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Abstract

Cryptographic approaches to security and optimization in machine learning

Kevin Shi

Modern machine learning techniques have achieved surprisingly good standard test accuracy, yet

classical machine learning theory has been unable to explain the underlying reason behind this

success. The phenomenon of adversarial examples further complicates our understanding of what

it means to have good generalization ability. Classifiers that generalize well to the test set are easily

fooled by imperceptible image modifications, which can often be computed without knowledge of

the classifier itself. The adversarial error of a classifier measures the error under which each test

data point can be modified by an algorithm before it is given as input to the classifier. Followup

work has showed that a tradeoff exists between optimizing for standard generalization error versus

for adversarial error. This calls into question whether standard generalization error is the correct

metric to measure.

We try to understand the generalization capability of modern machine learning techniques

through the lens of adversarial examples. To reconcile the apparent tradeoff between the two com-

peting notions of error, we create new security definitions and classifier constructions which allow

us to prove an upper bound on the adversarial error that decreases as standard test error decreases.

We introduce a cryptographic proof technique by defining a security assumption in a simpler attack

setting and proving a security reduction from a restricted black-box attack problem to this security

assumption. We then investigate the double descent curve in the interpolation regime, where test

error can continue to decrease even after training error has reached 0, to give a natural explanation

for the observed tradeoff between adversarial error and standard generalization error.

The second part of our work investigates further this notion of a black-box model by looking



at the separation between being able to evaluate a function and being able to actually understand

it. This is formalized through the notion of function obfuscation in cryptography. Given some

concrete implementation of a function, the implementation is considered obfuscated if a user can-

not produce the function output on a test input without querying the implementation itself. This

means that a user cannot actually learn or understand the function even though all of the imple-

mentation details are presented in the clear. As expected this is a very strong requirement that does

not exist for all functions one might be interested in. In our work we make progress on providing

obfuscation schemes for simple, explicit function classes.

The last part of our work investigates non-statistical biases and algorithms for nonconvex op-

timization problems. We show that the continuous-time limit of stochastic gradient descent does

not converge directly to the local optimum, but rather has a bias term which grows with the step

size. We also construct novel, non-statistical algorithms for two parametric learning problems by

employing lattice basis reduction techniques from cryptography.
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Chapter 1: Introduction

Deep learning has achieved breakthrough success in a wide variety of domains such as image

recognition, natural language processing, and reinforcement learning for game playing. However,

despite many such examples of empirical success, we have a very limited understanding of how

deep learning achieves these results. State of the art deep neural networks with many more parame-

ters than training data points have the capacity to fit random noise perfectly, which renders classical

statistical learning theory results on generalization inapplicable to this setting. Understanding the

success of deep learning requires rethinking generalization theory [1].

The recent phenomenon of adversarial examples [2] calls into question whether standard gen-

eralization error is even the correct metric to optimize for. State of the art neural networks make

extremely brittle predictions on test data points, meaning the `p distance from a test data point to

the decision boundary towards an incorrect class can be extremely small. In the domain of image

recognition, this means that images can be modified in a way such that they are visually indistin-

guishable from the original image by humans, yet are incorrectly classified by standard models.

This is problematic from both an implementation security perspective as well as a theoretical per-

spective, because such classifiers do not seem to fit our intuition of what it means for a model to

be well-generalizing.

Current research on defenses against adversarial attacks is highly empirical, and researchers

proposing new defense techniques are asked to validate against an ever-increasing library of attack

algorithms. This makes it difficult to argue for the security of a defense against attacks that have yet

to be tested or discovered. To make matters worse, researchers have noticed that trying to secure

models against adversarial examples has the effect of decreasing standard generalization accuracy

[3], causing an apparent contradiction between two competing definitions of accuracy. This is

again problematic from both a practitioner’s perspective, because high accuracy with respect to

1



both measures is desirable, and from a theoretical perspective, because it seems unclear whether

deep learning is actually doing the right thing. Our thesis aims to address these concerns and others

by introducing new ideas from cryptography.

1.1 Thesis statement

We apply several ideas from cryptography, including proof techniques, security definitions, and

algorithms, to address problems faced in modern machine learning. We show how these techniques

can reconcile problems in adversarial machine learning, rigorously define models of information

access to classifiers, and achieve improved algorithmic results for certain learning problems. We

split our contributions into three chapters:

• We propose studying adversarial examples from the perspective of both defenses and ex-

planations as a pathway to developing a new understanding of generalization. To that end,

we develop new definitions, constructions, and proofs to achieve security guarantees in a

restricted but still practical attack setting which at the same time is not at odds with standard

generalization accuracy. We then try to explain the apparent observed tradeoff between ro-

bustness and accuracy as the fault of ill-behaved optimization algorithms in the presence of

many weak features.

• We link together the two separate notions of white-box adversarial security and black-box

adversarial security through the study of cryptographic obfuscation. We construct a provable

obfuscation scheme for a function class with some resemblance to the majority voting of an

ensemble classifier scheme.

• We investigate ideas outside of standard statistical optimization techniques to better under-

stand the algorithmic aspects of nonconvex optimization problems in machine learning. We

show quantitative non-statistical biases of stochastic gradient descent away from the global

minimum by studying solutions continuous-time stochastic differential equations. We also

propose the application of cryptanalysis algorithms such as LLL Lattice Basis reduction for
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solving nonconvex parameter recovery problems. We illustrate how this algorithm can be

used to achieve significantly better sample complexity for two variants of classical machine

learning problems.

1.2 Overview

Modern cryptographic protocols and constructions have many different complicated compo-

nents, yet we can understand their security in simpler terms. This is because cryptography has

solved this problem of empirical validation by reducing the overall security problem to a smaller

and simpler-to-state problem that can be verified independently of the original security problem.

Even though standard cryptographic assumptions such as the existence of one-way functions have

never been mathematically proven, they have stood the test of time as one-way function candidates

continue to resist empirical attacks. Cryptography makes progress by building more complicated

constructions on top of these foundational assumptions. We want to apply this key principle to the

field of adversarial machine learning.

However progress in cryptography often proceeds in the opposite direction, because we start

with the final construction that we want to show security for. The challenge is finding a crypto-

graphic assumption which is both believable and from which the final construction security can be

reduced to. It is easy to define an assumption that is too strong to empirically verify, but one which

makes the security proof trivial. Conversely, a security assumption that is too weak may not even

admit a reduction from the final security problem. Defining the correct security assumption is a

balancing act between these two extremes.

The second chapter of this thesis investigate new definitions, constructions, and proof tech-

niques to achieve this in the realm of adversarial machine learning. We show that our new defi-

nitions allow for provable security guarantees in a restricted but still practical attack setting. Our

security reduction yields an new adversarial attack setting which is applicable to standard classi-

fiers and yields more reliable empirical validation. Our new security definitions are well-behaved

with standard generalization accuracy in the sense that higher standard accuracy yields a tighter

3



upper bound on adversarial error. This chapter is based off work in [4].

Our construction works in a black-box setting, which practitioners often think of in the machine

learning as a service model, where users interact with a classifier hosted on an external server. A

user is only allowed to remotely query this server and cannot see the underlying code running on the

server which produces the classification output. However this model requires a completely trusted

third-party server, and many algorithms which are cryptographically secure in a black-box setting

are not secure when the source code is visible. Many services nowadays are run on cloud platforms

such as Amazon Web Services, leading to a centralization of trust that a single company will not

give out unauthorized access to the underlying code running on the platform. Cryptographers

would prefer to replace this trust with a mathematical guarantee that the company hosting the

server cannot glean any information from the code being run even if they acted maliciously.

The third chapter explores the field of cryptographic obfuscation which addresses this problem.

The goal of obfuscation is to encrypt a function such that anyone can obtain input-output behavior

from the encrypted function, but no other information can be extracted. This formalizes what

we mean by a black-box, but unfortunately positive results in black-box obfuscation have been

limited. Historically, most research in this area has focused on trying to achieve obfuscation for

very general function classes, which necessitated strong security assumptions that lacked empirical

footing. We take the opposite approach of just trying to achieve obfuscation for a limited function

class similar to an ensemble classifier voting scheme and basing the security off more standard and

tested cryptographic assumptions. This work was previously published as [5].

The last chapter takes the opposite perspective of the attacker. We investigate alternative ap-

proaches to the standard statistical loss optimization view of machine learning. We propose that

cryptanalysis can be viewed as a machine learning problem in the sense that the goal of crypt-

analysis is to learn the input-output mapping of some target encryption function. We show how

a standard cryptanalysis technique, the LLL Lattice Basis Reduction algorithm, can be modified

to solve parameter recovery problems in machine learning. This chapter is based off previously

published work [6] and [7] which explore two variants of classical machine learning problems.
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Chapter 2: Adversarial machine learning

Current machine learning models are vulnerable at test time to adversarial examples, which are

data points that have been imperceptibly modified from legitimate data points but are misclassified

with high confidence. This phenomenon was first described by [2], who constructed a simple attack

that resembled gradient descent on the feature space. This fast gradient sign method computed the

gradient of the loss function with respect to the feature space, took the sign of the gradient values,

and then added it to the feature values with a small constant factor. Followup work constructed

more efficient attacks by iteratively applying this gradient method [8][9] or by solving a direct

constrained optimization problem [10].

These attacks all required access to the explicit loss function and parameter settings of the

trained classifier, and so black-box models which only revealed the final class label output of the

model seemed like a potential method to hide the gradients. Unfortunately, a major show-stopper

with black-box models is the phenomenon of transferability [11], where an adversarial perturbation

computed for an independently trained model has a high chance of being a successful attack against

a separate black-box oracle model. This independently trained model is called a substitute model.

Even if the adversary is only given black-box oracle access to predicted labels, existing machine

learning models are vulnerable to transfer learning attacks executed by training substitute models

[12]. The transfer success rate is the probability that an adversarial example computed for the

substitute model is also misclassified by the black-box oracle.

Direct query-based attacks such as zeroth order optimization [13] and boundary attack [14]

have also emerged as alternative black-box attacks without training substitute models. These at-

tacks initialize with any misclassified data point on the other side of the decision boundary and

iteratively perform rejection sampling to find a misclassified point closer to the decision boundary.

This technique requires at least 104 adaptive queries to the classifier, which means the choice of the

5



next query point depends on the result obtained for the previous query points. In contrast, transfer-

based attacks from training substitute models can succeed using a much smaller number of between

0 to 10 epochs of adaptive queries, where multiple queries can be presented simultaneously in each

epoch.

Researchers have tried many avenues of constructing defenses to prevent these attacks. Previ-

ous work has attempted to train models to be explicitly robust to attacks by incorporating robust-

ness into the optimization problem [15][16], by input transformations and discretization to reduce

model linearity [17], or by injecting randomness at inference time [18]. However defenses based

on robust training have been subsequently broken by changing the space of allowable perturbations

[19], and other defenses have been broken by more sophisticated attacks [20].

Recent explanations suggest that the existence of adversarial examples is actually inevitable in

high-dimensional spaces. [21] [22][23] suggest that these examples exist for any linear classifier

with nonzero error rate under additive Gaussian noise. This vulnerability is a simple geometrical

fact when the dimension d is large: because most of the mass of a Gaussian distribution is concen-

trated near the shell, the distance to the closest misclassified example is a factor d1/2 closer than

the distance to the shell. [24] argue that adversarial perturbations can actually be robust features

for generalization, and thus their adversarial nature is just a misalignment with our natural human

notions of robustness.

In light of the evidence for the inevitability of adversarial perturbations, one goal we can still

hope to achieve is a computational separation between declaring their existence and finding one.

We propose a solution which uses hidden random bits that behave like a cryptographic key, mean-

ing that any instantiation of the random bits works with high probability, but an attacker should

not be able to attack the overall classifier without knowing the random bits. The space of all pos-

sible random bits in our construction will be exponential in the number of classes, so guessing the

random bits is intractable.

In order to hide the randomness in a single classifier, we use a black-box ensemble scheme

in which the adversary learns only the output of the overall ensemble without learning the output
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of any individual classifiers. Previous ensemble techniques for increasing adversarial robustness

only subsample or augment the training data within each class [25], whereas our ensemble samples

random splits of the labels themselves within the overall multiclass classification setup. This means

that the underlying classification problem is unknown to the adversary, and we argue that this

randomness decreases the transfer success rate. In addition, our ensemble construction is allowed

to abstain from making a prediction, which behaves functionally like a built-in adversarial example

detector and amplifies the robustness gain within each individual classifier.

Because the scope of attacks an adversary can mount is so large, we restrict our adversary to a

constant number of epochs of adaptive queries. This still captures practical attacks such as transfer-

based attacks that train substitute models from a constant number of epochs, but does not capture

iterative attacks making tens of thousands of adaptive queries. In the case of just a single epoch of

adaptive queries, we prove that the adversarial test error converges to twice the standard test error

as the number of classes increases. The proof is based on a new security assumption which is in

principle simpler to empirically verify than the entire construction, and we provide evidence for it

on CIFAR-10 against projected gradient descent [8] and momentum iterative gradient method [9]

attacks. We also provide empirical evidence of the effectiveness of this defense against 10 epochs

of adaptive queries on the MNIST and CIFAR-10 data sets using a standard substitute model attack

benchmark by [26].

2.1 Preliminaries

Let X ⊂ Rd be the feature space, and let Y = {1, 2, . . . , N} be the set of classes. The learning

problem is to construct a multiclass classifier F : X → Y ∪ {ω} that is allowed to abstain from

making a prediction by returning the symbol ω. We assume all classifier training is conducted

using a fixed training algorithm for binary classification ML which is public knowledge. ML takes

as input a set of binary-labeled data points {(xi, zi)}ni=1, where each xi ∈ X and zi ∈ {±1},

and outputs a binary classifier f : X → {±1}. The multiclass training data {(xi, yi}) is public

knowledge, and the binary classifiers are trained over this data set by defining a mapping φ :
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{1, . . . , N} → {±1} that takes each data point (xi, yi) to (xi, φ(yi)). Furthermore, we assume

that ML({(xi, zi)})ni=1 = −ML({(xi,−zi)})ni=1, which just means that if the labels −1 and 1 were

reversed in the training data, then the trained classifier would be identical except for outputting

the opposite sign . Lastly, we fix some space P ⊂ X to be the set of allowable adversarial

perturbations; a commonly used perturbation space is {ρ ∈ X | ‖ρ‖∞ < c}, which for example

constrains each pixel in an image to be modified by a small vaule.

2.1.a Threat model

We consider the setting of a server hosting a fixed classifier F : X → {1, . . . , N, ω} and

users who interact with the server by presenting a query q ∈ X to the server and receiving the

output label F (q). We call F a black-box classifier, because the user does not see any of the

intermediate computation values of F (q). Two types of users access the server: honest users

who present queries drawn from a natural data distribution, and adversarial users who present

adversarial examples designed to intentionally cause a misclassification. The desired property is

to serve the honest users the true label while simultaneously preventing the adversarial users from

causing a misclassification; the latter is accomplished by either continuing to return the true label

on adversarial examples or by returning the abstain label ω.

In order for this distinction to be well-defined, we need to separate natural misclassified ex-

amples from adversarial examples. We achieve this by fixing in advance a data point x which

is correctly classified by F (x) and requiring the adversary to compute a perturbation ρ ∈ P for

this specific x such that F (x + ρ) 6∈ {F (x), ω}. We think of x as a parameter of the attack, for

example the natural image of the face of an attacker who wishes to masquerade as someone else.

The classifier F is secure for x if, with high probability over the construction of F , the adversary

cannot find a ρ satisfying this.

We formalize this attack problem by the notion of a security challenge. The adversary is given

all the information about F except for any internal randomness used to initialize F . The adversary

is then given the challenge point (x, y) with F (x) = y being the correct classification, and the
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adversary successfully solves the security challenge if he finds a ρ such that F (x+ρ) 6∈ {ω, F (x)}

with non-negligible probability. The solution to the security challenge is a successful attack.

The separation between existence of a solution and feasibility of finding it is given by resource

constraints on the adversary, most commonly in the form of runtime. We say that a security chal-

lenge is computationally secure if there does not exist an algorithm for finding a solution within

these resource constraints. In addition to runtime, we also consider the constraint of how many

times the adversary is allowed to interact with the classifier.

We make a distinction between these query points (denoted by q) and the challenge point

(denoted by x), both of which are feature vectors in X . Query points are arbitrarily chosen by

the adversary for the purpose of learning more about the black-box F , and there is no notion of

correctness for F (q). The ability to obtain labels for arbitrary query points is the key factor that

enables the adversary to mount more powerful black-box attacks; without query access, the attacker

is limited to relatively simple transfer-based attacks from models trained on standard datasets.

We leverage this distinction to obtain a provable security guarantee by using cryptographic proof

techniques.

2.1.b Security proofs in cryptography

Instead of directly trying to prove the security of F , we define a simpler system f that is easier

to empirically test and reason about. We then prove a reduction from the security challenge of F

to the security challenge of f , which shows that F is at least as hard to attack as f . We define

a security assumption that characterizes the hardness of attacking f . This security assumption is

not mathematically proven to be true, but nonetheless defining the right assumption makes the

reduction is useful, because this assumption can be easier to empirically study. If the security

assumption is true, then F is secure. The security assumption we define is the hardness of attacking

a new type of randomized classifier without any query access to it.
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2.1.c Random binary classifiers

In a multiclass classification problem with labels 1, . . . , N , suppose we have a binary classifier

f : X → {±1} for two particular classes y and t, where class y is mapped to +1 and class t is

mapped to−1. An adversary is given a data point (x, y) with f(x) = +1, and the adversary wishes

to attack this binary classifier by computing a perturbation ρ such that f(x + ρ) = −1. If f were

a standard binary classifier trained on the y versus t classification problem, then this would be a

straightforward transfer attack scenario. However, instead f is trained with all remaining N − 2

classes also having been randomly remapped to ±1 with equal probability. In other words, for

each class k 6∈ {y, t}, we sample a Rademacher random variable zk ∼ {±1} and assign every

data point of original label k to the new binary label zk. This random assignment does not change

the original y-vs-t classification task when all data points are only of original class y or t. The

resulting f corresponding to training with the random binary labels {±1}N−2 is a random binary

classifier:

Definition 1 (Random binary classifier). Let D be a distribution over {±1}N . The random binary

classifier over D is the distribution of f over z ∼ D where each training data point xi is relabeled

to ±1 by zyi:

fz := ML
({

(xi, zyi)
}n
i=1

)
.

The security challenge for the random binary classifier is to compute a perturbation that changes

its output with high probability over the sampling of z.

Definition 2 (Security challenge for random binary classifier). Let fz := ML{(xi, zyi)}ni=1. Let

z ∼ {±1}N be a Rademacher random vector, and let Dyt be the distribution of z conditioned on

zy = +1, zt = −1. The security challenge for a challenge data point (x, y), failure rate δ > 0,

and target label t 6= y is to compute a perturbation ρ ∈ P which changes the output of fz(x) with

10



failure rate no greater than δ:

Pr
z∼Dyt

[fz(x+ ρ) 6= fz(x)] > 1− δ.

In particular, the adversary has no ability to obtain labels for query points from the random binary

classifier.

Note that the adversary has knowledge of two of the bits of z, corresponding to the original

label y and some target label t 6= y. Our security assumption is that for any ρ ∈ P , there is enough

randomness in the remaining N − 2 data classes such that the failure rate is non-negligible.

Assumption 1 (Security assumption). Given an instance of the security challenge for a random

binary classifier with parameters defined as in Definition 2, for any ρ ∈ P , for all c > 0, there

exists a constant N0 > 0 such that

Pr
z∼Dyt

[
fz(x+ ρ) 6= f(x)

]
≤ 1− 1/N c

whenever N ≥ N0.

Note that this implicitly assumes P does not contain any non-adversarial perturbations, such

as those of the form x′−x where x′ is a legitimate image of class t. This assumption also does not

place any computational constraints on the adversary yet; the security comes from the randomness

in z ∼ Dyt, which is sampled after ρ is already fixed. In Section 2.4.a, we experimentally jus-

tify this assumption by estimating the transfer success probability for all pairs of classes (y, t) in

the CIFAR-10 dataset using the standard `∞-ball for P and two different state-of-the-art transfer

attacks.

We give two reasons why this assumption is the right one to make. Firstly, the scope of attacks

to analyze is greatly reduced when the attacker has no access to the classifier. The adversary can

essentially only mount transfer learning attacks by training models on the public dataset. Secondly,

we only require the probability of success of the adversary to be bounded below 1 by a constant,

11



and the overall security of the ensemble can be boosted from this bound.

2.1.d Main construction

Recall that our goal is to construct a multiclass classifier F : X −→ {1, 2, . . . , N, ω} which is

allowed to abstain from making a prediction (as represented by the output ω), and an adversarial

perturbation ρ is only considered a successful attack if F (x+ ρ) 6∈ {F (x), ω}.

Our ensemble construction is the error-correcting code approach for multiclass-to-binary re-

duction [27], except with completely random codes for security purposes.

Construction 1 (Random ensemble classifier). Given a multiclass classification problem with la-

bels Y = {1, . . . , N}, a codelength M , and a threshold parameter r ∈ (0, 1/3):

• Sample random matrix Z ∈ {±1}N×M , where each Zij ∼ {±1} independently and with

equal probability

• For j = 1, . . . ,M , construct the binary classifier fj = ML
(
{(xi, Zyij)}ni=1

)
Given a query data point x, compute output F (x) by:

• Compute the predicted codeword vector C(x) := (f1(x), . . . , fM(x))

• Compute (d∗, y∗) = min
y
‖Zy − C(x)‖H , where y∗ is the index and d∗ is the Hamming

distance to Zy∗

• If d∗ < Mr, then output y∗, else output ω

In this construction, the codeword Zy ∈ {±1}M acts as the identity of class y, and thus the

classification of a data point x is the class codeword which is closest to its predicted codeword

C(x). We should think of the free parameters as M = Ω(poly(N)) and r = O(1/N). M needs to

be sufficiently large in order for the random ensemble classifier to be accurate on natural examples.

The parameter r should be greater than the standard test error of a trained classifier, or otherwise

the ensemble will abstain on too many legitimate test samples. However r must be small enough

for security purposes, which we will quantify in our main theorem.
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We give some intuition for why this construction has desirable security properties. In order

for an adversary to change the overall output of some test point (x, y), he needs to change the

output of sufficiently many binary classifiers fj so that C(x+ρ) is close to some codeword Zt, t 6=

y. But the Hamming distance between Zy and Zt is M/2 on expectation, and x, x + ρ must be

within distance Mr to Zy, Zt respectively. Since each fi is constructed independently at random,

the overall probability of success is exponentially decreasing in the probability of successfully

changing the output of an individual classifier.

We proceed to define the security challenge for this construction. We will use the shorthand

notation Z ∼ {±1}N×M to denote the distribution of Z ∈ {±1}N×M where each entry is indepen-

dently sampled from {±1} with equal probability.

Definition 3 (Security challenge for random ensemble). Let FZ(·) be the ensemble classifier con-

structed with random hidden code matrix Z as defined in Construction 1. The security challenge

for a challenge data point (x, y) and accuracy ε ∈ (0, 1) is a two-round protocol:

1. ProvideQ nonadaptive queries to FZ(·) and receive answer labels, denoted by {(qk, ak)}Qk=1.

The queries cannot depend on the hidden random code Z, but can otherwise depend on the

public information such as the training data and the oracle ML.

2. Return a perturbation ρ ∈ P by some function of the query answers ρ = φ({ak}Qk=1) such

that ρ satisfies

Pr
Z∼{±1}N×M

[
FZ(x+ ρ) 6∈ {FZ(x), ω}

]
> ε,

An algorithm for solving the security challenge is determined by its query set {qk}Qk=1 and the

function φ for computing the final perturbation from the query answers.

For example, one possible attack captured by this definition is training a substitute model with

a one epoch of data augmentation obtained from querying the classifier, as described by [12]. The

adversary starts with a pre-labeled dataset of arbitrary size, usually the public training data set, and
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trains an initial substitute model. The adversary then refines this initial model by using Jacobian

data augmentation to add new synthetic data points to the training data. In each epoch of data

augmentation, the adversary obtains labels for these synthetic points using the black-box classifier.

The synthetic data points are the queries q1, . . . , qQ, and thus our proof guarantees security

against a single epoch of data augmentation. The actual implementation of this attack in [26] uses

10 substitute training epochs, and our proof does not apply directly to this implementation, because

the second round of queries can depend on the answers in the first round. Nonetheless, we show

empirically in Section 2.4.b that our construction is still secure against the benchmark of 10 data

augmentation epochs.

2.2 Security results

The main theoretical result is a reduction from solving the random classifier challenge to solv-

ing the random ensemble challenge. In our reduction, we make the simplifying assumption that

the space of allowable perturbations P is the same in both security challenges. This allows us to

get away with not explicitly defining which perturbations are adversarial and which are legitimate,

because a perturbation which makes x + ρ a legitimate image of the class t would solve both se-

curity challenges simultaneously. We also assume without loss of generality that r is chosen such

that Mr ∈ Z, because Hamming distance is an integer.

Theorem 4. Suppose there exists an algorithm A that can solve the security challenge for the

random ensemble with any threshold r ∈ (0, 1/2) such that Mr ∈ Z using Q queries and with

accuracy ε ∈ (0, 1). Then there is an algorithm that can compute a perturbation ρ which solves

the security challenge for a random binary classifier with failure rate

δ < 2

(
r +

√
log(1/ε)

2M

)
.

The algorithm succeeds in computing this perturbation with probability (over Z) at least
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1− 4NQ

√
1− r
2πMr

2−M(1−H2(r)),

where H2(r) = −r log2 r − (1 − r) log2(1 − r) is the negative entropy function and can be

bounded away from 1 when r is bounded away from 1/2.

The theorem shows that if such an algorithm A exists, r = O(1/N), and M = Ω(poly(N)),

then the failure rate decreases as O(1/N c) for some constant c, which contradicts the security

assumption (Assumption 1). Conversely, if the security assumption is true, then an adversary

cannot solve the security challenge for the random ensemble withO(poly(N)) nonadaptive queries

to the ensemble classifier. When r < δ
2

and the security assumption is true, the theorem gives the

following upper bound on the adversarial test error:

ε < exp

(
−2M

(
δ

2
− r
)2
)
.

Recall that the parameter r needs to be greater than the standard test error of a random binary

classifier for good standard test accuracy of the ensemble, but less than δ
2

for good adversarial

accuracy. The more accurate each random binary classifier is, the smaller we can set the value of

r to be, which in turn gives a smaller upper bound on the adversarial test error ε. This shows that

our definition of adversarial test error is compatible with standard test error.

We give a brief proof sketch here, deferring the full proof to Section 2.3. Given a single random

classifier fz, we can simulate the entire ensemble classifier FZ by constructing the remainingM−1

random classifiers using the public data set and ML. However, we cannot apply A to FZ directly,

because in Definition 2 there is no query access to fz. Thus we first show in Lemma 2.3.1 that we

can simulate the output of the entire ensemble using only M − 1 classifiers with high probability.

Applying the algorithmA the ensemble of M − 1 classifiers produces an attack perturbation ρ.

Since this simulates the ensemble of M classifiers with high probability, then this attack perturba-

tion also applies to the entire ensemble of M classifiers. Now we want to compute the probability
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of the output of each individual classifier in the ensemble being changed, but the Q queries could

potentially leak information about some column Zj . We use Lemma 2.3.1 for each column j to

show that this is not the case; i.e. that the query answers are completely determined by the re-

maining M − 1 columns with high probability and thus independent of column j itself. Then we

show in Lemma 2.3.3 that an overall success probability of ε gives an upper bound on δ for each

individual classifier.

2.3 Proofs

Lemma 2.3.1. Fix any query point q and threshold r < 1/2 such that Mr ∈ Z. Given a random

ensemble function FZ : X → {1, . . . , N} withM independently and identically generated random

classifiers and threshold r < 1/3, fix some j ∈ {1, . . . ,M} and let FZ−j denote the modified

ensemble which ignores the jth random classifier and takes the vote over only the remainingM−1

classifiers. Then

Pr
Z−j∼{±1}N×(M−1)

[
FZ(q) 6= FZ−j(q)

]
≤ 4N

√
1− r
2πMr

2−M(1−H2(r)),

where the probability is taken only over the matrix Z−j and is independent of the column Zj .

H2(r) = −r log2 r − (1 − r) log2(1 − r) can be bounded away from 1 when r is bounded away

from 1/2.

The lemma shows that for any j, with high probability over Z−j the query answer FZ(q)

is independent of Zj , so that no information is revealed by the queries about column j. In the

following proofs we will use the shorthand fj := fZj , i.e. the random classifier constructed from

the jth column of Z.

Proof. The only way the additional classification output of fj(q) can influence the decision of the

entire ensemble of FZ−j(q) is if the predicted codeword of lengthM−1 is on the decision boundary

between some class i and the abstaining space corresponding to ω. In the boolean hypercube
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{±1}M−1, the number of points that are at a distance of exactly k to any fixed point is
(
M−1
k

)
.

Because we want our probability bound to hold true regardless of the value of fj , we have to

consider the possibility of fj(q) influencing the points on either side of the decision boundary. To

account for this, we multiply the number by 2. Then over all N classes, the number of possible

points on the decision boundary is at most 2N
(
M−1
Mr

)
by a union bound.

2N

2M−1

(
M − 1

Mr

)
=

4N(1− r)
2M

(
M

Mr

)
. (2.1)

We now apply the binomial coefficient upper bound from [28], reproduced below:

Lemma 2.3.2. Suppose λn is an integer, where 0 < λ < 1. Then

(
n

λn

)
≤ 1√

2πnλ(1− λ)
2nH2(λ),

where H2(λ) = −λ log2 λ− (1− λ) log2(1− λ) is the negative entropy function.

This gives the result

(
M

Mr

)
≤ 1√

2πMr(1− r)
2MH2(r),

where H2(r) = −r log2 r − (1 − r) log2(1 − r) is the negative entropy function. Thus the

probability in (2.1) can be bounded by

4N(1− r)
2M

1√
2πMr(1− r)

2MH2(r) ≤ 4N

√
1− r
2πMr

2−M(1−H2(r)).

Since H2(r) is bounded away from 1 when r is bounded away from 1/2, this gives an expo-
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nentially decaying probability bound in M .

The next lemma is a concentration result that holds when no information is revealed by the

queries about any individual column.

Lemma 2.3.3. Suppose that the event fj(x + ρ) 6= fj(x) is independent and identical for each

column j. Fix a data point (x, y). Given a perturbation ρ which solves the security challenge

for the random ensemble with target probability ε > 0, then for every random classifier in the

ensemble, ρ solves the security challenge for it with failure rate δ < 2(r +
√

log(1/ε)/2M)

Proof. Recall that the adversary is said to have solved the security challenge for the random en-

semble if the vector of code bits CZ(x+ ρ) := (f1(x+ ρ), . . . , fM(x+ ρ)) has Hamming distance

less than Mr to any other codeword Zi, where i 6= y. Since each entry of the code matrix is

sampled independently, we can consider the probability of this event bit-by-bit.

Let Etj be the event where fj(x+ρ) = Ztj . Let Et be the probability of the event where ‖CZ(x+

ρ′)−Zt‖1 ≤Mr, meaning the codeword for class t is the closest. By the independence assumption,

we have Pr[Et] = Pr[X > M(1− r)] where X ∼ Binom(M,Pr[Etj]), or equivalently,

Pr[Et] = Pr
[
X < Mr |X ∼ Binom(M, 1−Pr[Etj])

]
. (2.2)

The probability of changing F (x) from y to any other class can be bounded by applying the

union bound to all t 6= y. We obtain

Pr[FZ(x+ ρ) 6= FZ(x)] ≤ (N − 1) Pr[Et],

and by the assumption of the lemma we know the left-hand side probability is δ > 0. Thus we just

need to compute Pr[Eij] and apply a tail inequality for the binomial distribution.

Fix one underlying code bit j and some other class t 6= y. Each bit Ztj differs from the
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corresponding bit of Cyj with probability 1/2 under the random code sampling scheme. Without

loss of generality, we’ll let Zyj = +1. We analyze the probability of the event fj(x+ ρ) = Ztj by

conditioning on Ztj , obtaining

Pr
[
Etj
]

= Pr
[
Ztj = −1

]
Pr
[
fj(x+ ρ) = −1|Ztj = −1, Zyj = 1

]
+ Pr

[
Ztj = +1

]
Pr
[
fj(x+ ρ) = +1|Ztj = +1, Zyj = +1

]
.

We note that the term Pr[fj(x + ρ) = −1|Ztj = −1, Zyj = +1] is exactly the the probability

1− δ in Definition 2. Then Pr[Etj] can be bounded by

Pr[Etj] ≤
1

2
(1− δ) +

1

2
(1) = 1− δ

2
.

Then the probability in (2.2) can be bounded by using Hoeffding’s inequality, which states that

given X ∼ Binom(M, p), for any α > 0,

Pr
[
X ≤ (p− α)M

]
≤ exp

(
−2Mα2

)
.

We let X =
∑

j Etj , so p < 1− δ
2

and α < p+ r− 1 = r− δ
2
. Applying Hoeffding’s inequality

with these parameters yields

Pr[Et ≤Mr] ≤ exp

(
−2M

(
r − δ

2

)2
)
.

Pr[Et ≤ Mr] is the probability of the perturbation ρ solving the security challenge for the

random ensemble, so by the assumption in the lemma, this is at least ε. Thus we obtain
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ε ≤ exp

(
−2M

(
r − δ

2

)2
)
.

We solve for δ as a function of ε to obtain the failure probability of solving the security challenge

for an individual classifier:

log(1/ε) ≥ 2M

(
δ

2
− r
)2

δ ≤ 2

(
r +

√
log(1/ε)

2M

)
.

Proof of Theorem 4. We are given an instance of the security challenge for a random binary classi-

fier (Definition 2). Let fz be the random binary classifier, where z ∼ {±1}N is uniformly sampled.

We can simulate an entire random ensemble by constructing M − 1 additional random classifiers

in the same way that fz is sampled, so that f1 = fz and f2, . . . , fM are freshly sampled. Let Z−j

denote the matrix Z without the jth column, so that FZ−j : X → {1, . . . , N} denotes the output of

the random ensemble ignoring fj .

By the definition of the security challenge, the adversary cannot query f1; however since FZ−1

is simulated by the adversary, he can make queries to FZ−1 and run A to produce a perturbation ρ

attacking FZ−1 . But if FZ−1(qi) = FZ(qi) for each query qi, thenA would have produced the same

perturbation ρ attacking FZ .

By Lemma 2.3.1 and a union bound over the number of queries, the hypothetical query answers

a1, . . . , aQ to the entire ensemble FZ depend only on FZ−1 with probability at least

1− Pr
Z−1

[
∃i FZ−1(qi) 6= FZ(qi)

]
≥ 1− 4NQ

√
1− r
2πMr

2−M(1−H2(r)). (2.3)
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Now in order to apply Lemma 2.3.3 to bound ε as a function of δ, we want to show for each j

that the event fj(x+ ρ) 6= fj(x) is independent of the query answers a1, . . . , aQ. This can be done

by applying Lemma 2.3.1 again to each column j to show that with high probability, the query

answers only depend on the random sampling of Z−j . Since ρ = φ({ak}Qk=1) is a function of the

query answers, then this means that the adversary’s chosen ρ also only depends on Z−j . We obtain

Pr
Zj

[
fj(x+ ρ) 6= fj(x) | a1, . . . , aQ

]
= Pr

Zj

[
fj(x+ ρ) 6= fj(x) |Z−j

]
= Pr

Zj

[
fj(x+ ρ) 6= fj(x)

]
,

and we see that this probability has no dependence on the actual column j since Zj is independent

and identical for each j. We incur a factor M in the probability of failure by applying a union

bound of the failure probability in (2.3) over all j = 1, . . . ,M . Thus the event fj(x + ρ) 6= fj(x)

is independent and identical for each column j with probability at least

1− 4NQ

√
M(1− r)

2πr
2−M(1−H2(r)).

Then by Lemma 2.3.3, the probability of ρ changing the output of fz is at least

1− 2

(
r +

√
log(1/ε)

2M

)
.

2.4 Empirical results

We provide empirical analysis on the security assumption (Assumption 1) and the adversarial

test accuracy against black-box substitute model training attacks for the MNIST [29] and CIFAR-
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10 [30] datasets. We use code from the CleverHans adversarial examples library [26] and from

the MadryLab CIFAR10 adversarial examples challenge [31] for the base classifier architecture,

training, and attacks. The only modification to the base classifier architecture was to change the

output layer from dimension 10 to dimension 2 for a binary output; no further architecture tuning

was performed to optimize natural accuracy.

2.4.a Analysis of random binary classifiers

First, we empirically estimate the transfer success rate for all pairs of classes. We train a sample

size of 40 random binary classifiers and then compute an adversarial perturbation for each test data

point and each target class. The perturbation is computed by using a pre-trained standard model

for the respective dataset with all N output dimensions. We then compute whether each random

binary classifier makes a different prediction on the original test data point versus the perturbed

test data point. Finally, for each pair (y, t), we empirically estimate the probability of the output of

fz(·) being changed conditioned on zy 6= zt and plot this. The goal of this analysis is to show that

this probability is bounded below 1 by a constant.

We use the Projected Gradient Descent and the Momentum Iterated Gradient Descent transfer

attacks on the cross-entropy loss with an `∞ norm bound of ε = 8. The pre-trained substitute

is a w28-10 wide residual network [32], and the random binary classifiers are the same ResNet

architecture but with two output dimensions instead of ten. We visualize the average-case success

probability in an N ×N grid where the (y, t) coordinate shows the attack success probability over

original data points of class y and target label t. The color of each cell represents the probability

using the Viridis color palette shown in Figure 2.1.

Figure 2.1: Viridis color palette, uniformly scaled from 0 to 1

Figure 2.2 shows the empirical success probabilities of the attack over the CIFAR-10 data set

for all pairs of classes.
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Figure 2.2: Success probabilities for targeted attacks on CIFAR-10 random binary classifiers

In the image, the cell (4, 6) appears to have the highest probability, and the entire column

y = 6 (frog) appears to have particularly high average success rate as a target class. For our

security definition, we are interested in worst-case attack success rates, so we plot the distribution

over each test data point for the (y, t) pairs (4, 6) and (5, 3). Figure 2.3 and Figure 2.4 show the

individual success rates for MIGM and PGD, respectively.
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Figure 2.3: Distribution of success probabilities for individual CIFAR10 test data points under
PGD attack

We see that among the (y, t) pairs where t 6= 6, the security definition needed for our main

theorem is satisfied with high probability over the test examples. However, many of the examples

are vulnerable to a targeted attack with target class t = 6. This suggests that the Frog class is

especially distinct from the other 9 classes, such that even when it is randomly included in a binary

partition, the neural network still builds a kind of frog detector separate from the other randomly
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Figure 2.4: Distribution of success probabilities for individual CIFAR10 test data points under
MIGM attack

included classes.

2.4.b Analysis of black-box adversarial accuracy

Next, we empirically analyze the robustness of our random ensemble construction to black-

box transfer learning attacks. Instead of performing a transfer attack from a standard model, these

attacks train a specific substitute model by querying the black-box classifier directly. We use the

CleverHans attack library [26] to benchmark this. The attack algorithm trains a two-layer fully

connected substitute model iteratively augmenting its training data set via queries to the random

ensemble scheme and then uses the Fast Gradient Sign Method on the substitute model.

Because the attack library is not designed for querying classifier which abstains, we perform

substitute model training with a non-abstaining random ensemble (i.e. r = 1/2). We consider

the threshold r at the end when analyzing the final true and adversarial test accuracies. In order to

incorporate the abstain label, we use the following definitions of accuracy for our experiments. The

true test accuracy requires the classifier to make the correct, non-abstaining prediction. However

when computing adversarial accuracy, we also consider it a success if the classifier outputs ω.

Definition 5 (True and adversarial test accuracy). Given a multiclass classifier

F : X → {1, · · · , N, ω} which is allowed to abstain from making a prediction (as represented by
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the output ω), the relevant accuracy benchmarks are

True accuracy := E
(x,y)

[
1[F (x) = y]

]
Adversarial accuracy := E

(x̂,y)

[
1[F (x̂) ∈ {y, ω}]

]
,

where x is the original data point and x̂ is an adversarial perturbation of x.

All random binary classifiers used in these experiments are the same architecture as the random

binary classifiers in Section 2.4.a. Figure 2.5 shows that the ensemble enjoys good adversarial

accuracy in the low-r regime.
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Figure 2.5: Accuracy versus Hamming distance ratio (r)

2.5 Analysis of adversarial features

While these black-box defenses are a promising line of research for constructing secure ma-

chine learning models, they do not give much insight as to why adversarial examples actually

exist. The idea of non-robust features [24] is proposed as a mechanism to explain the tradeoff

between adversarial error and standard test error. The non-robust features used by adversarial

attacks are well-generalizing features that happen to be human-unrecognizable because of a mis-

alignment between the `p metric and the metric in the intrinsic data space. The authors argue for

the existence of non-robust features by two experiments. Firstly, removing non-robust features
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decreases standard test performance. Secondly, after mislabeling the original training data {xi, yi}

to {xi + ∆(xi, yti), yti}, where yti 6= yi is a different target class and ∆(xi, yti) is an adversarial

perturbation towards yti , a trained classifier still achieves nontrivial test accuracy.

In this section, we look to understand this phenomenon in the interpolation regime in the second

stage of the double descent curve [33]. While conventional machine learning suggests that the

optimal test accuracy is achieved before training accuracy reaches 100%, the double descent curve

suggests that test accuracy increases as we continue to train after 100% train accuracy, possibly

even converging to a higher value. An intuitive explanation of this phenomenon, given by [34],

is that overfitting incorrectly labeled training points more sharply decreases the size of the sample

space which is incorrectly classified.

We give a simple model illustrating this phenomenon using purely random noise; that is, we

show that augmenting noisy features with purely random features can in fact increase test accuracy

in the interpolating regime. This is stronger than the result by [35] for linear regression, which

showed only that random features were benign with regards to test risk. We show empirically that

random features can increase classification performance for linear models and argue that random

features increase the number of support vectors in an SVM, which can be a desirable behavior

in the case of weak features. These results suggest that adversarial examples aren’t necessarily

a result of non-robust features, but rather of random noise being beneficial for helping standard

optimization algorithms avoid overfitting to weak features. In other words, adversarial examples

are a result of both suboptimal optimization algorithms and insufficient sample sizes.

2.5.a Random feature model

We consider a mixture of two Gaussians as a classification problem with label y ∈ {±1}. Let

µ ∈ Rd
+ be a mean vector with nonnegative entries. LetA ∈ Rn×d be a matrix of independent noisy

features, where each sample is drawn fromN (yµ, Id). LetB ∈ Rn×k be the matrix of independent

random features, where each sample is drawn fromN (0, γ2Ik). Let X = [A|B] be the matrix of n

data points, with n/2 generated from each class.
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Since the covariance matrix is the identity, the Bayes optimal classifier for this is to estimate

the empirical mean µ̂A = 1
2n
Aty over just the noisy features. Given a new test point (x, y) where

x = (a, b) is sampled as a ∼ N (yµ, Id), b ∼ N (0, γIk), the classification output is sign(〈a, µ̂〉) =

sign(〈a,ATy〉).

We illustrate the double descent phenomenon with an empirical example using the parameter

settings n = 2000, d = 500, µ = 0.05, σ = 1.0, γ = 0.1, and k = 24000. Figure 2.6 shows that

test accuracy continues to increase while adversarial accuracy decreases as we add in additional

random features even after training accuracy has reached 1.0.

Figure 2.6: Test accuracy with random features. Left: SVM. Right: Logistic Regression

To show that these random features do indeed cause convergence to the correct model, we look

at the signs of the feature weights for the d weak features. Every single weak feature is positively

correlated with the label y, so each feature weight should be positive. Figure 2.7 shows that many

feature weights are negative when using only weak features, but as random features are added to

the model, the learned feature weights converge to the correct sign.

This suggests that the presence of random features decreases overfitting on the weak features.

In the classical bias-variance regime, minimizing training error causes overfitting on the weights

on the weak features in order interpolate the training data. In the interpolation regime, however,

allowing the classifier to interpolate the training data using random, meaningless features makes

the weights on the weak features more accurate. Because the random features are an order of mag-

nitude smaller than the weak features, overfitting on the random features has diminished impact on
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Figure 2.7: Average sign of weights for weak features.

classification accuracy over a test sample. We next analyze the effect of adding random features to

an existing support vector machine solution in order to quantify how this may work.

2.5.b Support vector analysis

We consider the SVM model as an illustrative case which shows the effect of random features.

The hinge loss has many of the properties of the ReLU activation function in terms of determining

which data points are actively contributing to the weight vector, so the results can potentially be

applied to explaining the activation of hidden units in a ReLU layer. Classical error bounds for

support vector machines increase as the number of support vectors increases [36], but in the case

of weak features, we show that the opposite effect occurs.

The loss function for the SVM objective is

L =
n∑
i=1

max{0, 1− yiwTxi}+
λ

2
‖w‖2.

The first order conditions give the solution
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∇L =
n∑
i=1

1

[
yiw

Txi ≤ 1
]

(−yixi) + λw = 0

w =
1

λ

n∑
i=1

1

[
yiw

Txi ≤ 1
]
yixi.

The indicator function 1[yiw
Txi ≤ 1] indicates whether the data point (xi, yi) is a support

vector. From now on we’ll use the notation 1i := 1[yiw
Txi ≤ 1]. Note that the entire summation

1
n

∑n
i=1 yixi is an estimate of the true mean vector µ, whereas the SVM solution is an estimate of

the true mean vector using only support vectors as samples.

We show that random features cause the algorithm to use additional support vectors to estimate

the weight vector. Let w be a solution to the original SVM objective with d weak features only,

and consider the effect of adding k additional random features. We initialize the feature weights

wd+1, . . . , wd+k = 0 and analyze a two-stage optimization process of fitting the weight vector for

the random features and then for the weak features. For each random feature r, we obtain the new

weight

wr =
1

λ

n∑
s=1

1sysxsr.

Thus for a data point (xi, yi), the new indicator function argument yiwTxi is distributed as

yiw
Txi = yiw

Txi + yi
1

λ

k∑
r=1

n∑
s=1

1sysxsrxir

= yiw
Txi +

1

λ

k∑
r=1

1ix2
ir +

∑
s 6=i

1syiysxirxsr

 .
We consider the case where (xi, yi) is not a support vector, in which case 1i = 0. The additive
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term is equal in distribution to
√
km
λ
z1z2, where m =

∑
s 6=i 1s and z1, z2 ∼ N (0, γ2). Then the

probability of (xi, yi) becoming a support vector is equal to

Pr

[
z1z2 >

λ√
km

(1− yiwTxi)
]
.

We apply the Paley-Zygmund inequality to obtain an anti-concentration bound on this proba-

bility:

Pr
[
Z > θE[Z]

]
≥ (1− θ)2 E[Z]2

E[Z2]
.

Letting Z = |z1z2| be the half-normal distribution and using the fact that z1z2 is symmetric

about the origin, we obtain

Pr

[
z1z2 >

λ√
km

(1− yiwTxi)
]

=
1

2
Pr

[
|z1z2| >

λ√
km

(1− yiwTxi)
]

=
1

2
Pr

[
|z1z2| >

π

2γ2

λ√
km

(1− yiwTxi) E
[
|z1z2|

]]
≥ 1

2

(
1− λπ

2γ2
√
km

(1− yiwTxi)

)2(
2

π

)2

≥ 1

5

(
1− λπ

2γ2
√
km

(1− yiwTxi)

)2

.

Thus as the number of random features k increases, at least 1/5 of non-support vectors become

support vectors and help in estimating feature weights for the weak features. If the original number

of support vectors was small, then this explains why the addition of purely random features can

increase standard test accuracy. Figure 2.8 confirms empirically that number of support vectors

increases with the number of random features in the model.
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Figure 2.8: Number of support vectors. Total n = 2000

This example suggests that non-robust features are not necessarily meaningful or positively

correlated with the class labels in any way. Rather, standard optimization algorithms used to train

machine learning models can behave poorly in the presence of weak features, leading to a worse

model estimate than the Bayes optimal estimator. Adding purely random features can help regu-

larize this behavior.

2.6 Conclusion

This chapter makes some progress towards resolving the apparent misalignment between ad-

versarial error and standard test error. We gave a novel construction with a provable guarantee

that the adversarial test error converges to a constant multiple of the standard test error when the

adversary is limited to black-box substitute model attacks. The security of our scheme can be

quantitatively estimated this particular class of attacks by measuring our security assumption. Em-

pirical results show that the security assumption holds for most pairs of classes, and the ensemble

shows good accuracy against a benchmark substitute model training attack library.

Our security reduction makes it easy to analyze the security of new classifier architectures

designed specifically for random binary classifiers. Optimizing the architecture of the individual

classifiers used in the ensemble against our security assumption is an interesting direction of future

work. One important item to note is that the random ensemble construction is not compatible with

standard techniques of robust training. Robust training tends to decrease the standard test error
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of the classifier, which means that a larger threshold r needs to be used to account for natural

errors in the individual random classifiers. However, a larger r value leads to weaker security in

the ensemble.

We also gave an illustrative example of how purely random features can explain both vulnera-

bility to adversarial perturbations and the double descent curve phenomenon in the case of linear

models. It would be interesting to understand how random features generalize to the individual

layers in a ReLU network. The random features result also suggests the following technique for

defending against adversarial attacks. We embed each training image into a much larger unrelated

image and train the classifier over this entire image using the original label. At test time, however,

the unrelated image areas are dropped out, so the classifier is only applied to the original image

area. The appended unrelated image behaves like random noise which the classifier can use to

interpolate; however because it is dropped out at test time, the adversary cannot leverage these

weights to attack the classifier.
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Chapter 3: Cryptographic obfuscation

3.1 Introduction

The discipline of cryptography is fundamentally about the separation of seemingly intertwined

information and abilities: how do we separate the ability the compute a function from the ability to

invert a function? How do we separate the ability to encrypt from the ability to decrypt? How do we

separate partial knowledge of a key through a side-channel attack from the ability to compromise a

cryptographic scheme? The study of cryptographic obfuscation is born from the question: how do

we separate the ability to run code from the ability to read code? Since the seminal work of [37]

that placed this question firmly on a rigorous theoretical foundation, it has been clear that this

kind of separation would be powerful, both inside and outside the typical reach of the discipline of

cryptography.

If we can hide secrets inside functioning software, we can protect cryptographic keys, and many

of cryptography’s disparate and hard won achievements follow as a consequence. We can also

protect intellectual property, and the inner workings of critical code like software patches, which

in their unprotected form might leak information that could be used to attack remaining vulnerable

machines. But as with any cryptographic primitive, the suitability of program obfuscation for any

particular task depends on three main axes by which we must evaluate proposed constructions:

(1) efficiency, (2) the underlying computational and architectural assumptions, and (3) the derived

security guarantees.

Two possibiilities for (3), defined in [37], are the notion of virtual black box obfusction (VBB)

and the notion of indistinguishability obfuscation (IO). Virtual black box obfuscation is a very

powerful and intuitive notion, which requires that anything that can be done by an attacker in

possession of the obfuscated code can also be done by a simulator who can only run the software
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in a “black box," with no access to intermediary values or other properties of the computation

between input ingestion and output production. This notion would be suitable for virtually1 all

possible applications of obfuscation, but it is shown in [37] that it is impossible to achieve for

general functionalities. The notion of IO requires something weaker, merely that an attacker in

possession of two different obfuscations of the same functionality cannot tell them apart. In other

words, we only enforce indistinguishability for program descriptions that may differ internally but

whose external input/output behavior is identical.

At the time of its introduction by [37], IO was neither shown to be impossible, nor shown to be

particularly useful. Progress instead was made for VBB obfuscation of very basic functionalities,

such as point obfuscation [38, 39] and hyperplane membership [40], which lie below the reach of

the impossibility result for VBB. But following the unprecedented construction of cryptographic

multilinear maps in [41], two breakthroughs occurred in quick succession. A first candidate con-

struction for indistinguishability obfuscation of general functions was proposed in [42], and the

flexible technique of “punctured programming" was developed for deriving meaningful crypto-

graphic results from the IO security guarantee [43].

Since then, the cryptographic research community has been riding out wave of positive and

negative results: increasingly powerful constructions employing idealized models on multilinear

maps or new, complex assumptions

[42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], attacks on the underlying multilinear maps [55, 56,

57, 58, 59, 60], and a steady stream of works deriving applications and consequences from various

forms of obfuscation(e.g., [61, 62, 63], and many more).

Our work is focused on the goal of obfuscating a modest but well-motivated functionality, one

that does not require the use of multilinear maps, and hence does not inherit the risks of their still

volatile security assumptions or the inefficiency that currently comes with using such a general-

purpose tool. We consider the problem of pattern matching with wildcards: suppose there is an

input binary string S of length n, and a pattern specification P also of length n, where for each bit

1Pun intended
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P either dictates a particular bit value, or has a wildcard ∗, indicating that either value is allowed.

For example, with n = 5, a pattern P would look like: 00∗ 11, and there would be two “matching"

input strings S in this case, 00011 and 00111. The function we will obfuscate is the final “yes" or

“no" outcome: for each P , we define the associated function fP (S) that outputs 1 when S matches

P and outputs 0 otherwise.

This kind of functionality might appear, for instance, in a context like software patching. If

a pattern P represents a problematic type of user input, say, that needs to be filtered out, we

can obfuscate this function fP to reject bad inputs without unnecessarily revealing P in full and

helping attackers learn how to design such bad inputs. If the input length n is reasonably long

and the number of matches to the pattern is not too dense in the space of inputs, we can hope

that an attacker who queries a polynomial number of input strings will never manage to find a

“bad" input that matches the pattern. We find these situations (where the adversary does not have

enough information to identify the function being obfuscated) to be the most compelling subset of

the standard VBB obfuscation security guarantee (as opposed to the subset involving simulating

an adversary that already knows the function being obfuscated). Accordingly, we demonstrate

that our construction satisfies a distributional security notion from [64, 65, 66]: if the pattern P is

chosen from a suitable random distribution (and the number of wildcards w ≤ 0.75n), then a PPT

attacker will not be able to distinguish our obfuscation of fP from an obfuscation of a function that

always outputs 0.

Our construction uses only the basic tools of group operations and polynomial interpolation,

and so is quite efficient. Our security analysis will be in the generic group model, for a regular

cyclic group, with no multilinearity required. It remains an interesting open problem to obtain a

security analysis in the standard model, using standard assumptions like DDH, for instance. [67]

showed that the easier problem of bounded Hamming distance decoding is at least as hard as the

DDH problem. While the result is not applicable to the obfuscation construction, the intermedi-

ary problem of finding nontrivial representations of the identity element first described by [68] is

potentially applicable.
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The functionality of pattern matching with wildcards has been previously obfuscated in [64,

65]. These constructions rely on multiplicative encoding schemes that enable multiplication of the

encoded values and also zero-testing, i.e. checking whether an encoded value is zero. Unlike mul-

tilinear maps, these encoding schemes do not need to have additive properties. This functionality

has been realized either through the use of general multilinear maps [64] or through lattice-based

encodings relying on a new instance dependent assumption called entropic LWE [65]. A recent

work by Wichs and Zirdelis [66] provides an obfuscation construction for a more general high

entropy class, called compute-and-compare functions, from LWE. This class includes our pattern

matching with wildcards. We view our construction as a simple and highly efficient alternative to

such an LWE-based construction, and this is in line with the long tradition of analogous function-

alities being achieved in the discrete-logarithm and LWE regimes.

To keep our scheme as intuitive and as efficient as possible, we start from additive basics. Let’s

first consider a pattern P with no wildcards. In this case, our function fP is just a point function,

since there is only one input string that matches the fully prescriptive pattern. Here we can work

over Zp and choose uniformly random values a1, . . . , an−1 ∈ Zp and set an = −(a1 + · · ·+ an−1).

We can choose additional random values r1, . . . , rn ∈ Zp. Now our obfuscated program can be

comprised of 2n elements of Zp, which we will label as xi,b where i ∈ [n] and b ∈ [0, 1]. For

each input bit position i, if the pattern value P is b, we set xi,b := ai and xi,1−b = ri. To evaluate

the obfuscated program on an input string, the evaluator simply selects the value corresponding

to each input bit, and takes the sum modulo p. If it is 0, the output is 1. Otherwise the output is

0. Given these 2n values, if an attacker wants to find the pattern P , they are essentially trying to

solve the subset sum problem (this is a slight variant since we have this kind of pair structure on

the elements, but still the security intuition is the same).

Now if we want to introduce wildcards, it is clear we cannot simply give out ai for both values

for input bit i, since this will be noticed. The next thing we might try is to choose a random

polynomial F of degree n over Zp whose constant term is 0. Now we can set xi,b = F (2i+ b) for

positions that match the pattern, including both values of b in a wildcard position i. Our desired
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functionality can now be evaluated through polynomial interpolation. However, we quickly start

to run into attacks based on list-decoding or regular decoding of Reed-Solomon codes, which can

enable an attacker to recover the polynomial F once there are enough valid evaluations due to the

wild cards.

A key observation at this point is that these decoding-style attacks rely upon non-linear func-

tions of the given values, while the honest evaluation of the intended program needs only linear

operations. This allows us to place the values xi,b in the exponent of a group G = 〈g〉 where

discrete-log is difficult, and give out gxi,b instead. This stops the decoding attacks without pre-

venting honest evaluations. In the generic group model, the attacker is essentially limited to linear

functions of the given exponents, so we can indeed formalize this intuition and obtain a security

proof.

The hardness of noisy polynomial interpolation in the exponent was previously analyzed by [67],

who gave a generic group argument concerning the problem of interpolating a polynomial with a

slightly different error distribution. Our work follows a similar idea, but the specific wildcard

structure we employ for our application creates some subtle differences, so we give a full argu-

ment here for completeness. We also provide a more rigorous exposition of the generic group

proof argument.

It is an interesting problem to prove security for such a scheme without resorting to a generic

group analysis. It seems that we should need a computational assumption like subset sum to assert

that even though the group operations allow a discovery of the hidden structure, it is too sparse

inside a combinatorially large space of possible input evaluations to be efficiently found. It also

seems that we should need a computational assumption like DDH to explain exactly how the group

blocks non-linear attacks. However, assumptions like DDH allow us to hide structure that is al-

ready non-linear, but requires us to preserve any structure that is linear, since linear structure on

any small number of group elements can be discovered by brute force by an attacker. We could try

to formulate some new assumption that is a strengthening of the subset sum assumption to the kind

of intertwined linear structures that arise from polynomial evaluation, but this doesn’t yet seem to
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yield insight beyond asserting security of the scheme itself. We would ideally like to see a hybrid

argument that combined simple subset-sum like steps with simple DDH-like steps, but designing

such a reduction remains an intriguing challenge. Given that LWE-based approaches in the stan-

dard model are known, this represents a new test case on the boundary of the analogies we know

between DDH-hard groups and the LWE setting. We expect that further study of this disconnect

in proof technology between the LWE setting and the DDH setting may yield general insights into

the inherent relationships (or lack thereof) between these different mathematical underpinnings.

3.2 Preliminaries

3.2.a The generic group model

We will prove the security of our construction against generic adversaries, which interact with

group elements via the generic group model as defined in [69]. In this model, an adversary can

only interact with the group via oracle calls to its group operation and zero test functionality.

Group elements are represented by “handles," which are uniformly random strings long enough

that the small probability of collision between handles representing different group elements can

be ignored. A generic group operation oracle takes as input two group handles and returns a new

handle representing the group element that is the result of the group operation on the two inputs

(and is consistent with all handles previously used). Note that such an oracle can be efficiently

simulated using a lookup table.

We use G to denote such a generic group operation oracle that answers adversary calls. AG will

denote an adversary given access to this oracle and OG will denote the set of handles generated by

G corresponding to the group elements in the construction O.

3.2.b Distributional virtual black-box obfuscation in the generic group model

We will use a definition of distributional virtual black-box (VBB) obfuscation in the generic

group model which is essentially the definition of [64], except using the generic group model

instead of the random graded encoding model:
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Definition 6 (Distributional VBB Obfuscator). Let C = {Cn}n∈N be a family of polynomial-size

circuits, where Cn is a set of boolean circuits operating on inputs of length n, and let O be a ppt

algorithm which takes as input an input length n ∈ N and a circuit C ∈ C and outputs a boolean

circuit O(C) (not necessarily in C). Let D = {Dn}n∈N be an ensemble of distribution families Dn

where each D ∈ Dn is a distribution over Cn.

O is a distributional VBB obfuscator for the distribution class D over the circuit family C if it

has the following properties:

1. Functionality-Preserving: For every n ∈ N, C ∈ Cn, and ~x ∈ {0, 1}n, with all but negl(n)

probability over the coins of O:

(O(C, 1n)(~x) = C(~x)

2. Polynomial Slowdown: For every n ∈ N and C ∈ Cn, the evaluation of O(C, 1n) can be

performed in time poly(|C|, n).

3. Distributional Virtual Black-Box in Generic Group Model: For every polynomial (in n) time

generic adversary A, there exists a polynomial time simulator S, such that for every n ∈ N,

every distribution D ∈ Dn (a distribution over Cn, and every predicate P : Cn → {0, 1}:

|PrC←Dn,G,OG ,A[AG(OG(C, 1n)) = P (C)]−PrC←Dn,S [SC(1|C|, 1n) = P (C)]| = negl(n)

Remark 7. As in [64], we remark that a stronger notion of functionality-preserving exists in the

literature, where the obfuscated program must agree with C(~x) on all inputs ~x simultaneously. We

use the relaxed requirement that for every input (individually), the obfuscated circuit is correct

except for negligible probability. We also note that our construction can be modified to achieve the

stronger property by using a group of sufficiently large size (22n) and the union bound over each

of the 2n inputs.
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Schwartz-Zippel Lemma

A key step in our hybrid proof of security relies on the Schwartz-Zippel Lemma, which we will

reproduce here:

Lemma 3.2.1. Let Zp be a finite field of size p and let P ∈ Zp[x1, . . . , xn] be a non-zero polynomial

of degree ≤ d. Let r1, ..., rn be selected at random independently and uniformly from Zp. Then:

Pr[P (r1, ..., rn) = 0] ≤ d
p
.

3.3 Obfuscating pattern matching with wildcards

The class of functions for pattern matching with wildcards is parametrized by (n, ~y,W), where

W ⊂ [n] is an index set and f~y : {0, 1}n−|W| −→ {0, 1} is a point function over n − |W| input

variables that outputs 1 on the single input ~y ∈ {0, 1}n−|W|. The function ΠWc : {0, 1}n −→

{0, 1}n−|W| projects a boolean vector of length n onto only the entries not in the index set W .

f~y,W , the function for pattern ~y with wildcard slotsW , is defined to be f~y,W(x) := f~y
(
ΠWc(x)

)
.

Our obfuscation scheme for the class of functions for pattern matching with wildcards is as follows:

Setup(n): sample a1, · · · , an−1 ∼ Zp uniformly at random and construct the fixed polynomial

F (x) := a1x+ a2x
2 + · · ·+ an−1x

n−1. Let G be a group with generator g of prime order p > 2n.

Construction(n, ~y,W): the obfuscator outputs 2n elements arranged in a 2 × n table of n

columns corresponding to the n input variables with two entries each corresponding to the two

possible boolean values of each input. For each slot hij where (i, j) ∈ {0, 1}n × {0, 1}, if either

i ∈ W or yi = j, then the obfuscator releases the element hij = gF (2i+j). Otherwise, the obfuscator

releases hij as a uniformly random element of G.

Evaluation(~x): to evaluate f~y,W(~x), for each i = 1, · · · , n, compute:

Ci :=
∏
j 6=i

−2j − xj
2i− xi − xj + 2j
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choose the elements hixi , and compute:

T :=
n−1∏
i=0

(hixi)
Ci

Output 1 if T = g0 and 0 otherwise.

Functionality-Preserving: The fact that this obfuscation scheme is functionality-preserving

follows from the fact that, if ~x is an accepting input of f (f(~x) = 1), then the chosen handles form

n proper evaluations of the polynomial F (x) on distinct elements. Further, the Ci scalars used in

evaluation are Lagrange coefficients, making the evaluation a polynomial interpolation that returns

F (0) = 0 in this case, causing T = g0 and the evaluation to output 1 (with probability 1).

n−1∏
i=0

(hixi)
Ci =

n−1∏
i=0

gCiF (2i+xi)

= g
∑n−1
i=0 CiF (2i+xi)

= gF (0)

= g0

On the other hand, if even one input bit was not accepting (so f(~x) = 0), then at least one of

the hixi’s used in interpolation would be a uniformly random group element (not gF (2i+j)). Thus,

the evaluation product would be a product that includes a uniformly random group element raised

to some power, which would result in T = g0 with negligible probability 1
p
.

Polynomial Slowdown: Given a the set of 2n group elements, assuming group operations can

be performed in poly(n) time, the computation of Ci and T described in the Evaluation procedure

can be performed in polynomial time.

Distributional Virtual Black-Box: We give a proof of our construction’s distributional VBB

security in the generic group model in Section 3.4 in Theorem 14.
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3.4 Distributional VBB security in the generic group model

This section will prove Theorem 14, which establishes the distributional virtual black box

security of our construction in the generic group model over the class of uniform distributions for

point functions with wildcards. Our framework for reasoning in the generic group setting draws

from [69].

The security proof shows that the obfuscation scheme constructed for a specific pattern match-

ing with wildcards function f~y,W is indistinguishable from an obfuscation where all hij are random

group elements. The analysis involves analyzing the performance of an adversary interacting with

three different implementations of the generic group oracle. The first of these oracles operates

according to an honest instantiation of the construction, while the third oracle operates according

to an ideal instantiation where each group element is drawn from a uniformly random distribution.

Given that a low probability failure event does not occur, any algorithm’s behavior when inter-

acting with either of these oracles should be identical. The actual calculation of the probability of

such a failure event is conceptually simple and done by many previous works for different noise

distributions. On the other hand, properly formalizing the notion of "identical behavior" is where

most of our new technical machinery is introduced.

In order to rigorously reason about the space of handles in a generic proof, we define an equiv-

alent security game where an adversary calls two oracles simultaneously, one of whose behavior is

already completely known. The purpose of incorporating a known oracle into the security game is

to rigorously define when the unknown oracle deviates from expected behavior, and thus, when the

adversary has distinguishing power. We make use of basic tools from category theory in order to

describe the space of handles that the adversary has access to and when these handle sets become

distinguishable.

In a generic group proof, there are many closely related but technically distinct kinds of objects

that are often conflated. There are the underlying group elements, which can be associated with

their exponents in Zp relative to the common base. There are the handles that the group oracle
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associates to these elements. There are formal polynomials which may track known or unknown

relationships between group elements. There are subsets of handles which the adversary has pre-

viously seen, and other handles whose distribution remains independent of the adversary’s view so

far. In order to make our proof as rigorous and precise as possible, we will keep explicit track of

all of these various objects, and the maps between them.

We define an equivalent security game where an adversary calls two oracles simultaneously,

one of whose behavior is already completely known. The purpose of incorporating a known oracle

into the security game is to rigorously define when the unknown oracle deviates from expected

behavior, and thus, when the adversary has distinguishing power. Given that a low probability

failure event does not occur, any algorithm’s behavior when interacting with either of these oracles

should be identical. The actual calculation of the probability of such a failure event is conceptually

simple and done by many previous works for different noise distributions. On the other hand, in

order to properly describe the notion of "identical behavior" we introduce some basic technical

machinery from category theory.

We establish some notation before proceeding. Let bold letters denote symbolic variables

and non-bold letters denote the sampled random values for the corresponding variable. Let f ∈

Zp[a1, · · · , an, x] be a fixed polynomial of degree n− 1 in x which is linear in each ai individually.

Let HS and HM be two identical copies of the same space of strings corresponding to handles in

the generic group model.

Since our proof takes place in the generic group model, and our obfuscated program consists

of a set of group elements, we will use the notation GS,GM ,GE to denote three different ways that

an adversary can be supplied with handles representing an obfuscated program and how requests

to the generic group operation oracle are answered. GS will implement faithful interaction with the

true construction in the generic group model. GM implements a hybrid setting that we will show is

indistinguishable from GS to the adversary. Finally, GE implements a setting that can be simulated

without knowledge of the function drawn from the distribution (and is indistinguishable from GM ).

The high level structure of our proof is pretty typical for a generic group argument. The group

43



oracle GM will behave similarly to GS , but instead of sampling random exponents according to the

proscribed polynomial structure, it will work with formal polynomials representing this structure,

hence ignoring any spurious relationship arises from a particular choice at the sampling stage.

Arguing that GS and GM are indistinguishable is where we use the Schwartz-Zippel Lemma. An

adversary will only receive a different distribution of handles if it manages to find a spurious

relationship while interacting with GS , which must mean that the sampling happened to choose a

root of a non-trivial, low degree formal polynomial. The Schwartz-Zippel Lemma allows us to

conclude that this will occur with only negligible probability over the sampling employed by GS .

To argue that GM and GE are indistinguishable, we will need to argue that the adversary can-

not (except with negligible probability), detect the remaining formal polynomial structure in GM ,

since doing so requires referencing many correctly structured elements and avoiding the random el-

ements completely. As long as the wildcards are not too dense, this is an intractable combinatorial

problem for the adversary.

Definition 8 (GS: Oracle Start).

First, sample the following uniformly at random:

• W = {i1, · · · , iw} ⊂ [n]

• yi ∈ {0, 1} for each i 6∈ W

• a1, · · · , an ∈ Zp

• Random embedding ΦS : G ↪→ HS

For the initial set of handles representing the 2n group elements in the obfuscation of f~y,W , for

each entry (i, j) ∈ [n]× {0, 1}:

• If i ∈ W or yi = j (input bit is part of an accepting string), output ΦS

(
gF (a1,··· ,an,2i+j)

)
• Otherwise sample a uniformly random exponent ρij and output ΦS(gρij)

Given a group operation query on (h1, h2):
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• Find g1 = Φ−1
S (h1) and g2 = Φ−1

S (h2). If either does not exist, ignore the query.

• Return ΦS(g1 · g2)

Note that GS faithfully instantiates our construction described in Section 3.3 in the generic

group model. We will now describe an alternative oracle implementation that uses symbolic vari-

ables instead of group elements to produce the generic group functionality:

Definition 9 (GM : Oracle Middle).

First, sample the following uniformly at random:

• W = {i1, · · · , iw} ⊂ [n]

• yi ∈ {0, 1} for each i 6∈ W

• Random embedding ΦM : Zp[a1, · · · , an,b1, · · · ,bn−w] ↪→ HM .

Let σ : {0, 1}n × {0, 1} → [n− w] be an arbitrary ordering of the (n− w) coordinate pairs (i, j)

where i 6∈ W and j 6= yi, and which is not defined on the other coordinate pairs.

For the initial set of handles representing the 2n group elements in the obfuscation of f~y,W , for

each entry (i, j) ∈ [n]× {0, 1}:

• If i ∈ W or yi = j (i.e. the input bit is part of an accepting string), output ΦM(F (a1, · · · , an, 2i+

j))

• Otherwise output the label ΦM(bσ(ij))

Given a group operation query on (h1, h2):

• Find p1 = Φ−1
M (h1) and p2 = Φ−1

M (h2). If either does not exist, ignore the query.

• Return ΦM(p1 + p2)

The two oracles are related by the existence of the following evaluation map in the exponent:

φ : Z[a1, · · · , an,b1, · · · ,bn−w] −→ G

F (a1, · · · , an, an,b1, · · · ,bn−w) 7−→ gF (a1,··· ,an,b1,··· ,bn−w)
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where bk = ρσ−1(k) are the values of the random exponents sampled by Oracle S for the

non-accepting slots. Only the existence of this evaluation map is necessary for the proof, so its

dependence on unknown random values is not an issue.

In particular φ is a surjective group homomorphism of
(
Zp[a1, · · · , an,b1, · · · ,bn−w],+

)
into

(G,×), since it is a composition of an evaluation map with an exponential map, which are both

surjective group homomorphisms.

The idea behind defining such an evaluation map is to define the failure event as a substructure

of a larger structure which may then be used to formalize when the behavior is identical. In

particular, we will see that the failure event corresponds to the kernel of this evaluation map that

we just defined.

3.4.a Simultaneous oracle game

Rather than proving that the difference in any adversary’s output probabilities when interacting

with (GS vs. GM) or (GM vs. GE) is small directly, we will define another security game and exhibit

a reduction to the desired statements. In this new security game, the adversary simultaneously

queries two oracles for operations on group elements: one oracle GM is known and serves as a

convenience for formalizing the generic group oracle, and the second G∗ is the unknown that the

adversary wishes to identify. We define the game with oracles (GS,GM) below and note that the

game and reduction for oracles (GM ,GE) is symmetric.

Definition 10 (Simultaneous Oracle Game). An adversary is given access to a pair of oracles

(GM ,G∗), where G∗ is GM with probability 1/2 and GS with probability 1/2. In each round, the

adversary asks the same query to both oracles. The adversary wins the game if he guesses correctly

the identity of G∗.

To make precise the notion of an adversary playing both oracles simultaneously and asking the

same queries, the adversary maintains two setsHt
S andHt

M which are the sets of handles returned

by the oracles after t query rounds. The adversary then maintains a function Ψ : Ht
M → Ht

S .

Initially, the adversary sets Ψ(hbij) = haij for each initial slot location (i, j) ∈ {1, n} × {0, 1},
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where haij is the handle corresponding to the slot (i, j) in oracles S and hbij the handle in oracles

M . After each query hm = GM(hb1, h
b
2) and hs = GS(Ψ(hb1),Ψ(hb2)) the adversary updates the

function with the definition Ψ(hs) = hm.

Lemma 3.4.1. Suppose there exists an algorithm A such that

∣∣∣Pr[AGM (OGM ) = 1]− Pr[AGS(OGS) = 1]
∣∣∣ ≥ δ

Then an adversary can win the simultaneous oracle game with probability at least 1
2

+ δ
2

for any

pair of oracles (GM ,G∗ = GM/GS).

Proof. Let p = Pr[AGM (OGM ) = 1] and q = Pr[AGS(OGS) = 1]. The adversary can estimate

these parameters to within a bounded polynomial of the true parameter by simulating each oracle

and A’s behavior on each.

Without loss of generality, we can assume that p ≥ q. Otherwise, we can define p, q to be the

inverse quantities Pr[AGM (OGM ) = 0],Pr[AGS(OGS) = 0] respectively.

The adversary will guess G∗ = GM if AG∗(OG∗) = 1 and G∗ = GS if AG∗(OG∗) = 0. The

probability of success is given by

Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GM ] Pr[AGM (OGM ) = 1]

+ Pr[G∗ = GS] Pr[AGS(OGS) = 0]

=
1

2
+

1

2
(p− q)

≥ 1

2
+
δ

2

3.4.b Indistinguishability between Start and Middle

The following gives a criteria for overall indistinguishability of the output handle distributions.
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Definition 11. The pair (hs, hm) of answers returned by (GS,GM) after query number t is called

identical if it satisfies one of the following:

1. hs 6∈ Ht
S and hm 6∈ Ht

M

2. The oracles return handles hs ∈ HS, h
m ∈ HM respectively such that Ψ(hm) = hs

Note that in case (1), hs and hm are both freshly sampled uniformly random strings and their

distributions are equal.

Lemma 3.4.2. In the simultaneous oracle game with G∗ = GS , suppose for every query (hm1 , h
m
2 )

to oracle M and corresponding query (Ψ(hm1 ),Ψ(hm2 )) to oracle S, the answers returned are

identical. Then for any algorithm A, we have

Pr[AGS(OGS) = 1] = Pr[AGM (OGM ) = 1]

Proof of Lemma 3.4.2. If we had swapped the oracles GS and GM and the adversary had used Ψ−1

instead of Ψ, the answer distributions would have been identical and A would have to produce the

same output distribution.

Remark 12. Note that this argument does not depend on the particular implementations of GS,GM ,

and therefore the lemma also holds for the pair of oracles GM ,GE (to be defined later in Defini-

tion 13).

Thus it suffices to show that

Lemma 3.4.3. Suppose an adversary makes an arbitrary sequence of queries and receives answers

{
hst = GS(Ψ(hmt1),Ψ(hmt2))

}Q
t=1{

hmt = GM(hmt1, h
m
t2)
}Q
t=1

Then with overall probability at least 1− (Q+ 2n)2

p
, for every t, hst and hmt are identical as defined

in Definition 11.
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Proof. Initially each set of 2n handles given by each oracle are uniformly random strings and

hence indistinguishable. The proof is by induction under the following hypothesis:

Suppose the adversary has made t queries so far and hasHt
S,Ht

M satisfying the following:

1. For each query made so far, the answer distributions have been identical.

2. For every hs ∈ Ht
S , there exists a unique f ∈ Zp[a1, · · · , an] such that ΦS ◦ φ(f) = Φ−1

M (f)

We can state this inductive hypothesis this in the following commutative diagram:

Zp[~a, ~b] Im(ΦM) Ht
M

G Im(ΦS) Ht
S

ΦM ,'

φ ∃!

iM

Ψ,=

ΦS ,' iS

Here Im(ΦM), Im(ΦS) are the relevant handles in the handle spaces. Commutativity of the

lower triangle under the unique lift means that for all hs ∈ Ht
S,∃!f ∈ Zp[~x] such that iS(hs) =

ΦS ◦φ(f). Note that the upper triangle trivially commutes because the unique lift is defined by the

composition ΦM ◦ iM ◦Ψ−1. To ease the notation a little, we’ll omit the inclusion maps from here

on when it is obvious the handle is inHt
∗.

Now assuming the inductive hypothesis, suppose the (t + 1)th query is the group operation of

h1, h2 ∈ Ht
M and Ψ(h1),Ψ(h2) ∈ Ht

S . Oracle M will output the handle

hm = ΦM

(
Φ−1
M (h1) + Φ−1

M (h2)
)

=: h1 · h2,

and Oracle S will output the handle

hs = ΦS

(
Φ−1
S (Ψ(h1))× Φ−1

S (Ψ(h2))
)

=: Ψ(h1) ·Ψ(h2).

The (·) notation on handles is justified by the fact that Im(ΦM) ⊂ HM is trivially isomomorphic

as a group to Zp[a1, · · · , an], where its group operation is obtained by pulling back by ΦM , and

likewise for Im(ΦS) ⊂ HS .

We have the following two cases:
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1. hm ∈ Ht
M (i.e. this handle was seen previously). Then

Ψ(h1) ·Ψ(h2) = (ΦS ◦ φ ◦ Φ−1
M )(h1) · (ΦS ◦ φ ◦ Φ−1

M )(h2)

= (ΦS ◦ φ ◦ Φ−1
M )(h1 · h2)

= (ΦS ◦ φ ◦ Φ−1
M )(hm)

= Ψ(hm)

where we use commutativity of the diagram on each factor handle, the homomorphism prop-

erty of the maps, the definition of oracle M ’s output, and commutativity of the diagram on

the output handle (which we can do since the handle was previously defined).

Thus the handles in the output pair have the same distribution, and since no new handles are

created, the inductive hypothesis trivially remains satisfied.

2. hm 6∈ Ht
M (i.e. this is a new handle).

(a) If hs 6∈ Ht
S is also a new handle, then the unique lift simply extends to map hs to

Φ−1
M (hm), and both Ht

M and Ht
S are augmented by one element. The handles in the

output pair are new and uniformly distributed, and the inductive hypothesis is satisfied.

(b) If hs ∈ Ht
S , then by the inductive hypothesis, hs lifts to some fs ∈ Zp[~x] which maps

to some h̃b = Ψ−1(hs). However we also have fm = Φ−1
M (hm) 6= fs, since hm 6∈ Ht

M .

Thus both fs and fm are lifts of hs which make the diagram commute, so after this

query the inductive hypothesis is no longer satisfied for the next query.

This event only happens if fs− fm ∈ kerφ and fs− fm is nontrivial. Thus the proof is

complete as long as we show this event happens with low probability.

Now consider the following sequential variant of the game. The adversary plays the game using

the real Oracle M and his own simulation of Oracle S obtained by outputting a uniformly random

string when GM does and using the Ψ map when GM outputs an existing string. He then plays the

exact same sequence to the real Oracle S and compares these answers to the ones produced by
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the real Oracle M . As long as the bad event does not occur, the sequence of queries asked in this

sequential game is identical to the sequence of queries asked playing the real pair of oracles.

The occurrence of the bad event is decided by the initial random sampling of a1, · · · , an ∈ Zp,

and thus the bad event either occurs in both the sequential and parallel variants or in neither. So it

suffices to just bound the probability of the bad event occurring at any time in the sequential game.

For each pair (fs, fm), fs − fm is a degree-1 polynomial in n variables over Zp. Thus the bad

event happens with probability at most 1
p

by Lemma 3.2.1, the Schwartz-Zippel lemma. Thus by a

union bound, after Q queries of either type, there are at most (Q+ 2n)2 pairs of symbolic polyno-

mials, so with probability at most (Q+2n)2

p
the two distributions of handles are distinguishable.

We remark that everything in the proof only relied on diagram arguments and did not care

about the actual structure of the underlying objects, except for analyzing when fs − fm ∈ kerφ

occurred. Thus in the proceeding reductions between other oracles, all this automatically follows

provided we can define an appropriate evaluation map φ, and we only need to analyze the kernel

of the corresponding evaluation map.

Lemma 3.4.4. For an adversary A in the generic group model which makes Q queries to the

generic group oracle,

|PrC [AGS(OGS(C, 1n)) = P (C)]−PrC [AGM (OGM (C, 1n)) = P (C)]| ≤ (Q+ 2n)2

2n
,

where the probability is taken over the distribution C ← Dn,GS,O,A

Proof. From Lemma 3.4.2 we have that:

Pr[AGS(OGS) = 1] = Pr[AGM (OGM ) = 1]

as long as all queries to the generic group oracles are identical as defined in Definition 11.

Lemma 3.4.3 tells us that the probabilities of all queries not being identical during the si-
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multaneous oracle game between (GS,GM) is at most
(Q+ 2n)2

p
, where Q is the number of the

adversary’s queries to the generic group oracle and p > 2n is the order of the group.

Therefore, the difference Pr[AGM (OGM ) = 1]−Pr[AGS(OGS) = 1] is at most
(Q+ 2n)2

2n
, and

so an adversary’s advantage in the simultaneous oracle game between (GM ,GS) and (GM ,GM) is:

Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GM ] Pr[AGM (OGM ) = 1]

+ Pr[G∗ = GS] Pr[AGS(OGS) = 0]

=
1

2
+

1

2
(Pr[AGM (OGM ) = 1]−Pr[AGS(OGS) = 1])

≤ 1

2
+

(Q+ 2n)2

2 · 2n

This, plugged into the reduction from Lemma 3.4.1, tells us that for all adversaries:

∣∣∣Pr[AGM (OGM ) = 1]− Pr[AGS(OGS) = 1]
∣∣∣ ≤ (Q+ 2n)2

2n

3.4.c Game between Middle and End

Definition 13 (GE: Oracle End).

First, sample the following uniformly at random:

• Random embedding ΦE : Zp[c1, · · · , c2n] ↪→ HE .

For the initial set of handles representing the 2n group elements in the obfuscation of f~y,W , for

each entry (i, j) ∈ [n]× {0, 1}:

• Output ΦE(c2i+j)

Given a group operation query on (h1, h2):

• Find p1 = Φ−1
E (h1) and p2 = Φ−1

E (h2). If either does not exist, ignore the query.
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• Return ΦE(p1 + p2)

Oracle M and Oracle E are related by the following evaluation map which is defined on the

generators of Zp[c1, · · · , c2n] and extended by linearity.

φ : Zp[c1, · · · , c2n] −→ Zp[a1, · · · , an,b1, · · · ,bn−w]

ck 7−→ bσ(bk/2c,k mod 2) if σ is defined here

ck 7−→ F (a1, · · · , an, k) otherwise

In other words the monomial ck is mapped to the same symbolic polynomial that Oracle Middle

assigned to the slot
(
bk/2c, k mod 2

)
, which is either a symbolic variable b or a symbolic poly-

nomial F (a1, · · · , an, k). Since the ck’s generate the entire additive group Zp[c1, · · · , c2n], this ex-

tends to a group homomorphism of
(
Zp[c1, · · · , c2n],+

)
into

(
Zp[a1, · · · , an,b1, · · · ,bn−w],+

)
.

Lemma 3.4.5. Suppose an adversary makes an arbitrary sequence of queries and receives answers

{
hmt = GS(Ψ(het1),Ψ(het2))

}Q
t=1{

het = GM(het1, h
e
t2)
}Q
t=1

If w/n ≤ 3/4, then with overall probability at least 1− 2
20.0613n for every t, hst and hmt are identical

as defined in Definition 11.

The proof of this lemma starts with the same setup as the proof of 3.4.3. The adversary main-

tains a function Ψ : HE → HM and two sets of handlesHt
E,Ht

M .

Proof. Inductively, after t queries, assume the following commutative diagram is true:

Zp[c1, · · · , · · · , c2n] Im(ΦE) Ht
E

Zp[a1, · · · , an,b1, · · · ,bn−w] Im(ΦM) Ht
M

ΦE ,'

φ ∃!

iE

Ψ,=

ΦM ,' iM
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The same diagram chase from the proof of (3.4.3) tells us that the next pair of query answers

(he, hm) only fails to satisfy the inductive hypothesis if hm lifts to fm ∈ Zp[~c] by the inductive

hypothesis, butfm 6= Φ−1
E (he) =: fe, so fm − fe ∈ kerφ and fm − fe is nontrivial. Necessary but

not sufficient conditions for fm − fe to be in the kernel of φ are:

1. fm− fe must have a zero coefficient in front of any ck that is defined under the σ map, since

each free variable bj has a unique preimage.

2. fm − fe must have at least n− 1 nonzero coefficients

As with the proof of (3.4.3), we analyze the sequential variant where the adversary plays a

sequence of queries to GE and then plays the exact same sequence of queries to GM . AfterQ queries

the adversary has at most Q + 2n symbolic polynomials in Zp[~c]. For each pair of polynomials

fm, fe in this set, the variables ck are mapped by the initial random sampling of the wildcard slots

by Oracle M .

Now suppose the adversary fixes a polynomial containing n−1 nonzero coefficients of the ck’s

such that m columns in the original table of 2n entries have nonzero coefficients for both entries in

the column. This means that the oracle must necessarily choose those m columns to be wildcard

slots, since otherwise one of the two entries in the column will not be in the kernel of the φ map.

This means that the probability over the initialization of the oracle that these m columns are all

chosen to be wildcard slots is (n−mw−m)
(nw)

. The remaining n− 1− 2m columns each must either match

the entry chosen by the adversary or be a wildcard slot. There are (n − 1 − 2m) − (w − m) =

(n − 1 − w) − m slots that cannot be wildcard slots and thus have at most probability 1/2 each

of matching the entry chosen by the adversary. Thus the probability that this polynomial is in the

kernel of φ is

(
n−m
w −m

)
(
n

w

) (
1

2

)n−1−w−m

(3.1)
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An upper bound for this can be computed by maximizing the expression with respect to the

adversary’s choice of m. If we increment m by 1, the first factor is multiplied by w−m
n−m while

the second factor is multiplied by 2. Note that w−m
n−m is monotonically decreasing in m; thus, this

quantity is maximized when m is the largest possible integer such that w−m
n−m > 1/2 is still true.

Note that when w < n/2, then the optimal choice is m = 0. Assuming w > n/2 and solving for

this inequality we obtain that m = 2w − n. Now the problem also has a physical constraint that

m ≤ n/2 since the adversary can choose at most n/2 slots. Thus there are three parameter regimes

based on α:

1. α ≤ n/2: the optimal choice is m = 0

2. n/2 ≤ α ≤ 3n/4: the optimal choice is m = 2w − n

3. n > 3n/4: the optimal choice is m = n/2

In case 1, the probability is then clearly bounded by (1/2)n−1−w.

In case 2, making the substitution m = 2w−n and w = αn where α ∈ [0, 1) in the expression

(3.1), we obtain

(
2(1− α)n

(1− α)n

)
(
n

αn

) 2(3α−2)n =
[2(1− α)n]!

[(1− α)n]![(1− α)n]!

[αn]![(1− α)n]!

n!
2(3α−2)n

=
[2(1− α)n]![αn]!

[(1− α)n]!n!
2(3α−2)n

Recall that for all integers k the following is true by Sterling’s formula:

√
2π
√
k

(
k

e

)k
≤ k! ≤ e

√
k

(
k

e

)k
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We can absorb the factors of
√

2π and e in front into a small constant term less than 2. Note

that since each factorial is a constant multiple of n, then the
√
k term also yields a constant term,

so we only need to compute the (k/e)k terms. This gives

[2(1− α)n/e]2(1−α)n[αn/e]αn

[(1− α)n/e](1−α)n[n/e]n
2(3α−2)n =

(
[2(1− α)n/e]2(1−α)[αn/e]α

[(1− α)n/e](1−α)[n/e]1
2(3α−2)

)n

We just need to show that the base is a constant bounded away from 1. Collecting terms in this,

we obtain

22(1−α)[1− α]2(1−α)[n/e]2(1−α)αα[n/e]α[1− α]−(1−α)[n/e]−(1−α)[n/e]−123α−2

= [n/e]2(1−α)n−(1−α)+α−1[1− α]2(1−α)−(1−α)αα22(1−α)+3α−2

= (1− α)1−ααα2α

Taking log2 we obtain (1 − α) log2(1 − α) + α log2 α + α ≤ −0.0613 when α ≤ 3/4, so the

probability of success is bounded by 2
20.0613n .

Finally in case 3, substituting m = n/2 in the expression (3.1) gives

(
n/2

(α− 1/2)n

)
(
n

αn

) 2(α−1/2)n =
[n/2]!

[(1− α)n]![(α− 1/2)n]!

[αn]![(1− α)n]!

n!
2(α−1/2)n

=
[n/2]![αn]!

n![(α− 1/2)n]!
2(α−1/2)n

Applying the Sterling approximation, we obtain

56



[n/e]n/22−n/2[αn/e]αn

[n/e]n[(α− 1/2)n/e](α−1/2)n
2(α−1/2)n =

(
[n/e]1/22−1/2[αn/e]α

[n/e]1[(α− 1/2)n/e](α−1/2)
2(α−1/2)

)n

The base of the exponent is

[n/e]1/2+α−1−(α−1/2)[α]α[α− 1/2](1/2−α)2α−1 = αα(α− 1/2)1/2−α2α−1

Again taking log2 we obtain the condition (1/2 − α) log2(α − 1/2) + α logα + α − 1 < 0,

which is satisfied when α < 0.774. This does not give much of an improvement over the previous

constraint of α ≤ 3/4, so we state our final result just in that regime.

Apply a union bound of this probability over all (Q + 2n)2 pairs of symbolic polynomials to

get the statement in the theorem.

Lemma 3.4.6. For an adversary A in the generic group model which makes Q queries to the

generic group oracle,

|PrC←Dn,GM ,O,A[AGM (OGM (C, 1n)) = P (C)]−PrC←Dn,GEO,A[AGE(OGE(C, 1n)) = P (C)]

≤ 1

20.0613n

Proof. Uses Lemmas 3.4.2 (recalling that the statement also holds for the pair GM ,GE) and 3.4.5

plugged into the reduction from Lemma 3.4.1.

From Lemma 3.4.2 (recalling that the statement also holds for the pair GM ,GS) we have that:

Pr[AGM (OGM ) = 1] = Pr[AGE(OGE) = 1]

as long as all queries to the generic group oracles are identical as defined in Definition 11.
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Lemma 3.4.3 tells us that the probabilities of all queries not being identical during the simulta-

neous oracle game between (GM ,GE) is at most 2
20.0613n .

Therefore, the difference Pr[AGE(OGE) = 1]−Pr[AGM (OGM ) = 1] is at most 2
20.0613n , and so

an adversary’s advantage in the simultaneous oracle game between (GM ,GE) and (GM ,GM) is:

Pr[AG∗(OG∗) = G∗] = Pr[G∗ = GE] Pr[AGE(OGE) = 1]

+ Pr[G∗ = GM ] Pr[AGM (OGM ) = 0]

=
1

2
+

1

2
(Pr[AGE(OGE) = 1]−Pr[AGM (OGM ) = 1])

≤ 1

2
+

2

20.0613n

This, plugged into the reduction from Lemma 3.4.1, tells us that for all adversaries:

∣∣∣Pr[AGM (OGM ) = 1]− Pr[AGE(OGE) = 1]
∣∣∣ ≤ 1

20.0613n

Theorem 14. The obfuscator for pattern matching with wildcards defined in Section 3.3 satisfies

distributional VBB security for the ensemble of uniform distributions over {0, 1}n.

Proof. For any adversaryA in the Distributional VBB game (in the generic group model), consider

the following Simulator S which simply runs A on input produced by and interacted with like in

Oracle End and outputs the same. Note that none of the behavior in Oracle End is dependent on the

actual function f~y,W obfuscated. Therefore a simulator with no access to the function f~y,W drawn

from the distribution is able to simulate A as described.

S then perfectly simulates the behavior of A interacting with oracle OE:

PrC←Dn,S [SC(1|C|, 1n) = P (C)] = PrC←Dn,GE ,O,A[AGE(OGE(C, 1n)) = P (C)]

From Lemma 3.4.6, we have that the difference in output probabilities betweenAGE(OGE) and
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AGM (OGM ) in the distributional VBB game in the generic group model is at most 1
20.0613n :

|PrC [AGE(OGE(C, 1n)) = P (C)]−PrC [AGM (OGM (C, 1n)) = P (C)]| ≤ 1

20.0613n

From Lemma 3.4.4, we have that the difference in output probabilities between AGM (OGM )

and AGS(OGS) in the distributional VBB game in the generic group model is at most
(Q+ 2n)2

2n
:

|PrC [AGM (OGM (C, 1n)) = P (C)]−PrC [AGS(OGS(C, 1n)) = P (C)]| ≤ (Q+ 2n)2

2n

Now, recall that GS faithfully instantiates O in the generic group model. Therefore, using the

triangle inquality we have:

|PrC←Dn,G,O,A[AG(OG(C, 1n)) = P (C)]−PrC←Dn,S [SC(1|C|, 1n) = P (C)]|

≤ (Q+ 2n)2

2n
+

1

20.0613n
= negl(n)

since the number of an adversary’s generic group queries Q is a polynomial function of n and so

O satisfies distributional VBB security in the generic group model.
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Chapter 4: Non-statistical algorithms in machine learning

Modern machine learning is primarily based on the statistical convergence properties of stochas-

tic gradient descent and its variations. However, empirically it has been observed that stochastic

gradient descent exhibits optimization bias which is not reflected in the scalar loss objective func-

tion itself. This has led to research and discussion on whether sharpness or flatness of the Hessian

near the solution is a desirable property for generalization [70]. In this chapter, we first investi-

gate this bias mathematically using nonisotropic stochastic differential equations. We show that

stochastic gradient descent has an optimization bias which arises from the nonconstant covariance

term, resulting in convergence to a stationary point different from the local minima of the scalar

objective function itself.

We then investigate alternative approaches to solving parameter recovery problems which are

not rooted in statistical loss minimization. Our goal is to construct provable algorithms for non-

convex optimization problems which were previously solved using iterative methods such as EM.

These techniques avoid issues with non-statistical optimization biases of the stochastic gradient

descent algorithm. We demonstrate the use of Lenstra-Lenstra-Lovasz lattice basis reduction algo-

rithm for solving two discrete parameter recovery problems. This work was previously published

in [6] and [7] and demonstrates the value of cryptanalysis tools for solving certain types of machine

learning problems.

4.1 Analysis of bias in stochastic optimization

Empirical studies have shown that the solutions returned by stochastic gradient descent seem

to exhibit additional properties not explicitly present in the objective function itself. SGD seems

to concentrate around minima where the spectrum of the Hessian is sparse [71], and thus the
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minima is "flat" in most directions. There is some evidence to suggest these flat minima lead to

better generalization performance, and modifications of stochastic gradient descent designed to

explicitly maximize flatness have been studied empirically [72].

[73] introduced a framework for modeling the stochastic gradient descent algorithm as a continuous-

time stochastic differential equation. Following that there has been a steady stream of work

trying to glean insight in the behavior of stochastic gradient descent from this diffusion frame-

work [74][75]. However these papers make the simplifying assumption that the diffusion matrix

is isotropic (a scalar multiple of the identity), and the behavior of the diffusion process with a

nonconstant, nonisotropic matrix is far more interesting, albeit mathematically challenging.

The physics community has been trying to understand the stationary behavior of such processes

for a long time, and recently there has been a line of work developing a new theory of A-type

stochastic integration for computation of the implicit potential arising from a stochastic differen-

tial equation by a stationary analysis [76]. Recently [77] compares the Fokker-Planck equation

derived by A-type stochastic integration with the Fokker-Planck equation arising from the usual

Ito integral in order to obtain an explicit functional form for the difference between the implicit

gradient and the function gradient. While their result is very general, it relies on the assumption

that two Fokker-Planck equations with the same stationary distribution must be the same equation.

Indeed the implication is only one way - given a FP-equation, its stationary distribution is uniquely

determined, but conversely a stationary distribution does not uniquely determine a FP equation.

In our work, we seek a dynamical description of the stochastic gradient descent iterates rather

than a stationary analysis. We start by giving a complete picture of the behavior in one dimension

from a simple derivation from first principles and show that:

1. SGD can be rewritten as Langevin diffusion with respect to a different implicit potential

function.

2. SGD with a large enough constant step size concentrates around the minima of the implicit

potential function, which are different from the minima of the original objective function.
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3. The implicit potential function obtained from this purely Ito integration perspective is not

the same as that obtained from using results from A-type stochastic integration.

In contrast to the claim by [77], in this case the difference between the function minima and

the implicit minim arises purely from the nonconstant diffusion term, since in one dimension the

antisymmetric component is necessarily zero. Note that claim (1) goes beyond just a stationary

analysis of the implicit potential function; we compute the exact form of the implicit gradient

and the scaling in order for a Langevin diffusion process with unit covariance to track stochastic

gradient descent.

The implicit potential function we derive is different from that described by [77]. Using

the temperature β = 2, the implicit gradient we derive is f ′(z)+D′(z)/4√
D(z)

, whereas [77] obtains

f ′(z)+D′(z)/2
D(z)

. Empirically we show on a toy example that Langevin diffusion with our implicit

potential actually tracks stochastic gradient descent closely, whereas Langevin diffusion with the

potential function of [77] exhibits very different behavior. The square root term in the denominator

makes this potential function flatter with respect to the stochastic gradient noise.

Following the one dimensional picture, we point out some directions for future work to extend

this analysis to the general multivariate case.

4.1.a Stochastic differential equations

Let p(x) be a distribution over data points x. The stochastic gradient descent update with step

size α can be written as

zt+1 = zt − α E
x∼p

[
∇`(x; zt)

]
+ α

(
E
x∼p

[
∇`(x; zt)

]
−∇`(xt; zt)

)

where xt ∼ p is a sample drawn at time t. This is a Euler discretization of the following

continuous-time diffusion process
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dz = A(z) dt+B(z) dw (4.1)

where dw represents integration with respect to Brownian motion, and the quantities A(z) and

B(z) are given by

A(z) = −α E
x∼p

[
∇f(x; z)

]
= −α∇f(z)

B(z)B(z)T = E
x∼p

[
α2

(
E
x∼p

[
∇`(x; z)

]
−∇`(x; z)

)⊗2
]

=
α2

N

N∑
i=1

∇`(xi; z)⊗2 − α2

 1

N

N∑
i=1

∇`(xi; z)

⊗2

=: D(z)

where D(z) is the empirical covariance matrix of the data points.

Lemma 4.1.1 (Fokker-Planck Equation). For any diffusion equation dz = A(z)dt + B(z)dw, the

time evolution of the probability density ρ(z) is given by the Fokker-Planck equation:

∂ρ(z)
∂t

= −
d∑
i=1

∂

∂zi

[
Ai(z)ρ(z, t)

]
+

1

2

d∑
i,j=1

∂2

∂zi∂zj

[
Dij(z)ρ(z, t)

]
(4.2)

The limiting stationary distribution is obtained by solving for the steady-state condition for

ρ(z, t):

0 = −
N∑
i=1

∂

∂zi

[
Ai(z)ρ(z, t)

]
+

1

2

N∑
i,j=1

∂2

∂zi∂zj

[
Dij(z)ρ(z, t)

]
An important result in transforming stochastic differential equations is the stochastic chain rule,

also known as Ito’s Lemma. Here we state the one-dimensional result where A,B are both scalar
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functions.

Lemma 4.1.2 (Ito’s Lemma). Let dz = A(z)dt + B(z)dw be a diffusion equation in one dimen-

sion. Let g(z) be a twice-differentiable scalar function. Then the stochastic differential equation

describing the evolution of g(z) is given by

dg =

(
∂g

∂t
+ A(z)

∂g

∂z
+
B(z)2

2

∂2g

∂z2

)
dt+B(z)

∂g

∂z
dw (4.3)

The condition for the stationary distribution is

0 =
∂ρ

∂t
=

∂

∂z

([
∂f

∂z
ρ(z)

]
+

1

2

∂

∂z
[
D(z)ρ(z)

])

c =

[
∂f

∂z
ρ(z, t)

]
+

1

2

∂

∂z
[
D(z)ρ(z)

]
=: S(z)

for some constant c, where S(z) is a quantity called the probability current that must be constant

in one dimension. Because the usual parameter domain in machine learning is unbounded, then

this means the probability current must be exactly 0 in order for the distribution to be normalizable.

If the normalization D(z) = 1 has already been done, then this reduces to the Gibbs distribution:

0 =
∂f

∂z
ρ(z, t) +

1

2

∂ρ

∂z

ρ(z) = exp
(
−2f(z)

)
4.1.b Analysis for one-dimensional SGD

In this section we will characterize the effect of the nonhomogeneous term D(z) on both the

infinitesimal dynamics as well as the limiting stationary distribution.

The diffusion scalar in one dimension is particularly simple - it just modulates the magnitude
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of the random noise term arising from Brownian motion. If D(z) = D were constant, we could

just divide it out of the entire diffusion equation, normalizing it to obtain

dz̃ = −A(z̃)√
D
dt+ dw

This describes a stochastic differential equation that is essentially slowed down by a factor of
√
D from the original equation. The distribution of sample paths of z̃ is exactly the same as that of

z, only the speed at which the diffusion travels along the path is changed.

To understand the behavior of stochastic gradient descent with nonhomogeneous variance, we

will apply the same normalization idea to transform the stochastic differential equation (4.1) into

one where B(z̃) = 1 is constant.

As done in [78], define the change of variables

z̃ = g(z) =

∫ z

z0

dz√
D(z)

(4.4)

Note that dz̃ has the same sign as dz since the scaling term 1/
√
D(z) is always positive. Thus

the path taken by z̃ is a scaled path taken by z.

By Ito’s Lemma (4.3) the evolution of z̃ is given by

dz̃ =

(
∂g

∂t
+
∂A

∂z

∂g

∂z
+
B(z)2

2

∂2g

∂z2

)
dt+B(z)

∂g

∂z
dw

=

∂A
∂z

1√
D(z)

+
D(z)

2

∂

∂z

[
1√
D(z)

] dt+B(z)
1√
D(z)

dw

=
1√
D(z)

∂

∂z

[
A(z)− 1

4
D(z)

]
(z)dt+ dw

This gives an equivalent Langevin equation with an isotropic noise term. We now substitute

the description of stochastic gradient descent into the functions A(z), B(z) to obtain
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dz̃ = − 1√
D̂(z)

∂

∂z

[
f(z) +

α

4
D̂(z)

]
dt+ dw (4.5)

We immediately notice that the dynamics are not gradient descent of f , but rather look more

like gradient descent with respect to the function f(z) +αD̂(z)/4 with step size 1/

√
D̂(z). In one

dimension we can write this diffusion term as

D̂(z) =
1

N

N∑
i=1

f ′(xi; z)2 − f ′(z)2

D̂′(z) =
2

N

N∑
i=1

f ′(xi; z)f ′′(xi; z)− 2f ′(z)f ′′(z)

This suggests that stochastic gradient descent is actually implicitly a second-order optimization

algorithm whose gradient steps are of the form

∆z =
1√
D(z)

−f ′(z) +
α

2
f ′(z)f ′′(z)− 2α

N

N∑
i=1

f ′(xi; z)f ′′(xi; z)

 (4.6)

We can write the implicit potential function of stochastic gradient descent as a formal path

integral of the gradient

Φ(z) =

∫ z

z0

f ′(v) + αD̂′(v)/4√
D̂(v)

dv

where the choice of z0 does not matter as long as D(z) does not vanish anywhere in the pa-

rameter space. Note that in the d = 1 case, this condition holds as long as there are more than 3

distinct data points and the function f has no singularities (which is usually the case).
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Figure 4.1: Function value Figure 4.2: Function gradient Figure 4.3: Implicit gradient

This suggests that stochastic gradient descent with a fixed step size of α does not actually

concentrate around the true minima of the function, but rather around a minima of a different im-

plicit function. Note that there is no contradiction with classical convergence results of stochastic

optimization, since those require a decaying step size which satisfies
∑∞

t=1
1
α2
t
<∞.

4.1.c Empirical observations of the implicit gradient

We consider the function f(x; z) = (zx − 1)2(zx + 1)2 + (zx − 1) with three data points

x ∈ {0.5, 0.7, 1}. This function has a local minima at approximately 0.94 and a global minima at

approximately −1.29 and is plotted in Figure (4.1).

Figure 4.4: Trajectories taken by scaled SGD and
the equivalent normalized Langevin diffusion

Figure 4.5: Trajectory taken by Langevin diffu-
sion obtained from A-type stochastic integration

We show some empirical evidence that the implicit update rule derived in (4.6) tracks the

actual trajectory taken by SGD. We initialize both algorithms at the local maxima at z ≈ 0.3475

and run both algorithms with step size α = 0.1. The updates of SGD are scaled by 1/
√
D(z)
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according to the scaling derived in (4.4). Figure (4.4) shows that the trajectory of the equivalent

Langevin diffusion update closely tracks the trajectory of stochastic gradient descent. In contrast,

Figure (4.5) shows that the implicit potential function obtained from A-type stochastic integration

eventuallys converge to the same location but has very different initial behavior.

The learning rate α = 0.1 for these examples is chosen to be as large as possible while still

maintaining stability of the learning problem, and this is in line with the usual way learning rates

are chosen.

4.1.d Characterization of the limiting stationary distribution

The formal stationary distribution can be computed by using the implicit potential function in

the Gibbs distribution:

ρss(z) ∝ exp

−2

∫ z

z0

f ′(v) + D̂′(v)/4√
D̂(v)

dv


To better understand the behavior of this potential, we can also analyze the stationary condition

of the non-normalized form of the 1-dimensional steady-state Fokker-Planck equation (4.2):

0 =
∂

∂z

[
∂f

∂z
ρ(z, t)

]
+
α

2

∂2

∂z2

[
D̂(z)

∂ρ

∂z

]

The 1D Fokker-Planck equation becomes the following homogeneous second-order differential

equation:

∂ρ

∂t
= αLρ(z)
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Figure 4.6: Discriminant Figure 4.7: At global minimum Figure 4.8: At local minimum

where

L =
α

2
D̂(z)

∂2

∂z2
+
(
f ′(z) + αD̂′(z)

) ∂

∂z
+

(
f ′′(z) +

1

2
αD̂′′(z)

)

thus the characteristic polynomial of this differential equation is

P (λ) =
α

2
D̂(z)λ2 +

(
f ′(z) + αD̂′(z)

)
λ+

(
f ′′(z) +

1

2
αD̂′′(z)

)

The roots of the characteristic polynomial are given by the quadratic formula

λ =
−f ′(z)− αD̂′(z)±

√(
f ′(z) + αD̂′(z)

)2

− 2αD̂(z)
(
f ′′(z) + α

2
D̂′′(z)

)
α2D̂(z)2

The sign of the discriminant

(
f ′(z) + αD̂′(z)

)2

− 2αD̂(z)

(
f ′′(z) +

α

2
D̂′′(z)

)
(4.7)

characterizes the solution to the stationary condition. A positive discriminant corresponds to a real

root λ which yields the Gibbs distribution. A negative discriminant corresponds to a complex root

λ which introduces sinusoidal terms.

As seen from Figure (4.6), the discriminant is positive throughout most of the parameter space

and is positive at the function’s actual local minima. However, at both of the implicit local minima
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(where the implicit gradient equals zero), the discriminant is actually negative.

Thus the stationary distribution of stochastic gradient descent around the minima of the func-

tion that it implicitly minimizes is not a pure Gibbs distribution. The roots λ1, λ2 are complex

conjugate pairs ν(z) ± iµ(z) for real-valued functions ν, µ, so the stationary distribution can be

written a combination of the two fundamental solutions eν(zt) cos(µ(zt)) and eν(zt) sin(µ(zt)).

Next we compare the stationary distributions achieved by stochastic gradient descent and the

equivalent normalized Langevin diffusion. We run both algorithms over a cover of 2000 samples

initialized uniformly in the interval [−2, 2] at intervals of 0.001. The same step size of α = 0.1

is used, but this time we do not scale the updates of SGD, because we are only interested in

the stationary distribution. The stationary distributions are plotted around the global minimum at

≈ 1.34.

Figure (4.9) shows the stationary distribution of stochastic gradient descent algorithm. Figure

(4.10) shows the stationary distribution of the normalized Langevin diffusion equation derived

from the stochastic gradient descent update. Note that both distributions are skewed towards the

right of the true global minima.

Figure (4.11) shows the stationary distribution of the unnormalized Langevin diffusion equa-

tion, which is just the constant D approximation studied in previous results. Here independent,

identical Gaussian noise is added to each full gradient descent step, so as expected the distribution

looks like a Gaussian around the function’s true global minimum. Note the stark contrast between

the stationary behavior of SGD from this distribution.

Using instead a very small step size (e.g. α = 0.01) causes the stationary distribution of both

stochastic gradient descent and normalized Langevin diffusion to look exactly like Figure (4.11).

The concentration around the implicit potential function’s minima is exclusively a large step size

phenomenon.
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Figure 4.9: Stochastic gradient
descent

Figure 4.10: Normalized
Langevin diffusion

Figure 4.11: Unnormalized
Langevin diffusion

4.2 The correspondence retrieval problem

In (the real-variant of) the phase retrieval problem, an unknown vector x ∈ Rd is to be re-

covered, up to sign, from magnitudes of projections
∣∣〈wi,x〉

∣∣ onto n known measurement vectors

w1,w2, . . . ,wn ∈ R
d. The phase retrieval problem has a rich history in several engineering

and scientific domains, especially when the wi are Fourier basis vectors [see, e.g., 79, 80, for

an overview]. The setting where the wi are independent draws from certain probability distri-

butions has been intensely studied in the past several years. Many algorithms based on numer-

ical optimization (e.g., semidefinite programming, local optimization of convex and non-convex

objectives) have been proven to solve the problem with high probability when provided enough

measurements [81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96].

In this paper, we consider a generalization of phase retrieval, which we call correspondence

retrieval: a set of k distinct but unknown points x1,x2, . . . ,xk ∈ Rd are to be recovered from the

unordered collection of projection values 〈wi,x1〉, 〈wi,x2〉, . . . , 〈wi,xk〉 onto n known measure-

ment vectorsw1,w2, . . . ,wn. Importantly, the correspondence of the k projections {〈wi,xj〉}kj=1

across different measurements is unknown. Phase retrieval, as described above, is the special case

where k = 2 and x1 = −x2; the two real numbers corresponding to each measurement are additive

inverses (〈wi,x1〉 and 〈wi,x2〉 = −〈wi,x1〉).

We propose an algorithm for the case of independent standard Gaussian measurement vectors.

For general k, the algorithm correctly recovers the unknown points with high probability from
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n = d + 1 measurements, assuming that the points are linearly independent. For the phase re-

trieval setting, a variant of the algorithm has the same guarantee without the linear independence

assumption. Our algorithms are based on reductions to the Shortest Vector Problem [97] on cer-

tain random lattices; we prove that vectors provided by the Lenstra-Lenstra-Lovász basis reduction

algorithm [henceforth LLL; 98] yield to the correct solution for the correspondence retrieval prob-

lem. Our reduction generalizes an algorithm of [99] for solving random instances of the Subset

Sum Problem [100, pg. 223]. We note that [101] establish the hardness of the phase retrieval via

reduction from the Subset Sum Problem. Our algorithmic result can be viewed as a reduction in

the other direction.

In the phase retrieval setting, our results show a gap between the number of measurement

vectors required for all vectors x ∈ Rd to be recoverable, and the number of random measurements

sufficient for any particular vector to be recoverable. This is the same distinction between the “for

all” and “for each” guarantees studied in the context of compressive sensing [102]. [103] prove

that n = 2d − 1 measurement vectors are necessary for the “for all” guarantee, and also that the

same number of typical measurement vectors are sufficient. Previous algorithmic results for phase

retrieval require n ≥ Cd for some sufficiently large constant C ≥ 2 or even n ≥ dpoly log(d).

Our algorithmic result has the “for each” guarantee: the n = d+ 1 measurements suffice with high

probability for the particular unknown vector of interest. Note that in the general correspondence

retrieval problem, each measurement is comprised of k unordered real numbers, so the sufficiency

of d+ 1 measurements even when k > 2 is sensible.

We also describe an algorithm that works even when the measurements are corrupted by addi-

tive mean-zero Gaussian noise.1 The algorithm is essentially the same as one proposed by [104]

for the related parameter estimation problem in the mixtures of linear regressions model; the main

technique used is the method-of-moments and orthogonal tensor decomposition [105]. We ob-

serve that the moments used in the algorithm are invariant to the noise variance, and hence the

algorithm is noise-robust in this sense. However, the number of measurements required by this

1In phase retrieval, noise is typically added to the square (magnitude)
∣∣〈wi,x〉

∣∣2 of the projections [86, 82]. In our
setting, independent noise is added to the k projections {〈wi,xj〉}kj=1 themselves.
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algorithm, even when the noise is absent, is larger than that of the lattice-based algorithm. The

moment-based algorithm appears to ignore consistency constraints across measurements that the

lattice-based algorithm is able to exploit.

4.2.a Setting and notations

This section describes the correspondence retrieval problem, notations and results concerning

lattices and tensors, and the non-degeneracy condition required by the proposed algorithms.

Correspondence retrieval problem

In an instance of the correspondence retrieval problem, k distinct but unknown points in Rd,

denoted by x1,x2, . . . ,xk ∈ Rd, are revealed through collections of noisy linear measurements.

The n measurement vectors, denoted by w1,w2, . . . ,wn, are i.i.d. random vectors in Rd with

the standard multivariate Gaussian distribution N(0, Id×d). For each i ∈ {1, 2, . . . , n}, the i-th

measurement is the unordered (multi-)set of k (Euclidean) inner products between wi and the k

points, corrupted by additive zero-mean Gaussian noise with variance σ2:

Mσ
i := {〈wi,x1〉+ σεi,1, 〈wi,x2〉+ σεi,2, . . . , 〈wi,xk〉+ σεi,k} ,

where the {εi,j}1≤i≤n,1≤j≤k are i.i.d. N(0, 1) random variables. The noiseless version of the prob-

lem has σ2 = 0, and the measurements are denoted byMi :=M0
i for i ∈ {1, 2, . . . , n}.

The goal is to (approximately) reconstruct the set of k unknown points {x1,x2, . . . ,xk} (i.e.,

reconstruct up to reordering), from the data (w1,Mσ
1 ), (w2,Mσ

2 ), . . . , (wn,Mσ
n).

Notations

The firstm positive integers are denoted by [m] := {1, 2, . . . ,m}. The Euclidean inner product

between vectors u and v is denoted by 〈u,v〉, and the Euclidean norm is‖v‖2 :=
√
〈v,v〉. The

i-th largest singular value of a matrix M is denoted by σi(M ); the spectral norm (i.e., largest

singular value) is also denoted by‖M‖2.
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Lattices

An ordered basis B = [b1|b2| · · · |bn] ∈ R
m×n, arranged as columns in a rank n matrix,

generates a lattice

Λ(B) :=


n∑
i=1

zibi : z1, z2, . . . , zr ∈ Z

 ⊂ R
m ,

where Z denotes the set of integers. The Shortest Vector Problem is to find the shortest non-zero

vector in the lattice:

arg min
v∈Λ(B)\{0}

‖v‖2 .

The length of the shortest vector is denoted by λ(B).

Current techniques for this problem involve “reducing” the input basis B so that it is at least

somewhat well-conditioned in a certain sense. [98] show that the first vector b1 in a suitably

reduced basisB has length at most 2(n−1)/2 · λ(B). They also give an algorithm (LLL) that, given

a basis B ∈ Zm×n with integer coefficients, computes a reduced basis B′ with Λ(B′) = Λ(B) in

time polynomial in m, n, and log(‖B‖∞), where‖B‖∞ denotes the magnitude of the largest entry

inB. In this sense, LLL is a 2(n−1)/2-approximation algorithm for the Shortest Vector Problem.

An important concern with the use of LLL on bases with real-valued coefficients is numerical

precision. There are two cases where precision needs to be considered: precision in the mea-

surements, and precision in the internal arithmetic operations in LLL. We discuss these issues in

Appendix 4.2.f. To simplify the foregoing discussion, we assume that LLL may be run on input

bases with real-valued coefficients.

Tensors

For a positive integer p, a real order-p tensor T ∈
⊗p

i=1R
n is a p-linear function T : Rn ×

R
n × · · · × Rn → R. We only require tensors of order two (i.e., matrices) and order three. The
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rank-one tensor v1 ⊗ v2 ⊗ · · · ⊗ vp, for vectors v1,v2, . . . ,vp ∈ R
n, is the p-linear function

satisfying

(v1 ⊗ v2 ⊗ · · · ⊗ vp)(u1,u2, . . . ,up) = 〈v1,u1〉〈v2,u2〉 · · · 〈vp,up〉 , u1,u2, . . . ,up ∈ Rn .

We use the shorthand notation v⊗p for v ∈ Rn to denote the (symmetric) rank-one tensor v ⊗

v ⊗ · · · ⊗ v ∈
⊗p

j=1R
n. For p = 2, this is the symmetric outer product of a vector: v⊗2 =

vv>. We may also identify a tensor T ∈
⊗p

i=1R
n with a multi-index array of np real numbers;

the (i1, i2, . . . , ip)-th entry is T (ei1 , ei2 , . . . , eip), where e1, e2, . . . , en are the standard coordinate

basis vectors for Rn.

Non-degeneracy conditions

Arrange the k unknown points in the matrix X := [x1|x2| · · · |xk] ∈ Rd×k. Our main algo-

rithms requireX to have rank(X) = k—i.e., the points must be linearly independent.

We measure how ill-conditioned X is in two ways. The first is based on the singular values

σ1(X) ≥ σ2(X) ≥ · · · ≥ σk(X) of X , primarily through the ratio κ(X) := σ1(X)/σk(X).

The second is λ(X), the length of the shortest non-zero vector in the lattice Λ(X). The quantities

κ(X) and λ(X) are related in the following proposition, which is proved in Appendix 4.2.h.

Proposition 4.2.1. λ(X) ≥ mini∈[k]‖xi‖2 · 2κ(X)/(κ(X)2 + 1).

For k = 2 (the phase retrieval setting), a variant of our lattice-based algorithm requires x1 6=

x2, but permits the points to be linearly dependent.

4.2.b Noiseless correspondence retrieval

This section describes lattice-based algorithms for the noiseless correspondence retrieval prob-

lem.
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Algorithm description

Our main algorithm, specified in Algorithm 1, is based on reductions to the Shortest Vector

Problem in lattices. Using information from d + 1 measurements and the input parameter β > 0,

the algorithm constructs k lattice bases with the following properties. First, for each t ∈ [k], the

only short vectors in the t-th lattice reveal which elements in the first d measurements correspond

to the unknown vector xt. Second, when β is sufficiently large, all other vectors in the lattices

are longer by exponentially-large factors. This lattice construction is based on the algorithm of

[99] for solving random instances of the Subset Sum Problem via reduction to the Shortest Vector

Problem. Our algorithm similarly approximately solves these Shortest Vector Problem instances

using LLL to obtain the correspondence information, and then recovers all of the k unknown points

by solving systems of linear equations from the first d measurements.

Main result and analysis

The main performance guarantee for Algorithm 1 is given in Theorem 20 below.

Theorem 15. AssumeX = [x1|x2| · · · |xk] ∈ Rd×k has rank(X) = k. For any δ ∈ (0, 1), if

β ≥
16 ·

(
2 · 2dk/2 ·

√
d+ 1 + 1

)dk+1

· 2dk/2 · d ·
√
d+ 1 ·

(
2
√
d+

√
2 ln(8/δ)

)
· k2

π · δ2 · λ(X)
,

then with probability at least 1− δ, Algorithm 1 returns {x1,x2, . . . ,xk}.

Numerical issues and running time are discussed in Appendix 4.2.f. The rest of this subsub-

section is devoted to the proof of Theorem 20.

Let R := 2dk/2 ·
√
d+ 1, and let ZR := {(z0, z) ∈ Z × Zdk : 0 < z2

0 +‖z‖2
2 ≤ R2}. For

δ ∈ (0, 1), define

rδ :=

√√√√√π

2
·
(

δ

k|ZR|

)2

·
λ(X)2 · π

2
·
(

δ
2dk|ZR|

)2

(
2
√
d+

√
2 ln(4/δ)

)2 .
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Algorithm 1 Lattice-based algorithm for noiseless correspondence retrieval

input Data (wi,Mi) for i ∈ [d+ 1], parameter β > 0.
output Set of points {x̂1, x̂2, . . . , x̂k}, or “failure”.

1: ifW := [w1|w2| · · · |wd]
> is singular then

2: return “failure”.
3: end if
4: Let yi,1, yi,2, . . . , yi,k be an arbitrary ordering the elements ofMi, for each i ∈ [d+ 1].
5: Define a = (ai,j : i ∈ [d], j ∈ [k]) ∈ Rdk by

ai,j := 〈wd+1, w̃i〉yi,j ,

where w̃i is the i-th column ofW−1.
6: for t = 1, 2, . . . , k do
7: Construct basis

B(t) =
[
b

(t)
0 b

(t)
1,1 · · · b

(t)
d,k

]
:=

[
Idk+1

βyd+1,t −βa>

]
∈ R

(dk+2)×(dk+1) .

8: Let L(t)(ẑ0, ẑ) := ẑ0b
(t)
0 +

∑
i,j ẑi,jb

(t)
i,j ∈ Λ(B(t)) for (ẑ0, ẑ) ∈ Z × Zdk be the vector

returned by LLL as an approximate solution to Shortest Vector Problem for Λ(B(t)).
9: if the (dk + 2)-th coordinate of L(t)(ẑ0, ẑ) is non-zero then

10: return “failure”.
11: end if
12: Let x̂t be a solution to the system of linear equations (in x ∈ Rd)

〈wi,x〉 = yi,j , (i, j) ∈ [d]× [k] � ẑi,j 6= 0 ,

or 0 if no solution exists.
13: end for
14: return x̂1, x̂2, . . . , x̂k.

The coefficient vectors in ZR include all those that could potentially determine lattice vectors in

Λ(B(t)) for t ∈ [k] with length at most R. Below, we prove that these lattice vectors either provide

the correspondence information needed to recover the unknown points (and have length� R), or

they have length more than βrδ with high probability. A crude bound on the cardinality of ZR is

|ZR| ≤
∣∣{−bRc,−bRc+ 1, . . . , bRc − 1, bRc}

∣∣dk+1 ≤
(

2 · 2(dk+1)/2 ·
√
d+ 1 + 1

)dk+1

.

For each i ∈ [d], let πi : [k]→ [k] denote the (unknown) permutation on [k] that determines the
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arbitrary ordering ofMi from Algorithm 1:

yi,j = 〈wi,xπi(j)〉 , i ∈ [d], j ∈ [k] .

Also, for δ ∈ (0, 1), let Eδ be the event that

1. the smallest singular value ofW is bounded from below: σd(W ) ≥ δ/(4
√
d);

2. the spectral norm ofW is bounded from above:‖W ‖2 ≤ 2
√
d+

√
2 ln(4/δ);

3. for each i ∈ [d], j ∈ [k], and (z0, z) ∈ ZR such that |zi,j − z0|+
∑

j′ 6=j |zi,j′| > 0,

〈
wi, (zi,j − z0)xπi(j) +

∑
j′ 6=j

zi,j′xπi(j′)

〉2

≥ λ(X)2 · π
2
·
(

δ

2dk|ZR|

)2

. (4.8)

This event characterizes the properties needed from the first d measurements; Lemma 4.2.2 shows

that it has large probability mass. The proof, given in Appendix 4.2.h, is based on known properties

of Gaussian random matrices.

Lemma 4.2.2. For any δ ∈ (0, 1), Pr (Eδ) ≥ 1− δ.

We now show in Lemma 4.2.3 that, for each t ∈ [k], there is a relatively short vector in Λ(B(t))

that provides the correspondence information needed to recover xt. We also show in Lemma 4.2.4

that when β is sufficiently large, other vectors in Λ(B(t)) are considerably longer, and hence cannot

be returned by LLL.

To simplify notation, assume that πd+1(j) = j for each j ∈ [k], so we have yd+1,t = 〈wd+1,xt〉

for each t ∈ [k]. Using this notation, define z(t) = (z
(t)
i,j : i ∈ [d], j ∈ [k]) ∈ Zdk for each t ∈ [k]

by

z
(t)
i,j :=


1 if πi(j) = t ,

0 otherwise .

Recall that for each t ∈ [k], the lattice vector in Λ(B(t)) determined by coefficient vector (z0, z) ∈
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Z× Zdk is denoted by

L(t)(z0, z) = z0b
(t)
0 +

∑
i,j

zi,jb
(t)
i,j .

Observe that the coefficient vector (z0, z) is revealed in the first dk + 1 coordinates of the lattice

vector L(t)(z0, z); the final coordinate of the lattice vector is used to make some vectors very long.

Lemma 4.2.3. On the event Eδ, for each t ∈ [k], yd+1,t = 〈wd+1,xt〉 =
∑

i,j ai,jz
(t)
i,j . Also on this

event, for each t ∈ [k],

L(t)(1, z(t)) =


1

z(t)

−βyd+1,t + β
∑

i,j ai,jz
(t)
i,j

 =


1

z(t)

0

 ,

∥∥L(t)(1, z(t))
∥∥

2
=
√
d+ 1 .

Proof. Assume Eδ holds, which guarantees the existence of W−1 and thus permits the w̃i to be

well-defined. In this event,
∑d

i=1 w̃iw
>
i = W−1W = Id. Therefore,

∑
i,j

ai,jz
(t)
i,j =

d∑
i=1

k∑
j=1

〈wd+1, w̃i〉〈wi,xπi(j)〉z
(t)
i,j

=
d∑
i=1

〈wd+1, w̃i〉〈wi,xt〉

= w>d+1

 d∑
i=1

w̃iw
>
i

xt = 〈wd+1,xt〉 .

The claim now follows by direct computation, using the above identity and the definition of z(t).

Lemma 4.2.4. For any δ ∈ (0, 1), conditional on the event Eδ, with probability at least 1− δ (over

the choice of wd+1), for each t ∈ [k], every coefficient vector (z0, z) ∈ Z × Zdk that is not an
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integer multiple of (1, z(t)) satisfies

∥∥L(t)(z0, z)
∥∥

2
> min

{
R,

√
z2

0 +‖z‖2
2 + β2r2

δ

}
.

Proof. Assume Eδ holds. This implies, in particular, that W−1 and the w̃i are well-defined. Fix

t ∈ [k], and let Z(1, z(t)) denote the set of integer multiples of (1, z(t)). For any coefficient vector

(z0, z) ∈ Z× Zdk,

‖L(t)(z0, z)‖2

2 =

∥∥∥∥∥∥z0b
(t)
0 +

∑
i,j

zi,jb
(t)
i,j

∥∥∥∥∥∥
2

2

= z2
0 +‖z‖2

2 + β2

∑
i,j

ai,jzi,j − yd+1,tz0

2

. (4.9)

Observe that ‖L(t)(z0, z)‖2 > R for all (z0, z) ∈ (Z × Zdk) \ ZR. Below, we prove that with

probability at least 1− δ/k, ‖L(t)(z0, z)‖2

2 > z2
0 +‖z‖2

2 + β2r2
δ for every (z0, z) ∈ ZR \Z(1, z(t)).

Combining this with a union bound over all choices of t ∈ [k] proves the lemma.

Fix any such (z0, z) ∈ ZR, and consider the parenthesized term in Eq. (4.9) (without the

squaring). By Lemma 4.2.3, the term expands to

∑
i,j

ai,jzi,j − yd+1,tz0 =
∑
i,j

ai,j

(
zi,j − z(t)

i,j z0

)
=
∑
i,j

〈wd+1, w̃i〉〈wi,xπi(j)〉
(
zi,j − z(t)

i,j z0

)
= 〈wd+1,v〉 ,

where

v :=
∑
i,j

〈wi,xπi(j)〉
(
zi,j − z(t)

i,j z0

)
w̃i .

Because wd+1 ∼ N(0, Id), the final expression is a N(0,‖v‖2
2) random variable, and hence by

Proposition 4.2.8 (given in Appendix 4.2.e),

Pr

(
〈wd+1,v〉2 ≤

π

2
·
(

δ

k|ZR|

)2

·‖v‖2
2

)
≤ δ

k|ZR|
. (4.10)
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We show below that, on the event Eδ,

‖v‖2
2 ≥

λ(X)2 · π
2
·
(

δ
2dk|ZR|

)2

(
2
√
d+

√
2 ln(2/δ)

)2 . (4.11)

Using this bound with Eq. (4.10) and a union bound, it follows that with probability at least 1−δ/k,

we have ‖L(t)(z0, z)‖2

2 > z2
0 +‖z‖2

2 + β2r2
δ for all (z0, z) ∈ ZR \ Z(1, z(t)).

We now prove the bound in Eq. (4.11) on the event Eδ. Because the w̃i are the columns of

W−1, we may write v = W−1c for c = (c1, c2, . . . , cd), where

ci :=
k∑
j=1

〈wi,xπi(j)〉
(
zi,j − z(t)

i,j z0

)
=

〈
wi,
(
zi,π−1

i (t) − z0

)
xt +

∑
j∈[k]:πi(j)6=t

zi,jxπi(j)

〉

for each i ∈ [d]. Therefore,‖v‖2
2 may be bounded below as

‖v‖2
2 ≥ σd(W

−1)2 ·
d∑
i=1

c2
i =

1

‖W ‖2
2

·
d∑
i=1

c2
i .

Since (z0, z) /∈ Z(1, z(t)), at least one of the following is true:

1. there exists i ∈ [d] such that zi,π−1
i (t) 6= z0;

2. there exists i ∈ [d] and j ∈ [k] \ {π−1
i (t)} such that zi,πi(j) 6= 0.

In either case, there exists i ∈ [d] such that |zi,π−1
i (t)− z0|+

∑
j∈[k]:πi(j) 6=t |zi,πi(j)| > 0, so using the

third condition in the event Eδ,

d∑
i=1

c2
i ≥ λ(X)2 · π

2
·
(

δ

2dk|ZR|

)2

.

Combining this with the upper-bound‖W ‖2 ≤ 2
√
d +

√
2 ln(2/δ) from the second condition in

the event Eδ proves the required lower-bound on‖v‖2
2 from Eq. (4.11).

We now prove Theorem 20. With probability at least 1−δ/2 (over the choice ofw1,w2, . . . ,wd),
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1. Event Eδ/2 holds (Lemma 4.2.2).

Moreover, conditional on Eδ/2,

2. ‖L(t)(1, z(t))‖2 =
√
d+ 1 for each t ∈ [k] (Lemma 4.2.3);

and, with probability at least 1− δ/2 (over the choice of wd+1),

3. for each t ∈ [k], every non-zero vector in L(t)(z0, z) ∈ Λ(B(t)) for (z0, z) ∈ Z × Zdk

with length at most R = 2(dk+1)/2
√
d+ 1 is either an integer multiple of L(t)(1, z(t)), or has

length ‖L(t)(z0, z)‖2 >
√
z2

0 +‖z‖2
2 + β2r2

δ/2; the length in this latter case is more than R

when β ≥ R/rδ/2 (Lemma 4.2.4).

Statements 1–3 above hold together with probability at least 1 − δ, so we assume that they hold.

In particular, Algorithm 1 does not return “failure” upon checking if W singular. As long as β ≥

R/rδ/2, for each t ∈ [k], the approximate solution returned by LLL for Λ(B(t)) is L(t)(ẑ0, ẑ) =

L(t)(c, cz(t)) for some c 6= 0. The (dk + 2)-th coordinate of this vector is zero—so Algorithm 1

does not return “failure” on account of this check—and x̂t is obtained as a solution to the system

of linear equations

〈wi,x〉 = yi,j , (i, j) ∈ [d]× [k] � cz(t)
i,j 6= 0 .

By the definition of z(t) and non-singularity ofW , we have x̂t = xt for all t ∈ [k]. This completes

the proof of Theorem 20.

Phase retrieval

The special case of correspondence retrieval where k = 2 and x1 = −x2 6= 0 is known as the

(real-valued) phase retrieval problem, as described in the introduction. Indeed, it is easy to see that

the general k = 2 correspondence retrieval problem may be reduced to this case by “centering”

the measurements. However, the unknown points x1 and x2 are no longer linearly independent, so

Algorithm 1 is not directly applicable.
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A simple fix is to pick a random vector z ∼ N(0, Id), and replace each unordered measurement

Mi = {〈wi,x1〉, 〈wi,x2〉} with M′
i := {〈wi, z〉 + 〈wi,x1〉, 〈wi, z〉 + 〈wi,x2〉}. The points

to recover become z + x and z − x, where x := x1 = −x2. Let X̃ := [z + x|z − x] ∈

R
d×2. The following proposition gives a bound on κ(X̃) = σ1(X̃)/σ2(X̃); its proof is given in

Appendix 4.2.h.

Proposition 4.2.5. For any vectors a, b ∈ Rd, the matrixM := [a+ b|a− b] ∈ Rd×2 satisfies

σ1(M)

σ2(M)
≤ r + 1/r∣∣sin(θ)

∣∣ ,
where r :=‖a‖2 /‖b‖2, and θ is the angle between a and b.

It is easy to see that

κ(X̃) ≤ r + 1/r∣∣sin(θ)
∣∣ ≤ O

(
‖x‖2√
d

+

√
d

‖x‖2

)

with high probability, and hence Algorithm 1 may be applied.

We can also give a direct algorithm for solving the phase retrieval problem via LLL, with

qualitatively the same guarantees as Algorithm 1, where ‖x‖2 replaces the role of λ(X). The

details are given in Appendix 4.2.g.

Number of measurements. Our algorithms require n = d+ 1 measurements for exact recovery,

which is the best possible (in dimension d ≥ 2), even in this phase retrieval setting. With only

d linearly independent measurement vectors, no algorithm can distinguish among 2d−1 distinct

solutions (of the form {W−1 diag(s)Wx,−W−1 diag(s)Wx} for s ∈ {±1}d) that give rise to

the same d measurements.

As discussed in the introduction, [103] prove that n = 2d − 1 measurement vectors (whether

random or deterministic) are necessary to ensure that every non-zero x ∈ Rd can be recovered,

up to sign, from measurements with these measurement vectors. Because our algorithms only use

d+ 1 (Gaussian) measurement vectors, they must be insufficient for recovering some x up to sign
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(in dimension d ≥ 3), even though for any fixed x, they suffice with high probability.

4.2.c Noisy correspondence retrieval

This section sketches a moment-based algorithm for the noisy correspondence retrieval prob-

lem.

Main idea

The algorithm is based on decomposing the following moments involving the k unknown

points:

M :=
k∑
j=1

x⊗2
j ∈ R

d×d and T :=
k∑
j=1

x⊗3
j ∈ R

d×d×d .

Under the condition rank(X) = k, there is an efficient algorithm based on tensor decompositions

that, if given M and T up to some sufficiently small error as inputs, returns accurate estimates of

the points x1,x2, . . . ,xk up to reordering [see, e.g., 105].

The crucial idea is that the moment matrix M and tensor T can be estimated from the data

(w1,Mσ
1 ), (w2,Mσ

2 ), . . . , (wn,Mσ
n), even though the measurements are unordered. This was

observed by [104] in the case of a related (and indeed, more difficult) model of mixtures of linear

regressions. In their model, there is no noise (i.e., σ = 0), but instead of observing all of Mi,

only a random element ofMi is observed (and this random choice is independent of the random

measurement vectors, and identically distributed across all n measurements). Yi, Caramanis, and

Sanghavi give an algorithm for learning the k unknown points when n is sufficiently large (nearly

linear in d, polynomial in k and κ(X)).2 Therefore, it is clear that the noiseless correspondence

retrieval problem may be reduced to their noiseless mixtures of linear regressions problem.

Our main observation is that the same estimators designed for the noiseless setting may also be

applied in the noisy setting.

2[104] also give a hybrid algorithm that combines alternating minimization with the moment-based algorithm. This
hybrid algorithm can exactly recover the k unknown points in the noiseless setting.
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Moment estimators

To estimateM and T , we use

M̂ :=
1

n

n∑
i=1

1

2

k∑
j=1

(
〈wi,xj〉+ σεi,j

)2 (
w⊗2
i − Id

)
and T̂ :=

1

n

n∑
i=1

1

6

k∑
j=1

(
〈wi,xj〉+ σεi,j

)3 (
w⊗3
i − T (wi)

) ,

respectively. Here, for any vector v ∈ R
d, the third-order tensor T (v) is defined by T (v) :=∑d

j=1 (v ⊗ ej ⊗ ej + ej ⊗ v ⊗ ej + ej ⊗ ej ⊗ v), where e1, e2, . . . , ed is any fixed orthonormal

basis for Rd. The i-th term in each of M̂ and T̂ is symmetric with respect to the k values inMσ
i ,

and hence can be formed using just the unordered measurements.

The unbiasedness of M̂ and T̂ in the noiseless case (σ = 0) follows immediately from the

following proposition. We give a simple proof in Appendix 4.2.h for completeness.

Proposition 4.2.6 ([104]). Let w ∼ N(0, Id). For any vector u ∈ Rd,

E

[
1

2
〈w,u〉2

(
w⊗2 − Id

)]
= u⊗2 , E

[
1

6
〈w,u〉3

(
w⊗3 − T (w)

)]
= u⊗3 .

In the noisy case, we have the following analogous proposition, which implies the unbiasedness

of M̂ and T̂ for any noise level σ ≥ 0.

Proposition 4.2.7. Let w ∼ N(0, Id) and ε ∼ N(0, 1) be independent. For any vector u ∈ Rd

and any σ ≥ 0,

E

[
1

2

(
〈w,u〉+ σε

)2 (
w⊗2 − Id

)]
= u⊗2 , E

[
1

6

(
〈w,u〉+ σε

)3 (
w⊗3 − T (w)

)]
= u⊗3 .

Proof. This follows from Proposition 4.2.6 by replacingw andu, respectively, with w̃ := (w, ε) ∼

N(0, Id+1) and ũ := (u, σ) ∈ Rd+1; and considering the appropriate sub-matrix and sub-tensor.
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Proposition 4.2.7 justifies the use of essentially the same moment-based algorithm of Yi, Cara-

manis, and Sanghavi for the noisy correspondence retrieval problem:

1. Compute the estimates M̂ and T̂ from (w1,Mσ
1 ), (w2,Mσ

2 ), . . . , (wn,Mσ
n).

2. Apply the tensor decomposition algorithm of [105], and return the vectors from the approx-

imate decomposition x̂1, x̂2, . . . , x̂k.

The analysis of Yi, Caramanis, and Sanghavi can be used to give a bound on the number of mea-

surements needed to accurately estimate the k unknown points: assuming maxj∈k] ‖xj‖2 = 1, for

any ε, δ ∈ (0, 1), if the number of measurements n satisfies

n ≥ Õ

(
d · poly

(
k

σk(Xσ)

)
· log(1/δ)

ε2
+
k2

δ

)
,

then the algorithm returns x̂1, x̂2, . . . , x̂k ∈ Rd satisfying

min
π

max
j∈[k]
‖x̂π(j) − xj‖2

≤ ε ,

with probability at least 1 − δ, where the min is over permutations π : [k] → [k]. Here, the Õ(·)

hides factors that are poly-logarithmic in those that appear, and Xσ is the (d + 1)×k matrix that

appends a row toX with all entries equal to σ. We omit a detailed bound and analysis because they

are based entirely on the results of Yi, Caramanis, and Sanghavi, and the result is not comparable

to the results we obtain in the noiseless setting with the lattice-based algorithms.

4.2.d Discussion

The moment-based algorithm for the correspondence retrieval problem does not appear to ef-

ficiently use the information contained in individual measurements. By averaging over the mea-

surements in the computation of M̂ and T̂ , critical constraint information is lost. In contrast, the

lattice-based algorithm does not average over the projection values nor the measurements them-

selves. It would be interesting to understand if there is indeed a gap between these distinct types
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of algorithms.

It would also be interesting to consider other classes of measurement vectors. Assuming a

Gaussian distribution is convenient for analysis of our lattice-based algorithm, although it is plau-

sible that other distributions satisfying some kind of anti-concentration condition at every point

would also suffice. Handling certain discrete distributions would also simplify the numerical pre-

cision issues. The moment-based algorithm, however, critically relies on higher-order moment

calculations specific to the Gaussian distribution. It is not clear to what extent that algorithm

would work with other classes of measurement vectors. A plausible alternative is to use semidef-

inite programming to recover M and T (or other related moment tensors). Indeed, the results

of [106] imply that M can be recovered from O(dk) measurements, where the distribution of the

measurement vectors may be Gaussian or from a certain class of finitely-supported distributions.

Our lattice-based algorithm cannot handle measurement noise, with the cryptographic hardness

of the Shortest Vector Problem being the main barrier. There is also cryptographic evidence that

even deterministic measurement errors make related problems computationally intractable [107].

In practice, LLL has been observed to find the shortest vector in lattices in low dimensions, and

in high dimensions, its empirical performance is somewhat better than the worst-case approxi-

mation factor [108]. Nevertheless, it is desirable to find different algorithms for phase retrieval

and correspondence retrieval that do not use LLL but still work with the same optimal number of

measurements.

4.2.e Gaussian inequalities

Theorem 16 ([109, 110]). Let Z be an n × n matrix whose entries are i.i.d. N(0, 1) random

variables. For any η ∈ (0, 1),

Pr

(
σn(Z) ≤ η√

n

)
≤ η ,
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and

Pr
(
σ1(Z) ≥ 2

√
d+

√
2 ln(1/η)

)
≤ η .

The following proposition is based on elementary properties of the Gaussian distribution.

Proposition 4.2.8. Let Z ∼ N(0, 1). For any η ∈ (0, 1), Pr(Z2 ≤ πη2/2) ≤ η, and Pr(|Z| >√
2 ln(2/η)) ≤ η.

Proof. The first bound is a standard Gaussian anti-concentration bound:

Pr

(
|Z| ≤

√
π

2
η

)
=

∫ √π
2
η

−
√

π
2
η

1√
2π
e−z

2/2 dz ≤
∫ √π

2
η

−
√

π
2
η

1√
2π

dz = η .

The second bound is a standard upper-bound on the Gaussian tail.

4.2.f Numerical issues

In this section, we discuss the numerical issues with Algorithm 1. We assume that the coeffi-

cients of the measurement vectors w1,w2, . . . ,wd and the k unknown points x1,x2, . . . ,xk are

represented with sufficiently fine precision—say, with B bits of precision—and that the projection

values 〈wi,xj〉 in the measurements are exact. Here, B should be large enough so that the Gaus-

sian anti-concentration properties in the proof of Theorem 20 still hold (say, within a constant mul-

tiplicative factor). The anti-concentration property from Proposition 4.2.8 is used with η no smaller

than λ(X) ·2−poly(d,k,log(1/δ)), so the number of bits needed is poly(d, k, log(1/δ)) plus the number

of bits needed to represent λ(X), the length of the shortest vector in Λ(X). Recall that λ(X) is

no larger than minj∈[k] ‖xj‖2 and, by Proposition 4.2.1, no smaller than minj∈[k] ‖xj‖2 /κ(X).

The numerical work performed by Algorithm 1 is dominated by the calls to LLL and the solving

of linear systems. Lemma 4.2.9 bounds how much smaller or larger the coefficients of the lattice

basis (used in the calls to LLL) are relative to the projection values. Lemma 4.2.9 also bounds the

condition number of the matrix involved in the linear system that is used to solve for the unknown

points.
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Lemma 4.2.9. With probability at least 1− δ,

σ1(W ) ≤ 2
√
d+

√
2 ln(4/δ) ,

σd(W ) ≥ δ

4
√
d
,

β · |ai,j| ∈

 β ·
√
πδ · |yi,j|

4
√

2d
(

2
√
d+

√
2 ln(4/δ)

) , β · 4√2d ln(8d/δ) · |yi,j|
δ

 , i ∈ [d], j ∈ [k] .

Proof. From Theorem 16, it follows that

Pr
(
σ1(W ) ≤ 2

√
d+

√
2 ln(4/δ) and σd(W ) ≥ δ/(4

√
d)
)
≥ 1− δ

2
.

Condition on this 1 − δ/2 probability event. Recall that w̃i is the i-th column of W−1. The

distribution of each 〈wd+1, w̃i〉 is N(0,‖w̃i‖2
2), and

1

σ1(W )
≤ ‖w̃i‖2 ≤

1

σd(W )
.

So, by Proposition 4.2.8 and union bound,

Pr

(
∀i ∈ [d] �

√
πδ

4
√

2dσ1(W )
≤ |〈wd+1, w̃i〉| ≤

√
2 ln(8d/δ)

σd(W )

)
≥ 1− δ

2
.

Since ai,j = 〈wd+1, w̃i〉yi,j , combining these probability bounds proves the claim.

When calling LLL, we may treat the lattice basis coefficients as integers by rescaling. By

Lemma 4.2.9, the number of bits required to represent these coefficients may grow from B to

B +O

log max

{
d3/2 + d

√
log(1/δ)

βδ
,
β
√
d log(d/δ)

δ

} .

With the required value of β from the statement of Theorem 20, the running time of LLL—and

also of Algorithm 1—is therefore poly(d, k, log(B), log(κ(X)), log(1/δ)).
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Algorithm 2 Lattice-based algorithm for phase retrieval

input Data (wi, yi) for i ∈ [d+ 1], parameter β > 0.
output Hidden point x̂ (up to a sign), or “failure”.

1: ifW := [w1|w2| · · · |wd]
> is singular then

2: return “failure”.
3: end if
4: Define a = (ai : i ∈ [d]) ∈ Rd by

ai := 〈wd+1, w̃i〉yi ,

where w̃i is the i-th column ofW−1.
5: Construct basis

B =
[
b0 b1 · · · bd

]
:=

[
Id+1

βyd+1 −βa>

]
∈ R

(d+2)×(d+1) .

6: Let (ẑ0, ẑ) ∈ Z× Zd specify an approximate solution ẑ0b0 +
∑

i ẑibi ∈ Λ(B) to the Shortest
Vector Problem for Λ(B) using LLL.

7: if |ẑ0| = |ẑ1| = |ẑ2| = · · · = |ẑd| is not true then
8: return “failure”
9: end if

10: Let x̂ be a solution to the system of linear equations (in t ∈ Rd)

〈wi, t〉 = sign(ẑi)yi , i ∈ [d] .

11: return x̂.

4.2.g Direct algorithm for phase retrieval

In the phase retrieval problem, there is a single hidden vector x, and for each i ∈ [d + 1], we

draw wi ∼ N(0, Id) and observe yi :=
∣∣〈wi,x〉

∣∣. Our goal is to recover x by finding the vector

of unknown signs s := (s1, s2, . . . , sd) ∈ {±1}d, where si := sign(〈wi,x〉) for each i ∈ [d]. A

modified version of our main algorithm, specified in Algorithm 2, constructs a lattice where the

shortest vector’s coefficients are exactly the same as s or −s.

The performance guarantee of this algorithm is given below in an analogous result to Theo-

rem 20.
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Theorem 17. For any δ ∈ (0, 1), if

β ≥
2d/2
√
d+ 1 · 2d

(
2
√
d+

√
2 ln(4/δ)

)
·
(

2 · 2d/2
√
d+ 1 + 1

)d+1

δ2‖x‖2 π

then with probability at least 1− δ, Algorithm 2 returns x̂ = x.

Let Eδ be the event that

1. the smallest singular value ofW is bounded from below: σd(W ) ≥ δ/(4
√
d);

2. the spectral norm ofW is bounded from above:‖W ‖2 ≤ 2
√
d+

√
2 ln(4/δ);

3. for each i ∈ [d] and (z0, z) ∈ ZR such that |zi − z0| > 0,

〈
wi, (zi − z0)x

〉2 ≥ ‖x‖2
2 ·
π

2
·
(

δ

2d|ZR|

)2

. (4.12)

Also, let R := 2d/2
√
d+ 1 and ZR := {(z0, z) ∈ Z× Zd : 0 < z2

0 +‖z‖2
2 ≤ R2}.

Lemma 4.2.10. For any δ ∈ (0, 1),Pr (Eδ) ≥ 1− δ.

The proof of this lemma is completely analogous to that of Lemma 4.2.2, so we omit it.

Let s0 := sign(〈wd+1,x〉). The following lemma shows there exists a short lattice vector

which solves the recovery problem. Its proof is analogous to that of Lemma 4.2.3, so again we

omit it.

Lemma 4.2.11. On the event Eδ

L(s0, s) =


1

s

−βs0yd+1 + β
∑d

i aisi

 =


1

s

0

 ,

‖L(s0, s)‖2 =
√
d+ 1 .

Finally, we state a lemma that lower-bounds the length of lattice vectors that are not integer

multiples of L(s0, s).
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Lemma 4.2.12. For any δ ∈ (0, 1), conditioned on the event Eδ, for every coefficient vector (z0, z)

that is not an integer multiple of (s0, s), we have

‖L(z0, z)‖2
2 > min

{
R2, z2

0 +‖z‖2
2 + β2r2

δ

}
.

where

rδ := δ2 · ‖x‖2 π

2d|ZR|(2
√
d+

√
2 ln(4/δ))

.

Proof. Let (z0, z) ∈ ZR be any coefficient vector. Then the last coordinate of the corresponding

lattice vector is

d∑
i=1

aizi − z0yd+1 =
d∑
i=1

aizi − z0s0

d∑
i=1

aisi

(using the relation from Lemma 4.2.11 and the fact that s2
0 = 1)

=
d∑
i=1

ai (zi − z0s0si)

=
d∑
i=1

〈wd+1, w̃i〉
∣∣〈wi,x〉

∣∣ (zi − z0s0si) .

Because z is not an integer multiple of s and z0s0 is an integer, there exists an index i∗ ∈ [d] such

that zi − z0s0si∗ 6= 0. Then the sum can be rewritten as

〈wd+1, w̃i∗〉
∣∣〈wi∗ , (zi∗ − z0s0si∗)x〉

∣∣+
∑
i 6=i∗
〈wd+1, w̃i〉

∣∣〈wi, (zi − z0s0si)x〉
∣∣ . (4.13)

We now show that the first term puts small probability mass over any short interval independent of

the value of the summation over i 6= i∗. This gives a lower bound on the absolute value of the last

coordinate by considering an interval around the negative of the second term.
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Since (z0, z) ∈ ZR implies (z0s0si∗ , z) ∈ ZR for either of the two values of s0 and si∗ , the

third condition in Eδ gives

∣∣∣〈wi∗ , (zi∗ − z0s0si∗)x
〉∣∣∣ ≥ ‖x‖2

2 ·
π

2
·
(

δ

2d|ZR|

)2

.

Since W−1 is full rank, there is a component of w̃i∗ which is orthogonal to the span of

{w̃i}i 6=i∗ . We write this as

u = w̃i∗ +
∑
i 6=i∗

aiwi

where 〈u,wi〉 = 0 for all i 6= i∗. Now let ai for i 6= i∗ be the coefficients above, and let ai∗ := 1.

Then u = W−1a for a = (a1, a2, . . . , ad), and thus

‖u‖2 ≥
1

2
√
d+

√
2 ln(4/δ)

·‖a‖2 ≥
1

2
√
d+

√
2 ln(4/δ)

,

where the first inequality follows from

σd(W
−1) ≥ 1

2
√
d+

√
2 ln(4/δ)

on the event Eδ and the second inequality from ai∗ = 1.

Thus Eq. (4.13) can be rewritten as the sum of two independent terms

〈wd+1,u〉
∣∣〈wi∗ , (zi∗ − z0s0si∗)x〉

∣∣+∑
i 6=i∗

(
〈wd+1,−aiw̃i〉|〈wi∗ , (zi∗ − z0s0si∗)x〉+ 〈wd+1, w̃i〉

∣∣〈wi, (zi − z0s0si)x〉
∣∣) (4.14)
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The first term, 〈wd+1,u〉
∣∣〈wi∗ , (zi∗ − z0s0si∗)x〉

∣∣, has distribution N(0, σ2), where

σ2 ≥ ‖u‖2|〈wi∗ , (zi∗ − z0s0si∗)x〉|

≥
‖x‖2

2
π
2

(
δ

2d|ZR|

)2

(
2
√
d+

√
2 ln(4/δ)

)2 .

The event that Eq. (4.13) is small is when the Gaussian distribution returns a value in the interval

of length 2rδ centered around the second term. The probability of this event is no more than

1√
2πσ2

· 2rδ ≤
2rδ
π
·

2
√
d+

√
2 ln(4/δ)

‖x‖2

(
δ

2d|ZR|

) ≤ δ

by the choice of rδ. Therefore, with probability at least 1 − δ, the quantity in 4.13 is at least rδ,

so the contribution of the last coordinate to the norm of the lattice vector is at least β2r2
δ , so the

norm of this lattice vector is at least
√
z2

0 + ‖z‖2
2 + β2r2

δ . To complete the proof we note that for

all (z0, z) 6∈ ZR, by definition the norm of ‖z‖2 is at least R.

We now prove Theorem 17. By the choices of R and β and Lemma 4.2.12, every incorrect

coefficient vector has norm at least 2d/2
√
d+ 1, so it will not be returned by the LLL algorithm.

By Lemma 4.2.11 there exists a short vector with coefficients (s0, s), so LLL recovers the correct

signs.

4.2.h Omitted proofs

Proof of Proposition 4.2.1

Claim 4.2.13. λ(X) ≥ mini∈[k] ‖xi −Π(−i)xi‖2
where Π(−i) is the orthogonal projection to the

span of {xj}j 6=i.

Proof. Let v be a non-zero vector in the lattice with basis X . Write v =
∑k

j=1 zjxj , where
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z1, z2, . . . , zk ∈ Z. Pick any i ∈ [k] such that zi 6= 0, and let r := −
∑

j 6=i zjxj , so

‖v‖2
2 = ‖zixi − r‖2

2 ≥
∥∥zixi −Π(−i)zixi

∥∥2

2
= |zi|

∥∥xi −Π(−i)xi
∥∥2

2
≥
∥∥xi −Π(−i)xi

∥∥2

2
.

Above, the first inequality follows from the Pythagorean theorem, and the second inequality fol-

lows because zi ∈ Z \ {0}.

By Claim 4.2.13, it suffices to lower-bound the distance between xi and the subspace spanned

by {xj}j 6=i, for every i ∈ [k]. So fix i ∈ [k], and any non-zero vector ri in the span of {xj}j 6=i.

Let the singular value decomposition of X be given by X = USV >, where U ∈ R
d×k has

orthonormal columns, S = diag(σ1(X), σ2(X), . . . , σk(X)) � 0 is diagonal, and V ∈ Rk×k

is orthogonal. Let αj ∈ Rk denote the j-th column of V >. Then xi = USαi, and there exists

non-zero βi ∈ Rk orthogonal to αi such that ri = USβi. Moreover,

〈xi, ri〉2

〈xi,xi〉〈ri, ri〉
=

(α>i SU
>USβi)

2

(α>i SU
>USαi) (β>i SU

>USβi)
=

(α>i S
2βi)

2

(α>i S
2αi) (β>i S

2βi)
.

By Wielandt’s inequality [111, p. 7.4.34], the ratio is bounded above by

(
σ1(S2)/σk(S

2)− 1

σ1(S2)/σk(S
2) + 1

)2

=

(
κ(X)2 − 1

κ(X)2 + 1

)2

=: φ .

By the Pythagorean theorem, the distance between xi and the span of ri is

‖xi‖2

(
1− 〈xi, ri〉2

〈xi,xi〉〈ri, ri〉

)1/2

≥ ‖xi‖2

√
1− φ .

Since this holds for any ri in the span of {xj}j 6=i, the distance between xi and the span of {xj}j 6=i

is also at least

‖xi‖2

√
1− φ = ‖xi‖2 ·

2κ(X)

κ(X)2 + 1
.
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The claim in Proposition 4.2.1 follows.

Proof of Lemma 4.2.2

It suffices to show the following probability bounds: (i) Pr(σd(W ) ≤ δ/(4
√
d)) ≤ δ/4; (ii)

Pr(‖W ‖2 > 2
√
d +

√
2 ln(4/δ)) ≤ δ/4; (iii) Pr(Eq. (4.12) does not hold) ≤ δ/(2dk|ZR|) for

each i ∈ [d], j ∈ [k], and (z0, z) ∈ ZR such that |zi,j − z0| +
∑

j′ 6=j |zi,j′| > 0. Combining these

bounds with a union bound proves the claim.

The first two bounds follow from Theorem 16. The third requires Proposition 4.2.8 and the

observation that the inner product in Eq. (4.12) is distributed as N(0,‖v‖2
2), where v := (zi,j −

z0)xπi(j) +
∑

j′ 6=j zi,j′xπi(j′). The condition on (z0, z) implies that v is a non-zero vector in the

lattice Λ(X), which has‖v‖2 ≥ λ(X) by definition.

Proof of Proposition 4.2.5

Let M̃ := [a|b] ∈ Rd×2. The non-zero singular values of the matrix M = [a + b|a − b] are

the same as the square-roots of the non-zero eigenvalues of

MM> = 2aa> + 2bb> = 2M̃M̃
>
.

This matrix, in turn, has the same non-zero eigenvalues as the matrix

2M̃
>
M̃ = 2

‖a‖2
2 〈a, b〉

〈b,a〉 ‖b‖2
2

 .

The eigenvalues λ1 ≥ λ2 of this matrix can be computed explicitly:

λ1 = ‖a‖2
2 +‖b‖2

2 +

√(
‖a‖2

2 +‖b‖2
2

)2

− 4
(
‖a‖2

2‖b‖
2
2 − 〈a, b〉2

)
,

λ2 = ‖a‖2
2 +‖b‖2

2 −
√(
‖a‖2

2 +‖b‖2
2

)2

− 4
(
‖a‖2

2‖b‖
2
2 − 〈a, b〉2

)
.
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Their ratio is

λ1

λ2

=

1 +

√
1− 4 sin2(θ)

(r+1/r)
2

1−
√

1− 4 sin2(θ)

(r+1/r)
2

,

where r = ‖a‖2 /‖b‖2, and θ is the angle between a and b. The quantity 4 sin2(θ)/
(
r + 1/r

)2 is

always in the interval [0, 1]. A Taylor series expansion argument shows that

1 +
√

1− x
1−
√

1− x
≤ 4

x
, x ∈ [0, 1] ,

so we conclude

σ1(M )

σ2(M )
=

√
λ1

λ2

≤ r + 1/r∣∣sin(θ)
∣∣ .

Proof of Proposition 4.2.6

By homogeneity, we may assume‖u‖2 = 1. Let g := 〈w,u〉 ∼ N(0, 1), and let y := w− gu.

Observe that g and y are independent, and

Ey = 0 , Ey⊗2 = Id − u⊗2 =
d∑
j=1

e⊗2
j − u⊗2 , Ey⊗3 = 0 .

Using these facts, we have

E〈w,u〉2 (w⊗2 − Id) = E g2 (g2u⊗2 + y⊗2 − Id) = E g4u⊗2 − E g2u⊗2 = 2u⊗2 ,
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E〈w,u〉3w⊗3 = E g3 (gu+ y)⊗3

= E g3
(
g3u⊗3 + g (u⊗ y ⊗ y + y ⊗ u⊗ y + y ⊗ y ⊗ u)

)
= E g6u⊗3 + E g4

d∑
j=1

(
u⊗ ej ⊗ ej + ej ⊗ u⊗ ej + ej ⊗ ej ⊗ u− 3u⊗3

)
= 6u⊗3 + 3T (u) ,

E〈w,u〉3w = E g3 (gu+ y) = 3u ,

so E〈w,u〉3 (w⊗3 − T (w)) = 6u⊗3. This proves the claims in Proposition 4.2.6.

4.3 Linear regression with an unknown permutation

Consider the problem of recovering an unknown vector w̄ ∈ R
d from noisy linear mea-

surements when the correspondence between the measurement vectors and the measurements

themselves is unknown. The measurement vectors (i.e., covariates) from R
d are denoted by

x1,x2, . . . ,xn; for each i ∈ [n] := {1, 2, . . . , n}, the i-th measurement (i.e., response) yi is

obtained using xπ̄(i):

yi = w̄>xπ̄(i) + εi , i ∈ [n] . (4.15)

Above, π̄ is an unknown permutation on [n], and the ε1, ε2, . . . , εn are unknown measurement

errors.

This problem (which has been called unlabeled sensing [112], linear regression with an un-

known permutation [113], and linear regression with shuffled labels [114]) arises in many settings.

For example, physical sensing limitations may create ambiguity in or lose the ordering of mea-

surements. Or, the covariates and responses may be derived from separate databases that lack

appropriate record linkage (perhaps for privacy reasons). See the aforementioned references for

more details on these applications. The problem is also interesting because the missing correspon-

dence makes an otherwise well-understood problem into one with very different computational

and statistical properties.
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Prior works. [112] study conditions on the measurement vectors that permit recovery of any

target vector w̄ under noiseless measurements. They show that when the entries of the xi are

drawn i.i.d. from a continuous distribution, and n ≥ 2d, then almost surely, every vector w̄ ∈ Rd

is uniquely determined by noiseless correspondence-free measurements as in (4.15). (Under noisy

measurements, it is shown that w̄ can be recovered when an appropriate signal-to-noise ratio tends

to infinity.) It is also shown that n ≥ 2d is necessary for such a guarantee that holds for all vectors

w̄ ∈ Rd.

[113] study statistical and computational limits on recovering the unknown permutation π̄. On

the statistical front, they consider necessary and sufficient conditions on the signal-to-noise ratio

SNR := ‖w̄‖2
2 /σ

2 when the measurement errors (εi)
n
i=1 are i.i.d. draws from the normal distribu-

tion N(0, σ2) and the measurement vectors (xi)
n
i=1 are i.i.d. draws from the standard multivariate

normal distribution N(0, Id). Roughly speaking, exact recovery of π̄ is possible via maximum like-

lihood when SNR ≥ nc for some absolute constant c > 0, and approximate recovery is impossible

for any method when SNR ≤ nc
′ for some other absolute constant c′ > 0. On the computa-

tional front, they show that the least squares problem (which is equivalent to maximum likelihood

problem)

min
w,π

n∑
i=1

(
w>xπ(i) − yi

)2 (4.16)

given arbitrary x1,x2, . . . ,xn ∈ R
d and y1, y2, . . . , yn ∈ R is NP-hard when d = Ω(n)3, but

admits a polynomial-time algorithm (in fact, an O(n log n)-time algorithm based on sorting) when

d = 1.

[114] observe that the maximum likelihood estimator can be inconsistent for estimating w̄ in

certain settings (including the normal setting of [113], with SNR fixed but n → ∞). One of the

alternative estimators they suggest is consistent under additional assumptions in dimension d = 1.

[116] give a O(dnd+1)-time algorithm that, in dimension d = 2, is guaranteed to approximately

3[113] prove that PARTITION reduces to the problem of deciding if the optimal value of (4.16) is zero or non-zero.
Note that PARTITION is weakly, but not strongly, NP-hard: it admits a pseudo-polynomial-time algorithm [115, Section
4.2]. In Section 4.3.d, we prove that the least squares problem is strongly NP-hard by reduction from 3-PARTITION
(which is strongly NP-complete [115, Section 4.2.2]).
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recover w̄ when the measurement vectors are chosen in a very particular way from the unit circle

and the measurement errors are uniformly bounded.

Contributions. We make progress on both computational and statistical aspects of the problem.

1. We give an approximation algorithm for the least squares problem from (4.16) that, any

given (xi)
n
i=1, (yi)

n
i=1, and ε ∈ (0, 1), returns a solution with objective value at most 1 + ε

times that of the minimum in time (n/ε)O(d). This a fully polynomial-time approximation

scheme for any constant dimension.

2. We give an algorithm that exactly recovers w̄ in the measurement model from (4.15), un-

der the assumption that there are no measurement errors and the covariates (xi)
n
i=1 are

i.i.d. draws from N(0, Id). The algorithm, which is based on a reduction to a lattice problem

and employs the lattice basis reduction algorithm of [98], runs in poly(n, d) time when the

covariate vectors (xi)
n
i=1 and target vector w̄ are appropriately quantized. This result may

also be regarded as for each-type guarantee for exactly recovering a fixed vector w̄, which

complements the for all-type results of [112] concerning the number of measurement vectors

needed for recovering all possible vectors.

3. We show that in the measurement model from (4.15) where the measurement errors are

i.i.d. draws from N(0, σ2) and the covariate vectors are i.i.d. draws from N(0, Id), then no

algorithm can approximately recover w̄ unless SNR ≥ C min {1, d/ log log(n)} for some

absolute constant C > 0. We also show that when the covariate vectors are i.i.d. draws from

the uniform distribution on [−1/2, 1/2]d, then approximate recovery is impossible unless

SNR ≥ C ′ for some other absolute constant C ′ > 0.

Our algorithms are not meant for practical deployment, but instead are intended to shed light on

the computational difficulty of the least squares problem and the average-case recovery problem.

Indeed, note that a naïve brute-force search over permutations requires time Ω(n!) = nΩ(n), and

the only other previous algorithms (already discussed above) were restricted to d = 1 [113] or

100



only had some form of approximation guarantee when d = 2 [116]. We are not aware of previous

algorithms for the average-case problem in general dimension d.4

Our lower bounds on SNR stand in contrast to what is achievable in the classical linear re-

gression model (where the covariate/response correspondence is known): in that model, the SNR

requirement for approximately recovering w̄ scales as d/n, and hence the problem becomes easier

with n. The lack of correspondence thus drastically changes the difficulty of the problem.

4.3.a Approximation algorithm for the least squares problem

In this section, we consider the least squares problem from Equation (4.16). The inputs are an

arbitrary matrix X = [x1|x2| · · · |xn]> ∈ Rn×d and an arbitrary vector y = (y1, y2, . . . , yn)> ∈

R
n, and the goal is to find a vector w ∈ Rd and permutation matrix Π ∈ Pn (where Pn denotes

the space of n× n permutation matrices5) to minimize ‖Xw −Π>y‖2
2. This problem is NP-hard

in the case where d = Ω(n) [113] (see also Section 4.3.d). We give an approximation scheme

that, for any ε ∈ (0, 1), returns a (1 + ε)-approximation in time (n/ε)O(k) + poly(n, d), where

k := rank(X) ≤ min{n, d}.

We assume without loss of generality thatX ∈ Rn×k andX>X = Ik. This is because we can

always replace X with its matrix of left singular vectors U ∈ Rn×k, obtained via singular value

decomposition X = UΣV >, where U>U = V >V = Ik and Σ � 0 is diagonal. A solution

(w,Π) for (U ,y) has the same cost as the solution (V Σ−1w,Π) for (X,y), and a solution

(w,Π) for (X,y) has the same cost as the solution (ΣV >w,Π) for (U ,y).

Algorithm

Our approximation algorithm, shown as Algorithm 3, uses a careful enumeration to beat the

naïve brute-force running time of Ω(|Pn|) = Ω(n!). It uses as a subroutine a “Row Sampling”

algorithm of [118] (described in Section 4.3.e), which has the following property.

4A recent algorithm of [117] exploits a similar average-case setting but only for a somewhat easier variant of the
problem where more information about the unknown correspondence is provided.

5Each permutation matrix Π ∈ Pn corresponds to a permutation π on [n]; the (i, j)-th entry of Π is one if π(i) = j
and is zero otherwise.
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Algorithm 3 Approximation algorithm for least squares problem

input Covariate matrix X = [x1|x2| · · · |xn]> ∈ Rn×k; response vector y = (y1, y2, . . . , yn)> ∈
R
n; approximation parameter ε ∈ (0, 1).

assume X>X = Ik.
output Weight vector ŵ ∈ Rk and permutation matrix Π̂ ∈ Pn.

1: Run “Row Sampling” algorithm with input matrix X to obtain a matrix S ∈ R
r×n with

r = 4k.
2: Let B be the set of vectors b = (b1, b2, . . . , bn)> ∈ R

n satisfying the following: for each
i ∈ [n],

• if the i-th column of S is all zeros, then bi = 0;

• otherwise, bi ∈ {y1, y2, . . . , yn}.

3: Let c := 1 + 4(1 +
√
n/(4k))2.

4: for each b ∈ B do
5: Compute w̃b ∈ arg minw∈Rk ‖S(Xw − b)‖2

2, and let rb := minΠ∈Pn ‖Xw̃b −Π>y‖2
2.

6: Construct a
√
εrb/c-netNb for the Euclidean ball of radius

√
crb around w̃b, so that for each

v ∈ Rk with ‖v − w̃b‖2 ≤
√
crb, there exists v′ ∈ Nb such that ‖v − v′‖2 ≤

√
εrb/c.

7: end for
8: return ŵ ∈ arg min

w∈
⋃

b∈BNb

min
Π∈Pn

‖Xw −Π>y‖2
2 and Π̂ ∈ arg min

Π∈Pn
‖Xŵ −Π>y‖2

2.

Theorem 18 (Specialization of Theorem 12 in [118]). There is an algorithm (“Row Sampling”)

that, given any matrix A ∈ Rn×k with n ≥ k, returns in poly(n, k) time a matrix S ∈ Rr×n with

r = 4k such that the following hold.

1. Every row of S has at most one non-zero entry.

2. For every b ∈ Rn, every w′ ∈ arg minw∈Rk ‖S(Aw − b)‖2
2 satisfies ‖Aw′ − b‖2

2 ≤ c ·

minw∈Rk ‖Aw − b‖2
2 for c = 1 + 4(1 +

√
n/(4k))2 = O(n/k).

The matrix S returned by Row Sampling determines a (weighted) subset of O(k) rows of A

such that solving a (ordinary) least squares problem (with any right-hand side b) on this subset of

rows and corresponding right-hand side entries yields aO(n/k)-approximation to the least squares

problem over all rows and right-hand side entries. Row Sampling does not directly apply to our

problem because (1) it does not minimize over permutations of the right-hand side, and (2) the

approximation factor is too large. However, we are able to use it to narrow the search space in our

problem.
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An alternative to Row Sampling is to simply enumerate all subsets of k rows of X . This

is justified by a recent result of [119], which shows that for any right-hand side b ∈ Rn, using

“volume sampling” [120] to choose a matrix S ∈ {0, 1}k×k (where each row has one non-zero

entry) gives a similar guarantee as that of Row Sampling, except with the O(n/k) factor replaced

by k + 1 in expectation.

Analysis

The approximation guarantee of Algorithm 3 is given in the following theorem.

Theorem 19. Algorithm 3 returns ŵ ∈ Rk and Π̂ ∈ Pn satisfying

∥∥∥Xŵ − Π̂
>
y
∥∥∥2

2
≤ (1 + ε) min

w∈Rk,Π∈Pn

∥∥Xw −Π>y
∥∥2

2
.

Proof. Let opt := minw,Π ‖Xw −Π>y‖2
2 be the optimal cost, and let (w?,Π?) denote a solution

achieving this cost. The optimality implies that w? satisfies the normal equations X>Xw? =

X>Π>
?y. Observe that there exists a vector b? ∈ B satisfying Sb? = SΠ>

?y. By Theorem 18 and

the normal equations, the vector w̃b? and cost value rb? satisfy

opt ≤ rb? ≤
∥∥Xw̃b? −Π>

?y
∥∥2

2
=
∥∥X(w̃b? −w?)

∥∥2

2
+ opt ≤ c · opt .

Moreover, since X>X = Ik, we have that ‖w̃b? −w?‖2 ≤
√

(c− 1)opt ≤ √crb? . By construc-

tion of Nb? , there exists w ∈ Nb? satisfying ‖w −w?‖2
2 = ‖X(w −w?)‖2

2 ≤ εrb?/c ≤ εopt.

For this w, the normal equations imply

min
Π∈Pn

‖Xw −Π>y‖2
2 ≤ ‖Xw −Π>

?y‖
2
2 = ‖X(w −w?)‖2

2 + opt ≤ (1 + ε)opt .

Therefore, the solution returned by Algorithm 3 has cost no more than (1 + ε)opt.

By the results of [113] for maximum likelihood estimation, our algorithm enjoys recovery guar-

antees for w̄ and π̄ when the data come from the Gaussian measurement model (4.15). However,
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the approximation guarantee also holds for worst-case inputs without generative assumptions.

Running time. We now consider the running time of Algorithm 3. There is the initial cost for

singular value decomposition (as discussed at the beginning of the section), and also for “Row

Sampling”; both of these take poly(n, d) time. For the rest of the algorithm, we need to consider

the size of B and the size of the net Nb for each b ∈ B. First, we have |B| ≤ nr = nO(k),

since S has only 4k rows and each row has at most a single non-zero entry. Next, for each b ∈

B, we construct the δ-net Nb (for δ :=
√
εrb/c) by constructing a δ/

√
k-net for the `∞-ball

of radius
√
crb centered at w̃b (using an appropriate axis-aligned grid). This has size |Nb| ≤

(4c2k/ε)k/2 = (n/ε)O(k). Finally, each arg minw∈Rk computation takes O(nk2) time, and each

(arg) minΠ∈Pn takes O(nk + n log n) time [113] (also see Section 4.3.e). So, the overall running

time is (n/ε)O(k) + poly(n, d).

4.3.b Exact recovery algorithm in noiseless Gaussian setting

To counter the intractability of the least squares problem in (4.16) confronted in Section 4.3.a,

it is natural to explore distributional assumptions that may lead to faster algorithms. In this section,

we consider the noiseless measurement model where the (xi)
n
i=1 are i.i.d. draws from N(0, Id) (as

in [113]). We give an algorithm that exactly recovers w̄ with high probability when n ≥ d + 1.

The algorithm runs in poly(n, d)-time when (xi)
n
i=1 and w̄ are appropriately quantized.

It will be notationally simpler to consider n+ 1 covariate vectors and responses

yi = w̄>xπ̄(i) , i = 0, 1, . . . , n . (4.17)

Here, (xi)
n
i=0 are n+1 i.i.d. draws from N(0, Id), the unknown permutation π̄ is over {0, 1, . . . , n},

and the requirement of at least d+ 1 measurements is expressed as n ≥ d.

In fact, we shall consider a variant of the problem in which we are given one of the values of the

unknown permutation π̄. Without loss of generality, assume we are given that π̄(0) = 0. Solving

this variant of the problem suffices because there are only n + 1 possible values of π̄(0): we can
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Algorithm 4 Find permutation

input Covariate vectors x0,x1,x2, . . . ,xn in Rd; response values y0, y1, y2, . . . , yn in R; confi-
dence parameter δ ∈ (0, 1); lattice parameter β > 0.

assume there exists w̄ ∈ Rd and permutation π̄ on [n] such that yi = w̄>xπ̄(i) for each i ∈ [n],
and that y0 = w̄>x0.

output Permutation π̂ on [n] or failure.
1: LetX = [x1|x2| · · · |xn]> ∈ Rn×d, and its pseudoinverse beX† = [x̃1|x̃2| · · · |x̃n].
2: Create Subset Sum instance with n2 source numbers ci,j := yix̃

>
j x0 for (i, j) ∈ [n] × [n] and

target sum y0.
3: Run Algorithm 5 with Subset Sum instance and lattice parameter β.
4: if Algorithm 5 returns a solution S ⊆ [n]× [n] then
5: return any permutation π̂ on [n] such that π̂(i) = j implies (i, j) ∈ S.
6: else
7: return failure.
8: end if

try them all, incurring just a factor n+ 1 in the computation time. So henceforth, we just consider

π̄ as an unknown permutation on [n].

Algorithm

Our algorithm, shown as Algorithm 4, is based on a reduction to the Subset Sum problem. An

instance of Subset Sum is specified by an unordered collection of source numbers {ci}i∈I ⊂ R,

and a target sum t ∈ R. The goal is to find a subset S ⊆ I such that
∑

i∈S ci = t. Although

Subset Sum is NP-hard in the worst case, it is tractable for certain structured instances [99, 121].

We prove that Algorithm 4 constructs such an instance with high probability. A similar algorithm

based on such a reduction was recently used by [122] for a different but related problem.

Algorithm 4 proceeds by (i) solving a Subset Sum instance based on the covariate vectors and

response values (using Algorithm 5), and (ii) constructing a permutation π̂ on [n] based on the

solution to the Subset Sum instance. With the permutation π̂ in hand, we (try to) find a solution

w ∈ Rd to the system of linear equations yi = w>xπ̂(i) for i ∈ [n]. If π̂ = π̄, then there is a unique

such solution almost surely.
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Algorithm 5 [99] subset sum algorithm

input Source numbers {ci}i∈I ⊂ R; target sum t ∈ R; lattice parameter β > 0.
output Subset Ŝ ⊆ I or failure.

1: Construct lattice basisB ∈ R(|I|+2)×(|I|+1) where

B :=

[
I|I|+1

βt −βci : i ∈ I

]
∈ R

(|I|+2)×(|I|+1) .

2: Run basis reduction [e.g., 98] to find non-zero lattice vector v of length at most 2|I|/2 · λ1(B).
3: if v = z(1,χ>Ŝ , 0)>, with z ∈ Z and χŜ ∈ {0, 1}

I is characteristic vector for some Ŝ ⊆ I
then

4: return Ŝ.
5: else
6: return failure.
7: end if

Analysis

The following theorem is the main recovery guarantee for Algorithm 4.

Theorem 20. Pick any δ ∈ (0, 1). Suppose (xi)
n
i=0 are i.i.d. draws from N(0, Id), and (y0)ni=1

follow the noiseless measurement model from (4.17) for some w̄ ∈ Rd and permutation π̄ on [n]

(and π̄(0) = 0), and that n ≥ d. Furthermore, suppose Algorithm 4 is run with inputs (xi)
n
i=0,

(yi)
n
i=0, δ, and β, and also that β ≥ 2n

2
/ε where ε is defined in Equation (4.22). With probability

at least 1− δ, Algorithm 4 returns π̂ = π̄.

Remark 21. The value of ε from Equation (4.22) is directly proportional to‖w̄‖2, and Algorithm 4

requires a lower bound on ε (in the setting of the lattice parameter β). Hence, it suffices to deter-

mine a lower bound on‖w̄‖2. Such a bound can be obtained from the measurement values: a stan-

dard tail bound (Lemma 4.3.7 in Section 4.3.f) shows that with high probability,
√∑n

i=1 y
2
i /(2n)

is a lower bound on ‖w̄‖2, and is within a constant factor of it as well.

Remark 22. Algorithm 4 strongly exploits the assumption of noiseless measurements, which is

expected given the SNR lower bounds of [113] for recovering π̄. The algorithm, however, is also

very brittle and very likely fails in the presence of noise.

Remark 23. The recovery result does not contradict the results of [112], which show that a col-
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lection of 2d measurement vectors are necessary for recovering all w̄, even in the noiseless mea-

surement model of (4.17). Indeed, our result shows that for a fixed w̄ ∈ Rd, with high probability

d + 1 measurements in the model of (4.17) suffice to permit exactly recovery of w̄, but this same

set of measurement vectors (when d+ 1 < 2d) will fail for some other w̄′.

The proof of Theorem 20 is based on the following theorem—essentially due to [99] and

[121]—concerning certain structured instances of Subset Sum that can be solved using the lat-

tice basis reduction algorithm of [98]. Given a basisB = [b1|b2| · · · |bk] ∈ Rm×k for a lattice

L(B) :=


k∑
i=1

zibi : z1, z2, . . . , zk ∈ Z

 ⊂ R
m ,

this algorithm can be used to find a non-zero vector v ∈ L(B) \ {0} whose length is at most

2(k−1)/2 times that of the shortest non-zero vector in the lattice

λ1(B) := min
v∈L(B)\{0}

‖v‖2 .

Theorem 24 ([99, 121]). Suppose the Subset Sum instance specified by source numbers {ci}i∈I ⊂

R and target sum t ∈ R satisfy the following properties.

1. There is a subset S? ⊆ I such that
∑

i∈S? ci = t.

2. Define R := 2|I|/2
√
|S?|+ 1 and ZR := {(z0, z) ∈ Z× ZI : 0 < z2

0 +
∑

i∈I z
2
i ≤ R2}.

There exists ε > 0 such that |z0 · t−
∑

i∈I zi · ci| ≥ ε for each (z0, z) ∈ ZR that is not

an integer multiple of (1,χ?), where χ? ∈ {0, 1}I is the characteristic vector for S?.

LetB be the lattice basisB constructed by Algorithm 5, and assume β ≥ 2|I|/2/ε. Then every non-

zero vector in the lattice Λ(B) with length at most 2|I|/2 times the length of the shortest non-zero

vector in Λ(B) is an integer multiple of the vector (1,χS? , 0), and the basis reduction algorithm

of [98] returns such a non-zero vector.

The Subset Sum instance in Algorithm 4 has n2 source numbers {ci,j : (i, j) ∈ [n]× [n]} and

target sum y0. We need to show that it satisfies the two conditions of Theorem 24.
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Let Sπ̄ := {(i, j) : π̄(i) = j} ⊂ [n]×[n], and let Π̄ = (Π̄i,j)(i,j)∈[n]×[n] ∈ Pn be the permutation

matrix with Π̄i,j := 1π̄(i) = j for all (i, j) ∈ [n] × [n]. Note that Π̄ is the “characteristic vector”

for Sπ̄. Define R := 2n
2/2
√
n+ 1 and

ZR :=

{
(z0,Z) ∈ Z× Zn×n : 0 < z2

0 +
∑

1≤i,j≤n

Z2
i,j ≤ R2

}
.

A crude bound shows that|ZR| ≤ 2O(n4).

The following lemma establishes the first required property in Theorem 24.

Lemma 4.3.1. The random matrix X has rank d almost surely, and the subset Sπ̄ satisfies y0 =∑
(i,j)∈Sπ̄ ci,j .

Proof. That X has rank d almost surely follows from the fact that the probability density of X is

supported on all of Rn×d. This implies thatX†X =
∑n

j=1 x̃jx
>
j = Id, and

y0 =
n∑
j=1

x>0 x̃jx
>
j w̄ =

∑
1≤i,j≤n

x>0 x̃j · yi · 1π̄(i) = j =
∑

1≤i,j≤n

ci,j · 1π̄(i) = j .

The next lemma establishes the second required property in Theorem 24. Here, we use the

fact that the Frobenius norm
∥∥z0Π̄−Z

∥∥
F

is at least one whenever (z0,Z) ∈ Z × Zn×n is not an

integer multiple of (1, Π̄).

Lemma 4.3.2. Pick any η, η′ > 0 such that 3|ZR| η+η′ < 1. With probability at least 1−3|ZR| η−

η′, every (z0,Z) ∈ ZR with Z = (Zi,j)(i,j)∈[n]×[n] satisfies

∣∣∣∣∣z0 · y0 −
∑
i,j

Zi,j · ci,j

∣∣∣∣∣ ≥ (π/4) ·
√

(d− 1)/n · η2+ 1
d−1(√

n+
√
d+

√
2 ln(1/η′)

)2 ·
∥∥z0Π̄−Z

∥∥
F
·‖w̄‖2 .

Proof. By Lemma 4.3.1, the matrix Π̄ satisfies y0 =
∑

i,j Π̄i,j · ci,j . Fix any (z0,Z) ∈ ZR with

Z = (Zi,j)(i,j)∈[n]×[n]. Then

z0 · y0 −
∑
i,j

Zi,j · ci,j =
∑
i,j

(z0 · Π̄i,j − Zi,j) · x>0 x̃j · w̄>xπ̄(i) .
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Using matrix and vector notations, this can be written compactly as the inner productx>0 (X†(z0Π̄−

Z)>Π̄Xw̄). Since x0 ∼ N(0, Id) and is independent of X , the distribution of the inner prod-

uct is normal with mean zero and standard deviation equal to ‖X†(z0Π̄−Z)>Π̄Xw̄‖2. By

Lemma 4.3.8 (in Section 4.3.f), with probability at least 1− η,

∣∣x>0 (X†(z0Π̄−Z)>Π̄Xw̄
)∣∣ ≥ ‖X†(z0Π̄−Z)>Π̄Xw̄‖2 ·

√
π

2
· η . (4.18)

Observe thatX† = (X>X)−1X> sinceX has rank d by Lemma 4.3.1, so

‖X†(z0Π̄−Z)>Π̄Xw̄‖2 ≥
‖X>(z0Π̄−Z)>Π̄Xw̄‖2

‖X‖2
2

. (4.19)

By Lemma 4.3.5 (in Section 4.3.f), with probability at least 1− η′,

‖X‖2
2 ≤

(√
n+
√
d+

√
2 ln(1/η′)

)2

. (4.20)

And by Lemma 4.3.10 (in Section 4.3.f), with probability at least 1− 2η,

‖X>(z0Π̄−Z)>Π̄Xw̄‖2 ≥
∥∥(z0Π̄−Z)>Π̄

∥∥
F
·‖w̄‖2 ·

√
(d− 1)π

8n
· η1+1/(d−1) . (4.21)

Since Π̄ is orthogonal, we have that ‖(z0Π̄−Z)>Π̄‖F = ‖z0Π̄−Z‖F . Combining this with

(4.18), (4.19), (4.20), and (4.21), and union bounds over all (z0,Z) ∈ ZR proves the claim.

Proof of Theorem 20. Lemma 4.3.1 and Lemma 4.3.2 (with η′ := δ/2 and η := δ/(6|ZR|)) to-

gether imply that with probability at least 1− δ, the source numbers {ci,j : (i, j) ∈ [n]× [n]} and
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target sum y0 satisfy the conditions of Theorem 24 with

S? := {(i, j) ∈ [n]× [n] : π̄(i) = j} ,

ε :=
(π/4) ·

√
(d− 1)/n · (δ/(6|ZR|))2+ 1

d−1(√
n+
√
d+

√
2 ln(2/δ)

)2 ·‖w̄‖2 ≥ 2−poly(n, log(1/δ)) ·‖w̄‖2 .

(4.22)

Thus, in this event, Algorithm 5 (with β satisfying β ≥ 2n
2/2/ε) returns Ŝ = S?, which uniquely

determines the permutation π̂ = π̄ returned by Algorithm 4.

Running time. The basis reduction algorithm of [98] is iterative, with each iteration primarily

consisting of Gram-Schmidt orthogonalization and another efficient linear algebraic process called

“size reduction”. The total number of iterations required is

O

k(k + 1)

2
log

(
√
k ·

maxi∈[k]‖bi‖2

λ1(B)

) .

In our case, k = n2 and λ1(B) =
√
n+ 1; and by Lemma 4.3.11 (in Section 4.3.f), each of the

basis vectors constructed has squared length at most 1 + β2 · poly(d, log(n), 1/δ) ·‖w̄‖2
2. Using

the tight setting of β required in Theorem 20, this gives a poly(n, d, log(1/δ)) bound on the total

number of iterations as well as on the total running time.

However, the basis reduction algorithm requires both arithmetic and rounding operations, which

are typically only available for finite precision rational inputs. Therefore, a formal running time

analysis would require the idealized real-valued covariate vectors (xi)
n
i=0 and unknown target vec-

tor w̄ to be quantized to finite precision values. This is doable, and is similar to using a discretized

Gaussian distribution for the distribution of the covariate vectors (and assuming w̄ is a vector of fi-

nite precision values), but leads to a messier analysis incomparable to the setup of previous works.

Nevertheless, it would be desirable to find a different algorithm that avoids lattice basis reduction

that still works with just d+ 1 measurements.
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4.3.c Lower bounds on signal-to-noise for approximate recovery

In this section, we consider the measurement model from (4.15) where (xi)
n
i=1 are i.i.d. draws

from either N(0, Id) or the uniform distribution on [−1/2, 1/2]d, and (εi)
n
i=1 are i.i.d. draws from

N(0, σ2). We establish lower bounds on the signal-to-noise ratio (SNR),

SNR =
‖w̄‖2

2

σ2
,

required by any estimator ŵ = ŵ((xi)
n
i=1, (yi)

n
i=1) for w̄ to approximately recover w̄ in expecta-

tion. The estimators may have a priori knowledge of the values of‖w̄‖2 and σ2.

Theorem 25. Assume (εi)
n
i=1 are i.i.d. draws from N(0, σ2).

1. There is an absolute constant C > 0 such that the following holds. If n ≥ 3, d ≥ 22, (xi)
n
i=1

are i.i.d. draws from N(0, Id), (yi)
n
i=1 follow the measurement model from (4.15), and

SNR ≤ C ·min

{
d

log log(n)
, 1

}
,

then for any estimator ŵ, there exists some w̄ ∈ Rd such that

E
[
‖ŵ − w̄‖2

]
≥ 1

24
‖w̄‖2 .

2. If (xi)
n
i=1 are i.i.d. draws from the uniform distribution on [−1/2, 1/2]d, and (yi)

n
i=1 follow

the measurement model from (4.15), and

SNR ≤ 2 ,

then for any estimator ŵ, there exists some w̄ ∈ Rd such that

E
[
‖ŵ − w̄‖2

]
≥ 1

2

(
1− 1√

2

)
‖w̄‖2 .
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Note that in the classical linear regression model where yi = w̄>xi + εi for i ∈ [n], the maxi-

mum likelihood estimator ŵmle satisfies E‖ŵmle − w̄‖2 ≤ Cσ
√
d/n, where C > 0 is an absolute

constant. Therefore, the SNR requirement to approximately recover w̄ up to (say) Euclidean dis-

tance‖w̄‖2 /24 is SNR ≥ 242Cd/n. Compared to this setting, Theorem 25 implies that with the

measurement model of (4.15), the SNR requirement (as a function of n) is at substantially higher

(d/ log log(n) in the normal covariate case, or a constant not even decreasing with n in the uniform

covariate case).

For the normal covariate case, [113] show that if n > d, ε <
√
n, and

SNR ≥ nc·
n
n−d+ε ,

then the maximum likelihood estimator (ŵmle, π̂mle) (i.e., any minimizer of (4.16)) satisfies π̂mle =

π̄ with probability at least 1 − c′n−2ε. (Here, c > 0 and c′ > 0 are absolute constants.) It is

straightforward to see that, on the same event, we have‖ŵmle − w̄‖2 ≤ Cσ
√
d/n for some abso-

lute constant C > 0. Therefore, the necessary and sufficient conditions on SNR for approximate

recovery of w̄ lie betweenC ′d/ log log(n) and nC′′ (for absolute constantsC ′, C ′′ > 0). Narrowing

this range remains an interesting open problem.

A sketch of the proof in the normal covariate case is as follows. Without loss of generality, we

restrict attention to the case where w̄ is a unit vector. We construct a 1/
√

2-packing of the unit

sphere in Rd; the target w̄ will be chosen from from this set. Observe that for any distinct u,u′ ∈

U , each of (x>i u)ni=1 and (x>i u
′)ni=1 is an i.i.d. sample from N(0, 1) of size n; we prove that they

therefore determine empirical distributions that are close to each other in Wasserstein-2 distance

with high probability. We then prove that conditional on this event, the resulting distributions of

(yi)
n
i=1 under x̄ = u and x̄ = u′ (for any pair u,u′ ∈ U ) are close in Kullback-Leibler divergence.

Hence, by (a generalization of) Fano’s inequality [see, e.g., 123], no estimator can determine the

correct u ∈ U with high probability.

The proof for the uniform case is similar, using U = {e1,−e1} where e1 = (1, 0, . . . , 0)>. The
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full proof of Theorem 25 is given in Section 4.3.g.

4.3.d Strong NP-hardness of the least squares problem

For a vector b = (b1, b2, . . . , bn) and a permutation π on [n], let bπ := (bπ(1), bπ(2), . . . , bπ(n))
>.

Recall that in the 3-PARTITION problem, the input is d = 3k integers z1, z2, . . . , zd ∈ Z that

sum to Ck and satisfy C/4 < zi < C/2 for all i ∈ [d], and the problem is to decide if there is a

partition of [d] into k subsets S1, S2, . . . , Sk ⊆ [d] such that |Sj| = 3 and
∑

i∈Sj zi = C for each

j ∈ [k]. 3-PARTITION is NP-complete in the strong sense of [115, Section 4.2.2].

The PERMUTED LINEAR SYSTEM problem (also considered by [113]) is defined as follows.

The input is a matrix A ∈ Zn×d, and a vector b ∈ Qn. The problem is to decide if there exist a

vector x ∈ Qd and a permutation π on [n] such thatAx = bπ.

Proposition 4.3.3. PERMUTED LINEAR SYSTEM is strongly NP-complete.

Because PERMUTED LINEAR SYSTEM is equivalent to deciding if the optimal value of the

least squares problem from (4.16) is zero, Lemma 4.3.3 implies that the least squares problem

from (4.16) is strongly NP-hard.

Proof of Lemma 4.3.3. It is clear that PERMUTED LINEAR SYSTEM is in NP. We give an efficient

reduction from 3-PARTITION to PERMUTED LINEAR SYSTEM. Given an instance z1, z2, . . . , zd
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of 3-PARTITION, we construct the matrixA ∈ Zn×d and vector b ∈ Zn with n = d+ k as follows:

A :=



1

1

1

1

1

1

. . .

1

1

1

1 1 1

1 1 1

. . .

1 1 1



, b :=



z1

z2

...

zd

C

C

...

C



.

The system of equationsAx = bπ has a solution if and only if

bπ(3j−2) + bπ(3j−1) + bπ(3j) = C , j ∈ [k] .

Any permutation π on [n] satisfying these equations must satisfy the following two properties:

1. π([d]) = [d].

This holds because for i > d, we have bi = C, and adding such bi to any other bi′ and bi′′

gives a sum larger than C.

2. zπ(3j−2) + zπ(3j−1) + zπ(3j) = C for each j ∈ [k].

This holds because since bi = zi for i ∈ [d].
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Any permutation π on [n] with the two properties shown above gives k subsets Sj = {π(3j −

2), π(3j − 1), π(3j)} for j ∈ [k] such that
∑

i∈Sj zi = C.

4.3.e Additional details for approximation algorithm

This section provides some additional details on subroutines used in Algorithm 3.

Row sampling. First, we give the details of the “Row Sampling” algorithm of [118] used in

Section 4.3.a. The pseudocode is presented as Algorithm 6, and uses the following notations:

• For each i ∈ [n], ei is the i-th coordinate basis vector in Rn.

• L(x, δL,A, `) :=
x>(A− (`+ δL)Ik)

−2x

φ(`+ δL,A)− Φ(`,A)
− (`+ δL)Ik)

−1x ,

where φ(`,A) :=
∑k

i=1
1

λi(A)−` and (λi(A))ki=1 are the eigenvalues ofA.

• Û(x, δ,B, u) :=
x>(B − u′Ir)−2x

φ′(u,B)− φ′(u′,B)
− x>(B − u′Ir)−1x ,

where u′ = u+ δ and φ′(u,B) :=
∑r

i=1
1

u−λi(B)
and (λi(B))ki=1 are the eigenvalues ofB.

Algorithm 6 “Row Sampling” algorithm of [118]

input MatrixX = [x1|x2| · · · |xn]> ∈ Rn×k such thatX>X = Ik; integer r ≥ k.
output Matrix S = (Si,j)(i,j)∈[r]×[n] ∈ Rr×n.

1: SetA0 = 0k×k,B0 = 0n×n, S = 0r×n, δ = (1 + n/r)(1−
√
k/r)−1 and δL = 1.

2: for τ = 0 to r − 1 do
3: Let `τ = τ −

√
rk and uτ = δ(τ +

√
nr).

4: Select iτ ∈ [n] and number tτ > 0 such that Û(eiτ , δ,Bτ , uτ ) ≤ 1
tτ
≤ L(xiτ , δL,Aτ , `τ ).

5: SetAτ+1 = Aτ + tτxiτx
>
iτ ,Bτ+1 = Bτ + tτeiτe

>
iτ and Sτ+1,iτ =

√
r−1(1−

√
k/r)/

√
tτ .

6: end for
7: return S.

One may also consider using levarage score sampling (i.e., sample a row of X proportional to

its squared length) instead of this Row Sampling algorithm. This would work, but would require

selecting O(k log k) rows as opposed to just O(k) [124]; this leads to an overall running time of

(n/ε)O(k log k) +poly(n, d). Finally, as already mentioned in Section 4.3.a, it also suffices to simply

enumerate all
(
n
k

)
subsets of k rows of X . This is slower than Algorithm 6 but yields a better
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approximation guarantee (specifically, the factor c from Theorem 18 can be replaced by k + 1

on account of a result of [119]). However, the overall approximation guarantee and asymptotic

running time of Algorithm 3 is the same.

One-dimensional permutation problem. Next, we explain how to solve the optimization prob-

lem

min
Π∈Pn

∥∥a−Π>b
∥∥2

2

for any given a, b ∈ Rn. Let (a(i))
n
i=1 denote the non-decreasing ordering a(1) ≤ a(2) ≤ · · · ≤ a(n)

of the entries of a, and let (b(i))
n
i=1 be analogously defined. By Lemma 4.3.12, we have

min
Π∈Pn

∥∥a−Π>b
∥∥2

2
=

n∑
i=1

(
a(i) − b(i)

)2
.

Hence, if Πa (respectively, Πb) is the permutation matrix that rearranges the entires of a (respec-

tively, b) in non-decreasing order, then

n∑
i=1

(
a(i) − b(i)

)2
=
∥∥Πaa−Πbb

∥∥2

2
=
∥∥Π>

a (Πaa−Πbb)
∥∥2

2
=
∥∥a−Π>

aΠbb
∥∥2

2
,

where the second and third equalities use the fact that permutation matrices are orthogonal. Thus,

the minimizing permutation matrix is Π = Π>
bΠa. This can be found by sorting the entries of a

and of b in O(n log n) time.

4.3.f Probability inequalities

This section collects several probability inequalities used in the analysis of Algorithm 4. Let

σi(M ) denote the i-th largest singular value of the matrixM .

Extreme singular values of Gaussian random matrices.

Lemma 4.3.4 (Eq. 3.2 in [125]). LetA be an n× d matrix whose entries are i.i.d. N(0, 1) random

116



variables and n ≥ d. For any η ∈ (0, 1),

Pr

(
σd(A) ≤ η√

d

)
≤ η .

Lemma 4.3.5 (Theorem II.13 in [110]). Let A be an n× d matrix whose entries are i.i.d. N(0, 1)

random variables. For any η ∈ (0, 1),

Pr
(
σ1(A) ≥

√
n+
√
d+

√
2 ln(1/η)

)
≤ η .

Tail bounds for Gaussian and χ2 random variables.

Lemma 4.3.6. Let Z ∼ N(0, 1). For any η ∈ (0, 1), Pr(Z2 ≥ 2 ln(2/δ)) ≤ η.

Proof. This follows from the standard Chernoff bounding method.

Lemma 4.3.7 (Lemma 1 in [126]). Let W ∼ χ2
k. For any η ∈ (0, 1), Pr(W ≥ k+2

√
k ln(1/η)+

2 ln(1/η)) ≤ η.

Anti-concentration bounds for Gaussian and χ2 random variables.

Lemma 4.3.8. Let Z ∼ N(0, 1). For any η ∈ (0, 1), Pr(Z2 ≤ πη2/2) ≤ η.

Proof. This follows from direct integration.

Lemma 4.3.9 (Lemma 9 in [113]). Let W ∼ χ2
k. For any η ∈ (0, 1), Pr(W ≤ kη2/k/4) ≤ η.

Lemma 4.3.10. Let x ∈ Rd be any vector, M ∈ Rn×n be any matrix, and A a random n × d

matrix of i.i.d. N(0, 1) random variables. For any η ∈
(
0, 1/2

)
,

Pr

(
‖A>MAx‖2 ≤ ‖M‖F ·‖x‖2 ·

√
(d− 1)π

8n
· η1+1/(d−1)

)
≤ 2η .

Proof. Let u1 := x/‖x‖2, and extend to an orthonormal basis u1,u2, . . . ,ud for Rd. Let gi :=
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Aui for each i ∈ [d], so g1, g2, . . . , gd are i.i.d. N(0, In) random vectors. We first show that

Pr

(
‖Mg1‖2 ≤ ‖M‖F ·

√
π

2n
· η

)
≤ η . (4.23)

To see this, note that the distribution of‖Mg1‖
2
2 is the same as that of

∑n
i=1 σi(M)2 · Z2

i , where

Z1, Z2, . . . , Zn are i.i.d. N(0, 1) random variables. Therefore, Lemma 4.3.8 and the fact‖M‖2
2 ≥

‖M‖2
F /n proves the claim in (4.23).

Next, observe that

‖A>MAx‖2
2 = ‖x‖2

2 · u
>
1A

>M>A

(
d∑
i=1

uiu
>
i

)
A>MAu1

= ‖x‖2
2 · g

>
1M

>

(
d∑
i=1

gig
>
i

)
Mg1

≥ ‖x‖2
2 ·

d∑
i=2

(
g>iMg1

)2
. (4.24)

Conditional on g1, the final right-hand side in (4.24) has the same distribution as‖x‖2
2·‖Mg1‖

2
2·W ,

where W ∼ χ2
d−1 is a chi-squared random variable with d − 1 degrees of freedom. Therefore,

Lemma 4.3.9 implies

Pr

(
‖A>MAx‖2 ≤ ‖x‖2 ·‖Mg1‖2 ·

√
d− 1

2
· η1/(d−1)

)
≤ η .

Combining this inequality with the inequality from (4.23) and a union bound proves the claim.

Lattice basis size. The following lemma is used to bound the size of the lattice basis vectors

constructed by Algorithm 4 (via Algorithm 5). Recall that there are n2 + 1 basis vectors; one has

length
√

1 + β2y2
0 , and the remaining n2 have length

√
1 + β2c2

i,j for (i, j) ∈ [n]× [n].
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Lemma 4.3.11. For any η ∈
(
0, 1/5

)
, with probability at least 1− 5η,

|y0| ≤ ‖w̄‖2

√
2 ln(2/η) ,∣∣ci,j∣∣ ≤ ‖w̄‖2 ·
√

2 ln(2n/η) · d
η2
·
√
d+ 2

√
d ln(n/η) + 2 ln(n/η) ·

√
2 ln(2n/η)

where (i, j) ∈ [n]× [n].

Proof. By Lemma 4.3.4, Lemma 4.3.6, and Lemma 4.3.7, with probability at least 1− 5η,

∥∥(X>X)−1
∥∥

2
≤ d

η2
,

|x>0 w̄| ≤ ‖w̄‖2

√
2 ln(2/η) ,

|x>π̄(i)w̄| ≤ ‖w̄‖2

√
2 ln(2n/η) , i ∈ [n] ,

|x̃>j x0| ≤ ‖x̃j‖2

√
2 ln(2n/η) , j ∈ [n] ,

‖xj‖2 ≤
√
d+ 2

√
d ln(n/η) + 2 ln(n/η) , j ∈ [n] .

In this event, we have for each (i, j) ∈ [n]× [n],

∣∣ci,j∣∣ = |x>π̄(i)w̄| · |x̃>j x0|

≤ ‖w̄‖2 ·
√

2 ln(2n/η) · ‖X†ej‖2 ·
√

2 ln(2n/η)

= ‖w̄‖2 ·
√

2 ln(2n/η) · ‖(X>X)−1X>ej‖2 ·
√

2 ln(2n/η)

≤ ‖w̄‖2 ·
√

2 ln(2n/η) · d
η2
·
√
d+ 2

√
d ln(n/η) + 2 ln(n/η) ·

√
2 ln(2n/η) ,

and |y0| ≤ ‖w̄‖2

√
2 ln(2/η).

4.3.g Proof of signal-to-noise lower bounds

This section provides the proof of Theorem 25.

Below, for any vector a = (a1, a2, . . . , an)>, we use the notation (a(i))
n
i=1 to denote the non-

decreasing ordering a(1) ≤ a(2) ≤ · · · ≤ a(n) of its entries, and (a)↑ := (a(1), a(2), . . . , a(n))
> to
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denote the vector of the entries in this order.

We use the following representation for the Kantorovich transport distance with respect to

Euclidean metric (i.e., Wasserstein-2 distance, denoted by W2).

Lemma 4.3.12 (Lemma 4.1 in [127]). Let µn be the empirical measure on a1, a2, . . . , an ∈ R, and

νn be the empirical measure on b1, b2, . . . , bn ∈ R. Then

W2(µn, νn)2 = min
π

1

n

n∑
i=1

(ai − bπ(i))
2 =

1

n

n∑
i=1

(a(i) − b(i))
2 ,

where minπ denotes minimization over permutations π on [n].

For probability measures µ and ν, we use KL(µ, ν) to denote the Kullback-Leibler divergence

between µ and ν, and‖µ− ν‖tv to denote the total variation distance between µ and ν.

Since π̄ is unknown in the measurement model from (4.15), we may assume that y1, y2, . . . , yn

are provided as an unordered multiset, denoted by {yi}ni=1. In fact, we shall use the following

equivalent generative process:

1. Draw (xi)
n
i=1 i.i.d. from either N(0, Id) (in Section 4.3.g) or the uniform distribution on

[−1/2, 1/2]d (in Section 4.3.g), and independently, draw ε ∼ N(0, σ2In).

2. Set hw̄ := (w̄>x1, w̄
>x2, . . . , w̄

>xn)>.

3. Set y := h↑w̄ + ε.

It is clear that ((xi)
n
i=1, {yi}ni=1) has the same distribution under this model as under that from (4.15).

Normal case

We first consider the case where (xi)
n
i=1 are i.i.d. draws from N(0, Id). By homogeneity, we

may assume without loss of generality that‖w̄‖2 = 1, so SNR = 1/σ2.

The proof is based on the Generalized Fano method of [123] as described by [128].

Lemma 4.3.13 (Lemma 3 in [128]). Let (Θ, ρ) be a pseudometric space, and let Θ̃ ⊆ Θ index

a collection of probability measures (Pθ)θ∈Θ̃ such that ρ(θ, θ′) ≥ α and KL(Pθ, Pθ) ≤ β for all
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distinct pairs θ, θ′ ∈ Θ̃. Then for any estimator θ̂ taking values in Θ,

max
θ∈Θ̃

EPθ

[
ρ(θ̂, θ)

]
≥ α

2

(
1− β + ln 2

ln |Θ̃|

)
,

where EPθ denotes expectation with respect to data drawn from Pθ.

We apply Lemma 4.3.13 with (Θ, ρ) = (Sd−1,‖·‖2). We construct a packing U of the unit

sphere Sd−1 := {u ∈ Rd :‖u‖2 = 1} using the following variant of the Gilbert-Varshamov bound.

Lemma 4.3.14 (Lemma 4.10 in [129]). For every h ∈ [d] such that h ≤ d/4, there exists a subset

C of {0, 1}d such that (i) the Hamming weight of each c ∈ C is h, (ii) the Hamming distance

between every distinct pair c, c′ ∈ C is more than h/2, and (iii) the cardinality of C satisfies

ln |C| ≥ 0.233h ln(d/h).

We take C ⊆ {0, 1}d as guaranteed by Lemma 4.3.14 with h := bd/4c, and let

U :=
{
c/
√
h : c ∈ C

}
⊂ Sd−1 .

Observe thatU is a (1/
√

2)-packing of Sd−1 (i.e., every distinct pairu,u′ ∈ U satisfies‖u− u′‖2 >

1/
√

2), and

ln |U | ≥ 0.233

(
d

4
− 1

)
ln 4 .

For each u ∈ U , let Pu denote the probability distribution of ((xi)
n
i=1, {yi}ni=1) when w̄ = u.

Also, define Qu to be the corresponding conditional distribution of {yi}ni=1 given (xi)
n
i=1, and Q̃u

to be the corresponding conditional distribution of y given (xi)
n
i=1.

For any u,u′ ∈ U ,

KL(Qu, Qu′) ≤ KL(Q̃u, Q̃u′) =
1

2σ2

∥∥∥h↑u − h↑u′∥∥∥2

2
(4.25)

by the data processing inequality for KL-divergence and the properties of the multivariate Gaus-
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sian distribution. We define E to be the event in which

∥∥∥h↑u − h↑u′∥∥∥2

2
≤
(√

C0 log log(n) +
√

8 ln(|U |2)
)2

for all distinct u,u′ ∈ U , where C0 > 0 is the absolute constant from Lemma 4.3.16 (below).

By Equation (4.25), Lemma 4.3.16, and a union bound, we have Pr(E) ≥ 1/2. Therefore, by

Lemma 4.3.13, for any estimator ŵ,

max
u∈U

EPu

[
‖ŵ − u‖2

]
≥ max

u∈U
EPu

[
‖ŵ − u‖2 | E

]
·Pr(E)

≥ 1

2
√

2

(
1− C0 log log(n) + 16 ln |U |

σ2 ln |U |
− ln 2

ln |U |

)
· 1

2

=
1

4
√

2

(
1− C0 log log(n)

σ2 ln |U |
− 16

σ2
− ln 2

ln |U |

)
.

Plugging in the lower bound for ln |U | and the upper bound on SNR = 1/σ2 completes the proof.

Uniform case

We now consider the case where (xi)
n
i=1 are drawn i.i.d. from the uniform distribution on

[−1/2, 1/2]d.6 Again, by homogeneity, we assume without loss of generality that‖w̄‖2 = 1, so

SNR = 1/σ2.

The proof is based on the two-point method of [130] as described by [128].

Lemma 4.3.15 (Lemma 1 in [128]). Let (Θ, ρ) be a pseudometric space, and let θ1, θ2 ∈ Θ

correspond to probability measures Pθ1 and Pθ2 on the same space. Then for any estimator θ̂

taking values in Θ,

max
θ∈{θ1,θ2}

EPθ

[
ρ(θ̂, θ)

]
≥ 1

2
ρ(θ1, θ2)

(
1−‖Pθ1 − Pθ2‖tv

)
,

where EPθ denotes expectation with respect to data drawn from Pθ.

6We actually just need that the marginal distribution of the first coordinate of each xi be uniform on [−1/2, 1/2].
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We apply Lemma 4.3.15 with (Θ, ρ) = (Sd−1,‖·‖2). As before, we define for each u ∈

{e1,−e1}:

• Pu, the distribution of ((xi)
n
i=1, {yi}ni=1) when w̄ = u;

• Qu, the corresponding conditional distribution of {yi}ni=1 given (xi)
n
i=1;

• Q̃u, the corresponding conditional distribution of y given (xi)
n
i=1.

Let E be the event in which ∥∥∥h↑e1
− h↑−e1

∥∥∥2

2
≤ 1 .

By Lemma 4.3.20 (below), Pr(E) ≥ 1/2. Moreover, since Pe1(E) = P−e1(E) = Pr(E),

‖Pe1 − P−e1‖tv ≤
∥∥Pe1(· | E)− P−e1(· | E)

∥∥
tv

Pr(E) + (1−Pr(E))

≤
√

1

2
KL(Pe1(· | E), P−e1(· | E)) Pr(E) + (1−Pr(E))

≤
√

1

2
· 1

2σ2
Pr(E) + (1−Pr(E))

≤ 1

2

(
1 +

1√
2

)
.

Above, the second inequality follows from Pinsker’s inequality; the third inequality uses (4.25)

and the fact ‖h↑e1
− h↑−e1

‖2

2
≤ 1 on the event E , the fourth inequality uses the assumption that

SNR = 1/σ2 ≤ 2 and the fact Pr(E) ≥ 1/2. We conclude by Lemma 4.3.15 that

max
u∈{e1,−e2}

EPu

[
‖ŵ − u‖2

]
≥ 1

2
· 2 ·

(
1− 1

2

(
1 +

1√
2

))
=

1

2

(
1− 1√

2

)
,

completing the proof.

Auxiliary results

Lemma 4.3.16. There is an absolute constant C0 > 0 such that the following holds. Let n ≥ 3,

and let X be a random n × d matrix of i.i.d. N(0, 1) random variables. For any unit vectors
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u,u′ ∈ Sd−1 and δ ∈ (0, 1),

Pr

(∥∥∥(Xu)↑ − (Xu′)↑
∥∥∥

2
≥
√
C0 log log(n) +

√
8 ln(1/δ)

)
≤ δ .

The proof of Lemma 4.3.16 uses the following lemmas.

Lemma 4.3.17 (Corollary 6.14 in [127]). There is an absolute constant C > 0 such that the

following holds. If n ≥ 3, µ is the standard Gaussian measure on R, and µn is the empirical

measure for a size-n i.i.d. sample from µ, then

E
[
W2(µn, µ)2

]
≤ C log log(n)

n
.

Lemma 4.3.18 (Eq. 2.35 in [131]). Let Z ∼ N(0, Ip) be a standard normal random vector in Rp,

and f : Rp → R be L-Lipschitz with respect to the Euclidean metric. Then for any t > 0,

Pr
(
f(Z) ≥ E f(Z) + t

)
≤ e−t

2/(2L2) .

Proof of Lemma 4.3.16. Fix unit vectors u and u′. Observe that the entries of each of Xu and

Xu′ comprises an i.i.d. sample from N(0, 1) =: µ; let µn and νn denote the respective empirical

measures. Define the function f : Rn×d → R by

f(A) :=
∥∥∥(Au)↑ − (Au′)↑

∥∥∥
2
.

Then, by Lemma 4.3.12, the triangle inequality, Jensen’s inequality, and Lemma 4.3.17,

E f(X)√
n

= EW2(µn, νn) ≤ EW2(µn, µ)+EW2(νn, µ) ≤ 2
√

EW2(µn, µ)2 ≤
√
C0 log log(n)

n
.
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Moreover, for anyA,A′ ∈ Rn×d,

f(A)− f(A′) ≤
∥∥∥(Au)↑ − (Au′)↑ − (A′u)↑ + (A′u′)↑

∥∥∥
2

≤
∥∥∥(Au)↑ − (A′u)↑

∥∥∥
2

+
∥∥∥(Au′)↑ − (A′u′)↑

∥∥∥
2

≤
∥∥Au−A′u∥∥

2
+
∥∥Au′ −A′u′∥∥

2

≤ 2
∥∥A−A′∥∥

F
,

where the first two steps follow from the triangle inequality, the third step uses Lemma 4.3.12, and

‖·‖F denotes the Frobenius norm. Therefore, f is 2-Lipschitz with respect to the Euclidean metric

on Rn×d. By Lemma 4.3.18, for any δ ∈ (0, 1),

Pr
(
f(X) ≥ E f(X) +

√
8 ln(1/δ)

)
≤ δ .

Combining this with the upper bound on E f(X) completes the proof.

Lemma 4.3.19 (Eqs. 1.7.3 and 1.7.5 in [132]). LetX1, X2, . . . , Xn be i.i.d. draws from the uniform

distribution on [0, 1]. For any r ∈ [n],

E[X(r)] =
r

n+ 1
,

and for any r, s ∈ [n] with r ≤ s,

cov(X(r), X(s)) =
r

n+ 1
·
(

1− s

n+ 1

)
· 1

n+ 2
.

Lemma 4.3.20. Let U1, U2, . . . , Un be i.i.d. draws from the uniform distribution on [−1/2, 1/2].

Then

Pr

 n∑
i=1

(
U(1) + U(n+1−i)

)2 ≥ 1

 ≤ 1

2
.
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Proof. It suffices to show the expectation bound

E

 n∑
i=1

(
U(1) + U(n+1−i)

)2

 ≤ 1

2
,

since the claim then follows by Markov’s inequality. Expanding the square and using linearity of

expectation gives

E

 n∑
i=1

(
U(1) + U(n+1−i)

)2

 = 2
n∑
i=1

E
[
U2
i

]
+ 2

n∑
i=1

E
[
U(i)U(n+1−i)

]
=

n

6
+ 2

n∑
i=1

E
[
U(i)U(n+1−i)

]
.

By Lemma 4.3.19, we have for i ≤ (n+ 1)/2,

E
[
U(i)U(n+1−i)

]
= −

(
i

n+ 1
− 1

2

)2

+
i2

(n+ 1)2(n+ 2)
,

and for i > (n+ 1)/2,

E
[
U(i)U(n+1−i)

]
= −

(
i

n+ 1
− 1

2

)2

+
(n+ 1− i)2

(n+ 1)2(n+ 2)
.

Plugging-in and simplifying gives

E

 n∑
i=1

(
U(1) + U(n+1−i)

)2

 =


1
2

(
1− 1

n+1

)
if n is even ,

1
2

(
1− 1

n+2

)
if n is odd .
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