

Jacques et.al. [Jacques et al., 2013] complementing ctXRD with real space analysis which is

particularly effective at revealing the structure of nano scale materials. ctXRD and ctPDF

have recently been applied to batteries [Jensen et al., 2015; Sottmann et al., 2017; Finegan

et al., 2019], catalysts [Jacques et al., 2011; Jacques et al., 2013; Ihli et al., 2017], and fossils

[Mrer et al., 2018]. Battery studies use the localized structural information to understand

how the lithium intercalated the different structures in the material [Finegan et al., 2019].

ctPDF was used to understand how nanoparticle sizes evolved during catalytic operation

[Jacques et al., 2013].

Computed Tomography X-Ray Diffraction Setups

One of the main benefits of the ctXRD and ctPDF techniques is that the experimental setup

for the sample is straight forward. All that is required is a translation and rotation stage

coupled with a x-ray detector. The detector is usually an imaging detector, as opposed

to a point detector, since the acquisition times will be shorter. This simplicity of setup

makes ctXRD and ctPDF ideal for in-situ experiments, as shown in the work by Finegan

et.al.[Finegan et al., 2019] The majority of the complexity for these experiments is in the

x-ray optics, which need to be precisely aligned to focus the beam into a tight pencil shape.

Often this is achieved via a combination of slits, pinholes, and lenses [Somogyi et al., 2005].

The Problems of Linearity and Invariance

All the computed values must be linear and translation and rotation invariant. One can

think of the algebraic technique as a serial subtraction. If we are interested in the contri-

bution of a volume (or pixel when discretized) of material to a projection we can subtract

14

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

the contributions of all the volumes in the beam’s path. Doing the procedure en mass is es-

sentially solving the linear system. However, this only works if the function which computes

the value for each pixel is a linear operator. This is generally true for simple computations

like the amount of x-rays absorbed by a sample, each pixel absorbs a given amount and the

total amount of absorbed x-rays is the sum of each pixel’s absorption, to first order. Note

that this is not generally true, since each pixel leaves further downstream pixels with fewer

x-rays to absorb. So long as the pixels do not absorb too many x-rays the approximation

holds true. More complex pieces of information like peak positions or widths are generally

not linear. Consider a uniform sample with a single x-ray diffraction peak with a constant

width. In this case all the pixels have the same peak width, thus the value of the ith pixel

is not the value of the projection minus all the other pixels. This can cause reconstructions

to fail due to geometric issues when attempting to reconstruct non-linear operators, even in

the absence of noise, which will be explored in more depth in Section 5.2.3.2.

Reconstruction algorithms rely on rotational and translation invariance of each pixel to

perform a valid reconstruction. For the reconstructions to work a pixel’s value must be

the same regardless of it’s position or orientation. The algebraic approach provides a good

explanation as to why this is needed. To produce the independent measurements needed for

a solvable linear system the sample must be rotated. For pixels which are not exactly on the

rotation axis, this will result in a rotation and translation. If the pixel values changed due to

the rotation or translation then the serial subtraction would not provide the correct results

without a correction to the measured values. This can occur in absorption tomography, where

strongly absorbing materials, like metal tooth fillings, can absorb a non-trivial amount of

x-rays, depleting the x-rays for downstream absorption and changing the spectrum of the x-

rays as certain wavelengths are preferentially absorbed. This effect is much more pronounced

in x-ray scattering. While the x-ray scattering of powder samples is rotationally invariant,

it is not translationally invariant, since any translation along the beam axis will change

the sample to detector distance and therefore the position of the illuminated pixels on the

15

CHAPTER 2. X-RAY DIFFRACTION AND TOMOGRAPHY

detector. The effects of sample to detector distance based invariance braking is discussed

in more depth in Section 5.2.5.4. For samples composed of large single crystals the lack

of rotation invariance causes the naive reconstruction algorithms to completely fail. Single

crystals have a narrow angular window in which a plane is in the diffracting condition.

Thus, when a rotation is performed to collect a projection the previously diffraction spot is

no longer observed. Unlike the sample to detector distance issue, which can be mitigated and

reconstruction still produces results which are representative of the sample, the vanishing of

single crystal peaks causes naive reconstruction to fail outright. This does not necessarily

imply that the problem is ill-posed, just that the simple linear approaches to the problem will

not be sufficient to produce accurate results. Other approaches including more information

about the physics of x-ray scattering may lead to successful reconstructions.

16

CHAPTER 3. STREAMING DATA FRAMEWORKS

Chapter 3

Streaming Data Frameworks

Introduction

Accelerating data rates enable new classes of experiments across scientific fields. Many

current and planned world class experimental facilities produce mountains of data. The

Large Hadron Collider (LHC) produces 400 exabytes of data a year, the Laser Interferometer

Gravitational-Wave Observatory (LIGO) produces terabytes a day, and the Linac Coherent

Light Source-II (LCLS-II) expects to produce 100GB/s [Starr, ; LIGO, ; Thayer et al., 2017].

These facilities require high data rates for their scientific missions, without them results which

took years of experiments to obtain could have taken lifetimes.

Synchrotrons generate intense x-ray beams for studying the structure and excitations

of materials, and also produce large volumes of data. New and upgraded accelerators will

produce even more data as brighter beams are brought to bear on samples and detectors

become faster and more sensitive [Blaiszik et al., 2019]. Advances in x-ray detector tech-

nologies enable the acquisition of data at much higher rates with better quality. The new

Pilatus 2M CdTe photon counting detector puts out 2.5 GB of data per second or 214 TB

a day, while the currently used Perkin Elmer amorphous silicon imaging detectors put out

160 MB/s or 14 TB a day when running continuously. The photon counting nature of the

Pilatus detector provides higher quality data by reducing electronic noise and while support-

ing a higher dynamic range [Dectris, ; Loeliger et al., 2012]. These enhancements in both

detector technology and beam brightness make more of the images usable per unit time,

17

CHAPTER 3. STREAMING DATA FRAMEWORKS

allowing experiments to be completed faster and with greater time resolution. Advances

in synchrotron brightness and flux also enable faster experiments and new experimental

capabilities by putting more photons into a tighter beam.

The expected data rates for select x-ray facilities is provided in Table 3.1. The higher

rate of data production will shift experiments from a flux limited regime to an analysis and

sample loading limited regime. Fully exploiting the advances in experimental throughput

requires novel approaches to handling these large data volumes. Data collected in the flux and

detector limited regime only required offline batch processing and analyzing of data. Facility

users would collect data, bring the data back to their home institutions and then perform

data processing in a piecemeal fashion. This leads to lengthy delays in bringing results to

publication, especially when data analysis reveals the need for additional experiments. Batch

processing, combined with much higher data rates, exacerbate this delay between collection

of data and gleaning insight. The batch approach does not scale to terabyte and exabyte a

year data rates. Indeed, few institutions have the capacity to even store the data.

Facility 2021 (PB per year) 2028 (PB per year)
ALS 3 31
APS 7 243
LCLS/LCLS-II 30 300
NSLS-II 42 85
SSRL 15 15

Table 3.1: Data generation rates at major x-ray lightsource facilities. The majority of
the facilities in this table (ALS, APS, LCLS) are undergoing upgrades which will result in
brighter beams. The NSLS-II is still building out its beamlines and so has not reached it
full data taking capacity. SSRL is not undergoing upgrades, thus its data rates are the same
[Campbell, 2019].

Streaming data processing, where the data is processed and reduced as it is being col-

lected, has transformed the handling of large data volumes at scientific facilities. For exam-

ple, the LHC uses streaming data processing to make acquired data more manageable by

selecting interesting subsets of the whole set of acquired data and down-sampling, resulting

in outbound data sets almost 100 × smaller [Starr,]. These data sets are much easier to

18

CHAPTER 3. STREAMING DATA FRAMEWORKS

store for subsequent use and enables the processing of data whose volume is too big to fit in

one computer’s memory.

ctPDF and other measurements which use x-ray scattering to map a sample’s structure,

need streaming data processing’s downsampling capability, as they often entail large data

sets, containing thousands to tens of thousands of images. Holding all this data in memory

at once would require terabytes of RAM, which is often infeasible. Streaming processing

of the scattering images to 1D patterns reduces the memory footprint of the data by a

factor of one thousand, making the data handling viable. Streaming also enables real time

visualization of reduced data, empowering users to interpret the results on the fly, helping

to design or modify the experiments during operation. This accelerates experiments by

enabling users to halt lackluster experiments and extend well performing experiments, which

is especially important for the ctPDF technique where a single experiment can take many

hours. Additionally, streaming data processing enables autonomous experiments, which need

live reduced data to provide real time feedback between independent variable selection and

experimental outcomes, which could further accelerate materials discovery [Bicer et al., 2017;

Granda et al., 2018; Pablo et al., 2019].

Facilities, like the LHC, often use Field Programmable Gate Arrays (FPGAs) to provide

their streaming data reduction. FPGAs allow scientists to essentially program the data pro-

cessing procedure into the circuitry itself. Building the software into the hardware provides

faster computation than standard programming approaches. The instrument sends the data

to the FPGAs which send the results to any downstream consumers, reducing large data

volumes in real time. “On the wire” approaches, which use network hardware to perform

processing, provide similar functionality by consuming and creating streams of data flowing

through a network. FPGAs and “on the wire” based analysis approaches suit facilities that

produce homogeneous data sets and only need to provide a handful of pre-set analyses at

once. Synchrotrons often have many different experiments running at once, each with their

own data acquisition and processing requirements. These requirements tend to change from

19

CHAPTER 3. STREAMING DATA FRAMEWORKS

user to user and experiment to experiment, creating new procedures on the order of minutes

to days. The rapid fluctuations in experiment type and user interests make the resulting

raw and analyzed data heterogeneous. This heterogeneity makes FPGAs and “on the wire”

based analysis approaches inappropriate.

X-ray scattering, especially ctPDF, experiments are an example of streaming heteroge-

neous datasets. Raw x-ray scattering data can be analyzed many ways, from blob detection

on images to grain size extraction of 2D diffraction to strain evaluation of 1D diffraction

patterns and PDFs. Each of these analyses produces a wide range of outputs further com-

pounding the heterogeneity. These varied analysis approaches consume and produce many

different kinds of data making the streams heterogeneous. This is doubly true of ctPDF

where these disparate pieces of data are reconstructed into 2D and 3D data sets. Thus,

a one-size-fits-all “on the wire” approach can be unwieldy. The streaming data processing

approach has been useful for x-ray absorption CT, providing ways for autonomous experi-

mentation [Bicer et al., 2017].

With analyzed data being produced in such large volumes it can become difficult to find

the data of interest, like searching for a needle in an ever growing haystack. Even after

finding the data it can be difficult to properly compare data sets, especially if they are

heterogeneous. Since the data is produced via automated pipelines it can also be difficult

to understand exactly how that data was produced and how to properly reproduce it. This

is less of a problem for homogeneous data streams, as the data is automatically comparable

with other data produced by the facility, data processing protocols are tightly controlled and

change infrequently, and there are a handful of fields to search over for finding relevant data.

However for heterogeneous streams, curation, discoverability and reproducibility of data sets

is a concern.

ctPDF data processing pipelines require many different pieces of configuration, controlling

pre-reconstruction, reconstruction, and post-reconstruction parameters. These parameters

can have an important impact on the results of the analysis. Tracking them, along with

20

CHAPTER 3. STREAMING DATA FRAMEWORKS

the experimental parameters, software environment, and the data processing pipeline being

used is important to understanding how the analyzed data was produced. Additionally,

this metadata provides important hooks for searching through the data, enabling direct

comparison of how different processing parameters changed outcomes or how different sample

preparation procedures impacted material properties. In this way the problem of ctPDF

data’s heterogeneity is turned into a strength, enabling discoverability and reproduction of

results. These configurational knobs are important metadata for discovering, understanding

and reproducing the analysis.

We have addressed these issues by creating a streaming data processing framework which

combines high throughput analysis with heterogeneous data handling. This approach enables

users to create pipelines flexibly which process heterogeneous data and capture metadata

to provide searchability and insight into the analysis procedure. Additionally this approach

allows for the easy parallelization of computation, and reproduction of analyzed results from

raw data. The framework we developed is partitioned into two, the first, rapidz handles

the flow and transformation of base homogeneous data and the parallelization of the data

processing. The second, SHED is designed to translate between between heterogeneous data

and homogeneous base data, and produce and track metadata about the analysis itself these

are described below.

Rapidz

Introduction

An unbounded stream of data constantly produces new material. Twitter feeds, stock ex-

changes, weather satellites are all examples of data streams because their systems are con-

stantly updating with newly generated data. Streams of data create problems for batch

processing, where a block of data is downloaded and analyzed directly. Streaming data pro-

cessing embraces the ceaseless influx of data by handling each piece one at a time without

21

CHAPTER 3. STREAMING DATA FRAMEWORKS

the need for batching. For example, in the case of a Twitter feed, a single Tweet would be

analyzed when it arrived and not when the full news cycle is over.

While various software products have been created to handle streaming data processing,

nearly all share a common representation of the data processing procedure, often called a

pipeline, as a directed acyclic graph (DAG). The DAG model’s ability to create complex

workflows from otherwise simple pieces is particularly powerful. These DAGs describe how

pieces of data flow between the various data processing procedures. The DAG represents

data processing steps as nodes in the graph, and flow of data between these steps as edges.

The DAG model allows for individual nodes to perform small tasks, like multiplying two

numbers together. These small tasks are then combined to perform more complex tasks. An

example of a data analysis pipeline is shown in Fig. 3.1

Most of the existing streaming technologies were written for Java and Scala with com-

patible Python APIs. This means that the resulting software is not particularly pythonic,

making the interfaces rather clunky. While many of the existing streaming technologies use

the DAG as the central model for thinking about streaming data processing, often that is

where the similarities end. Many of the existing systems, even ones written with Python in

mind, like pilot-streaming, combine the DAG logic with other pieces of software, like how

to schedule jobs on a HPC cluster [Luckow et al., 2018]. Amalgamating multiple problems

like this leads to more brittle software, as it restricts application the of the code to other use

cases, and tends to cause the problems that one part of the code tries to address to bleed into

the other parts of the code. Additionally, these systems often create their own data types,

as in the case of Spark based systems and Resilient Distributed Datasets (RDDs)[Zaharia

et al., 2016]. Custom data types can introduce the need to translate between the types pro-

vided by standard libraries and the new library’s data types, making the streaming library

incompatible with most of the software it is try to use.

We attempt to avoid these issues by making certain that our streaming library does one

thing, and only one thing, well [Robinson et al., 2019]. This idea is also known as “separation

22

CHAPTER 3. STREAMING DATA FRAMEWORKS

Figure 3.1: Directed Acyclic Graph representing a data processing workflow. This DAG
represents the combination of two numbers which have been produced from an input number
by subtracting one and adding one to the input.

23

CHAPTER 3. STREAMING DATA FRAMEWORKS

of concerns”. In previous work streaming data processing systems overlapped with database

interfaces, resource management tools, and other pieces of functionality. Issues like these

are not generally fixable once the library has already been implemented and adopted, hence

we designed a new library rapidz. The main design consideration was to make certain

that the system handles streaming data well and leaves openings for other systems, which

may handle databases or resource management, to communicate with the streaming data

processing system without explicitly tailoring the system to those applications. This way

users can swap out pieces of the software for better ones seamlessly, so long as the new pieces

communicate with the pipeline in the same way.

rapidz Library Design

Architecture

rapidz is a streaming data processing library written in Python. The focus of the design

of rapidz is simplicity of the node classes and separation of concerns. The main entities of

rapidz are the Stream class and its subclasses. These classes are used to form nodes of a

data processing DAG, and all have three main methods.

1. The init method specifies which other nodes, if any, the node being created will listen

to for incoming data.

2. The update method specifies what to do when new data is presented to the node

3. The emit method describes how to propagate data downstream to nodes listening to

this node.

Built on this three part structure, various subclasses of the Stream class can be created,

providing capabilities like applying a function on the data to transform it (map), removing

data from a stream based on a criterion (filter), and combining data from different streams

(zip, combine latest).

24

CHAPTER 3. STREAMING DATA FRAMEWORKS

For example, the structure of the map class, shown in Listing 3.2, which applies a trans-

formation, func, to each piece of data passing through the node. The transformation acts

like, and in general is, a python function.

class map(Stream) :
def i n i t (s e l f , upstream , func , ∗args , ∗∗kwargs) :

s e l f . func = func
s e l f . kwargs = kwargs
s e l f . a rgs = args

l i s t e n to the upstream nodes
Stream . i n i t (s e l f , upstream)

def update (s e l f , x , who=None) :
app ly f u n c t i o n to data
r e s u l t = s e l f . func (x , ∗ s e l f . args , ∗∗ s e l f . kwargs)

send data downstream
return s e l f . emit (r e s u l t)

Figure 3.2: Example map source code showing the new init and update methods

The transformed data is then sent downstream to other nodes which will use it for their

own processing. Similarly the combine latest class, shown in Listing 3.3, combines the

most recent data item from one stream with the most recent data item from other streams:

combine latest is commonly used to upsample or downsample data. Upsampling takes

two streams of data and creates a stream which has the same rate as the quickest updating

stream. For instance, consider a x-ray detector and the calibration of that detector. The

calibration changes slowly, or not at all, while the detector’s value can change at a rate

of 10 Hz or more. In the upsampling case the new data is a combination of the newest

value from the detector and the most recent value of the calibration, enabling users to take

advantage of the latest calibration without forcing them to take a new one every shot.

emit on is a feature that enables combine latest to be used for downsampling. When

emit on is provided it allows data to propagate from the combine latest node only when a

specified incoming stream presents a new data item. For instance, consider the previous x-ray

detector with a temperature sensor, which has a high measurement rate. A combine latest

25

CHAPTER 3. STREAMING DATA FRAMEWORKS

class comb ine l a t e s t (Stream) :
def i n i t (s e l f , ∗upstreams , ∗∗kwargs) :

emit on = kwargs . pop (” emit on ” , None)
s e l f . l a s t = [None for in upstreams]
s e l f . mis s ing = set (upstreams)
i f emit on i s not None :

i f not isinstance (emit on , I t e r a b l e) :
emit on = (emit on ,)

emit on = tuple (
upstreams [x] i f isinstance (x , int)
else x for x in emit on

)
s e l f . emit on = emit on

else :
s e l f . emit on = upstreams

Stream . i n i t (s e l f , upstreams=upstreams , ∗∗kwargs)

def update (s e l f , x , who=None) :
i f s e l f . mis s ing and who in s e l f . mis s ing :

s e l f . mis s ing . remove (who)
s e l f . l a s t [s e l f . upstreams . index (who)] = x
i f not s e l f . mis s ing and who in s e l f . emit on :

tup = tuple (s e l f . l a s t)
return s e l f . emit (tup)

Figure 3.3: Example combine latest source code showing its init and update methods.

26

CHAPTER 3. STREAMING DATA FRAMEWORKS

node with an emit on from the detector would downsample the data, only allowing the com-

bination of the latest detector value with the latest temperature value, even if the tempera-

ture updated 100 times in the interval between detector shots. This looses the intermediate

temperatures with only the relevant one, that is the most recent one, retained. Out of order

access is prevented by not accepting new values until the current value’s computation has

been finished. This guarantees that the most recent temperature will be the closest to the

detector image when it arrives. This idea, called “backpressure”, is explored in more depth

in Section 3.2.2.2.

Impacts of Architecture

Good software produces properties which were not explicitly written into the source code,

but naturally arise from the interaction of various pieces of the code. The presence of these

properties indicate that one or more abstract concepts that the code seeks to express work

well together. These properties are critical for understanding how a piece of software works

and understanding if the correct abstractions have been made. Rapidz focus on simplicity

and separation of concerns leads to some important emergent properties.

For example, take the pipeline shown in Fig. 3.1 the numbers 1, and 0 represent the order

in which data will propagate. If the number 1 was pushed into the source node, first it would

pass to the add node via the path labeled 0, which would add 1 and pass the resulting 2

to the zip node. Since the zip node combines data in a one-to-one fashion the node caches

the data and returns execution to the source. With execution returned to the source the

data then flows along the 1 path where the number 1 is subtracted from the input, resulting

in 0. The 0 is passed to zip which, having two values, passes the tuple (2, 0) to the print

statement.

A stable order of execution is one of the emergent properties of rapidz. For any given

rapidz pipeline and known order of inputs the data which comes out of the pipeline will come

out in a well defined order. The above example shows how the execution order is stable and

27

CHAPTER 3. STREAMING DATA FRAMEWORKS

deterministic.

Another property is that the pipeline does not accept new data until all of the execution

is finished on the existing data, called “backpressure”. This prevents the data from being

computed and returned out of order and is especially important for scientific applications

where data order is tightly correlated with other information, like temperature and motor

positions. Backpressure works by taking control of the python process running the pipeline,

computing the results of each node’s computation. Since the node computations occupy the

entire process no additional data can be ingested by the pipeline, since that requires the

python process to be free to receive the new data. Similarly, data is computed in order,

since there is an order to the stack of computations that are performed, with the first piece

of data computed first.

Rapidz does introduce some computational overhead associated with the DAG man-

agement of the code execution, as opposed to a script written without a pipeline. The

library’s simplicity helps to limit this overhead. A rapidz pipeline adds a few microseconds

of overhead per element [Rocklin, 2017]. For many computations, like those applied to x-ray

scattering, the computation of the mathematical transformation takes more time than the

rapidz overhead by orders of magnitude.

The DAG itself, rather than the node classes, holds the complexity of combining, trans-

forming and controlling the data. By pushing complexity to the DAG users can conceptualize

and visualize their data processing as a graph rather than worrying about the specific inter-

nals of the classes. Most importantly, rapidz does not care what your data is so long as it is

a python object. Rapidz provides a way to describe the order in which transformations are

applied to pieces of data for an arbitrary number of inputs.

Parallel Streaming

Parallel processing provides an important route to scaling data processing and analysis. In

parallel processing, many computations are performed at once, speeding up the processing

28

CHAPTER 3. STREAMING DATA FRAMEWORKS

compared to if the computations were done in serial. Many modern processors are built for

parallel processing, with general purpose computation on graphics processing units (GPG-

PUs) being an especially economical source of parallel computing. Many large facilities also

support parallel computing via cluster and super computing. Parallel computing can even

use cloud resources to provide scalable computing.

While parallel processing can speed up analysis, it often significantly complicates the

software. These complications stem from a coupling of the analysis code, which handles

the ordering of operations, and the parallel code, which manages the processors and memory

making certain that maximum efficiency is maintained and that the computer doesn’t run out

of memory. The coupling makes parallel analysis code quite brittle, as details of the parallel

processing implementation, how many cores to run on, the available memory, etc. are hard

coded into the analysis, making it difficult to run in any other computing environment.

Ironically, this can make the code more difficult to parallelize further as one must remove

the hard coded information when moving to a larger parallel computing platform.

rapidz is well placed to fix this issue. Since rapidz acts as a way to specify which

transformations to apply in what order, the actual computations can occur wherever is

convenient. Python expresses this concept of performing computations elsewhere via the

Executor class.

For instance, a user gives an Executor a python callable, which is usually a function, and

any additional arguments and keyword arguments to provide to the function. The Executor

then returns a future, a computational IOU, representing the result of the requested compu-

tation. The Executor then schedules the computation on whatever resources it can access.

The user can then query if the computation the future represents is finished or request the

result, preventing any further action until the computation is finished and the user can access

the result. This means that the user can submit multiple jobs to the Executor, creating

multiple futures. Depending on the infrastructure the user has access to, the computations

for these futures could occur in parallel. The Executor model provides a separation be-

29

CHAPTER 3. STREAMING DATA FRAMEWORKS

tween the desire for a computed result and the actual execution of the computation making

it a powerful abstraction. Thus, the user does not need to know the specifics of the memory

allocation, network protocols, or CPU usage to request the results. This frees up the com-

puter to run multiple futures in parallel, potentially on hardware not even local to the user.

Executors can even make decisions based on information that the user does not have while

specifying the data processing, like requesting additional computational resources. Various

packages behave like Executor classes enabling various parallel execution models, including

projects like dask which enables automatically scaling computing on clusters, or MPI which is

used extensively on supercomputers without changing more than a handful of lines of code.

Rapidz, combined with executors, provides a good platform for parallel computing. Since

Rapidz is all about specifying what is to be done to each piece of data in which order, the

problem that executors solve is orthogonal. Thus, rapidz can use executors to perform each

computational step in parallel elsewhere, on the local computer, a dask cluster, or even a

supercomputer. To make this work two additional nodes are introduced, scatter and gather.

Scatter nodes pass the data into an executor, producing futures. These futures are then

passed down the pipeline. When a future is passed into a computational node, like map, the

same executor produces a new future. This new future represents the result of the mapped

function applied to the result of the prior future. Futures can be chained this way, creating

a stack of computations which may or may not have completed yet. When these futures

are passed to a gather node, the node calls their result method, halting the pipeline until

the results have come back. Since the scatter and gather nodes respect backpressure only

one piece of data is allowed in the pipeline at a time. However, a buffer node breaks the

backpressure and allows multiple computations to happen at once. The buffer node caches

the futures up to a user defined limit. The limit, once reached, will cause the pipeline to stop

accepting new entries, producing the same effect as the single process backpressure mentioned

in Section 3.2.2.2. The buffer then waits for a future to have finished its computation and

passes the future downstream to a gather node where it is turned back into base types and

30

CHAPTER 3. STREAMING DATA FRAMEWORKS

the buffer now allows the pipeline to accept more data. This approach avoids deadlocks by

having the Rapidz graph structure be acyclic, thus no computation can rely on a second

computation that in turn relies on the first computation.

A analogy for this is a tag team computation, where a group of people sit at desks. Each

person does exactly one computation, e.g. adding two numbers together, taking the mean of

a set of numbers, etc. In the serial setup the first person in the pipeline receives a number on

an index card, they apply their transformation to the data, write the result on a new index

card and pass it to the next person. Similar to how the pipeline operates, if any computation

is slow then the entire pipeline slows down as that person crunches their numbers. In the

parallel version of this analogy, the person does not perform the computation but simply

writes the computation to be performed on the outside of an envelope which contains the

index card and is passed to the next person, who puts that envelope in another envelope

with their computation on the outside. This continues until the data is passed to the buffer

desk. At the buffer desk the envelopes are passed out to many people who can perform the

computations by opening all the envelopes and doing each of the transformations in order.

The buffer node then waits for the results from the first set of envelopes to be returned

at which point it passes it further downstream. In this analogy the parallel computation

is performed when the envelopes are opened, the actual method of how the computation

happens is separate from our declaration of what we’d like done. This means that the

pipeline does not need to get bogged down in the details of running the computation, it

just needs to state what it would like done to which data in what order and allow other,

potentially more computationally adept, computers to do the heavy lifting.

Impacts of Parallel Streaming Architecture

rapidz’s Executor driven parallel processing architecture enables easy parallelization, which

can scale without any changes to the data processing topology. All that is required is three

extra nodes to send the data to the computational cluster, buffer the futures while awaiting

31

CHAPTER 3. STREAMING DATA FRAMEWORKS

Figure 3.4: The same graph as 3.1 but parallelized. Note the additional scatter buffer

and gather nodes. Parallel computation occurs with the coral colored nodes.

32

CHAPTER 3. STREAMING DATA FRAMEWORKS

results, and gather the data back to the local computer when the computation is finished.

Fig. 3.4 shows a parallel pipeline version of Fig. 3.1. The parallel pipeline shown in Listing

3.6 is much faster than the serial pipeline shown in Listing 3.5 for the same amount of work,

since it can run all the jobs at once. If the resources are limited, which can be done artificially

by reducing the buffer size below the total amount of the data, then the for loop will take

longer. For instance if the buffer in Listing 3.6 was set to five, then the for loop would take

about one second, as the loop must wait for the data to clear from the buffer at least once,

which takes one second due to the sleep. If the parallel pipeline contained five maps the

submission of the data would take about 0.007 seconds, almost the same as the one map

since submission to the executor is fast. One can see from the code in Listing 3.6 and Listing

3.5 that the difference is exactly three lines, making implementing parallel pipelines quite

easy. This approach is useful for streaming data processing where data points can be treated

independently.

Filter nodes are an important part of the rapidz framework, providing the ability to

remove data from the stream. This can be useful for thresholding data analysis to only

operate when enough counts are on the detector or because the scan is of a certain type.

These nodes are particularly difficult to implement in parallel streaming. In normal operation

the filter nodes use a function, called a predicate, to determine if a piece of data is allowed

to propagate downstream, if the predicate is true then the data propagates, if not then the

node does nothing effectively removing the data from the stream. This is not possible when

operating on futures, since the results are unknown until the end of the pipeline. The way

this is handled is via two python decorators. Decorators are functions which take in other

functions and return a modified version of those functions. A simple decorator might take

in a function and return a second function, whenever that second function is run it calls the

first function and then prints the result of that first function in addition to returning the

results. In the case of filter the first decorator takes in a predicate function and based on

the result of that function returns either the value of the stream or a NULL COMPUTE sentinel.

33

CHAPTER 3. STREAMING DATA FRAMEWORKS

from rap idz import Stream
import time

def s l e epy inc r ement (x) :
time . s l e e p (1)
return x + 1

source = Stream ()
L = source .map(s l e epy inc r ement) . s i n k t o l i s t ()
t0 = time . time ()
for i in range (1 0) :

source . emit (i)
print (time . time () − t0)
while len (L) < 10 :

time . s l e e p (1 e−4)
print (time . time () − t0)

Figure 3.5: Serial pipeline with an increment taking at least one second. The for loop takes
∼ 10.01 seconds and the while loop takes no time at all. This is because all the sleeps are
run in series, with 10 sleeps of 1 second a piece but the results are finished once all the of
the data is submitted to the pipeline since there is no backpressure release via buffer.

34

CHAPTER 3. STREAMING DATA FRAMEWORKS

from rap idz import Stream
import time
def s l e epy inc r ement (x) :

time . s l e e p (1)
return x + 1

source = Stream ()
L = (

source . s c a t t e r (backend=” thread ”)
.map(s l e epy inc r ement)
. buffer (50)
. gather ()
. s i n k t o l i s t ()

)
t0 = time . time ()
for i in range (1 0) :

source . emit (i)
print (time . time () − t0)
while len (L) < 10 :

time . s l e e p (1 e−4)
print (time . time () − t0)

Figure 3.6: Parallel pipeline with an increment taking at least one second. The for loop
takes ∼ 0.006 seconds and the while loop takes 1.01 seconds. This is because all the sleeps
are run in parallel, thus the amount of time to compute the whole data set is the time it
takes to compute one piece of data, assuming that one has enough resources to service all the
computations at once. The for loop is especially fast because the pipeline is only submitting
the jobs to the executor, which is fast.

35

CHAPTER 3. STREAMING DATA FRAMEWORKS

The sentinel is a special python string, which signals that any additional computations

should not be performed. The string is chosen so that the probability of the string being

generated by user code is small. The second decorator is used with nodes which compute

values, map, accumulate, etc. This decorator determines if any of the function arguments

or keyword arguments are NULL COMPUTE, if so the internal function is not triggered and a

NULL COMPUTE is returned. If a NULL COMPUTE reaches a gather node then the result is not

reported, making it as if the data was filtered out. In the analogy of the envelopes, one of

the envelopes has the command to either continue computing the stack or throw out the

envelope based on the value of the current computation.

Some nodes currently implemented in serial have no equivalents with parallel processing.

Unique, which only reports novel data, is one of these nodes. In serial pipelines unique uses

an internal cache to check if a given value is novel, and based on that assessment passes the

data downstream or not. However, in distributed systems this would require a distributed

cache which can be quite difficult, or the direct local evaluation of the computation which

would defeat the purpose. In the analogy of envelopes, the serial execution has one of the

desks contain a running list of all the seen results to be compared against. In the parallel

analogy this table would need to be located in such a way that it could be seen by all the

people actually computing the results, which is not feasible if those people were in different

rooms. Additionally this can produce issues with out of order execution. While the results

are gathered in order, the futures themselves can be computed in whichever order is most

convenient for the scheduler. This means that the cache can be corrupted with entries which

are to be entered after the current data would be processed, causing data to be missed.

These issues may be solvable with fast key-value stores like RocksDB and careful tracking

of the order of computation. However, at time of writing rapidz does not implement these

solutions.

While the implementation of parallel pipeline nodes can be quite complex, the imple-

mentation of parallel pipelines themselves are not. Currently rapidz supports two main

36

CHAPTER 3. STREAMING DATA FRAMEWORKS

backends, dask and threads, with the easy addition of any interface which uses the Executor

class. This ease of use enables pipelines written and prototyped for single process execution

to scale to almost arbitrary parallel execution schemes. The separation of data, computation

topology, and execution enables flexible streaming data processing where the user experience

focuses on the development of the computation topology and not on the provisioning and

management of the parallel processing resources.

Simplifying the Construction of Complex Pipelines

Complex pipelines can become quite large, including many nodes and edges, making them

somewhat unwieldy and difficult to adapt for reuse. Pipelines that operate under many

conditions become particularly complex, as each condition can add a multitude of nodes and

edges. Pipelines can become more modular via a process called “chunking”. Chunking is the

process in which pipelines are broken up into smaller pieces. These smaller pieces could be

put into their own modules, so when the pipeline is to be built it can be imported in pieces

and reassembled. However, creating a pipeline via imports makes it brittle as a module

can only be imported once. This means that if the pipeline needed to be regenerated for

whatever reason the entire interpreter would need to be restarted. A better approach is to

put the pipeline piece inside of a function, which creates that part of the pipeline when the

function is run. This design pattern is called a “factory function”, since this is a function

which builds another piece of software.

There are three main parts of a chunk factory: requirements, the pipeline chunk itself,

and the resulting namespace. Pipeline chunks, regardless of if they are created via factories

or imports, usually have requirements. Requirements are upstream nodes which a pipeline

chunk is expecting to exist when adding the chunk to the pipeline. In chunk factories these

requirements are part of the arguments of the function, making them required to run the

factory. Users can inspect which arguments are required by either reading the documentation

or using the python inspect library to inspect the function signature. The inspect library

37

CHAPTER 3. STREAMING DATA FRAMEWORKS

can be used to spoof requirements, providing empty nodes attached to nothing in the place of

required nodes. Keyword arguments can provide additional information, like configuration

parameters. The pipeline chunk itself creates new nodes by either instantiating them outright

with no upstream nodes, or by connecting to upstream nodes which were listed as arguments

to the pipeline. Finally, the chunk returns a namespace representing all of the nodes and

parameters of the pipeline as it existed at the end of the function. These chunks can then

be run, creating pipelines from chunks. An example chunk factory is shown in Listing 3.7

def image proces s (
raw foreground ,
raw foreground dark ,
raw background ,
raw background dark ,
b g s c a l e =1.0 ,
∗∗kwargs

) :
da rk co r r e c t ed f o r eg roun d = raw foreground . comb ine l a t e s t (

raw foreground dark , emit on=0
) . starmap (op . sub)
dark correc ted background = (

raw background . comb ine l a t e s t (raw background dark , emit on=0)
. starmap (op . sub)
.map(op . mul , b g s c a l e)

)
bg cor r ec t ed img = dar k co r r e c t e d f o r eg roun d . comb ine l a t e s t (

dark corrected background , emit on=0
) . starmap (op . sub , stream name=”background c o r r e c t e d img”)
return locals ()

Figure 3.7: Pipeline chunk for performing background and dark correction to x-ray scattering
images. This chunk has four requirements and one optional parameter.

Chunk factories could be used on their own, providing the arguments by hand to produce

larger and larger pipelines. However, rapidz provides an automated link function that

makes this process simpler. The link function enables users to provide a list of chunks

and keyword arguments from which to create a pipeline. The code for the link function

is provided in Listing 3.8. The link function calls each chunk function in order, with the

38

CHAPTER 3. STREAMING DATA FRAMEWORKS

arguments to the next chunk function being pulled from the currently available namespace.

The chunk function then adds its own nodes into the namespace, making more nodes available

for connections. This requires the names of the arguments for each chunk function to the

be the name as the node from a prior chunk. Additionally, this requires all chunks to

take **kwargs so any unneeded nodes and parameters can be passed through without an

unexpected keyword argument error.

def l i n k (∗ args , ∗∗kwargs) :
namespace = kwargs
for pipe in args :

new namespace = pipe (∗∗ namespace)
i f new namespace :

f l a t t e n out the kwargs so we
don ’ t have kwargs a l l the way down
namespace . update (new namespace . pop (”kwargs” , {}))
namespace . update (new namespace)

return namespace

Figure 3.8: The link function, which iterates through a list of chunk factory functions and
builds the next pipeline chunk with the available namespace.

Advantages and Disadvantages

Rapidz consists of a series of design decisions. These design decisions have advantages and

disadvantages discussed below.

Disadvantages

One of the most glaring disadvantages is that writing pipelines is more complex than writing

plain python code. This is especially true when the python code is inside a Jupyter notebook

[Perez and Granger, 2007]. Interactive python sessions, including Jupyter, make intuitive

sense and provide easy real time feedback between the code and the user. Pipelines can be

more complex to write, requiring careful weighing of the order of execution, the exact state

of the graph at any time, and handling of numerous contingencies. Network effects, where

39

CHAPTER 3. STREAMING DATA FRAMEWORKS

one part of the graph influences other parts of the graph can make this particularly tricky.

Tools like the linking and chunking systems are designed to help users to build pipelines, but

future work will most likely continue to focus on these pain points. Some of this complexity

may never go away, handling an unbounded flow of data may inherently be more complex

than the static data sets handled by interactive python sessions.

Advantages

Rapidz provides some major advantages over standard data analysis tools. A pipeline pro-

vides structure to the analysis procedure that might not otherwise exist in interactive ses-

sions. This is especially true of Jupyter sessions, where top to bottom execution order can

be broken, leading to analysis which does not run properly in a single pass. Additionally

the graph structure produced by rapidz allows the creation and use of tools which manipu-

late the graph itself. These tools could check if a pipeline will fail based on the number of

incoming edges and number of arguments in map nodes. They could automatically produce

GUIs which enable users to modify pipeline parameters on the fly by walking the graph and

exposing all the additional arguments and keyword arguments provided by the graph nodes.

Live visualization could be performed on the graph, showing its exact status at every point,

making debugging easier. These kinds of tools are hard to produce, or impossible with stan-

dard interactive python systems, since they lack the needed graph structure to represent the

computation’s relationships. As discussed above, the ease of parallelization is an advantage

for the rapidz system. By separating the data and the processing order from the execution

of the processing, a handful of lines of code can be used to provide significant speedups. This

could be much more difficult with interactive python sessions or other pipeline tools, which

rely on their own infrastructure to provide parallel computing.

40

CHAPTER 3. STREAMING DATA FRAMEWORKS

SHED

Introduction

Unlike most sources of streaming data, experimental data is quite heterogeneous. Exper-

imental data could be associated with a single reading from a detector or motor, a series

of readings, a single sample, or an entire campaign of measurements with multiple samples,

techniques, and investigators. Consider a campaign of experiments aimed at understand-

ing how a series of samples structures are impacted by radioactive bombardment. There

is information about the sample: where did it come from, how much irradiation did it ex-

perience, when was it made, what is the composition,etc. There is information about the

experiment: who ran the experiment, what is the beamline wavelength, what kind of scan

is being run, was the experiment successful etc. There is information about the individ-

ual measurements: what is the value of the detector, when was the measurement made,

etc. These heterogeneous layers all provide different types of information, all of which are

valuable for processing and analyzing the results. Similarly processed and analyzed data

has many layers, including the kind of analysis being performed, the units of the analyzed

results, and the results themselves. No existing software systems are able to capture and

interface with this level of heterogeneity in a streaming context. Streaming Heterogeneous

Event Model (SHED) is designed to handle these issues by providing a translation between

these heterogeneous data sources and rapidz data processing pipelines, while automatically

capturing information about the data processing.

Provenance

Unlike raw data, which is produced once, analyzed data can be produced multiple times

using different paths and the same base data to produce results. These results can be

comparable, using the same units and attempting to describe the same phenomenon, or

41

CHAPTER 3. STREAMING DATA FRAMEWORKS

not, using the same raw data for completely different analyses. The results can also be

similar or wildly different, even if they were using the same analysis procedure with dif-

ferent parameters. These differences create issues around reproducibility, where two sim-

ilar analyses can produce different results. For example there are a large number of to-

mography reconstruction algorithms, each of which produces the same type of result but

don’t always produce the same result, as previously discussed in Section 5.2.4. If these

kinds of analysis parameters are not tracked then it is difficult to compare results be-

tween different parameters or researchers. This lack of this kind of reproducibility can

lead to controversies, especially when software is involved. For seven years there was a

bitter dispute over the nature of water between David Chandler and Pablo Debendetti,

where a slightly different procedure for producing atomic configurations [Palmer et al., 2018;

Smart, 2018]. It is even possible for the same analysis with the same parameters to produce

different results if the software versions are different, making it difficult to determine why

the outcomes are different. This compounds the discoverability problems discussed above,

where despite sharing the same base data the results could be different and even describe

different effects.

Provenance provides a method to address these discoverability and reproducibility prob-

lems. The concept comes from art, where the tracking of art ownership enables potential

buyers to know if they are purchasing a fake or the original. In the computational context

provenance describes the tracking of every transformation applied to the data, along with

metadata about that transformation. For instance the provenance of a number being mul-

tiplied by a constant on a computer would include: the number itself, the constant and the

version of the software being used to multiply them. This combination of data and metadata

helps address the problems of discoverability and reproducibility. To reproduce the results

of the multiplication computation we need the information stored by provenance, allowing

us to use the same version of software and constant to reproduce the result. Similarly this

information helps discoverability by keeping track of the parameters one might use to query

42

CHAPTER 3. STREAMING DATA FRAMEWORKS

their analyzed results.

Here we discuss two examples where the tracking of provenance facilitates better scientific

outcomes. Tomography, as discussed in Section 2.2.2, relies on the use of a reconstruction

algorithm to transform the sinogram, a series of data points taken at various rotations and

translations, into a full 3D tomogram. Different reconstruction algorithms can be used to

produce the tomogram. As will be discussed in more depth in Section 5.2, these various

algorithms can produce different results. Keeping track of which algorithm was used to

produce a given tomogram is important as the differences in results from one algorithm

to the next could impact the scientific conclusions. Additionally, tracking of the data’s

provenance allows for direct comparison of the algorithms, enabling parameter and algorithm

exploration. When provenance is not tracked, reproducibility can break down.

Although provenance provides a path to reproducibility and discoverability, having been

cited by two Department of Energy reports [Bethel et al., 2016; Windus et al., 2017], cap-

turing data provenance can be difficult. One of the main stumbling blocks for this is user

interaction. Users often are not interested in entering large amounts of metadata into a

database, especially metadata about their computational work [Davison, 2012]. Even when

metadata is supplied by users that metadata could be inaccurate or incomplete. This means

that any provenance capture system needs to provide automated capture. While VisTrails

and Sumatra provide some automated provenance capture when working with batch data

processing, neither provide provenance capture for streaming data processing discussed in

Section 3.2 [Silva et al., 2007; Davison et al., 2014]. Conversely, few of the existing streaming

libraries have a provenance system to capture the needed metadata.

Heterogeneity and the Event-Model

The NSLS-II Data Acquisition, Management and Analysis (DAMA) group document/event

model is specifically designed to handle the heterogeneous raw data described above. The

Event-Model partitions the various types of data into four main document types: start,

43

CHAPTER 3. STREAMING DATA FRAMEWORKS

descriptor, event and stop. These documents also handle asynchronous data sources, allowing

multiple detectors running at different acquisition rates to operate independently but as part

of the same experiment. Start documents signal the beginning of the experiment and capture

beginning metadata Descriptors provide information on the data which will be collected

in a given data stream, a single start document can have multiple descriptors. Multiple

descriptors is common when partitioning data which has different acquisition rates, or where

the type of data is fundamentally different. For example light images and dark images are

often put into separate descriptors, since the images are not comparable and their data

processing is quite different. Events contain the data itself, detector readings, images, motor

positions, and others. Events also contain timestamps for all the measured quantities. Stop

documents provide metadata about the end of the experiment, if the experiment was a

success, when the experiment finished, and how many events were captured per descriptor.

Fig. 3.9 shows the chronological ordering of these documents for three different experiments.

The Event-Model specification enables data curation and discovery by providing handles

for querying and comparing data. This is accomplished via the Databroker project, which

is a database system to store data which is in the event model. In addition to storing the

data, the Databroker provides a way to query data by the metadata in start documents

and replay any stored experiment, providing a stream of data as if it was coming from the

past experiment. The spec also allows additional systems to be written on top, including a

richer query system using ElasticSearch. While not initially designed to capture processed

and analyzed results, SHED uses and extends the Event-Model to capture the data and

metadata from data processing and analysis.

SHED design

The first issue SHED addresses is the extraction of data from the Event-Model. Since the

Event-Model has its own data structure and most data processing software operates on

base types, integers, floating point numbers, and others, SHED provides a translation from

44

CHAPTER 3. STREAMING DATA FRAMEWORKS

Figure 3.9: The Event-Model documents and how they are created by experimental scans.
Example 1 shows a simple experiment where no readings are taken and only stop and start
documents are issued. Example 2 shows an experiment where one stream of readings, from
a motor and detector being read at the same time, is taken. Example 3 shows a fully
asynchronous experiment, where data is taken from multiple sources at different rates. From
[group, 2019].

45

CHAPTER 3. STREAMING DATA FRAMEWORKS

the Event-Model into these base types. SHED has three main arguments which control

data extraction: document name, which specifies which document the data will come from,

data address, which specifies which keys inside the Event-Model dictionary to access, and

event stream name which specifies which asynchronous stream to listen to, if not all. The

combination of these three pieces of information pinpoints a single value of data or metadata

within the Event-Model and plumbs that data into a rapidz node for further processing and

analysis. This functionality is provided by the FromEventStream nodes, which translate

from the event model to base types.

While translating from the Event-Model is simple, translating back into the Event-Model,

which enables reuse of the rich data management, data visualization, and data searching

capabilities created for raw data, is much more complex. The main difficulty of this is

because experiments are not unbounded streams of data. Experiments have starts and

stops, which are represented by documents in the Event-Model. A rapidz pipeline however,

has no internal conception of the beginning or end of an experiment, all the data is perceived

to be from an unending stream, with maybe an irregular time gap between data points. The

needed break from the unbounded streaming model requires extra information to be passed

between the top and bottom of the graph, capturing if a piece of data is associated with

one experiment or another. This information is passed by an approach we call “side band

signalling“. Side band signalling works by establishing a separate channel, or band, between

FromEventStream nodes to all their counterpart ToEventStream nodes. Since there may be

more than one FromEventStream node in a pipeline, usually when more than one piece of

information is needed for the analysis, a principal node is declared to act as the controlling

node. Only the principal node issues the signals to the ToEventStream nodes to issue a start

or stop document.

The approach is implemented by walking up the DAG to find the FromEventStream nodes

when a ToEventStream node is instantiated. It is important to note that the previously

discussed backpressure property of rapidz pipelines, Section 3.2.2.2, prevents stop or start

46

CHAPTER 3. STREAMING DATA FRAMEWORKS

documents from being issued before all the data is finished being processed. This makes

certain that no pieces of analyzed data are without start and stop metadata, since incoming

start or stop metadata cannot be ingested until previous documents have been processed.

Figure 3.10: Example data processing pipeline with SHED nodes. Note that the node with
the bold rim is the principal node, which is used as the reference for creating start and stop
documents. The first name for the FromEventStream nodes is the document the node takes
data from. The dotted red edge denotes the path of the side band signalling, providing stop
and start metadata from the principle node (event data image) to the output event stream
node (norm image).

Consider an experiment which takes a single image, producing four documents: start,

descriptor, event, and stop. We’ll track these documents as they pass through the pipeline

shown in Fig. 3.10, that normalizes images by a calibration which is known at the start of

the experiment.

The top of the pipeline is assigned to a variable raw source. The event data image

node is initialized with the principal=True keyword argument, declaring that it is the

principal node of the pipeline The start document is passed into the pipeline by

raw source.emit((’start’, start doc)) the source Stream node. This node has two

exiting edges labeled 0 and 1 which indicates the order in which they are traversed. The

47

CHAPTER 3. STREAMING DATA FRAMEWORKS

source Stream node therefore passes the start document to the start calibration node.

This node needs information about the experiment to carry out the calibration which it

extracts from the start document metadata. The extracted calibration metadata is passed

down to the combine latest node, which simply caches the data since no other data is in

the node. A characteristic of a combine latest node is that it will wait until it has data

from its two incoming nodes to combine before doing anything, so it hands control of the

process back to the top of the stream so the next document can be processed by the pipeline.

The same start document is then passed down the second edge emerging from the source

Stream, labeled 1, which sends it to the event data image node. Since this node is a

principal node, the node has the property that when it receives a start document it signals

all the to event stream nodes, in this case norm image to emit their own start document.

The event data image node then does not send data to the combine latest node, since it

is looking for data from events not starts. In this case it is the last node in the pipeline so

after signalling for the start document it will pass control of the process back to the source

which can start processing the next document in the event stream.

The next document in the stream is the descriptor document, which is passed into the

source that passes it first to the start Calibration node. This a from event stream node

which has the property that it does nothing with descriptor documents and returns control

of the process back upstream, so the same descriptor is emitted down the second edge to

the event data image node which is also a from event stream nodes, which does nothing

and allows the next document in the stream to be emitted into the pipeline.

The next document is the first real event in the stream. The event document is passed

into the source, which passes it to the start calibration node. When this node receives an

event it does nothing and hands control back to the source to emit the same event down the

second edge to the event data image node. When this node receives an event document

with an image in it, it extracts the image data and passes it to the combine latest node.

The combine latest node now has a document from both its input edges, so it combines

48

CHAPTER 3. STREAMING DATA FRAMEWORKS

them and sends the combined calibration metadata and image data on down the pipeline.

The next node is a map node which executes a transformation on the data, in this case,

computing the normalized data using the calibration parameters. The normalized data is

then passed on to the next node which is the norm image node. The norm image node

reads the data type of the normalized image, issues a descriptor which includes the shape

of the data and its type, and then issues an event document with the normalized image.

After emitting these documents control is passed back to the source which emits its next

document. In general these will be more image event data documents, but in this example

there was only one such event, so the next and last document in the stream is the stop

document.

The stop document is passed into the source, which passes it to the start calibration

node, which does nothing and then to the event data image node which as the principal

from event stream node issues a signal to the next to event stream node, the norm image

node, which then emits a stop document. The last to event stream node has by then

emitted a complete new event stream, with a start document, descriptor, event and stop

documents that could be saved into an analysis databroker database, or sent on to another

stream of analysis steps.

SHED Provenance Tracking

Capturing the provenance of the data output from a SHED graph requires three pieces of

metadata: the graph itself, the unique identifiers for all the incoming data sets, and the order

in which documents went into which FromEventStream node. The graph is stored by serial-

izing the node class and any arguments and keyword arguments. Serialization of classes and

functions is performed using the python standard library importlib module. This results in

both machine and human readable metadata that can be de-serialized into operating code.

The data’s IDs are provided by the Event-Model itself, which requires a unique ID field.

The FromEventModel nodes also track exactly when pieces of data flow through the nodes,

49

CHAPTER 3. STREAMING DATA FRAMEWORKS

tabulating the documents ID and the time that the document went into the node. Finally

the ToEventModel nodes track the current software environment, tabulating which software

is being used and their versions, enabling the comparison of analyzed data across software

versions. These comparisons can be used to track bugs in software and see how they impact

results. All of these pieces of data are put into the start or stop documents of the outbound

data, where it is usually stored by a Databroker.

The human readable serialization enables searching of the provenance metadata, allowing

users to search their output data sets by the exact parameters of the data processing which

were used. The serialization also enables the hashing of a pipeline. Hashing, in computer

science, is where an entity has a unique, or almost unique, ID associated with it via a

cryptographic algorithm. The hash IDs allow two pipelines to be checked against one another,

if the IDs are the same then the pipelines used are exactly the same, down to the pipeline

parameter and functions used. The approach used by SHED is a Merkle tree, where the

hash of the previous nodes are used to create the next node’s hash, which helps guarantee

uniqueness. Merkle trees are used in making block chain driven registers, like Bitcoin,

operate.

There are limits on what SHED can accomplish via provenance tracking. Some code

does not lend itself to provenance. For instance python lambda functions are not able to be

serialized using importlib since there is no module containing the source code. Additionally

the lambda function is stored in python as bytecode, so there is no effective way to obtain the

source code and bytecodes may not be reusable for future sessions. This means that if the

analysis pipeline contains any lambda functions there will be gaps in the data’s provenance.

A similar restriction applies to callable classes used as arguments or keyword arguments

to nodes. Since these classes can change state during the operation of the pipeline their

provenance is not well defined. The limitation on classes is a minor one, since most of the

stateful information should be tracked by the DAG itself and that one can have factory

functions which make classes to be used by downstream nodes, since the inputs to these

50

CHAPTER 3. STREAMING DATA FRAMEWORKS

factories and therefore the output classes are controlled solely by the pipeline itself.

All of this metadata can be used for more than just database searching and data compar-

ison, it can be used for replay of data analysis. SHED’s replay capability uses stored data

and metadata to recreate the pipeline as it was run. The replay then loads the incoming

data and sorts it by the time stamp it was inserted into the FromEventModel nodes. Replay

then passes the sorted data to the node that the data was passed into. Once the data is

passed into the pipeline processes it using the same procedure it was initially processed with.

The replay functionality can be used to recreate just the data processing DAG, allowing new

data to be processed with the same graph as the previous data.

Summary

SHED provides data handling between the Event-Model and base python types and tracks

the provenance of analyzed data. The provenance can be used for discovering how analyzed

data is produced, allowing for direct comparisons of data and parameter exploration. Fur-

thermore, the provenance of the data can be used to directly reproduce the analyzed data

from scratch.

Summary

This chapter detailed the decisions and design behind the creation of rapidz and SHED.

Rapidz was designed to provide a pythonic system for performing streaming data process-

ing, including distributed streaming data processing. SHED was designed to handle the

inherently heterogeneous data and metadata created by experiments, providing a transla-

tion between heterogeneous data and the rapidz system. SHED also provided provenance of

the analyzed data by tracking the data processing pipeline itself and the data which passed

through.

51

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

Chapter 4

Streaming Data Reduction and Reconstruction

Introduction

Accelerating data rates at synchrotrons offer unique opportunities for scientists to probe

physical and chemical phenomena. X-ray scattering techniques provide important windows

into these phenomena, illuminating the atomic structure of materials. Higher data rates con-

fer many benefits on x-ray scattering, as more images can be taken, providing more detailed

maps of samples behavior and higher throughput experiments. Matching this experimental

capability with automated data analysis will help ensure that users and facilities are not

overwhelmed by the data volume. Additionally automated analysis opens the technique to

users which are not skilled in the data processing required for x-ray scattering measurements

[Toby et al., 2009].

Various tools for XRD and PDF data processing exist, fit2D, pyFAI, pdfgetx3 however,

none provide streaming capabilities [Kieffer and Wright, 2013; Hammersley et al., 1996;

Juhs et al., 2013]. Streaming capabilities provide live data processing and analysis, which

enable live evaluation of experimental data which in turn can guide the experiment to the

most interesting results. Extensions of streaming data processing will enable autonomous

experimentation, where streaming analyzed data allows the computer to perform the steer-

ing. Tomography in particular stands to benefit from streaming data processing, especially

techniques like ctXRD and ctPDF that take large volumes of data. To fully take advantage

of these next generation x-ray sources, a system which enables high throughput data acqui-

52

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

sition and analysis, while providing enough flexibility to empower users to add capabilities,

needs to be implemented. xpdtools, xpdAcq, and xpdAn provide such a system for acquiring

data and providing real time automated analysis of x-ray scattering data. These systems

are used at the 28-ID beamlines of the NSLS-II, providing users with rich metadata capture,

live analysis and visualization.

XPDtools

Introduction

Analyzing data from modern x-ray diffraction and total scattering experiments requires mul-

tiple corrections, statistical cleaning and other steps, making it quite complex. Automating

these steps will help scientists keep up with the push towards high-throughput experimenta-

tion as currently the rate of experimental data acquisition outstrips that of manual data pro-

cessing. High volume experiments, like ctXRD and ctPDF experiments [Jensen et al., 2015;

Jacques et al., 2011], combinatorial materials discovery [Roncallo et al., 2010; Ren et al.,

2017], and autonomous experimentation [Tabor et al., 2018; Nikolaev et al., 2016] need this

kind of high performance processing. Software for x-ray scattering data reduction exists, but

can rely too much on human interaction, handles data too slowly and not in a streaming

modality [Toby et al., 2009]. To address this need, we developed data analysis protocols

focused on pipelines that can handle streaming data. Our approach provides reproducibility,

the ability to share and adapt complete analyses, and ease of use. This library, xpdtools,

acts as “glue” combining multiple other libraries into a complete pipeline for end to end data

analysis.

Design

The main design drivers for this software are:

53

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

1. Ease of Use

2. The ability to handle streaming data

3. Reuse of analysis software, allowing for the adaptation and rerunning of analyses either

in whole or piecemeal

The xpdtools software architecture has a ternary structure consisting of data transformation

functions, data processing pipelines, and a command line interface (CLI). This structure

makes xpdtools modular, enabling users to engage at whichever level they feel comfortable.

Expert users, who have their own data processing infrastructure, can use the simple func-

tion based tooling to perform transformations to their data. XPDtools implement pipelines

using the rapidz library, making streaming data handling a flagship use case. Expert users

can modify and extend these pipelines to provide additional functionality or parallelize the

processing in a streaming context. This enables users to reuse and retool existing pipelines,

allowing for reanalysis of data. Finally users can also use existing pipelines via the CLI,

which performs data processing for many files at once.

Implementation

X-ray diffraction and total scattering experiments are usually performed by taking light,

dark, and calibration data on area detectors [Chupas et al., 2003]. This data must be

combined and transformed to properly correct the data and perform the reduction from 2D

image to 1D pattern.

Function Tools

The foundation of xpdtools are functions which operate on numpy arrays and basetypes

[Walt et al., 2011]. These functions perform the core x-ray scattering computations, includ-

ing masking images, integrating images to 1D scattering patterns, and others [Wright and

54

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

Zhou, 2017]. Most of the functionally in this layer uses software from other libraries, includ-

ing scikit-beam, pyFAI, and pdfgetx3, casting many object based operations into functions

[Kieffer and Wright, 2013; scikit-beam team, 2019; Juhs et al., 2013]. This collection of

mathematical tools, gives us powerful interoperability and extensibility with all the scientific

python stack.

Pipelines

The data processing pipelines in the middle layer of xpdtools provide the fundamental logic

of how the data processing steps fit together. Each piece of data processing, detector cor-

rections, pixel masking, integration, etc. is associated with a “chunk” factory function, as

discussed in Section 3.2.4. This allows users to mix and match individual data processing

pieces as needed. This is particularly helpful as different detectors produce data at differ-

ent levels of processing with some providing dark subtraction internally. Furthermore the

chunking approach enables users to add more chunks, each of which can perform additional

data processing steps, or modify existing steps.

CLI

While, the combination of the tooling and pipeline layers formally has all the pieces needed

to perform x-ray scattering data processing, their do it yourself approach may not be ap-

propriate for all users. Many times users would like to have their data processed without

fiddling with the exact execution order or which piece of masking code is used. xpdtools

provides this in the form of a CLI. The CLI accepts entire folders of image data, performs

best effort data processing and outputs the resulting integrated data. While most users

may find this best effort approach appropriate for their data, the CLI accepts additional

parameters, like scaling of the background signal, so users can tune their processing without

making the pipeline themselves. The flexibility of this approach allows users to explore how

different parameters impact their analysis results.

55

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

The complete software project is tested with coverage in excess of 92%, documented,

licensed under a BSD-3-Clause license and released via Conda-Forge.

Summary

xpdtools provides data processing tools for x-ray scattering data. These tools aim to help

beginners who can use the CLI without opening a python session, and experts who can use,

modify and extend the pipelines provided, and use the function based tools in their own

data processing systems. The design of xpdtools focuses on modularity and user friendliness

and is implemented in python, using the scientific stack and rapidz. The use of stream-

ing as an integral part of the software enable live visualization steering and automation of

experiments.

xpdAcq and xpdAn

Introduction

Writing a streaming data processing system for x-ray scattering is an important step in

providing automated data reduction and analysis. However, a complete system needs to

know which processing to apply in different circumstances in addition to processing the data

itself. This requires high quality metadata associated with the raw and processed data. This

metadata can be inspected by the pipelines so they can perform the appropriate processing.

Metadata also provides a platform for searching, comparing, and visualizing data. This

combination of metadata and data enables users to be more efficient on the beamline and

off. On the beamline, live data processing and visualization allows users to understand their

experiment during its execution. Off the beamline, captured metadata provides hooks for

querying the available raw and processed data. Scientists can use these queries to compare

data sets and understand the steps taken to produce each one. Furthermore, the software can

56

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

inspect the metadata to select the appropriate set of data visualizations to provide to the user.

This will enable collaboration between scientists, and reduce reliance on institutional memory

as databases can store all the relevant information needed to understand the experiment and

analysis.

xpdAcq

Motivation

Many pieces of important metadata, like sample composition, calibration conditions, and

others, are needed at the beginning of an experiment. Often this kind of metadata is not

provided in a meaningful way, either it is stored in lab notebooks or not available at all.

Other times users are too busy running and troubleshooting their experiment to provide

additional metadata.

Implementation

xpdAcq aims to solve these issues by combining three differently scoped pieces of metadata

and making each easy to write and access. Beamtime level metadata is information supplied

at the beginning of a beamtime, including the experimenters taking the data, the beamline’s

x-ray energy, configuration of the beamline, etc. This data is critical for searching for data,

as it provides hooks for queries like “find me the data I took three beamtimes ago”, and for

performing the data processing. Sample metadata is information about the sample, its com-

position, name, the person who made it. Scan metadata is information about the scan itself

and is provided by bluesky. Bluesky is a data acquisition system from Brookhaven National

Laboratory that combines metadata capture and experiment planning into one software in-

terface. This combination allows metadata about the scan to be captured automatically as

the experiment is running. xpdAcq wraps the bluesky data acquisition system so the scan

metadata is provided by bluesky itself [Allan et al., 2019].

57

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

The sample metadata is made easy to access as an enumerated list of available samples.

This not only makes the composition of an experiment, a combination of scan and sample,

easy it provides important incentives for users to provide that sample information, since

without it running scans is much more difficult. To further encourage user buy in, the sample

information is entered by an excel spreadsheet that not only maps well onto beamtimes,

which usually feature multiple samples, but also maps well onto how scientists providing

the samples track their synthetic products and data. The interplay of xpdAcq and xpdAn

provides a final incentive for users to provide detailed and accurate metadata. xpdAn uses

the metadata provided during the acquisition of the data to perform the live data processing

and visualization.

xpdAcq is tested, documented, licensed under BSD-3-Clause license, and released on

Conda-Forge.

xpdAn

xpdAn provides the final piece of the integrated system, bringing the raw data and meta-

data collected by xpdAcq, the data processing from xpdtools, and live data visualization.

xpdAn uses a combination of bluesky, SHED, and a message passing system to make these

connections.

Motivation

xpdAcq and xpdtools provide important but separate data acquisition and analysis func-

tionalities. The different data types used by each keeps them separated, as xpdAcq uses

the event model and xpdtools is based in python objects. Bridging this separation requires

the implementation of SHED nodes to translate between the data produced from xpdAcq

and the pipelines from xpdtools. In this way xpdAn is to xpdtools as SHED is to rapidz.

In addition to translating raw event model data into python objects for xpdtools, xpdAn

provides translation of analyzed python objects into the event model. xpdAn can then use

58

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

the analyzed data in the event model to provide live visualization, database insertion, and

saving of files into legacy data formats.

Implementation

The main unit for xpdAn code is the server. Each server consumes, processes, and may

produce data via a message bus. xpdAn currently uses ØMQ as the messaging system,

although it is designed to take any provided message bus. Each stream of data passing

through the ØMQ system is labeled with a string. The xpdAn servers use these strings

to determine if a piece of data is one which that server needs to consume. When a server

consumes a piece of data it then performs its specialized computations on the data, for

instance creating or updating a plot, calculating the peak positions, etc. Once the server

finishes processing the data, the server may send data back to the message bus under its own

label, which then can be consumed by other servers. While ØMQ is able to shuttle messages

between data acquisition and the various data consumers it does have some limitations. The

largest limitation is that it does not guarantee message delivery, unlike tools like Apache

Kafka. This means that messages could be dropped in the event that the ØMQ system is

overloaded. While this is a rare occurrence with the xpdAn system, it can happen causing

issues with downstream processing. One remedy for this, aside from using a guaranteed

message delivery system, is to reprocess the data after it has been collected making certain

to not overload the ØMQ system.

xpdAn’s main server is the analysis server, which consumes raw data set to the mes-

sage bus from the acquisition system,performs the correction and reduction of images to 1D

scattering patterns and atomic pair distribution functions, and publishes data under the an

label. The intensity server calculates the position, width, and height of peaks within

a selected region of the I(Q) or PDF data. The db server consumes data from all labels

except the raw label and saves it to a database built for analyzed data. The viz server

provides data visualization, and consumes data from all the labels. Internally the visualiza-

59

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

tion server checks the metadata associated with each data stream to check if it can visualize

that type of data. If there is a valid visualization then the server creates or updates plots

associated with the data. Fig. 4.1 shows the system currently implemented out at 28-ID,

with nodes representing servers and edges representing data flow.

The server system allows users to add, remove, and create new servers at the beamline,

providing a flexible analysis environment. If these servers produce and publish data then the

existing visualization and data saving servers will provide a best effort attempt to operate

on the data, eliminating the need for users to create new data visualization tools for each

analysis they create. All of this infrastructure can be used offline as data at any stage of

analysis can be sent into the message bus from the database. The server architecture also

enables fault tolerance, as individual servers can error and fall over without causing the data

acquisition, or any other servers, to stop. The main disadvantage of this system is that it

can be more complex to write data processing code, as there is additional cognitive load

associated with writing the message consuming and producing code. Additionally, the use of

a message bus can introduce a bottleneck for the data processing since the data must travel

over a network. Choosing a different message bus can reduce the impact of this issue, by

matching the bus and network constraints.

60

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

Figure 4.1: Schematic of the servers and message bus at the XPD beamline.

Tomographic Reconstruction

Introduction

The infrastructure used to build xpdtools, xpdAcq, and xpdAn can be extended to perform

tomography experiments and process the resulting data. This enables live construction

of sinograms and reconstruction of data, in addition to providing the metadata needed to

understand the acquired data.

xpdtools

Xpdtools provides functional tools and pipelines using tomopy [Grsoy et al., 2014] to per-

form reconstructions for both absorption tomography and scattering tomography. Fig. 4.2

shows the DAG implemented for x-ray scattering tomography. Currently xpdtools supports

reconstruction of 1D patterns and scalar values extracted from x-ray scattering.

61

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

Figure 4.2: The rapidz DAG for constructing sinograms and tomograms.

62

CHAPTER 4. STREAMING DATA REDUCTION AND RECONSTRUCTION

xpdAcq

The proper tomographic reconstruction requires the metadata provided by xpdAcq. To-

mopy’s reconstruction algorithms need the data to be in a certain format, with the rotation

axis as the first axis of the array and the translation axis as the last. The translation axis

must be the axis orthogonal to the rotation axis. When taking tomography data users can

enter the needed metadata into xpdAcq including, if the experiment was in a pencil beam or

full field mode, the name of the rotation and translation motors, and if there was a second

translation axis.

xpdAn

xpdAn reprises its role as bridging the acquisition and data processing for tomography. The

xpdAn tomo server provides tomographic reconstruction for all scalar values which pass

through the message bus. The data is then reshaped into a sinogram and reconstructed.

The sinogram and reconstructed data are sent back to the message bus, allowing for both

data sets to be visualized. Sinogram visualization provides users with important diagnostics

on their experiment, as any shifts in the sample position will require restarting the measure-

ment. xpdAn ships an optional addition to the visualization server for 3D visualization of

tomograms.

63

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

Chapter 5

Tomographic Commissioning

The goals of these commissioning experiments and simulations is to check the viability of

the data reduction and tomographic reconstruction software and experimental hardware. We

performed commissioning experiments on multiple beamlines and multiple phantom samples.

The phantom samples were chosen to exhibit a wide range of contrasts.

Experimental Setups at the NSLS-II

Beamline Optics

This section discusses the experimental setup at XPD-D. Experiments were carried out at

XPD (28-ID-2)[Shi et al., 2013] and PDF (28-ID-1) in addition to XPD-D. Deviations from

the XPD-D hutch setup will be noted. The major features of the XPD optics are the double

Laue monochromator and the beam defining slits.

The monochromator filters the incident white beam, admitting only monochromatic light

by selecting Bragg reflections of silicon crystals. The monochromator has two Si (100)

crystals which focus the beam and select the wavelength. The double Laue geometry was

chosen to maximize the flux while providing a wide range of operating wavelengths [Shi et

al., 2013]. The PDF beamline uses a side bounce monochromator.

Beam defining slits control the beam size, producing the small pencil beam required for

ctXRD operation. The slits are made of 5 mm thick tungsten and can go “past closed”

without clashing. The slits have 2 µm accuracy.

64

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

Sample Motors

The sample motor stack consists of two main parts, alignment motors and scanning motors.

The scanning motors provide the x, y and φ scans needed to perform the tomography ex-

periments. The alignment motors help to move the sample into position on the scanning

motors. Importantly the alignment motors, which is on top of the scanning motors align

the sample’s rotation axis with the φ rotation axis. This alignment help to speed up the

scans by removing extra translations needed to cover a precessing sample. The XPD and

PDF beamlines do not have as elaborate motor stacks for performing the tomography, they

are missing the alignment motors, leaving alignment to goniometer heads, or using a larger

translational scan to compensate.

Figure 5.1: The experimental stage hardware and optics for XPD-D.

Detectors and Calibration

Two x-ray area detectors were used for collecting the scattering data. Area detectors have

become common in x-ray scattering experiments because of their ability to probe many

scattering vectors at once [Chupas et al., 2003]. The Dexela 2923 detector was used for

the measurements at PDF and XPD-D. A Varex imaging XRD 1611 xP amorphous Silicon

flat panel detector was used at the XPD beamline. The detector locations were calibrated

65

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

using pyFAI on a Nickel sample [Kieffer and Wright, 2013]. LaB6 was not used because of

the beam’s small spot size, which made the inherently grainy LaB6 peaks more difficult to

select.

Simulation of Tomography

Introduction

Systematic studies of how different reconstruction algorithms, sample geometries, and data

processing procedures impact results are lacking in the ctXRD and ctPDF literature. Simu-

lations provide an excellent approach to understanding these effects, as the makeup, expected

scattering, and geometries are set and known during the simulation process. This approach

provides high quality baselines to compare results against without the need to exclude other

variables. In this section we discuss the simulation of tomography and the impacts of the

reconstruction on the data quality.

Software design

The simulation software presented here aims to provide a framework for mocking tomography

experiments. Thus, we designed the software to mimic the detector and motors which would

be used in a tomography experiment. This provides high fidelity of simulation and make the

simulated hardware interchangeable with the physical hardware allowing reuse of existing

data acquisition and processing software. The software could be extended to simulate noise

from the detectors themselves.

The mock detector produced by the software records the x-ray scattering calculated

from each voxel in the simulated sample. The simulated sample is composed of a series of

phases. Each phase denotes the x-ray scattering that would be observed from that pure

component and how much of the component each voxel contains. The software calculates

66

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

the x-ray scattering by computing the scattering vectors for each pixel on the detector and

then computing the intensity at each detector pixel.

The algorithm for calculating the simulated tomographic data is:

1. move the motors to the next translation and rotation values and rotate the phase

array(s) by the rotation value

2. calculate the beam’s position on the sample by subtracting the translation motor’s

position from the position of the center of the sample, the beam’s position causes it to

select a column of voxels which will scatter x-rays

3. if all phases have null values for that translation report zero to speed up computation

4. calculate voxel to detector distances for each voxel in the beam path

5. calculate the scattering pattern for each voxel in the beam path and sum across voxels

and phases

6. proceed to next translation, rotation point in scan.

This procedure makes some critical assumptions and simplifications to the calculation of the

x-ray scattering. This method does not calculate the beam attenuation or multiple scattering

for the sake of simplicity The most critical of the assumptions is that each voxel acts as a

single discrete scatterer. In a true sample the scattering would be continuously generated

across the beam path. This effect can be seen when the scattering voxels are particularly

large, causing the Debye-Scherrer rings on the detector to separate from one another as if

there were a handful of discrete samples rather than a continuous mass. The separation of

the rings can be reduced by using small voxels, where the distance from the center of one

voxel to the next is small enough that the resulting diffraction rings overlap with one another.

Modifications to the above algorithm could also be made to simulate multiple points across

a given phase voxel which would improve the data quality.

67

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

Reconstruction Impacts on ctXRD Results

Simulation Procedure

A ctXRD experiment was simulated on a 1 mm square capillary of nickel. The nickel phase

voxel size was 200 µm and the center of the capillary was offset from the axis of rotation by

4.5 mm. The tomography experiment consisted of 51 translation steps of 200 µm and 181

rotations of 1◦. The sinogram of the integrated intensity, representative reconstruction, and

representative integrated pattern are shown in Fig. 5.2, Fig. 5.3 and Fig. 5.4, respectively.

−4 −2 0 2 4

x (mm)

0

25

50

75

100

125

150

175

φ
(d

eg
re

e)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

To
ta

li
nt

en
si

ty

×107

Figure 5.2: Sinogram of the summed intensity

Comparison of Reconstruction Order

The existing literature on ctXRD and ctPDF data processing has two procedures, in some

cases the data processing occurs first, producing quantities of interest (QOIs) that are then

reconstructed [Palancher et al., 2011], in others the reconstruction is performed on the in-

tegrated data then reduced to QOIs [Jacques et al., 2013]. The resulting scattering data

described in Section 5.2.3.1 was processed to 1D patterns and then either processed further

68

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

−5.0−2.50.02.55.0

x (mm)

−4

−2

0

2

4

y
(m

m
)

a

−5.0−2.50.02.55.0

x (mm)

b

0

50000

100000

150000

200000

250000

300000

350000

To
ta

li
nt

en
si

ty

20000

40000

60000

80000

100000

120000

140000

To
ta

li
nt

en
si

ty

Figure 5.3: Reconstruction of the summed intensity. a) the ideal intensity distribution b)
the reconstructed intensity distribution

0 2 4 6 8 10

Q Å
−1

0

500

1000

1500

2000

2500

In
te

ns
ity

(c
ou

nt
s)

Figure 5.4: Representative I(Q) pattern for the reconstruction

69

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

to a single value for the position of the first peak, Fig. 5.5 shows the sinogram associated

with this order, or reconstructed first. The results in Fig. 5.6 show that better results are

obtained when the reconstruction is done before QOIs are extracted. This is due to the

non-linearity of the QOIs which breaks one of the key assumptions of the reconstruction

algorithm.

−4 −2 0 2 4

x (mm)

0

25

50

75

100

125

150

175

φ
(d

eg
re

e)

3.070

3.075

3.080

3.085

3.090

3.095

3.100

3.105

Pe
ak

Po
si

tio
n

Figure 5.5: Sinogram of the peak position, note that the dark pixels are where the x-ray
beam missed the sample, causing there to be no peaks.

Comparison of Algorithms

Introduction

Various algorithms can be used for reconstruction, the tomopy project [Grsoy et al., 2014]

has 13 algorithms for reconstruction including both algebraic and filtered back projection

techniques. While the impact of these algorithms have been explored for absorption tomog-

raphy, they have not for scattering tomography, with multiple algorithms being used in the

literature [Palancher et al., 2011; Jensen et al., 2015]. To explore the impact of reconstruc-

tion algorithm on the results of a ctXRD experiment a 1 mm square capillary of powdered

70

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

−0.50 −0.25 0.00 0.25 0.50

x (mm)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
y

(m
m

)

a

−0.50 −0.25 0.00 0.25 0.50

x (mm)

b

−3.024

−3.022

−3.020

−3.018

−3.016

−3.014

∆
Pe

ak
Po

si
tio

n

−0.004

−0.002

0.000

0.002

0.004

∆
Pe

ak
Po

si
tio

n

Figure 5.6: Difference between the reconstructed and ideal peak positions for simulated Ni
ctXRD around 3.088 Å for peak extraction first (a) and reconstruction first (b). Note that
(a) is no where near close to the correct peak position. In the ideal case figure (b) would be
an uniform color.

nickel was simulated.

Procedure

The integrated data obtained from Section 5.2.3.1 was reconstructed with each of the tomopy

algorithms using the default arguments for each algorithm. The position of the first peak was

extracted from the resulting reconstructed integrated patterns. The value of this position

was then plotted for each pixel in the nickel phase, shown in Fig. 5.7 and tabulated in Table

5.1.

Results

As Fig. 5.7 shows, most of the algorithms perform similarly. Only the gridrec and art

algorithms perform poorly with the default arguments, as shown by their anomalously large

spread in peak positions. More in depth statistical analysis shown in Table 5.1, indicates that

the ospml hybrid algorithm performs the best for x-ray scattering peak positions. Future

work may include expanding the analysis to include a set of non-default parameters, like

number of iterations for iterative techniques and filters for filtered back projection based

71

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

techniques, which may produce better results.

72

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

−
0
.5

0
.0

0
.5

x
(m

m
)

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

y(mm)

gr
id

re
c

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

ar
t

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

fb
p

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

ba
rt

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

m
le

m

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

os
em

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

si
rt

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

os
pm

lh
yb

rid

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

os
pm

lq
ua

d

3
.0

8
4

3
.0

8
6

3
.0

8
8

3
.0

9
0

3
.0

9
2

PeakPosition(Å
−1

)

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

pm
lh

yb
rid

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

pm
lq

ua
d

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

tv

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

gr
ad

F
ig

u
re

5.
7:

C
om

p
ar

is
on

of
th

e
im

p
ac

t
of

re
co

n
st

ru
ct

io
n

al
go

ri
th

m
on

p
ea

k
p

os
it

io
n
s

of
si

m
u
la

te
d

N
i

sc
at

te
ri

n
g.

W
h
il
e

m
os

t
of

th
e

re
co

n
st

ru
ct

io
n

te
ch

n
iq

u
es

,
in

cl
u
d
in

g
th

e
co

m
m

on
ly

u
se

d
fi
lt

er
ed

b
ac

k
p
ro

je
ct

io
n
,

re
p

or
t

si
m

il
ar

re
su

lt
s

gr
id

re
c

an
d

ar
t

re
p

or
t

a
la

rg
er

sp
re

ad
in

va
lu

es
.

T
h
e

co
lo

r
m

ap
w

as
cl

ip
p

ed
so

th
e

gr
id

re
c

an
d

ar
t

re
su

lt
s

d
id

n
ot

w
as

h
ou

t
th

e
ot

h
er

re
co

n
st

ru
ct

io
n
s.

73

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

mean deviation
(mÅ

−1
)

standard
deviation (mÅ

−1
)

total rms
deviation (mÅ

−1
)

algorithm
gridrec -7.328 31.955 330.052
art -3.881 19.874 244.404
fbp -0.37 2.631 80.134
bart -0.37 2.631 80.134
mlem -0.37 2.631 80.134
osem -0.37 2.631 80.134
sirt -0.37 2.631 80.134
ospml hybrid -0.37 2.575 77.555
ospml quad -0.434 2.728 82.432
pml hybrid -0.37 2.631 80.134
pml quad -0.37 2.631 80.134
tv -0.37 2.631 80.134
grad -0.37 2.631 80.134

Table 5.1: The deviation of reconstructed nickel patterns first peak position from the ex-
pected value as a function of reconstruction algorithm. The table shows the deviation of
the average value from the expected, the standard deviation across the nickel mass, and the
total root mean squared deviation across the mass. While many algorithms produce similar
numerical results they vary in speed. Most of the algorithms with lower error are based on
maximum likely hood.

Reconstructions were also performed on simulated sinograms with added noise. The noise

was created via the Poisson distribution, which is similar to the ideal noise from a x-ray

detector. Fig. 5.8 shows the reconstructed peak position cross-sections for each algorithm.

Comparing with Fig. 5.7 the results are quite similar for most of the algorithms implying

that all the algorithms except for gridrec and art are noise tolerant. Table 5.2 shows the

associated deviations from the expected output for each of the reconstructions of the noisy

data. Interestingly it seems that most of the algorithms perform better, with lower root

mean square deviation. This implies that the total rms deviation may be insensitive at the

mÅ−1magnitude.

74

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

−
0
.5

0
.0

0
.5

x
(m

m
)

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

y(mm)

gr
id

re
c

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

ar
t

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

fb
p

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

ba
rt

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

m
le

m

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

os
em

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

si
rt

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

os
pm

lh
yb

rid

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

os
pm

lq
ua

d

3
.0

8
4

3
.0

8
6

3
.0

8
8

3
.0

9
0

3
.0

9
2

PeakPosition(Å
−1

)

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

pm
lh

yb
rid

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

pm
lq

ua
d

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

tv

−
0
.5

0
.0

0
.5

−
0
.5

0

−
0
.2

5

0
.0

0

0
.2

5

0
.5

0

gr
ad

F
ig

u
re

5.
8:

C
om

p
ar

is
on

of
th

e
im

p
ac

t
of

re
co

n
st

ru
ct

io
n

al
go

ri
th

m
on

p
ea

k
p

os
it

io
n
s

of
si

m
u
la

te
d

n
oi

sy
N

i
sc

at
te

ri
n
g.

S
im

il
ar

to
F

ig
.

5.
7

75

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

mean deviation
(mÅ

−1
)

standard
deviation (mÅ

−1
)

total rms
deviation (mÅ

−1
)

algorithm
gridrec -199.158 34.255 7172.274
art -205.031 4.849 7381.124
fbp -0.37 2.687 80.134
bart -0.434 2.618 79.853
mlem -0.37 2.575 77.555
osem -0.37 2.575 77.555
sirt -0.434 2.618 79.853
ospml hybrid -0.561 2.643 79.29
ospml quad -0.498 2.714 82.15
pml hybrid -0.37 2.575 77.555
pml quad -0.37 2.575 77.555
tv -0.37 2.687 80.134
grad -0.37 2.687 80.134

Table 5.2: The deviation of reconstructed noisy nickel patterns first peak position from the
expected value as a function of reconstruction algorithm. Similar to Table 5.1

The Parallax Problem

Introduction

While the choice of reconstruction can be somewhat to blame for errors in the results from a

ctXRD experiment, as discussed in Section 5.2.4 even the best reconstruction algorithms do

not eliminate all of the error. In this case the physics of the experiment itself may be the cause

for the spread in the extracted QOIs. For most non-tomographic scattering experiments the

sample volume is quite small, meaning that the change in sample to detector across the

sample is minimal. This in turn causes the spread in the values for the peak positions across

the sample to be small as well, resulting in consistent results. However, for tomographic

experiments the sample has a macroscopic depth, which can cause a disparity in the sample

to detector distance, and the associated lattice spacing, across the sample. This is called the

parallax problem, as it is the change in results depending on the perspective of the sample,

closer or farther from the detector. One of the important impacts of this is a widening of

76

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

peaks.

Procedure

Similar to Section 5.2.4 two peak positions were extracted from data reconstructed with the

ospml hybrid algorithm, the first peak and a peak at high scattering vectors. The goal

of this extraction was to understand how position of the peak impacted its spread. Peak

position is an important metric for understanding the lattice spacing of a material, which

may in turn be used for determining the internal temperature of a sample. Understanding

the spread of the peak position from a uniform sample would provide a lower bound on the

resolution of a peak position gleaned from ctXRD experiments. Additionally, peak width,

which is used to understand strain and crystallite size, is also extracted at low and high

scattering vectors.

Results

Fig. 5.9 shows the peak position for the peaks expected at 3.088 Å−1and 9.27Å−1. Both

peaks show a characteristic diagonal spread in the peak position, with the spread in the

peak position at low scattering vectors around ±5 mÅ−1and ±15 mÅ−1 at higher vectors.

The low scattering vector spread is roughly equivalent to a 100 ◦C spread over the sample,

providing a convenient lower bound for temperature resolution using ctXRD.

Fig. 5.10 shows the spread in the peak widths. While the peak widths are more stable

than the peak positions, with Fig. 5.10 (a) showing a consistent value across the sample,

higher scattering vectors show some spread.

The Parallax Problem

The errors in the peak positions and widths beyond the reconstruction errors is most likely

due to the parallax problem. The parallax problem is caused by the non-trivial changes

in the sample to detector distance from the tomography experiment itself. As the sample

77

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

is rotated around the axis of rotation each voxel’s sample to detector distance changes.

This causes a change in the outcome of the x-ray scattering, peak positions move as the

sample to detector distance changes, breaking the translation invariance required by the

tomography reconstruction algorithms. This effect is also seen, albeit to a lesser extent,

when working with large samples in standard XRD and PDF measurements, where the

scattering at the front and back of the sample are different due to the change in sample

to detector distance across the sample. The parallax problem causes certain values of the

scattering to be unstable, like individual peak positions and their peak heights. This effect

may be mitigated to some extent by using integration over the spread, for instance instead

of using a single point to compute the intensity of a peak use the integrated intensity over

that peak. Mitigation may also be possible via forward modeling of the scattering, explicitly

including the sample to detector distance shift into the expected scattering calculations.

−0.5 0.0 0.5

x (mm)

−0.50

−0.25

0.00

0.25

0.50

y
(m

m
)

a

−0.5 0.0 0.5

x (mm)

−0.50

−0.25

0.00

0.25

0.50

y
(m

m
)

b

3.084

3.086

3.088

3.090

3.092

Pe
ak

po
si

tio
n

(Å
−

1
)

9.25

9.26

9.27

9.28

Pe
ak

po
si

tio
n

(Å
−

1
)

Figure 5.9: Peak positions for simulated Ni ctXRD around 3.088 Å and 9.265 Å.

78

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

−0.5 0.0 0.5

x (mm)

−0.50

−0.25

0.00

0.25

0.50
y

(m
m

)

a

−0.5 0.0 0.5

x (mm)

−0.50

−0.25

0.00

0.25

0.50

y
(m

m
)

b

0.086

0.087

0.088

0.089

Pe
ak

w
id

th
(Å
−

1
)

0.115

0.120

0.125

0.130

0.135

Pe
ak

w
id

th
(Å
−

1
)

Figure 5.10: Peak widths for simulated Ni ctXRD around 3.088 Å and 9.265 Å.

Phantom

Introduction

The first sample to be run during the tomography commissioning was a graphite phantom.

A phantom in tomography is a sample with known properties. These are valuable for testing

both the experimental and computational capabilities as the reconstructed data can be

compared against the known expected output. For ctXRD and ctPDF it is important to

choose a phantom which has both Z contrast, which would show up in a standard absorption

tomogram, and atomic structural contrast which can only be ascertained by x-ray scattering.

Ideally a phantom is chosen so that some of the components have only structural contrast.

Previously phantoms have consisted of capillaries filled with Kapton (a radiation resistant

polyimide), basalt, silica glass, polystyrene and poly(methylmethacrylate)[Jacques et al.,

2013].

Experimental Setup

The phantom used in this study was created by drilling three holes in a graphite rod, shown

in Fig. 5.11. Two of the holes were offset from the axis of rotation in the direction of the

axis of rotation, a third hole was drilled diagonally across the rod. The diagonal hole was

79

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

filled with a copper wire, while the other two were filled with a second copper wire and a

Kapton capillary filled with wax. The copper provided Z and structural contrast, while the

wax provided only structural contrast. The phantom was attached to a goniometer head,

which was then attached to a Huber 2 circle diffractometer.

The x-ray beam was reduced to 0.4 mm in each direction by the beam defining slits.

The sample was rotated in steps of 2◦ and translated by 0.4 mm. Calibrations with a

Nickel standard determined that the flat plate amorphous silicon detector was positioned at

a sample detector distance of 1.56 m with a wavelength of 0.2405 Å.

Figure 5.11: The graphite phantom, with the copper, wax and region scanned highlighted

80

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

Data Processing

The data was reduced and integrated using xpdAn. The images were dark and polarization

corrected, masked to remove outliers, and integrated to 1D patterns. After integration the

data was corrected by the background extracted from the edge of the sinogram. The center

of the sinogram was determined by tomopy. Tomopy also performed the reconstruction using

the ospml hybrid algorithm.

Results

As expected the wax, graphite and copper are represented in the reconstructed images,

Fig. 5.12. The wax, which has little Z contrast with the graphite, has unique peaks which

provide contrast to the reconstructed images as shown in Fig. 5.13. Fig. 5.12 a) shows three

holes associated with the copper and wax inserts. The copper holes have a much lower

intensity than the wax hole. This effect is ascribed to the additional x-ray absorption from

the copper which attenuates the non-copper scattering in those regions producing a lower

intensity. The wax region has little x-ray stopping power and provides only minor attenuation

in addition to the absence of graphite scattering. It is possible that the comparatively large

beam size causes the inclusion of some graphite scattering into the holes.

81

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

5 0 5
x (mm)

5

0

5

y
(m

m
)

a

400

500

600

In
te

ns
ity

5 0 5
x (mm)

5

0

5

y
(m

m
)

b

30

40

50

60

In
te

ns
ity

5 0 5
x (mm)

5

0

5
y

(m
m

)

c

150

200

250

300

In
te

ns
ity

Figure 5.12: Reconstructed cross sections of the phantom. Each cross section shows a
different region of the x-ray scattering pattern, highlighting each component, (a) Graphite
(1.77-1.97 Å−1) (b) Copper (2.92-3.12 Å−1) (c) Wax (1.42-1.62 Å−1) The circled region is
shown in Fig. 5.13

0 1 2 3 4 5 6 7
Q (Å 1)

0

5

10

15

20

25

30

In
te

ns
ity

graphite
wax
copper

Figure 5.13: I(Q) for selected regions of the phantom. The selected regions are circled in
Fig. 5.12

82

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

Silicon Carbide (SiC)

Introduction

The interplay between atomic structure and microstructure is important to the mechanical

stability of materials. This relationship is especially important to nuclear materials, where

a potent combination of conditions including thermal, chemical, mechanical and radiation

flux places unusual demands on the material. One component of particular interest is the

cladding material for the nuclear fuel, which keeps the fuel in place during the reaction and

provides mechanical stability for nuclear waste disposal. SiC is of particular interest for next

generation fusion and fission reactors as a structural material and fuel cladding for light

water reactors. The combination of low neutron absorption cross section and SiC’s strength

and chemical durability make it an ideal candidate. Prior work on SiC plates explored the

relationship between irradiation and microstructural features. The work by Sprouster et.al.

showed that the shoulder peak associated with stacking faults and/or Frank-loops on 111

planes increased in intensity due to irradiation.

In this work we examined the stacking fault/Frank-loop number density on unirradiated

SiC tubes using ctXRD to understand the macroscopic distribution of these defects in the

SiC lattice. Understanding this distribution provides the first step to understanding how

radiation impacts these engineering materials on operating scales, helping to elucidate the

localization of faults and providing a baseline for future studies examining the evolution of

these faults after being subjected to reactor operating conditions.

Experimental Setup

ctXRD experiments were carried out at the XPDD beamline of the NSLS-II. The SiC sample

was centered on the Huber stage discussed in Section 5.1.2. The Dexela detector was used to

capture the scattering images at a sample to detector distance of 762 mm with a wavelength

83

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

of .1899 Å. Detector calibration was performed using a Nickel standard and pyFAI. The

tomography scan consisted of 90 2◦ steps and 40 250 µm steps with a 200 µm by 200 µm

square beam.

Data Processing

The data was reduced and integrated using xpdAn. The images were dark and polarization

corrected, masked to remove outliers, and integrated to 1D patterns using the default pipeline

parameters. The directed acyclic graph (DAG) for the data processing is available from the

implemented rapidz pipeline in xpdtools and xpdAn. After integration the data was corrected

by the background extracted from the edge of the sinogram. Outliers in the sinogram

were identified by summing the integrated data and calculating the Z-score of the resulting

sinogram. The Z-score is calculated by x−〈x〉
σ

where x is a pixel value 〈x〉 is the average value

across the whole sinogram and σ is the standard deviation of the whole sinogram. Pixels

which had Z-scores above or below 3 were identified as outliers. Upon inspection of the

outlier patterns, it was determined that these were shifted by a constant value from their

proper values. The outlier values were shifted by the difference between the average of the

rest of the sinogram and their value, lifting the pattern to more appropriate values. This

removal of outliers is important as the reconstruction can represent these outliers as streaks

across the reconstructed image The center of the sinogram was then determined by tomopy.

Tomopy also performed the reconstruction using the ospml hybrid.

Results

Fig. 5.14 shows the distribution of intensity associated with the stacking fault, first, and

second peaks. The distribution shows higher intensities on the left side of the tube for each

of the selected peaks. Fig. 5.15 shows the I(Q) patterns for the tube, an unirradiated plate

and plate irradiated at 0.1 displacements per atom (dpa). The patterns were normalized by

their peak maxima, showing that the tube SiC at the position probed has a much higher

84

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

shoulder peak than either the unirradiated or irradiated plate. Fig. 5.16 follows the work of

Sprouster et.al. showing the ratio between the stacking fault shoulder and (200) peak. Due

to the instability of peak positions caused by the tomography experiment and reconstruction

an alternative method was used to produce the ratio. In this case the ratio was produced

by dividing the integrated area between, 2.3-2.46 Å−1and 2.78-2.99 Å−1for the shoulder and

(200) peaks respectively. The same operation was performed on the data from [Sprouster

et al., 2017] allowing for direct comparison of the data. The comparison shows that the

stacking fault defects not only have an azimuthal distribution across the tube, but that the

density of these faults is higher than in the 0.1 dpa irradiated sample. This implies that there

could be significantly different microstructural behavior over a complete tube compared to

a solid plate. Additionally, these high stacking fault density sites could be potential sources

of failure during operation, as the stacking fault density has a tendency to grow as does

increase.

12.5 15.0 17.5 20.0
x (mm)

12

14

16

18

20

y
(m

m
)

a

7

8

9

10

11

12

In
te

ns
ity

12.5 15.0 17.5 20.0
x (mm)

12

14

16

18

20

y
(m

m
)

b

30

40

50

In
te

ns
ity

12.5 15.0 17.5 20.0
x (mm)

12

14

16

18

20

y
(m

m
)

c

15.0

17.5

20.0

22.5

25.0

In
te

ns
ity

Figure 5.14: Integrated SiC selected peaks (a) Stacking fault sholder (2.3-2.46 Å−1) (b) First
Peak (2.48-2.51 Å−1) (c) Stacking fault sholder (2.78-2.99 Å−1)

85

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

2 3 4 5 6 7 8
Q (Å 1)

0

1

2

3

4

5

6

In
te

ns
ity

Tube
Unirradiated Plate
Irradiated Plate

2.3 2.4 2.5 2.6

0.0

0.1

0.2

0.3

Figure 5.15: 1D scattering patterns from the measured SiC tube and two plates from
[Sprouster et al., 2017]. The irradiated plate was subjected to 0.1 displacements per atom
(dpa) dose.

86

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

12 14 16 18 20
x (mm)

12

14

16

18

20

y
(m

m
)

a

0.47

0.48

0.49

0.50

0.51

0.52

In
te

ns
ity

Figure 5.16: Tomogram of integrated intensity ratio between the stacking fault peak between
2.3-2.46 Åand the (002) peak between 2.78-2.99 Å. The tomogram shows non-azimuthally
symmetric distribution of stacking fault density. The white bar in the color bar represents
the stacking fault ratio of a SiC plate irradiated at .1 dpa dose from [Sprouster et al., 2017].
Note that pixels off the tube were removed for clarity.

87

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

Mars Analog

Introduction

The NASA Mars 2020 mission will lay the groundwork for rocketing samples from the martian

crust back to Earth. The main goal of this mission is to understand if the Martian surface

could have supported life, in addition to providing otherwise unobtainable information on

how Mars was formed and its geology evolved. Elucidation of the atomic and microscopic

structure of these rocks will be critical to understanding Martian geology and potential for

life [Hurowitz et al., 2017].

Experimental Setup

Sample

The sample consisted of a Titanium Aluminum Vanadium alloy tube packed with three

igneous and three sedimentary rocks. The rocks were obtained from the Mars 2020 Sample

Caching System at the NASA Jet Propulsion Laboratory. The rocks were separated by foam

filler and measured approximately 2 cm long and 1.5 cm in diameter [Hurowitz et al., 2017].

ctXRD measurements

ctXRD experiments were performed at the XPDD beamline at the National Synchrotron

Light Source-II. The x-ray beam was cut down to 200 um square by a set of four slits. X-ray

scattering images were taken on a Dexela 2923 detector at a sample to detector distance of

762 mm with a wavelength of .1899 Å. A 2D tomography scan was performed across the

tube with 136 rotations from -140 to 40 degrees, and 81 translations from 7.8 mm to 23.8

mm.

88

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

Data Processing

xpdAn was used to process the scattering images to 1D integrated patterns. The resulting

patterns were then processed into a sinogram, where outliers were removed in a procedure

similar to Section 5.4.3. The resulting data was reconstructed with the ospml hybrid algo-

rithm.

Results

The reconstructed cross sections are shown in Fig. 5.17. The reconstructions show a strong

delineation between the titanium alloy tube and the martian analogue. The reconstructions

also show the non-uniformities in the rock with Fig. 5.17 (a) showing more intensity in the

middle of the rock, where (b) shows more evenly distributed intensity. Phase identification

of the center of the rock yielded many different components including Anorthite, Albite,

Quartz and Kyanite. This is consistent with the description of the phyllosilicate phase

described in [Hurowitz et al., 2017]. The tube was identified as mostly Titanium with some

Aluminum Titanium alloy phase. As shown by the simulated reconstructions with noise the

reconstructions are quite robust, so the variations shown in Fig. 5.17 are due to the variations

of the rock itself.

89

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

10

15

20

y
(m

m
)

a b

10 15 20
x (mm)

10

15

20

y
(m

m
)

c

10 15 20
x (mm)

d
1.00

1.25

1.50

1.75

2.00

2.25

In
te

ns
ity

 (c
ou

nt
s)

1.0

1.5

2.0

2.5

3.0

3.5

In
te

ns
ity

 (c
ou

nt
s)

1.0

1.5

2.0

2.5

3.0

3.5

In
te

ns
ity

 (c
ou

nt
s)

1.0

1.5

2.0

2.5

3.0

3.5

In
te

ns
ity

 (c
ou

nt
s)

Figure 5.17: Tomographic reconstruction of (a) the Mars tube from 2θ = 0.6◦ to 2θ = 0.9◦

and (b) the Mars tube from 2θ = 8.1◦ to 2θ = 8.4◦ and (c) the Mars tube from 2θ = 5.9◦

to 2θ = 6.1◦. (a) shows some strong scattering areas, which may come from larger grains,
and the general scattering from the rock while (b) shows the Titanium tube bounding the
sample, with a small amount of scattering from the sample itself, showing the gap between
the sample and the tube.

90

CHAPTER 5. TOMOGRAPHIC COMMISSIONING

Summary

This chapter discussed the commissioning of an experimental setup for x-ray scattering to-

mography. Simulations were performed which showed that some reconstruction algorithms

perform better at minimizing the deviation from true peak positions. The extent of these

deviations were explored, showing that the effect is worse at higher scattering vectors. This

work was then corroborated with experiments, which showed similar results. The tomog-

raphy experiments and calculations were further commissioned with a phantom showing

diffraction contrast. Tomography was then used to explore the stacking fault structure of

nuclear grade SiC tubes. Finally, a mars regolith analogue was examined with scattering

tomography showing different crystal grains present.

91

CHAPTER 6. MAPPING THE MELT

Chapter 6

Mapping the Melt

Introduction

In this chapter we report the results of ctXRD and scanning positional XRD analysis of

ex-situ samples of TiO2 from a conventional optical float-zone furnace. The goal of this

work is to perform in-situ structural characterization during a FZ growth, providing insight

into the formation of crystals from the melt. Reaching this goal requires:

1. an in-situ furnace

2. a beamline with hardware set up for tomography and scanning experiments

3. software for experimental control and data acquisition

4. software for data reduction and analysis

5. algorithms for extracting information from the crystals, including: degree of crys-

tallinity, strain, and orientation

Eventually this could be used to drive autonomous experiments to understand the exact

conditions needed to produce certain crystal microstructures, like particular grain boundaries

or strains. To further this goal the work presented in this chapter focuses on preliminary

results of ex-situ testing of this experimental and computational infrastructure.

92

CHAPTER 6. MAPPING THE MELT

Scientific Questions

The main scientific goal of this work is to understand the growth of single crystals form

polycrystalline feed and seed rods in an optical float zone furnace. Reaching this goal involves

addressing the following questions:

1. What factors govern the competition between crystallites during growth?

2. What factors affect crystal quality as a function of growth?

3. How are crystal quality and competition related?

Answering these questions requires:

1. Characterization of uniformity, and graininess in the feed and seed rods

2. Mapping the position, orientation, strain, and mosaicity of crystallites in the recrys-

tallized region

We expect that grain orientation will play an important role in determining which grains will

grow and which will not. Lattice strain may play an important role in mediating propagation

of grain boundaries and influence the mosaicity.

Required Measurement Capabilities

Reaching these characterization goals requires measuring powder ctXRD to understand the

microstructure of the seed and feed rods and 2D maps of the powder and crystalline regions.

The 2D maps will provide a diffraction pattern at each xy point, which will enable:

1. quantitative measures of graininess

2. mapping of individual crystal grains by associating sets of single crystal reflections with

individual grains

93

CHAPTER 6. MAPPING THE MELT

3. mapping of d-spacings to get information about the lattice strain

4. mapping of reflection hkls and azimuthal angles

5. mapping of crystal grain orientations

These 2D maps could be further enhanced by simultaneously performing rocking curve mea-

surements. These rocking measurements will shift the region of the Ewald sphere probed

by the x-ray diffraction, helping to cover more of reciprocal space. The extra coverage will

provide a better understanding of the mosaicity in the lattice by measuring the spread of

intensity at each hkl, as shown in Fig. 2.1 as a function of xy position. Alternately, summing

the scattering patterns across the rocking angles would provide a composite pattern where

more points in the grain are in the diffraction condition, providing a better measurement of

the d-spacings across a crystal.

Ideally, these experiments would be performed on a wide range of crystals, produced

with different growth parameters, so a general pattern could be formed. Additionally, in-

situ experiments could provide insight into the mechanism of growth, especially as the growth

parameters could be tuned by computer to understand the response of the growth to changing

parameters.

Scope of Current Work

The scope of this work is to develop the computational infrastructure to perform ctXRD

measurements and data processing, and map the boules for their graininess, crystal grain

locations, d-spacings, and hkl azimuthal angles, in a way that it can be reused when the

in-situ furnace is built and for high throughput experiments where many crystals are char-

acterized. This infrastructure was used on an ex-situ Rutile model system. The simplicity

of the system, compared to some of the more chemically complex boules, allows for focusing

on the effectiveness of the infrastructure.

94

CHAPTER 6. MAPPING THE MELT

Methods

Growth Details

Two boules were provided to be studied with our computational infrastructure. Boule A

was made from anatase nanopowder (99.9% pure) from Alfa Aesar. The powder was dried

at ∼ 1000◦C in a box furnace. Rods were hydrostatically pressed at ∼ 65 MPa by sealing

the powder in a rubber tube under vacuum. The rod was sintered in a box furnace at 1000

◦C for 12 hours in air. The seed and feed rods were counter rotated at 10 rpm under O2

with a flow rate of 500mL/min. The feed and seed rods were moved downward at a rate of

6 and 5 mm/hr, respectively. The laser providing the heating was set at a 0 ◦angle. When

the growth was finished the laser was turned off and the rods cooled in flowing O2 Boule A

is cylindrical with a diameter of 5 mm and a length of at least 20 mm in the seed region and

15 mm in the crystalline zone. Boule B is a legacy sample, whose provenance is less well

known, although it is a feed rod with a length of at least 16 mm and a diameter of 5 mm.

Experimental Setup

X-ray scattering measurements of boule A and B were performed at the PDF beamline of the

National Synchrotron Light Source-II. The experiments included XY maps of both boule A

and B and a ctXRD measurement of the powder region of boule A. The ctXRD measurement

was done in tandem with a measurement of a Nickel standard. Both boules were held by

a compression fit of Teflon tape in a Swagelok Teflon nut, which was affixed to a rotation

stage. A Dexela 2923 detector used because of its resistance to beam damage caused by

extremely bright single crystal scattering. The x-ray wavelength was 0.1688 Åwith a sample

to detector distance of 539 mm. XpdAcq and xpdAn were used to collect and process the

data.

95

CHAPTER 6. MAPPING THE MELT

Data Processing

ctXRD

Integration of the 2D data was performed by xpdAn. Tomopy found the center and did the

reconstruction with the ospml hybrid algorithm.

Graininess Metric

A simple metric was created to track if an image represented mostly powder or single crystal

diffraction. The graininess metric counts the number of pixels which have values above 100

counts after dark, background and polarization corrections are applied. This is a simple to

compute and unbiased metric that is large for a powder and small for a single crystal, and

will interpolate between at all levels of graininess. The downside for this approach is that it

can underestimate the amount of single crystal material, as a single crystal could be oriented

in a way that no peaks fall on the detector, causing the metric to give similar results to when

the beam is not on the sample.

Single Crystal Peak Tracking

Many parts of the proposed analysis rely on the identification, tracking, and indexing of the

spots from single crystal scattering. To provide this information: dark field and polarization

corrections were applied to the raw images. Trackpy was then used to identify single crystal

peaks in the images [Allan et al., 2016]. The peak tracking is most useful for samples that

are not good powders and was performed on images whose powderness metric was between

4000 and 100000. This filtering helps to prevent false positives associated with the powder

scattering rings and reduces computational overhead by not extracting peaks from images

without diffraction. The identified peaks were downsampled by requiring the peak to exist

in the crystalline region of the sample, as determined by the powderness metric. The tracked

peaks were then combined into trajectories, associating peaks across multiple images and

96

CHAPTER 6. MAPPING THE MELT

providing a unique set of observed spots. The trajectories were downsampled to only include

peaks which appeared in at least 30 images, allowing analysis on a non-trivial number of XY

positions. This set of peaks were then used for subsequent analysis.

Heat Maps

Intensity heat maps were produced from the images by generating regions of interest (ROIs)

around the average position of each identified peak on the detector. The ROIs were 10 pixels

square and the values withing the ROI were summed for each XY position. This then created

a heat map of the single crystal spot intensity for each spot.

Segmentation and Overlays

The intensity heat maps were segmented using a Sobel filter and waterfall based method

from scikit-image [van der Walt et al., 2014]. This segmentation was used to separate the

individual crystal grains. Streaks in the heat maps, due to residual charge being measured

by the detector, caused the segmentation to not yield perfect results, but it was able to

separate the grains. Overlays of the heat maps were also created to show how the intense

regions of the crystals matched with other crystals.

Indexing, Average d-spacing, Azimuthal Angle

Each of the single crystal spots was indexed, associating a set of hkl values with the spot.

This was performed by extracting the average scattering vector for each spot using the pixel

coordinates on the detector and the detector calibration. The measured scattering vector

was then compared against expected values from PyMatGen for Rutile. The index with

the smallest distance to the measured value was then assigned to the measured spot. The

average d-spacing was then also associated with the spot, as was the average position of the

spot in the azimuthal angle.

97

CHAPTER 6. MAPPING THE MELT

d-spacing and Azimuthal Angle Distributions

In addition to the average d-spacing and azimuthal angle extracted for each index a distri-

bution across the crystals was also extracted. This data was produced by extracting the

position of each spot on each image, for those image which had that particular reflection.

The position of each spot was then used to calculate the d-spacing and azimuthal angle for

that spot. While this analysis is limited to images which contain that particular spot, which

is not necessarily the same as belonging to a particular grain due to changes in reflections

across the grain, it is able to track the changes in the d-spacing and azimuthal angle across

a single grain.

Results

Diffraction by Boule A

Three representative images from Boule A are shown in Fig. 6.1. The images show rep-

resentative data from the crystalline, polycrystalline and powder regions with annotations

showing the crystalline peaks which are tracked by trackpy. Fig. 6.2 shows the associated

I(Q) patterns.

ctXRD Results

The Fig. 6.3 is a tomogram of the rutile peak height, indicating that the seed rod is a uniform

powder with no voids. The feed regime is expected to be the similarly powder in nature,

since both rods were pressed using the same method.

Graininess

The graininess metrics shown in Fig. 6.4 show a strong delineation between the crystalline

and powder regions in the seed and feed rods. The feed rod shows crystallization at the tip of

98

CHAPTER 6. MAPPING THE MELT

0 100 200 300

0

50

100

150

200

250

300

350

a

0 100 200 300

b

0 100 200 300

c

Figure 6.1: Representative scattering images from Boule A. The circles denote diffraction
spots found from trackpy. a) shows a single crystal image b) shows a image with multiple
single crystals c) shows a fully powder image

0 2 4 6 8 10

Q Å
−1

0

100

200

300

400

500

In
te

ns
ity

(c
ou

nt
s)

a
b
c

Figure 6.2: Diffraction patterns from Boule A. The lettering matches the images from Fig. 6.1

99

CHAPTER 6. MAPPING THE MELT

40 45 50 55

x (mm)

40.0

42.5

45.0

47.5

50.0

52.5

55.0

y
 (

m
m

)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

In
te

n
si

ty
 (

co
u
n
ts

)

Figure 6.3: Tomographic reconstruction of the first rutile peak intensity for the Boule A seed
region

the rod, most likely from the when the growth was finished and the two rods were separated,

letting the liquid left on the feed to cool. The middle of the feed rod is polycrystalline,

showing the impact of being close to the furnace hot spot causing the powder’s grains to

grow. The transition between the powder and polycrystalline regions has a parabolic shape,

which is most likely due to the limited penetration of the heat into the boule so far away

from the hot spot. The seed boule shows significant differences in graininess compared to

the feed boule. The bottom of the seed boule is well powdered, with an abrupt transition to

crystalline around 40 mm. This is most likely where the float zone started as a slight neck

can be observed between 40 mm and 45 mm. Both boules show reduced powderness at the

edges, most likely due to the powderness metric not being thickness invariant and there is

less material to scatter through on the sides.

100

CHAPTER 6. MAPPING THE MELT

80 85
x (mm)

20

25

30

35

40

45

50

55

y
(m

m
)

a

104

105

In
te

ns
ity

80.0 82.5 85.0
x (mm)

32

34

36

38

40

42

44

46

48
y

(m
m

)

b

104

105

In
te

ns
ity

Figure 6.4: Powder metric as a function of XY position for Boule A, left and Boule B, right

101

CHAPTER 6. MAPPING THE MELT

Heat Maps

The intensity heat maps, shown in Fig. 6.5 and Fig. 6.6, track the intensity of each single

crystal spot as a function of XY position in the boules. The heat map for boule B shows the

crystallization at the tip of the rod, which consists of small crystals around 2 mm to 500µm

in size. Boule B also shows the formation of larger crystal grains in the polycrystalline

region. These small grains, seem to have some influence on the crystallization of some of

the larger grains. In Fig. 6.6 b-e, g and j there is a tail of intensity reaching from below the

peak. This may indicate that a small grain from the polycrystalline region is influencing the

crystallization from the melt.

Boule A shows many crystalline regions in Fig. 6.5. Interestingly the intensity of these

crystals is not uniform, as would be expected for a perfect single crystal. This indicates that

the crystal planes were not exactly in the diffracting condition across the bulk of the crystal.

The large differences in intensity across the crystal may be due to a change in orientation

across the crystal or due to strain.

Overlays

Overlays of the heat maps from Fig. 6.5 associated with different crystals in boule A are

shown in Fig. 6.7. The overlays show that the most intense regions of the single crystal

scattering are closely related to where the crystals meet. This is supported by the other

spots which are shown in Fig. 6.5 where d and e seem to share a boundary, as do c/i and

j. This may imply that the meeting of the crystals is either causing a strain in the lattice

or twisting in the crystal’s orientations to bring the regions near the boundary into the

diffraction condition.

102

CHAPTER 6. MAPPING THE MELT

40

45

50

55

y
(m

m
)

a b c d e

80.0 82.5 85.0
x (mm)

40

45

50

55
f

80.0 82.5 85.0

g

80.0 82.5 85.0

h

80.0 82.5 85.0

i

80.0 82.5 85.0

j

index hkl azimuthal angle
(degrees)

expected
d-spacing (Å)

∆ d-spacing (mÅ)

a (3, 3, 1) -13.4 1.029 3.281
b (2, 0, 2) -174.5 1.252 19.192
c (5, 2, 3) -37.4 0.651 -0.598
d (1, 1, 2) -179.4 1.353 6.267
e (1, 1, 2) -67.3 1.353 -7.363
f (1, 1, 2) -65.6 1.353 5.517
g (6, 1, 0) -108.8 0.765 0.457
h (6, 2, 0) -94.6 0.736 0.877
i (1, 0, 1) 32.7 2.503 -7.025
j (2, 0, 2) 122.6 1.252 -9.887

Figure 6.5: Above: Selected ROI intensity maps for Boule A. These maps show separate
crystal orientations as a function of position in the FZ grown crystal. Below: hkl and
azimuthal angle assignments for Boule A

103

CHAPTER 6. MAPPING THE MELT

38

40

42

44

46

48

y
(m

m
)

a b c d e

80.0 82.5 85.0
x (mm)

38

40

42

44

46

48

f

80.0 82.5 85.0

g

80.0 82.5 85.0

h

80.0 82.5 85.0

i

80.0 82.5 85.0

j

index hkl azimuthal angle
(degrees)

expected
d-spacing (Å)

∆ d-spacing (mÅ)

a (1, 0, 1) 25.8 2.503 -10.57
b (5, 1, 3) -73.8 0.671 -3.918
c (2, 1, 1) -24.5 1.704 -15.308
d (2, 1, 1) -30.6 1.704 -23.931
e (2, 1, 1) -85.3 1.704 -16.365
f (2, 1, 3) 22.6 0.894 -2.233
g (2, 1, 1) 26.5 1.704 -19.235
h (2, 1, 1) -138.7 1.704 -28.766
i (2, 2, 0) -164.2 1.645 26.005
j (2, 1, 1) -48.4 1.704 -28.134

Figure 6.6: Above: Selected ROI intensity maps for Boule B. These maps show separate
crystal orientations as a function of position in the FZ grown crystal. Below: hkl, azimuthal
angle and d-spacing assignments for Boule B.

104

CHAPTER 6. MAPPING THE MELT

80.0 82.5 85.0
x (mm)

40.0

42.5

45.0

47.5

50.0

52.5

55.0
y

(m
m

)

Figure 6.7: Overlay of selected heat maps from Boule A. Note that the most intense regions
of the overlaid segments are overlapping, or nearly overlapping

105

CHAPTER 6. MAPPING THE MELT

Segmentation

The segmentation of the crystals enables the observation of how the crystals stack onto

one another and enable the association of multiple reflections to the same crystal. Fig. 6.8

shows the segmentation of boule A, indicating that all the crystals start their growth from

the top of the seed rod. Additionally the segmentation map shows that only one crystal of

the 7 identified terminates within the crystal. All other crystals terminate their growth by

expanding to the edge of the crystal and being pushed out from the interior with another

crystal taking over the edge of the crystal. It is possible that the one outlier crystal has

expanded to the edge, since this is a 2D projection of a 3D boule the map is insensitive to

the depth dimension.

d-spacing and Angle Tracking

Fig. 6.9 and Fig. 6.10 show the mapping of the observed reflections deviation in d-spacing

and azimuthal angle from the average for that reflection, and the intensity for reference.

Fig. 6.9 shows an interesting disconnection between the azimuthal angle distribution and d-

spacing distribution. The azimuthal distribution is quite continuous with a smooth gradient

from the lower end of the crystal to the upper end. The d-spacing arrangement is much less

gradual, with regions of high and low deviations right next to one another. Additionally, the

d-spacing shows little middle ground with a bimodal distribution in the lattice parameter.

Fig. 6.10 displays an interesting relationship between the dark spot between 50.0 and

47.5 and 85.0, where that part of the crystal seems to be in compression compared to the

rest of the crystal. There seems to be a similar shift to negative azimuthal angles in the same

region, showing much more correlation than seen in Fig. 6.9 but less smooth gradients in the

azimuthal angle than Fig. 6.9 Similar to Fig. 6.9 there seems to be a bimodal distribution

in d-spacing deviation.

While d-spacing calculations can be influenced by sample to detector distance changes,

106

CHAPTER 6. MAPPING THE MELT

80.0 82.5 85.0
x (mm)

40.0

42.5

45.0

47.5

50.0

52.5

55.0
y

(m
m

)

Figure 6.8: Selected crystal grains produced by image segmentation

107

CHAPTER 6. MAPPING THE MELT

potentially due to changes in the thickness of the particular crystal as it grows and competes

with other crystals, the azimuthal angle would not be changed by the crystal thickness. This

implies that the azimuthal angle changes may be more reliable than the d-spacing changes.

80.0 82.5 85.0
x (mm)

40.0

42.5

45.0

47.5

50.0

52.5

55.0

y
(m

m
)

a

80.0 82.5 85.0
x (mm)

b

80.0 82.5 85.0
x (mm)

c

103

104

105

106

In
te

ns
ity

0.6

0.4

0.2

0.0

0.2

0.4

0.6

 d
-s

pa
cin

g
(m

Å)

5

0

5

10

15

(a
rc

m
in

)

Figure 6.9: The (a) intensity, (b) deviation in d-spacing, and (c) deviation in azimuthal
angle χ in crystallite α Note how the azimuthal angle deviation smoothly transitions from
bottom to top.

108

CHAPTER 6. MAPPING THE MELT

80.0 82.5 85.0
x (mm)

40.0

42.5

45.0

47.5

50.0

52.5

55.0

y
(m

m
)

a

80.0 82.5 85.0
x (mm)

b

80.0 82.5 85.0
x (mm)

c

103

104

105

106

In
te

ns
ity

2

1

0

1

2

 d
-s

pa
cin

g
(m

Å)

15

10

5

0

5

10

(a
rc

m
in

)

Figure 6.10: The (a) intensity, (b) deviation in d-spacing, and (c) deviation in azimuthal
angle χ in crystallite β Note That the pocket of smaller d-spacings is located near the low
intensity region between y = 47.5, 50.0 and x = 85.0.

80.0 82.5 85.0
x (mm)

40.0

42.5

45.0

47.5

50.0

52.5

55.0

y
(m

m
)

a

80.0 82.5 85.0
x (mm)

b

80.0 82.5 85.0
x (mm)

c

103

104

105

106

In
te

ns
ity

1.0

0.5

0.0

0.5

1.0

 d
-s

pa
cin

g
(m

Å)

4

2

0

2

4

6

8

10

12
(a

rc
m

in
)

Figure 6.11: The (a) intensity, (b) deviation in d-spacing, and (c) deviation in azimuthal
angle χ in crystallite γ Note how the two main regions have separate azimuthal angle and d
spacing behavior.

109

CHAPTER 6. MAPPING THE MELT

Summary

X-ray diffraction measurements were performed on two float zone furnace grown rutile boules.

ctXRD measurements showed that the seed rod was a uniform powder. XY positional map-

ping of the feed, seed and crystalline regions showed clear delineations between powder,

polycrystalline and crystalline zones. These measurements also showed significant devia-

tions from expected single crystal scattering behavior, exhibited by non uniform scattering

from each single crystal, deviations in d-spacings across the crystal, and in the azimuthal

spot position. These deviations are consistent with either strain in the lattice or mosaicity.

Deviations in the intensity are located at the grain boundaries, implying that the bound-

ary may be causing these deviations. Segmentation of the crystals showed that all but one

crystal was not terminated at the edge of the boule. Overall the frameworks and tooling

described in this and previous chapters have provided an unprecedented glimpse into the FZ

growth of crystals, and will provide a strong foundation for future in-situ experiments.

110

CHAPTER 7. CONCLUSION

Chapter 7

Conclusion

The goal of this work was to understand the growth of single crystals in an optical float zone

furnace and to build the tooling needed to support in-situ furnace experiments.This goal was

reached by combining use x-ray scattering tomography and x-ray diffraction crystal mapping

to provide insight into the microstructure of the grown crystal. These techniques required the

development of significant experimental, and computational infrastructure. Developments in

computational infrastructure occurred in three major thrusts, construction of a framework

for the processing of streaming heterogeneous data, the implementation of that framework

for x-ray scattering and tomography data processing, and the development of ctXRD simu-

lation software. The experimental developments required the commissioning of the ctXRD

technique and hardware via multiple phantom measurements, and the measurement of float

zone grown boules.

111

BIBLIOGRAPHY

Bibliography

[Aczel et al., 2008] A. A. Aczel, H. A. Dabkowska, P. R. Provencher, and G. M. Luke. Crystal

growth and characterization of the new spin dimer system Ba3cr2o8. Journal of Crystal

Growth, 310(4):870–873, February 2008.

[Akashi et al., 1969] T. Akashi, K. Matumi, T. Okada, and T. Mizutani. Preparation of

ferrite single crystals by new floating zone technique. IEEE Transactions on Magnetics,

5(3):285–289, September 1969.

[Allan et al., 2016] Daniel Allan, Thomas Caswell, Nathan Keim, and Casper van der Wel.

Trackpy: Trackpy V0.3.2, August 2016.

[Allan et al., 2019] Daniel Allan, Thomas Caswell, Stuart Campbell, and Maksim Rakitin.

Bluesky’s Ahead: A Multi-Facility Collaboration for an a la Carte Software Project for

Data Acquisition and Management. Synchrotron Radiation News, 32(3):19–22, May 2019.

[Anand et al., 2018] V. K. Anand, A. T. M. N. Islam, A. Samartzis, J. Xu, N. Casati, and

B. Lake. Optimization of single crystal growth of candidate quantum spin-ice Pr2hf2o7 by

optical floating-zone method. Journal of Crystal Growth, 498:124–129, September 2018.

[Behr et al., 1999] G Behr, W Lser, G Graw, H Bitterlich, J Freudenberger, J Fink, and

L Schultz. Growth of RENi2b2c single crystals by RF-zone melting. Journal of Crystal

Growth, 198-199:642–648, March 1999.

112

BIBLIOGRAPHY

[Behr et al., 2010] G. Behr, W. Lser, N. Wizent, P. Ribeiro, M.-O. Apostu, and D. Souptel.

Influence of heat distribution and zone shape in the floating zone growth of selected oxide

compounds. Journal of Materials Science, 45(8):2223–2227, April 2010.

[Bethel et al., 2016] E. W. Bethel, M. Greenwald, K. K. van Dam, M. Parashar, S. M. Wild,

and H. S. Wiley. Management, analysis, and visualization of experimental and observa-

tional data The convergence of data and computing. In 2016 IEEE 12th International

Conference on e-Science (e-Science), pages 213–222, October 2016.

[Bicer et al., 2017] T. Bicer, D. Gursoy, R. Kettimuthu, I. T. Foster, B. Ren, V. De Andrede,

and F. De Carlo. Real-Time Data Analysis and Autonomous Steering of Synchrotron

Light Source Experiments. In 2017 IEEE 13th International Conference on e-Science

(e-Science), pages 59–68, October 2017.

[Blaiszik et al., 2019] Ben Blaiszik, Kyle Chard, Ryan Chard, Ian Foster, and Logan Ward.

Data automation at light sources. AIP Conference Proceedings, 2054(1):020003, January

2019.

[Bridgman, 1925] P. W. Bridgman. Certain Physical Properties of Single Crystals of Tung-

sten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin. Proceedings of the Amer-

ican Academy of Arts and Sciences, 60(6):305, 1925.

[Busing and Levy, 1967] W. R. Busing and H. A. Levy. Angle calculations for 3- and 4-circle

X-ray and neutron diffractometers. Acta Crystallographica, 22(4):457–464, April 1967.

[Campbell, 2019] Stuart Campbell. DAMA Update, March 2019.

[Chang et al., 2013] Kelvin B. Chang, Laszlo Frazer, Johanna J. Schwartz, John B. Ketter-

son, and Kenneth R. Poeppelmeier. Removal of Copper Vacancies in Cuprous Oxide Single

Crystals Grown by the Floating Zone Method. Crystal Growth & Design, 13(11):4914–

4922, November 2013.

113

BIBLIOGRAPHY

[Chupas et al., 2003] P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L.

Billinge. Rapid-acquisition pair distribution function (RA-PDF) analysis. Journal of

Applied Crystallography, 36(6):1342–1347, December 2003.

[Davison et al., 2014] Andrew P. Davison, Michele Mattioni, and Dmitry Samarkanov.

Sumatra: A Toolkit for Reproducible Research, April 2014.

[Davison, 2012] A. Davison. Automated Capture of Experiment Context for Easier Repro-

ducibility in Computational Research. Computing in Science Engineering, 14(4):48–56,

July 2012.

[Dectris,] Corp Dectris. PILATUS3 X CdTe 2m.

[Defense Technical Information Center, 1966] Defense Technical Information Center. DTIC

AD0378363: ENGINE PROPOSAL FOR PHASE 3 OF THE SUPERSONIC TRANS-

PORT DEVELOPMENT PROGRAM. VOLUME 3. TECHNICAL ENGINE. REPORT

B. ENGINE DESIGN. September 1966.

[du Plessis and Boshoff, 2019] Anton du Plessis and William P. Boshoff. A review of X-ray

computed tomography of concrete and asphalt construction materials. Construction and

Building Materials, 199:637–651, February 2019.

[du Plessis and Rossouw, 2015] Anton du Plessis and Pierre Rossouw. X-ray computed to-

mography of a titanium aerospace investment casting. Case Studies in Nondestructive

Testing and Evaluation, 3:21–26, April 2015.

[Dbkowska et al., 2015] Hanna Dbkowska, Antoni Dbkowski, Regina Hermann, Janis Priede,

and Gunter Gerbeth. 8 - Floating Zone Growth of Oxides and Metallic Alloys. In Peter

Rudolph, editor, Handbook of Crystal Growth (Second Edition), Handbook of Crystal

Growth, pages 281–329. Elsevier, Boston, January 2015.

114

BIBLIOGRAPHY

[Eckert, 2012] M. Eckert. Max von Laue and the discovery of X-ray diffraction in 1912.

Annalen der Physik, 524(5):A83–A85, May 2012.

[Finegan et al., 2019] Donal P. Finegan, Antonis Vamvakeros, Lei Cao, Chun Tan, Thomas

M. M. Heenan, Sohrab R. Daemi, Simon D. M. Jacques, Andrew M. Beale, Marco

Di Michiel, Kandler Smith, Dan J. L. Brett, Paul R. Shearing, and Chunmei Ban. Spatially

Resolving Lithiation in SiliconGraphite Composite Electrodes via in Situ High-Energy X-

ray Diffraction Computed Tomography. Nano Letters, 19(6):3811–3820, June 2019.

[Frank, 2006] Joachim Frank. Introduction: Principles of Electron Tomography. In Joachim

Frank, editor, Electron Tomography: Methods for Three-Dimensional Visualization of

Structures in the Cell, pages 1–15. Springer New York, New York, NY, 2006.

[Frazer et al., 2015] Laszlo Frazer, Kelvin B Chang, Kenneth R Poeppelmeier, and John B

Ketterson. Cupric oxide inclusions in cuprous oxide crystals grown by the floating zone

method. Science and Technology of Advanced Materials, 16(3), May 2015.

[Granda et al., 2018] Jarosaw M. Granda, Liva Donina, Vincenza Dragone, De-Liang Long,

and Leroy Cronin. Controlling an organic synthesis robot with machine learning to search

for new reactivity. Nature, 559(7714):377, July 2018.

[Grosse et al., 2013] Mirco K. Grosse, Juri Stuckert, Martin Steinbrck, Anders P. Kaest-

ner, and Stefan Hartmann. Neutron Radiography and Tomography Investigations of the

Secondary Hydriding of Zircaloy-4 during Simulated Loss of Coolant Nuclear Accidents.

Physics Procedia, 43:294–306, January 2013.

[group, 2019] DAMA group. Data Model Bluesky Event Model 1.11.1 documentation, Au-

gust 2019.

[Grsoy et al., 2014] D. Grsoy, F. De Carlo, X. Xiao, and C. Jacobsen. TomoPy: a framework

for the analysis of synchrotron tomographic data. Journal of Synchrotron Radiation,

21(5):1188–1193, September 2014.

115

BIBLIOGRAPHY

[Hammersley et al., 1996] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch,

and D. Hausermann. Two-dimensional detector software: From real detector to idealised

image or two-theta scan. High Pressure Research, 14(4-6):235–248, January 1996.

[Harding et al., 1987] G. Harding, J. Kosanetzky, and U. Neitzel. X-ray diffraction computed

tomography. Medical Physics, 14(4):515–525, 1987.

[He, 2018] Bob Baoping He. Miscellaneous Applications. In Two-dimensional X-ray Diffrac-

tion, pages 395–432. John Wiley & Sons, Inc., Hoboken, NJ, USA, June 2018.

[Herman, 2009] Gabor T. Herman. Fundamentals of Computerized Tomography: Image Re-

construction from Projections. Advances in Computer Vision and Pattern Recognition.

Springer-Verlag, London, 2 edition, 2009.

[Higuchi and Kodaira, 1992] Mikio Higuchi and Kohei Kodaira. Effect of ZrO2 addition on

FZ growth of rutile single crystals. Journal of Crystal Growth, 123(3):495–499, October

1992.

[Higuchi et al., 2000] Mikio Higuchi, Kazuhito Hatta, Junichi Takahashi, Kohei Kodaira,

Hideaki Kaneda, and Junji Saito. Floating-zone growth of rutile single crystals inclined

at 48 to the c-axis. Journal of Crystal Growth, 208(1):501–507, January 2000.

[Hurowitz et al., 2017] J A Hurowitz, J Thieme, J Bai, E Dooryhee, E Fogelqvist,

J Gregerson, K A Farley, and S Sherman. PREPARING FOR MARS SAMPLE RE-

TURN: IN-SITU X-RAY DIFFRACTION MEASUREMENTS USING THE NATIONAL

SYNCHOTRON LIGHT SOURCE-II AT BROOKHAVEN NATIONAL. page 2, 2017.

[Ihli et al., 2017] J. Ihli, R. R. Jacob, M. Holler, M. Guizar-Sicairos, A. Diaz, J. C. da Silva,

D. Ferreira Sanchez, F. Krumeich, D. Grolimund, M. Taddei, W. C. Cheng, Y. Shu,

A. Menzel, and J. A. van Bokhoven. A three-dimensional view of structural changes

caused by deactivation of fluid catalytic cracking catalysts. Nature Communications, 8(1),

December 2017.

116

BIBLIOGRAPHY

[Jacques et al., 2011] Simon D. M. Jacques, Marco DiMichiel, Andrew M. Beale, Taha Sochi,

Matthew G. O’Brien, Leticia EspinosaAlonso, Bert M. Weckhuysen, and Paul Barnes. Dy-

namic X-Ray Diffraction Computed Tomography Reveals Real-Time Insight into Catalyst

Active Phase Evolution. Angewandte Chemie International Edition, 50(43):10148–10152,

2011.

[Jacques et al., 2013] Simon D. M. Jacques, Marco Di Michiel, Simon A. J. Kimber, Xiaohao

Yang, Robert J. Cernik, Andrew M. Beale, and Simon J. L. Billinge. Pair distribution

function computed tomography. Nature Communications, 4:2536, September 2013.

[Janssen et al., 2013] Yuri Janssen, Dhamodaran Santhanagopalan, Danna Qian, Miaofang

Chi, Xiaoping Wang, Christina Hoffmann, Ying Shirley Meng, and Peter G. Khalifah.

Reciprocal Salt Flux Growth of LiFePO 4 Single Crystals with Controlled Defect Concen-

trations. Chemistry of Materials, 25(22):4574–4584, November 2013.

[Jensen et al., 2015] Kirsten M. Jensen, Xiaohao Yang, Josefa Vidal Laveda, Wolfgang G.

Zeier, Kimberly A. See, Marco Di Michiel, Brent C. Melot, Serena A. Corr, and Simon

J. L. Billinge. X-Ray Diffraction Computed Tomography for Structural Analysis of Elec-

trode Materials in Batteries. Journal of The Electrochemical Society, 162(7):A1310–A1314,

January 2015.

[Juhs et al., 2013] P. Juhs, T. Davis, C. L. Farrow, and S. J. L. Billinge. PDFgetX3: a

rapid and highly automatable program for processing powder diffraction data into total

scattering pair distribution functions. Journal of Applied Crystallography, 46(2):560–566,

April 2013.

[Keck and Golay, 1953] Paul H. Keck and Marcel J. E. Golay. Crystallization of Silicon from

a Floating Liquid Zone. Physical Review, 89(6):1297–1297, March 1953.

117

BIBLIOGRAPHY

[Kieffer and Wright, 2013] J. Kieffer and J. P. Wright. PyFAI: a Python library for high per-

formance azimuthal integration on GPU. Powder Diffraction, 28(S2):S339–S350, Septem-

ber 2013.

[Koohpayeh et al., 2013] S. M. Koohpayeh, J. J. Wen, M. Mourigal, S. E. Dutton, R. J.

Cava, C. L. Broholm, and T. M. McQueen. Optical floating zone crystal growth and

magnetic properties of MgCr2o4. Journal of Crystal Growth, 384:39–43, December 2013.

[Levin, 1913] I. H. Levin. Synthesis of Precious Stones. Journal of Industrial & Engineering

Chemistry, 5(6):495–500, June 1913.

[LIGO,] Group LIGO. LIGO Technology.

[Loeliger et al., 2012] T. Loeliger, C. Brnnimann, T. Donath, M. Schneebeli, R. Schnyder,

and P. Trb. The new PILATUS3 ASIC with instant retrigger capability. In 2012 IEEE

Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), pages

610–615, October 2012.

[Luckow et al., 2018] Andr Luckow, Georgios Chantzialexiou, and Shantenu Jha. Pilot-

Streaming: A Stream Processing Framework for High-Performance Computing. 2018

IEEE 14th International Conference on e-Science (e-Science), pages 177–188, 2018.

[Miao et al., 1999] Jianwei Miao, Pambos Charalambous, Janos Kirz, and David Sayre. Ex-

tending the methodology of X-ray crystallography to allow imaging of micrometre-sized

non-crystalline specimens. Nature, 400(6742):342–344, July 1999.

[Misture and Snyder, 2001] S. T. Misture and R. L. Snyder. X-ray Diffraction. In K. H. Jrgen

Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer,

Subhash Mahajan, and Patrick Veyssire, editors, Encyclopedia of Materials: Science and

Technology, pages 9799–9808. Elsevier, Oxford, January 2001.

118

BIBLIOGRAPHY

[Muiznieks et al., 2015] Andris Muiznieks, Janis Virbulis, Anke Ldge, Helge Riemann, and

Nico Werner. 7 - Floating Zone Growth of Silicon. In Peter Rudolph, editor, Handbook of

Crystal Growth (Second Edition), Handbook of Crystal Growth, pages 241–279. Elsevier,

Boston, January 2015.

[Mrer et al., 2018] Fredrik K. Mrer, Sophie Sanchez, Michelle lvarez Murga, Marco

Di Michiel, Franz Pfeiffer, Martin Bech, and Dag W. Breiby. 3d Maps of Mineral Composi-

tion and Hydroxyapatite Orientation in Fossil Bone Samples Obtained by X-ray Diffraction

Computed Tomography. Scientific Reports, 8(1), December 2018.

[Nikolaev et al., 2016] Pavel Nikolaev, Daylond Hooper, Frederick Webber, Rahul Rao,

Kevin Decker, Michael Krein, Jason Poleski, Rick Barto, and Benji Maruyama. Auton-

omy in materials research: a case study in carbon nanotube growth. npj Computational

Materials, 2:16031, October 2016.

[Noyan and Cohen, 2013] Ismail C. Noyan and Jerome B. Cohen. Residual Stress: Mea-

surement by Diffraction and Interpretation. Springer, March 2013. Google-Books-ID:

EaVtCQAAQBAJ.

[Pablo et al., 2019] Juan J. de Pablo, Nicholas E. Jackson, Michael A. Webb, Long-Qing

Chen, Joel E. Moore, Dane Morgan, Ryan Jacobs, Tresa Pollock, Darrell G. Schlom,

Eric S. Toberer, James Analytis, Ismaila Dabo, Dean M. DeLongchamp, Gregory A. Fiete,

Gregory M. Grason, Geoffroy Hautier, Yifei Mo, Krishna Rajan, Evan J. Reed, Efrain

Rodriguez, Vladan Stevanovic, Jin Suntivich, Katsuyo Thornton, and Ji-Cheng Zhao.

New frontiers for the materials genome initiative. npj Computational Materials, 5(1):41,

April 2019.

[Palancher et al., 2011] Herv Palancher, Rmi Tucoulou, Pierre Bleuet, Anne Bonnin,

Elonore Welcomme, and Peter Cloetens. Hard X-ray diffraction scanning tomography

119

BIBLIOGRAPHY

with sub-micrometre spatial resolution: application to an annealed -U 0.85 Mo 0.15 parti-

cle. Journal of Applied Crystallography, 44(5):1111–1119, October 2011.

[Palmer et al., 2018] Jeremy C. Palmer, Amir Haji-Akbari, Rakesh S. Singh, Fausto Martelli,

Roberto Car, Athanassios Z. Panagiotopoulos, and Pablo G. Debenedetti. Comment on

The putative liquid-liquid transition is a liquid-solid transition in atomistic models of

water [I and II: J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)].

The Journal of Chemical Physics, 148(13):137101, April 2018.

[Patterson, 1939] A. L. Patterson. The Scherrer Formula for X-Ray Particle Size Determi-

nation. Physical Review, 56(10):978–982, November 1939.

[Perez and Granger, 2007] F. Perez and B. E. Granger. IPython: A System for Interactive

Scientific Computing. Computing in Science Engineering, 9(3):21–29, May 2007.

[Pollak, 1953] B. Pollak. Experiences with Planography* *From the Fort William Sanato-

rium, Fort William, Ontario, Canada. Diseases of the Chest, 24(6):663–669, December

1953.

[Prabhakaran et al., 2003] D. Prabhakaran, F. R. Wondre, and A. T. Boothroyd. Prepara-

tion of large single crystals of ANb2o6 (A=Ni, Co, Fe, Mn) by the floating-zone method.

Journal of Crystal Growth, 250(1):72–76, March 2003.

[Radon, 1986] J. Radon. On the determination of functions from their integral values along

certain manifolds. IEEE Transactions on Medical Imaging, 5(4):170–176, December 1986.

[Ren et al., 2017] Fang Ren, Ronald Pandolfi, Douglas Van Campen, Alexander Hexemer,

and Apurva Mehta. On-the-Fly Data Assessment for High-Throughput X-ray Diffraction

Measurements. ACS Combinatorial Science, 19(6):377–385, June 2017.

120

BIBLIOGRAPHY

[Revcolevschi and Jegoudez, 1997] A. Revcolevschi and J. Jegoudez. Growth of large high-

Tc single crystals by the floating zone method: A review. Progress in Materials Science,

42(1):321–339, January 1997.

[Robinson et al., 2019] Niall H. Robinson, Joe Hamman, and Ryan Abernathey. Science

needs to rethink how it interacts with big data: Five principles for effective scientific big

data systems. arXiv:1908.03356 [cs], August 2019. arXiv: 1908.03356.

[Rocklin, 2017] Matthew Rocklin. Streaming Python Prototype, April 2017.

[Roncallo et al., 2010] Scilla Roncallo, Omeed Karimi, Keith D. Rogers, John M. Gregoire,

David W. Lane, Jonathan J. Scragg, and Salman A. Ansari. High Throughput X-ray

Diffraction Analysis of Combinatorial Polycrystalline Thin Film Libraries. Analytical

Chemistry, 82(11):4564–4569, June 2010.

[Saito, 1986] M. Saito. Growth process of gas bubble in ruby single crystals by floating zone

method. Journal of Crystal Growth, 74(2):385–390, February 1986.

[Sauter et al., 2014] Nicholas K. Sauter, Johan Hattne, Aaron S. Brewster, Nathaniel Echols,

Petrus H. Zwart, and Paul D. Adams. Improved crystal orientation and physical properties

from single-shot XFEL stills. Acta Crystallographica Section D Biological Crystallography,

70(12):3299–3309, December 2014.

[Schmidt, 2014] Sren Schmidt. GrainSpotter : a fast and robust polycrystalline indexing

algorithm. Journal of Applied Crystallography, 47(1):276–284, February 2014.

[scikit-beam team, 2019] scikit-beam team. Data analysis tools for X-Ray, Neutron

and Electron sciences: scikit-beam/scikit-beam, July 2019. original-date: 2014-07-

10T04:44:35Z.

[Selinger, 2018] Peter Selinger. English: Illustration of how to compute the 2-dimensional

Radon transform in terms of several Fourier transforms., September 2018.

121

BIBLIOGRAPHY

[Shi et al., 2013] X. Shi, S. Ghose, and E. Dooryhee. Performance calculations of the X-ray

powder diffraction beamline at NSLS-II. Journal of Synchrotron Radiation, 20(2):234–242,

March 2013.

[Silva et al., 2007] C. T. Silva, J. Freire, and S. P. Callahan. Provenance for Visualizations:

Reproducibility and Beyond. Computing in Science Engineering, 9(5):82–89, September

2007.

[Smart, 2018] Ashley G. Smart. The war over supercooled water. August 2018.

[Somogyi et al., 2005] A. Somogyi, R. Tucoulou, G. Martinez-Criado, A. Homs, J. Cauzid,

P. Bleuet, S. Bohic, and A. Simionovici. ID22: a multitechnique hard X-ray microprobe

beamline at the European Synchrotron Radiation Facility. Journal of Synchrotron Radi-

ation, 12(2):208–215, March 2005.

[Sottmann et al., 2017] Jonas Sottmann, Marco DiMichiel, Helmer Fjellvg, Lorenzo

Malavasi, Serena Margadonna, Ponniah Vajeeston, Gavin B. M. Vaughan, and David S.

Wragg. Chemical Structures of Specific Sodium Ion Battery Components Determined

by Operando Pair Distribution Function and X-ray Diffraction Computed Tomography.

Angewandte Chemie International Edition, 56(38):11385–11389, 2017.

[Sprouster et al., 2017] D. J. Sprouster, T. Koyanagi, E. Dooryhee, S. K. Ghose, Y. Ka-

toh, and L. E. Ecker. Microstructural evolution of neutron irradiated 3c-SiC. Scripta

Materialia, 137:132–136, August 2017.

[Starr,] Michelle Starr. Less Than 1% of Large Hadron Collider Data Ever Gets Looked At.

[Tabor et al., 2018] Daniel P. Tabor, Loc M. Roch, Semion K. Saikin, Christoph Kreisbeck,

Dennis Sheberla, Joseph H. Montoya, Shyam Dwaraknath, Muratahan Aykol, Carlos Or-

tiz, Hermann Tribukait, Carlos Amador-Bedolla, Christoph J. Brabec, Benji Maruyama,

Kristin A. Persson, and Aln Aspuru-Guzik. Accelerating the discovery of materials for

122

BIBLIOGRAPHY

clean energy in the era of smart automation. Nature Reviews Materials, 3(5):5–20, May

2018.

[Takeya et al., 2001] H Takeya, E Habuta, H Kawano-Furukawa, T Ooba, and K Hirata.

Magnetization isotherms on ErNi2b2c, Er0.8tb0.2ni2b2c and Er0.8lu0.2ni2b2c single crys-

tals. Journal of Magnetism and Magnetic Materials, 226-230:269–271, May 2001.

[Tanaka et al., 1975] Takaho Tanaka, Eisuke Bannai, Shichio Kawai, and Tsuneko Yamane.

Growth of high purity LaB6 single crystals by multi-float zone passage. Journal of Crystal

Growth, 30(2):193–197, September 1975.

[Thayer et al., 2017] J. Thayer, D. Damiani, C. Ford, M. Dubrovin, I. Gaponenko, C. P.

OGrady, W. Kroeger, J. Pines, T. J. Lane, A. Salnikov, D. Schneider, T. Tookey,

M. Weaver, C. H. Yoon, and A. Perazzo. Data systems for the Linac coherent light

source. Advanced Structural and Chemical Imaging, 3(1), 2017.

[Theuerer, 1962] Henry C. Theuerer. Method of processing semiconductive materials, Octo-

ber 1962.

[Toby et al., 2009] B. H. Toby, Y. Huang, D. Dohan, D. Carroll, X. Jiao, L. Ribaud, J. A.

Doebbler, M. R. Suchomel, J. Wang, C. Preissner, D. Kline, and T. M. Mooney. Man-

agement of metadata and automation for mail-in measurements with the APS 11-BM

high-throughput, high-resolution synchrotron powder diffractometer. Journal of Applied

Crystallography, 42(6):990–993, December 2009.

[Tremsin et al., 2017] Anton S. Tremsin, Didier Perrodin, Adrian S. Losko, Sven C. Vogel,

Takenao Shinohara, Kenichi Oikawa, Jeff H. Peterson, Chang Zhang, Jeffrey J. Derby,

Alexander M. Zlokapa, Gregory A. Bizarri, and Edith D. Bourret. In-Situ Observation of

Phase Separation During Growth of Cs2lilabr6:Ce Crystals Using Energy-Resolved Neu-

tron Imaging. Crystal Growth & Design, 17(12):6372–6381, December 2017.

123

BIBLIOGRAPHY

[Vamvakeros et al., 2016] A. Vamvakeros, S. D. M. Jacques, M. Di Michiel, P. Senecal,

V. Middelkoop, R. J. Cernik, and A. M. Beale. Interlaced X-ray diffraction computed

tomography. Journal of Applied Crystallography, 49(2):485–496, April 2016.

[van der Walt et al., 2014] Stfan van der Walt, Johannes L. Schnberger, Juan Nunez-

Iglesias, Franois Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, and

Tony Yu. scikit-image: image processing in Python. PeerJ, 2:e453, June 2014.

[Walt et al., 2011] S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy Array:

A Structure for Efficient Numerical Computation. Computing in Science Engineering,

13(2):22–30, March 2011.

[Wang et al., 2015] Jiyang Wang, Guochun Zhang, Haohai Yu, Yan Wang, and Chuantian

Chen. 5 - Czochralski and Flux Growth ofCrystals for Lasers andNonlinearOptics. In

Peter Rudolph, editor, Handbook of Crystal Growth (Second Edition), Handbook of Crystal

Growth, pages 169–208. Elsevier, Boston, January 2015.

[Windus et al., 2017] Theresa Windus, Michael Banda, Thomas Devereaux, Julia C. White,

Katie Antypas, Richard Coffey, Eli Dart, Sudip Dosanjh, Richard Gerber, James Hack,

Inder Monga, Michael E. Papka, Katherine Riley, Lauren Rotman, Tjerk Straatsma,

Jack Wells, Tunna Baruah, Anouar Benali, Michael Borland, Jiri Brabec, Emily Carter,

David Ceperley, Maria Chan, James Chelikowsky, Jackie Chen, Hai-Ping Cheng, Au-

rora Clark, Pierre Darancet, Wibe DeJong, Jack Deslippe, David Dixon, Jeffrey Do-

natelli, Thomas Dunning, Marivi Fernandez-Serra, James Freericks, Laura Gagliardi,

Giulia Galli, Bruce Garrett, Vassiliki-Alexandra Glezakou, Mark Gordon, Niri Govind,

Stephen Gray, Emanuel Gull, Francois Gygi, Alexander Hexemer, Christine Isborn, Mark

Jarrell, Rajiv K. Kalia, Paul Kent, Stephen Klippenstein, Karol Kowalski, Hulikal Kr-

ishnamurthy, Dinesh Kumar, Charles Lena, Xiaosong Li, Thomas Maier, Thomas Mark-

land, Ian McNulty, Andrew Millis, Chris Mundy, Aiichiro Nakano, A. M. N. Niklasson,

Thanos Panagiotopoulos, Ron Pandolfi, Dula Parkinson, John Pask, Amedeo Perazzo,

124

BIBLIOGRAPHY

John Rehr, Roger Rousseau, Subramanian Sankaranarayanan, Greg Schenter, Annabella

Selloni, Jamie Sethian, Ilja Siepmann, Lyudmila Slipchenko, Michael Sternberg, Mark

Stevens, Michael Summers, Bobby Sumpter, Peter Sushko, Jana Thayer, Brian Toby,

Craig Tull, Edward Valeev, Priya Vashishta, V. Venkatakrishnan, C. Yang, Ping Yang,

and Peter H. Zwart. Basic Energy Sciences Exascale Requirements Review. An Office of

Science review sponsored jointly by Advanced Scientific Computing Research and Basic

Energy Sciences, November 3-5, 2015, Rockville, Maryland. Technical report, US De-

partment of Energy, Washington, DC (United States). Advanced Scientific Computing

Research and Basic Energy Sciences, February 2017.

[Wright and Zhou, 2017] C. J. Wright and X.-D. Zhou. Computer-assisted area detector

masking. Journal of Synchrotron Radiation, 24(2):506–508, March 2017.

[Yager and Majewski, 2014] K. G. Yager and P. W. Majewski. Metrics of graininess: robust

quantification of grain count from the non-uniformity of scattering rings. Journal of

Applied Crystallography, 47(6):1855–1865, December 2014.

[Yang et al., 2017] Yongsoo Yang, Chien-Chun Chen, M. C. Scott, Colin Ophus, Rui Xu,

Alan Pryor, Li Wu, Fan Sun, Wolfgang Theis, Jihan Zhou, Markus Eisenbach, Paul R. C.

Kent, Renat F. Sabirianov, Hao Zeng, Peter Ercius, and Jianwei Miao. Deciphering chem-

ical order/disorder and material properties at the single-atom level. Nature, 542(7639):75–

79, February 2017.

[Zaharia et al., 2016] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,

Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman,

Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache

Spark: A Unified Engine for Big Data Processing. Commun. ACM, 59(11):56–65, October

2016.

125

APPENDIX . GRAIN MAPS

Appendix : Grain Maps

Boule A

126

APPENDIX . GRAIN MAPS

40

45

50

55

y
(m

m
)

k l m n o

80.0 82.5 85.0
x (mm)

40

45

50

55
p

80.0 82.5 85.0

q

80.0 82.5 85.0

r

80.0 82.5 85.0

s

80.0 82.5 85.0

t

index hkl azimuthal angle
(degrees)

expected
d-spacing (Å)

∆ d-spacing (mÅ)

k (5, 0, 1), (4, 3, 1) -60.9 0.888 0.015
l (3, 3, 1) 71.7 1.029 4.993
m (5, 1, 3) -107.4 0.671 1.809
n (3, 3, 1) 51.8 1.029 4.272
o (3, 3, 4) 122.8 0.615 1.657
p (3, 3, 2) 64.6 0.882 -4.466
q (7, 0, 1) 68.5 0.649 -1.531
r (1, 0, 1) 124.4 2.503 -8.301
s (2, 1, 1) 104.9 1.704 -16.342
t (1, 0, 3) -122.4 0.968 -6.476

Figure .1: Above: ROI intensity maps for Boule A, with spot size 5 pixels. These maps show
separate crystal orientations as a function of position in the FZ grown crystal. Below: hkl
and azimuthal angle assignments for Boule A

127

APPENDIX . GRAIN MAPS

40

45

50

55

y
(m

m
)

u v w x y

80.0 82.5 85.0
x (mm)

40

45

50

55
z

80.0 82.5 85.0

aa

80.0 82.5 85.0

ab

80.0 82.5 85.0

ac

80.0 82.5 85.0

ad

index hkl azimuthal angle
(degrees)

expected
d-spacing (Å)

∆ d-spacing (mÅ)

u (4, 4, 2) 109.2 0.72 1.061
v (2, 0, 2) 62.3 1.252 -5.85
w (8, 2, 0) -46.6 0.564 0.011
x (4, 3, 4), (5, 0, 4) 67.8 0.58 -0.303
y (3, 3, 0) -18.8 1.097 -4.271
z (2, 2, 3) -152.4 0.848 -4.415
aa (9, 1, 1) 49.6 0.506 -13.683
ab (9, 1, 1) 50.8 0.506 -11.585
ac (5, 3, 1) 119.5 0.771 -1.789
ad (2, 0, 2) -131.2 1.252 -8.792

Figure .2: Above: ROI intensity maps for Boule A, with spot size 5 pixels. These maps show
separate crystal orientations as a function of position in the FZ grown crystal. Below: hkl
and azimuthal angle assignments for Boule A

128

APPENDIX . GRAIN MAPS

40

45

50

55

y
(m

m
)

ae af ag ah ai

80.0 82.5 85.0
x (mm)

40

45

50

55
aj

80.0 82.5 85.0

ak

80.0 82.5 85.0

al

80.0 82.5 85.0

am

80.0 82.5 85.0

an

index hkl azimuthal angle
(degrees)

expected
d-spacing (Å)

∆ d-spacing (mÅ)

ae (4, 1, 2) -160.7 0.898 -1.096
af (7, 1, 0), (5, 5, 0) 88.1 0.658 -1.723
ag (6, 2, 0) -140.1 0.736 2.121
ah (1, 1, 0) 36.2 3.29 659.087
ai (1, 1, 2) 175.1 1.353 6.191
aj (6, 3, 4) 51.0 0.507 -0.142
ak (6, 1, 0) 77.8 0.765 2.112
al (1, 1, 1) 39.0 2.204 -20.123
am (5, 0, 1), (4, 3, 1) -37.9 0.888 0.385
an (1, 1, 0) -45.6 3.29 -23.477

Figure .3: Above: ROI intensity maps for Boule A, with spot size 5 pixels. These maps show
separate crystal orientations as a function of position in the FZ grown crystal. Below: hkl
and azimuthal angle assignments for Boule A

129

APPENDIX . GRAIN MAPS

Boule B

38

40

42

44

46

48

y
(m

m
)

a b c d e

80.0 82.5 85.0
x (mm)

38

40

42

44

46

48

f

80.0 82.5 85.0

g

80.0 82.5 85.0

h

80.0 82.5 85.0

i

80.0 82.5 85.0

j

index hkl azimuthal angle (degrees)
a (1, 1, 0) 40.8
b (1, 0, 1) 146.4
c (5, 4, 3) -56.2
d (3, 0, 1) -80.9
e (2, 1, 1) -41.5
f (2, 1, 1) -147.7
g (1, 0, 1) -55.2
h (2, 1, 1) -24.6
i (1, 0, 3) 156.2
j (2, 1, 1) 63.7

Figure .4: Above: ROI intensity maps for Boule B. These maps show separate crystal
orientations as a function of position in the FZ grown crystal. Below: hkl and azimuthal
angle assignments for Boule B

130

APPENDIX . GRAIN MAPS

38

40

42

44

46

48

y
(m

m
)

k l m n o

80.0 82.5 85.0
x (mm)

38

40

42

44

46

48

p

80.0 82.5 85.0

q

80.0 82.5 85.0

r

80.0 82.5 85.0

s

80.0 82.5 85.0

t

index hkl azimuthal angle (degrees)
k (3, 3, 2) -120.4
l (3, 3, 2) -158.5
m (2, 1, 1) -143.5
n (2, 1, 1) -172.6
o (1, 1, 1) 169.1
p (1, 1, 2) 21.7
q (2, 2, 0) 88.1
r (4, 2, 0) 53.2
s (3, 3, 1) 10.1
t (1, 0, 1) 47.3

Figure .5: Above: ROI intensity maps for Boule B. These maps show separate crystal
orientations as a function of position in the FZ grown crystal. Below: hkl and azimuthal
angle assignments for Boule B

131

	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Float Zone Synthesis
	1.1 Introduction
	1.1.1 Making Single Crystals
	1.1.2 Uses of FZ Crystals

	1.2 History
	1.3 How FZ Growth is Performed
	1.4 Opportunities and Challenges

	2 X-Ray Diffraction and Tomography
	2.1 X-ray Scattering
	2.1.1 Diffraction

	2.2 Tomography
	2.2.1 Introduction
	2.2.2 How Tomography Works
	2.2.2.1 Data Acquisition
	2.2.2.2 Reconstruction

	2.2.3 Scattering Tomography
	2.2.3.1 Introduction
	2.2.3.2 Experimental setup
	2.2.3.3 Examples

	2.2.4 Computed Tomography X-Ray Diffraction Setups
	2.2.5 The Problems of Linearity and Invariance

	3 Streaming Data Frameworks
	3.1 Introduction
	3.2 Rapidz
	3.2.1 Introduction
	3.2.2 rapidz Library Design
	3.2.2.1 Architecture
	3.2.2.2 Impacts of Architecture

	3.2.3 Parallel Streaming
	3.2.3.1 Impacts of Parallel Streaming Architecture

	3.2.4 Simplifying the Construction of Complex Pipelines
	3.2.5 Advantages and Disadvantages
	3.2.5.1 Disadvantages
	3.2.5.2 Advantages

	3.3 SHED
	3.3.1 Introduction
	3.3.2 Provenance
	3.3.3 Heterogeneity and the Event-Model
	3.3.4 SHED design
	3.3.5 SHED Provenance Tracking
	3.3.6 Summary

	3.4 Summary

	4 Streaming Data Reduction and Reconstruction
	4.1 Introduction
	4.2 XPDtools
	4.2.1 Introduction
	4.2.2 Design
	4.2.3 Implementation
	4.2.3.1 Function Tools
	4.2.3.2 Pipelines
	4.2.3.3 CLI

	4.2.4 Summary

	4.3 xpdAcq and xpdAn
	4.3.1 Introduction
	4.3.2 xpdAcq
	4.3.2.1 Motivation
	4.3.2.2 Implementation

	4.3.3 xpdAn
	4.3.3.1 Motivation
	4.3.3.2 Implementation

	4.4 Tomographic Reconstruction
	4.4.1 Introduction
	4.4.2 xpdtools
	4.4.3 xpdAcq
	4.4.4 xpdAn

	5 Tomographic Commissioning
	5.1 Experimental Setups at the NSLS-II
	5.1.1 Beamline Optics
	5.1.2 Sample Motors
	5.1.3 Detectors and Calibration

	5.2 Simulation of Tomography
	5.2.1 Introduction
	5.2.2 Software design
	5.2.3 Reconstruction Impacts on ctXRD Results
	5.2.3.1 Simulation Procedure
	5.2.3.2 Comparison of Reconstruction Order

	5.2.4 Comparison of Algorithms
	5.2.4.1 Introduction
	5.2.4.2 Procedure
	5.2.4.3 Results

	5.2.5 The Parallax Problem
	5.2.5.1 Introduction
	5.2.5.2 Procedure
	5.2.5.3 Results
	5.2.5.4 The Parallax Problem

	5.3 Phantom
	5.3.1 Introduction
	5.3.2 Experimental Setup
	5.3.3 Data Processing
	5.3.4 Results

	5.4 Silicon Carbide (SiC)
	5.4.1 Introduction
	5.4.2 Experimental Setup
	5.4.3 Data Processing
	5.4.4 Results

	5.5 Mars Analog
	5.5.1 Introduction
	5.5.2 Experimental Setup
	5.5.2.1 Sample

	5.5.3 ctXRD measurements
	5.5.4 Data Processing
	5.5.5 Results

	5.6 Summary

	6 Mapping the Melt
	6.1 Introduction
	6.2 Scientific Questions
	6.2.1 Required Measurement Capabilities
	6.2.2 Scope of Current Work

	6.3 Methods
	6.3.1 Growth Details
	6.3.2 Experimental Setup
	6.3.3 Data Processing
	6.3.3.1 ctXRD
	6.3.3.2 Graininess Metric
	6.3.3.3 Single Crystal Peak Tracking
	6.3.3.4 Heat Maps
	6.3.3.5 Segmentation and Overlays
	6.3.3.6 Indexing, Average d-spacing, Azimuthal Angle
	6.3.3.7 d-spacing and Azimuthal Angle Distributions

	6.4 Results
	6.4.1 Diffraction by Boule A
	6.4.2 ctXRD Results
	6.4.3 Graininess
	6.4.4 Heat Maps
	6.4.5 Overlays
	6.4.6 Segmentation
	6.4.7 d-spacing and Angle Tracking

	6.5 Summary

	7 Conclusion
	Bibliography
	 Grain Maps
	1 Boule A
	2 Boule B

