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ABSTRACT

This paper evaluates the quality of real-time seasonal probabilistic forecasts of the extreme 15% tails of the

climatological distribution of temperature and precipitation issued by the International Research Institute for

Climate and Society (IRI) from 1998 through 2009. IRI’s forecasts have been based largely on a two-tiered

multimodel dynamical prediction system. Forecasts of the 15% extremes have been consistent with the

corresponding probabilistic forecasts for the standard tercile-based categories; however, nonclimatological

forecasts for the extremes have been issued sparingly. Results indicate positive skill in terms of resolution and

discrimination for the extremes forecasts, particularly in the tropics. Additionally, with the exception of some

overconfidence for extreme above-normal precipitation and a strong cool bias for temperature, reliability

analyses suggest generally good calibration. Skills for temperature are generally higher than those for pre-

cipitation, due both to correct forecasts of increased probabilities of extremely high (above the upper 15th

percentile) temperatures associated with warming trends, and to better discrimination of interannual vari-

ability. However, above-normal temperature extremes were substantially underforecast, as noted also for the

IRI’s tercile forecasts.

1. Introduction

The International Research Institute for Climate and

Society (IRI) began issuing seasonal forecasts of near-

global climate in October 1997, using a two-tiered dy-

namically based multimodel prediction system (Mason

et al. 1999). The standard forecast product, whose quality

has been evaluated in depth (Wilks and Godfrey 2002;

Goddard et al. 2003; Barnston et al. 2010), contains prob-

abilities of occurrence for the three climatologically equi-

probable categories of seasonal total precipitation and

mean temperature: below, near, and above normal as

defined by the 30-yr base period in use at the time.

Probabilistic forecasts for events falling into the lower or

upper 15 percentiles of the climatological distribution

began being issued in April 1998 and March 2001 for

precipitation and temperature, respectively. Based on

the same model output as the tercile-based forecasts,

they are issued only for the shortest lead time: the 3-month

period beginning a half-month following forecast issuance.

Although the lower and upper 15% tails may not nec-

essarily represent near-record mean seasonal conditions

(or extreme weather events within the season), probabil-

ity forecasts for the 15% tails are provided for users par-

ticularly sensitive to climate events farther away from the

climatic average than can be specifically represented by

tercile-based categories.

In the two-tiered dynamical climate prediction meth-

odology (Bengtsson et al. 1993) used for IRI’s climate

forecasts, a set of SST prediction scenarios is first estab-

lished, and then a set of atmospheric general circulation

models (AGCMs), each consisting of multiple ensemble

runs, is forced by the members of the set of predicted

SSTs (Mason et al. 1999). During the early 2000s the set

of constituent AGCMs expanded, automation increased,

and objective multimodel ensembling methodologies

were implemented (Rajagopalan et al. 2002; Barnston

et al. 2003; Robertson et al. 2004). Following produc-

tion of the purely objective forecast probabilities for

the standard tercile-based forecasts, final minor sub-

jective modification is carried out by the forecasters

(Barnston et al. 2010), leading to more probabilistically

reliable forecasts.

Although forecasts for the 15% extremes are based

on the same model output as the tercile-based forecasts,

they are issued in a less quantitative format. While the
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tercile forecasts are expressed in increments of 5%, just

three gradations of probability enhancement above the

15% climatological level are defined for the 15% extremes

forecasts: slightly enhanced (defined by probabilities of

25%–40%), enhanced (40%–50%), and greatly enhanced

($50%). Together with the climatological neutral default

(,25%), this forecast format was elected both to make

the forecasts more easily understood by users, and be-

cause of the greater uncertainty associated with forecast

probabilities in the outer portions of the climatological

distribution. No decreased probabilities of extreme con-

ditions are explicitly forecast in either tail. In developing

forecasts for the 15% tails, the forecasters use a combi-

nation of guidance consisting of the postprocessed model

output and its multimodel combination, extrapolation

from the tercile-based forecasts (which are usually de-

veloped first)1, and subjective judgment. In this paper

we evaluate only the final issued forecasts, to which the

user community has access, and not the guidance tools

used to formulate them. An example of a forecast map

for extreme precipitation is shown in Fig. 1, along with its

corresponding standard tercile-based probability forecast.

In section 2 the verification data and procedures are

defined, in section 3 the verification results are presented,

and a summary and some concluding remarks are pro-

vided in section 4.

2. Data and methods

a. Verification data

For temperature verification, the 28 gridded global

Climate Anomaly Monitoring System (CAMS) dataset

from the National Oceanic and Atmospheric Adminis-

tration (NOAA) (Ropelewski et al. 1985) is used. For

precipitation, 2.58 gridded data from the Climate Re-

search Unit (CRU) of the University of East Anglia for

1961–78 (New et al. 2000; Mitchell and Jones 2005) are

used, and the Climate Prediction Center (CPC) Merged

Analysis of Precipitation (CMAP; Xie and Arkin 1997)

dataset is used from 1979 through 2009.2 Consistency

tests between the two datasets during the overlapping

period indicate minor biases in the mean, and somewhat

larger biases in variance, with the CRU data having

lower variance. The variance bias slightly affects the

15th and 85th percentiles when the 1961–90 climatology

base period was used through mid-2001, but has negli-

gible effects when later base periods (1969–98 from mid-

2001 through 2002, and 1971–2000 since January 2003)

were used. Accounting for a change from a quarterly

schedule of forecast issuance before mid-2001 to a monthly

schedule thereafter, seasonal extremes forecasts were is-

sued for precipitation for 113 target periods beginning

April–June 1998, and for temperature for 101 target pe-

riods beginning April–June 2001. The ending target season

for both variables is December–February 2009/10.

b. Methods

For the purposes of assessments of reliability, the

forecast probability at each grid square is regarded as

a value indicative of the rank of its level of enhance-

ment: 1 for no enhancement (i.e., the climatological

probability of ,25%), and 2, 3, or 4 for each of the re-

spective progressively increasing enhancement levels

(25%–40%, 40%–50%, and .50%). This ordinal rep-

resentation is used because the probability ranges of the

categories are too wide to perform a more rigorously

quantitative diagnosis. Therefore, we do not use verifi-

cation measures intended for more precisely defined

probability forecasts (e.g., measures related to the ig-

norance score, Brier score, or the quantitative outputs of

a reliability diagnosis). Our goal is to assess the degree to

which the forecasts successfully indicate increases in the

frequency of occurrence of extremes. Thus, we examine

reliability within an ordinal context, using the actual

probability ranges only to check for obvious inconsis-

tencies with the observed frequencies of occurrence, and

to develop a quasi-quantitative reliability plot. To assess

discrimination in the forecasts more specifically, we com-

pute relative operating characteristic (ROC) areas (Mason

1982), which require only ordinally defined probability

forecasts. Similarly, the ordinal probability bins allow

for the calculation of resolution scores (in fact, there is

no implied ordering of the probability bins in the reso-

lution score).

When one of the 15% extreme tails is forecast with an

enhanced probability, the probabilities for the opposite

extreme and for the larger middle category are not ex-

plicitly given in the issued forecasts. Therefore, the re-

liability assessment given below pertains only to forecast

probabilities assigned directly to one of the 15% ex-

tremes. However, for ROC evaluation the results are so

heavily dominated by the predominance of climatological

forecasts that an assumption is made that progressive in-

creases in the probability of one extreme imply progressive

decreases in the probability of the opposite extreme. This

assumption is compatible with the ordinal framework used

in ROC, where probability values themselves are not

1 Specifically, a Gaussian fit is made to the tercile probabilities,

and this probability density function is used to determine the

probabilities for the 15% tails.
2 For the five final months beginning in October 2009, CMAP

data were unavailable, and Climate Anomaly Monitoring System–

OLR Precipitation Index (CAMS–OPI) rainfall data (Janowiak

and Xie 1999) were used instead.
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FIG. 1. (bottom) Example of a forecast for the 15% precipitation extremes issued in May 2009 for June–

August 2009. An area of enhanced (40%–50%) probability for above-normal rainfall is indicated in part

of northeast Brazil, surrounded by some area of slightly enhanced (25%–40%) probability. (top) The

corresponding standard tercile-based probability forecast.
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used, but rather just their relative rank ordering. This

assumption also implies that forecast distributions having

highly non-Gaussian shapes (e.g., bimodal) or greatly

varying spreads, which could violate the opposing di-

rections of probability change on opposite tails, are rare.

Since such markedly non-Gaussian forecasts have not

been issued in the tercile-based IRI forecasts, the as-

sumption is reasonable.

Reliability, or attributes, diagrams (Murphy 1973;

Wilks 2006) show the correspondence of the full range of

issued forecast probabilities and their associated relative

frequencies of observed occurrence. Ideally, the forecast

probabilities would closely match the observed relative

frequencies of occurrence for each of the lower 15% and

upper 15% climatological categories. The diagrams can

reveal forecast characteristics such as probabilistic bias,

forecast over- (under-) confidence, and forecast sharp-

ness. Here, observed relative frequencies are examined

for the four ordinal forecast probability bins, providing

a rough indication of forecast reliability and resolution.

The ROC area is the area under the curve of hit rate

versus false-alarm rate on a ROC plot (Mason 1982).

The ROC plot shows the cumulative hit rate against

cumulative false-alarm rate for progressively decreasing

forecast probabilities for an event to occur (e.g., the

event of exceeding the upper 15th percentile for pre-

cipitation). A favorable ROC plot would show a higher

hit rate than false-alarm rate for cases having the highest

probabilities for the event, but with increasingly less

frequent hits and more frequent false alarms as forecasts

with lower probabilities are added into the cumulative

tally. With a possible range of 0%–100%, a 50% rate of

correct discrimination is expected by chance and reflects

0 forecast skill (Mason and Weigel 2009). ROC measures

discrimination alone, without penalty for poor probabil-

ity calibration. The use of ordinal forecast probability

bins here does not affect the computation of the ROC

area, as the results would be identical regardless of what

probabilities are assigned to the bins, provided that their

rank ordering matches that of the ordered bins.

To address significance for the ROC areas, Monte

Carlo simulations are performed in which the years of

the observations are randomly permuted among the 12

(9) yr for precipitation (temperature), while the order-

ing of the months within each year remains intact to

preserve the integral time scale of the forecast and ob-

served data (i.e., to maintain the temporally correlated

climate responses within an ENSO cycle). Five thousand

randomizations are conducted. Similarly, the sampling

errors in the ROC areas are represented using confidence

intervals, determined using a bootstrapping technique. In

the bootstrapping 1-yr segments of individual forecasts

are randomly resampled with replacement, while the true

forecast–observation pairs remain intact (Wilks 2006;

Mason 2008). A sample size of 5000 is used.

3. Results

Reliability analyses and ROC scores are calculated as

averages of the results including all relevant grid squares,

where each square is area weighted by the cosine of its

latitude.

a. Coverage of nonclimatological probabilities

Issuance of enhanced probabilities for the 15% extremes

has been conservative (Table 1). For precipitation, the

areal coverage of nonclimatological probabilities has

averaged approximately 1.0% of the global land area and

2.0% of the tropical land area (258N–258S), while for

temperature the coverage areas have been approximately

3.7% and 6.0%, respectively. Climatologically one would

expect 30% of the globe to experience an extreme of

one sign or the other. Additionally, more than 80% of

the forecasts for enhanced probabilities have been for

the weakest level of enhancement (25%–40%) for both

precipitation and temperature, for both global and trop-

ical domains (Table 1). Figure 2 shows the geographical

distribution of the percentage frequency of issuance of

nonclimatological probabilities for precipitation and tem-

perature. These results indicate the most frequent issu-

ance of enhanced probabilities for extreme precipitation

in Indonesia, the Philippines, tropical Pacific islands

along the immediate equator, in far western Africa, and

near the coast of northeast South America. Precipitation

TABLE 1. Average of percentage areal coverage of forecasts of nonclimatological probabilities for the 15% extremes for precipitation

and temperature over the globe and in the tropics (258N–258S). For the total ( p $ 0.25), the portions of coverage in each extreme are

shown.

Variable

Domain

(land only)

Slightly enhanced

(0.25 # p , 0.40)

Enhanced

(0.40 # p , .50)

Greatly enhanced

(p $ 0.50)

Total (p $ 0.25)

(lower, upper)

Precipitation Globe 0.86 0.13 0.04 1.03 (0.48, 0.55)

Tropics 1.73 0.25 0.07 2.05 (0.94, 1.11)

Temperature Globe 2.98 0.70 ,0.005 3.68 (0.11, 3.57)

Tropics 5.03 1.00 ,0.005 6.03 (0.21, 5.82)
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extremes were infrequently forecast in the middle and

high latitudes. Temperature extremes were forecast most

frequently in the region surrounding the eastern Medi-

terranean Sea (Egypt, northern Saudi Arabia, western

Middle East), central southern Africa, western Africa,

northern South America, southeast Asia and western In-

donesia, and many of the South Pacific islands. The cov-

erage for both precipitation and temperature varies

seasonally, being somewhat greater from late northern

autumn through late northern spring, and less during

northern summer and early autumn (not shown). This

seasonal cycle of coverage is likely related to the sea-

sonal distribution of confidence in the climate effects

associated with ENSO episodes, and coincides with the

globally averaged skill of IRI’s standard tercile-based

forecasts (Barnston et al. 2010).

b. Reliability and resolution

Reliability plots for forecasts in the tropics over the

11-yr forecast period, aggregated over all seasons and

area-weighted grid points, are shown in Fig. 3 for pre-

cipitation and temperature for the lower and upper 15%

FIG. 2. Geographical distribution of the percentage frequency of issuance of forecasts for non-

climatological probabilities for the 15% extremes for (top) precipitation and (bottom) temperature.

Completely white areas represent oceans and other larger water bodies and for temperature, land regions

having substantial proportions of missing observational data.
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categories individually. Observed relative frequencies

associated with each forecast category are shown in the

main panels of Fig. 3 for the tropics, and are also in-

dicated in Table 2 for both the tropics and the globe. A

regression line is drawn in Fig. 3 to summarize the re-

liability curve when weighted by the number of forecast

cases. The panels in Fig. 3 beneath the reliability plots

indicate the relative frequencies of issuance among

the four forecast probability categories. As suggested

earlier, Fig. 3 is intended as a quasi-quantitative plot,

because the probability intervals are deemed too wide,

and there are too few of them, to justify an accurate

assignment of their single representative probability

values. Our evaluation targets the overall features of the

forecasts—ones that can be seen clearly with only rough

precision.

FIG. 3. Reliability plots for forecasts of (top) temperature and (bottom) precipitation extremes in the

tropics (258N–258S). The straight 458 line represents ideal reliability. The dashed line is the least squares

linear regression fit to the points forming the reliability curve, weighted by the sample sizes represented

by each point. Horizontal and vertical lines are drawn at the observed relative frequencies for the study

period. Forecast probabilities are plotted at the midpoints of their respective probability intervals, except

‘‘neutral default’’ is plotted at 15% and ‘‘extremely enhanced’’ at 55% because values greater than 60%

were never indicated. Subpanels below each chart show the percentage frequencies with which the four

forecast probability categories were forecast on a logarithmic ordinate scale.
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While the precipitation resolution and reliability ap-

pear to be generally satisfactory, some overconfidence is

noted, particularly for extreme above-normal precipita-

tion where the observed relative frequency is only slightly

over 20% when the slightly enhanced (25%–40%) cate-

gory is forecast; this is only about 7% higher in frequency

than when the neutral default (,25%) is forecast.3 Cor-

respondingly, the slope of the least squares linear re-

gression fit to the four points in the bottom-right panel

of Fig. 3 is somewhat shallower than the ideal 458 line.

The frequency of issuance of the given forecast proba-

bility categories for the 15% tails (Tables 1 and 2, and

lower subpanels in Fig. 3) for precipitation shows an

overwhelming majority of climatological probability fore-

casts for the tropics (98.0% of cases), and to an even

greater extent for the globe (99.0%). The resolution for

the precipitation forecasts is 0.0004 and 0.0003 for the

dry and wet extreme categories, respectively, in the tropics,

and roughly one-half of these values for the globe. These

values are very small because of the overwhelming pre-

ponderance of climatological forecasts.

For temperature, slight overconfidence is also present,

but to a lesser extent than for precipitation, with changes

in observed relative frequency near 20% for the globe

and 15% for the tropics between cases when climatology

was forecast and when the first level of probability en-

hancement (25%–40%) was forecast. Resolution for the

temperature forecasts is 0.0001 and 0.0016 for the cold

and hot extreme categories, respectively, in the tropics,

and 0.0002 and 0.0012, respectively, for the globe. Thus,

higher resolution is indicated for temperature than for

precipitation, but primarily for the hot extreme cate-

gory, which was forecast with enhanced probability most

frequently.

However, as indicated in Table 2, above-normal

extreme temperatures were markedly underforecast:

globally (within the tropics), the hot 15% extreme was

observed on about 40% (46%) of occasions, but the

forecasts implied frequencies of only about 16% (16%)

(i.e., only marginally more than climatology) because of

the preponderance of climatological forecasts. Hence,

the regression-fitted reliability curves for temperature

(Fig. 3) show substantial over- (under-) forecasting of

cold (hot) extremes. The results for the standard tercile-

based forecasts indicated the same problem (Barnston

et al. 2010). However, the extremes forecasts did at least

imply a much larger frequency of hot compared to cold

extremes: hot extremes globally (in the tropics) were

observed about 8 (12) times as frequently as cold ex-

tremes, while the forecasts implied a value of about 32

(28). The great imbalance in the observations of upper

versus lower extreme 15% categories reflects the mag-

nitude of the low-frequency variability, including spe-

cifically a global warming signal.

c. ROC area

The last column in Table 2 shows ROC area results

for the globe and the tropics, indicative of probabilistic

discrimination skill. Because enhanced probabilities for

the 15% extremes were forecast sparingly, a very large

proportion of the forecasts are indistinguishable (even

after the default climatological probability is subdivided

by assuming forecasts of diminished probability for the

opposite extreme), and the ROC areas are therefore

damped severely toward 0.50, implying little ability to

TABLE 2. Diagnostics associated with reliability plots and ROC areas, for each of the 15% extreme tails for precipitation and tem-

perature. Observed (Obs) relative (Rel) frequencies (Freq) are given for all forecast cases as well as for each of the four forecast (Fcst)

categories. ROC area includes contributions from progressively lower probabilities in the tail opposite that being forecast with pro-

gressively higher probabilities (see text). Superscripts to the ROC areas indicate Monte Carlo–based significance levels, as percentages

(e.g., 0.1 indicates a significance level of #0.001). The 95% confidence interval (CI) for the ROC area is indicated (see text).

Variable Domain Extreme

Coverage

(%)

Obs Rel

Freq (%)

Uncon

0–100

Obs Rel

Freq (%)

Fcst 1

,25

Obs Rel

Freq (%)

Fcst 2

25–40

Obs Rel

Freq (%)

Fcst 3

45–50

Obs Rel

Freq (%)

Fcst 4

.50 ROC area (95% CI)

Precipitation Globe Wet 0.55 15.1 15.0 21.5 40.6 40.5 0.5040.1 (0.502–0.508)

Dry 0.48 19.0 18.5 28.5 44.1 92.9 0.5040.1 (0.502–0.508)

Tropics Wet 1.11 14.4 14.3 21.8 41.7 38.5 0.5090.1 (0.505–0.515)

Dry 0.94 17.8 17.7 28.4 45.6 92.9 0.5080.1 (0.504–0.515)

Temperature Globe Hot 3.57 39.5 38.9 56.0 65.1 0.0 0.5140.1 (0.508–0.523)

Cold 0.11 5.1 4.9 25.4 27.3 0.5160.1 (0.511–0.523)

Tropics Hot 5.82 45.9 44.9 58.6 70.1 0.0 0.5190.1 (0.510–0.532)

Cold 0.21 3.8 3.8 19.7 15.1 0.5240.1 (0.516–0.532)

3 The change in observed relative frequency from the climatol-

ogy forecast category to the first forecast enhancement level is most

critical in assessing forecast confidence, because the forecast cat-

egories of greater enhancement level were forecast much less fre-

quently for both precipitation and temperature (Table 1).
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discriminate extremes from nonextremes. ROC areas

are between 0.50 and 0.51 for precipitation, and between

0.51 and 0.52 for temperature. Results for temperature

are better partly because nonclimatological probabili-

ties were issued roughly 3 times as frequently as they

were for precipitation, permitting more opportunity for

contributions toward a ROC area .0.5.

The smallness of the exceedance of the ROC areas

over 0.5 raises the issue of their statistical significance.

Monte Carlo results (shown by superscripts to the ROC

areas in Table 2) indicate statistical significance levels of

,0.001 for both extremes and for both variables for the

global and tropical domains, providing evidence that the

chances of these skill levels emerging by accident are

remote. Similarly, the bootstrap confidence intervals in-

dicate minimal sampling uncertainty in the ROC areas,

and the fact that none of the intervals straddles 0.5 con-

firms the skill of the forecasts.

Because the geographical coverage of grid squares

receiving a meaningful sample of forecasts for enhanced

probabilities of the 15% extremes is limited, a map show-

ing the geographical variation of ROC skill would have

large blank areas and areas with excessively noisy re-

sults. Therefore, we examine the geographical variabil-

ity of ROC skill for discrete regions of adequate size

and/or coverage as indicated in Fig. 2. The resulting

regionally aggregated ROC areas are shown in Table 3,

along with their 95% confidence intervals based on the

bootstrap resampling, and their statistical significance

based on the Monte Carlo method. For precipitation,

relatively high and statistically significant skill is found

in the Philippines and in the western tropical Pacific is-

lands, particularly for wet forecasts for the former and

for dry forecasts for the latter. Statistically significant

but smaller ROC areas appear in the eastern tropical

Pacific islands, and in Indonesia for wet forecasts. With

the exception of Southeast Asia, ROC areas for all of the

selected regions are statistically significant at the 5% level

or better, despite that some are only slightly greater than

0.5, such as Africa and the globe as a whole. For tem-

perature, relatively large ROC areas for the extreme tails

are found in the eastern tropical Pacific islands, but only

forecasts for the hot extreme achieve statistical signifi-

cance. Skillful forecasts are seen also in Africa for cold

TABLE 3. ROC areas by region. The 95% confidence interval for the ROC area, based on a bootstrap test, is shown in parentheses. The p

value for the ROC area being 0.5 or lower is shown and is based on an independent Monte Carlo test. ROC areas with p values of 0.05 or

better are shown in boldface. Occasional minor inconsistencies between the Monte Carlo significance tests and bootstrap confidence

intervals reflect sampling errors and violations in the block sampling procedures used (which are more noticeable for temperature than for

precipitation).

Precipitation

Dry (lower 15%) Wet (upper 15%)

ROC (95% CI) p value ROC (95% CI) p value

Southeast Asia 0.501 (0.493–0.512) 0.364 0.501 (0.482–0.516) 0.464

Indonesia and vicinity 0.514 (0.500–0.531) 0.004 0.521 (0.508–0.540) ,0.001

Philippines 0.521 (0.510–0.537) 0.006 0.540 (0.516–0.568) 0.006

Western tropical Pacific Islands 0.547 (0.515–0.582) ,0.001 0.535 (0.509–0.572) ,0.001

Eastern tropical Pacific Islands 0.519 (0.513–0.525) ,0.001 0.519 (0.507–0.538) ,0.001

Africa 0.503 (0.501–0.506) 0.037 0.503 (0.501–0.507) 0.026

Southern United States–Caribbean–Mexico–Central America 0.510 (0.501–0.524) 0.002 0.506 (0.500–0.514) 0.020

Northern South America 0.513 (0.503–0.527) 0.043 0.511 (0.502–0.525) 0.008

Tropics 0.508 (0.504–0.515) ,0.001 0.509 (0.505–0.515) ,0.001

Globe 0.504 (0.502–0.508) ,0.001 0.504 (0.502–0.508) ,0.001

Temperature

Cold (lower 15%) Hot (upper 15%)

ROC (95% CI) p value ROC (95% CI) p value

Southeast Asia 0.518 (0.504–0.539) 0.037 0.502 (0.483–0.529) 0.426

Indonesia and vicinity 0.521 (0.511–0.534) ,0.001 0.527 (0.512–0.546) ,0.001

Philippines 0.529 (0.513–0.547) 0.002 0.533 (0.511–0.560) 0.002

Western tropical Pacific Islands 0.518 (0.415–0.562) 0.246 0.508 (0.490–0.533) 0.244

Eastern tropical Pacific Islands 0.539 (0.435–0.567) 0.087 0.575 (0.533–0.626) ,0.001

Africa 0.533 (0.511–0.555) ,0.001 0.510 (0.498–0.527) 0.037

Southern United States–Caribbean–Mexico–Central America 0.520 (0.508–0.534) ,0.001 0.518 (0.507–0.533) 0.023

Northern South America 0.542 (0.513–0.570) 0.170 0.523 (0.496–0.553) 0.094

Tropics 0.524 (0.516–0.532) ,0.001 0.519 (0.510–0.532) ,0.001

Globe 0.516 (0.511–0.523) ,0.001 0.514 (0.508–0.523) ,0.001
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extremes and to a somewhat lesser extent in Indonesia.

As might be expected, regions having relatively high

frequencies of forecasts of enhanced probabilities (Fig. 2)

tend to have higher ROC skill levels.

4. Summary and conclusions

The IRI has issued probabilistic forecasts of near-global

seasonal mean temperature and total precipitation ex-

tremes (defined by the lower and upper 15% tails) since

early 1998 for precipitation and since mid-2001 for tem-

perature. The forecasts have been based primarily on a two-

tiered, dynamically based prediction system where a set

of SST prediction scenarios is made, serving as prescribed

lower boundary conditions for integrations of ensembles

from a set of AGCMs. Seven AGCMs have been used since

2004, producing well over 100 forecast ensembles that are

postprocessed and merged into final probability forecasts.

Forecasts for the 15% extremes were issued conser-

vatively, resulting typically in small spatial coverage,

with forecasts issued mostly in the tropics and subtropics,

and with a preponderance of the weakest category of en-

hanced probability (i.e., 25%–40%). This cautiousness

may have been exacerbated by the coarseness of the issued

probability bins, making forecasters reluctant to forecast

even the weakest level of enhanced probability, whose

minimum probability (25%) is two-thirds greater than the

climatological probability. Indeed, using a Gaussian fit to

the corresponding tercile forecast probabilities, a proba-

bility of approximately 50%–55% is required for an ex-

treme tercile category to achieve a probability of 25% for

the corresponding 15% tail. The resulting preponderance

of forecasts of the climatological category (lower sub-

panels in Fig. 3), and the consequently low forecast

sharpness, strongly affects measures of the forecasts’

quality. Nonetheless, within the set of extremes forecasts

that were issued, results indicate largely satisfactory reso-

lution and favorable calibration, with two notable excep-

tions: 1) forecasts for extreme above-normal precipitation

were somewhat overconfident and 2) above-normal tem-

perature extremes were substantially underforecast.

Skill levels for temperature average somewhat higher

than those for precipitation, due to the correct recog-

nition of increasing warmth within the approximately

1-decade period, and better discrimination of interannual

variability within the period. Precipitation skill, based

more exclusively on correctly discriminated interannual

variability, may be somewhat hindered by spatially nois-

ier patterns than those for temperature (Gong et al. 2003)

under comparably predictable associated large-scale cir-

culation anomalies.

Although temperature extremes were forecast with

greater coverage and skill, the warm extreme was

substantially underforecast, as noted also for IRI’s tercile-

based forecasts (Wilks and Godfrey 2002; Barnston et al.

2010). This bias had been seen also in the climate forecasts

made by NOAA’s Climate Prediction Center (Wilks 2000;

Livezey and Timofeyeva 2008), despite the fact that re-

cent trend indicators are used in developing their forecasts

(Huang et al. 1996; O’Lenic et al. 2008). Underforecasting

warmth is likely a result, at least in part, of the dynamical

prediction systems used at both IRI and CPC that use fixed

greenhouse gas concentrations (at late 1980s levels) rather

than time-varying concentrations that keep pace with ob-

served increases (Doblas-Reyes et al. 2006; Liniger et al.

2007). Models at many institutions, including IRI, are be-

ginning to use flexible concentrations to help remedy this

problem. In the IRI forecast system, the failure of both

the SST and atmospheric models to reproduce the full

strength of the global warming signal results in the loss of

skill not only because current temperature forecasts are

biased toward cold, but also because the weakened skill

over the training period for the recalibration and combi-

nation schemes tends to dampen the models’ signals, re-

sulting in smaller probability shifts.

Improvements are being implemented in IRI’s fore-

cast system. First, its newly configured forecasts issue the

full probability distribution, making possible probabilities

for flexibly defined categories. The new system performs

multivariate rather than merely local calibrations of in-

dividual model forecast outputs prior to multimodel com-

bination (e.g., Landman and Goddard 2002; Tippett et al.

2003; Ndiaye et al. 2009). Additionally, single-tiered (cou-

pled) models are being introduced, and incorporation of

time-varying greenhouse gas settings is under way. These

changes are expected to increase forecast quality in a broad

sense, and have already resulted in larger coverage areas

over which enhanced probabilities for the upper or lower

15% tails are being issued.
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