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Abstract

The notion that plasma cells (PCs) are terminally differentiated has prevented intensive research in 

multiple myeloma (MM) about their phenotypic plasticity and differentiation. Here, we 

demonstrated in healthy individuals (n = 20) that the CD19 − CD81 expression axis identifies 

three bone marrow (BM)PC subsets with distinct age-prevalence, proliferation, replication-history, 

immunoglobulin-production, and phenotype, consistent with progressively increased 

differentiation from CD19+CD81+ into CD19 − CD81+ and CD19 − CD81 − BMPCs. 

Afterwards, we demonstrated in 225 newly diagnosed MM patients that, comparing to normal 

BMPC counterparts, 59% had fully differentiated (CD19 − CD81 −) clones, 38% intermediate-

Correspondence: Professor JF San Miguel, Clinica Universidad de Navarra; Centro de Investigacion Médica Aplicada (CIMA), Av. 
Pio XII 36, Pamplona 31008, Spain. sanmiguel@unav.es. 

Conflict of Interest
The authors declare no conflict of interest.

Europe PMC Funders Group
Author Manuscript
Leukemia. Author manuscript; available in PMC 2017 May 22.

Published in final edited form as:
Leukemia. 2017 February ; 31(2): 382–392. doi:10.1038/leu.2016.211.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Gestion del Repositorio Documental de la Universidad de Salamanca

https://core.ac.uk/display/287653711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


differentiated (CD19 − CD81+) and 3% less-differentiated (CD19+CD81+) clones. The latter 

patients had dismal outcome, and PC differentiation emerged as an independent prognostic marker 

for progression-free (HR: 1.7; P = 0.005) and overall survival (HR: 2.1; P = 0.006). Longitudinal 

comparison of diagnostic vs minimal-residual-disease samples (n = 40) unraveled that in 20% of 

patients, less-differentiated PCs subclones become enriched after therapy-induced pressure. We 

also revealed that CD81 expression is epigenetically regulated, that less-differentiated clonal PCs 

retain high expression of genes related to preceding B-cell stages (for example: PAX5), and show 

distinct mutation profile vs fully differentiated PC clones within individual patients. Together, we 

shed new light into PC plasticity and demonstrated that MM patients harbouring less-differentiated 

PCs have dismal survival, which might be related to higher chemoresistant potential plus different 

molecular and genomic profiles.

Introduction

Multiparameter flow cytometry (MFC) is currently considered a sensitive co-adjuvant test in 

the diagnostic screening of patients with multiple myeloma (MM) to demonstrate bone 

marrow (BM) clonality.1 Tumour plasma cells (PCs) from virtually all MM patients show 

phenotypic aberrancies that allow for clear distinction between these and normal PCs;2 

furthermore, the expression levels of some antigens are significantly associated with 

differences in outcome.3–7 One example is CD19, whose expression has been found in 5–

10% of MM cases and correlated with inferior survival;3 however, the biological explanation 

behind such correlation remains unknown. Recently, we showed that the expression of CD81 

in clonal PCs is also an independent prognostic factor in MM,4 but similarly to CD19, there 

is no knowledge on the biologic significance of CD81 expression in the surface of clonal 

PCs.

Normal PC differentiation is characterized by the acquisition of secretory capacity, cell-

cycle exit and changes in both surface phenotype and gene expression.8 Accordingly, CD19, 

which is a co-receptor of the B-cell receptor and is solely regulated by PAX5, becomes lost 

in a subset of normal BMPCs after PAX5 down-regulation during B-cell into PC 

differentiation.9,10 After the initial observation that CD19 expression was decreased in 

mature PCs generated in vitro,11 most recent analyses suggested that CD19−CD38hiCD138+ 

PCs share similarities with murine long-lived PCs and could represent their human 

counterpart.12,13 Since CD19 expression requires CD81,14 a tetraspanin widely expressed 

at all stages of the B-cell lineage,4,15 it could be hypothesized that both markers might 

contribute to identify unique PC subsets during the transition from less- into more-

differentiated BMPCs. In such cases, further investigations in MM would be warranted to 

unravel whether clonal PCs follow a similar pattern of normal PC differentiation according 

to CD19 − CD81 expression levels, and to determine the clinical sequelae of myeloma PCs’ 

differentiation stage.

Here, we started by showing that the combined expression of CD19 and CD81 identified 

three unique BMPC subsets in healthy individuals with distinct functional and phenotypic 

features, consistent with progressively increased differentiation from CD19+CD81+ into 

CD19−CD81+ and CD19−CD81− normal BMPCs. Subsequently, we demonstrated that 
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myeloma PCs fit into such a model of normal BMPC differentiation, and that patients with 

less-differentiated clones had dismal survival. PC differentiation is also related to therapy-

induced selective pressure, through which less-differentiated PCs subclones become 

enriched from diagnosis into minimal residual disease (MRD) stages in a subset of MM 

patients. Most interestingly, less-differentiated PCs maintain the expression of genes related 

to preceding B-cell stages, and show different mutation profiles as compared to fully 

differentiated PC subclones within individual MM patients.

Materials and Methods

Patients, controls and samples

A total of 225 elderly, transplant-ineligible patients with newly diagnosed symptomatic MM 

staged according to the International Myeloma Working Group criteria16 were prospectively 

studied after inclusion in the PETHEMA/GEM2010MAS65 trial (NCT01237249). In all 

cases, BM aspirates were collected at diagnosis and in 40 out of the 225 patients, also after 

induction therapy for preplanned MRD monitoring. BM aspirates were additionally taken 

from 20 healthy individuals (median age: 46 years; range: 19–64 years) to study the 

functional and phenotypic characteristics of normal PCs. All samples were collected after 

informed consent was given by each individual, according to the local ethical committees 

and the Helsinki Declaration.

Multidimensional flow cytometry (MFC) immunophenotyping

Approximately 200 μl of ethylenediaminetetraacetic acid-anticoagulated BM aspirated 

samples from newly diagnosed MM patients were immunophenotyped using two different 

eight-colour combinations of monoclonal antibodies (MoAb) and a direct 

immunofluorescence stain-and-then-lyse technique – (Pacific Blue (PacB)/Pacific Orange 

(PacO)/fluorescein isothiocyanate (FITC)/phycoerythrin (PE)/peridinin chlorophyll protein-

cyanin 5.5 (PerCP-Cy5.5)/PE-cyanin 7 (PE-Cy7)/allophycocyanin (APC)/APCH7): (i) 

CD45/CD138/CD38/CD56/β2microglobulin/CD27/CD19/cyKappa/cyLambda; (ii) CD45/

CD138/CD38/CD28/CD27/CD19/CD117/CD81 following the EuroFlow guidelines17 to 

identify clonal PCs, and characterize their pattern of expression for CD19 and CD81. 

Patients with no reactivity for CD19 and < 10% CD81+ clonal PCs were classified as CD19-

CD81-, whereas those cases with < 50% CD19+ clonal PCs but CD81 expression (≥10%) 

were classified as CD19-CD81+; all remaining patients showing ≥ 50% CD19+ clonal PCs 

were classified as CD19+CD81+ (all of them were positive for CD81). After induction 

therapy, a single eight-colour MoAb combination (PacB/PacO/FITC/PE/PerCP-Cy5.5/PE-

Cy7/APC/APCH7) with CD45/CD138/CD38/CD56/CD27/CD19/CD117/CD81 was used to 

monitor MRD, and whenever persistent MRD was detected, the percentage of CD19+ and/or 

CD81+ clonal PCs was determined to compare, at the individual-patient-level, with that 

found at diagnosis. The same eight-colour MoAb combination was used to characterize the 

BMPC compartment of the 20 healthy individuals. In five out of the former 20 cases, an 

additional eight-colour MoAb combination (BV421/BV510/FITC/PE/PerCP-Cy5.5/PE-

Cy7/APC/APCH7) with CD138/CD27/cyIgM+cyIgA/cyIgA+cyIgG/CD38/CD19/cyKappa/

CD81 was stained to quantify the cytoplasmic (cy) immunoglobulin (Ig) heavy chain 

distribution in different PC subsets according to CD19 − CD81 expression. Data acquisition 
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was performed for approximately 106 leukocytes/tube in an FACSCantoII flow cytometer 

(Becton Dickinson – BD – San Jose, CA, USA) using the FACSDiva 6.1 software (BD). 

Data analysis was performed using the Infinicyt software (Cytognos SL, Salamanca, Spain).

Quantitation of replication history

B-lymphocyte precursors, transitional, naive and memory B-cells, CD19+ and CD19− PCs 

were FACS-sorted (FACSAria II, BD; purity ≥ 97%) from BM samples of healthy 

individuals (n = 5), according to their respective phenotypic characteristics as described 

elsewhere.18–20 The replication history of B-lymphocytes and PCs was determined using 

the κ-deleting recombination excision circle assay, which is based on the quantification of 

coding joints and signal joints of an Ig-deleting rearrangement (intron RSS-Kde) by real-

time quantitative PCR.20 Primers and probes were designed to specifically amplify the 

intronRSS-Kde rearrangements (coding joint) and the corresponding signal joint using 

TaqMan-based real-time quantitative PCR from DNA isolated from FACS-sorted cell 

subsets.20 The real-time quantitative PCR mixture of 25 μl contained TaqMan Universal 

MasterMix (Applied Biosystems, Waltham, MA, USA), 900 nM of each primer, 100 nM of 

each FAM-TAMRA-labelled probe, 50 ng of DNA and 0.4ng BSA, and was run on the 

ABIPRISM 7700 sequence detection system (Applied Biosystems).20

Cell cycle analyses

The proliferation index of different normal PC subsets according to CD19 − CD81 

expression was analysed in BM samples from five healthy individuals using five-colour 

staining for nuclear DNA and four cell surface antigens (CD19–PacB/CD45–PacO/CD38–

FITC/CD81–PE) as described elsewhere.21

Single-cell multidimensional phenotyping

Bone marrow aspirates from healthy individuals (n = 10) were immunophenotyped using 

four different eight-colour combinations of MoAb: (PacB, PacO, FITC, PE, PerCP-Cy5.5, 

PE-Cy7, APC, alexafluor 700 (AF700)): (i) CD29, CD45, CD11a, β7, CD79b, CD49d, 

CD19, CD38; (ii) CD11c, CD45, CD41a, CD49e, CD33, CD117, CD19, CD38; (iii) CD20, 

CD45, CD81, CD54, CD138, CD56, CD19, CD38; and (iv) HLA-DR, CD45, CD44, 

CXCR4, CD27, CD28, CD19, CD38. The expression of all 23 phenotypic markers was 

analysed at the single PC-level and compared between the CD19+CD81+, CD19−CD81+ and 

CD19−CD81− subsets, using the merge and calculation functions of the Infinicyt software as 

described elsewhere.22–24

Fluorescence-in-situ-hybridization (FISH) and deep-targeted sequencing

FISH was performed at diagnosis on immunomagnetic-enriched PCs from 169 out of the 

225 cases with available phenotypic data. DNA from two PC clones FACS-purified 

according to their differentiation status from six newly diagnosed MM patients was analysed 

including the corresponding germline samples. DNA was extracted from cells using AllPrep 

DNA/RNA Micro Kit, Qiagen (Hilden, Germany). Targeted gene sequencing was performed 

using 20 ng of input DNA and applying the MM Mutation Panel Version 2.0 (M3P 2.0). 

Targeted panel consists of 1271 amplicons from 77 genes commonly mutated in MM. 
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Enriched templates were sequenced using semiconductor technology (Ion Proton, Life 

Technologies, Waltham, MA, USA) and analysed with Ion Reporter Software v4.4 (Life 

Technologies). A median of 1700x depth coverage was obtained. Mutation calls were 

considered positive when called by ≥ 5% variant reads, with a minimum depth coverage of 

10 reads.

Gene expression profiling (GEP)

A total of 71 newly diagnosed MM patients screened at the University of Arkansas for 

Medical Sciences and with simultaneously available information on CD19 and CD81 

immunophenotypic patterns of expression and GEP were included in this analysis. An 

aliquot of BM aspirate was collected to isolate CD138+ PCs with immunomagnetic bead 

selection (autoMACS; Miltenyi Biotec, Bergisch Gladbach, Germany), as described 

elsewhere.25 Purity of PC was monitored by flow cytometry and was ≥ 85%. Total RNA 

was used to measure GEP with Affymetrix U133 Plus 2.0 microarrays. Differentially 

expressed genes between classes were identified using the Significant Analysis of 

Microarrays algorithm. Analyses were performed using BRB-ArrayTools (version 4.4.1) 

developed by Dr Richard Simon and the BRB-ArrayTools Development Team, available at 

http://linus.nci.nih.gov/BRB-ArrayTools.html.

DNA methylation studies

We used the EZ DNA Methylation Kit (Zymo Research, Irvine, CA, USA) for bisulfite 

conversion of 500 ng genomic DNA. Bisulfite-converted DNA was hybridized onto the 

HumanMethylation 450 K BeadChip kit (Illumina, San Diego, CA, USA). Data from the 

450 k Human Methylation Array were analysed as described previously.26

Statistical analysis

Correlation studies between PC subset distribution and age were performed using the 

Pearson test. The Wilcoxon signed rank test was used to evaluate the statistical significance 

of the percentage of each PC subset in the distinct phases of the cell cycle, as well as for the 

replication history of each PC subset. Conversely, the Friedman test was used to compare the 

distribution according to the heavy-chain Ig isotype across the different PC subsets. The 

Mann–Whitney U and the Kruskal–Wallis tests were used to estimate the statistical 

significance of differences observed between two or more groups, respectively. Survival was 

analysed by the Kaplan–Meier method, and differences between curves were tested for 

statistical significance with the two-sided log-rank test. Progression-free survival (PFS) was 

defined as the time from diagnosis to disease progression or death from any cause, and 

overall survival (OS) as time from diagnosis to death from any cause. A multivariate Cox 

proportional hazard model was developed to explore the independent value of significant 

variables on the univariate analysis, and variables were retained in the model for levels of 

significance P < 0.05.The SPSS software (version 20.0; IBM, Armonk, NY, USA) was used 

for all statistical tests.
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Results

Combined expression of CD19 and CD81 identifies three unique normal BM PC subsets

We first determined the distribution of the CD19+CD81+, CD19−CD81+ and CD19−CD81− 

subsets within total BMPCs from healthy individuals; overall, the CD19+CD81+ subset 

accounted for the majority of PCs (median of 79% within the BMPC compartment), 

followed by the CD19−CD81+ and CD19−CD81− subsets (14 and 5%, respectively). 

However, when we compared the distribution of each subset within the BMPC compartment 

across different age decades, we noted that while CD19−CD81+ and CD19−CD81− PCs were 

almost absent among healthy individuals aged 10–20 years, their frequency progressively 

increased from younger to older individuals (Figure 1a). Accordingly, there was a significant 

(P ⩽ 0.006) correlation between age and the distribution of the CD19+CD81+, CD19−CD81+ 

and CD19−CD81− subsets (Figure 1a), suggesting that CD19+CD81+ normal BMPCs appear 

earlier in the development of antibody responses, whereas CD19−CD81+ and CD19−CD81− 

PCs accumulate in the BM later in life. Since during PC differentiation acquisition of 

secretory capacity is accompanied by progressive cell cycling exit, we subsequently 

explored the distribution of the CD19+CD81+, CD19−CD81+ and CD19−CD81− subsets 

within G0/G1 and S-phase/G2M normal BMPCs. As expected, the majority of BM PCs were 

in G0G1 (data not shown), but while the relative distribution of all three CD19+CD81+, 

CD19−CD81+ and CD19−CD81− subsets in G0G1 was inside the normal ranges described 

above, there were virtually no CD19−CD81− PCs in S-phase/G2M (Figure 1b; P = 0.03). 

Thus, CD19−CD81− normal PCs were not only enriched in the BM of elderly healthy 

individuals, but also showed virtually no proliferation, suggesting that among CD19− PCs, 

those lacking CD81 could be more differentiated than CD19−CD81+ BMPCs. Additional 

analysis was performed to assess the replication history of CD19+CD81+ and total CD19− 

BMPCs, since it was not possible to purify sufficient cells numbers for the κ-deleting 

recombination excision circle assay from CD19−CD81+ and CD19−CD81− BMPCs 

separately (Figure 1c); that notwithstanding, we confirmed that PCs have a superior median 

number of cell cycles compared to B-lymphocytes (P = 0.04), but also showed that within 

the BMPC compartment, the median number of cell cycles in CD19− PCs was slightly 

superior to that of CD19+ PCs (P = 0.08). Additionally, there was a trend (P = 0.07) for an 

altered distribution of Ig heavy-chain isotypes between PC subsets according to their CD19 

− CD81 expression, with progressively decreasing frequencies of IgA+ PCs counterbalanced 

with increasing numbers of IgG+ PCs along the respective CD19+CD81+, CD19−CD81+ and 

CD19−CD81− BMPC subsets (Figure 1d). Further phenotypic differences were observed 

after single-cell analysis of 21 markers within the CD19 − CD81 phenotypic pathway, with 

decreasing mean fluorescence intensity of CD27, CD38, CD44 and CD54 combined with 

progressively increased expression of CD28 and CD56 being observed along the 

CD19+CD81+, CD19−CD81+ and CD19−CD81− BMPC subsets (Figure 1e). Overall, our 

results indicate that the combined CD19 − CD81 pattern of expression identifies three 

BMPC subsets with singular functional and phenotypic characteristics, consistent with an 

accumulation of long-lived, less active and fully differentiated PCs from the CD19+CD81+ 

and CD19−CD81+ into the CD19−CD81− BMPC subsets.
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Clinical sequelae of the differentiation stage of myeloma PC clones

After demonstrating the existence of three well-defined normal BMPC subsets with distinct 

differentiation, we sought to determine how myeloma PC clones fit in such a model of 

normal BMPC differentiation. Upon specific analysis of the CD19 − CD81 pattern of 

expression in clonal PCs from 225 newly diagnosed MM patients, we found that more than 

half (132/225; 59%) had clonal PCs that phenotypically matched the fully differentiated 

normal PC counterpart (that is: CD19−CD81−); conversely, 86 out of the 225 patients (38%) 

displayed intermediate-differentiated myeloma PCs (that is: CD19−CD81+), whereas only 

seven cases (3%) showed clonal PCs for which the normal counterpart would correspond to 

the less-differentiated BMPC subset (that is: CD19+CD81+). Interestingly, patients with less- 

and intermediately differentiated clonal PCs had a different phenotypic profile vs cases with 

a fully differentiated PC phenotype (Table 1), with significantly less frequent CD28+ and 

CD117+ expression; conversely, CD45 positivity was more frequent among patients with 

less-differentiated PC clones (Table 1). Furthermore, we noted a trend (P = 0.07) for higher 

frequencies of cytogenetic abnormalities (that is: t(IGH), +1q, del(13q), and/or del(17p)) 

from patients with less-into intermediate- and fully differentiated PCs (Table 2); in fact, 

cases with less-differentiated clones only showed +1q, and no IGH translocations nor 

del(13q) nor del(17p). Patients with less-and intermediately differentiated clonal PCs 

achieved lower MRD-negative rates as compared to cases with a more mature PC phenotype 

(25 and 20 vs 40%; P = 0.03). Upon investigating if the differentiation stage of myeloma PC 

clones influenced patients’ prognosis, we noted that progression-free survival and overall 

survival of cases in less- and intermediate-differentiation stages was significantly inferior as 

compared to patients with fully differentiated CD19−CD81− myeloma PC clones (Figures 2a 

and b). The treatment arm had no impact in patients’ outcomes according to PC 

differentiation (data not shown). Multivariate analysis of baseline prognostic factors for 

survival including the differentiation stage of clonal PCs plus patients’ age, ISS and FISH 

cytogenetics showed that the best combination of independent predictive parameters for 

progression-free survival and overall survival were PC differentiation and FISH cytogenetics 

(Table 3). Accordingly, the differentiation stage of clonal PCs continued to be prognostically 

relevant for progression-free survival and overall survival when the analysis was restricted to 

cytogenetically defined standard-risk cases (Figures 2c and d), suggesting that the presence 

of less-differentiated myeloma PC clones identifies a subgroup of patients with more 

aggressive disease despite standard-risk cytogenetic profiles.

Less-differentiated PC clones may become predominant at the MRD stage

Since the differentiation stage of clonal PCs at baseline was intrinsically related to patients’ 

response to therapy and survival, we subsequently evaluated the in vivo chemoresistant 

profile of different myeloma PC clones according to their differentiation stage, by 

performing a longitudinal comparison of the CD19 − CD81 pattern of expression in clonal 

PCs at diagnosis (baseline) vs after treatment during MRD monitoring (the chemoresistant 

subclone) in 40 MM patients. Overall, we found that while the expression of CD19 remained 

mostly stable between baseline and MRD (Figure 3a), there was a significant increase in the 

percentage of CD81+ chemoresistant clonal PCs after therapy (mean of 31 vs 21% at 

baseline, P = 0.04). Accordingly, 30/40 (75%) patients displayed the same differentiation 

stage during baseline and MRD monitoring (16 corresponding to the fully differentiated PC 
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subset (that is: CD19−CD81−) and 14 to the intermediate stage (that is: CD19−CD81+)), 

whereas 10/40 (25%) patients showed clonal selection of PCs with altered differentiation 

upon therapy-induced selective pressure (Figure 3b). Namely, eight cases with fully 

differentiated phenotypes at diagnosis showed intermediate stage chemoresistant clonal PCs 

after therapy; conversely, the remaining two patients transitioned from a CD19−CD81+ into 

a CD19−CD81− phenotype (Figure 3b). These results demonstrate that in approximately 

one-fourth of MM patients there might be clonal selection upon therapy of PC subsets with a 

distinct differentiation stage to that observed in the majority of myeloma PCs at diagnosis; 

such clonal dynamics usually favour less-differentiated PC subclones.

Mutation profiles of intraclonal heterogeneity according to PC differentiation

Upon observing that in selected patients less-differentiated PC subclones became 

predominant under therapeutic pressure, we decided to investigate whether less- and fully 

differentiated PC subclones could eventually display different genomic profiles. In order to 

address this hypothesis, we investigated the presence of mutations in PC subclones sorted 

according to their differentiation stage within individual patients (n = 6), by using a 

comprehensive panel covering 77 genes. While one case had no detectable mutations among 

those tested in any of the FACS-purified CD19−CD81+ and CD19−CD81− PC subsets (#1; 

Figure 4a), the five remaining patients had detectable mutations and their pattern differed 

within PC subclones sorted according to their differentiation stage. Namely, in case#2 

CD19−CD81+ myeloma PCs displayed mutations in SP140 that were not present among 

more differentiated CD19−CD81− PCs. Similarly, patient#3 had a mutation in epidermal 

growth factor receptor among less-differentiated tumour cells while absent in intermediate- 

and fully differentiated clones. Patient#4 showed a mutation in DIS3 that was 

simultaneously present in CD19−CD81+ and CD19−CD81− myeloma PCs; however, 

intermediate-differentiated cells had an additional mutation in IKZF3. Cases #5 and #6 

showed the highest differences between the mutation profiles, with mutually exclusive 

mutations among intermediate- vs fully differentiated myeloma in both cases. Overall, these 

results suggest that tumour heterogeneity, dissected according to PC differentiation on 

phenotypic grounds, may uncover the presence of subclones with different mutation profiles.

GEP of MM patients according to the differentiation stage of myeloma PC clones

After demonstrating that myeloma PCs followed the same model of differentiation as 

observed in BMPCs from healthy individuals, and that such a model had a clear implication 

in patients’ survival, we decided to investigate if the differentiation stage of myeloma PC 

clones would underlie different mRNA expression. Our results showed that newly diagnosed 

MM patients with less-differentiated clonal PCs (that is: CD19+CD81+; n = 8) displayed 39 

deregulated genes as compared to cases with intermediate-differentiation (that is: 

CD19−CD81+; n = 33) (Supplementary Excel File 1). CD19 mRNA expression was 

consistent with that observed on phenotypic grounds and was down-regulated among 

CD19−CD81+ patients; most-interestingly, down-regulation of other B-cell related genes 

such as CD79A, MS4A1 (CD20) and PAX5 was also observed. PTPRCAP, which stabilizes 

the expression of CD45, the pre-B-lymphocyte 3 protein coding gene VPREB3, TNFSF8 
and CCND1 were also found to be down-regulated among CD19−CD81+ patients. Although 

no significantly deregulated genes were observed upon comparing patients with 
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CD19−CD81+ vs CD19−CD81− (n = 28) phenotypes, gene set enrichment analysis showed 

that patients with intermediate-differentiated CD19−CD81+ PCs had significantly up-

regulation of cell cycle, nucleotide excision repair and DNA replication pathways as 

compared to those with fully differentiated CD19−CD81− PCs, which is consistent with the 

higher proliferative potential of the former PC subset. Conversely, patients with fully 

differentiated PCs showed down-regulation of pathways related to protein processing in ER, 

among others (Supplementary Excel File 2). The comparison between patients with less- vs 

fully differentiated (that is: CD19+CD81+ vs CD19−CD81−) PCs showed up-regulation of 

FCRLB, MS4A1 (CD20), CTGF, BEND5 and CD81 in less-differentiated clones 

(Supplementary Excel File 1). Overall, these results confirm a correlation between the 

phenotype and the GEP of PCs, but also that phenotypically less-differentiated 

CD19+CD81+ myeloma clones retain higher expression of genes associated with preceding 

B-cell stages.

Discussion

In other hematological malignancies such as acute myeloid leukemia, it is current practice to 

classify blasts according to their differentiation stage, and the concept of cellular plasticity 

with more immature clones being typically enriched at the MRD and relapse stages has been 

recognized.27 In MM, it has recently been suggested that a progenitor organization exists 

within clonal PCs that recapitulates maturation stages between B-cells and PCs, and may 

contribute to in vitro chemoresistance.28 However, there is no accurate knowledge on the 

myeloma PC differentiation pathway, nor how these correlate with patients’ clinical 

behaviour; in fact, information on the correct identification of less- vs fully differentiated 

normal BMPCs is yet very limited.12,13 Here, we showed the existence of three well-

defined maturation stages in both normal and clonal BMPCs identified through the CD19 − 

CD81 expression axis, and that MM patients harbouring less-differentiated PCs have dismal 

survival. We also showed that the level of PC differentiation in MM could be related, at least 

in part, to different chemoresistant potential together with different molecular and genomic 

profiles.

The variable half-life of different serum antibodies (for example: in response to measles and 

mumps vs influenza viruses)29 is consistent with specific survival patterns among unique 

PC subsets, with long-lived PCs being responsible for maintaining such antibody titres for a 

life-span of several years or decades.30 Two recent studies have characterized CD19− 

normal PCs and concluded that these are specifically enriched in the BM and display unique 

morphological, transcriptomic and phenotypic features consistent with increased 

differentiation as compared to CD19+ PCs;12,13 accordingly, affinity for viral antigens to 

which healthy individuals had not been exposed for more than 40 years have been 

exclusively detected among CD19− BMPCs.12 Such observations open new research areas 

to further investigate the features of specific normal and pathological PC subsets according 

to their differentiation.12 Thus, reinforced by the recent confirmation31 of the regulatory 

role of CD81 over CD19 within the B-cell co-receptor,14,32–34 we decided to investigate if 

the CD19 − CD81 pattern of expression could help to further dissect unique PC 

differentiation subsets. Our results are consistent with those reported by Halliley et al.12 and 

Mei et al.13 and show that in healthy individuals, CD19− BMPCs are less proliferative and 
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are enriched in IgG secreting cells, as compared to the CD19+ subset. The notion that 

CD19− BMPCs are more differentiated than the positive subset was further confirmed in our 

study after demonstrating that the former have higher replication history. However, we also 

showed that CD19− BMPCs can be further dissected into CD19−CD81+ and CD19−CD81− 

subsets, and that the latter represent the most differentiated compartment among total 

BMPCs.

Longevity of PCs in BM is restricted by competition for niche space35 and in this 

competitive model, PC intrinsic features likely contribute to determine their life span by 

controlling PC function and niche affinity.11 Here, CD28 and CD56 expression was found 

to be progressively increased from less- CD19+CD81+ into more-differentiated 

CD19−CD81+ and CD19−CD81− BMPCs; accordingly, long-term humoral immunity has 

been reported to depend on the PC-intrinsic function of CD28 signalling down-stream of the 

CD28 Vav motif that regulates BLIMP1.36 CD56 is likely contributing to stronger PC 

adhesion to BM stromal niches. Most interestingly, pathological PCs in MM displayed a 

similar phenotypic behaviour as compared to normal PCs, and patients with fully 

differentiated clones also showed higher expression of CD28 and CD56, as well as CD38low. 

The fact that mature CD19−CD81− normal BMPCs are absent in infants aged 5–7 months13 

but progressively accumulate later in life as shown here, is also a remarkable coincidence 

with the fact that monoclonal gammopathy of undetermined significance and MM typically 

develop in the elderly, and that more than half of the patients (59%) display PC clones that 

phenotypically overlap with fully differentiated normal PCs. Since loss of CD19 and CD81 

expression was observed in both normal and tumour PC differentiation, we hypothesized 

that their regulation was under epigenetic grounds. Thus, we analysed DNA methylation 

levels around the CD81 gene (in its upstream CpG island shore region, CpG island, gene 

body region close to CpG island (Gene Body 1) and the rest of gene body (Gene Body 2)) in 

three MM cell lines with variable levels of CD81 expression (Figure 5). While no 

differences in DNA methylation in the CpG island shore and Gene Body 2 regions were 

observed, the methylation levels in the CpG island and Gene Body region 1 showed a clear 

correlation with CD81 expression, suggesting that these regions contain regulatory elements 

that control CD81 expression. Accordingly, methylation in the CpG island and CD81 

expression were inversely correlated. In contrast, levels of DNA methylation in the Gene 

Body region 1 were positively correlated with gene expression. This dual pattern of negative 

and positive association between gene expression and DNA methylation depending on the 

region analysed has been previously observed,37 and underlines that the function of DNA 

methylation is genomic context dependent.38

The notion that PCs represent the terminally differentiated end-stage of the B-cell lineage 

has likely contributed to a deficiency in knowledge about the levels of phenotypic plasticity 

and maturation of clonal PCs in MM.28,39 Here, we show that up to 41% of MM patients 

display at diagnosis PC clones corresponding to less-differentiated normal PC counterparts, 

including 3% corresponding to the more immature CD19+CD81+ subset. Most interestingly, 

the latter maintain high expression of genes typically related to mature B-cell stages such as 

PAX5, CD20, CD79b, VPREB3, TNFSF8 and CCND1 as revealed by comparing their GEP 

against that of PCs obtained from patients with intermediate- (CD19−CD81+) and fully 

differentiated phenotypes (CD19−CD81−). These results suggest that the proposed 
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phenotypic differentiation model of myeloma PCs is corroborated at the molecular level, 

similarly to what has been recently shown in normal BMPCs from healthy individuals.12 

Importantly, MM patients harbouring less-differentiated PC clones had dismal outcome with 

a median survival of approximately 1 year. Accordingly, the differentiation status of clonal 

PCs emerges as a new and independent prognostic marker in MM, complementary to 

patients’ cytogenetic profile. In fact, patients’ characterization according to PC 

differentiation status allowed the identification of a subset of cases with dismal survival 

albeit standard-risk cytogenetics. It should be noted that the small number of cases 

harbouring less-differentiated PC clones limits the robustness of the statistical comparison 

between groups (particularly regarding survival analyses), and these results should be 

reproduced in larger series of patients (for example: GEM2005MENOS65 and 

GEM2005MAS65 clinical trials; Supplementary Figure 1). That notwithstanding, the 

availability of multiple novel and effective drugs combined with the advent of high-

throughput (cellular and molecular) techniques, may help to identify small patient subgroups 

with a unique biology that could benefit from tailored treatment (for example: anti-CD19 

CAR T-cells40 for cases with less-differentiated myeloma PCs).

The identification of more immature cancer (stem) cells has been historically pursued to 

justify unexplainable relapses, particularly among patients achieving CR.41,42 However, 

relapses among MM patients in CR are now better understood and predicted with the advent 

of MRD monitoring, which have shown an intrinsic correlation between the persistence of 

residual clonal PCs after therapy (that is: MRD) and inferior survival.43–46 Here, we used a 

novel approach to understand ultra-chemoresistance by performing in individual patients 

longitudinal comparisons between clonal diversity according to PC differentiation at 

diagnosis vs MRD.22 Hence, we showed that therapeutic pressure may lead to in vivo 
selection of specific PC subsets, and that in approximately one-fourth of MM patients such 

clonal selection favoured less-differentiated PC subclones. Thus, further studies are 

warranted to establish a clear relationship between the extent of PC differentiation and their 

chemoresistant potential. On a different note, these results may also reflect previously 

unknown levels of cellular plasticity in vivo,47 by which PCs can transition from mature 

into more immature stages (and vice-versa) upon therapeutic pressure. The observations that 

CD81 expression is epigenetically regulated together with the lack of a clear pattern of 

accumulating mutations in FACS-purified immature vs mature PCs subclones from 

individual patients, would support such phenomenon of cellular plasticity. Thus, establishing 

the temporal acquisition of mutations and genetic abnormalities in less- vs more-

differentiated PC clones should be investigated in future studies. Interestingly, these findings 

also unravel that detailed characterization of the MRD PC compartment might be as 

informative as more conventional MRD quantitation to predict patients’ outcome (for 

example: survival of an MRD-positive patient displaying immature PC clones may be poorer 

than other MRD-positive cases).23,48

In summary, we shed new light into normal and tumour PC plasticity, with the identification 

of three well-defined differentiation subsets in both healthy individuals and MM patients, 

respectively. The demonstration that tumour PC differentiation might be related to unique 

chemoresistant, molecular and mutation profiles highlights its importance in the 

prognostication and monitoring of MM patients.
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Figure 1. 
Bone marrow (BM) normal plasma cell (PC) subsets according to the CD19 − CD81 

expression axis. (a) Age-related changes in the distribution of BM normal PC subsets. The 

percentage of the CD19+CD81+, CD19−CD81+ and CD19−CD81− subsets within total BM 

PCs from each healthy donor (n = 20) was determined, and median values per subset for 

each age decade are represented by light, intermediate and dark blue areas, respectively. 

Linear regression between individuals’ age and the respective percentage for each PC subset 

is also shown. (b) Proliferative potential of the different BM normal PC subsets. The 

percentage of the CD19+CD81+ (light blue), CD19−CD81+ (intermediate blue) and 

CD19−CD81− (dark blue) subsets within total BM PCs from healthy donor (n = 5) in G0/G1 

and S-phase/G2M phases of the cell cycle is shown. (c) Quantification of the replication 

history of progressively maturing BM B cell and PC subsets from healthy individuals using 

κ-deleting recombination excision circles. The line in the middle and vertical lines 

correspond to the median value and both the 10th and 90th percentiles, respectively, for the 

ΔCT between the coding joint and the signal joint in FACS-sorted B-cell precursors, 

transitional, naïve and memory B-cells, CD19+ and CD19− PCs from BM samples of 

healthy individuals (n = 5). (d) Immunoglobulin (Ig) heavy chain isotype distribution of the 
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different BM normal PC subsets. After PC identification according to their bright CD38 and 

CD138 expression and unique scatter characteristics, cyIgG+ PCs were defined as those 

showing reactivity in the PE channel (cyIgA+cyIgG) but not in the FITC channel (cyIgM

+cyIgA), whereas cyIgA+ PCs were defined as those showing (diagonal) double-staining in 

the FITC+PE channels; cyIgM+ PCs were defined by reactivity in the FITC channel but not 

in PE. The percentage of cytoplasmic IgG, IgA and IgM is shown within the respective 

CD19+ CD81+, CD19−CD81+ and CD19−CD81− subsets. (e) Immunophenotypic protein 

expression profiles of the different BM normal PC subsets. Due to the existence of five 

parameters measured in common for each aliquot (CD38, CD45, CD19, forward light scatter 

– FSC and sideward light scatter – SSC), it was possible to define the PC compartment in 

each aliquot and fuse the different data files corresponding to the four different eight-colour 

MoAb combinations studied per sample into a single data file containing all information 

measured for that sample, using the merge function of the Infinicyt software. For any single 

PC in each eight-colour MoAb combination, this included data about those antigens that 

were measured directly on it and antigens that were not evaluated directly (‘missing values’) 

for that cell in the corresponding tube it was contained in. Then, the calculation function of 

the Infinicyt software was used to fill in the ‘missing values’, based on the ‘nearest 

neighbour’ statistical principle, defined by the unique position of individual PCs the 

multidimensional space created by the five common (backbone) parameters (FSC, SSC, 

CD38, CD45 and CD19). Ultimately, the expression of all 23 phenotypic markers could be 

analysed at the single PC level, and compared between PCs clustering into the specific 

CD19+CD81+, CD19−CD81+ and CD19−CD81− subsets. Markers differentially expressed 

between the CD19+CD81+ (light blue), CD19−CD81+ (intermediate blue) and CD19−CD81− 

(dark blue) subsets within BM normal PCs from healthy individuals (n = 10). Notched boxes 

represent the 25th and 75th percentile values of the amounts of antigen mean fluorescence 

intensity expression per BM PCs; the line in the middle and vertical lines correspond to the 

median value and both the 10th and 90th percentiles, respectively.
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Figure 2. 
Multiple myeloma (MM) patients’ survival according to the differentiation stage of 

myeloma PC clones. Panels a and b show progression-free survival (PFS) and overall 

survival (OS) for the overall series of MM patients (n = 225) grouped according to the 

differentiation stage of clonal plasma cells (PCs) at diagnosis: more-differentiated 

(CD19−CD81−), intermediate-differentiated (CD19−CD81+) and less-differentiated 

(CD19+CD81+). Patients’ treatment consisted of either nine identical induction cycles with 

bortezomib, melphalan, prednisone (VMP) followed by other nine cycles of lenalidomide 
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plus low-dose dexamethasone (Rd; n = 112), or alternating cycles of VMP and Rd for up to 

18 courses (n = 113). The median follow-up of the series was 3 years. Panels c and d show 

PFS and OS in patients with standard-risk cytogenetics (n = 154; all those cases without 

t(4;14), t(14;16) and/or del(17p13)).
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Figure 3. 
Therapeutic selection at the MRD stage of myeloma PC subclones defined according to their 

differentiation stage. (a) Correlation between the percentage of CD19 (black squares) and 

CD81 (open circles) positive plasma cells (PCs) within total baseline (x axis) vs MRD (y 
axis) clonal PCs in longitudinal bone marrow samples from 40 multiple myeloma (MM) 

patients analysed at diagnosis and after therapy. (b) Schema showing the frequency of 

patients following specific clonal dynamics according to the differentiation stage of 

myeloma PCs from diagnosis to the MRD stage. Representative bivariate dot plot 
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histograms illustrating the patterns of CD19 vs CD81 expression in clonal PCs at diagnostic 

(represented by lines corresponding to one and two SD) and at the MRD stage (red dots) 

corresponding to four out of the eight patients that evolved from baseline more differentiated 

(that is: CD19−CD81−) into intermediate-differentiated (that is: CD19−CD81+) 

chemoresistant PC clones after therapy, ordered from left to right, denoting high to low 

MRD levels, are also shown. Twelve out of the 30 patients displaying the same 

differentiation stage during baseline and MRD monitoring attained CR, three out of the eight 

cases with fully differentiated phenotypes at diagnosis showing intermediate stage 

chemoresistant clonal PCs after therapy attained CR, and so did one out of the two patients 

transitioned from a CD19−CD81+ into a CD19−CD81− phenotype.
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Figure 4. 
Distinct PC differentiation subsets within individual patients show different mutation 

profiles. Clonal plasma cells (PCs) corresponding to the intermediate- (CD19−CD81+) and 

more-differentiated (CD19−CD81−) subsets were FACS-sorted from patients #1, #2, #4, #5 

and #6 (a, b, d, e and f) for mutation analysis using a targeted-sequencing panel covering 77 

genes; in patient #3 (c), mutations were investigated in less-differentiated (CD19+CD81+) vs 

intermediate- (CD19−CD81+) and more-differentiated (CD19−CD81−) PC clones.
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Figure 5. 
The sequential CpGs measured by HumanMethylation450 BeadChip for the CD81 gene. We 

investigated the expression levels of CD19 and CD81 in a large panel of MM cell lines 

(RPMI-8226, RPMI-LR5, NCI-H929, OPM-2, JJN3, MM1S, MM1R, MM144, U266, 

U266-DOX4, U266-LR7, SJR and MGG) and identified five cell lines positive for CD81 

(RPMI-8226, RPMI-LR5, NCI-H929, OPM-2, JJN3) in the absence of CD19; all the others 

exhibited no expression for both CD19 and CD81 (data not shown). Afterward, under the 

hypothesis that loss of CD81 expression could be due to epigenetic regulation of the CD81 
gene, we investigated the DNA methylation profile of CD81 in the NCI-H929, JJN3 and 

U266 cell lines (the first two positive for CD81 and the third negative). Accordingly, we 

observed an inverse correlation between DNA methylation levels in the CpG island region of 

the CD81 gene and the protein (antigen) expression level of CD81 in the three MM cell 

lines. Interestingly, the DNA methylation levels in the CpG island region were also inversely 

correlated with the DNA methylation levels in the gene body region of CD81. These results 

indicate that an epigenetic mechanism of DNA methylation plays an important role in the 

regulation of CD81 expression. The mean of the DNA methylation levels of the CpGs 

located in the CpG island or gene body region of CD81 are also shown.
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Table 1

Phenotypic features of patients with less-differentiated (that is, CD19+CD81+), intermediate-differentiated 

(that is: CD19-CD81+) vs more-differentiated (that is, CD19-CD81-) plasma cell clones among newly 

diagnosed multiple myeloma patients (n = 225)

% of cases within subgroup CD19+CD81+ (%) CD19-CD81+ (%) CD19-CD81−(%) P-value

CD38low 67 52 67 0.09

CD138low 33 31 31 0.99

CD27+ 33 43 50 0.48

CD28+ 17 20 35 0.04

CD45+ 67 50 29   0.003

CD56+ 77 76 75 0.85

CD117+ 67 24 41   0.009
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Table 2

Cytogenetic characteristics of patients with less-differentiated (that is: CD19+CD81+) and intermediate-

differentiated (that is: CD19-CD81+) vs more-differentiated (that is: CD19-CD81−) plasma cell clones among 

newly diagnosed multiple myeloma patients (n = 169)

Genetic abnormality PCs differentiation subset P-value

CD19+ CD81+ (%) CD19-CD81+ (%) CD19-CD81− (%)

Any 25 62 72 0.07

t(4;14) 0 24 17 NS

t(11;14) 0 68 36 0.03

t(14;16) 0 0 11 NS

+1q 25 41 54 NS

del(13q) 0 49 51 NS

del(17p) 0 13 8 NS

High-risk FISH 0 23 19 NS

Abbreviation: NS, not significant.
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Table 3

Multivariate analyses including baseline disease features with univariate significant effect on PFS and/or OS 

of newly diagnosed elderly myeloma patients included in the GEM2010MAS65 trial

PFS OS

HR P HR P

Age (< 75 vs ≥ 75 years) 1.3 0.21 2.7   0.001

ISS 1.2 0.50 1.9 0.16

Interphase FISH cytogenetics (standard- vs high-risk) 1.9 0.003 2.7   0.001

PC differentiation stage 1.7 0.005 2.1   0.006

Abbreviations: FISH, Fluorescence-in situ-hybridization; High-risk FISH, t(4;14), t(14;16) and/or del(17p13); ISS, International Staging System; 
OS, overall survival; PC, plasma cell; PFS, progression-free survival.
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