
1

A parallel grid-based implementation for real-time
processing of event log data of collaborative
applications

Fatos Xhafa*
Department of Computer Science and Information Systems,
Birkbeck, University of London,
23-29 Emerald Street, London WC1N 3QS, UK
E-mail: fatos@dcs.bbk.ac.uk
*Corresponding author

Claudi Paniagua
IBM GTS, Virtualization and Grid Computing,
Avd. Diagonal, 571 08029, Barcelona, Spain
E-mail: cpaniagua@es.ibm.com

Leonard Barolli
Faculty of Information Engineering,
Department of Information and Communication Engineering,
Fukuoka Institute of Technology (FIT),
3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
E-mail: barolli@fit.ac.jp

Santi Caballé
Department of Information Sciences,
Open University of Catalonia,
Av. Tibidabo, 39-43, 08035 Barcelona, Spain
E-mail: scaballe@uoc.edu

Abstract: Collaborative applications usually register user interaction in the
form of semi-structured plain text event log data. Extracting and structuring of
data is a prerequisite for later key processes such as the analysis of interactions,
assessment of group activity, or the provision of awareness and feedback.
Yet, in real situations of online collaborative activity, the processing of log data
is usually done offline since structuring event log data is, in general, a
computationally costly process and the amount of log data tends to be very
large. Techniques to speed and scale up the structuring and processing of log
data with minimal impact on the performance of the collaborative application
are thus desirable to be able to process log data in real time. In this paper, we
present a parallel grid-based implementation for processing in real time the
event log data generated in collaborative applications. Our results show the
feasibility of using grid middleware to speed and scale up the process

Publisher version: http://www.inderscience.com/offer.php?id
DOI: 10.1504/IJWGS.2010.033788

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Oberta in open access

https://core.ac.uk/display/287653631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2 F. Xhafa et al.

of structuring and processing semi-structured event log data. The Grid
prototype follows the Master–Worker (MW) paradigm. It is implemented using
the Globus Toolkit (GT) and is tested on the Planetlab platform.

Keywords: computational grids; grid services; real-time applications.

Reference to this paper should be made as follows: Xhafa, F., Paniagua, C.,
Barolli, L. and Caballé, S. (xxxx) ‘A parallel grid-based implementation
for real-time processing of event log data in collaborative applications’, Int. J.
Web and Grid Services, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: Fatos Xhafa is currently a Visiting Professor at the
Department of Computer Science and Information Systems, Birkbeck,
University of London. He is an Associate Professor (with tenure) at the
Technical University of Catalonia, Spain. His research interests include parallel
and distributed algorithms, combinatorial optimisation, distributed
programming, Grid and P2P computing. He has widely published in
international journals, books and conference proceedings of the research area.
He serves the EB of nine peer-reviewed international journals and has also
guest co-edited in several international journals. He has served and is currently
serving as PC Co-Chair/General Co-Chair of several international conferences
and workshops.

Claudi Paniagua is an Associate IT Architect working for IBM Global Services
in the organisation of Business Consulting Services Application in Barcelona
(Spain). His research interest focus on IT architectures, service-oriented
architectures and grid computing.

Leonard Barolli is a Professor in the Department of Information and
Communication Engineering, Fukuoka Institute of Technology (FIT), Japan.
His research interests include high-speed networks, mobile communication
systems, ad-hoc networking, sensor networks, P2P systems, intelligent
algorithms (fuzzy theory, genetic algorithms, neural networks), network
protocols, agent-based systems, grid and internet computing. He has published
widely in refereed journals and international conferences proceedings. He has
served and is currently serving as General Co-Chair/PC Co-Chair of many
conferences and workshops and as Guest Editor for many journals. He is a
member of IPSJ, IEEE and SOFT.

Santi Caballé has a PhD in Computer Science from the Open University of
Catalonia (OUC). He is an Associate Professor at the Department of Computer
Science, Multimedia and Telecommunication at the OUC. His research
focuses on e-learning, software engineering, network technologies and grid
technologies.

1 Introduction

In Computer-Supported Collaborative Learning (CSCL) environments, the analysis of the
information related to the collaborative group activity is crucial for understanding
collaboration and group processes (Dillenbourg, 1999). This information is usually
maintained in the form of event log data and is generated automatically by the
collaborative application by registering the information related to different types of

A Parallel Grid-based implementation 3

actions done by the users of the applications. One such example is the Basic Support
for Collaborative Work system (Bently et al., 1997), a collaborative application that
generates event log data regarding the connection information as well as actions
performed by the users along time activity. The information generated by the
collaborative applications can be of a great variety of type and formats (Caballé et al.,
2004). Moreover, collaborative applications are characterised by a high degree
of user–user and user–system interaction and hence generate a huge amount of
information of event log data.

As a matter of fact, the computational cost is the main obstacle to processing
the data in real time (Rouillard, 2004), and in real situations, this processing tends to be
done offline to avoid harming the performance of the logging application,
but as it takes place after the completion of the collaborative activity has less impact
on it (Xhafa et al., 2004). Most of the existing approaches in the literature consider a
sequential approach for the processing of log data and try to overcome the performance
problem by:

i processing for specific purpose (i.e., limiting the quantity of information needed
for that purpose)

ii processing of small data samples, usually for research and testing purposes.

Grid technology is increasingly being used to reduce the overall, censored time in
processing data by offloading these computationally costly tasks from the computing
elements running them onto the Grid. The concept of a computational Grid (Foster and
Kesselman, 1999) has emerged as a way of capturing the vision of a network computing
system that provides broad access to massive computational resources. Thus, in this
paper, we show how to offload onto the grid the online processing of log data from the
collaborative application and how a simple MW scheme sufficed to achieve considerable
speed-up. The MW scheme is implemented using Grid services of GT. Grid services
(Comito et al., 2005; Sun et al., 2007; Huang et al., 2007) are increasingly being used in
the development of Grid-enabled online learning applications (Brut and Buraga, 2008).
To show the feasibility of our approach, we use the event log data from BSCW system in
our real context of Open University of Catalonia1 though our approach is generic and can
be applied for structuring event log data of collaborative applications in general.

The rest of the paper is organised as follows. We give in Section 2 a description of the
problem of structuring and processing event log data. The sequential approach for
processing of log data is given in Section 3. We give in Section 4 a parallel approach
using the MW paradigm and its Grid-services-based implementation in Section 5. Some
computational results are given in Section 6 and their evaluation in Section 7. The paper
ends up in Section 8 with some conclusions.

2 The problem of structuring and processing event log data

The problem of structuring event log data of collaborative applications in real time can be
defined as follows: give structure to the semi-structured textual event log data that an
application logs as soon as it logs it and persist the resulting data structure for the later
processing by analysis tools.

 4 F. Xhafa et al.

A special case of this problem, known as log data normalisation or unification
that consists in transforming proprietarily formatted log data to a standard log data
format, is recently gaining attention from the autonomic computing community
(Salfner et al., 2004) as a way to give standard and homogeneous structure to the
strongly heterogeneous data that the disparate elements of an IT infrastructure log while
they operate.

In fact in the discussion that follows we will be using the terminology and
architecture of the Generic Log Adapter (GLA) (Grabarnik et al., 2004), a framework
that addresses the problem of real-time log data normalisation and structuring
in the IBM’s autonomic computing toolkit2 for building autonomic systems and that
has been open source as part of the Eclipse Hyades project. 3

The GLA is architectured around four components, mapping to each one of the four
phases involved in the structuring of log data in real time. These components are briefly
explained here:

i Sensor: This component monitors one source of plain text log data (i.e., a log file)
reading it line by line as it changes as a result of new data being logged. When the
sensor has read a preconfigured number of new lines, it passes them to the
Extractor component.

ii Extractor: The Extractor component receives log data from the sensor and parses
it to delimit the messages or event boundaries contained in the log data.

iii Parser: The parser component parses the messages/events that are received from
the Extractor component and maps them to the target data structure thus giving
structure to the log data.

iv Outputter: The Outputter component receives the data structure created by the
Parser component and persists it for the later processing, e.g., by statistical and
mining tools.

More formally, the input of the problem of structuring log data is text, thus it can be
modelled using formal language terminology (Hopcroft et al., 2001).

Let the input be represented by a word, ω, from a given alphabet, Σ. The Sensor
component reads this word as it is being generated, thus outputs a sequence of subwords
of ω, say, ω1, ω2, …, ωm. The Extractor component acts on each one of these subwords
one at a time, outputting a subword, E(ωi), of ωi, which verifies one simple but important
property: it is an independent unit of structure. That is, it contains all the information
the Parser component needs to know to be able to transform it into a data structure.
Hence, the Parser component acts on it outputting a data structure, P(E(ωi)), to the
Outputter Component who persists it.

It is worth noticing here that the time complexity of the computation of E(ωi) is
linear. Indeed, this computation is a word recognition problem. Thus, the question of its
time complexity is reduced to what kind of languages might an Extractor Component
ever had to recognise. It can be argued, due to the nature of log data, that these can only
be Regular languages or, in the case of log data with multiple formats, a union of Regular
Languages, which is also a Regular Language. Hence, time complexity is linear at most
(Baeza-Yates and Gonnet, 1996).

A Parallel Grid-based implementation 5

3 The sequential approach for processing of log data

To deal with the problem of extracting useful information from the event logs generated
by the BSCW system in real online learning group activities conducted at the Open
University of Catalonia, we have developed a simple application in Java, called
EventExtractor. This application runs offline on the same machine as the BSCW
server and uses the daily log files generated by the BSCW server as input so as to:

i identify the event boundaries inside the log file (extractor component)

ii map specific information contained in these events about users, objects, sessions,
etc., to typed data structures (parser component)

iii store these data structures in a persistent support (outputter component).

Note that as the processing is done offline, there is no need for a sensor component.
To analyse the performance of this sequential application and compare it with its parallel
Grid-based (see Section 5), we designed a specific test battery in which we used both
large amounts of event information and well-stratified short samples consisting of all the
existing daily log files making up the whole group activity generated during an academic
term of the computer science subject “Software Development Techniques” at the Open
University of Catalonia. This course involved two classrooms, with a total of 140
students arranged in groups of 5 students and 2 tutors. On the other hand, other tests
involved a few log files with selected file size and event complexity forming a sample of
each representative stratum. This allowed us to obtain reliable statistical results using an
input data size easy to use.

All our test battery was processed by the EventExtractor application executed
on single-processor machines involving usual configurations. The battery test was
executed several times with different work load to have more reliable results
in statistical terms involving file size, number of events processed and execution time
along with other basic statistics. The experimental results from the sequential processing
of eight event log files are summarised in Figure 1, where for each event log file we show
the relative comparison scale for the file size, number of events and the processing time.

Figure 1 Sequential processing of event log files (file size in bytes, time in seconds) (see online
version for colours)

 6 F. Xhafa et al.

In Figure 1, a certain degree of linearity can be noticed between the number of events and
the file size with regard to the processing time.

In a similar way, Figure 2 presents the processing results of over 100 event log files
involving file size and processing time showing that the processing time is linear on the
size of the log file processed.

Figure 2 Sequential processing time (in seconds) vs. event log file size (in bytes)

This allows us to talk about the processing rate, P (i.e., in Kb/s), of the
EventExtractor application, and to express the running time (i.e., in seconds) of the
EventExtractor application with the following formula:

TS(n) = n/P (1)

where n is the size (in Kbs) of the event log file.

4 A parallel approach using the master–worker paradigm

In this section, we show how the problem of structuring the event log data
can be parallelised using the MW paradigm (Goux et al., 2000; Heymann et al., 2000).

The MW paradigm has been widely used for developing parallel applications.
In this model, there are two different types of entities: master and worker. The master
decomposes the main task into subtasks (sometimes this reduces to splitting the
problem’s input into parts) and sends these to the workers. The workers process the
subtasks as soon as they receive them and send back the result to the master, which uses
them in its main flow of computation.

The MW model has proved to be efficient in developing parallel applications with
different degrees of granularity and is particularly useful when the partitioning of the
problem is easy to compute and the dependencies between tasks are low. Indeed, this is
the case of the problem of structuring plain text log data since:

i the Extractor Component outputs independent units of structure
(i.e., messages/events), which means that, if the problem is partitioned
using the boundaries of these units, no dependencies between tasks will exist

A Parallel Grid-based implementation 7

ii the problem’s input can be easily partitioned in these units of structure since,
as we have seen, this can be done using regular expressions.

Given all the above, the problem of structuring log data in real time can be naturally
parallelised using the MW paradigm by grouping the Sensor and Extractor components at
the Master side and leaving the Parser and Outputter components at the Workers side.

One drawback of this approach, however, might be that the Master is not in full
control of the size of the task that it sends to workers since events/messages can have
arbitrary size. This fact can somewhat reduce the capacity of the Master to play with the
task size to better adapt to the different computational capacities of the workers or to their
variable workloads, especially if the sizes of events/messages are too large. However, the
latter is not a property we could normally expect of log data.

5 Grid services-based implementation

To experimentally test the feasibility of the MW paradigm for parallelising the
structuring of event log data, we have implemented a Grid prototype that parallelises the
EventExtractor application (see Section 3). We used the GT 3.2 and we deployed
the prototype on the Planetlab platform. Both GT 3.2 and Planetlab are briefly described
next.

The Globus Toolkit 4(GT) is the actual defacto Grid middleware standard. Version 3
of GT (GT3) is a refactoring of version 2 in which every functionality is exposed
to the world via a Grid service. Grid services are basically stateful web services. The core
of the GT is a Grid service container implemented in Java that leverages and extends the
Apache’s AXIS web services engine.

Planetlab5 is an open platform for developing, deploying and accessing planetary
scale services. It is, at the time of this writing, composed of 1069 nodes hosted in 494
different sites. Each Planetlab node is an Intel IA32 machine that must comply with
minimum hardware requirements (i.e., 1 GHz PIII + 1 Gb RAM) running the same base
software, basically a modified Linux operating system offering services to create virtual
isolated partitions in the node, called slivers, which look to users as the real machine.
Planetlab allows every user to dynamically create up to one sliver in every node, the set
of slivers assigned to a user form what is called a slice. It is said that a Planetlab node can
run up to 100 concurrent slivers. To test our Grid prototype, we turned Planetlab into a
Grid by installing the GT3’s Grid service container in every sliver of our slice. Moreover,
we implemented the worker as a simple Grid service playing the role of the parser and
outputter components and deployed it on the GT3’s container of every sliver of our slice.
On the other hand, we wrote a simple Java client playing the role of the master and
mapping to the sensor and extractor components, which dispatches, using a simple list
scheduling strategy, the tasks to the workers by calling the operations exposed by the
worker Grid services.

Notice that our objective was not to create a full-blown GT3 MW implementation but
rather to show the feasibility of a parallel Grid-based implementation using the MW
paradigm for our problem domain as follows.

 8 F. Xhafa et al.

5.1 Worker’s implementation

The worker Grid service publishes an interface with only one operation, namely
processEvents. The master calls this operation to dispatch a task to the worker.
The worker can only do one of these operations at a time (no multithreading).
The operation has only one argument: a string containing the textual representation
of the events to be processed by that task. The operation returns a data structure
containing performance information about the task executed (elapsed time in ms,
number of events processed and number of bytes processed). The processEvents
operation is implemented by wrapping the Java code of the EventExtractor
application’s routine that parses the BSCW log events. In other words, the workers
execute exactly the same java bytecode to process the log events as the
EventExtractor application. This makes possible the performance comparison
between the sequential and Grid approaches.

5.2 Master’s implementation

The master is essentially a ‘normal’ Java application that reads from a configuration
file:

1 the folder that contains the event log files to process

2 the available workers

3 the number of workers to use

4 the size of the task to be dispatched to each worker expressed in number of events.

The master then proceeds as follows: peeks as much workers as needed from the
configuration file and puts them all in a queue of idle workers, then enters a loop
reading line by line (i.e., sensor component) the data contained in the event log files
located in the folder specified in the configuration file, and parsing each one
of these lines in search of the boundaries between events to extract those
(i.e., extractor component). Every time the master reads a number of events equal to the
size of the task specified, it creates a thread that gets a worker from the queue of idle
workers (synchronously waiting for a worker if the queue is empty) and synchronously
calls the worker’s processEvent operation. Once the call to the worker returns,
the worker is put back into the queue of idle workers. The master exits the loop when all
events in the event log files have been read and all the tasks that were dispatched are
completed.

The Master implements the EventExtractorMaster interface, which has a
single operation to process events:

Final public EventExtractorMasterStatsBean processEvents() throws Throwable

The operation returns an EventExtractorMasterStatsBean instance containing
some performance statistics about the execution of the operation (see Figure 3).

A Parallel Grid-based implementation 9

Figure 3 Master’s interface (see online version for colours)

The EventExtractorMasterImp class implements the EventExtractor
Master by aggregating an EventExtractorMasterConfiguration instance
that configures its operation and an EventExtractorMasterDispatcher instance
to dispatch tasks to workers. An EventExtractorMasterConfiguration just
exposes operations to set and retrieve configuration parameters of the behaviour of a
master (see Master’s configuration in Figure 4).

Figure 4 Master’s configuration (see online version for colours)

 10 F. Xhafa et al.

On the other hand, the EventExtractorMasterDispatcher interface defines
operations to dispatch tasks to workers and synchronise with them.

The dispatchEventsToWorker operation synchronously sends a sequence of
events to an available worker while waitForAllDispatchsToFinish operation
does not return until all pending dispatchEventsToWorker operations have
returned.

There is a base implementation of this interface from which two final implementation
classes extend. The base implementation class uses an instance of an Event
ExtractorMasterIdleWorkerQueue interface to implement the queue of
workers. Each one of the classes that extend from the base implementation class
specialises the behaviour by aggregating a different implementation of the interface
EventExtractorMasterIdleWorkerQueue at construction time.

The EventExtractorMasterDispatcherBlockingImp implements the
operation dispatchEventsToWorker by spawning a thread as follows (error
treatment omitted for simplicity):

A Parallel Grid-based implementation 11

5.3 Master’s dispatching strategies

We have implemented two different dispatch strategies that specialise the base dispatch
implementation by overriding the method afterDispatch and by instantiating a different
implementation class of EventExtractorMasterIdleWorkerQueue interface at construction
time (see Figure 5).

Figure 5 Master’s dispatching strategies (see online version for colours)

The EventExtractorMasterDispatcherBlockingImp dispatch strategy uses
the EventExtractorMasterIdleWorkerQueueBlockingImp class to
implement its queue of idle workers (see Figure 6). This class implements the
getNextWorker operation by blocking until the queue of idle workers is not empty, it then
picks up a worker removing it from the queue and returns it to the caller. Observe that the
instance of EventExtractorMasterDispatcherBlockingImp then calls the
processEvent operation on this worker and after that puts back the worker in the queue.

Figure 6 Master’s implementations queues

The EventExtractorMasterDispatcherRoundRobinImp dispatch strategy
(see Figure 6) uses the EventExtractorMasterIdleWorkerQueueRound
RobinImp class to implement its queue of idle workers. This class maintains a circular

 12 F. Xhafa et al.

counter that points to the ‘next available’ worker and implements the getNextWorker
operation just by incrementing the counter modulo the size of the queue and returning the
worker pointed by it. Notice that this dispatching strategy floods the workers with tasks
without waiting for them to become idle in a round-robin scheme.

Notice that the scheduling strategy (i.e., list scheduling) favours the faster nodes and
thus it is appropriate for an environment where worker machines have unpredictable
workloads as the Grid, however, in a more homogeneous workload environment a simple
static round-robin scheduling strategy could be more efficient.

6 Computational results

In this section, we present the experimental results of our Grid prototype. To evaluate
them, it is important to understand how they were collected and what was measured.
Basically, we measured parallel speed-up and efficiency for different executions of the
parallel processing of 1000 events using different number of workers, p, (physical
scaling) ranging in 2, 4, 8, 16 and different task sizes, ns (i.e., in number of events)
ranging from 1 event to 1000/p events.

Parallel speed-up is used to measure the performance gain from a parallelised
execution of the application over its serial execution, defined as follows:

S(n, p, s) = TS (n)/TP (n, p, s) (2)

where n is the size of the input, s is the task size, TS(n) is the total running time of the
sequential execution for an input of size n and TP(n, p, s) is the total running time of the
parallel execution for an input of size n, using p workers with a task of size s.

Parallel efficiency measures the degree of utilisation of the computing resources
involved in the parallel computation and is defined as the speed-up divided by the
number of computing resources (i.e., workers):

E(n, p, s) = S(n, p, s)/p. (3)

To characterise the speed-up of our prototype, we run k different executions for each
combination of number of workers and task sizes that we tested and then applied the
following formula:

1 1

1

()
(, ,) ,

(, ,)
ij

k p
pEi j

o s k
MWi si

T n
S n p n

T n p n
= =

=

=
∑ ∑
∑

 (4)

where TpEij(n) is the time spent by the jth worker executing its processEvent
operation in the ith execution, while TMWi(n, p, ns) is the total running time of the master
in the ith execution.

Note that we use averaged values to compute the speed-up and that the total
sequential execution time was not computed by running the EventExtractor
application in an arbitrary machine, but by summing up the times spent by the workers
executing its processEvent operation. This time can be thought of as the serial
execution time of the application on a hypothetical machine with varying computational
power and workload equivalent to the ones experimented by the workers during the
parallel execution. Thus, we can have a more realistic idea of the speed-up achieved.

 A Parallel Grid-based implementation 13

We show in Figure 7 and Figures 8–11 the main results of our experiments.
Figure 7 shows how the observed speed-up and parallel efficiency of our prototype
scaled with the number of workers for a fixed task size of 25 events. For the rest of
figures, for each number of workers we tested, it is shown how the observed speed-up
varied with the size of the task.

Figure 7 Speed-up and efficiency vs. No. of workers for a task size of 25 events

Figure 8 Speed-up vs. task size for 2 workers

Figure 9 Speed-up vs. task size for 4 workers

 14 F. Xhafa et al.

Figure 10 Speed-up vs. task size for 8 workers

Figure 11 Speed-up vs. task size for 16 workers

7 Analysis of the results

From the results obtained, it can be concluded that a reasonable speed-up has been
achieved in every tested configuration. However, we observe that the parallel efficiency
decreases with the number of workers (see Figure 7). This could be explained due to the
fixed size of the input to 1000 events since the speed-up seems to grow with the task size
except for values near 1000/p where it begins to decrease.

As can be seen from the figures, the threshold in the task size reduces from 25
for 4 and 8 workers (see Figures 9 and 10) to just 5 (see Figure 11) in case of 16 workers.
Indeed, for too small values of the task size, the overhead introduced by the transmission
protocol when sending the parts to the workers is noticeable and the implemented list
scheduling strategy may be spending too much time waiting for completion notifications.
On the other side, values of the task size close to 1000/p considerably diminish
the attainable degree of concurrency; however, it is here where increasing the size of the
problem, n, could be useful.

Our results show the feasibility of parallelising the problem of structuring any plain
text event log data, achieving considerable speed-up, provided that

 A Parallel Grid-based implementation 15

1 the structuring algorithm’s running time function, f (n), be of strictly lower order than
the transmission time function, n/B, that measures the time required to transmit a
piece of data of size n for a bandwidth B (i.e., f (n) = ω(n/B))

2 the log data can be easily parsed (i.e., with regular expressions at most) to be broken
in independent units of structure (i.e., message/events).

Log data, as well as structuring algorithms, especially the ones that can be found in
generic log data structuring/normalising frameworks (such as the GLA, which are
implemented using regular expressions) satisfy these assumptions most of the time.

We finally note that although the results of the experimental study are dependent on
the form of the BSCW event log files, the parallelisation strategy presented in this paper
is generic and can be applied to parallelise the structuring of collaborative application’s
events log data.

8 Conclusion and future work

In this paper, we first have motivated the need to process in real time the large
amount of information generated in collaborative applications for important purposes
such as awareness, feedback, assessment, workspace design and interaction analysis.
Then, we have shown how to use a grid-based approach to overcome the drawbacks
of existing approaches. To this end, we have presented a proof of concept grid
implementation to speed up the processing of the event log data generated in
collaborative applications. We have particularised the approach for the case of event log
data of the BSCW system.

The results show the feasibility of parallelising the problem of structuring any plain
text event log data, achieving considerable speed-up. On the other hand, we want to
emphasise that although the parallelisation of event log data processing could have
been done with any other distributed Java-based technology, doing it with Globus
Toolkit 3 offers several advantages:

1 opens the door to a very costly effective and powerful way of harnessing computer
power as any machine capable of running the Java platform can be easily turned
into a worker by just installing the GT3 Container on it and deploying our worker
service

2 it is also very easy to achieve a simple but working and performing solution that
can be incrementally extended to a full-blown grid solution that may reuse the
many powerful features of the GT such as fast data transfer, notification and dynamic
discovery of workers.

In fact, there are many aspects of the prototype that we plan to enhance in the near
future, among them, fault-tolerance, dynamic discovery of workers and the possibility
of implementing the communication between the master and the workers by other
means than the default transport mechanism (i.e., SOAP over HTTP) used by GT3.
In particular, we would like to use gridFTP to explore the possibility of sending large size
tasks to the workers and using OGSI notification to communicate asynchronously
to the master the completion of tasks by the workers, which would result in far more
scalable way of keeping track of task completion than the current approach of having a

 16 F. Xhafa et al.

thread waiting for each pending task. To achieve full scalable implementation, the
synchronisation should be implemented by leveraging the Globus publish/subscribe event
infrastructure.

Finally, we plan to provide our parallel application with better scheduling strategies
that would result in improvement of parallel speed-up. All in all, the promising
experimental results obtained together with the powerful features provided by the GT
encourage us to keep working on to extend the current prototype to a full-blown
Grid implementation capable of speeding and scaling up the real-time processing
of collaborative group activity log data by harnessing resources in the dynamic,
opportunistic and heterogeneous distributed environment such as computational grids.

Acknowledgement

Fatos Xhafa’s research work is supported by a grant from the General Secretariat of
Universities of the Ministry of Education, Spain.

References
Baeza-Yates, R.A. and Gonnet, G.H. (1996) ‘Fast text searching for regular expressions or

automaton searching on tries’, Journal of the ACM, Vol. 43, No. 6, pp.915–936.
Bentley, R., Appelt, W., Busbach. U., Hinrichs, E., Kerr, D., Sikkel, S., Trevor, J. and Woetzel, G.

(1997) ‘Basic Support for Cooperative Work on the World Wide Web’. Int. J. Human-
Computer Studies, Vol. 46, No. 6, pp.827–846.

Brut, M. and Buraga, S. (2008) ‘An ontology-based approach for modelling grid services
in the context of e-learning’, Int. J. Web and Grid Services, Vol. 4, No. 4, pp.379–394.

Caballé, S., Xhafa, F., Daradoumis, Th. and Marqués, J.M. (2004) ‘Towards a generic platform
for developing CSCL applications’, Int. Workshop on Collaborative Learning Applications of
Grid Technology (CLAG’2004), Part of the 4th IEEE/ACM Int. Symp. on Cluster Computing
and the Grid (CCGrid’2004), USA, IEEE, 2004 (Proceedings CD, 0-7803-8430-X/04/IEEE).

Comito, C., Talia, D. and Trunfio, P. (2005) ‘Grid services: principles, implementations and use’,
Int. J. Web and Grid Services, Vol. 1, No. 1, pp.48–68.

Dillenbourg, P. (1999) ‘What do you mean by collaborative learning?’, in Dillenbourg, P. (Ed.):
Collaborative-Learning: Cognitive and Computational Approaches, Elsevier, Oxford,
pp.1–19.

Foster, I. and Kesselman, C. (Eds.) (1999) The Grid 2e, 2nd Edition Blueprint for a New
Computing Infrastructure, Morgan-Kaufman, Chapter 2, pp.13–24.

Goux, J., Kulkarni, S., Yoder, M. and Linderoth, J. (2000) ‘An enabling frame-work for
master-worker applications on the computational grid’, Proceedings of the 9th IEEE
international Symposium on High Performance Distributed Computing (August 01 – 04,
2000), High Performance Distributed Computing, IEEE Computer Society, Washington, DC,
p.43.

Grabarnik, G., Salahshour, A., Subramanian, B. and Ma, Sh. (2004) ‘Generic adapter
logging toolkit’, First International Conference on Autonomic Computing (ICAC’04),
pp.308–309.

Heymann, E., Senar, M., Luque, E. and Livny, M. (2000) ‘Adaptive scheduling for master-worker
applications on the computational grid’, Proceedings of the First IEEE/ACM International
Workshop on Grid Computing, LNCS, Vol. 1971, pp.214–227.

Hopcroft, J.E., Motwani, R. and Ullman, J.D. (2006) Introduction to Automata Theory, Languages,
and Computation, 3rd ed., Addison-Wesley Longman Publishing Co., Inc.

 A Parallel Grid-based implementation 17

Huang, W., Wu, Y., Yuan, Y., Liu, J., Yang, G. and Zheng, W. (2007) ‘Parallel programming over
ChinaGrid’, Int. J. Web and Grid Services, Vol. 3, No. 4, pp.480–497.

Rouillard, J.P. (2004) ‘Real-time log file analysis using the simple event correlator’, Proceedings of
the 18th USENIX Conference on System Administration (Atlanta, GA, November 14 –19,
2004), System Administration Conference, USENIX Association, Berkeley, CA, pp.133–150.

Salfner, F., Tschirpke, S. and Malek, M. (2004) ‘Comprehensive logfiles for autonomic system’,
18th International Parallel and Distributed Processing Symposium (IPDPS’04) – Workshop
11, Vol. 12, p.211b.

Sun, H., Huai, J., Hu, Ch. and Li, Q. (2007) ‘Design and implementation of an enhanced
grid service container in the CROWN grid’, Int. J. Web and Grid Services, Vol. 3, No. 4,
pp.403–423.

Xhafa, F., Caballé, S., Daradoumis, Th. and Zhou, N. (2004) ‘A grid-based approach for processing
group activitylog files’, Proc. of the GADA’04, Cyprus, LNCS Vol. 3292, pp.175–186.

Notes
1http://www.uoc.edu
2http://www-106.ibm.com/developerworks/autonomic/overview.html
3http://eclipse.org/hyades/
4http://www.globus.org
5http://www.planet-lab.org

