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Abstract

Unsupervised Representation Learning with Correlations

Da Tang

Unsupervised representation learning algorithms have been playing important roles in ma-

chine learning and related fields. However, due to optimization intractability or lack of consider-

ation in given data correlation structures, some unsupervised representation learning algorithms

still cannot well discover the inherent features from the data, under certain circumstances. This

thesis extends these algorithms, and improves over the above issues by taking data correlations into

consideration.

We study three different aspects of improvements on unsupervised representation learning

algorithms by utilizing correlation information, via the following three tasks respectively:

1. Using estimated correlations between data points to provide smart optimization initializa-

tions, for multi-waymatching (Chapter 2). In this work, we define a correlation score between

pairs of data points as metrics for correlations, and initialize all the permutation matrices

along a maximum spanning tree of the undirected graph with these metrics as the weights.

2. Faster optimization by utilizing the correlations in the observations, for variational inference

(Chapter 3). We construct a positive definite matrix from the negative Hessian of the log-

likelihood part of the objective that can capture the influence of the observation correlations

on the parameter vector. We then use the inverse of this matrix to rescale the gradient.

3. Utilizing additional side-information on data correlation structures to explicitly learn corre-

lations between data points, for extensions of Variational Auto-Encoders (vaes) (Chapters 4

and 5). Consider the case where we know a correlation graph G of the data points. Instead



of placing an i.i.d. prior as in the most common setting, we adopt correlated priors and/or

correlated variational distributions on the latent variables through utilizing the graph G.

Empirical results on these tasks show the success of the proposed methods in improving the

performances of unsupervised representation learning algorithms. We compare our methods with

multiple recent advanced algorithms on various tasks, on both synthetic and real datasets. We also

provide theoretical analysis for some of the proposed methods, showing their advantages under

certain situations.

The proposed methods have wide ranges of applications. For examples, image compres-

sion (via smart initializations for multi-way matching), link prediction (by vaes with correlations),

etc.
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Chapter 1: Introduction

Unsupervised representation learning [1, 2], or unsupervised feature learning, is a popular research

direction in machine learning. Basically, any algorithm that learns any kind of latent representa-

tions (or features) from observed data without supervision signals (e.g. the outcome variables in

regression or the labels in classification) can be viewed as a kind of unsupervised representation

learning methods. Since unsupervised representation learning algorithms can extract features from

the data, it can automatically transform observed raw data into well-shaped data that can be used

as inputs for machine learning algorithms.

The feature learning steps that unsupervised representation learning performs is important since the

performance of many machine learning algorithms strongly depends on the inputs. To illustrate, let

us consider a scenario where we have a movie rating vector for each user ui (e.g. the MovieLens

dataset [3]) . We have movie ratings of this user split into two halves and get two synthetic users uA
i

and uB
i , each has half of ui’s ratings. And our task is to find the N (the number of users) one-to-one

mapping between these 2N synthetic users. Directly applying the distance metrics on the rating

vectors of these synthetic users to find the mapping is not good idea since the set of movies that

each pair of synthetic users have watched are almost disjoint. However, as shown in one experiment

that we will see later in Section 4.4.2 of Chapter 4, applying a Variational Auto-Encoder (vae) [4, 5]

to learn low dimensional representations for each synthetic users and finding the mapping based

on the distance metrics on these representations performs well, as the latent representations can

potentially provide essential information that the pure rating vectors cannot provide. Moreover, in

natural language processing, there are many ways that we can learn word embeddings [1, 6, 7] as

feature vectors for words and apply these feature vectors in machine learning algorithms, while we
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have no idea on the words’ meaning from the input documents themselves if we do not perform

such feature learning. Therefore, feature learning plays an important role for machine learning and

it can be applied in many related fields as well.

In addition, compared to supervised representation learning algorithm methods (e.g. supervised

dictionary learning [8]), unsupervised representation learning methods have the advantages that

they do not need to learn from labels, which may be expensive or hard to obtain for some tasks.

For example, in word embedding, we can learn useful features for the words without labels on the

part-of-speech information, the parse trees, the tense or any other information of the text, while

performing such kind of labeling may be hard. As a result, unsupervised representation learning

methods are potentially more applicable in practice, and hence studying such methods is an inter-

esting and useful topic in the machine learning community.

1.1 Existing algorithms

There are many existing unsupervised representation learning algorithms. We briefly introduce

some of them here.

1.1.1 Matrix factorization, Auto-Encoders and vaes

We consider a real application, movie recommendation with user-based collaborative filtering [9],

to illustrate matrix factorization, Auto-Encoders and vaes. Assume that we are giving a dataset

showing the ratings of movies that N users u1, . . . , uN have watched among M movies t1, . . . , tM .

Then this dataset forms a matrix X ∈ RN×M where Xi j is the rating that the user ui proposes on the

movie t j . We set Xi j to be 0 if the user ui has not watched the movie t j .

To learn the interests of each user ui, and the style (or types of contents) of each movie t j so as

to be recommended to the users, matrix factorization [10] learns a d-dimensional latent vector

zi ∈ Rd for each user ui and a vector w j ∈ R
d with the same dimensionality for each movie t j ,
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and uses the inner product X̃i j = z>i w j as the predicted value for the entry Xi j . By applying the

squared Euclidean distance as the loss function and adding regularization terms on the parameter,

with Z =
(
z1 z2 . . . zN

)>
∈ RN×d and W =

(
w1 w2 . . . wM

)>
∈ RM×d as the matrix rep-

resentations of the latent vectors, standard matrix factorization minimizes the following objective

function:

min
Z,W
L(Z,W ) =

∑
(i, j):Xi j,0

‖ z>i w j − Xi j ‖
2
2 + λZ ‖Z ‖22 + λW ‖W ‖22 . (1.1)

Here λZ, λW ≥ 0 are the L2-regularization parameters. We also call this method as matrix fac-

torization with explicit feedback [11] since it only optimizes with the observed entries. Similarly,

another type of the matrix factorization is the case with implicit feedback [11], which treats the

unseen entries as zeros and optimizes on the whole matrix:

min
Z,W
L(Z,W ) = ‖Z>W − X ‖22 + λZ ‖Z ‖22 + λW ‖W ‖22 . (1.2)

The two objectives (Equations 1.1 and 1.2) can be viewed as a probabilistic generative model on the

data matrix X , where the likelihood of the entry Xi j is a Gaussian distribution with the mean equals

the inner product z>i w j [12]. In fact, depending on the type of the dataset, the likelihood can also

be other distributions. For example, we can set the likelihood of Xi j to be Poisson distribution (we

call this Poisson matrix factorization) when we have non-negative integer input data [11].

However, the standard matrix factorization fits data matrix X with a linear transformation from the

latent variable Z (since the parameter for the likelihood on each entry Xi j is just a linear transforma-

tion from the latent embedding zi), which makes the model lack of expressiveness. An extension

for this is to learn a non-linear mapping function gθ : Rd → RM that maps the latent embedding

zi to the data vector xi ∈ R
M for each user ui. This function gθ is parameterized by a vector θ

and it is shared among all data points. On the other hand, we may also want to learn a function

fλ : RM → Rd that maps the data vector xi to the latent representation zi = fλ (xi) for each user ui

so that we can compute the latent representations given the data. Applying a standard L2 loss, we

3



get the Auto-Encoder (AE) [13, 4]:

min
λ,θ
L(λ, θ) =

n∑
i=1

‖gθ ( fλ (xi)) − xi‖
2
2 . (1.3)

Here the objective minimizes the reconstruction loss of the data xi from the latent representation

zi. The two functions f and g may seem like a pair of inverse functions, but it is not necessarily the

case. Instead, Auto-Encoders just aim at learning a good mapping from the latent representations

to the data, and a mapping in the reverse direction as well. In practice, to make the model more

expressive, we usually choose f and g to be neural networks [13, 4] and λ, θ are the parameters for

these two networks, respectively,

Auto-Encoders have the two advantages over matrix factorizations. First, the vector gθ (zi) can be

a non-linear mapping on the latent embedding zi, while for matrix factorization this is just a linear

mapping W>zi. Second, we have a mapping fλ that can be used to compute the latent embeddings

zi from the data, while we need to learn a different embedding vector zi for each user xi in matrix

factorization. This technique that Auto-Encoders apply is called amortized inference, which we

will discuss in more details in Chapter 4.

In Auto-Encoders, the latent embeddings zi are deterministic functions of the data xi. In fact,

stochastic mappings can learn better representations as features [4]. If we extend the mapping fλ

to be stochastic, we get the Variational Auto-Encoder (vae) [4, 5], which is one of the models that

this thesis mainly focuses on. It can learn stochastic latent representations for data and performs

well on various tasks. We will introduce this model in detail in Chapter 4.

1.1.2 Dictionary learning

In dictionary learning and compressive sensing [14, 15], we learn a dictionary of feature vectors that

can be used as a basis with which the input data can be expressed as linear combinations of these

vectors with sparse coefficients. Mathematically, given a set of observed vectors y1, . . . , yn ∈ R
m,

4



we would like to learn a dictionary matrix A ∈ Rm×d and a set of sparse vectors x1, . . . , xn ∈ R
d

such that the following objective is minimized (λ > 0 is a regularization parameter):

min
A,x1,...,xn

n∑
i=1

(‖yi − Axi‖
2
2 + λ‖xi‖0). (1.4)

Here the columns a1, . . . , am ∈ R
d of the dictionary matrix A are the feature vectors that we want

to learn. Usually, we will have the observed vector dimensionality m � d and we hope the learned

vectors xi are very sparse. In this way, dictionary learning can learn a large set of basis vectors

a1, . . . , am where all of the input vectors yi can be represented as linear combinations of them with

sparse coefficients. However, the optimization for dictionary learning is generally NP-hard due

to the L0-regularization in the objective function in Equation 1.4 [15]. To solve the computational

issues, many approximate methods have been proposed (these methods are widely applied in feature

selection and compressive sensing as well). For example, we can use some heuristics for dealing

with the L0-regularization (e.g. the K-SVD algorithm [16]) or optimize with the L1-regularization

instead (e.g. the Lasso algorithm [17] and the Basis Pursuit algorithm [18]).

1.1.3 Word embeddings

In natural language processing, as we mentioned before, people have multiple ways to learn vector

representations for words. These vector representations can well capture the semantic meanings

of the words, which are beneficial for many tasks in natural language processing. For example,

[19] proposed an RNN-based model that can learn vector representations that follow an interesting

fact that, if we want to find the word with the closest representation to the vector vec("King")-

vec("Man") + vec("Woman"), we obtain the word "Queen".

There have been many previous studies on learning vector representations for words [20, 6, 19,

7, 21, 22, 23]. Most of these methods model the sentences with probabilistic models on words

with their contexts. For example, [20] extends the traditional n-gram method, which models the

5



probability of each word given the previous n−1 words. [6] proposed the Skip-gram model, which

models the probability of each word in the context (neighboring words) of it given this word. In

addition to directly model the sequence probability, [7] proposed the GloVe model, which learns

representations for words via global matrix factorization on the co-occurrences of words in local

contexts.

The above methods learn useful latent representations for words and these embeddings can well

express the semantic meanings of the words. In addition, the same idea can be extended to sentences

and documents and we can learn higher level embeddings for them as well [24].

1.1.4 Permutations for bag-of-elements data

In addition to learning traditional types of embedding or basis vectors, unsupervised representa-

tion learning algorithms can also learn some other types of latent representations, which are also

useful in many machine learning tasks. One example is on bag-of-elements data, where each data

point is an element set. This setup means that the elements in each element set are not sorted in

a consistent order. For example, the bag-of-words model in natural language process [25, 26] and

the bag-of-pixels model in computer vision [27]. Bag-of-elements datasets appear very frequently

in common tasks, and they have the advantages that with which we can easily store sparse high

dimensional data with little memory.

However, since the coordinates of the data points are not ordered in the same way, it is beneficial for

many machine learning tasks if we can sort the coordinates of each data point so that the data points

look “more consistent” with each other after sorting. For example, as we will show in Figure 2.1

in Chapter 2, we can reduce the PCA reconstruction error on a set of figures the with bag-of-pixels

format if we sort the pixels in each figure in a good way. In general, this sorting process is equivalent

to learning a permutation matrix for each of the element set (e.g. a figure in this example) such that

the element sets after permuted with these matrices are “closer” to each other, meaning that we

want to pursue the invariance between the order of the coordinates for these element sets. These
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permutation matrices are also unsupervisely learned representations for the input data, as these

matrices can inherently represent the order of the coordinates of each data point. The problem

of learning these permutation matrices is called multi-way matching, which is widely applied in

computer vision and some other fields [28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. We will introduce

more details about this problem in Chapter 2.

1.2 Extensions and improvements with correlation information

We have introduced many unsupervised representation learning methods in Section 1.1. They have

shown success in machine learning as well as their applications to related fields. However, due to

some optimization intractability or ignoring data correlation structures, these methods still cannot

solve the problem of learning useful latent representationswell, under certain circumstances, andwe

can improve these algorithms inmany aspects. For example, there have beenmanywork focusing on

multi-way matching (e.g. [38, 39, 40, 33, 34, 35, 36]), but these methods can hardly recover all the

permutation matrices together perfectly even on simple tasks, due to the fact that the optimization is

computationally intractable. Moreover, the vaes have been showing success in many applications

[4], but it assumes the prior distribution of the latent variable to be i.i.d. among data points, which

limits its ability to learn correlated latent representations where a priori we know some correlation

structure about the data.

In this thesis, we focus on extensions and improvements for existing unsupervised representation

algorithms. Our improvements focus on considering correlations from the data. These correlations

can be of various types, and hence have different kinds of influence on the algorithms. We focus

on improvements with 3 types of correlations: estimated correlations between data points for better

initializations, observation correlations formore efficient optimization, and data correlations related

to additional side-information for learning correlated representations.
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1.2.1 Estimated correlations for multi-way matching

We first study how we can utilize information on the estimated correlations between data points

to achieve better optimization procedure. In this case, we study the multi-way matching problem.

As we mentioned before, the problem is computationally intractable (in Chapter 2 we will show

that the objective function that we study is NP-hard), hence we only aim to find good approximate

solutions to this optimization problem.

To achieve this goal, most previous work propose methods optimizing with inexact objectives, such

as convex relaxation [34] and matrix decomposition [35]. These methods work well on datasets

under certain situations but may become unreliable on very noisy data. Another line of previous

approaches is to optimize on the huge permutation matrix simplex with the exact objective, by

computing a good initialization for the permutation matrices using heuristics. One example method

is to perform iterative updates between the pairs of neighbor sets (Xi, Xi+1) for i = 1, . . . , n− 1, but

this may be unstable once one incorrect matching is computed [38, 39, 40].

In this thesis, in order to achieve good performances on real data with noise, we want to work

on the exact objective and consider a better heuristic to provide initializations for the permutation

matrices. We estimate the correlations between data points with a correlation score for each pair of

data points measuring how confident we are in the bipartite matching between them (i.e. measuring

the correlation level between this pair of data points), and initialize the permutation matrices along

a maximum spanning tree of the correlation score graph. This heuristic helps us derive a good

initialization not only works well empirically, but also has insightful theoretical guarantees.

1.2.2 Efficient inference with pathological objectives

After studying how data correlations can help provide good initializations, we then look into the

effect of utilizing correlation information on improving the optimization procedure. For this task,

we study variational inference [41], which is an approximate inference methods for probabilistic
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models with latent variables (we will introduce more details about this in Chapter 3). Exact varia-

tional inference is tractable for somemodels, but it becomes intractable for general cases andMonte

Carlo gradient estimators become useful for the optimization procedure [4, 42]. However, as we

will see more details in Chapter 3, the optimization is usually slow due to the potentially patholog-

ical curvature of the objective. Previous methods propose to optimize with the gradient estimators

on the natural gradients [43, 44, 45], which perform second-order optimization and can adjust for

the non-Euclidean nature of probability distributions for variational inference. However, the natural

gradients cannot well capture the pathological curvature of the objective when the approximation

family on the model posterior distribution does not contain a good approximation.

In this thesis, we derive a new type of natural gradient, the Variational Predictive Natural Gradient

(vpng), which can capture the curvature of the objective even when the true posterior distribution is

not close to the distributions in the approximation family. This new natural gradient is the standard

gradient scaled by the inverse of the variational predictive Fisher information matrix, which mea-

sures the influence of the correlations in the observations on the parameter vector. As shown later

in Chapter 3, the proposed method can improve the efficiency of variational inference on multiple

different settings.

1.2.3 Correlated representations with side-information

In addition to the effect on optimizations, we are also interested in how additional side-information

can help on unsupervised representation learning algorithms. For this topic, we study the vae. As

we mentioned before, standard vaesmodel the prior on the latent variables as an i.i.d. distribution.

As a result, the latent embeddings that we learn have no correlations between data points. This is

a reasonable assumption when we have no information about the correlation structure on the data.

However, if we know some information about the correlation structure between data points, for

example, a social network between the users, it will be better if we can incorporate this correlation

structure into the generative process of vaes and consider a more comprehensive prior.
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In this thesis, we propose the Correlated Variational Auto-Encoder (cvae), which extends the stan-

dard vae by considering the known correlation structure between data points and learning corre-

lated latent embeddingswith a correlated prior corresponding to this correlation structure. By incor-

porating this side-information into the prior of the vae, our cvae can learn useful correlated latent

representations that can be used to perform well on multiple downstream tasks. In addition, to solve

some issues on the expressiveness, effectiveness and efficiency on cvaes, we propose an extension

called Adaptive Correlated Variational Auto-Encoders (acvaes), which improve again over cvaes

on various empirical tasks. These work show the success of utilizing additional side-information

in improving the performances on unsupervised representation learning methods.

1.3 Organization of this thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the method for smart initializa-

tions on multi-way matching by utilizing estimated correlations between data points. In Chapter 3,

we introduce the vpng and show how we apply the correlation metrics in the observations to per-

form better optimization. Chapters 4 and 5 introduce cvaes and acvaes, which illustrate the way

how the known correlation structure on data points can help learn correlated latent representations.

Finally, we conclude and propose some potential future work.

1.4 Related papers

This thesis is related to several papers, either published on academic conferences or on arXiv.org.

The multi-way matching paper ([46], Chapter 2) was published at AISTATS 2017. The vpng paper

([47], Chapter 3) and the cvae paper ([48], Chapter 4) were published at ICML 2019. The acvae

paper ([49], Chapter 5) is now on arXiv.org.
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Chapter 2: Initialization and Coordinate Optimization for Multi-way

Matching

In this chapter, we introduce our first research on utilizing data correlation information for improv-

ing unsupervised representation learning algorithms. We discuss how to use estimated correlations

between data points to provide smart initializations for multi-way matching.

More specifically, we consider the problem of consistently matching multiple sets of elements to

each other, which is a common task in fields such as computer vision. To solve the underlying

NP-hard objective, existing methods often relax or approximate it, but end up with unsatisfying

empirical performance due to a misaligned objective. We propose a coordinate update algorithm

that directly optimizes the target objective. By using pairwise alignment information to build an

undirected graph and initializing the permutationmatrices along the edges of its maximum spanning

tree, our algorithm successfully avoids bad local optima. Theoretically, with high probability our

algorithm guarantees an optimal solution under reasonable noise assumptions. Empirically, our

algorithm consistently and significantly outperforms existing methods on several benchmark tasks

on real datasets.

2.1 Motivation

Given element sets X1, . . . , Xn (n ≥ 2), the problem of finding consistent pairwise bijections be-

tween all pairs of sets is known as multi-way matching. As a critical problem in computer science,

it is widely applied in many computer vision tasks, such as object recognition [28, 29], shape anal-

ysis [50], and structure from motion [30, 31]. It can also be applied to other fields (e.g. multiple
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graph matching [32, 33] and data source integration [37]).

In most cases, the multi-way matching problem is approached as a weighted multi-dimensional

matching optimzation or relaxation (e.g. the works [34, 35, 36]). This objective is easy to solve

when n = 2, since no consistency between matchings is required. However, as n ≥ 3, the problem

becomes hard due to the combinatorial constraints induced by consistency and we can show that

the underlying optimization is NP-hard to solve in general. Therefore, approximate methods, such

as convex relaxation [34] and matrix decomposition [35] have been proposed. These methods work

well on datasets with little noise but may become unreliable when more realistic noise levels are

present in the data.

In this chapter, we aim to find algorithms that directly optimize the true objective of the weighted

multi-dimensional matching problem. One intuitive approach is to iteratively update the matching

between pairs of sets (Xi, Xi+1) for i = 1, . . . , n − 1. However, as mentioned in Section 1.2.1,

this may produce significant errors once one erroneous pairwise matching is found in the iterative

process [38, 39, 40]. Alternatively, one can simply perform coordinate updates on the objective

since each coordinate update subproblem is a weighted bipartite matching which can be efficiently

solved optimally. However, coordinate update approaches depends heavily on good initialization

and may produce bad performance due to local optima.

In this chapter, we combine the above ideas and design an effective method for the multi-waymatch-

ing problem. We build an undirected graph with edge weights coming from all pairwise matching

similarity scores, and use its maximum spanning tree (MST) to find a good order for computing

n − 1 pairwise matchings. This helps avoid bad local optima since it focuses initially on more reli-

able matchings in the coordinate updates. This seemingly simple idea yields good performance in

practice while also enjoying theoretical guarantees. Similar ideas have been discussed in previous

works (e.g. [51]), but lacked a comprehensive theoretical analysis. In real experiments, we obtain

surprisingly strong results on many well-known datasets. For instance, we reliably get 0% error on

the famous datasets CMUHouse and CMUHotel for the task of stereo landmark alignments with
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m = 30 points (which has not been easy for previous algorithms to achieve). Theoretically, we not

only guarantee that our algorithm solves the problem optimally when pairwise alignment methods

work but we also guarantee optimality with high probability when a spanning tree on the noise

parameter graph has small bottleneck weight (the largest weight in a spanning tree) after imposing

some other mild assumptions.

2.2 Consistent matching for sets of elements

We frame the multi-way matching problem as described by [34]. Assume we have n element sets

X1, X2, . . . , Xn where each Xi contains m elements Xi = {xi
1, xi

2, . . . , xi
m}. For any pair of element

sets (Xi, X j ), we assume that there exists a bijection between their elements such that element xi
p is

mapped to element x j
q if they are similar to each other. For example, X1, . . . , Xn could be n images

of an everyday object (say a chair) and each image Xi therein contains m pixels xi
1, xi

2, . . . , xi
m.

Since these images describe the same object type, we expect a bijection to exist between the parts

(or pixels) within the pairs of images.

Clearly, such bijections should be consistent with each other. In other words, if element xi
p is

mapped to element x j
q and element x j

q is mapped to element xk
r , then element xi

p should be mapped

to element xk
r . More specifically, given the element sets X1, .., Xn, we are interested in finding a

consistent bijection τi j : {1, . . . ,m} → {1, . . . ,m} between each pair of element sets (Xi, X j ) such

that: x j
τi j (p) is mapped to xi

p, τii is the identity transform, τi j = τ−1
ji and τj k ◦ τi j = τik , for any

element sets Xi, X j , Xk and any element xi
p.

Achieving the above is equivalent to reordering the elements in each element set Xi such that the

elements with the same index correspond to each other. Mathematically, finding a consistent bijec-

tion τi j for each pair of element sets (Xi, X j ) is equivalent to finding a bijection σi : {1, . . . ,m} →

{1, . . . ,m} for each element set Xi, such that element xi
p is mapped to element x j

q if and only if

σi (p) = σ j (q). We easily see that these mappings satisfy τi j = σ−1
j ◦ σi for any τi j , σi and

σ j .
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In order to find the mappings σi, [34] proposed an alternative objective function. They assume

that we are given a similarity matrix Ti j ∈ R
m×m for each pair of sets (Xi, X j ). The entry [Ti j]p,q in

the pth row and qth column of Ti j represents the similarity level between elements xi
p and x j

q. The

closer two elements are each other, the larger this similarity level is. By symmetry, we also require

that Ti j = T>ji for any pair of (Ti j,Tji). Without loss of generality, we will assume that [Ti j]p,q are

constrained to the range [0, 1]. Ideally, elements xi
p and elements x j

q can be perfectly matched to

each other if [Ti j]p,q = 1 and is maximal. We also hope to avoid matching pairs of elements that not

related to each other, e.g. when [Ti j]p,q = 0 or is minimal. [34] recovered the mappings σ1, . . . , σn

by solving the following optimization problem:

max
σ1,...,σn

L(σ1, . . . , σn) :=
n∑

i=1

n∑
j=1

〈P(σ−1
j ◦ σi),Ti j〉 (2.1)

where P(σ) ∈ Rm×m is a permutation matrix satisfying

[P]p,q =




1 if σ(p) = q

0 otherwise.

Notice that all permutation matrices are orthogonal matrices and P(σ−1
j ◦σi) = P(σi)−1P(σ j ) for

any mappings σi and σ j . Let the set of all m × m permutation matrices be Pm. We rewrite the

objective function in Equation 2.1 as

max
A1,...,An∈Pm

L(A1, . . . , An) :=
n∑

i=1

n∑
j=1

tr(AiTi j A>j ) (2.2)

since A>i = A−1
i , where Ai = P(σi) is a permutation matrix for the element set Xi. Note that the

solution for this optimization problem is not unique (in fact, it has at least m! different tuples of so-

lutions) since (A1, . . . , An) = (PÂ1, . . . , PÂn) is an optimal solution if (A1, . . . , An) = ( Â1, . . . , Ân)

is, for any permutation matrix P ∈ Pm.
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A naive method for solving this problem is to recover A1, . . . , An from equations Pi j = A>i A j , where

Pi j = argmax
P∈Pm

tr(P>Ti j ), for all i, j ∈ {1, . . . , n}. We call this method Pairwise Alignment. It clearly

does not always work since the matrices Pi j may not be consistent with each other (i.e. they do not

always satisfy Pi j Pj k = Pik) and hence they may not correspond to a solution for (A1, . . . , An). In

the next section, we will propose novel algorithms that solve this optimization problem.

2.3 Coordinate optimization with smart initialization

The optimization problem in Equation 2.1 (with an equivalent version as in Equation 2.2) is essen-

tially a maximum weighted n-way matching problem. However, this problem is NP-hard to solve,

as in the following theorem:

Theorem 1. The multi-way matching optimization objective (in Equation 2.1) is NP-hard to solve.

Proof. We show that optimizing the objective in Equation 2.1 is NP-hard by a polynomial time

reduction to the known NP-hard problem MAX-CUT [52], which is to compute the maximum

number of edges between a partition of two set of vertices of a given undirected graph. Mathemati-

cally, given an undirected graph G = (V = {v1, . . . , vn}, E), we want to find partition (V1,V2), which

satisfies that V = V1 ∪ V2, V1 ∩ V2 = ∅, such that CUT(V1,V2) = |{(vi, v j ) ∈ E : vi ∈ V1, v j ∈ V2}| is

maximized.

Given this instance of the MAX-CUT problem, we construct an instance of the multi-way matching

problem as follows. Consider optimizing n bijections σ1, . . . , σn with the element set size m = 2.

For any 1 ≤ i, j ≤ n and p, q ∈ {1, 2}, we construct the similarity matrix entry [Ti, j]p,q as

[Ti, j]p,q =




1, if (vi, v j ) ∈ E, and p , q,

0, otherwise.
(2.3)

We can verify that this setting follows the requirements as in Section 2.2 and this construction takes

polynomial amount of time (with respect to the instance size of the MAX-CUT problem).
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Notice that, if we denote the set Vp = {vi ∈ V : σi (1) = p} for p ∈ {1, 2}, then V = V1 ∪ V2,

V1 ∩ V2 = ∅, and L(σ1, . . . , σn) = 4CUT(V1,V2).

Therefore, to compute themax cut for the graphG, we just need to compute 1
4 max
σ1,...,σn

L(σ1, . . . , σn).

This finishes a polynomial time reduction from the optimization for Equation 2.1 to the MAX-CUT

problem. By the NP-hardness of the MAX-CUT problem [52], we know that the n-way matching

objective is NP-hard to optimize. Especially, we also know that this objective is NP-hard even for

the special case of m = 2, and hence it is NP-hard for any fixed m ≥ 2 (by a simple polynomial

time reduction, omitted here). �

Therefore, we cannot find solutions to this problem for arbitrary input values of Ti j . Instead, we

will constrain the similarity matrices that are used as inputs to the problem. To approximate the

problem, [34] proposed an eigenvalue decomposition-based method by first relaxing the combina-

torial optimization into a continuous one and then rounding the solution using the Kuhn-Munkres

algorithm [53]. However, [34] could only guarantee their solution when every similarity matrix

Ti j was close to the ground-truth permutation matrix P(σ̃−1
j ◦ σ̃i) (σ̃1, . . . , σ̃n are the ground-truth

mappings we want to find). Unfortunately, this is rarely the case in practice. In the next section, we

will present a more general method for solving this problem via coordinate ascent.

2.3.1 Coordinate ascent over permutations

Consider the objective function in Equation 2.2. For each permutationmatrix Ai, since tr(AiTii A>i ) =

tr(A>i AiTii) = tr(Tii) is a constant, and tr(AiTi j A>j ) = tr(A jT>i j A>i ) = tr(A jTji A>i ) for any permuta-

tionmatrix A j , we know that, if we fix all of the other permutationmatrices A1, . . . , Ai−1, Ai+1, . . . , An,

then the maximization problem becomes

argmax
Ai∈Pm

L(A1, . . . , An) = argmax
Ai∈Pm

tr *.
,

A>i
∑

1≤ j≤n,i, j

A jTi j
+/
-
. (2.4)
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The optimization in Equation 2.4 can be solved in polynomial time (for example, through theO(m3)

Kuhn-Munkres algorithm [53]). Hence, a naive coordinate algorithm is easy to derive: initialize the

permutation matrices A1, . . . , An (either randomly or deterministically). Then, for each iteration,

randomly pick i ∈ {1, . . . , n}, update Ai according to Equation 2.4, and repeat until convergence.

Unfortunately, standard ways of initializing such an algorithm lead to poor local optima (see Sec-

tion 2.4.2). Better performance can be achieved, however, if we use pairwise alignment information

to construct a good initialization. This approach is discussed in Section 2.3.2.

2.3.2 MST-based initializations

We seek a good initialization for the coordinate update approach summarized in Equation 2.4.

Consider a single term tr(AiTi j A>j ) in the objective function in Equation 2.2. As we maximize

that objective, we say that we are confident in the values chosen for Ai and A j if the corresponding

term tr(AiTi j A>j ) is large. Define

f (Ti j ) := max
P∈Pm

tr(P>Ti j ) = max
Ai,Aj∈Pm

tr(AiTi j A>j ) (2.5)

for each Ti j . We call an initialization of our algorithm convincing if Ai = Âi and A j = Â j and

tr( ÂiTi j Â>j ) is close or equal to f (Ti j ) for some permutation matrices Âi, Â j ∈ Pm. Here f (Ti j ) can

be viewed as a kind of correlation score between the element sets Xi and X j . The larger f (Ti j ) is,

the more reliable that the bipartite matching between Xi and X j is. We estimated the correlations

between the data points by computing all of the scores f (Ti j ).

The above intuition encourages us to first initialize the matrices Ai, A j that correspond to values of

f (Ti j ) that are large. To achieve this, we build an undirected graph G = (V, E) where each element

set Xi corresponds to one vertex vi ∈ V and each pair of element sets (Xi, X j ) (i , j) corresponds

to an edge (vi, v j ) ∈ E with weight f (Ti j ) = f (Tji). We then find a maximum spanning tree

T = (V, E′) of G. Then, we initialize the matrices A1, . . . , An along the edges in E′ as follows.

Initially, we have n sets S1, . . . , Sn of vertices, each containing one vertex in V . Then, for every
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edge in each edge (vi, v j ) ∈ E′, we try to combine them together and use the similarity Ti j to find

the permutation matrices corresponding to vertices in the sets contain vi and v j . Details are shown

in Algorithm 1.

Algorithm 1MST-based coordinate updates for multi-way matching
Input: The similarity matrices Ti j (i, j ∈ {1, . . . , n}).
Construct graph G = (V, E) as in Section 2.3.2, compute a maximum spanning tree T = (V, E′)
of G;
Initialize Si ← {vi} for each vi ∈ V ; For each Ai, initialize it to be any permutation matrix in Pm;

for each edge (vi, v j ) ∈ E′ do
Compute P̂ = argmax

P
tr(P>AiTi j A>j );

Update A j ′ ← P̂A j ′ for each v j ′ ∈ Sj ;
Let S′ = Si ∪ Sj ;
Update Sk ← S′ for each vk ∈ S′;

end for
while Not converged do
Randomly pick i ∈ {1, . . . , n};
Update Ai according to Equation 2.4;

end while
Return The permutation matrices Ai (i ∈ {1, . . . , n}).

The above algorithm uses amaximum spanning tree to initialize the permutationmatrices A1, . . . , An.

To iteratively combine the vertices in V to find an initialization, we need each edge (vi, v j ) that is

selected to have a relatively large f (Ti j ) value. The maximum spanning tree of G achieves this.

Subsequently, the algorithm above simply iterates the usual coordinate update process. We will

next analyze how this initialization provides a reliable starting point for the coordinate updates that

will ultimately produce a good final set of permutation matrices (A1, . . . , An).

2.3.3 Analysis of the coordinate updates

Analysis without noise

We now analyze the behavior of Algorithm 1. First, consider a simple case where we guarantee

through the Pairwise Alignment method that there are consistent permutation matrices Pi j = f (Ti j )
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for each pair of element sets (Xi, X j ), i.e. Pi j Pj k = Pik for all i, j, k ∈ {1, . . . , n} (here by guar-

antee we mean that the maximum value of tr(P>Ti j ) will be achieved for some unique permuta-

tion matrix P, for each similarity matrix Ti j). If we have consistency, then we can easily recover

the optimal (A1, . . . , An) from the Pi j matrices by setting Ai = P1i for each Ai since each single

term tr(AiTi j A>j ) = tr(A>j AiTi j ) = tr(P>i jTi j ) in the objective function in the Equation 2.2 is maxi-

mized.

What is Algorithm 1’s behavior under this constraint? Can we guarantee that it recovers all Ai

matrices optimally? The answer is YES. We leverage the following theorem:

Theorem 2. If we recover consistent permutation matrices Pi j = f (Ti j ) for all pairs of element

sets (Xi, X j ) using the Pairwise Alignment method, then we can guarantee that Algorithm 1 solves

the optimization problem in Equation 2.2 optimally.

Proof. Since we have mentioned that, under the case of this theorem, the matrices Pi j satisfy the

sum
n∑

i=1

n∑
j=1

tr(P>i jTi j ) reaches the optimal value for the objective in Equation 2.2 in the main paper,

it is sufficient to show that the matrices A1, . . . , An returned by Algorithm 1 satisfy Pi j = A>i A j

for each Pi j . We first show that, before the coordinate update part of Algorithm 1, we have already

ensured that the matrices A1, . . . , An satisfy the property Pi j = A>i A j for each Pi j . We will use

induction to prove that, after each iteration during the initialization part of the Algorithm 1, for any

set Sk and any vi, v j ∈ Sk , we have Pi j = A>i A j .

1. Initially (after the 0th iteration), each set Sk only contains one vertex vk . Since Pii = I =

A>k Ak , the induction assumption is correct.

2. Assume the induction assumption is correct after the tth iteration (t ≥ 0). For the (t + 1)th

iteration, let us denote the edge we use in this iteration as (vi, v j ). Then, from the algorithm

we know that the matrix P̂ = argmax
P

tr(P>AiTi j A>j ) = Ai Pi j A>j for the previous values of Ai

and A j . Therefore, after the update for A j ′, we will get Pi j = A>i A j for the new values of Ai

and A j . Since we are multiplying on the lefthand side the matrices A j ′ by the same matrix

P̂, this does not break the induction assumption inside the set Sj . After the update for Sk , for
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each vi′ ∈ Si and each v j ′ ∈ Sj , we have A>i′ A j ′ = A>i′ Ai A>i A j A>j A j ′ = Pi′i Pi j Pj j ′ = Pi′ j ′.

Hence, after computing S′, we know that for each vk ∈ S′ and each vi′, v j ′ ∈ Sk , we have

Pi′ j ′ = A>i′ A j ′. Since the permutation matrices that are changed during this iteration have

their corresponding vertices in the set S′, we know that the induction assumption is correct

after this iteration.

From steps 1, 2 we know that we have Pi j = A>i A j for each Pi j after initialization. Since we have

mentioned that the Pairwise Alignment method can solve the problem optimally on this case, we

know that our algorithm has also solved the problem optimally after initialization, and hence we do

not have any updates in the coordinate update part. Therefore, Algorithm 1 guarantees an optimal

solution in this case. �

From Theorem 2, we know that Algorithm 1 is at least as good as the Pairwise Alignment method.

Moreover, the optimality cases in Theorem 2 subsume all cases that [34] claimed they could solve

optimally. Next, we go even further and guarantee optimality in much more general settings.

Analysis with noise

Amore interesting setting is when the matricesTi j are not perfect and consistent permutation matri-

ces but rather have been corrupted by noise. If we denote the optimal solution for the optimization

problem in Equation 2.2 as (A1, . . . , An) = ( Â1, . . . , Ân), then ideally the best input data we could

have for each Ti j would be Ti j = T̂i j := Â>i Â j . In the case where Ti j = T̂i j for each i, j ∈ {1, . . . , n},

it is obvious from Theorem 2 that Algorithm 1 solves this optimization problem optimally.

What if the similarity matrices have noise and Ti j is not perfectly equal to T̂i j for some (or all) of the

Ti j? To analyze Algorithm 1, we will assume that the Ti j inputs are random perturbations near T̂i j .

We only need to consider matrices Ti j where i , j since the algorithm does not depend on Tii in any

way. Recall that we assumed that the entries of Ti j ranged from [0, 1]. We propose the following
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model of the noise that generates the entries of Ti j as perturbations of the ground-truth T̂i j :

[Ti j]p,q =




1 − Z2
i jpq if i < j and [T̂i j]p,q = 1

Z2
i jpq if i < j and [T̂i j]p,q = 0

[Tji]q,p if i > j .

(2.6)

Here Zi jpq ∼ N (0, ηi j ) are independent Gaussian random variables for any 1 ≤ i < j ≤ n and

p, q ∈ {1, . . . ,m}. We assume that different Ti j matrices may have different variance parameters

ηi j since we may have different noise levels for different pairs of element sets. Also, we require

ηi j ≤ O(1) for each ηi j since we want the similarity matrices to only have entries in [0, 1]. Notice

that we still maintain Ti j = T>ji for all i , j under the model in Equation 2.6. We now have the

following more general theorem:

Theorem 3. With probability 1 − o(1) and for sufficiently large n and m, Algorithm 1 finds an

optimal solution for the optimization problem in Equation 2.2 under the following conditions:

• n ≥ 20 ln m, and ∃γ > 0 such that n ≤ mγ,

• the bottleneck length of the minimum bottleneck spanning tree of G is at most 1
4(3+γ) ln m+4

where G = (V, E) is a complete undirected weighted graph, with a vertex vi ∈ V for each set

Xi and with edges (vi, v j ) ∈ E with weight ηi j ,

• and max
1≤i< j≤n

ηi j ≤
1
3 .

Here the minimum bottleneck spanning tree of a graph G means a spanning tree of G which has

minimal edge weight on its heaviest edge.

Proof. Ideally, we want to recover (A1, . . . , An) such that A>i A j = T̂i j for each each pair (Ai, A j ).

Let us analyze the probability that we recover such a tuple of (A1, . . . , An) under the model in

Equation 2.6.

First, let us consider the probability that we recover the correct permutation matrices T̂i j from the
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optimization problem max
P

tr(P>Ti j ) for any i , j. For any permutation matrix P′ ∈ Pm, P′ , Ti j ,

if we denote k to be the number of entries where Ti j equals 1 but P′ does not equal 1, then k =

tr((T̂i j − P′)>T̂i j ). Therefore, U :=
tr(P′>Ti j )−tr(T̂>i jTi j )+k

ηi j
follows the Chi-Square distribution χ2(2k).

Hence, the probability that P′ is a better permutation matrix compared to T̂i j is

Pr
[
tr(P′>Ti j ) ≥ tr(T̂>i j Ti j )

]
= Pr

[
ηi jU − k ≥ 0

]
= Pr

[
U
E[U]

− 1 ≥
1
2

(
1
ηi j
− 2

)]
. (2.7)

For ηi j ≤
1
10 , by the Chi-Square tail bounds that [54] proposed,

Pr
[

Ui j

E[Ui j]
− 1 ≥

1
2

(
1
ηi j
− 2

)]

≤ Pr


Ui j

E[Ui j]
− 1 ≥

1
4

(
1
ηi j
− 2

)
+

√
1
2

(
1
ηi j
− 2

)
≤ exp

(
−

k
4

(
1
ηi j
− 2

))
.

(2.8)

Let the probability of misaddressing k letters to k envelopes (The Bernoulli-Euler Problem of the

Misaddressed Letters [55]) be pk =
∞∑

i=0

(−1)i
i! ≤ 1

2 (for k ≥ 2). Then, by union bound on Equation 2.8

for k = 2, 3, . . . , n, we know the probability that some P′ , T̂i j is better than T̂i j is at most

m∑
k=2

pk ·
m!

(m − k)!
· exp

(
−

k
4

(
1
ηi j
− 2

))
≤

1
2

m∑
k=2

mk · exp
(
−

k
4

(
1
ηi j
− 2

))
. (2.9)

If we have ηi j ≤
1

4(1+ε) ln m+2 for some ε > 0, then,

1
2

m∑
k=2

mk · exp
(
−

k
4

(
1
ηi j
− 2

))
≤

1
2

m∑
k=2

m−εk =
m−2ε

2(1 − m−ε)
. (2.10)

Hence, if we choose the variance parameter ηi j ≤ min
(

1
10,

1
4(1+ε) ln m+2

)
for some ε > 0, then for

m ≥ 2
1
ε we have probability at least 1−m−2ε to guarantee that we recover T̂i j from the optimization

problem max
P

tr(P>Ti j ).

Therefore, if we assume that the number of element sets n is not too large as there exists some

constant γ > 0 such that n ≤ mγ, then by union bound we know that with probability at least
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1 − m−δ for any δ > 0 that we can guarantee that using the Pairwise Alignment method recovers a

correct solution if m ≥ 2
2

4γ+δ and if we set each ηi j ≤ min
(

1
10,

1
2(2+4γ+δ) ln m+2

)
= O

(
1

log m

)
.

Next let us consider the probability that our Algorithm 1 recovers the correct permutation matrices.

We would only make some errors on the updates on the A matrices (both in the initialization part

and the coordinate ascent part). Basically, if we do not make any error at any iteration at the step of

computing P̂ (in the initialization part) and do not make any updates in the coordinate ascent part,

then we are sure that our algorithm solves the problem optimally.

Here we consider m ≥ 8 such that 1
10 > 1

4(1+ε) ln m+2 for any ε > 0. Let us first bound the proba-

bility that we might make a mistake when computing the matrix P̂. At each iteration when we are

considering edge (vi, v j ), if we have ηi j ≤
1

4(1+ε) ln m+2 for any ε > 0, then from the above analysis

we know that with probability at least 1 − m−2ε we do not make mistakes on this step.

Otherwise, let us take (i∗, j∗) = argmin
i′∈Si, j ′∈Sj

ηi′ j ′ (Si and Sj are the sets before being updated on the

line on update for Sk in Algorithm 1). If we have ηi∗ j∗ ≤
1

8(1+ε) ln m+4 ≤
1

4(1+ε) ln m+2 , then from the

above analysis we know that with probability at least 1 − m−2ε we get T̂i∗ j∗ from the optimization

problem max
P

tr(P>Ti∗ j∗ ), and we also know that ηi j − ηi∗ j∗ ≥
1

8(1+ε) ln m+4 .

Notice that (vi, v j ) is an edge of the maximum spanning tree of G. It must be the edge with largest

edge weight between vertices in Si and Sj . Therefore. we have f (Ti j ) ≥ f (Ti∗ j∗ ). Conditioned

on the cases that we recover T̂i∗ j∗ from max
P

tr(P>Ti∗ j∗ ) (we will omit some conditional probability

notation from now on for brevity), and let U ∼ χ2(m) be a Chi-Square random variable with free

degree m, then by the Chi-Square tail bounds that [54] proposed,

Pr
[

f (Ti∗ j∗ ) ≤ m
(
1 − ηi∗ j∗ −

1
16(1 + ε) ln m + 8

)]

= Pr
[
U − m ≥

m
ηi∗ j∗ (16(1 + ε) ln m + 8)

]

≤ Pr
[
U − m ≥

m
2

]
≤ Pr [U − m ≥ 0.48m]

≤ exp
(
−

m
25

)
≤ m−2ε

(2.11)
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for sufficiently large m. On the other hand, consider the value of f (Ti j ), with P′ = argmax
P

tr(P>Ti j )

and k as the number of entries where T̂i j equals 1 while P′ does not equal 1 (0 ≤ k ≤ m). Since

we require all ηi j ≤ O(1), let us assume that we have ηi j ≤
1
3 . Let V1 ∼ χ2(k), V2 ∼ χ2(m − k)

be two independent Chi-Square random variables (we use χ2(0) to be the random variable that

only has support on a single point 0). Conditioned on k, the distribution of f (Ti j ) is the same with

ηi j (V1 − V2) + m − k. If k > 0, we know that

Pr
[
V1 ≥ k +

m
ηi j (32(1 + ε) ln m + 16)

]

≤ Pr
[
V1 − k ≥

3m
32(1 + ε) ln m + 16

]

≤ Pr
[
V1 − k ≥ 2

√
2kε ln m + 4ε ln m

]
≤ m−2ε

(2.12)

for sufficiently large m. Symmetrically, if k < m,

Pr
[
V2 ≤ (m − k) −

m
ηi j (32(1 + ε) ln m + 16)

]

≤ Pr
[
(m − k) − V2 ≥

3m
32(1 + ε) ln m + 16

]

≤ Pr
[
(m − k) − V2 ≥ 2

√
2kε ln m

]
≤ m−2ε .

(2.13)

for sufficiently large m. Therefore, conditioned on k, if we have ηi j ≤
1
3 , we always have

Pr
[
ηi j (V1 − V2) + m − k ≥ m

(
1 − ηi j +

1
16(1 + ε) ln m + 8

)]

≤ Pr
[
ηi j (V1 − V2) − (2k − m)ηi j ≥

m
16(1 + ε) ln m + 8

]

≤ Pr
[
V1 ≥ k +

m
ηi j (32(1 + ε) ln m + 16)

]

+ Pr
[
V2 ≤ (m − k) −

m
ηi j (32(1 + ε) ln m + 16)

]
≤ 2m−2ε .

(2.14)
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This is true for all k. Hence, without conditioning on k, we know that

Pr
[

f (Ti j ) ≥ m
(
1 − ηi j +

1
16(1 + ε) ln m + 8

)]
≤ 2m−2ε (2.15)

for sufficiently large m and if we have ηi j ≤
1
3 .

By union bound on Equations 2.11 and 2.15, we know that, conditioned on the cases where we

recover T̂i∗ j∗ from max
P

tr(P>Ti∗ j∗ ), since ηi j − ηi∗ j∗ ≥
1

8(1+ε) ln m+4 , we have

Pr
[

f (Ti j ) ≥ f (Ti∗ j∗ )
]

≤ Pr
[

f (Ti∗ j∗ ) ≤ m
(
1 − ηi∗ j∗ −

1
16(1 + ε) ln m + 8

)]

+ Pr
[

f (Ti j ) ≥ m
(
1 − ηi j +

1
16(1 + ε) ln m + 8

)]

≤3m−2ε .

(2.16)

Since we know that, if we have ηi∗ j∗ ≤
1

8(1+ε) ln m+4 , then with probability at least 1−m−2ε we would

recover T̂i∗ j∗ from max
P

tr(P>Ti∗ j∗ ). Hence, conditioned on the case that ηi j >
1

4(1+ε) ln m+2 , we know

that the probability Pr
[

f (Ti j ) ≥ f (Ti∗ j∗ )
]
≤ 3m−2ε +m−2ε = 4m−2ε. Plus the opposite case where

ηi j ≤
1

4(1+ε) ln m+2 , by union bound we know that the probability that we make an error during each

iteration of the initialization part of Algorithm 1 is at most 5m−2ε. This is true under the condition

that ηi j ≤
1
3 and min

i′∈Si, j ′∈Sj

ηi j ≤
1

8(1+ε) ln m+4 . To make these two conditions true, we impose the

following two requirements:

• Consider an undirected weighted graph G′ = (V ′, E′′), where there is a vertex v′i for each

element set Xi and their is en edge (v′i, v
′
j ) ∈ E′′ with edge weight ηi j . Then the bottleneck

weight of the minimum bottleneck spanning tree of G′ should be at most 1
8(1+ε) ln m+4 .

• max
i< j

ηi j ≤
1
3 .

Therefore, under the above two conditions, assume the number of element sets m satisfy n ≤ mγ for

some constant γ > 0. Then, by union bound we know that, for sufficiently large n, the probability
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that we recover the correct solution for ( Â1, . . . , Ân) during the initialization part of the Algorithm 1

is 1 − 5m−2ε+γ.

For the coordinate update part of Algorithm 1, let us consider the probability that we do not perform

any updates conditioned on the case that we already have an optimal solution in the initialization

part. For each step, let us denote the matrix we are optimizing as Ai. The update rule is Equa-

tion 2.4. Using the same approach as before, assume that there is some matrix P′ , Ai such that

tr
(
P′>

∑
1≤ j≤n,i, j

A jTi j

)
≥ tr

(
A>i

∑
1≤ j≤n,i, j

A jTi j

)
. Let us denote k as the number of entries where Ai

equals 1 but P′ does not. Also, let U1, . . . ,Ui−1, Ui+1, . . . ,Un be independent random variables fol-

lowing the distribution χ2(2k), and letU be a random variable following distribution χ2(2k (n−1)).

Then, by the Chi-Square tail bounds that [54] proposed

Pr

tr *.

,
P′>

∑
1≤ j≤n,i, j

A jTi j
+/
-
≥ tr *.

,
A>i

∑
1≤ j≤n,i, j

A jTi j
+/
-



=Pr


∑
1≤ j≤n,i, j

ηi jUj ≥ k (n − 1)


≤ Pr
[
1
3

U ≥ k (n − 1)
]
≤ exp

(
−

2k (n − 1)
25

)
.

(2.17)

Then, again by union bound on all values for k, we know that the probability that we might get a

wrong answer for Ai in a single step is at most

m∑
k=2

pk ·
m!

(m − k)!
· exp

(
−

2k (n − 1)
25

)
≤

1
2

m∑
k=2

mk · exp
(
−

2k (n − 1)
25

)
. (2.18)

If we have n ≥ 20 ln m, then for sufficient large value of m we have

1
2

m∑
k=2

mk · exp
(
−

2k (n − 1)
25

)
≤ m−2. (2.19)

By union bound on all m matrices Ai, we know that the probability at least one of them needs

updates is at most m−1. Hence, we can solve the optimization problem with probability at least
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1−5m−2ε+γ+m−1 under all of the above constraints. If we set ε = γ+1
2 , then the probability becomes

1 − 6m−1 = 1 − o(1) for sufficiently large m. Under that setting, we require the bottleneck weight

of the minimum bottleneck spanning tree of G′ to be at at most 1
8(1+ε) ln m+4 =

1
4(3+γ) ln m+4 . �

From Theorem 3, it seems that our algorithm could work well if n and m are both large and there

exists a spanning tree of graph G with all edge weights no more than O
(

1
log m

)
. In the proof for this

theorem we will show that we can use the Pairwise Alignment method to solve the optimization

problem optimally with high probability if all edges of G have weight no more than O
(

1
log m

)
. This

is the same guarantee asymptotically as our bottleneck weight bound but the latter applies for all

edges in E. So, our algorithm remains optimal (with high probability) for a much broader set of

inputs.

2.3.4 Practical improvements

In Sections 2.3.2 and 2.3.3, we introduced our algorithm and discussed its theoretical guarantees.

However, to make Algorithm 1 better in practice, we also suggest some minor improvements that

tend to provide slightly better empirical performance.

Combining initialization with coordinate optimization

In Algorithm 1, we propose a coordinate update process after an initialization step. However, there

is a possibility that wemay find bad solutions under this initialization as well. Therefore, it is helpful

to add a coordinate update process right after each iteration of initialization that may potentially fix

some errors the algorithmmade during that iteration. During each iteration, after we have processed

the vertices in the set S′, we can do a coordinate update on the corresponding permutation matrices

Ak where vk ∈ S′ as:

Ak = argmax
P

tr *.
,
P>

∑
vk ′∈S′,k ′,k

Ak ′Tkk ′
+/
-
. (2.20)
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By adding these intermediate update steps, we no longer need to have a final coordinate update step

since the additional coordinate updates after the last iteration of initialization have already played

that role.

Using a good MST edge ordering

In Algorithm 1, we performed initialization by enumerating the edges of the maximum spanning

tree T . It is reasonable that running the updates in a good order along the edges may be beneficial.

In this section, we propose two kinds of ordering that we have found work well in practice: Prim’s

order and Kruskal’s order.

As in Algorithm 1, we need to update |Sj | different permutation matrices in one step. Even though

we have proved that this algorithm works well in many cases, it can be improved if we are more

cautious and update fewer permutation matrices at each iteration. On way is to use Prim’s algorithm

[56] to compute the maximum spanning tree and then process the edges in the order that we get

them through the execution of Prim’s algorithm. Since there is only one vertex in the set |Sj | each

time, we only need to update one permutation matrix at each iteration. We call this ordering Prim’s

order.

Alternatively, the edge weights themselves are potentially important for initialization. As discussed

in Section 2.3.2, we are more confident in edges (vi, v j ) whose weights f (Ti j ) are large. Therefore,

we update according to edges that we trust more first. To achieve that goal, we can process the edges

in the descending weight order. This is exactly the edge order that we get from running Kruskal’s

algorithm [56] . We call this ordering Kruskal’s order.

The overall algorithm

By adding the heuristics mentioned above, we obtain a slight modification of our algorithm as

shown in Algorithm 2. This algorithmworks slightly better andwewill explore how these heuristics
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Algorithm 2 Improved MST-based coordinate updates for multi-way matching
Input: The similarity matrices Ti j (i, j ∈ {1, . . . , n}).
Construct the Graph G = (V, E) as in the Section 2.3.2, Compute a maximum spanning tree
T = (V, E′) of G;
Sort the edges in E′ with Prim’s order or Kruskal’s order as discussed in Section 2.3.4;
Initialize Si ← {vi} for each vi ∈ V ; For each Ai, initialize it to be any permutation matrix in Pm;

for each edge (vi, v j ) ∈ E′ do
Compute P̂ = argmax

P
tr(P>AiTi j A>j );

Update A j ′ ← P̂A j ′ for each v j ′ ∈ Sj ;
Let S′ = Si ∪ Sj ;
Update Sk ← S′ for each vk ∈ S′;
while Not converged do
Randomly pick vk ∈ S′;
Update Ak according to Equation 2.20;

end while
end for
Return The permutation matrices Ai (i ∈ {1, . . . , n}).

perform in the experiments section. Using techniques similar to those in the proof of Theorem 2,

it is easy to show that Algorithm 2 is at least as good as the Pairwise Alignment method:

Theorem 4. If we can guarantee the recovery of pairwise-consistent permutation matrices Pi j =

f (Ti j ) for each pair of element sets (Xi, X j ) using the Pairwise Alignment method, then we can

guarantee that Algorithm 2 solves the optimization problem in Equation 2.2 optimally.

2.4 Experiments

In this section, we will show how our algorithms behave in practice. We focus primarily on com-

puter vision datasets. For each dataset, we compare our algorithm with the Permutation Synchro-

nization algorithm [34], which is a state-of-the-art method for multi-way matching.
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(a) The PCA reconstruction errors of our methods com-
pared to two baseline methods. The horizontal axis rep-
resents the reduction dimensionality k. The performance
of the two versions of Algorithm 2 are almost the same,
and both clealy outperform previous approaches.

(b) The reconstructed results of an image of digit 0 by
all methods. For each figure, we show the reconstructed
images with k = 4, 11, 18, . . . , 60 eigenvectors, respec-
tively. We see that ourmethods can reconstruct the image
well even at k = 4. Meanwhile, the other two methods
require many more eigenvectors to reconstruct a recog-
nizable digit 0 image.

Figure 2.1: Results for the PCA reconstruction experiment

2.4.1 PCA reconstruction of MNIST digits

Our first experiment is on image compression and recovery. We use theMNIST dataset [57], which

contains 70,000 images of individual handwritten digits from {0, . . . , 9}.

In one experiment, we randomly selected n = 100 images I1, . . . , In from the dataset, where each

digit has roughly n
10 images. Note that we do not use a larger number of images because of scaleabil-

ity limitations of [34] which we need as our baseline in the evaluation. Our algorithms, however,

easily scale to much larger datasets. The goal of this experiment is to compress the MNIST im-

ages with low dimensionality. We represent each image Ii as an element set by randomly selecting

m = 30 white pixels (the MNIST digits are white drawings on a black background). This forms

the element set Xi = {xi
j = (ai

j, b
i
j ) : j ∈ {1, . . . ,m}}, where (ai

j, b
i
j ) is the coordinate of the jth

selected pixel of image Ii.

We will use Principal Components Analysis (PCA) as our compression technique and apply it to

the element sets X1, . . . , Xn. We can view each Xi as a matrix Yi ∈ R
m×2 where the jth row of Yi is
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merely (ai
j, b

i
j ). It is straightforward to vectorize these Yi matrices and apply PCA to compressively

store the vectors vec(Y1), . . . , vec(Yn) ∈ R2m. We explore various levels of compression by keeping

only the k ∈ {1, . . . ,min(n, 2m)} leading eigenvectors from PCA as well as a mean vector in R2m.

However, since X1, . . . , Xn are element sets, we are free to permute the order of the element sets

prior to the application of PCA. Since each of the MNIST images is a digit, it is reasonable to

believe that, for many pairs of images, there should be a bijection or correspondence relationship

between the pixels that compose each digit. Intuitively, permutations that discover that bijection

will help improve PCA performance. We will evaluate how various permutation algorithms that

precede PCA help its ability to reconstruct the original data at various compression levels k. Our

goal is to reduce the reconstruction error by using our algorithms to reorder the elements in each

element set Xi prior to PCA compression.

Results are shown in Figure 2.1. Here we use the radial basis function (RBF) kernel to compute the

similarity matrices Ti j . More specifically, [Ti j]p,q = exp
(
−
‖xip−x j

q ‖
2

2σ2

)
where σ is a parameter. This

function is suitable for our settings since we expect [Ti j]p,q to be close to 1 when xi
p and x j

q are close

to each other and to be close to 0 otherwise. We compare the two versions of our algorithms with

two baseline cases. In the first baseline, we do not reorder the pixels (the no permutation case). In

the second baseline, we use the Permutation Synchronization algorithm to reorder the pixels before

compression. For all methods in our experiment, we selected the best σ value that achieves the best

performance. Figure 2.1 shows the reconstruction errors and the recovered digits obtained from

all five methods. All versions of our algorithm outperform the two baseline methods. Note that

both versions of Algorithm 2 slightly outperform Algorithm 1 (although they often produce similar

results) which is due to the additional heuristics we discussed in Section 2.3.4.

2.4.2 Stereo landmark alignments

The second computer vision task we focus on is stereo matching. The goal is to align pixels from

multiple images of a single object where the images are taken from various vantage points. For
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Table 2.1: Average error rates of alignments for the datasets House, Hotel, Building and Sentence

Task Perm-Sync Prim’s order Kruskal’s order

CMU House RBF (22.61 ± 7.49)% (0.00 ± 0.00)% (0.00 ± 0.00)%
CMU House Alignment (4.71 ± 1.98)% (0.81 ± 0.96)% (1.89 ± 2.21)%
CMU Hotel RBF (18.63 ± 2.90)% (0.00 ± 0.00)% (0.00 ± 0.00)%
CMU Hotel Alignment (5.22 ± 2.55)% (3.59 ± 0.75)% (4.20 ± 0.71)%
Building RBF (86.71 ± 3.36)% (49.87 ± 0.24)% (50.39 ± 0.25)%
Building Alignment (50.49 ± 1.09)% (48.52 ± 0.50)% (48.61 ± 0.52)%
Sentence RBF (62.65 ± 2.90)% (55.26 ± 0.82)% (55.85 ± 0.95)%
Sentence Alignment (58.69 ± 2.99)% (56.06 ± 1.19)% (55.59 ± 1.58)%

this experiment, we have 2 datasets, the CMU House dataset and the CMU Hotel dataset (with

experiments in [34]). Each of them contains n images of the same toy house (n = 111 for the CMU

House dataset and n = 101 for the CMU Hotel dataset). For each of the two toy houses, we have

m = 30 landmark points selected, and each of the n figures contains a different view of these m

landmark points. Our goal is to find a consistent mapping that aligns points that correspond to the

same landmarks together.

The element sets are constructed by extracting visual features. Once again, we use the RBF kernel to

compute similarity matrices. We denote the tasks in this experiment asCMUHouse RBF andCMU

Hotel RBF. Since we have the ground-truth alignments for these two datasets, it is also reasonable

to use some local alignments between pairs of figures to construct the similarity matrices. Hence,

we also use the outputs of the Pairwise Alignment method as our similarity matrices. We call these

corresponding tasks CMU House Alignment and CMU Hotel Alignment. To evaluate performance,

we compute the average error rates of all pairs of element sets.

Results are shown in the first four lines of Table 2.1. For this experiment, we only report perfor-

mance from Algorithm 2 though our other algorithm performs almost as well. We compare the

two versions of our proposed algorithm with the Permutation Synchronization method. Here we

show results over 10 trials of the experiments since performance is stochastic due to the random

re-ordering of the images and the pixels prior to input to the algorithms. We can see that both
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our methods reliably solve this problem with 100% accuracy in the RBF setting. Meanwhile the

baseline method behaves much worse. For the Alignment setting, the baseline method’s behaves

better since it tends to excel with those types of inputs. Nevertheless, our methods still outperform

it, especially the Prim’s Order version.

Notice that the initialization component of our algorithms is very important. Without the smart

initialization technique, coordinate updates behave unreliably. For instance, in the CMU House

RBF task, we obtain an average error rate of (3.90 ± 2.63)% if we randomly initialize all permuta-

tion matrices. Meanwhile we always get 0% error rate when we use our MST-based initialization

technique.

2.4.3 Repetitive structures of key points

(a) The Permutation Synchronization
method under the RBF setting

(b) Algorithm 2with Prim’sOrder un-
der the RBF setting

(c) Algorithm 2 with Kruskal’s Order
under the RBF setting

(d) The Permutation Synchronization
method under the Alignment setting

(e) Algorithm 2with Prim’s Order un-
der the Alignment setting

(f) Algorithm 2 with Kruskal’s Order
under the Alignment setting

Figure 2.2: Key points alignment for the Building dataset. Green lines are the ground-truth align-
ments while red lines are the computed alignments. Less green lines being exposed means a better
performance.

Beyond stereo matching, we are also interested in matching images with complicated geometric

ambiguities. For instance, images with frequent repetitive structures are extremely hard to handle
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if we use high-dimensional features such as SIFT [34]. In this experiment, we use the Building

dataset [31] (also with experiments in [34]) which has such kind of structures. [34] tested on this

dataset and hand-annotated 25 similar-looking landmark points in the scene across the dataset. We

use their hand-annotated data and select n = 14 images for evaluation. However, in each image, we

have m = 28 key points, and we do not always have all of the 25 landmark points in each scene.

Hence, there are many useless key points in each image, which makes the multi-way matching task

even harder.

As with the Stereo Landmark Alignments test in Section 2.4.2, we explore the RBF setting and the

Alignment setting for this experiment. The performance of our Algorithm 2 is compared against

the baseline Permutation Synchronization method as shown in Table 2.1. This task is much more

difficult than stereo matching and we do not expect a very high accuracy. Nevertheless, both our

methods outperform the baseline algorithm in both settings (more notably in the RBF setting).

Furthermore, the alignments we get for each setting and each algorithm are shown in Figure 2.2.

All of those 6 groups of alignments are between a same pair of images. We can see that, even when

we have highly repetitive structures and significant noise in the datasets, our Algorithm 2 is still

stable and gets satisfactory consistent matchings.

2.4.4 Experiments in domains beyond computer vision

Our work aligns multiple objects that are composed of sets of consistent parts. This setting is not

limited to images and computer vision tasks. For example, we can apply our algorithms on natural

language processing datasets such as the Sentence1 dataset. This data-set contains human-labeled

sentences from 30 research papers. We tried to consistently align the word frequency vectors of

each label from different papers. Table 2.1 shows that our methods outperform the baseline method,

which leads us to believe that our methods could extend to fields beyond computer vision.
1https://archive.ics.uci.edu/ml/datasets/Sentence+Classification
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2.5 Summary

Straightforward coordinate updates for the multi-way matching objective are not reliable and pro-

duce poor performance. However, if seeded with a good initialization, coordinate updates will (with

high probability) not get stuck at bad local optima. By combining a traditional coordinate ascent

algorithm with iterative initializations along the edges of a maximum spanning tree (of the graph

with edge weights given by the estimated correlation scores, i.e. the pairwise matching similarity

values), we obtain strong empirical results and theoretical guarantees. We outperform the leading

baseline method on various problems in computer vision as well as other domains. In addition, our

theoretical analysis shows that we do not require all of the noise parameters to be small to ensure a

perfect alignment with high probability. Rather, we only require that the spanning tree (on the noise

parameter graph) has a small bottleneck edge weight (along with other mild conditions).
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Chapter 3: Variational Predictive Natural Gradient

We have just introduced how we perform better optimization initializations with data correlations

by studying the smart initialization algorithm for multi-way matching in Chapter 2. In this chapter,

we continue discussing how we can use data correlation information to improve the optimization

procedure. We focus on variational inference [41], and hope to look for solutions for utilizing the

influence of the correlations in the observations on the parameter vector to make inference more

efficient.

Variational inference transforms posterior inference into parametric optimization thereby enabling

the use of latent variable models where otherwise impractical. However, variational inference can

be finicky when different variational parameters control variables that are strongly correlated under

the model. Standard natural gradients based on the variational approximation fail to correct for

correlations when the approximation is not the true posterior. To address this, we construct a new

natural gradient called the Variational Predictive Natural Gradient (VPNG). Unlike standard natural

gradients for variational inference, this natural gradient accounts for the relationship betweenmodel

parameters and variational parameters. We demonstrate the insight with a simple example as well

as the empirical value on a classification task, a deep generative model of images, and probabilistic

matrix factorization for recommendation.

3.1 Motivation

Variational inference [41] transforms posterior inference in latent variable models into optimiza-

tion. It posits a parametric approximating family and tries to find the distribution in this family
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that minimizes the kl-divergence to the posterior. Variational inference makes posterior com-

putation practical where it would not be otherwise. It has powered many applications, including

computational biology [58, 59], language [60], compressive sensing [61], neuroscience [62, 63],

and medicine [64].

Variational inference requires choosing an approximating family. The variational family plus the

model together define the variational objective. The variational objective can be optimized with

stochastic gradients for a broad range of models [4, 42, 5]. When the posterior has correlations,

dimensions of the optimization problem become tied, i.e., there is curvature. One way to correct for

curvature in optimization is to use natural gradients [43, 44, 45] . Natural gradients for variational

inference [65] adjust for the non-Euclidean nature of probability distributions. But they may not

change the gradient direction when the variational approximation is far from the posterior.

To deal with curvature induced by dependent observation dimensions in the variational objective,

we define a new type of natural gradient: the Variational Predictive Natural Gradient (vpng). The

vpng rescales the gradient with the inverse of the expected Fisher information matrix of the repa-

rameterized model likelihood. We relate this matrix to the negative Hessian of the expected log-

likelihood part of the evidence lower bound (elbo), thereby showing it captures the curvature of

variational inference.

Our new natural gradient captures potential pathological curvature introduced by the log-likelihood

standard natural gradient cannot capture. Further, unlike standard natural gradients for variational

inference, the vpng corrects for curvature in the objective between model parameters and vari-

ational parameters. In Section 3.4, we will design an illustrate example where the vpng points

almost directly to the optimum, while both the standard gradient and the natural gradient point in

almost an orthogonal direction.

We show our approach outperforms standard gradient optimization and the standard natural gradient

optimization on several latent variable models, including Bayesian logistic regression on synthetic

data, Variational Auto-Encoders [4, 5] on images, and variational probabilistic matrix factorization
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[12, 66, 67] on movie recommendation data.

3.2 Related work

Variational inference has been transformed by the use of Monte Carlo gradient estimators [68, 5,

69, 42, 70]. Though these approaches expand the applicability of variational inference, the under-

lying optimization problem can still be hard. Some recent work applied second-order optimization

to solve this problem. For example, [71] derived Hessian-free style optimization for variational

inference. Another line of related work is on efficiently computing Fisher information and natural

gradients for complex model likelihood such as the K-FAC approximation [72, 73, 74]. Finally, the

vpng can be combined with methods for robustly setting step sizes, like using the vpng curvature

matrix to build the quadratic approximation in TrustVI [75].

3.3 Background

Latent variable models Latent variable models posit latent structure z to describe data x with

parameters θ. The model is

pθ (x, z) = p(z)pθ (x | z). (3.1)

The model is split into a prior over the hidden structure p(z) and likelihood that describes the

probability of data.

Variational inference Variational inference [41] approximates the posterior distribution pθ (z | x)

with a distribution qλ (z | x) over the latent variables indexed by parameter λ. It works by maximiz-

ing the elbo:

L(λ, θ) = Eq
[
log pθ (x | z)

]
− KL(qλ (z | x) | |p(z)) (3.2)
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Maximizing the elbo minimizes the kl-divergence to the posterior. The model parameters θ and

variational parameters λ can be optimized together. The family q is chosen to be amenable to

stochastic optimization. One example is the mean-field family, where q(z | x) is factorized over all

coordinates of z, like in standard Variational Auto-Encoders.

q-Fisher information The elbo can be optimized with gradients. The effectiveness of gradient

ascent methods relates to the geometry of the problem. When the loss landscape contains variables

that control the objective in a coupled manner, like the means of two correlated latent variables,

gradient ascent methods can be slow.

One way to adjust for this coupling or curvature is to use natural gradients [43]. Natural gradients

account for the non-Euclidean geometry of parameters of probability distributions by looking for

optimal ascent directions in symmetric kl-divergence balls. The natural gradient relies on the

Fisher information of q,

Fq = Eq
[
∇λ log qλ (z|x) · ∇λ log qλ (z|x)>

]
. (3.3)

We call this matrix the q-Fisher informationmatrix. With this Fisher informationmatrix, the natural

gradient is ∇ng
λ L(λ) = F−1

q · ∇λL(λ).

Natural gradients have been used to optimize the the elbo [65]. The natural gradient works because

it approximates the Hessian of the elbo at the optimum. The negative Hessian matrix of the elbo

is:

−
∂2

∂λ2L = Fq+

∫
∂2

∂λ2 qλ (z | x) · (log qλ (z | x) − log p(z | x))dz. (3.4)

The last integral in the above equation is small when the variational distribution qλ (z | x) is close

to the posterior distribution p(z | x). Hence, the q-Fisher information matrix can be viewed as a

positive semidefinite version of the negative Hessian matrix of the elbo. Thus natural gradients

improve optimization efficiency, when the variational approximation is close to the posterior.
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Figure 3.1: The vpngs are more effective than standard gradients and standard natural gradients
(pointing into the same direction with the standard gradients for this example).

3.4 The Variational Predictive Natural Gradient

The q-Fisher information is insufficient Consider the following example with bivariate Gaus-

sian likelihood that has an unknown mean µ =
*..
,

µ1

µ2

+//
-
, a pathological known covariance Σ =

*..
,

1 1 − ε

1 − ε 1

+//
-
for some constant 0 ≤ ε � 1, and an isotropic Gaussian prior:

p(x1:n, µ) = p(µ | 0, I2)
n∏

i=1

N
(
xi | µ, Σ

)
. (3.5)

To do variational inference, we choose a mean-field approximation qλ (µ) = N (µ1 | λ1, σ
2) ·

N (µ2 | λ2, σ
2) with σ to be fixed. The posterior distribution for this problem is analytic: p(µ |x) =

N (µ′, Σ′) where Σ′ = (nΣ−1 + I2)−1 and µ′ = (n · I2 + Σ)−1 ·
∑n

i=1 xi. The optimal solution for the
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variational parameter λ should be µ′. The gradient of the objective function L(λ) is

∇λL(λ) = −λ + Σ−1 · *
,
−nλ +

n∑
i=1

xi+
-
. (3.6)

The precision matrix Σ−1 is pathological. It has an eigenvector v1 =
1√
2

(1, 1)> with eigenvalue
1

2−ε , and an eigenvector v2 =
1√
2

(1,−1)> with eigenvalue 1
ε . As a result, standard gradients will

almost always go along the direction of the eigenvector v2, as shown in Figure 3.1. Further, natural

gradients fail to resolve this. The q-Fisher information matrix of this problem is diagonal, so it

cannot help resolve the extreme curvature between the parameters λ1 and λ2.

Notice that this pathological curvature is not due to that mean-field approximation family on qλ (µ)

does not contain the true posterior p(µ | x). In fact, even if we optimize qλ (µ) over the family of all

bivariate Gaussian distributionsN (µ | λµ, λΣ), the partial gradient ∇λµL over the mean parameter

vector λµ will still have the same curvature issue. The issue arises since the variational approxima-

tion does not approximate the posterior well at initialization . In general, if at some point the current

q iterate cannot approximate the posterior well, then the corresponding q-Fisher information matrix

may not be able to correct the curvature in the parameters.

3.4.1 Negative Hessian of the expected log-likelihood

The pathology of the elbo for the model in Equation 3.5 comes from the ill-conditioned covariance

matrix Σ. The covariance matrix of the posterior can correct for this pathology since its covariance

matrix is Σ′ ≈ 1
nΣ. The disconnect lies in that variational inference is only close to the posterior

at its optimum, which implies that q-natural gradients only correct for the curvature well once the

variational approximation is close to the posterior, i.e., the inference problem is almost solved.

The problem is that the q-Fisher information matrix measures how parameter perturbations alter

the variational approximation, regardless of the current model parameters and the quality of the

current variational approximation. We bring the model back into the picture by considering positive
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definite matrices that resemble the negative Hessian matrix of the expected log-likelihood part

Lll = Eqλ (z | x)
[
log pθ (x | z)

]
of the elbo, over both the variational parameter λ and the model

parameter θ.

The expected log-likelihood contains where the model and variational approximation interact, so its

Hessian contains the relevant curvature for optimize the elbo. However, since we are maximizing

the elbo, the matrices need to not only resemble the negative Hessian, but should also be positive

semidefinite. The negative Hessian of the expected log-likelihood is not guaranteed to be positive

semidefinite. Our goal is to construct a positive semidefinite matrix related to the negative Hessian

that accelerate inference by considering the curvature both the variational parameter and the model

parameter. In the sequel, we will show this new matrix is a type of Fisher information.

To compute gradients and Hessians, we need to compute derivatives over expectations controlled by

the variational parameter λ. In general, we can differentiate and use score function-style estimators

from black box variational inference [42]. For simplicity, consider the case where q is reparame-

terizable [4, 5]. Then draws for z from q can be written as deterministic transformations g of noise

terms ε with parameter-free distributions s. This simplifies the computations:

z = gλ (x, ε) ∼ qλ (z | x) ⇐⇒ ε ∼ s(ε). (3.7)

The reparameterization trick can be applied to many common distributions (i.e. reparameterize a

Gaussian draw ν ∼ N (µ, σ2) as ν = µ + σε where ε ∼ N (0, 1)).

With this trick, with η = (λ>, θ>)>, the negative Hessian matrix of Lll becomes:

−
∂2Lll

∂η2 = −Eε

[
∂2

∂η2 log pθ (x | z = gλ (x, ε))
]
.

Let us first consider the casewhere the variational distribution q factorizes over data points: qλ (z | x) =∏n
i=1 qλ (zi | xi). This factorization occurs in many popular models, such as in vaes [4, 5], which we

will discuss more in detail in Chapters 4 and 5. Let Q be the empirical distribution of the observed
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data x1:n. Also let us denote p(zi) and p(xi | zi) as the prior and likelihood function for any single

data point xi. Moreover, for any data point xi and x′i, we define the function

u(xi, x′i, εi, η) =
∂2

∂η2 log pθ (x′i | zi = gλ (xi, εi)).

Since we can use zi = gλ (xi, εi) to reparameterize zi, we can assume that the Jacobian matrix ∂zi
∂ε i

is always invertible and hence by the inverse function theorem we can also write εi as a function of

zi, xi and λ. Hence, we can also express the above equation as

∂2

∂η2 log pθ (x′i | zi = gλ (xi, εi)) = v(xi, x′i, zi, η).

With this notation, we can rewrite the above negative Hessian matrix for Lll as

−
∂2Lll

∂η2 = −

n∑
i=1

Eε i

[
∂2

∂η2 log pθ (xi | zi = gλ (xi, εi))
]

= −nEQ(xi )

[
Eε i

[
∂2

∂η2 log pθ (xi | zi = gλ (xi, εi))
] ]

= −nEQ(xi )
[
Eε i

[
u(xi, xi, εi, η)

] ]
= −nEQ(xi )

[
Eqλ (zi | xi )

[
v(xi, xi, zi, η)

] ]

(3.8)

Assessing the positive definiteness of Equation 3.8 is a challenge because of the expectation with

respect to the variational approximation. To make the positive definiteness easier to wrangle, we

make the assumption that

p(zi)p(xi | zi) ≈ Q(xi)q(zi | xi). (3.9)

When our model is learning a successful parameter vector η, the likelihood distribution p(zi, xi) =

p(zi)p(xi | zi) should be close to the distribution Q(zi, xi) = Q(xi)q(zi | xi) since the variational

distribution q is trying to learn the posterior distribution p(zi | xi) while p(xi) is trying to learn the

empirical data distribution Q.

This substitution is similar to q(z | x) ≈ p(z | x) made when analyzing the q-Fisher information
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matrix. They can be quite different when the qλ (z | x) approximating familymay not be large enough

to accurately approximate the posterior distribution p(z | x), and when the pθ (x | z) model may not

be able to accurately learn the data distribution Q. With Equation 3.9 in hand, we have

−
∂2Lll

∂η2 ≈ −nEp(zi )
[
Epθ (xi | zi )

[
v(xi, xi, zi, η)

] ]
. (3.10)

This matrix is computable via Monte Carlo, however in the next section we show that this matrix

may not be positive semidefinite and provide a method to derive a matrix that is positive semidefi-

nite.

3.4.2 Predictive sampling for positive semidefiniteness

The inner expectation of Equation 3.10 is an expectation of v(xi, xi, zi, η) with respect to the distri-

bution pθ (xi | zi) on xi. This matrix appears to be an average of Fisher information matrices, and

thus positive semidefinite. However, v is not the Hessian of a distribution over xi since xi appears

on both sides of conditioning bar. The failure of v to be the Hessian of a distribution for xi means

Equation 3.10 may not be positive definite. Next, we provide a concrete example where its not

positive definite.

Non Positive semidefiniteness of Second-Order Derivative Consider a model with data points

x1, . . . , xn ∈ R and local latent variables z1, . . . , zn ∈ R. The prior is p(z) =
∏n

i=1N (zi | 0, 12), the

model distribution is pθ (x | z) =
∏n

i=1N (xi | θzi, 12) and the variational distribution is qλ (z | x) =∏n
i=1N (zi | λxi, σ

2) with λ, θ ∈ R and the hyperparameter σ > 0. Then we can reparameterize

each zi = λxi + εi with εi ∼ N (0, σ2) drawn in an i.i.d. way. Under this model, Equation 3.10

equals

n
*..
,

θ2(θ2 + 1) θ2 − 1

θ2 − 1 1

+//
-

1,

1This matrix is normally related to both the variational parameter λ and the model parameter θ. Here this matrix is
independent with λ since in this model ∂z

∂λ can be represented without λ. The variational parameter will appear in this
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which is not positive semidefinite when |θ | < 1√
3
.

The failure of the Hessian in Equation 3.10 to be positive definite stems from v not being the Hessian

of a probability distribution. To remedy this, we sample the xi on both side of the conditioning bar

independently. That is replace

Epθ (xi | zi )
[
v(xi, xi, zi, η)

] (3.11)

with

Epθ (xi | zi )
[
Epθ (x′i | zi )

[
v(xi, x′i, zi, η)

] ]
, (3.12)

where x′i is a newly drawn data point from the same distribution pθ (· | zi). This step is required.

Rescaling the gradient with the inverse of the first equation does not guarantee convergence. This

step will allows construction of a positive definite matrix that captures the essence of the negative

Hessian. With this transformation, we get

− nEp(zi )
[
Epθ (xi | zi )

[
Epθ (x′i | zi )

[
v(xi, x′i, zi, η)

] ] ]

≈ − nEQ(xi )
[
Eqλ (zi | xi )

[
Epθ (x′i | zi )

[
v(xi, x′i, zi, η)

] ] ]

=nEQ(xi )
[
Eε i

[
Epθ (x′i | zi=gλ (xi,ε i ))

[
−u(xi, x′i, εi, η)

] ] ]
.

(3.13)

The approximation step follows from the earlier assumption that the joint of p and q are close (see

Equation 3.9).

The inner expectation of the above equation is the negative Hessian matrix of the logarithm of the

density of the distribution pθ (x′i | zi = gλ (xi, εi)) with respect to the parameter η, given the latent

variable εi and the data point xi. Therefore, this inner expectation equals the Fisher information

matrix of this distribution, which is always positive semidefinite. Thematrix in Equation 3.13meets

our desiderata: it maintains structure from the negative Hessian of the expected log-likelihood, is

guaranteed to be positive semidefinite for anymodel and variational approximation to that optimiza-

matrix if we set zi ∼ N (λ2xi, σ2) in this model.
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tion converges, and is computable via Monte Carlo samples. To see that it is computable,

the matrix in Equation 3.13 equals

nEQ(xi )
[
Eε i

[
Epθ (x′i | zi=gλ (xi,ε i ))

[
−u(xi, x′i, εi, η)

] ] ]

=nEQ(xi )[Eε i [Epθ (x′i | zi=gλ (xi,ε i ))[∇η log pθ (x′i | zi = gλ (xi, εi)))∇η log pθ (x′i | zi = gλ (xi, εi)))>]]].
(3.14)

This equation can be computed by sampling a data point from the observed data, sampling a noise

term, and resampling a new data point from the model likelihood.

3.4.3 The Variational Predictive Natural Gradient

The matrix in Equation 3.14 is the expectation over a type of Fisher information. First, define

pθ (x′i | zi = gλ (xi, εi))

as the reparameterized predictive model distribution. The Fisher information of this matrix given

xi and εi is

Frep(xi, εi) =Epθ (x′i | zi=gλ (xi,ε i ))[∇η log pθ (x′i | zi = gλ (xi, εi)) · ∇η log pθ (x′i | zi = gλ (xi, εi))>].

Averaging the Fisher information of the reparameterized predictive model distribution over ob-

served data points and draws from the variational approximation and rescaling by the number of

data points gives:

nEQ(xi )Eε[Frep(xi, εi)]

=nEQ(xi )[Eε i [Epθ (x′i | zi=gλ (xi,ε i ))[∇η log pθ (x′i | zi = gλ (xi, εi))) · ∇η log pθ (x′i | zi = gλ (xi, εi)))>]]]

=Eε[Epθ (x′ | z=gλ (x,ε))[∇η log pθ (x′ | z = gλ (x, ε)) · ∇η log pθ (x′ | z = gλ (x, ε))>]] =: Fr .

(3.15)

46



The positive semidefinite matrix related to the negative Hessian of the elbo we derived in the pre-

vious section is exactly the expected Fisher information of the reparameterized predictive model

distribution pθ (x′ | z = gλ (x, ε)). Hence, this matrix measures the influence of the correlations in

the observations on the parameter vector η as Fisher information matrices are actually the covari-

ance matrices of the corresponding score functions [76].

The expected density of reparameterized predictivemodel distribution can be viewed as the variational

predictive distribution rλ,θ (x′ | x) of new data

Eε
[
pθ (x′ | z = gλ (x, ε))

]
=Eqλ (z | x)

[
pθ (x′ | z)

]
:= rλ,θ (x′ | x).

This distribution is the predictive distribution with the posterior replaced by the variational approx-

imation. Hence, we call the matrix Fr in the last line of Equation 3.15 as the variational predictive

Fisher information matrix. This matrix can capture curvature. Though we derive it by assuming q

factorizes, this matrix may still capture curvature for the general case.

To illustrate that variational predictive Fisher information matrix can capture curvature, consider

the example in Equation 3.5, we can reparameterize latent variable µ in the variational distribution

qλ (µ) = N (µ1 | λ1, σ
2) ·N (µ2 | λ2, σ

2) as µ = λ+ε, ε ∼ N (0, σ2 · I2). Then the reparameterized

predicted distribution p(x′ | µ = λ+ε) equals
n∏

i=1
N (x′i | λ+ε, Σ), whose Fisher information matrix

is just nΣ−1. Hence the variational predictive Fisher information matrix for this model is Fr =

nΣ−1, which almost exactly matches with the pathological curvature structure in the gradient in

Equation 3.6.

Therefore, our variational predictive Fisher information matrix contains the curvature we want to

correct. Hence, we apply an update with the new natural gradient, the Variational Predictive Natural

Gradient (vpng):

∇vpng
λ,θ L = F−1

r · ∇λ,θL(λ, θ). (3.16)
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With this new natural gradient, the algorithm can move towards the true mean rather than getting

stuck on the line λ1 − λ2 = 0, as shown in Figure 3.1.

The variational predictive Fisher information matrix Fr in Equation 3.15 is a positive semidefinite

matrix related to the negative Hessian of the expected log-likelihood part Lll of the elbo. It can

capture the curvature of variational inference since the expected log-likelihood part of the elbo

usually plays a more important role in the whole objective and we can view the kl-divergence part

KL(q(z | x) | |p(z)) as a regularization for the q distribution. In practice, the kl-divergence term

gets scaled by a ratio β ∈ (0, 1) to learn better representations [77]. With this scaling the curvature

of the expected log-likelihood part Lll is even more important.

3.4.4 Comparison with the standard natural gradient

Different approximations and additional focus on the model parameters The q-Fisher infor-

mation matrix tries to capture the curvature of the elbo. However, it strongly relies on quality of

the fidelity of the variational approximation to the posterior, q(z | x) ≈ p(z | x). The new Fisher

information matrix, Fr relies on a similar approximation p(z)p(x | z) ≈ Q(x)q(z | x), these ap-

proximations are still quite different in many cases such as when the model does not approximate

the true data distribution well (described in the paragraph after Equation 3.9). Moreover, Fr has

the advantage that it considers the curvature from both the variational parameter λ and the model

parameter θ while the q-Fisher information matrix does not consider θ.

Similar geometric insights compared with the traditional ng The standard natural gradient

points to the steepest ascent direction of the elbo in the symmetric kl-divergence space of the

variational distribution q [65]. Mathematically, for the elbo function as in Equation 3.2, the stan-

dard natural gradient points to the direction of the solution to the following optimization problem,
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as ε → 0+:
argmax
∆λ

L(λ + ∆λ, θ)

s.t. KLsym(qλ (z) | |qλ+∆λ (z)) ≤ ε .

Similarly, the vpng shares another type of geometric structure: it points to the steepest ascent direc-

tion of the elbo in the “expected” (over the parameter-free distribution s(ε) and data distribution

Q(x)) symmetric kl-divergence space of the reparameterized predictive distribution pθ (x′ | z =

gλ (x, ε)). In fact, with η =
*..
,

λ

θ

+//
-
, the reparameterization for z = gλ (x, ε) and px′ (η) = pθ (x′ | z =

gλ (x, ε)) to be the reparameterized predictive distribution, our vpng (as defined in Equation 3.16)

shares similar geometric structures and points to the direction of the solution to the following opti-

mization problem, as ε → 0+:

argmax
∆η

L(η + ∆η)

s.t. Eε
[
KLsym(pη (x′) | |pη+∆η (x′))

]
≤ ε .

(3.17)

Here the expectation on ε takes with respect to the parameter-free distribution s(ε) in the reparam-

eterization.

Proof. The proof for the above fact is similar with the proof for the standard natural gradient as

in [65]. Ideally, we want to find a (possibly approximate) Riemannian metric G(η) to capture the

geometric structure of the expected symmetric kl-divergence Eε
[
KLsym(pη (x′) | |pη+∆η (x′))

]
:

Eε
[
KLsym(pη (x′) | |pη+∆η (x′))

]
≈ ∆η>G(η)∆η + o(‖∆η‖2).
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By making first-order Taylor approximation on pη+∆η (x′) and log pη+∆η (x′), we get

Eε
[
KLsym(pη (x′) | |pη+∆η (x′))

]

=Eε

[∫
(pη+∆η (x′) − pη (x′)) · (log pη+∆η (x′) − log pη (x′))dx′

]

=Eε

[∫
(∇ηpη (x′)>∆η) · (∇η log pη (x′)>∆η)dx′ +O(‖∆η‖3)

]

=Eε

[∫
pη (x′) · (∇η log pη (x′)>∆η) · (∇η log pη (x′)>∆η)dx′ +O(‖∆η‖3)

]

=∆η>Fr∆η +O(‖∆η‖3).

The term O(‖∆η‖3) is negligible compared to the first term when ε → 0+. Hence, we could

take G(η) to be just Fr , the variational predictive Fisher information as defined in Equation 3.15.

By [43]’s analysis on natural gradients, we know that the solution to Equation 3.17 points to the

direction of G(η)−1 · ∇λ,θL = ∇
vpng
λ,θ L, when ε → 0+. �

3.5 Variational inference with approximate curvature

To build an algorithm with the vpng, we need to compute the reparameterized predictive distribu-

tion and take an expectation with respect to its Fisher information. These steps will only be tractable

for specific choices of models and variational approximations. We address how to compute it with

Monte Carlo in a broader setting here.

We can generate samples for x′ in the distribution pθ (x′ | z) for ẑ drawn from q. These samples can

be used to estimate the integrals in the definition of Fr . They are generated through the following

Monte Carlo sampling process. Using k ∈ {1, . . . , M } to index the Monte Carlo samples:

ẑ ∼ qλ (z | x), x̂′(k)
i ∼ pθ (x′ | ẑ). (3.18)

Reparameterization makes it easy to approximate the needed gradients of log pθ (x′(k)
i | ẑ) with re-
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Algorithm 3 Variational inference with vpngs
Input: Data x1:n, Model p(x, z).
Initialize the parameters λ, θ, and µ.
repeat
Draw samples ẑ (Equation 3.18).
Draw i.i.d samples x̂′(k)

i (Equation 3.18).
Compute the Fisher information matrix F̂r (Equation 3.19).
Compute the natural gradient ∇̂vpng

λ,θ L (Equation 3.20).
Update the parameters λ, θ with the gradient ∇̂vpng

λ,θ L.
(Optional) Adjust the dampening parameter µ.

until convergence

spect to λ:

∇λ log pθ (x̂′(k)
i | ẑ) ≈ ∇λ ẑ · ∇ẑi log pθ (x̂′(k)

i | ẑ)>.

Let b̂i,k = ∇λ,θ log pθ (x̂′(k)
i | ẑ). Using samples from Equation 3.18, we can estimate the variational

predictive Fisher information in Equation 3.15 as

Fr ≈ F̂r =
1
M

M∑
k=1

n∑
i=1

b̂i,k b̂>i,k . (3.19)

This is an unbiased estimate of the variational predictive Fisher informationmatrix in Equation 3.15.

The approximate variational predictive Fisher information matrix F̂r might be non-invertible. Since

rank(F̂r ) ≤ Mn, the matrix is non-invertible if Mn < dim(λ)+dim(θ). We add a small dampening

parameter µ to ensure invertibility. This parameter can be fixed or dynamically adjusted. With this

dampening parameter, the approximate variational predictive natural gradient is

∇̂vpng
λ,θ L = (F̂r + µI)−1 · ∇λ,θL. (3.20)

Algorithm 3 summarizes vpng updates. We set the dampening parameter µ to be a constant in our

experiments. We show this algorithm works well in Section 3.6.
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3.6 Experiments

We explore the empirical performance of variational inference using the vpng updates in Algo-

rithm 3. We consider Bayesian Logistic regression on a synthetic dataset, the vae on a real hand-

written digit dataset, and variational matrix factorization (vmf) on a real movie recommendation

dataset. We test their performances using different metrics on both train and held-out data.

We compare vpng with standard gradient optimization and standard natural gradient optimization

using RMSProp [78] and Adam [68] to set the learning rates in all three algorithms. For each

algorithm in each task, we show the better result by applying these two learning rate adjustment

techniques and select the best decay rate (if applicable) and step size. We use ten Monte Carlo

samples to estimate the elbo, its derivatives, and the variational predictive Fisher information

matrix Fr .

3.6.1 Bayesian Logistic regression

We test Algorithm 3 with a Bayesian Logistic regression model on a synthetic dataset. We have the

data x1:n and the labels y1:n where xi ∈ R
4 is a vector and yi ∈ {0, 1} is a binary label. Each pair of

(xi, yi) is generated through the following process:

ai ∼Uniform[−5, 5] ∈ R

εk
i ∼Uniform[−0.005, 0.005], k ∈ {1, 2, 3, 4},

xi =

(
ai,

ai

2
,

ai

3
,

ai

4

)
+ εi ∈ R

4,

yi =I [〈(1,−2,−3, 4), xi〉 ≥ 0] .

The generated data are all very close to the ground-truth classification boundary (i.e. the hyper-

plane 〈(1,−2,−3, 4), x〉 = 0). We use Logistic regression with parameter w to model this data.

We place an isotropic Gaussian prior distribution p0(w) = N (w | 0, σ2
0 · I5) on the parameter w

where the parameter σ0 = 100. We apply mean-field variational inference to the parameter w:
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qµ,σ (w) =
5∏

i=1
N (wi | µi, σ

2
i ). Mean-field variational families are popular primarily for their opti-

mization efficiency. We aim to show that vpng improves upon the speed of mean-field approaches.

The data generative process and the initial prior parameterσ0 makes the elbo pathological. Specif-

ically, the covariates are strongly correlated while all data points have small margins with respect

to the ground-truth boundary.

We generate 500 samples and select a fixed set which contains 80% of the whole data for training

and use the rest for testing. We test Algorithm 3 and the baseline methods on this data. We do not

need Monte Carlo samples of predicted data as the Fr can be computed efficiently given samples

from the latent variables in this problem. To compare performances, we allow each algorithm to

run 2000 iterations for 10 runs with various step sizes and compare the AUC scores for both the

train and test procedure. The AUC scores are computed with the mean prediction.

The results are shown in Table 3.1. In the experiments, we calculate the train and test AUC scores

for every 100 iterations and and report the average of the last 5 outputs for each method. Table 3.1

shows the train and test AUC scores for each method, over all 10 runs. Our method outperforms

the baselines. We show a test AUC-iteration curve for this experiment in Figure 3.2. It can be seen

that the vpng behaves more stable compared to the baseline methods. The standard gradient and

standard natural gradient do not perform well because of the curvature induced by the correlation in

the covariates. We also compare the vpng with the quasi-Newton method L-BFGS on this task as

this method sometimes performs well on low dimensional problems [79]. However, the resulting

test AUC scores from multiple runs are mostly just slightly higher than 0.5. L-BFGS does not

perform well here since accurately estimating the Hessian for this pathological objective is hard.

3.6.2 Variational Auto-Encoder

We also study vpngs for vaes [4, 5] on binarized MNIST [57]. MNIST contains 70,000 images

(60,000 for training and 10,000 for testing) of handwritten digits, each of size 28 × 28.
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Table 3.1: Bayesian Logistic regression AUC

Method Train AUC Test AUC

Gradient 0.734 ± 0.017 0.718 ± 0.022
ng 0.744 ± 0.043 0.751 ± 0.047
vpng 0.972 ± 0.011 0.967 ± 0.011
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Figure 3.2: Bayesian Logistic regression test AUC-iteration learning curve.

We use a 100-dimensional latent representation zi. Our variational distribution factorizes and we

use a three-layer inference network to output the mean and variance of the variational distribution

given a datapoint. The generative model transforms z using a three-layer neural network to output

logits for each pixel. We use 200 hidden units for both the inference and generative networks.

To efficiently compute variational predictive Fisher information matrices, we view the entire vae

structure as a 6-layer neural network with a stochastic layer between the third and fourth layer.

We then apply the tridiagonal block-wise Kronecker-factored curvature approximation (K-FAC),

[72]. This enables us to (approximately) compute Fisher informationmatrices faster in feed-forward

neural networks. We further improve efficiency by constructing low-rank approximations of large

matrices. Finally, we use exponential moving averages of quantities related to the K-FAC approxi-

mations. We show more details in Section 3.6.4.

We compare the vpng method with the standard gradient and natural gradient optimizations. Since
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Figure 3.3: Vae learning curves on binarized MNIST

the standard natural gradient does not deal with the model parameter θ, we use the standard gradient

for θ in this setting. We do not need to compare the performances of the vpng with the standard

natural gradient by fixing the model parameter θ and learning only the variational parameter λ for

two reasons. First, this setting is not common for vaes. Second, we need to have a fixed value for

θ and it is difficult to obtain an optimal value for it before running the algorithms.

We select a batch size of 600 since we print the elbo values every 100 iterations. Hence, we evalu-

ate the performances for each algorithm exactly once per epoch. The test elbo values are computed

over the whole test set and the train elbo values are computed over a fixed set of 10,000 randomly-

chosen (out of the whole 60,000) images. We allow each method to run for 1,000 seconds (we found

similar results at longer runtimes) and select the best step sizes among several reasonable choices.

Figure 3.3 shows the results. Though the vpng method is the slowest per iteration, it outperforms
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the baseline optimizations on both the train and test sets, even on running time. We also compare

these methods with another second-order optimization method, the Hessian-free Stochastic Gaus-

sian Variational Inference (HFSGVI) [71]. However, it was not fast enough due to the large amount

of Hessian-vector product computations. The elbo values with this method are still far below -200

within 1,000 seconds, which is much slower than the methods shown in Figure 3.3.

The intuitive reason for the performance gain stems from the fact that the vae parameters control

pixels that are highly correlated across images. The vpng corrects for this correlation.

3.6.3 Variational matrix factorization

Our third experiment is on MovieLens 20M [3]. This is a movie recommendation dataset that

contains 20 million movie ratings from n ≈ 135K users on mtotal ≈ 27K movies. Each rating Rraw
u,i

of the movie i by the user u is a value in the set {0.5, 1.0, 1.5, . . . , 5.0}. We convert the ratings

to integer values between 0 and 9 and select all movies with at least 5K ratings yielding m ≈ 1K

movies. Wemodel the zeros as in the setting for matrix factorization with implicit feedback [66] (we

mentioned this in Section 1.1.1). We use Poisson matrix factorization to model this data. Assume

there is a latent representation βu ∈ R
d for each user u and there is a latent representation θi ∈ R

d

for each movie i. Here d = 100 is the latent variable dimensionality. Let softplus(t) = log(1 + et ).

We model the likelihood as

pθ (R | β) =
n∏

u=1

m∏
i=1

Poisson(Ru,i | µ = softplus(β>u θi)).

We do variational inference on the user latent variable β and treat the movie variables θ as model

parameters. The prior on each user latent variable is a standard Normal. We set the variational

distribution as qλ (β | R) =
n∏

u=1
qλ (βu |Ru), where qλ (βu |Ru) uses an inference network that takes

as input the row u of the rating matrix R. Similar to the vae experiment, we use a 3-layer feed-

forward neural network. We use 300 hidden units for this experiment.
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Figure 3.4: Vmf learning curves on MovieLens 20M

Notice that the above likelihood is exactly a 1-layer feedforward neural network (without the bias

term) that takes the latent representations drawn from the variational distribution qλ (β | R) and out-

puts the rating matrix as a random matrix with a pointwise Poisson likelihood. Hence, we could

view the model as a single-layer generative network and treat the latent variable θ as its parameter.

We have transformed variational matrix factorization to a task similar to the vae. Hence, when

we apply Algorithm 3 to this model, we can apply the same tricks used in the vae experiments to

accelerate the performances. We treat the whole model as a 4-layer feedforward neural network and

again apply the tridiagonal block-wise K-FAC approximation [72] and adopt low-rank approxima-

tions of large matrices (again, more details in Section 3.6.4). The results are shown in Figure 3.4.

We randomly split the data matrix R into train and test sets where the train set contains 90% of the

rows of R (it contains ratings from 90% of the users) and the test set contains the remaining rows.
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The test elbo values are computed over the random sampled test set and the train elbo values are

computed over a fixed subset (with its size equal to the test set size) of the whole train set. Since this

dataset is larger, we use a batch size of 3000. As can be seen in this figure, the vpng updates outper-

form the baseline optimizations on both the train and test learning curves. The curves look slightly

different among various train/test splits of the dataset but Algorithm 3 consistently outperforms the

baseline methods. The difference stems from the correlations in the ratings of the movies. The

standard natural gradient performs the worst at the beginning since it is only guaranteed to perform

well at the end (when q(z | x) is close to the posterior distribution p(z | x), Equation 3.4 explains

this), but not necessarily at the beginning, due to it does not consider potential curvature informa-

tion in the model distribution. Across both experiments, we find that vpng dramatically improves

estimation and inference at early iterations.

3.6.4 More details on the experiments

For the vae and the vmf experiments, we chose hyperparameters for all methods based on the

training elbo at the end of the time budget.

For the standard natural gradient and the vpng, we apply the dampening factor µ. More pre-

cisely, we take vpng updates as ∇̂vpng
λ,θ L = (F̂r + µI)−1 · ∇λ,θL and standard ng updates as

∇̂ng
λ L = (F̂q + µI)−1 · ∇λL). This is also applied in the Bayesian Logistic regression experiment

in Section 3.6.1.

For the vae and the vmf experiments, we apply the K-FAC approximation [72] to efficiently ap-

proximate the Fisher information matrices, in the ng and vpng computations. For the vpngs, we

view the vae model as a 6-layer neural network and the vmf model as a 4-layer neural network.

For the standard natural gradients, we view both the vae model and the vmf model as 3-layer neu-

ral networks. We apply K-FAC on these models to efficiently approximate the Fisher information

matrices with respect to the model distributions, given the samples from the variational distribu-

tions.
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Figure 3.5: Vae learning curves on binarized MNIST, without exponential moving averages

To apply the K-FAC approximation, we will need to compute matrix multiplications and matrix

inversions for some non-diagonal large square matrices (i.e. the Ā0,0 matrices in the K-FAC paper

[72] and some other matrices that are computed during the K-FAC approximation process). In order

to make the algorithms faster, we apply low-rank approximations for some large matrices of these

forms by sparse eigenvalue decompositions. All of these large matrices are positive semidefinite.

For each such large matrix M , we keep only the K · ln(dim(M)) dimensions of it with the largest

eigenvalues and K is a hyperparameter that can be tuned.

For ng and vpng, we apply the exponential moving averages for all matrices Āi,i and Ḡi+1,i+1 (again,

we use the notations in the K-FAC paper [72]) to make the learning process more stable. We found

that, by adding the exponential moving average technique, our vpng performs similarly to the case

without this technique, while the standard natural gradient is much more stable and efficient. If

we do not apply the exponential moving average technique, the standard natural gradients will not

perform well. As an example, we show the performances of all methods without the exponential

moving average technique in the vae experiment in Figure 3.5. We found that ng and vpng per-

formed similarly with respect to the dampening factor µ, the exponential moving average decay

parameter and the low-rank approximation function parameter K . However, different step sizes are

needed to get the best performance from these two methods. We grid searched the step sizes and

report the best one.
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3.7 Summary

We introduced the Variational Predictive Natural Gradient. They adjust for parameter dependencies

in variational inference induced by the correlations in the observations. We show how to approxi-

mate the Fisher information without manual model specific computations. We demonstrate the in-

sight on a bivariate Gaussian model and the empirical value on a classification model on synthetic

data, a deep generative model of images, andmatrix factorization for movie recommendation.
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Chapter 4: Correlated Variational Auto-Encoders

We have already discussed in Chapters 2 and 3 on how can we use correlation information to im-

prove the optimization procedure of unsupervised representation learning algorithms, either for

better initializations or efficiency. In addition to that, another line of potential work on utilizing cor-

relation information to improve unsupervised representation learning algorithms is to look into how

we can improve the model by considering additional side-information on data correlations.

To study this topic, in this and the next chapter, we focus on Variational Auto-Encoders (vaes),

which are capable to learn useful latent representations for data in an unsupervised manner. How-

ever, due to the i.i.d. assumption, vaes only optimize the singleton variational distributions and fail

to account for the correlations between data points, which might be crucial for learning latent repre-

sentations from datasets where a priori we know correlations exist. We propose cvaes that can take

the correlation structure into consideration when learning latent representations with vaes. cvaes

apply a prior based on the correlation structure. To address the intractability introduced by the cor-

related prior, we develop an approximation by the average of a set of tractable lower bounds over

all maximal acyclic subgraphs of the undirected correlation graph. Experimental results on match-

ing and link prediction on public benchmark rating datasets and spectral clustering on a synthetic

dataset show the effectiveness of the proposed method over baseline algorithms.

4.1 Motivation

Variational Auto-Encoders (vaes) [4, 5] are a family of powerful deep generative models that learns

stochastic latent embeddings for input data. By applying variational inference on deep generative
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models, vaes are able to successfully identify the latent structures of the data and learn latent

distributions that can potentially extract more compact information that is not easily or directly

obtained from the original data.

vaes assume each data point is i.i.d. generated, which means we do not consider any correlations

between data points. This is a reasonable assumption under many settings. However, sometimes

we know a priori that data points are correlated, e.g., in graph-structured datasets [80, 61, 81, 82].

In these cases, it is more reasonable to assume the latent representation for each data point also

respects the correlation graph structure.

In this chapter, we extend the standard vaes by encouraging the latent representations to take the

correlation structure into account, which we term cvaes. In cvaes, rather than a commonly used

i.i.d. standard Gaussian prior, we apply a correlated prior on the latent variables following the

structure known a priori. We develop two variations, cvaeind and cvaecorr: In cvaeind, we still use

a fully-factorized singleton variational density via amortized inference; while in cvaecorr, instead

of only learning singleton latent variational density functions, we also incorporate pairwise latent

variational density functions to achieve a better variational approximation. With a correlated prior,

the standard variational inference objective becomes intractable to compute. We sidestep the chal-

lenging objective by considering the average of a set of tractable lower bounds over all maximal

acyclic subgraphs of the given undirected correlation graph.

The experimental results show that both cvaeind and cvaecorr can outperform the baseline meth-

ods on three tasks: matching dual user pairs using the rating records on a movie recommendation

dataset, clustering the vertices with latent embeddings drawn from a tree-structured undirected

graphical model on a synthetic dataset, and predicting links using the rating records on a product

rating dataset.
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4.2 cvaes on acyclic graphs

In this section, we extends vaes to fit with a set of latent variables with an acyclic correlation graph.

We start with acyclic graphs since the prior and posterior approximation of the latent variables can

be expressed exactly for such correlation structures.

4.2.1 Variational Auto-Encodings

We first formally introduce the standard Variational Auto-Encoder (vae). Actually, we have men-

tioned with this model in the theoretical derivations in Section 3.4 and the experiments in Sec-

tion 3.6.2, but we recap it here again for more details.

Assume that we have input data x = {x1, . . . , xn} ⊆ R
D. Standard vaes assume that each data

point xi is generated independently by the following process: First, generate the latent variables

z = {z1, . . . , zn} ⊆ R
d (usually d � D) by drawing zi

i.i.d.
∼ p0(zi) from the prior distribution

p0 (parameter-free, usually a standard Gaussian distribution) for each i ∈ {1, . . . , n}. Then gener-

ate the data points xi ∼ pθ (xi |zi) from the model conditional distribution pθ , for i ∈ {1, . . . , n}

independently.

We are interested in optimizing θ to maximize the likelihood pθ (x), which requires computing the

posterior distribution pθ (z |x) =
n∏

i=1
pθ (zi |xi). For most models, this is usually intractable. vaes

sidestep the intractability and resort to variational inference by approximating this posterior distri-

bution as qλ (z |x) =
n∏

i=1
qλ (zi |xi) via amortized inference, which maps the variational distribution

coefficients for the latent variable zi as a function of the corresponding data point xi. The resulting

dimensionality of the variational parameter vector λ is then independent with the dataset size n.

In the standard variational inference, the variational distribution qλ (zi |xi) can be independent with

xi (i.e. written as qλ (zi) without amortized inference). In this way, we can learn the variational

distribution on zi freely regardless of the input data xi. However, we need to learn an independent

qλ (zi |xi) for each index i, which is not a good choice for especially large datasets since it is easy to
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overfit due to the parameter dimensionality is proportional to the dataset size n.

With this variational distribution, again we maximize the evidence lower bound (elbo):

L(λ, θ) = Eqλ (z |x)
[
log pθ (x |z)

]
− KL(qλ (z |x) | |p0(z))

=

n∑
i=1

[
Eqλ (zi |xi )

[
log pθ (xi |zi)

]
− KL(qλ (zi |xi) | |p0(zi))

]
.

This objective function is exactly the same with the elbo in Equation 3.2 in Chapter 3, but it has the

difference that vaes assume the prior p0(z) and the variational approximation qλ (z |x) are always

independent between data points, while the standard variational inference does not have this require-

ment. Same with the case we discussed about before, the elbo lower bounds the log-likelihood

log pθ (x), and maximizing this lower bound is equivalent to minimizing the kl-divergence be-

tween the variational distribution qλ (z |x) and the true posterior pθ (z |x). The kl-divergence term

in the elbo can be viewed as regularization that pulls the variational distribution qλ (z |x) towards

the prior p0(z). Since the approximation family qλ (z |x) factorizes over data points and the prior is

i.i.d. (usually an i.i.d. Gaussian distribution), the kl-divergence in the elbo is simply a sum over

the per-data-point kl-divergence terms, which means that we do not consider any correlations of

latent representation between data points.

4.2.2 Correlated priors on acyclic graphs

As motivated earlier, sometimes we know a priori that there exists correlations between data points.

If we have access to such information, we can incorporate it into the generative process of vaes,

giving us correlated vaes.

Formally, assume that we have n data points x1, . . . , xn. In addition, we assume that the correlation

structure of these data points is given by an undirected graph G = (V, E), where V = {v1, ..., vn} is

the set of vertices corresponding to all data points (i.e., vi corresponds to xi) and (vi, v j ) ∈ E if xi and

x j are correlated. For nowwe assumeG is acyclic, and later in Section 4.3 we will extend the results
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to general graphs. Making use of the correlation information, we change the prior distribution pcorr0

of the latent variables z1, . . . , zn to take the form of a distribution over (z1, . . . , zn) ∈ Rd × . . .×Rd

whose singleton and pairwise marginal distributions satisfy




pcorr0 (zi) = p0(zi) for all vi ∈ V,

pcorr0 (zi, z j ) = p0(zi, z j ) if (vi, v j ) ∈ E.
(4.1)

Here p0(·) is a parameter-free density function that captures the singleton prior distribution and

p0(·, ·) is a parameter-free density function that captures the pairwise correlation between each

pair of variables. Furthermore, they should satisfy the following symmetry and marginalization

consistency properties:




p0(zi, z j ) = p0(z j, zi) for all zi, z j ∈ R
d,∫

p0(zi, z j )d z j = p0(zi) for all zi ∈ R
d .

(4.2)

The symmetry property (the first part of Equation 4.2) preserves the validity of the pairwisemarginal

distributions since p0(zi, z j ) and p0(z j, zi) are representing exactly the same distribution. The

marginalization consistency property (the second part of Equation 4.2) maintains the consistency

between the singleton and pairwise density functions.

This prior will help the model take the correlation information into consideration since we have

a kl-divergence regularization term in the evidence lower bound that will push the variational

distribution towards the prior distribution. With the correlated prior defined above, the generative

process of a cvae is straightforward: First we sample z from this new prior pcorr0 , then we sample

each data point xi conditionally independently from zi, similar to a standard VAE.

In general, the prior distributions defined in Equations 4.1 and 4.2 do not necessarily form a valid

joint distribution on z, that is, there exists a graph G and choice of prior distributions as above such

that no joint distribution on z has the priors defined by p0 as its marginals. Nonetheless, if G is an
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undirected acyclic graph, such a joint distribution does exist, independent of which distributions

we choose for p0(·) and p0(·, ·) [83]:

pcorr0 (z) =
n∏

i=1

p0(zi)
∏

(vi,v j )∈E

p0(zi, z j )
p0(zi)p0(z j )

. (4.3)

In other words, the joint correlated prior distribution on z can be expressed explicitly with only

the singleton and pairwise marginal distributions, without having an intractable normalization con-

stant.

4.2.3 cvaes on acyclic graphs

To perform variational inference, we need to specify which variational family we will use. In this

chapter, we explore two different variational families: one where the prior distribution only involves

singleton marginals, which we denote cvaeind, and one in which the prior distribution has the form

in Equation 4.3, which we denote cvaecorr.

Singleton variational family In cvaeind, we approximate the posterior distribution p(z |x) as

qλ (z |x) =
n∏

i=1
qλ (zi |xi) which consists of fully-factorized distributions. The corresponding evi-

dence lower bound for cvaeind on acyclic graphs is shown as follow:

LCVAEind-acyclic(λ, θ) = Eqλ (z |x)
[
log pθ (x |z)

]
− KL(qλ (z |x) | |p0(z))

=

n∑
i=1

(
Eqλ (zi |xi )

[
log pθ (xi |zi)

]
− KL(qλ (zi |xi) | |p0(zi))

)
+

∑
(vi,v j )∈E

Eqλ (zi |xi )qλ (z j |x j ) log
p0(zi, z j )

p0(zi)p0(z j )
.

(4.4)

This evidence lower bound is a lower bound of the log probability p(x; θ) under the correlated prior

(as in Equation 4.3). Even though this variational family does not consider pairwise correlations,

the prior pcorr0 is still more expressive than the standard Gaussian prior used in standard vaes.
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Correlated variational family In cvaecorr, where the prior pcorr0 can be written as in Equation 4.3,

it makes sense to use a variational distribution qλ (z | x) expressed in the same form, i.e., with only

singleton and pairwise marginal distributions:

qλ (z | x) =
n∏

i=1

qλ (zi |xi)
∏

(vi,v j )∈E

qλ (zi, z j |xi, x j )
qλ (zi |xi)qλ (z j |x j )

. (4.5)

As in Equation 4.2, the marginals need to satisfy the following properties:




qλ (zi, z j |xi, x j ) = qλ (z j, zi |x j, xi) for all zi, z j, xi, x j,∫
qλ (zi, z j |xi, x j )d z j = qλ (zi |xi) for all zi, xi, x j .

The corresponding evidence lower bound for cvaecorr on acyclic graphs is shown as follows:

LCVAEcorr-acyclic(λ, θ) =
n∑

i=1

(
Eqλ (zi |xi )

[
log pθ (xi |zi)

]
− KL(qλ (zi |xi) | |p0(zi))

)
−

∑
(vi,v j )∈E

(
KL(qλ (zi, z j |xi, x j ) | |p0(zi, z j )) − KL(qλ (zi |xi) | |p0(zi)) − KL(qλ (z j |x j ) | |p0(z j ))

)
.

(4.6)

This evidence lower bound yields a tighter lower bound on the log-likelihood log pθ (x) under the

prior in Equation 4.3 as compared to the evidence lower bound of cvaeind, since optimizing this

evidence lower bound involves optimizing over a larger set of distributions than the factorized distri-

butions as in cvaeind. cvaecorr not only takes the correlation structure into consideration as cvaeind,

but also learns correlated variational distributions that can potentially yield better approximations

to the model posterior.

4.3 cvaes on general graphs

Wehave introduced cvaes for acyclic correlation structures. In this section, we extend thesemodels

to general undirected graphs.
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4.3.1 Why the trivial generalization fails

A simple generalization is just to directly apply the evidence lower bounds (as in Equations 4.4

and 4.6) for acyclic graphs that we developed in Section 4.2. However, this simple approach can

easily fail. First, as described earlier, Equation 4.3 is not guaranteed to be a valid distribution (i.e.,

it does not integrate to 1 over z) for a general graph G [83].

Moreover, optimizing these acyclic evidence lower boundsmay lead to pathological cases where the

objectives go to infinity as these objectives not guaranteed to be a lower bound of the log-likelihood

for general graphs. We construct a simple example to demonstrate as follows:

A counterexample for the trivial extension to general graph Let us consider G = (V, E) is a

K4 complete graph with |V | = 4 vertices and
(
|V |
2

)
= 6 edges. For simplicity, we consider the latent

variables z1, z2, z3, z4 ∈ R and the prior distribution p0(zi, z j ) = N
*..
,

*..
,

zi

z j

+//
-

; µ = 02, Σ =
*..
,

1 τ

τ 1

+//
-

+//
-

for some τ ∈ (0, 1). If we extend the cvaeind and for the variational distribution, we set q(zi |xi)

to be the Gaussian distribution N (µi, σ
2
i ), by simply apply Equation 4.4, then the loss function

becomes

L =

4∑
i=1

(
Eqλ (zi |xi )

[
log pθ (xi |zi)

]
+ µ2

i −
1 + 2τ2

2(1 − τ2)
σ2

i

+ ln(σi)
)
−

1
2(1 − τ2)

∑
1≤i< j≤4

(µ2
i + µ

2
j − 2τµiµ j ).

If we maintain σi unchanged, set the model parameter θ in a way that makes pθ (xi |zi) unrelated to

zi (e.g. set the parameters that to be multiplied with zi as zeros) and set µ1 = µ2 = µ3 = µ4 = µ

and let µ→ ∞, then L will go to +∞ if τ > 1
2 . Therefore, directly applying Equation 4.4 does not

work. Directly applying Equation 4.6 (i.e. extending the cvaecorr) will make the result even worse

since it always has an optimal value at least as high as Equation 4.4. In general, any general graphs

with K4 subgraphs may suffer from the issue we just mentioned. We cannot obtain useful latent

embeddings by directly applying the Equations 4.4 and 4.6.
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Therefore, we cannot directly apply the evidence lower bounds on acyclic graphs. We need to define

a new prior distribution pcorrg0 (z) and derive a new lower bound for the log-likelihood log pθ (x)

under this prior, for general graphs.

4.3.2 Inference with a weighted objective

Though a general graph G may contain cycles, its acyclic subgraphs may contain correlation struc-

tures that well-approximate it, especially when G is sparse. For acyclic graphs, we have already

derived evidence lower bounds for cvaeind and cvaecorr in Section 4.2. We extend these two meth-

ods to a general graph G by considering an average of the loss over its maximal acyclic subgraphs,

which are defined as follows.

Definition 1 (Maximal acyclic subgraph). For an undirected graph G = (V, E), a subgraph G′ =

(V ′, E′) is a maximal acyclic subgraph of G if:

• G′ is acyclic.

• V ′ = V , i.e., G′ contains all vertices of G.

• Adding any edge from E/E′ to E′ will create a cycle in G′.

A maximal acyclic subgraph G′ of G may be similar in structure to G, especially when G is sparse.

When G is acyclic, it only contains one maximal acyclic subgraph, i.e., G itself. When G is con-

nected, any subgraph G′ is a maximal acyclic subgraph of G if and only if G′ is a spanning tree of

G. In general, any subgraph G′ is a maximal acyclic subgraph of G, if and only if, for any of G’s

connected components, G′ contains a spanning tree over this connected component, see Figure 4.1.

We will useAG to denote the set of all maximal acyclic subgraphs of G. While Equation 4.3 is not

guaranteed to be a valid prior distribution on z if G contains cycles, we can use it to define a new

prior over G’s maximal acyclic subgraphs. More specifically, we define the prior distribution of z
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… 

Figure 4.1: Visualization of the set of maximal acyclic subgraphs (right) of the given graph G (left).
On the right, the dark solid edges are selected and light dashed edges not selected. As can be seen
from this figure, each subgraph G′ ∈ AG is just a combination of a spanning trees over all of G’s
connected components. In total, this graph G has |AG | = 48 maximal acyclic subgraphs.

as a uniform mixture over all subgraphs in AG:

pcorrg0 (z) =
1
|AG |

∑
G′=(V,E ′)∈AG

pG′
0 (z), (4.7)

where pG′
0 (z) =

n∏
i=1

p0(zi)
∏

(vi,v j )∈E ′

p0(zi,z j )
p0(zi )p0(z j )

. Equation 4.7 defines a uniform mixture model over

the set of prior distributions pG′
0 on the maximal acyclic subgraphs of G, so it is always a valid

density. Note that this reduces to Equation 4.3 when G is acyclic as |AG | = 1. Under this definition,

the log-likelihood log pθ (x) becomes

log pθ (x) = logEp
corrg
0 (z)[pθ (x |z)] ≥

1
|AG |

∑
G′∈AG

EpG′0 (z)[log pθ (x |z)]

≥
1
|AG |

∑
G′∈AG

(
EqG′

λ
(z |x)[log pθ (x |z)] − KL(qG′

λ (z |x) | |pG′
0 (z))

)
. (4.8)

The inequality is a direct application of Jensen’s inequality, which is also applied when deriving the

normal evidence lower bound in Equation 4.1. Here qG′
λ

(z |x) is a variational distribution related

to the maximal acyclic subgraph G′ = (V, E′). Similar to Section 4.2.3, we can specify either a

singleton or a correlated variational family. We describe the construction for correlated variational
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families as singleton variational families is simply a special case of this. We define qG′ the same

way as in Equation 4.5:

qG′
λ (z) =

n∏
i=1

qλ (zi |xi)
∏

(vi,v j )∈E ′

qλ (zi, z j |xi, x j )
qλ (zi |xi)qλ (z j |x j )

.

Under this definition, we construct |AG | different variational distributions qG′
λ
. These distributions

may be different from each other due to the difference in graph structure, but they share the same

singleton and pairwise marginal density functions qλ (·|·) and qλ (·, ·|·, ·) as well as the same set of

variational parameters λ. Though these singleton and pairwise marginal density functions are not

guaranteed to form a real joint density of z for the whole graph G, we can still guarantee that each

of the qG′
λ

is a valid density on z. Moreover, these locally-consistent singleton and pairwise density

functions will approximate the singleton and pairwise marginal posterior distributions.

With this definition of qG′
λ
, the lower bound in Equation 4.8 becomes the sum of a set of singleton

terms over vertices in V and a set of pairwise terms over edges in E. The singleton terms have the

same weights on all vertices, while the pairwise terms may have different weights: for each edge

e ∈ E, the weight is the fraction of times e appears among all subgraphs in AG. We define this

weight as follows.

Definition 2 (Maximum acyclic subgraph edge weight). For an undirected graph G = (V, E) and

an edge e ∈ E, define wMAS
G,e to be the fraction of G’s maximal acyclic subgraphs that contain e, i.e.,

wMAS
G,e := |{G

′∈AG :e∈G′}|
|AG |

.

Since each maximal acyclic subgraph of G is a disjoint union of spanning trees, one per connected

component of G, we have:

Proposition 1 (Maximum acyclic subgraph edgeweight sum). For an undirected graphG = (V, E),

let CC(G) be the set of connected components of G. Then we have
∑

e∈E
wMAS

G,e = |V | − |CC(G) |.
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Using the edge weights, recall that Equation 4.8 shows that

log pθ (x) ≥
1
|AG |

∑
G′∈AG

(
EqG′

λ
(z |x)[log pθ (x |z)] − KL(qG′

λ (z |x) | |pG′
0 (z))

)
.

By the definition ofAG, the right hand side of the above inequality equals the following sum

n∑
i=1

(
Eqλ (zi |xi )

[
log pθ (xi |zi)

]
− KL(qλ (zi |xi) | |p0(zi))

)
−

1
|AG |

∑
G′∈AG

∑
(vi,v j )∈E ′

(
KL(qλ (zi, z j |xi, x j ) | |p0(zi, z j ))

− KL(qλ (zi |xi) | |p0(zi)) − KL(qλ (z j |x j ) | |p0(z j ))
)
.

The pairwise sum part of the above equation is an average over a sum over all edges of all maximal

acyclic subgraphs of G. Therefore, for each edge e = (vi, v j ) ∈ E, the number of times it appears in

this pairwise sum part of the above sum is just the number of maximal acyclic subgraphs containing

this edge. Therefore, this part can be viewed as a weighed sum over all edges in E, where the weights

come from the fraction ratios in Definition 2. With this definition, we can further write the above

sum as

n∑
i=1

(
Eqλ (zi |xi )

[
log pθ (xi |zi)

]
− KL(qλ (zi |xi) | |p0(zi))

)
−

∑
(vi,v j )∈E

wMAS
G,(vi,v j ) ·

(
KL(qλ (zi, z j |xi, x j ) | |p0(zi, z j )) − KL(qλ (zi |xi) | |p0(zi)) − KL(qλ (z j |x j ) | |p0(z j ))

)
:= LCVAEcorr (λ, θ).

(4.9)

Equation 4.9 defines a valid lower bound of the log-likelihood log pθ (x) under the mixture model

prior in Equation 4.7. We define this as the loss function for cvaecorr on general graphs. As long

as the weights wMAS
G are tractable, optimizing this lower bound is tractable. We will show how to

compute these weights efficiently in Section 4.3.3. For cvaeind, the evidence lower bound LCVAEind

is just Equation 4.9 except that we change qλ (zi, z j |xi, x j ) to be the product of the two singleton

density functions qλ (zi |xi) and qλ (z j |x j ).
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4.3.3 Computing the subgraph weights

To optimize LCVAEcorr (λ, θ), we need to efficiently compute the weights wMAS
G,e for each edge e ∈ E.

These weights are only related to the graph G, but not the model distribution pθ , the variational

density functions qλ or the data x.

Recall that wMAS
G,e is just the fraction of G’s maximal acyclic subgraphs which contain the edge e.

For simplicity, we first consider a special case where G is a connected graph. Then wMAS
G,e is just

the fraction of G’s spanning trees which contain the edge e. To compute this quantity, we need to

know the total number of spanning trees of G, as well as the number of spanning trees of G which

contain the edge e.

The Matrix Tree Theorem [84] gives a formula for the total number of spanning trees of a given

graph G.

Theorem 5 (Matrix Tree Theorem [84]). For an undirected graph G = (V, E), the number of

spanning trees of G is the determinant of the sub-matrix of the Laplacian matrix L of G after

deleting the ith row and the ith column (i.e., the (i, i)-cofactor of L), for any i = 1, ..., n.

The Laplacian matrix L of a undirected graph G = (V = {v1, . . . , vn}, E) is defined as follows.

L ∈ Rn×n is a symmetric matrix where:

Li, j =




degree(vi) if i = j,

−1 if (vi, v j ) ∈ E,

0 otherwise.

Similarly, we compute the number of spanning trees of G that contain edge e = (vi, v j ):

Theorem 6 (Number of spanning trees containing a specific edge). For an undirected graph G =

(V, E) and an edge (vi, v j ) ∈ E, the number of spanning trees of G containing this edge is the

determinant of the sub-matrix of the Laplacian matrix L of G after deleting the ith, jth rows and the

ith, jth columns of it (i.e., the complement of the minor Mi j,i j of L).
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Proof. Given the graph G = (V, E) and the edge (vi, v j ) ∈ E. Let us define the following notations:

L is G’s Laplacian matrix, L−a,−b is the sub-matrix of L after deleting the ath row and the bth

column, and L−ab,−cd is the sub-matrix of L after deleting the ath, bth rows and the cth, the dth

columns.

By Matrix Tree Theorem (Theorem 5 [84]), we know that the (i, i)-cofactor Ci,i = |L−i,−i | is the

number of spanning trees of G.

Construct a graph G′ = (V, E/{vi, v j }), i.e. the graph G after removing the edge (vi, v j ). Let us

denote the Laplacian matrix of G′ as L′. Then we will find that the matrix L′
−i,−i is the same with

L−i,−i except that they L−i,−i is 1 larger than L′
−i,−i on the entry at ( j, j). By Matrix Tree Theorem,

|L′
−i,−i | is the number of spanning trees of G′. Since G differs from G′ by only having one more edge

(vi, v j ), we know that |L−i,−i | − |L′−i,−i | represents the number of spanning trees in G that contains

the edge (vi, v j ).

Let the entry at ( j, k) of L−i,−i be L−i,−i; j,k . Since we know that




|L−i,−i | =
∑
k,i

(−1) j+k L−i,−i; j,k |L−i j,−ik |,

|L′
−i,−i | =

∑
k,i

(−1) j+k L′
−i,−i; j,k |L

′
−i j,−ik |.

Subtract the second equation from the first one we get

|L−i,−i | − |L′−i,−i | = (−1)2 j |L−i j,−i j |

which is just the complement of the Minor Mi j,i j of L. Hence, the number of spanning trees of G

that contains the edge (vi, v j ) is Mi j,i j , the determinant of the sub-matrix of the Laplacian matrix L

of G, after deleting the the ith, jth rows and the ith, the jth columns. �

Directly using these two theorems to compute wMAS
G,e has several issues. First, we need to compute

|E | different determinants for matrices of size ( |V | −2)× (|V | −2) (by applying Theorem 6), whose
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time complexity is O(|E | |V |3), which is very inefficient. Second, the results we get from these two

theorems can be exponentially large compared to |V | and |E | (e.g., a complete graph Kn with n

vertices contains nn−2 spanning trees), which can result in significant numerical issues under divi-

sion. Since we only care about the ratios, notice that the numbers we compute from Theorem 6 are

cofactors of the matrices (sub-matrices of L) on which we compute determinants from Theorem 5,

we derive the following formula for computing the weights wMAS
G,e , using the relationship between

cofactors, determinants, and inverse matrices.

Theorem 7 (Computing the spanning tree edge weights). For an undirected connected graph G =

(V, E) and an edge e = (vi, v j ) ∈ E, the weight wMAS
G,e = L+i,i − L+i, j − L+j,i + L+j, j . Here L+ is the

Moore-Penrose inverse of the Laplacian matrix L of G.

Proof. We borrow the notations from the proof to Theorem 6. Given the undirected connected

graph G = (V, E) and an edge (vi, v j ) ∈ E, we want to compute the ratio wMAS
G,(vi,v j )

. Since G

is connected, this ratio is just the fraction of G’s spanning trees containing the edge (vi, v j ). By

Theorems 5 and 6, this ratio is just |L−i j,−i j |
|L−i,−i |

.

Since G is connected, it contains at least one spanning tree. Hence |L−i,−i | > 0, which means L−i,−i

is invertible. Therefore, we know that |L−i j,−i j |
|L−i,−i |

= L−1
−i,−i; j, j .

Consider the original Laplacian matrix L before deleting any row and column. Let us denote |V | =

n. Since L is always symmetric and always have an eigenvector vn =
1√
n
1n with corresponding

eigenvalue λn = 0, we perform eigenvalue decomposition on L and write L as:

L =
n∑

k=1

λivkv
>
k =

n−1∑
k=1

λivkv
>
k .

Where λ1, . . . , λn−1, λn are L’s eigenvalues and v1, . . . , vn−1, vn are the corresponding orthogonal

unit eigenvectors (i.e. Qv =

(
v1 · · · vn−1 vn

)
is an orthogonal matrix).

Let va,b be the b-the coordinate of va and va,−b as the sub-vector va after deleting the bth coordinate.
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Then

L−i,−i =

n−1∑
k=1

λkvk,−iv
>
k,−i .

L−i,−i is invertible, which is of rank n − 1. While each of the matrix vk,−iv
>
k,−i is of rank 1. Hence,

we must have λi , 0 for all i ∈ {1, . . . , n − 1}.

Construct vectors u1, . . . , un ∈ R
n such that

uk,a =




vk,a − vk,i if a , i

vk,a if a = i.
(4.10)

Also, construct the matrix

U =
n−1∑
k=1

λ−1
k uku

>
k .

Since we know that
(
v1 · · · vn−1 vn

)
forms an orthogonal basis and vn =

1√
n
1n, it is easy to see

(after simple calculations) that

uk,−i> · vk ′,−i =




1 if k = k′

0 if k , k′.

Therefore, we will have

U−i,−i L−i,−i = In−1

which indicates that U−i,−i = L−1
−i,−i. Hence, the ratio we want to find is just U−i,−i, j, j .

Recall the definition of u1, . . . , un in Equation 4.10, with Qu =

(
u1 · · · un−1 un

)
, we get Qu =
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PiQv, where

Pi =

*...........................
,

1 −1

1 −1
. . .

...

1

−1 1
...

. . .

−1 1

−1 1

+///////////////////////////
-

∈ Rn×n

where the −1s appear on the ith column. Hence, with D = diag(λ1, . . . , λn), we have

U = QuD+Q>u = PiQvD+Q>v P>i = Pi L+P>i .

Therefore, the ratio wMAS
G,(vi,v j )

we want to find, which is equal to U−i,−i; j, j , is just the ( j, j)-entry of

Pi L+P>i , which is

L+i,i − L+i, j − L+j,i + L+j, j .

�

With this theorem, given an undirected connected graphG, we can first compute theMoore-Penrose

inverse L+ of G’s Laplacian matrix and then compute the weight wMAS
G,e for every edge e ∈ E. The

time complexity is O( |V |3), which is not unreasonable, even for relatively large graphs. Further-

more, there should be no numerical issues in the computations since computing the Moore-Penrose

inverse is numerically stable.

We have just illustrated how to compute the weights wMAS
G,e when G is connected. When G is not

connected, from the definition of maximal acyclic graphs, we know that, wMAS
G,e is equal towMAS

CC(G,e),e,

where CC(G, e) is the connected component of G that contains the edge e. Therefore, we just need

to apply Theorem 7 for all connected components of G. The details of computing the weights wMAS
G,e
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Algorithm 4 Computing all weights wMAS
G,e

Input: undirected graph G = (V = {v1, . . . , vn}, E).
Compute all the connected components CC1, . . . ,CCK of G using depth-first search or breadth-
first search.
for k = 1 to K do
Compute the Moore-Penrose inverse L+k of the Laplacian matrix Lk of the component CCk .
Apply Theorem 7 to compute wMAS

G,e for each edge e in the component CCk .
end for
Return The weights wMAS

G,e for all e ∈ E.

for all e ∈ E are shown in Algorithm 4. The time complexity of this algorithm is O(|V |3) in the

worst case, but potentially much smaller if each connected component of G has a small number of

vertices.

We can in fact relax the premise of Theorem 7 that G is connected: since theMoore-Penrose inverse

of block diagonal matrices is equivalent to computing the Moore-Penrose inverse for each of these

sub-matrices, Theorem 7 is also correct for general graphs. Hence, we can compute the weights

without identifying the connected components. However, performing Algorithm 4 is at least as

efficient as directly computing the Moore-Penrose inverse of the whole matrix.

4.3.4 Regularization with non-edges

With Algorithm 4, we can efficiently compute all the weights wMAS
G,e and optimize the evidence

lower bound LCVAEcorr in Equation 4.9. This evidence lower bound may be a good objective func-

tion to optimize if our goal is only to use the trained generative model pθ (x |z) or to get a good

approximation to the singleton and pairwise marginal posterior. However, if we want to use the

learned pairwise variational density functions qλ (·, ·|·, ·) for predictive tasks that may take inputs

(xu, xv) where (u, v) < E (e.g., perform link predictions using these density functions), then purely

optimizing Equation 4.9 is not sufficient since this loss function may consider all pairs of vertices

as correlated, due to only having “positive” examples (correlated pairs) in the data. As a result,

the learned pairwise density functions are not capable of identifying the correlations of new in-
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puts.

To address this issue, we add a regularization term to the evidence lower bound LCVAEcorr , which is

akin to negative sampling in language modeling. Recall in Equation 4.9, we compute the average

kl terms over all maximal acyclic subgraphs of G. These kl terms are the “positive” examples.

For the “negative” examples, we apply the average kl terms over all maximal acyclic subgraphs of

the complete graph Kn as the graph, and treat the prior on z to be i.i.d. on each zi to regularize the

density functions q towards independent for the negative samples. Since Kn is a complete graph,

the edge weight wMAS should be the same among all edges. By Proposition 1, since Kn is connected

and has n(n−1)
2 edges, we get

Proposition 2 (Maximal acyclic subgraph weights for complete graphs). For a complete graph Kn,

the weight wMAS
Kn,e

for any edge e of Kn is 2
n .

Therefore, we can define the loss function for cvaecorr with the negative sampling regularization as

follows.

LCVAEcorr-NS(λ, θ) :=LCVAEcorr (λ, θ) − γ ·
( n∑

i=1

KL(qλ (zi |xi) | |p0(zi))

+
2
n

∑
1≤i< j≤n

Eqλ (zi,z j |xi,x j ) log
qλ (zi, z j |xi, x j )

qλ (zi |xi)qλ (z j |x j )

)
.

(4.11)

Here γ > 0 is a parameter that can control the regularization. In this loss function, the edges in

E appear in both the positive samples and the negative samples. However, by Proposition 1, the

average weight of the edges in E in the positive samples is |V |−|CC(G) |
|E | . Therefore, as long as we

set γ ≤ O
(
|V |( |V |−|CC(G) |)

|E |

)
, the regularization term will not dominate the effect of the positive

samples.

This negative sampling regularization can help cvaecorr learn better latent embeddings for many

predictive tasks as shown in Section 4.4. cvaeind does not need such regularization since it does

not learn correlated variational density functions, but only fully-factorized ones.

We show the details of optimization with this loss function as follows (Algorithm 5). If we subsam-

ple the vertices inV for the singleton part of this loss, subsample edges in E for the “positive” sample
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Algorithm 5 Optimization with the loss LCVAEcorr-NS(λ, θ)
Input: undirected graph G = (V = {v1, . . . , vn}, E), input data x1, . . . , xn, the parameter γ > 0.
Compute the edge weights wMAS

G,e using Algorithm 4.
Initialize the parameters λ, θ.
while Not converged do
Compute the gradient ∇λ,θLCVAEcorr-NS(λ, θ).
Update the parameters λ and θ using this gradient.

end while
Return The parameters λ, θ.

pairwise mart of this loss and subsample edges of the complete graph Kn for the “negative” sample

pairwise part of this loss, then we get the stochastic optimization version for this algorithm.

4.4 Experiments

We test the performance of cvaeind and cvaecorr on different tasks on three datasets, and compare

their performances to the baseline methods.

4.4.1 Experiment settings

Tasks We test our methods on 3 tasks: user matching on a public movie rating dataset, spec-

tral clustering on a synthetic tree-structured dataset and link prediction on a public product rating

dataset. For each dataset, we have a high dimensional feature for each user (or data point) and a

undirected correlation graph between the users (or data points).

Baselines We have two baseline methods:

• The standard Variational Auto-Encoder.

• The GraphSAGE algorithm [82]: a recent method on learning latent embeddings with graph

convolutional networks. It is capable of learning latent embeddings that take the correlation

structures into consideration.
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There are many different variants of GraphSAGE, and we applied one of them (see details later

in this section). It is possible that some other variants or parameter settings of this method may

perform better on our tasks. But our main goal is not to derive a state-of-the-art method for these

tasks. Instead, we aim to show insights on how to improve over standard vaes through learning

with correlated priors.

Evaluations Different tasks may have different evaluation metrics. However, all of our results

are computed based on the (expected) quadratic pairwise distance of the latent distributions on the

evaluation dataset. For vae, cvaeind and cvaecorr, with the evaluation dataset as x1, . . . , xn and the

marginal variational distribution on (zi, z j ) as q(zi, z j ), then the distance between the data points

i and j (i , j) is defined as disi, j = Eq(zi,z j )
[
| |zi − z j | |

2
2

]
. Notice that, for vae and cvaeind, the

distribution q(zi, z j ) = q(zi)q(z j ) is always factorized. This does not hold for the cvaecorr. For

GraphSAGE, since the learned embeddings zi are not stochastic, we use disi, j = | |zi − z j | |
2
2 as the

distance between the data points i and j.

Implementation details For all methods, we set the latent embeddings to have the dimensionality

d = 100.

For vaes, cvaeind and cvaecorr, we apply a two-layer feed-forward neural network for the generative

model pθ (xi |zi) and a two-layer feed-forward neural network for the singleton variational approx-

imations qλ (zi |xi). The model likelihood functions pθ (x |z) are Multinomial distribution (for the

user matching and link prediction experiments) and Bernoulli distribution (for the spectral clus-

tering experiments). The singleton variational approximations qλ (zi |xi) are all diagonal Gaussian

distributions. The singleton prior density function p0(·) is the standard Gaussian distribution.

For cvaes, we set the pairwise prior density function p0(·) = N
*..
,
µ = 02d, Σ =

*..
,

Id τ · Id

τ · Id Id

+//
-

+//
-
for

τ = 0.99. It can be seen that, the singleton prior density function p0(·) and the pairwise prior density

function p0(·, ·) satisfy the constraints in Equation 4.2. For the cvaecorr, we treat qλ (zi, z j |xi, x j )

81



as multivariate Gaussian distributions such that the covariance matrices Cov(zi, zi), Cov(z j, z j )

and Cov(zi, z j ) are all diagonal matrices. Instead of only learning the singleton density function

qλ (·|·), the cvaecorr also learn a two-layer feed-forward neural network that takes the concatenation

(xi, x j ) as input and output the covariance between zi and z j on each of these d dimensions. As a

result, qλ (zi, z j |xi, x j ) can be factorized as a product of d bi-variate Gaussian distributions, whose

marginal distributions on zi and z j are consistent with the singleton variational approximations

qλ (zi |xi) and qλ (z j |x j ), respectively.

For GraphSAGE, we choose to use K = 2 aggregation steps and use the mean aggregator function.

We use Q = 20 negative samples to optimize the loss function.

For all methods, we apply stochastic gradient optimizations with a step size of 10−3. We use the

Adam algorithm [68] to adjust the learning rates. All methods involve with stochastic batches with

singleton terms. For these terms, we use a batch size B1 = 64. For the cvaes, we use a batch size

B2 = 256 for sampling the pairwise terms (both edges and non-edges).

4.4.2 Results

User matching

We evaluate cvae with a bipartite correlation graph. We use theMovieLens 20M dataset [3]. This

is a public movie rating dataset that contains ≈ 138K users and ≈ 27K movies. We binarize the

rating data and only consider whether a user has watched a movie or not, i.e., the feature vector for

each user is a binary bag-of-word vector, and we only keep ratings for movies that have been rated

at least 1000 times. For all the experiments, we did a stochastic train/test split over users with a

90/10 ratio.

For each user ui, we randomly split the movies that this user has watched into two halves and con-

struct two synthetic users uA
i and uB

i . This creates a bipartite graph where we know the synthetic

users which were generated from the same real user should be more related than two random syn-
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Table 4.1: Synthetic user matching test RR

Method Test RR

vae 0.3498 ± 0.0167
cvaeind 0.6608 ± 0.0066
cvaecorr 0.7129 ± 0.0096

thetic users. The goal of the evaluation is that, when given the watch history of a synthetic user uA
i

from a held-out set, we try to identify its dual user uB
i . This can be potentially helpful with identi-

fying close neighbors when using matching to estimate causal effect, which is generally a difficult

task especially in high dimensional feature spaces [85].

We train all the methods on all the synthetic user pairs from the training set. To evaluate, we select

a fixed number of Neval = 1000 pairs of synthetic user from the test sets. For each synthetic user

uA
i (or uB

i ), we find the ranking of uB
i (or uA

i ) among all candidates in the set of all other 2Neval − 1

synthetic users in terms of the latent embedding distance to uA
i (or uB

i ). The latent embedding

distance metrics disi, j for all methods are defined in Section 4.4.1. For cvaecorr, we set the negative

sampling regularization strength γ = 1.

We report the average Reciprocal Rank (RR) of the rankings for all methods in Table 4.1. cvaeind

and cvaecorr strongly outperform the standard vae, which means that the correlation structure helps

in learning useful latent embeddings. Here cvaecorr improves over cvaeind by learning a correlated

variational approximation. We do not compare our methods to the GraphSAGE algorithm for this

task since the graph for this task is just a bipartite matching graph with many connected components

while GraphSAGE works well for graphs where the local neighborhoods can provide substantial

information for the vertices. One thing to notice here is that, even for the standard vae, the perfor-

mance shown in Table 4.1 is still much better than random guesses (since we have ≈ 27Kmovies in

total). However, according to our experiment setting, the sets of movies that each pair (uA
i , u

B
i ) of

synthetic users have watched are almost exclusive to each other. This refreshes our initial discus-

sion at the beginning of this thesis in Chapter 1, that is, the latent representations can potentially
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provide essential information that the raw data cannot directly provide.

Spectral clustering

We perform spectral clustering [86] on a synthetic dataset with a tree-structured latent variable

graphical model. The dataset contains N = 10000 data points x1, . . . , xN ∈ R
D with D = 1000.

Each xi is generated independently from the distribution p(xi |zi) given the ground-truth latent

embeddings z1, . . . , zN ∈ R
d , where the likelihood p(·|·) is element-wise Bernoulli distribution

with the logits come from a two-layer feed-forward neural network that takes the latent embeddings

as inputs.

The latent embeddings z1, . . . , zn are drawn from an tree-structured undirected graphical model.

The probability distribution of this graphical model is of the same form as Equation 4.3, where

the singleton prior density p0(·) is the standard normal and the pairwise prior density is p0(·, ·) =

N
*..
,
µ = 02d, Σ =

*..
,

Id τ · Id

τ · Id Id

+//
-

+//
-
. With the latent embeddings z1, . . . , zN , we generate a binary

cluster label ci ∈ {0, 1} for each data point xi by performing a principle components analysis on the

latent embeddings and set ci = 1 if and only if zi has a coefficient rank at least N
2 among all the N

data points on the first component.

We perform spectral clustering based on the latent embedding distance metrics disi, j defined in Sec-

tion 4.4.1 for all algorithms. Since spectral clustering requires a non-negative symmetric similarity

matrix S ∈ RN×N , we set Si j = exp
(
−disi, j/2

)
. We apply a normal spectral clustering procedure

by computing the eigenvector v ∈ RN corresponding to the second smallest eigenvalue of the nor-

malized Laplacian matrix of S. Then we cluster the data points x1, . . . , xn by clustering the set of

coordinates of v with value larger than the median of all these coordinates as one cluster, and the

rest as the other cluster.

To evaluate clustering, we apply the normalized mutual information score [87], which is in the

range of [0, 1] (larger the better). The scores for all methods are shown in Table 4.2. Here we apply
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Table 4.2: Spectral clustering normalized MI scores

Method MI scores

vae 0.0031 ± 0.0059
GraphSAGE 0.0945 ± 0.0607
cvaeind 0.2821 ± 0.1599
cvaecorr 0.2748 ± 0.0462

negative sampling regularization strength γ = 0.1 for cvaecorr. From Table 4.2, we can see that

cvaeind and cvaecorr strongly outperform both baseline methods. cvaecorr does not significantly

improve over cvaeind potentially due to that we do not have sufficiently many edges to learn a good

correlation function, but it still outperforms the baseline methods.

Link prediction

We perform link prediction on a general undirected graph G = (V, E). In this experiment, we use

the Epinions dataset1 [88], which is a public product rating dataset that contains ≈ 49K users and

≈ 140K products. We again binarize the rating data and create a bag-of-words binary feature vector

for each user. We only keep products that have been rated at least 100 times and only consider users

who have rated these products at least once.

We construct a correlation graph G = (V, E). The Epinions dataset has a set of single-directional

“trust” statements between the users, i.e., a directed graph G′ = (V ′, E′) among all users. Since

we need undirected correlation structures, we take all vertices from G′ (i.e., set V = V ′) and set an

edge (vi, v j ) ∈ E if both (v′i, v
′
j ) and (v′j, v

′
i ) are in E′.

To split the train/test dataset for the link prediction task, for each vertex vi ∈ V , we hold out

max
(
1,

⌈
1
20 · degree(vi)

⌉)
edges on vi as the testing edge set Etest, and put all edges that are not

selected into the training edge set Etrain. We train all methods on the product ratings and the corre-

lation graph Gtrain = (V, Etrain).
1http://www.trustlet.org/downloaded_epinions.html

85

http://www.trustlet.org/downloaded_epinions.html


Table 4.3: Link prediction test normalized CRR

Method Test NCRR

vae 0.0052 ± 0.0007
GraphSAGE 0.0115 ± 0.0025
cvaeind 0.0160 ± 0.0004
cvaecorr 0.0171 ± 0.0009

For evaluation, we first compute the latent embedding distance disi, j that was defined in Sec-

tion 4.4.1 for 1 ≤ i , j ≤ N . Then for each user ui, we compute the Cumulative Reciprocal Rank

NCRRi of the ratings of ui’s testing edges, among all possible connections except for the edges

in the training edge set, in terms of the latent embedding distance metrics. Formally, this value

equals

CRRi =
∑

(vi,v j )∈Etest

1
|{k : (vi, vk ) < Etrain, disi,k ≤ disi, j }|

.

Larger CRRi indicates better ability to predict held-out links. We further normalize the CRR values

to within the range of [0, 1] and show the average metrics among all users in Table 4.3. Evidently,

cvaeind and cvaecorr again strongly outperform the baseline methods. Here we apply a large regu-

larization value of γ = 1000 for the cvaecorr, which can potentially help when the input graph has

a complex structure (unlike the previous two experiments) yet does not have a dense connection.

This choice of γ provides cvaecorr enough regularization for learning the correlation and helps it

improve over cvaeind.

4.5 Related Work

[89] incorporated graph structure to metric learning. The major difference with cvaes is that the

metric learned from [89] is inherently linear while cvaes are capable of capturing more complex

non-linear relations in the feature space.

There has been some previous work on handling optimizations with intractability or inconsistency

over general graphs by leveraging the problems on the spanning trees. In graphical model inference,
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the tree-reweighed sum-product algorithm [90] and the tree-reweighed Bethe variational princi-

ple [91] extend the ordinary Bethe variational principle [92] over a convex combination of tree-

structured entropies.

Moreover, there has been some recent work on incorporating structures in variational inference and

vaes. [93] proposed structured stochastic variational inference to improve over the naive mean-

field family. [94] proposed structured vaes which enable the prior to take a more complex form

(e.g., a Gaussian mixture model, or a hidden Markov model). [95] extend the work of [94] to vari-

ational message passing, which is applied to analyze time-seres data in [96]. [97] proposed output-

interpretable vaes which combine a structured vae comprised of group-specific generators with

a sparsity-inducing prior. The recent work [98] extends the standard vae to handle tree-structured

latent variables. Most of these works are designed to model the structures between dimensions

within each data point, while cvaes considers general graph structures between data points. There

are also ongoing efforts on improving variational inference by designing tighter lower bound [99]

or employing more expressive posterior approximation [100, 101].

Another related line of work are the recent advances in convolutional networks for graphs [80, 102,

103, 104, 81] and the extensions, e.g., our baseline method GraphSAGE [82].

4.6 Summary

We introduced cvaeind and cvaecorr to account for correlations between data points that are known

a priori. They extend the standard vaes by applying a correlated prior on the latent variables.

Furthermore, cvaecorr adopts a correlated variational density function to achieve a better variational

approximation. These methods successfully outperform the baseline methods on several machine

learning tasks using the latent variable distance metrics.

However, there are several limitations of the proposed uniform mixture prior and objective. In the

following chapter, we will discuss on some potential improvements for cvaes on expressiveness,
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effectiveness and efficiency. We will provide an extension of our cvaes, which can improve upon

these aspects.
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Chapter 5: Adaptive Correlated Variational Auto-Encoders

As we mentioned, vaes have been widely applied for learning low dimensional latent represen-

tations of high dimensional data. When the correlation structure among data points is available,

our cvaes employ a structured mixture model as prior and a structured variational posterior for

each mixture component to enforce that the learned latent representations follow the same corre-

lation structure. By considering the correlations between data points, cvaes have shown success

in various tasks, compared to the standard vaes. However, as we demonstrate in this chapter,

such a choice cannot guarantee that cvaes capture all the correlations. Furthermore, it prevents us

from obtaining a tractable joint and marginal variational distribution. To address these issues, we

propose Adaptive Correlated Variational Auto-Encoders (acvaes), which apply an adaptive prior

distribution that can be adjusted during training and can learn a tractable joint variational distri-

bution. Its tractable form also enables further refinement with belief propagation. Experimental

results on link prediction and hierarchical clustering show that acvaes significantly outperform

cvaes among other benchmarks.

This new method extends the cvae. It can capture the correlations between data points in a more

expressive, effective and efficient way.

5.1 Motivation

As introduced before, vaes assume the data points are i.i.d. generated and treat the model and

posterior approximations as factorized over data points. However, if we know a priori that there is

structured correlation between data points, e.g., for graph-structured datasets [61, 80, 82], corre-
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lated variational approximations can help. The cvaes (proposed in Chapter 4) takes this kind of

correlation structure as auxiliary information to guide the variational approximations for the latent

embeddings by constructing a prior from a uniform mixture of tractable distributions on maximal

acyclic subgraphs of the given undirected correlation graph.

However, there are several limitations that potentially prevent cvaes from learning better corre-

lated latent embeddings. First, it is possible that some of the maximal acyclic subgraphs of the

given graph can, by themselves, well-capture the correlation between data points while others may

poorly capture the correlation. As a result, taking a uniform average may yield a sub-optimal re-

sult. Second, while the prior in cvaes is over multiple subgraphs, each subgraph has a unique

joint variational distribution, and there is no single global joint variational distribution over the

latent variables. cvaes do learn pairwise variational approximation functions, but they are not

exact pairwise marginal variational distributions on the latent variables. As a result, applying these

variational approximation functions to some downstream tasks, e.g. link prediction, may result in

poor performances due to the inexact approximations. In addition, cvaes require a preprocessing

step that takes an amount of time cubic in the number of vertices, which limits its applicability to

smaller datasets.

To address these issues, we propose Adaptive Correlated Variational Auto-Encoders (acvaes),

which chooses a non-uniform average over tractable distributions over the maximal acyclic sub-

graphs as a prior. This prior is adaptive, and will be adjusted during optimization. To learn the

mixture weights, we provide two options, empirical Bayes or saddle-point optimization, both of

which maximize the objective with respect to the model and variational parameters. The differ-

ence is that, while empirical Bayes also maximizes the objective with respect to the prior structure,

saddle-point optimization seeks to optimize the objective under the worst prior for more robust in-

ference. In both cases, the non-uniform average converges to a tractable prior on a single graph,

which ensures that we obtain a holistic tractable joint variational distribution, meaning that ac-

vaes are more expressive compared to cvaes. With this variational distribution, we obtain exact
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marginal evaluation using exact inference algorithms, e.g., belief propagation. Moreover, acvaes

do not require the cubic time preprocessing step embedded in cvaes, and they are generally faster

for evaluation in practice, meaning that the new method is more efficient. We demonstrate the su-

perior empirical performance of acvaes for link prediction and hierarchical clustering on various

real datasets, showing the effectiveness of this new method.

5.2 Adaptive Correlated Vaes

5.2.1 A non-uniform mixture prior

As motivated in Section 5.1, rather than using a uniform average, we instead employ a categorical

distribution π ∈ 4 |AG |−1 representing the normalized weights over all maximal acyclic subgraphs

G′ ∈ AG ofG. In the elbo in Equation 4.8, we can replace the uniform average in the prior pcorrg0 (z)

in Equation 4.7 with the non-uniform distribution π, which gives us the following elbo:

EG′∼π

[
EqG′

λ
(z |x)[log pθ (x |z)] − KL(qG′

λ (z |x) | |pG′
0 (z))

]

≤ EG′∼π

[
EpG′0 (z)[log pθ (x |z)]

]
:= Epπ0 (z)[log pθ (x |z)]

≤ log pπ,θ (x).

(5.1)

Here we define the non-uniform prior pπ0 (z) = EG′∼π[pG′
0 (z)]. From the above inequality we can see

that, using the non-uniform prior pπ0 , we are still able to obtain a lower bound of the log-likelihood

log pπ,θ (x), which is now also parametrized by the weight parameter π. If we optimize π together

with all the other parameters, the above loss function implies that we are optimizingwith an adaptive

prior. Hence, we call the above model Adaptive Correlated Variational Auto-Encoders (acvaes).

If we replace π with a uniform distribution over all subgraphs in AG, we recover cvaes.

Plugging qG′
λ

(z |x) and pG′
0 (z) from Section 4.3 into Equation 5.1, yields the following elbo for
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acvaes:

LACVAE(π, λ, θ) :=
n∑

i=1

(
Eqλ (zi |xi )

[
log pθ (xi |zi)

]
− KL(qλ (zi |xi) | |p0(zi))

)
−

∑
(vi,v j )∈E

wMAS
G,π,(vi,v j ) ·

(
KL(qλ (zi, z j |xi, x j ) | |p0(zi, z j )) − KL(qλ (zi |xi) | |p0(zi)) − KL(qλ (z j |x j ) | |p0(z j ))

)
.

(5.2)

Similar to cvaes, we have edge weights wMAS
G,π,(vi,v j )

representing the expected appearance proba-

bility for edge (vi, v j ) over the set of maximal acyclic subgraphs AG given the distribution π. In

the following definition, we abusively write π (G′) as the probability of G′ being sampled from

AG.

Definition 3 (Non-uniform maximal acyclic subgraph edge weight). For an undirected graph G =

(V, E), an edge e ∈ E and a distribution π on the set AG of maximal acyclic subgraphs of G,

define wMAS
G,π,e to be the expected appearance probability of the edge e in a random maximal acyclic

subgraph G′ = (V, E′) ∼ π, i.e., wMAS
G,π,e :=

∑
G′∈AG,e∈E ′

π (G′).

Similar to cvaes, we can apply negative sampling (equivalent to applying a complete graph as a

weak prior) to acvaes as regularization, which helps prevent overfitting on the learned pairwise

variational approximation (γ > 0 is the regularization strength):

LACVAE-NS(π, λ, θ) :=LACVAE(π, λ, θ) − γ ·
( n∑

i=1

KL(qλ (zi |xi) | |p0(zi))

+
2
n

∑
1≤i< j≤n

Eqλ (zi,z j |xi,x j ) log
qλ (zi, z j |xi, x j )

qλ (zi |xi)qλ (z j |x j )

)
.

(5.3)

In what follows, we use LACVAE to refer to LACVAE-NS for notational brevity.

5.2.2 Learning the non-uniform mixture

With the loss function in Equation 5.3, an intuitive direction for estimating π would be to perform

empirical Bayes [105] and directly maximize LACVAE(π, λ, θ) with respect to π, λ and θ, as in
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Equation 5.4:

max
λ,θ

max
π
LACVAE(π, λ, θ). (5.4)

Alternatively, we can consider a minimax saddle-point optimization, which may lead to more robust

inference:

max
λ,θ

min
π
LACVAE(π, λ, θ). (5.5)

As Equation 5.5 indicates, we are optimizing the elbo under the prior that produces the lowest

lower bound. The intuition is that if we can even optimize the worst lower bound well, the varia-

tional distribution and the model distribution we learn would be robust and generalize better. This

is similar to the least favorable prior, under which a Bayes estimator can achieve minimax risk

[106].

Empirical Bayes (Equation 5.4) aims to find the best variational approximation, while the saddle-

point option (Equation 5.5) aims for robust inference. At first glance, the empirical Bayes option

seems more reasonable since it gives us the tightest lower bound. However, a better elbo does

not necessarily translate into better predictive performance in the downstream task. In Section 5.3,

we compare these two optimization options on various datasets, and discuss the pros and cons of

each.

An important observation is that, no matter which option is applied, for fixed λ and θ, the loss

function LACVAE is linear w.r.t. the weight parameter π. Therefore, if optima for LACVAE(π, λ, θ)

exist, then at least one optimum will have a π∗ which puts all of its probability mass on a single

subgraph G′∗.

Proposition 3 (Optimum for π). If the optimization in Equation 5.4 or Equation 5.5 has global

optima, then at least one optimum (π∗, λ∗, θ∗) will have a π∗ that places all of its probability mass

on a single maximal acyclic subgraph G′∗ ∈ AG.

From this proposition, we know both Equation 5.4 and Equation 5.5 return a single subgraph G′∗,

which drastically simplifies the structured prior. At this optimum, the loss function becomes the
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elbo on a single acyclic subgraph G′∗, with qG′∗
λ∗

(z |x) as the variational distribution. Therefore,

we have a holistic variational approximation, overcoming a limitations of cvaes.

5.2.3 Learning with alternating updates

Direct optimization of either Equation 5.4 or Equation 5.5 is non-trivial. Following similar op-

timization for a spanning tree structured upper bound for the log-partition function of undirected

graphical models [107, 91], we perform an alternating optimization procedure on the parameters

λ, θ and π. Details are shown in Algorithm 6.

Updates for π When the parameters λ and θ are fixed, the loss function LACVAE(π, λ, θ) is linear

in π. However, we cannot directly optimize over π ∈ 4 |AG |−1, as it may contain exponentially many

dimensions. We can instead update the edge weights wMAS
G,π,(vi,v j )

as the loss function is also linear in

them.

By definition, we know that each maximal acyclic subgraph G′ of G is a forest, consisting of one

spanning tree for each connected component of G. Therefore, the domain for the edge weights⋃
e∈E
{wMAS

G,π,e} is the projection of the Cartesian product of the spanning tree polytopes for all connected

components of G [107, 91] to the edge weight space. This Cartesian product on the polytopes

is convex and its boundary is determined by potentially exponentially many linear inequalities.

Despite that, directly maximizing (or minimizing) LACVAE(π, λ, θ) with respect to these weights⋃
e∈E
{wMAS

G,π,e} is in fact tractable: the optimum for Equation 5.4 or Equation 5.5 is obtained at π̂ that

has all the mass on a single maximal acyclic subgraph Ĝ′. This means the optimum for these edges

weights can be obtained from a single subgraph Ĝ′. By re-arranging terms in Equation 5.3 with

respect to
⋃

e∈E
{wMAS

G,π,e}, it is not difficult to see that Ĝ′ should have the smallest (for empirical Bayes)

or largest (for saddle-point) “edge mass” sum over all maximal acyclic subgraphs AG, where the
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“edge mass” m(vi,v j ) of edge e = (vi, v j ) is:

m(vi,v j ) := KL(qλ (zi, z j |xi, x j ) | |p0(zi, z j )) − KL(qλ (zi |xi) | |p0(zi)) − KL(qλ (z j |x j ) | |p0(z j )),

(5.6)

which means Ĝ′ is the combination of the minimum (for empirical Bayes) or maximum (for saddle-

point) spanning trees of all connected components of the graph with m(vi,v j ) as the weights.

Once we identify Ĝ′, the optimal weights ŵMAS
G,π̂,e are either 1 (if the edge e is selected) or 0 (other-

wise). Instead of directly updating the weights to the optimal values, we perform a soft update with

step size αt at iteration t, similar to [107, 91]:

wMASt+1

G,π,e ← (1 − αt )wMASt
G,π,e + α

tŵMAS
G,π̂,e. (5.7)

This soft update helps prevent the algorithm from becoming trapped in bad local optima early in the

optimization procedure. The step size αt can be either a constant or dynamically adjusted during

optimization. We set it to be a constant in our experiments.

One limitation of cvaes mentioned in Section 5.1 is the O( |V |3) preprocessing step to compute

all the edge weights wMAS
G,e . We alleviate this bottleneck in acvaes, as it only takes a number of

O(min(|V |2, |E | log |V |)) operations per initialization (details in Section 5.3.1) and per update on

the weights, which ensures that acvaes can scale to datasets with many more vertices than would

be feasible with cvaes.

Updates For λ And θ When π is fixed, λ and θ can be updated by taking a stochastic gradient

step following ∇λ,θLACVAE(π, λ, θ) with reparameterization gradients [4, 5], as done in standard

vaes.

If empirical Bayes (Equation 5.4) is applied, Algorithm 6 will converge with properly selected

learning rates. On the other hand, it is difficult to make any general statement about the convergence

for saddle-point optimization (Equation 5.5) since the objective is generally non-concave in (λ, θ).
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Algorithm 6 acvaes learning
Input: data x1, . . . , xn ∈ R

D, undirected graph G = (V = {v1, . . . , vn}, E), parameter γ > 0.
Initialize the parameters λ, θ. Initialize the weights wMAS

G,π,e for each e ∈ E and the step size α0.
while not converged do
Optimize the parameters (λ, θ) using the gradients ∇λ,θLACVAE(π, λ, θ).
Compute the mass m(vi,v j ) for each edge e ∈ E with Equation 5.6.
Compute a minimum (if applying the empirical Bayes option in Equation 5.4) or maximum
(if applying the saddle-point option in Equation 5.5) spanning tree of the graph for each G’s
connected components, with the masses m(vi,v j ) as the edge weights. Then update the weights
wMAS

G,π,e for each e ∈ E according to Equation 5.7.
(Optional) Update the step size α in Equation 5.7.

end while
Return: The parameters λ, θ, the weights wMAS

G,π,e for each e ∈ E.

However, as we show in Section 5.3, empirically we find that Algorithm 6 is stable for both options

and performs well on multiple real datasets.

5.2.4 Exact marginal posterior approximation with belief propagation

From Proposition 3, we know the weights wMAS
G,π,e returned from Algorithm 6 are from a single

maximal acyclic subgraph G′ ∈ AG. Consequently, we have a holistic variational approximation

qG′
λ

(z |x). However, by itself this variational approximation might not be necessarily better at the

downstream predictive tasks than cvaes since it can only make use of the structure from one max-

imal acyclic subgraph G′.

On the plus side, the acyclic structure ofG′makes it possible to compute the exact pairwisemarginal

variational distribution between any pair of vertices via a belief-propagation-style [108] message-

passing algorithm, which is not possible for cvaes, as it does not have a single joint variational

distribution on z. This can be crucial in tasks in which we need an accurate pairwise marginal

approximation, e.g., link prediction and hierarchical clustering. Having a global joint variational

distribution is a big advantage of acvaes, as it provides us a way to capture the correlations more

expressively.

Consider any vi , v j ∈ V that are in the same connected component of G′. Since G′ is acyclic there
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is a unique path from vi to v j . Let us denote it as vi = ui, j
0 → ui, j

1 → . . . → ui, j
ki, j
= v j . The exact

pairwise marginal rλ (zi, z j |xi, x j ) equals

∫ ki, j−1∏
l=0

qλ (zui, j
l
, zui, j

l+1
|xui, j

l
, xui, j

l+1
)

ki, j−1∏
l=1

d zui, j
l

qλ (zui, j
l
|xui, j

l
)
.

The above pairwise marginal densities can be computed for all pairs of (vi, v j ) by doing a depth- or

breadth-first search starting from each vi ∈ V after we obtain the variational approximation qG′
λ

(z |x)

from Algorithm 6, which has a total complexity of O(|V |2). Note that the time complexity for

evaluating every pairwise marginal in cvaes is also O(|V |2). But the belief propagation refinement

computation is usuallymore efficient in practice, since it involvesmuch less neural network function

evaluations, which dominate the runtime.

5.3 Experiments

In this section, we evaluate acvaes on the task of link prediction and hierarchical clustering. We

show that our method significantly outperforms various baselines. We attempt to identify the con-

tributing factors for the gain, answering the following questions:

Q1: Uniform mixture (cvae) versus non-uniform mixture (acvae), which one is better?

Q2: How important is the belief propagation refinement for acvae?

Q3: Empirical Bayes versus saddle-point, which one performs better? Can we select purely based

on elbo?

Q4: Does the learned single graph capture more information than singleton representations? What

do the learned latent embeddings look like?

Q5: Can acvae scale to datasets that cvae cannot?
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5.3.1 Experiment settings

Before presenting our experimental results, we describe the tasks, datasets, baselines, metrics for

evaluation and the implementation details.

Tasks

For each of the tasks, we are given a correlation graph G = (V = {v1, . . . , vn}, E) and a feature

vector xi ∈ R
N for each i ∈ {1, . . . , n}.

For the link prediction task, we keep consistent with the setting as in Section 4.4.1. For the hierar-

chical clustering experiments, we apply the complete-linkage algorithm [109], which is relatively

more stable among common hierarchical clustering algorithms. We cluster all data points into

K = 5 clusters.

Datasets

We evaluate acvaes on the following 3 datasets. All of 3 datasets are tested for link prediction and

in addition the LibraryThing dataset is tested for the hierarchical clustering experiment:

• Epinions1 [88], a public product rating dataset that contains ≈ 49K users and ≈ 140K prod-

ucts.

For this dataset, we follow the same preprocessing scheme as in Section 4.4.1. After prepro-

cessing, the dataset contains ≈ 16K users.

• Citation2 [110], a High-energy physics theory citation network dataset, which has a citation

graph with ≈ 28K papers and ≈ 353K citation edges.

This dataset includes the abstract and the citation information for high-energy physic theory
1http://www.trustlet.org/downloaded_epinions.html
2http://snap.stanford.edu/data/cit-HepTh.html
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papers on arXiv.org from 1992 to 2003. We work on all papers from 1998 in this dataset

(in total ≈ 2.8K papers). We treat all citation edges as undirected edges and build the graph

G = (V, E). We only retain papers that cite or are cited by at least one of the other papers

within this subset (for the year 1998) of the dataset. We compute the TF-IDF (with stop

words removed) for the abstract of each paper as the raw feature vectors, retaining only the

coordinates corresponding to the top 50 words. Then we binarize the raw feature vectors that

considers only the non-zero entries that are above the median of all of the non-zero entries and

use these binarized vectors as the features. After preprocessing, the dataset contains ≈ 2K

users (for the results in Tables 5.1, 5.3 and 5.4 and Figure 5.1)

We also perform an experiment on a larger version of this dataset (results in Table 5.5), which

contains ≈ 26K users.

• LibraryThing3 [111], a public book review data set that contains ≈ 73K users and ≈ 337K

items. After preprocessing, the dataset contains ≈ 6K users.

For the link prediction experiment, We follow the same preprocessing scheme as for the Epin-

ions dataset, except that we only retain the items that have been rated for at least 200 times

(since this dataset is larger than the Epinions dataset).

For the clustering experiment, we follow the same scheme to get a graph G = (V, E), but we

do not need to perform a train/test sets split (since clustering is unsupervised). Due to that the

LibraryThing dataset does not contain cluster labels for users, we generate the ground-truth

cluster labels for the users by learning a standard vae on the feature vectors x, and perform

the complete-linkage algorithm [109] to cluster the data points into K = 5 clusters. This

standard vae has the same hidden layer size with the one used in learning the models, but

has a smaller latent representation (we use 10) to avoid generating non-reasonable labels due

to overfitting. This process helps us generate a semi-synthetic dataset.
3https://cseweb.ucsd.edu/~jmcauley/datasets.html#social_data
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Baselines

We compare acvae with 4 baseline methods:

• vae [4]: the standard Variational Auto-Encoder, with no information about the correlations.

• GraphSAGE [82]: a recent method for learning latent embeddings that takes the correlation

structure into account with graph convolutional neural networks.

• cvaeind and cvaecorr (Chapter 4): Two variations of cvaes with factorized and structured

variational approximations, respectively.

Again, there are many different variants of GraphSAGE, and we applied one of them (see more

details later in this section). We aim to show insights on how to improve over standard vaes and

cvaes through learning adaptive correlated priors.

Metrics

For all methods, we first learn latent embeddings z1, . . . , zn, which are deterministic for Graph-

SAGE and stochastic for the vae-based methods. Then we compute the pairwise distance disi, j

between each pair (zi, z j ) of the latent embeddings as ‖ zi − z j ‖
2
2 . Recall that the embeddings are

stochastic for the vae-based methods, hence we use E[‖ zi − z j ‖
2
2] as the pairwise distance. The

expectation is taken over the variational pairwise marginal q(zi, z j |xi, x j ) or the refined pairwise

marginal r (zi, z j |xi, x j ) if we perform belief propagation (Section 5.2.4). We can see that the met-

rics for the baseline methods are consistent with that in Section 4.4.1.

For the link prediction experiments, same as in Section 4.4.1, we report the normalized CRR

(NCRR) for each user ui as the metric. For hierarchical clustering, we again apply the normal-

ized mutual-information scores [87] as the metric.
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Implementation details

We run 3 runs for each methods for the Epinions experiments, 1 run for the larger scale experiments

on Citation (for the results in Table 5.5), and 5 runs for the other experiments. This is since the

Epinions experiments and the larger Citation experiments work more stable empirically.

We mostly follow the experiment settings as in Section 4.4.1 in Chapter 4, but there are slight

differences. We summarize all the details here for clarity.

For vae, cvae and acvae, we apply again a two-layer feed-forward neural inference network

for the singleton variational distribution qλ (zi |xi) and a two-layer feed-forward neural generative

network for the model distribution pθ (x |z). qλ (zi |xi) is a diagonal Gaussian distribution with the

mean and standard deviation outputted from the inference network and pθ (x |z) is a multinomial

distribution with the logits outputted from the generative networks. The latent dimensionality d is

100 for the Epinions experiments and the LibraryThing clustering, and 10 for the other two link

prediction experiments. The hidden layer dimensionality h1 is 300 for the Epinions experiments

and 30 for the other experiments.

For GraphSAGE, again we choose to use K = 2 aggregation, the mean aggregator, and Q = 20

negative samples to optimize the loss function. The hidden layer size and latent dimensionality we

apply to GraphSAGE are the same with that of the standard vae.

For cvae and acvae, we set the pairwise marginal prior density function to be

p0(·) = N
*..
,
µ = 02d, Σ =

*..
,

Id τ · Id

τ · Id Id

+//
-

+//
-
,

where τ = 0.99. For cvaecorr and acvae, again we model the pairwise variational approxima-

tions q(zi, z j |xi, x j ) to be a multi-variate Gaussian distribution that can be factorized across the

d dimensions as the product of d independent bi-variate Gaussian distributions. The correlation

coefficients of these bi-variate Gaussian distributions are computed from two-layer feed-forward
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neural networks that taking xi and x j as inputs. These two-layer neural networks have latent di-

mensionality h2 to be 1000 for the Epinions experiments and 100 for the other experiments.

For acvae, we set the step size parameter (in Equation 5.7) αt = 0.1 to be a constant. We train

the parameters using alternating updates as in Algorithm 6. We switch between updates on the

parameters λ, θ for an epoch of the edges in E, and a single update on the weights wMAS
G,π,e accord-

ing to Equation 5.7. For the random initialization on the tree weights wMAS
G,π,e, we just assign random

weights to the graph G = (V, E). Then we use Kruskal’s algorithm to compute the maximal acyclic

subgraph G̃ = (V, Ẽ) according to these random weights, and set wMAS
G,π,e = I[e ∈ Ẽ]. It is straight-

forward to see that this is a valid initialization for the weights wMAS
G,π,e since these weights relate to

the distribution π̃ that has all of its mass on a single subgraph G̃.

For acvae, after running the algorithm for some iterations, we use Kruskal’s algorithm to compute

the maximal acyclic subgraph Ĝ = (V, Ê) on the converged edge weights ŵMAS
G,π,e to find the learned

single graph Ĝ′. This heuristic helps us find the converged maximal acyclic subgraph if we want to

perform an early stopping (since that we evaluate our metrics for every fixed number of iterations)

or if there is a numerical issue.

For all methods, we again apply stochastic gradient optimizations and use Adam [68] to adjust the

learning rates. We set the step size to be 10−3. For all methods, we use a batch size B1 = 64 for

sampling the vertices. For cvae and acvae, we use a batch size B2 = 256 for sampling the edges

and non-edges.

5.3.2 Results

We show the heldout NCRR values for link predictions and the normalized MI scores in Table 5.1

and Table 5.2, respectively. acvaeEB and acvaeSP stand for empirical Bayes (Equation 5.4) and

saddle-point optimization (Equation 5.5), respectively. The rows with BP mean we perform belief-

propagation refinement (Section 5.2.4). We dissect the results as follows.
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Advantages of the non-uniform mixture

As motivated in Section 5.1, acvaes improve over the limitations of cvaes by providing a holistic

variational approximation at the end of the empirical Bayes or saddle-point optimization, which

further enables applying belief propagation for more accurate marginal approximation.

At first glance, the performance results in Table 5.1 for the single joint distribution (the rows ac-

vaeEB and acvaeSP) is no better than that of cvaecorr, which applies a uniform mixture. We

speculate in Section 5.2.4 that by itself this holistic variational approximation might not necessar-

ily be better at the downstream predictive tasks since it can only make use of the structure from

one maximal acyclic subgraph, even though it sometimes has a higher elbo (Table 5.4, we report

elbo and NCRR for 4 choices of the regularization strength γ). However, we can observe a huge

performance boost after applying the belief propagation refinement, which outperforms the base-

line methods by a wide margin for link prediction and performs comparably better for hierarchical

clustering.4

Recall that the prerequisite for applying the belief propagation is to have a variational distribution

on a single acyclic subgraph (i.e., we cannot perform BP with cvaes). This answers two questions

we sought to answer: First, the non-uniform mixture is not necessarily better than the uniform

mixture at the downstream task even when it has a higher elbo, but it opens up the possibility to

perform exact inference; Second, variational approximations has a lot of room for improvement

when compared with exact inference (i.e., belief propagation) on an acyclic graph.

Empirical Bayes versus saddle-point

As shown in Tables 5.1 and 5.2, both the empirical Bayes and the saddle-point optimization per-

form similarly on most tasks, though the saddle-point option is often more stable (especially on the
4vae does not count as a baseline method for the clustering experiment since it is applied as an oracle in the prepro-

cessing steps. We omit the results for acvaes without belief propagation for the hierarchical clustering experiments
since empirically we found their performance are much worse compared to the case of using belief propagation refine-
ment.
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Table 5.1: Link prediction normalized CRR

Method Epinions Citation LibraryThing

vae 0.005 ± 0.001 0.018 ± 0.004 0.006 ± 0.000
GraphSAGE 0.012 ± 0.003 0.020 ± 0.002 0.004 ± 0.001
cvaeind 0.016 ± 0.000 0.040 ± 0.003 0.012 ± 0.001
cvaecorr 0.017 ± 0.001 0.058 ± 0.002 0.020 ± 0.001

acvaeEB 0.013 ± 0.000 0.049 ± 0.001 0.018 ± 0.001
acvaeSP 0.010 ± 0.003 0.039 ± 0.002 0.018 ± 0.001
acvaeEB+BP 0.034 ± 0.003 0.126 ± 0.005 0.032 ± 0.002
acvaeSP+BP 0.035 ± 0.001 0.123 ± 0.007 0.032 ± 0.001

Table 5.2: Hieracrhical clustering normalized MI scores

Method MI Scores

GraphSAGE 0.002 ± 0.000
cvaeind 0.010 ± 0.004
cvaecorr 0.002 ± 0.000
acvaeEB+BP 0.012 ± 0.003
acvaeSP+BP 0.011 ± 0.002

clustering task). This is reasonable since the saddle-point objective optimizes the most conservative

lower bound.

Moreover, we show that we should not select between these two methods purely based on elbo:

By definition, the saddle-point optimization will yield an elbo lower than empirical Bayes. In

Table 5.3, we report elbo as well as NCRR (again for 4 choices of the regularization strength γ) on

Epinions and Citations with belief propagation refinement. We can see clearly that a better elbo

does not necessarily correlate with a better NCRR. In general, both methods have their advantages.

On simpler datasets, e.g., Citation, on which all methods perform well, empirical Bayes is preferred

since it can easily capture the best correlation structure. On the other hand, with more complex

datasets/difficult tasks, saddle-point optimization tends to provide more robust inference and stable

results.
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Table 5.3: elbo | average NCRR comparisons between ACVAE (with BP) on Epinions and Citation

Epinions acvaeEB+BP acvaeSP+BP

γ = 0.001 -31.8 | 0.034 -31.9 | 0.031
γ = 0.1 -36.4 | 0.031 -38.3 | 0.035
γ = 10. -61.3 | 0.028 -119 | 0.034
γ = 1000. -674 | 0.028 -1535 | 0.037

Citation acvaeEB+BP acvaeSP+BP

γ = 0.001 -7.48 | 0.126 -7.48 | 0.124
γ = 0.1 -7.91 | 0.113 -8.59 | 0.121
γ = 10. -24.4 | 0.112 -49.2 | 0.120
γ = 1000. -184 | 0.099 -288 | 0.054

Table 5.4: elbo | average NCRR comparisons between ACVAE (without BP) and CVAE on Cita-
tion

Citation acvaeEB acvaeSP cvae
γ = 0.001 -7.47 | 0.012 -7.48 | 0.010 -7.48 | 0.011
γ = 0.1 -7.88 | 0.031 -8.51 | 0.025 -8.49 | 0.023
γ = 10. -23.8 | 0.043 -47.9 | 0.037 -42.3 | 0.042
γ = 1000. -183 | 0.049 -286 | 0.039 -267 | 0.058

Learned graph structures

In Figure 5.1, we visualize part of the largest connected component of the maximal acyclic subgraph

Ĝ′ = (V, Ê′) that acvaes learn for the variational distribution on the Citation dataset with both

empirical Bayes and saddle-point optimization (colors for better clarity only). The coordinates are

t-SNE embeddings [112] for the variational approximation mean of the latent variables (after some

processing for better visualizations). The edge widths are proportional to the strength of the learned

correlations. We can see some of the learned embeddings are not necessarily close to each other

even when they have high correlations. This indicates that the learned Ĝ′ provides some additional

information that singleton marginals cannot provide.
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(a) Empirical Bayes (b) Saddle-point

Figure 5.1: Embeddings of the learned maximal acyclic subgraphs Ĝ′

Scalability to large datasets

To demonstrate the scalability of acvae compared to cvae, we perform an experiment on a larger

version of the Citation dataset with > 12 times more vertices, which cvae cannot easily scale to

due to the cubic time initialization step and the quadratic pairwise marginal evaluations.

We compare the performance of acvae plus the belief propagation refinement on both the em-

pirical Bayes and the saddle-point schemes with the other two baseline methods (vae and Graph-

SAGE). As shown in Table 5.5, both schemes of acvae can significantly outperform the baseline

methods.

Table 5.5: NCRR on the larger Citation dataset

Method NCRR

vae 0.002
GraphSAGE 0.002
acvaeEB+BP 0.076
acvaeSP+BP 0.073
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5.4 Related work

This work extends cvaes with the idea of learning a non-uniform average loss over some tractable

loss functions on maximal acyclic subgraphs of the given graph. This is similar to the idea of

obtaining a tighter upper bound on the log-partition function for an undirected graphical model

by minimizing over a convex combination of spanning trees of the given graph [91]. To optimize

the parameters, [91] also apply alternating updates on the parameters and the distributions over the

spanning tress, similar to the approach in acvae learning. Alternating parameter updates are useful

for many other cases. For example, Alternating Least Squares for matrix factorization [113] and Al-

ternating DirectionMethod ofMultipliers (ADMM) for convex optimization [114, 115, 116].

Some recent work also focuses on incorporating correlation structures over latent variables. An-

other line of related work appears in graph convolutional networks and their extensions. These

work have been mentioned in the related work section Section 4.5 of Chapter 4. We omit them

here.

5.5 Summary

In this chapter, we introduced the acvae, which learns a joint variational distribution on the latent

embeddings of input data via optimizing a loss function that is a non-uniform average over some

tractable correlated elbos. To learn the mixture weights, we provide two different options, and

compare them on various datasets and tasks. The learned joint variational distribution can be used

to perform efficient evaluation using belief propagation. Experiment results show that acvae out-

performs existing methods for link prediction and hierarchical clustering on various datasets. This

algorithm extends the cvae (proposed in Chapter 4) to better capturing correlations in a widely-

applied unsupervised representation learning algorithm (the vae).
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Conclusion

In this thesis, we studied how to utilize different kinds of data correlation information to

improve over some unsupervised representation learning algorithms. Through the three cases we

focused on, we analyzed how these correlation information can help, in the following aspects:

Smart optimization initialization In Chapter 2, for the multi-way matching problem, we ap-

ply a kind of correlation scores for measuring correlations between data points and initialize the

permutation matrices with a greedy heuristic on these scores.

Efficient inference with pathological objectives In Chapter 3, by scaling the gradient with the

inverse of the variational predictive Fisher information matrix, which captures the correlations in

the observations, our vpng can perform efficient optimization in variational inference even when

pathological curvature exists in the objective.

Explicit correlation learning In Chapters 4 and 5, by considering the known side-information

on the correlation structure of the data points, our cvae and acvae can explicitly learn correlated

latent representations that perform well in many tasks (e.g. link prediction).

We study the improvements over existing unsupervised representation learning algorithms

through the above three cases. The results from these cases have shown the success of the proposed

ideas in utilizing various types of correlation information, both theoretically and empirically.
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Future research directions

The methods we studied may seem to be designed a little too specific for the corresponding

scenarios. In fact, they are potentially universal. It is possible that the ideas behind these methods

can inspire new ideas for other related unsupervised representation learning algorithms. In addition,

these methods can perhaps be extended to more advanced algorithmic settings or be applied in more

applications. We briefly propose several possible future research directions as follows.

Inspirations for other algorithms There are several possibilities that we can borrow some ideas

from the methods we propose in this thesis to apply in some related unsupervised representation

learning algorithms. For instance, we can try to borrow the idea of adding correlations from cvae

and acvae and apply it to dictionary learning to learn a better feature basis, if we know some cor-

relations between the dimensions of the observations. Moreover, it is possible to revisit the idea of

analyzing the curvature in vpng and apply a second-order optimization procedure for more efficient

computations in learning probabilistic language models (e.g. the models in [20, 117, 118]).

Algorithmic We can improve over the algorithms that we mentioned in this thesis. For example,

for vpng, we can extend it to general Bayesian networks with multiple stochastic layers, instead

of only focusing on the single stochastic layer latent variable model as shown in Equation 3.1. In

addition, we can extend our cvae and acvae to learn higher order correlations among the latent

variables.

Applications It is also an interesting research direction to look into additional applications of

the proposed methods. For instance, our multi-way matching algorithm in Chapter 2 can provide

consistent matchings between sets on “bag-of-elements” data. It will be interesting to see how

the learned permutation matrices will help in reordering the elements, if we test the performance

gain of applying some regular machine learning tasks (e.g. clustering, classification, etc) on the
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reordered data compared with the case on the unordered data. Our algorithm should help these

machine learning tasks perform better. In addition, as [119] proposed to apply vae for collaborative

filtering and recommendations, it is possible for us to apply cvae and acvae to perform well in a

recommender system if we have a social network between the users.
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