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Abstract

East Africa experiences chronic food insecurity, with levels varying from year-to-year across the region. Given that
much can be done to prevent this level of suffering before it happens, humanitarian agencies monitor early indicators
of food insecurity to trigger early action. Forecasts of total seasonal rainfall are one tool used to monitor and
anticipate food security outcomes. Factors beyond rainfall, such as conflict, are key determinants of whether lack
of rainfall can become a problem. In this paper, we present a quantitative analysis that isolates the value of rainfall
information in anticipating food security outcomes across livelihood groups in East Africa. Comparing observed
rainfall and temperature with food security classifications, we quantify how much the chance of food insecurity
increases when rainfall is low. Results differed dramatically among livelihood groups; pastoralists in East Africa
more frequently experience food insecurity than do non-pastoralists, and 12 months of low rainfall greatly increases
the chances of “crisis” and “emergency” food security in pastoralist regions. In non-pastoralist regions, the relation-
ship with total rainfall is not as strong. Similar results were obtained for livelihood groups in Kenya and Ethiopia,
with slightly differing results in Somalia. Given this, we evaluated the relevance of monitoring and forecasting
seasonal total rainfall. Our quantitative results demonstrate that six months of rainfall observations can already
indicate a heightened risk of food insecurity, a full six months before conditions deteriorate. Combining rainfall
observations with seasonal forecasts can further change the range of possible outcomes to indicate higher or lower
risk of food insecurity, but the added value of seasonal forecasts is noticeable only when they show a strong
probability of below-normal rainfall.
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1 Introduction
P4 Erin Coughlan de Perez
coughlan.erin@gmail.com Food insecurity is a recurrent crisis in East Africa. Because im-
pacts happen gradually over many months, humanitarians and
government agencies closely monitor warning signs to anticipate

impacts. Rainfall is a commonly used early warning indicator
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because many of the most vulnerable people in the region depend
on rainfall for their livelihoods. In particular, forecasts of seasonal
rainfall totals are widely disseminated in the region. Some actors
rely heavily on these forecasts to anticipate upcoming food se-
curity problems, and others disregard them as largely irrelevant
given the complexity of food security in the region. Here, we
quantify the extent to which rainfall and rainfall forecasts can
provide early warning information on potential food insecurity
for different vulnerable groups in East Africa.
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The link between rainfall deficits and food insecurity involves
several intermediate steps, including reduced food production,
low livestock prices, high food prices, and ultimately a reduction
in food access. In addition to rainfall, the humanitarian system
monitors a number of socio-economic factors that are indicators
of this chain of problems. Indicators of household stress include
decisions to migrate, payment of school fees, distress sale of
assets, reduced food consumption, malnutrition, increased mor-
bidity, and livestock mortality (Brown 2008; Cuny and Hill
1999; IPC Global Partners 2012). Food security monitoring ser-
vices also factor in the impact of changes to terms of trade of
staple foods, food transportation networks, as well as local and
regional patterns of conflict.

For example, in 2011, East Africa suffered extreme levels
of food insecurity that were widely associated with drought
conditions. The impact pathway began with low rainfall.
While there are a number of different definitions of drought,
standardized anomalies of total rainfall have frequently been
used in East Africa (Ntale and Gan 2003). Figure 1 shows the
Standardized Precipitation Index (SPD)! for a 12-month period
beginning in May 2010.

Crop yields in East Africa covary with rainfall (Hansen and
Indeje 2004); approximately 50% of the variability in maize
yields in Kenya can be explained by interannual temperature
and precipitation fluctuations (lizumi et al. 2013; Ray et al.
2015). The drought of 2011 followed this pattern, and Kenyan
regions of marginal agriculture saw harvests of approximately
20% of normal yields (FEWS NET 2011a). Crop yields in
southern Somalia were similarly poor, with the lowest produc-
tion of sorghum and maize in 15 years (FEWS NET 2011b).
In pastoralist regions of northern Kenya, 70-80% of livestock
migrated out of the region and livestock prices dropped dra-
matically (FEWS NET 2011c).

Several factors influence whether local food production
affects local food prices: especially the ability to trade with
other regions; any fluctuations of global food prices; and the
level of urbanization of a region (Brown 2014). In 2011, high
international prices of wheat and other crops and high costs of
fuel and transportation both coincided with the low rainfall
conditions in East Africa (FAO 2011, Peri 2017).

Beyond price, actual access to food is mediated by a number
of additional factors, such as economic status, livelihood op-
tions, conflict, and safety nets (Fraser 2007; Simelton et al.
2012). In conflict situations, damaged infrastructure and out-
breaks of violence can reduce access to markets and agricultur-
al lands, and conflict can prevent life-saving access by the
international humanitarian system (Maxwell and Hailey
2018). In 2011, Ethiopia’s Productive Safety Net Programme
increased their feeding program to support people who were
otherwise unable to access food. In Somalia, conflict was the
major contributor to reduced food access, and it inhibited the

! http://www.wamis.org/agm/pubs/SPI/WMO 1090 EN.pdf
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Fig. 1 Standardized Precipitation Index (SPI) for East Africa during the
2011 drought. Total rainfall amounts between May 2010 and April 2011
were used to calculate a 12-month SPI, showing depressed rainfall over
much of the region. Colors represent SPI values, which are the standard
deviations from the long-term mean; values of —2 and less are classified
as extremely dry and would mean that this year’s rainfall was two stan-
dard deviations less than the long-term mean. This corresponds to a 1 in
50 year event. Rainfall used to calculate the SPI was CHIRPS from 1981
to 2018 (see methods)

delivery of relief food to several regions. Farm laborers who did
not have assets or income during the drought period were least
able to access food (FSNAU 2011, 20). The food security clas-
sifications for East Africa in October 2011 are shown in Fig. 2.

Given the complexity of food security, the link between
rainfall and impacts is far from direct. However, there are
many preventative actions that can be taken based on forecast-
ed or observed rainfall; therefore it is useful to know how
much is worthwhile to implement when rainfall information
becomes available. To quantify the effect of a hazard (in this
case low rainfall) on societal outcomes (in this case food se-
curity), the accepted practice in Catastrophe Risk Modeling,
or CAT modeling, is to use a vulnerability function, which
plots the relationship between hazard magnitude and potential
impact (Pineda-Porras and Ordaz-Schroeder 2003; Porter and
White 2016). This relationship can also be called a risk curve
(Grunthal et al. 2006), fragility curve (Okuyama and Chang
2004), or damage curve (UNFCCC 2012), and it is commonly
used in the design of infrastructure. Because vulnerability
varies across people and regions, different vulnerability curves
can be developed for different groups.

Here, we focus on isolating the impact of a rainfall hazard
on food security conditions. First, we identified different re-
gions of vulnerability in East Africa, based on livelihood
groups. Then, we quantified how rainfall affects the types of
food security outcomes that could be expected for that popu-
lation. Lastly, we identified the extent to which observations
and forecasts of rainfall can allow these impacts to be antici-
pated in advance.

We present the methods and results of a quantitative anal-
ysis, which compared forecasted rainfall, observed rainfall,
and combinations of the two with food insecurity across
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regions. This quantitative analysis was not intended to provide
a method to forecast food insecurity by using rainfall as the
only predictor, but rather envisioned as a way to quantify the
importance of rainfall in our ability to anticipate food insecu-
rity. The relationship between rainfall and food insecurity can
be used by agencies who forecast food insecurity in real-time,
in a quantitative or qualitative combination with socio-
economic monitoring indicators.

2 Methods

Food security outcomes for East Africa have been monitored
by the Famine Early Warning Systems Network (FEWS NET)
since 2009. In FEWS NET, food security is classified on a
scale from 1 (minimal) to 5 (famine), compatible with the
Integrated Phase Classification (IPC) (IPC Global Partners
2012).> Assessments are released in map form every 3—
4 months, and there have been 34 food security updates be-
tween 2009 and 2018. There was a change to the FEWS NET
classification structure in March 2011, after which the classi-
fication system allowed for an overlay showing where food
security would likely be worse without current or planned
humanitarian assistance. Therefore, this analysis used only
the food security outcomes recorded after March 2011, in-
creasing the outcomes by one in the regions where outcomes
were judged to be one level worse without current or pro-
grammed humanitarian assistance. However, repeating the
analysis using the entire dataset to 2009 has results that are
broadly similar to those presented here.

FEWS NET also produces shapefiles of the livelihood zones
of each country, based on a household economy approach.® For
the purposes of this analysis, we categorized each livelihood
zone based on the extent to which its population relies on
animal husbandry and crops, using the following categories:
“pastoral”, “agro-pastoral”, “cropping”, and “other”.

2 Explanation of food security classification system from http://fews.net/IPC.

PHASE 1 More than four in five households (HHs) are able to meet essential food and nonfood
Minimal needs without engaging in atypical, unsustainable strategies to access food and
income.

PHASE 2 Even with any humanitarian assistance at least one in five HHs in the area have the

Stressed following or worse: Minimally adequate food consumption but are unable to
afford some essential non food expenditures without engaging in irreversible
coping strategies.

PHASE 3 Crisis  Even with any humanitarian assistance at least one in five HHs in the area have the
following or worse: Food consumption gaps with high or above usual acute
malnutrition OR Are marginally able to meet minimum food needs only with
accelerated depletion of livelihood assets that will lead to food consumption
gaps.

PHASE 4 Even with any humanitarian assistance at least one in five HHs in the area have the

Emergency following or worse: Large food consumption gaps resulting in very high acute
malnutrition and excess mortality OR Extreme loss of livelihood assets that will
lead to food consumption gaps in the short term.

PHASE 5 Even with any humanitarian assistance at least one in five HHs in the area have an

Famine extreme lack of food and other basic needs where starvation, death, and

destitution are evident. Evidence for all three criteria (food consumption, acute
malnutrition, and mortality) is required to classify Famine.

“ http://www.fews.net/livelihoods

In order to characterize the influence of rainfall on food
insecurity outcomes across a diverse region, we calculated a
standard index of rainfall at each location. For rainfall esti-
mates, we used the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) dataset, which was de-
veloped specifically for drought monitoring and combines
satellite observations with available station data (Funk et al.
2014). The timeseries of rainfall is available from 1981 to the
present. For temperature data, we used a gridded 2-m temper-
ature dataset from the Global Historical Climatology Network
(GHCN) version 2 and the Climate Anomaly Monitoring
System (Fan and Van Den Dool 2008). Although the
CHIRPS dataset is available at a higher resolution (0.05 de-
grees), we re-gridded this to 0.5 degrees to match the resolu-
tion of the GHCN temperature dataset. However, the results of
the analysis using the full 0.05 degree resolution are similar to
those presented here at 0.5 degree resolution.

To create a standardized comparable index of “drought”
across the entire region, we used the Standardized
Precipitation Index (SPI) and the Standardized Precipitation-
Evapotranspiration Index (SPEI) for a 12-month period
(Vicente-Serrano et al. 2009). While SPI uses only rainfall
as an input, SPEI also includes the effect of temperature on
water availability through evaporation. For the SPEI calcula-
tion, we used the Thornthwaite equation to estimate monthly
potential evapotranspiration (Thornthwaite 1948).

We then compared the timeseries of rainfall with the
food security outcomes of FEWS NET. We re-gridded
the food security data to match 0.5-degree resolution by
recording the food security outcome of the center of each
0.5-degree gridpoint. We then calculated the SPI for the
12-month period up until, and including, the month in
which FEWS released their food security outcomes (dat-
ed from the last day of the month). For each location, we
compared its SPI with its food security classification,
creating a table of counts indicating the frequency of
each type of food security outcome when SPI fell in each
of the ranges in Table 1.

We used a chi-squared test for categorical data to estimate
the strength of the relationship between ranges of SPI values
and the five possible food security outcomes. However, any
apparent relationship between the two could be due to random
chance because of the large amount of spatial and temporal
autocorrelation in the data. To estimate the likelihood of the
relationships being due to chance alone, we bootstrapped 500
alternative time series in which we randomized the order in
which the rainfall happened while preserving the spatial maps.
To account for the temporal autocorrelation, we used a 12-
month block bootstrap. For each bootstrapped time series,
we calculated the chi-squared statistic, and then counted
how many of the randomized replicates have a relationship
that is stronger than that found in the original data. If fewer
than 2.5% of boostrapped replicates show a stronger
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Fig. 2 Food security
classifications in East Africa for
October 2011. The categories of .

East Africa Food Security Outcomes

Projections for January 2018
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and 5-Famine, colored from light /
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relationship than the original data, we have confidence that the
relationship is not due to random chance.

Lastly, we also investigated the potential for rainfall obser-
vations and forecasts to provide an indication of future food
insecurity. For this analysis, we focused on the pastoralist
regions, most of which have a seasonal cycle with two rainy
seasons. Given the observations from a first rainy season (typ-
ically March—-May), we examined the probability of different
food insecurity outcomes for the end of the upcoming, second
rainy season. For example, if the March—May rainy season has
ended and we have observations from that season, we then
estimate the potential food insecurity outcomes for the end of
the upcoming October—December rainy season.

In order to be able to compare outcomes across regions, we
defined two half-year segments: January—June and July—
December, each of which should contain one rainy season and
several dry months. For each 6-month observation, we combined

Table 1 Standardized Precipitation Index (SPI) and Standardized
Precipitation-Evapotranspiration Index (SPEI) ranges used in this study,
and the frequency of occurrence of each range

\
tible analysis follows key IPC protocols,
but does not necessarily reflect the consensus of national food security partners.

SP(E) I range Probability of rainfall falling in range
Less than —1 0.159
—1to0 0.341
O0to1 0.341
Greater than 1 0.159
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view of the United States Agency for Intemational Development or the United States Govemment.

it with a set of potential rainfall observations for the following six
months, either drawn from climatology or from the forecasted
rainfall distribution, and we calculated the SPI of the result.

To create the forecast rainfall distribution, we took 30 sam-
ples with replacement of the observed historical rainfall data
for the second six months, according to the forecast probabil-
ities of above-normal (top tercile of rainfall), near-normal
(middle tercile), and below-normal (bottom tercile). These
terciles are the standard format of seasonal rainfall forecasts
used across the region. We then combined each resampled
timeseries with the timeseries of the first six months, and
calculated the SPI. The result was a probability distribution
function (pdf) of what the 12-month SPI could look like, given
the observed SPI of the first six months. We categorized the
SPI of the first six months into different categories, low to
high, and fitted a normal distribution of the SPI of 12-month
rainfall conditional on the first six months SPI being in that
category. We then multiplied the rainfall distribution by the
relationship derived between 12-month rainfall and the food
security indicator IPC, to estimate the shift in probabilities of
IPC outcomes based on this sample of rainfall.

3 Results

Using the livelihood zones from FEWS NET, the majority of
East Africa is classified as pastoralist, agro-pastoralist, and
agricultural, as seen in Fig. 3a. Food insecurity of IPC 3 or
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above (stages of crisis, emergency, or famine) is more frequent
in pastoralist regions (Fig. 3b).

How often different livelihood classes, “pastoralist”,
“agropastoralist”, and “non-pastoralist” experienced different
food security outcomes is shown in Fig. 4 (d-f). In pastoralist
and agropastoralist areas, IPC phase 2, or “stressed,” was the
most common outcome and happened about 50% of the time.
Phase 1, “minimal food insecurity,” was observed 5-10% of
the time. In contrast, non-pastoralist areas were most com-
monly classified as “minimal” food insecurity, approximately
50% of the time, and rarely saw an outcome above phase 3.

In pastoralist and agropastoralist areas, rainfall has a strong
effect on food security. Low rainfall, an SPI of less than —1,
greatly increases the chances of IPC 3 and 4 (darkest brown
lines in Fig. 4g-h). Compared to the general outcomes of these
groups (black and white plots Fig. 4d-e), the brown lines show
a change in the probability of different food security outcomes
if we know that there have been 12 months of poor rainfall.
Within the probabilities shown here, the actual food security
for a specific year will be affected by socio-economic factors
mentioned earlier, including those governing food production,
food prices, and food access.

Based on the bootstrapped results, we are confident that this
relationship between SPI and food security in all three regions
was not due to random chance, as the relationship was stronger
than 97.5% of all bootstrapped replicates. The relationship be-
tween SPEI and outcomes was similar in shape and signifi-
cance to that of SPI, and we therefore chose to continue the
analysis using SPI since it is the simpler index for operational
purposes, and SPEI uses temperature data that is likely to be
less accurate than the rainfall data used in the SPL.

For non-pastoralist areas, the relationship between rainfall
and food security was different from that in pastoralist regions,
although there was a change in probabilities of greater food
security with greater water availability in these areas. To im-
prove on this analysis, crop models that use daily rainfall
observations and specific crop requirements could be

Livelihoods
B Pastoralist
B Agro-pastoralist
O Cropping

O Other

Fig. 3 (a) Livelihood zones of East Africa, with pastoralist regions in
dark blue, agro-pastoralist regions in light purple, and cropping regions in
pink. Regions that do not fall in these categories are in grey. (b) How
often each location has experienced food security classifications of

explored, instead of the measures of total 12-month rainfall
used here (Jayanthi et al. 2014; Quijano et al. 2015).

We repeated this analysis for the three livelihood groups in
each individual country in the region (Ethiopia, Kenya, and
Somalia), because we wanted to know whether the general
relationship was the same across countries, or whether it was
different, likely due to differences in regional trade or national
policies (Fig. 5). In all three countries, the pastoralist regions
showed a strong increase in food insecurity when SPI was less
than —1. The similar relationship across national borders likely
indicates that food insecurity was localized to the area of low
rainfall, although Kenya had an overall lower frequency of
ending up in category 4 (Emergency).

Based on the results of the bootstrap analysis (not shown in
figure), we were confident that each of these plots was not due
to random chance, with the exception of the Kenyan
agropastoralists and the Somalian nonpastoralists. The
Kenyan agropastoralists did show an increase in food security
with low rainfall, but the relationship was not strong enough to
be confident it was not random chance. In Somalia, most of the
non-pastoralists work in sectors not affected by rainfall (e.g.
fishing is prevalent in the north), which is likely to be the reason
why these regions did not show sensitivity to rainfall.

In Somalia, when 12-month rainfall was observed to be less
than SPI -1, the most probable food security outcome for
pastoralists and agropastoralists was “Emergency”, with
chances hovering around 50% probability. In Kenya, the
chance of non-pastoralists moving from “minimal” food se-
curity to “stressed” greatly increases with low rainfall, al-
though in Ethiopia the change was not as large.

Here we demonstrated a relationship between rainfall over
a 12-month period with food insecurity, and we then
attempted to determine whether or not it was possible to an-
ticipate food security outcomes halfway through the 12-month
period. A longer window of anticipation could provide addi-
tional time for people to react before the food insecurity hap-
pens. Therefore, we estimated how much can be known about

Frequency of IPC 3-5

0.8

0.6

0.4

0.2

0.0

55 60
“crisis” or higher (numbers 3-5) between 2011 and 2018. Note that

Yemen was only classified starting in Oct 2014 (n = 13), all others have
approximately 27 observations
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Fig. 4 Regions that are (a) pastoralist (b) agropastoralist, and (¢) non-
pastoralist. The middle row shows, for each livelihood group, the
aggregate food security outcomes between 2011 and 2018. The x-axis
is food security outcomes and the y-axis is the frequency of experiencing
each type of outcome. The bottom row shows, for each region, the dis-
tribution of food security outcomes contingent on SPI. The x-axis is food
security outcomes, and the y-axis is the frequency of experiencing each

12-month SPI in advance by only observing one rainy and dry
season in one half of the year and then forecasting the results
of the next rainy season in order to ultimately estimate the 12-
month rainfall for the end of that year.

First, given the observed six months of rainfall, including
one rainy season, the possible outcomes for the total rainfall for
the end of 12 months (six months observed plus six months
unknown) is shown in Fig. 6a. Results were generated by com-
bining the observed rainfall with a random sample of historical
observations for the second half of the year. For example, we
started with a 6-month observed rainfall total and combined
this with a randomly selected rainfall total for the second half
of the year, and then repeated, combining it with a number of
random samples from the historical distribution to see what the
total 12-month rainfall might look like, given the observed 6-
month rainfall at the beginning. In the case where the observed
6-month total was very high (green line in Fig. 6a), the range of
potential outcomes for 12-month rainfall would be on the wet
side, even if the rest of the year was rather dry.

Knowing this range of possible outcomes, we could then
estimate the possible food security outcomes for the end of the

@ Springer

type of outcome. Each color represents a probability distribution function
of food insecurity outcomes, showing the probability of having an out-
come of 1-5 conditional on that SPI category. (g) For pastoral regions,
when SPI is observed to be in in one of 4 different color-coded bins, the
probability of food security outcomes 1-5 are shown in each color, and
connected with a line of that color. (h-i) Same as in (g), but for
agropastoral and non-pastoral regions

12-month period (Fig. 6b). For example, if we had experi-
enced that the first six months of a year were very wet, then
the probability of pastoralist regions being in IPC 2 by the end
of'the year would be almost 80%. This outcome is affected not
only by the rainfall of the upcoming season but also by socio-
economic factors governing food access, which can them-
selves be exacerbated by drought.

Figure 6a-b uses the climatological probability of possible
rainfall amounts, which assumes that there is no information
about what the upcoming rainy season will be like (probability
of rainfall is equally distributed over lower, medium and
higher terciles). However, seasonal forecasts are available in
East Africa, and can provide an early indication of potential
rainfall before the season starts. Figure 6 also shows the po-
tential rainfall outcomes that would result from a combination
of observed 6-month rainfall and forecast seasonal rainfall.
Figure 6¢ shows a forecast of a 100% chance of below-
normal tercile of rainfall, and 6e shows 100% chance of
above-normal tercile of rainfall. Figure 6g and i provide more
common seasonal forecasts, with the highest probability being
50% chance below-normal or above-normal rainfall.
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Fig. 5 As in the third row of Fig. 4, but for each livelihood group in
Ethiopia (a, d, g), Kenya (b, e, h), and Somalia (¢, f, i). Each plot
shows the distribution of food security outcomes contingent on SPL
The x-axis is food security outcomes, and the y-axis is the frequency of

In the right column of Fig. 6 the distribution of possible
food security outcomes for pastoralist regions based on this
combination of rainfall and forecast is noticeably different for
forecasts of 100% below/above-normal rainfall (compare
second and third row of Fig. 6), but nearly indistinguishable
for forecasts of 50% chance below/above-normal rainfall
(compare fourth and fifth row of Fig. 6). In all cases, food
insecurity is affected by factors other than rainfall, and there-
fore there is still a wide distribution of possible outcomes.

4 Discussion

In East Africa, food insecurity outcomes differ dramatically
between different pastoralist and non-pastoralist livelihood
zones. Pastoral and agro-pastoral populations are chronically
food insecure, and investment in these regions should address
long-term food insecurity as well as periods of increased food

T T T T T T T
4 5 1 2 3 4 5

experiencing each type of outcome. Each color represents a probability
distribution function of food insecurity outcomes, showing the
probability of having an outcome of 1-5 conditional on that SPI category

stress. Somalia is the only region that has seen instances of
IPC 5 famine in the last ten years (in agropastoral regions).

In cropping regions of Kenya and Ethiopia, “minimal” food
insecurity is the most common outcome, and cumulative 12-
month rainfall only slightly shifts the probability towards greater
food insecurity. Tailored crop models are likely to be more useful
to anticipate food production in these regions because they can
model cultivars and requirements for rainfall at critical moments
in the growing cycle (Jayanthi et al. 2014; Quijano et al. 2015). In
the non-pastoralist regions of Somalia, total rainfall amounts are
unlikely to have any bearing on food security outcomes.

In pastoralist and agro-pastoralist regions of all three coun-
tries, however, total rainfall amounts are indeed related to
outcomes and consequently can provide a significant source
of information for anticipating crises. For example, the long-
term frequency of “Emergency” food insecurity in pastoralist
regions is about 13% (Fig. 4d), but if 12-month rainfall SPI is
below —1, then the probability of “Emergency” triples to
about 36% (Fig. 4e).
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Vulnerability to shocks is high in pastoralist regions, and
periods of increased food insecurity are strongly associated
with 12-month periods of low rainfall. This paper provides a
quantitative estimate of how much the probability of adverse
outcomes increases as rainfall decreases. To achieve the best
forecast of food insecurity, this rainfall information should be
integrated qualitatively or quantitatively with indicators of
prices, conflict, trade, and negative coping mechanisms.
Currently, this is a task that is carried out by teams within
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FEWS NET. Given the distribution of potential outcomes
based on the rainfall, these additional socio-economic factors
can be used to narrow the range of possible outcomes.

The vulnerability relationships presented here for both pas-
toralists and non-pastoralists represent a historical snapshot of
vulnerability for this region in the past 10 years. Both these
relationships and the reliance on rainfall-changes with time
should be continually updated with new information on live-
lihoods and vulnerability. Such vulnerability relationships also



From rain to famine: assessing the utility of rainfall observations and seasonal forecasts to anticipate food insecurity in East Africa 65

do not adequately characterize possible outcomes from shocks
that were not experienced in the past 10 years, and therefore
are outside the data sample used here. It would be ideal to
further refine the categories of livelihood zones, to develop
clearer relationships for specific groups of people across East
Africa. Similarly, further refining food security outcomes
could help better anticipate and prevent impacts.

However, these quantitative relationships between rainfall
and food insecurity show promise in supporting early warning
systems in East Africa, for example to be incorporated into the
Famine Early Warning System forecasts (FEWS). With the
observations from only one rainy season, there is already a
good indication of the range of possible food security out-
comes that could be expected by the end of the following rainy
season. Using these observations allows for six months of
lead-time, without waiting for the second rainy season to fail.
For example, if 6-month rainfall SPI in a pastoralist region is
observed to be below —1, then the probability of “Emergency”
food insecurity doubles.

Seasonal forecasts, in combination with the observed rain-
fall information from the past season, can help constrain this
space of probability, showing higher probabilities for certain
outcomes. The skill of seasonal rainfall forecasts in East
Africa is stronger than in many other regions of the world,
because East African rainfall is influenced by the El Nifio
Southern Oscillation and the Indian Ocean Dipole (Gitau
et al. 2015; Manzanas et al. 2014). The reliability of seasonal
rainfall forecasts from the European Centre for Medium
Range Weather Forecasts was categorized as “marginally”
or “still useful” in most of the year for East Africa
(Weisheimer and Palmer 2014), and the forecasts from the
International Research Institute for Climate and Society show
similar results (Barnston et al. 2010). Therefore, seasonal fore-
casts only provide a small amount of information to help in-
dicate what kind of food insecurity could be expected, and
should not be over-emphasized when trying to anticipate up-
coming disasters.

However, because most seasonal forecasts are not very
“sharp”, meaning that they do not have very strong proba-
bilities for what will happen in the upcoming season, they
are unlikely to make a meaningful difference in the proba-
bility of food insecurity outcomes. In the past 20 years of
IRI forecasts, more than one-quarter of calendar years did
not have a single location in East Africa with a strong fore-
cast of 50% chance or higher. Statistical models developed
for this specific region, however, are likely to be able to
produce stronger forecasts (Funk 2016). Work being done
on predicting the drought effects of back-to-back La Nifias
in this region could also help improve the skill of these
forecasts (Funk et al. 2018).

Ultimately, observed rainfall should be used as a basic in-
put to predict potential food insecurity outcomes, and little
weight should be given to seasonal forecasts unless they show
extremely high probabilities of specific outcomes. During El
Niilo and La Nifia years, seasonal forecasts can provide much
sharper probabilities, especially for the October—December
rainy season (Barnston et al. 2010).

5 Conclusions

In the pastoralist and agropastoralist regions of East Africa,
low rainfall over two rainy seasons is strongly related to a
decrease in food security, and this rainfall can be used to
support early warnings in advance of major shocks. With
six months of lead-time, many actions can be taken to
prepare for potential food insecurity. These actions can
include scaling up of social protection systems, as done
in Ethiopia in 2011, to respond to a potentially deteriorat-
ing food security situation in the coming months. Actions
can also include water rationing, rehabilitation of water
resources, stockpiling of livestock feed, and preparation
for scaling up of temporary assistance, such as school feed-
ing programs. These results can also encourage practi-
tioners not to “over-interpret” rainfall forecasts, because
even with perfect knowledge of rainfall, the range of food
security outcomes is still very wide. For example, the prob-
ability distribution function of food security outcomes is
only slightly changed when there is a forecast of 50%
chance of below-normal rainfall (see Fig. 6).

The amount of rainfall required to sustain livelihoods
varies across local populations. While in pastoralist regions,
total accumulated rainfall is an indicator of potential food
insecurity, the relationship is not as strong in agricultural
areas. For these regions, crop models can be used to anticipate
harvest outcomes, based on the exact rainfall requirements of
the crop planted in a specific location as well as early-season
assessments of crop status. Financial mechanisms have also
been developed to deliver humanitarian finance before expect-
ed negative outcomes of a failed crop (Kehinde 2014).

Ultimately, reducing the spatial extent of this analysis to
create very local models focused on indicators for specific
groups can improve our ability to predict impacts. This can
incorporate information on the specific rainfall requirements
for that group and include interaction effects with socio-
economic variables related to food access.

While the bulk of forecasting for food security is focused
on avoiding negative outcomes, this analysis has shown that
observations of high rainfall can also provide a slightly
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increased probability of a good year. Humanitarians and gov-
emments working in these regions can explore opportunities
to take advantage of such food security forecasts based on
observed rainfall to support socio-economic growth and agri-
cultural productivity in wet years.

To facilitate the use of rainfall for food security forecasts,
climate service providers should consider methods to provide
combined observed and forecasted rainfall to decision-makers
in the region. In many cases, using only observed data can
give a strong indication of potential food insecurity outcomes,
and in years where forecasts present an unusually strong sig-
nal, such as El Nifo or La Nifa years, rainfall forecasts can be
combined with the observed data to improve predictions of
food insecurity. Some products already exist to begin to pro-
vide this analysis, including a combination of rainfall obser-
vations and climatology (USGS and USAID n.d.), as well as a
site that combines observations with forecasts to highlight
areas of concern (IRI n.d.). Presenting this information as a
change in the range of potential food insecurity outcomes can
help humanitarians combine such findings with other relevant
factors for food security and further narrow the range of pos-
sible outcomes.

Advances in impact forecasting, such as the probability
distribution functions of different outcomes based on a fore-
cast (e.g. Fig 6), can help estimate possible outcomes for dif-
ferent groups of people and provide tailored forecasts for par-
ticularly vulnerable populations. Because different livelihood
zones have dramatically different relationships to rainfall, fur-
ther understanding of differential vulnerability across liveli-
hood zones and socio-economic groups can allow for tailored
support to those who are most likely to be impacted by a
particular hazard.
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