
 

 
 
 
 
 
 

Towards Synthetic Life:  

Establishing a Minimal Segrosome  

for the Rational Design of Biomimetic Systems  

 
 
 

Dissertation 
 

Zur Erlangung des Doktorgrades 
 

der Naturwissenschaften 
 

(Dr. rer. nat.)  
 
 

 

dem Fachbereich Biologie 
 

der Philipps-Universität Marburg 
 

vorgelegt von 
 
 
 

Daniel Hürtgen 
 

Master of Science 
 

aus Trier 
 

Marburg, Dezember 2018 



 

 

Originaldokument gespeichert auf dem Publikationsserver der  
Philipps-Universität Marburg  

http://archiv.ub.uni-marburg.de 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dieses Werk bzw. Inhalt steht unter einer  
Creative Commons  
Namensnennung  

Keine kommerzielle Nutzung  
Weitergabe unter gleichen Bedingungen  

3.0 Deutschland Lizenz. 

 

Die vollständige Lizenz finden Sie unter: 
http://creativecommons.org/licenses/by-nc-sa/3.0/de/  



 

Die Untersuchungen zur vorliegenden Arbeit wurden von November 2014 bis 
November 2018 am Max‐Planck‐Institut für terrestrische Mikrobiologie & Zentrum für 
Synthetische Mikrobiologie in Marburg unter der Leitung von Prof. Dr. Victor Sourjik 

durchgeführt. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Vom Fachbereich Biologie der Philipps Universität Marburg 
 

als Dissertation angenommen am: 17.01.2019 
 

Erstgutachter: Prof. Dr. Victor Sourjik 
Zweitgutachter: Prof. Dr. Martin Thanbichler 

 

Weitere Mitglieder der Prüfungskommission: 
 

Prof. Dr. Michael Bölker 
Dr. Simon Ringgaard 
 
Tag der mündlichen Prüfung: 07.02.2019 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Im Rahmen dieser Promotion wurden folgende Originalpublikationen 
veröffentlicht bzw. zur Veröffentlichung vorbereitet: 

 
 

Hürtgen D, Mascarenhas J, Heymann M, Murray S, Schwille P, Sourjik V 

Towards Biomimetic Cell Division: In Vitro Reconstitution and Coupling of 

DNA Replication and Segregation in a Biomimetic Micro-Compartment (in 

preparation) 

 

Hürtgen D, Mascarenhas J, Weise L, Mutschler H, Sourjik V  

Engineering of a Synthetic Segregation System for RNA-based Protocells 

(in preparation) 

 

Schauer O, Mostaghaci B, Colin R, Hürtgen D, Kraus D, Sitti M, Sourjik V 

(2018) Motility and Chemotaxis of Bacteria-Driven Microswimmers 

Fabricated Using Antigen 43-Mediated Biotin Display. Sci Rep 8(1):9801. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weitere während der Promotion verfasste Veröffentlichungen, die nicht 

Originalpublikationen sind, sind nachfolgend aufgelistet: 

 

Hürtgen D, Murray S, Mascarenhas J, Sourjik V     

DNA Segregation in Natural and Synthetic Minimal Systems (submitted) 

 

Hürtgen D, Härtel T, Murray S, Sourjik V, Schwille P           

Functional Modules for Minimal Cell Division for Synthetic Biology 

(submitted) 

 

Hürtgen D, Vogel S K, Schwille P          

Cytoskeletal- and Actin-based Polymerization Motors and their Role in 

Minimal Cell-Design (submitted) 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 



 

“Our greatest weakness lies in giving up. The most certain way to succeed is always 

to try just one more time.”  

 

Thomas A. Edison 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



Abstract  

 i 

Abstract 

DNA segregation is a fundamental life process, crucial for renewal, reproduction and 

propagation of all forms of life. Hence, a dedicated segregation machinery, a 

segrosome, must function reliably also in the context of a minimal cell. Conceptionally, 

the development of such a minimal cell follows a minimalistic approach, aiming at 

engineering a synthetic entity only consisting of the essential key elements necessary 

for a cell to survive.  

In this thesis, various prokaryotic segregation systems were explored as possible 

candidates for a minimal segrosome. Such a minimal segrosome could be applied for 

the rational design of biomimetic systems including, but not limited to, a minimal cell.  

DNA segregation systems of type I (ParABS) and type II (ParMRC) were compared 

for ensuring genetic stabilities in vivo using vectors derived from the natural secondary 

chromosome of Vibrio cholerae. The type II segregation system R1-ParMRC was 

chosen as the most promising candidate for a minimal segrosome, and it was 

characterized and reconstituted in vitro. This segregation system was encapsulated 

into biomimetic micro-compartments and its lifetime prolonged by coupling to ATP-

regenerating as well as oxygen-scavenging systems. The segregation process was 

coupled to in vitro DNA replication using DNA nanoparticles as a mimic of the 

condensed state of chromosomes. Furthermore, another type II segregation system 

originating from the pLS20 plasmid from Bacillus subtilis (Alp7ARC) was reconstituted 

in vitro as a secondary orthogonal segrosome. Finally, a chimeric RNA segregation 

system was engineered that could be applied for an RNA-based protocell.  

Overall, this work demonstrates successful bottom-up assemblies of functional 

molecular machines that could find applications in biomimetic systems and lead to a 

deeper understanding of living systems. 
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Zusammenfassung 

DNA Segregation ist ein fundamentaler Lebensprozess, notwendig für Erneuerung, 

Reproduktion und Wachstum aller Lebensformen auf diesem Planeten. Aus diesem 

Grund muss eine spezialisierte Segregationsmachinerie, ein Segrosom, etabliert 

werden, sowie zuverlässig funktionieren – auch im Kontext einer Minimalzelle. 

Konzeptionell folgt die Entwicklung einer solchen einem minimalistischen Ansatz, 

welcher darauf abzielt, eine synthetische Einheit zu konstruieren, welche 

ausschließlich aus den grundlegenden Schlüsselelementen besteht, die für das 

Überleben einer Zelle notwendig sind.  

In der vorliegenden Doktorarbeit wurden verschiedene prokaryotische 

Segregationssysteme als mögliche Kandidaten für ein minimales Segrosom erforscht. 

Dieses könnte für ein rationales Design von biomimetischen Systemen Anwendung 

finden, einschließlich einer Minimalzelle.  

Segregationssysteme des Typs I (ParABS) und des Typs II (ParMRC) wurden 

bezüglich ihrer resultierenden genetischen Stabilität in vivo verglichen. Dazu wurden 

Vektoren verwendet, die vom natürlichen sekundären Chromosom Vibrio cholerae‘s 

abgeleitet wurden. Das Typ II Segregationssystem R1-ParMRC wurde als der 

vielversprechendste Kandidat für ein minimales Segrosom ausgewählt, charakterisiert 

und in vitro rekonstituiert. Es wurde in biomimetische Mikrokompartimente 

eingekapselt, sowie dessen Lebensdauer durch die Kopplung an ATP-regenerierende 

und sauerstoffabführende Systeme verlängert. Der Segregationsprozess wurde an die 

in vitro DNA Replikation gekoppelt durch die Verwendung von DNA-Nanopartikeln, 

welche den kondensierten Zustand von Chromosomen imitieren. Zusätzlich wurde ein 

weiteres Typ II Segregationssystem vom pLS20 Plasmid von Bacillus subtilis 

(Alp7ARC) als sekundäres und orthogonales Segrosom in vitro rekonstituiert. 

Schließlich, wurde ein chimäres RNA Segregationssystem konstruiert, welches im 

Zusammenhang einer RNA-basierten Protozelle zur Anwendung kommen könnte.  

Insgesamt demonstriert diese Doktorarbeit erfolgreiche bottom-up Konstruktionen 

verschiedener funktionaler, molekularer Maschinen, die bei der Entwicklung von 

biomimetischen Systemen Anwendung finden und zu einem grundlegenderen 

Verständnis von lebendigen Systemen auf diesem Planeten führen könnten. 
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Commonly used abbreviations are not listed.

bp Base pairs 

BSA Bovine Serum Albumin 

ChrI Primary chromosome of V. cholerae 

ChrII Secondary chromosome of V. cholerae 

CP Coat protein 

DNA Deoxyribonucleic acid 

ddH2O Double distilled water 

dNTP Deoxyribonucleotide triphosphate 

DTT Dithiothreitol 

EDTA Ethylene diamine ‐tetra‐acetic acid 

GFP Green fluorescent protein 

IPTG Isopropyl‐β‐D‐1‐thiogalactopyranoside 

kb Kilo base pairs 

kDa Kilo Dalton 

Mbp Mega (106) base pairs  

mCherry Monomeric red fluorescent protein 

OD600 Optical density at 600 nm wavelength 

oriII Origin of replication of the secondary chromosome of V. cholerae 

RNA Ribonucleic acid 
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RT Room temperature 
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TEM Transmission electron microscopy 

TIRF Total internal reflection fluorescence microscopy 
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1 Introduction 

 

1.1 Minimal Cell Design and DNA Segregation 

There has been recently much interest in constructing a minimal living cell entirely 

from non‐living components (Schwille et al., 2018). The aim of developing such a 

minimal cell from the bottom-up already has initiated an entire new generation of 

studies investigating fundamental biological questions concerning origin of life, cellular 

dynamics and complexities, and could also be used for novel biotechnological 

applications and processes, based on synthetic minimal systems.  

Natural cells pose several disadvantages in comparison to synthetic minimal cells 

when it comes to a determined production of compounds of interest in a 

biotechnological context, such as lower yields due to metabolic burden, controllability 

and unpredictable cellular responses (Deplazes and Huppenbauer, 2009; Jouhten, 

2012; Wu et al., 2016; Buddingh’ and van Hest, 2017). These obstacles could be 

overcome by using a minimal cell or generally minimal biomimetic systems, since they 

would be designed to solely fulfill two tasks: First, to produce the compound of interest 

and second, to self-sustain.  

Thus, when it comes to the bottom-up design of a biomimetic system the reconstitution 

and implementation of the fundamental life process of genome segregation is crucial, 

since the proliferation of life on earth requires the constant division of living cells 

(Møller-Jensen, Jensen and Gerdes, 2000; Yanagida, 2005; Barillà, 2016). From 

bacteria and archaea to higher organisms, from embryonic development to adult life, 

reliable genome inheritance is crucial for propagation and renewal, to ensure that 

progeny will be functional and survive (Gordon and Wright, 2000).  

However, eukaryotic chromosome segregation is highly complex; and while E. coli is 

the most studied prokaryotic model organism, the details of how it (and other bacteria) 

manage chromosome segregation remain incomplete. These aspects of chromosome 

segregating systems render their reconstitution and application as a minimalistic, 

dedicated segregation machinery, a minimal segrosome, infeasible. Thus, the more 

simplistic, bacterial plasmid segregation systems could be of interest for the bottom-

up design of minimal biomimetic systems and a minimal cell. 
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1.2 Bottom-Up and in vitro Approaches for Studies of Protein-based 

Machineries 

A powerful way of studying the underlying physical properties and mechanistic details 

of protein-based machineries are in vitro reconstitution approaches. Pioneering 

genetic, electron microscopy and live cell imaging studies have identified the 

cytoskeletal structures in the last decades and paved the way for their subsequent 

purification. Also, the conditions to handle these proteins and to control their assembly 

are very well known, so that functional readouts were determined, such as their spatial 

and temporal organization or their force generation. The bottom-up approach enables 

for direct comparisons and complementation of experimental and theoretical data that 

simulate all molecules involved. These simulations can then be used to create a 

detailed physical picture by rebuilding the respective structure or function. However, 

studies of active protein systems and protein-based machineries is a young field and 

just started to elucidate how coordinated movement can emerge from just a small 

variety of molecules.  

In general, in vitro studies regularly face the question whether or not they represent 

the actual biochemical structures and biological functions including their physical 

properties as seen in vivo. However, in vitro reconstitutions in this field bring three 

major advantages: (i) testing whether identified biological units are pivotal and 

sufficient to reconstitute a particular behavior; (ii) enabling direct biophysical 

manipulation to study the properties of these systems and (iii) allowing studies of 

regulatory elements that control system dynamics.  

When reconstituting in vitro, there are many possibilities in the spatiotemporal 

organization of the involved units and modules to a biological system (Figure 1). 

Almost isotropic conditions can be achieved simply by uniform mixing in bulk. 

Alternatively, anisotropic or polar organization could be used by spatially confining the 

involved components, resulting in an inhomogeneous assembly of the involved 

players. The organization over time could be further manipulated by varying external 

physical or chemical inputs, leading to active protein systems, where context and 

history determine the response. It is important to mention that such higher level of 

complexity, considering heterogeneous boundary conditions as well as time-varying 

biases, more closely resembles the environmental conditions of active protein systems 

responsible for their functions inside living systems. 
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Figure 1: Schematic overview of developing minimal systems via bottom-up synthetic biology. 

Depending on the experimental design, biological units are chosen, which are (self-) assembled in vitro 

to build biological modules. The modules are subsequently tested by their coupling in order to create a 

functional, biological system that can be controlled. Several iterations of this cycle enable optimization. 

 

1.3 Bacterial Plasmid Segregation 

On the length scale of bacteria, diffusion is an effective means of uniform distribution 

and thus partitioning of any freely diffusing cellular component present in high copy 

numbers (Reyes-Lamothe et al., 2014). Thus, for bacterial plasmids a large copy 

number drastically decreases the probability of plasmid loss (Summers, 1991). 

However, for low-copy number plasmids diffusion alone is not sufficient for partitioning, 

and a random distribution leads to high rates of plasmid loss (Fedorec, 2014).  
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To cope with that problem bacteria have evolved active segregation machineries 

(Million-Weaver and Camps, 2014) that ensure the rates of plasmid loss per division 

are as low as 10-4 (Li et al., 2004). 

Typical plasmid-encoded partition (par) systems (Ebersbach and Gerdes, 2005) 

consist of an NTPase, a centromere-binding adapter protein, and a centromeric region 

on the plasmid DNA. In the first step of the partition process, multiple centromere-

binding proteins bind co-operatively to tandem repeats in the centromere region to 

form a higher-order nucleoprotein complex. This partition complex recruits the NTPase 

to form the fully functional segrosome and activates the NTPase for DNA separation.   

Bacterial segregation machineries can be subdivided into four categories, based on 

the nature of the NTPase (Gerdes, Howard and Szardenings, 2010; Guynet and de la 

Cruz, 2011):  

 

1. Walker A-type ATPases of the ParA type (Type I systems), where several 

modes of action have been suggested, including most recent DNA-relay model 

(Figure 2A); 

2. Actin-like ATPases of the ParM type (Type II systems) that actively push 

plasmids apart (Figure 2B); 

3. Tubulin-like GTPases of the TubZ type (Type III systems) that segregate DNA 

via a tram-like mechanism (Figure 2C); 

4. ATPase-independent systems (Type IV systems, Figure 2D);  
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Figure 2: Established classes of bacterial DNA segregation.  

(A) Type I segregation: In the DNA-relay mechanism, the adaptor protein ParB (red) is bound to the 

centromere-like region parS (yellow) on the plasmid to form the partitioning complex. This nucleoprotein 

complex attaches to DNA-bound ParA-ATP (dark brown ovals) and is stretched by elastic forces exerted 

by the chromosome (not shown) that move it to quarter-cell position. ParB-stimulated hydrolysis of 

ParA-ATP to ParA-ADP (light brown ovals) leads to formation of ParA depletion zones required for 

direct motion towards higher ParA concentration. (B) Type II segregation: In the pushing mechanism, 

plasmid segregation is driven by the actin-like motor protein, ParM, which forms polar, left-handed 

double-stranded filaments. Filament association with the complex between adaptor ParR (red) and the 

centromeric site parC (yellow) stabilizes its attached end. Filaments attached to neighboring plasmids 

stabilize each other via lateral associations while monomers are added by the nucleoprotein complex, 

hence pushing the plasmids to opposite poles. (C) Type III segregation: In the tramming mechanism of 

the pBtoxis plasmid, TubR (red) bound to tubC centromere (yellow) is pulled by a treadmilling polymer 

consisting of the tubulin-like GTPase TubZ, and it is released upon contacting the membrane at the cell 

pole. TubZ polymers can reverse their direction after reaching the curved pole, potentially being able to 

capture the remaining TubR/tubC complexes and deliver them to the opposite cell pole. (D) Type IV 

segregation: In the mechanism proposed for plasmid R388, StbA (red) binds to the centromere-like site 

stbDRs (yellow), thus pairing plasmids to the host chromosome. Plasmids are then co-segregated with 

the host chromosome [figure from Hürtgen et al. submitted].  
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1.3.1 Type I Segregation by Walker A-Type ATPases 

The type I Par (ParABS) system is the most widespread DNA segregation system 

across the bacterial kingdom and is employed by plasmids and chromosomes alike 

(Gerdes, Howard and Szardenings, 2010; Szardenings, Guymer and Gerdes, 2011). 

Genes of the ParA family encode for Walker A-type ATPases, which can interact and 

be stimulated by the ParB proteins as well as by DNA (Watanabe et al., 1989; Davis, 

Martin and Austin, 1992; Davey and Funnell, 1994, 1997). However, the exact 

mechanism of type I plasmid partitioning has remained elusive (Matthews et al., 1987; 

Lynch, Wang and Mizuuchi, 1995; Ietswaart et al., 2014; Brooks and Hwang, 2017). 

An observation that ParA can assemble into filaments when bound to ATP (Dye and 

Shapiro, 2007; Szardenings, Guymer and Gerdes, 2011) led to a ‘pulling filament 

model’ of DNA segregation (Simon Ringgaard et al., 2009), resembling the spindle 

mechanism in eukaryotes (Yanagida, 2005).  

The subsequent diffusion-ratchet model (Vecchiarelli et al., 2010, 2014) was based on 

the observation that  ParA forms a gradient towards the cell poles (Vecchiarelli et al., 

2010). This model proposes that ParA gradient acts as a chemical potential, which 

provides a chemophoretic force (Sugawara and Kaneko, 2011) to drive directed 

motion of the plasmid. Most recently, Surovtsev et al. proposed a more detailed ’DNA-

relay’ mechanism (Figure 2A) for plasmid movement along the ParA gradient 

(Surovtsev, Campos and Jacobs-Wagner, 2016), based on their earlier model for 

chromosome segregation in C. crescentus (Lim et al., 2014). Here, the partition 

complex is attached to the chromosome via non-specifically bound ParA-ATP. It hence 

experiences the elastic fluctuations of DNA and is pulled in the direction with the most 

DNA contacts, i.e. up the ParA-ATP gradient. Due the balancing of ParA-ATP fluxes 

coming into the partition complex from either side, this is sufficient to result in regular 

positioning (Ietswaart et al., 2014). The diffusion-ratchet model was also revised to 

include a similar molecular explanation for the directed motion (Hu et al., 2015, 2017). 

Here, the cumulative effect of transient tethering arising from the many individual 

ParA-ATP/ParB interactions collectively drives directed motion toward higher ParA 

concentrations while quenching diffusive motion in the lateral directions (Hu et al., 

2015, 2017). More recently, it was shown that partition complexes are associated with 

high density regions of the nucleoid, and it was suggested that the structure of the 

nucleoid scaffold may be responsible for plasmid positioning (Le Gall et al., 2016). 
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1.3.2 Type II Segregation by Actin-like ATPases 

Next to the five established bacterial actin families (MreB, FtsA, ParM, AlfA, 

MamK; Figure 3) more than 35 distinct families of bacterial actin-like proteins have 

been identified (Derman et al., 2009). Despite their conserved properties these 

families differ in nucleotide binding- and hydrolysis parameters, kinetics of filament 

formation, filament structure and filament behavior (Derman et al., 2012), which 

indicates their evolutionary distances. 

 

 

Figure 3: Phylogenetic tree based on amino acid sequences of actin-like and closely related 

proteins found in bacteria. The bar represents 20 % sequence divergence [from (Deng et al., 2016)].  

 

One family member is R1-ParM from the type II segregation system R1-ParMRC 

encoded by the low-copy number plasmid R1, which was discovered in 1986 (Kenn 

Gerdes and Molin, 1986). This ParMRC system (Figure 2B) represents a typical 

member of this family of partitioning systems and is likely to constitute the best-

understood plasmid partition system (Garner et al., 2004; Garner et al., 2007; Million-
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Weaver and Camps, 2014). The R1 plasmid encodes for an actin-like ATPase (ParM, 

35.7 kDa, Figure 4A) a DNA binding protein (ParR, 13.3 kDa, Figure 4B), and a 

centromere-like partition site parC. This centromeric sequence consists of 160 base 

pairs found upstream of the orf’s for ParRM onto which ParR binds specifically 

(Jensen and Gerdes, 1997; Garner et al., 2004) and harbors the promoter for the 

parRM genes, flanked by two tandem arrays of five 11 bp direct-repeats 

(Dam and Gerdes, 1994). ParR binding induces significant bending of the DNA 

(Hoischen et al., 2008) and all three components are necessary for plasmid 

segregation among daughter cells (Jensen and Gerdes, 1999).  

The motor protein R1-ParM forms actin-like polar, double helical filaments                

(Figure 4A, C) comprising two protofilaments in vivo (Gayathri et al., 2012), which was 

also shown in vitro (Gayathri et al., 2013) and cooperatively forms filaments in the 

ATP-bound state (Million-Weaver and Camps, 2014). Two major differences to actin 

are that ParM forms left-handed filaments and are dynamically unstable in contrast to 

actin, which exhibits right-handed filaments and treadmilling behavior 

(Garner et al., 2004; Orlova et al., 2007; Popp et al., 2008). ParM is able to form 

transient, short seed filaments, even in the absence of the partition complex.  

ParM filaments are stabilized by an ParM-ATP monomer at the tip (so called ATP-

cap), which upon loss, leads to catastrophic disassembly (Popp et al., 2010; Million-

Weaver and Camps, 2014). Moreover, the end of ParM filaments are stabilized by 

association with the partition complex ParRC, which protects them from catastrophic 

disassembly. This is due to a right-handed helix (Figure 4C, D), consisting of 12 ParR 

dimers, wrapped around parC DNA, that are forming a clamp, which is binding and 

hence stabilizing the end of the ParM filament.  

ParM monomers are incorporated at the nucleoprotein complex, leading to bi-

directional elongation of such stabilized spindles, which push plasmids to opposite cell 

poles (Figure 2B, Figure 4D, E) (Møller-Jensen et al., 2003). Hence, type II plasmid 

segregating systems use a polymerization-motor to push plasmids apart 

(Campbell et al., 2007). Although ParM’s crystal structure revealed significant 

differences in helix, sheet and loop arrangements within different domains, it also 

confirmed the original assignment to the actin-family, that was based on a sequence 

identity to actin of ~ 11 % (Møller-Jensen et al., 2002).  
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Figure 4: Components of the R1-ParMRC system. (A) (Top) R1-ParM pair is shown, with nucleotides 

as purple spheres. The lower subunit is coloured blue to red from N- to C-terminus, while the upper 

subunit is grey. (Bottom): Filament structures shown as surface representations. Individual 

protofilaments are shown in a single colour and cartoons indicate protofilament polarity and subunit 

alignment [from (Wagstaff and Löwe, 2018)]. (B) Structures of ParR in its right-handed helix, forming a 

stabilizing clamp of 13 nm per turn [from (Møller-Jensen et al., 2007)]. (C) Cross-section of the ParM 

filament and the ParR helical scaffold. The ParR ring forms a clamp of 13 nm diameter and stabilizes 

one ParM filament consisting of two protofilaments of 6 nm diameter, each. The ParR helix consists of 

12 ParR dimers and exhibits 15 nm in diameter [from (Møller-Jensen et al., 2007)]. (D) The centromeric 

region parC wraps around the ParR helix. The ParRC complex forms an open clamp that stabilizes the 

barbed-end of the ParM filament [from (Gayathri et al., 2012)]. (E) For segregation, ParM monomers 

are incorporated at the nucleoprotein complex ParRC. A stable, productive spindle is formed when two 

double-stranded protofilaments associate via lateral interactions. Insertional polymerization of the two 

double-stranded antiparallel filaments results in pushing two parC-containing plasmids apart. 
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When two freely diffusing R1 plasmids encounter each other, they become tethered 

and move as a single unit, while productive spindles segregate the DNA within 10-30 

seconds along the long axis of the cell; a process that is continuously repeated. Since 

this process of DNA segregation is much faster than the process of cell division, an 

ongoing segregation process increases the chance of stable inheritance (Million-

Weaver and Camps, 2014). 

Another member of actin-like ATPases is Alp7A (44.8 kDa), a plasmid-segregating 

protein from the 55-kb plasmid pLS20 from B. subtilis (Meijer et al., 1995). With only 

13 % identity to ParM (Derman et al., 2009), they both contain the five conserved 

motifs of the nucleotide binding pocket (Bork, Sander and Valencia, 1992) and could 

be linked phylogenetically via members of other actin-like proteins. Alp7A polymerizes 

into filaments in vivo and exhibits both characteristic dynamics of actin (treadmilling) 

and tubulin (dynamic instability) (Derman et al., 2009). It has been shown that these 

dynamic properties are crucial for plasmid stability and depend on the presence of the 

other two components of the operon: the centromeric promoter region alp7C and the 

DNA-binding protein Alp7R (16.0 kDa), which is able to interact with Alp7A even in the 

absence of alp7C and also negatively regulates the expression of the operon (Derman 

et al., 2012). Apart from Alp7A’s inability to form seed filaments in the absence of 

ParRC, the Alp7ARC system largely resembles the R1-ParMRC system (Petek et al., 

2017). Little is known about the dynamic properties (polymerization, treadmilling, 

disassembly) as well as the detailed mechanism of segregation mediated by this 

system, which possesses properties inherent to actin and tubulin alike. 

Another example is BtParM from Bacillus thuringiensis, encoded on plasmid pBMB67, 

which was described by Jiang et al. in 2016 (Jiang et al., 2016). Its motor protein shows 

unique properties in comparison to other ParMs. It forms double-stranded, antiparallel 

and supercoiled protofilaments in the presence of ATP, with an outer diameter of 

145 Å. These protofilaments pair into four-stranded spindles when bound to either the 

adaptor protein BtParR or the BtParRC nucleoprotein complex. All other ParMs found 

so far, including ParM-pSK41 from Staphylococcus aureus (Popp et al., 2010) and 

AlfA from Bacillus subtilis (Polka, Kollman and Mullins, 2014), form double-stranded, 

polar filaments with outer diameters of 80 to 90 Å, similar to eukaryotic F-actin (Holmes 

et al., 1990; Jiang et al., 2016). 
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1.3.3 Type III Segregation by Tubulin-like GTPases  

The best-studied bacterial type III systems have been discovered in phages of 

Pseudomonas and Clostridium species (Sakaguchi et al., 2005; Kraemer et al., 2012) 

as well as on virulence plasmids from Bacillus species (Okinaka et al., 1999; Berry et 

al., 2002). Typical type III systems (Figure 2C), as encoded by numerous plasmids in 

the Bacillus genus, employ a TubZRC machinery, where TubZ is the GTPase, while 

TubR recognizes the centromeric region tubC to build the partition complex (Larsen et 

al., 2007; Fink and Löwe, 2015b). TubZ is a tubulin-like protein that forms filaments 

required for proper plasmid segregation (Tinsley and Khan, 2006). Resembling parC 

sites, tubC consists of several direct repeats that can be split into either two or three 

blocks (Aylett and Lowe, 2012; Ge et al., 2014; Oliva, 2016). Again similar to the 

ParMRC system is that the adaptor protein TubR mediates the segrosome assembly 

by binding tubC (Aylett and Lowe, 2012). However, one major difference of this 

segregation system is that the tubulin-like polymerization motor TubZ from 

B. thuringiensis pBtoxis self-assembles into dynamic linear filaments exhibiting a 

treadmilling behavior in vivo (Larsen et al., 2007). The interaction of all three 

components is only possible upon TubZ filament formation (Aylett and Lowe, 2012; 

Fink and Löwe, 2015b; Oliva, 2016).  

 

1.3.4 Type IV Segregation Systems 

An ATPase-independent type IV segregation system was recently described for the 

conjugative plasmid R388 (Figure 2D) (Guynet et al., 2011). In this case, the partition 

complex consisting of StbA bound to the centromeric region is believed to pair 

plasmids to the host chromosome, so that plasmid segregation relies on the 

chromosome segregation system (Figure 2D). However, little is known about the 

mechanistic details of this segregation system. A conceptually similar mechanism was 

proposed for segregation of episomes along with eukaryotic chromatids (Stehle et al., 

2007). Another putative example of ATPase-independent plasmid segregation comes 

from plasmid pSK1 from S. aureus. The segregation of pSK1 apparently only requires 

a single protein, Par (Simpson, Skurray and Firth, 2003), which contains a coiled-coil 

domain putatively forming a molecular switch underlying its function. However, how 

this protein may play both centromere-binding and motor functions is unknown 

(Schumacher, 2008).  
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1.4 Use of a Synthetic Chromosome for Comparative Studies of 

DNA Segregation 

Tools developed in recent years have enabled for the assembly of synthetic 

chromosomes. Important examples are the synthesis of the complete 583 kb 

M. genitalium chromosome (Gibson et al., 2008), the transplantation of a synthetic 

1.08 Mbp M. mycoides chromosome into a M. capricolum cell (Gibson et al., 2010) 

and the synthesis of the first eukaryotic chromosome from S. cerevisiae (Annaluru et 

al., 2014). Such synthetic chromosomes can be used to either elucidate fundamental 

questions or for biotechnological applications (Schindler and Waldminghaus, 2015). 

Hence, they could be used as a tool to study various segregation systems and their 

resulting genetic stabilities to mine for suitable segregation machineries for the design 

of minimal biomimetic systems. 

Whereas most bacteria carry a single chromosome, some species additionally carry a 

secondary chromosome, such as Ralstonia eutropha, Agrobacterium tumefaciens and 

Deinococcus radiodurans (Allardet-Servent et al., 1993; White et al., 1999; Pohlmann 

et al., 2006). Although all members of the Vibrionaceae carry a secondary 

chromosome, one of the best-understood is found in Vibrio cholerae (Trucksis et al., 

1998). V. cholerae is a model organism and a member of the γ-proteobacteria, hence 

closely related to E. coli. Its genome is divided into the primary chromosome (ChrI: 

2.96 Mbp) and the secondary chromosome (ChrII: 1.07 Mbp) (Heidelberg et al., 2000), 

each with its own type I ParABS-based segregation system (Figure 5). ChrII is 

considered a secondary chromosome and not an extrachromosomal unit, since its 

replication takes place at a specific time point during the cell cycle and encodes 

essential genes (Egan, Løbner-Olesen and Waldor, 2004; Rasmussen, Jensen and 

Skovgaard, 2007). The two proteins involved in ChrII segregation are called ParA2 

and ParB2 (Yamaichi, Fogel and Waldor, 2007). ParB2 plays an additional role in 

regulation of replication initiation of ChrII (Venkova-Canova et al., 2013). In ChrII a 

compact replication/segregation module is formed, since the genes parA2, parB2 and 

rctB (encoding for a replication initiation protein) (Pal et al., 2005; Koch, Ma and 

Løbner-Olesen, 2012) are flanking oriII. Fragments carrying a minimal oriII region were 

already shown to promote replication in the heterologous host E. coli (Egan and 

Waldor, 2003; Yamaichi et al., 2011). Last, a synthetic chromosome (synVicII-1.3 

(Messerschmidt et al., 2015)) based on oriII of the secondary chromosome of V. 



1 Introduction 1.5 Origin of Life and RNA Segregation 

 

13 

cholerae has been designed, constructed and characterized to serve as a scaffold for 

the assembly of larger replicons to study fundamental biological questions but also 

give the basis for future applications (Messerschmidt et al., 2015, 2016). 

 

 

Figure 5: Segregation of ChrI and ChrII of Vibrio cholerae. (A) While oriCI is localized near the cell pole, 

oriCII is located at (future) mid-cell position. (B) Segregations via the ParABS1 for ChrI l and segregation 

via the ParABS2 for ChrII are responsible for ori-positioning in V. cholerea [from (Fiebig, Keren and 

Theriot, 2006)].  

 

1.5 Origin of Life and RNA Segregation 

Next to a DNA-based minimal cell, the design of an RNA-based protocell is of interest 

in particular to elucidate the origin of life in the context of the ‘RNA-world’. The term 

‘RNA-World’ refers to a hypothetical stage in the evolutionary history of life, when RNA 

carried out both, the information storage task as well as the catalytic roles before 

proteins had evolved. Consequently, it has been hypothesized that RNA catalyzed the 

formation of DNA as well as proteins and led to the formation of the first protocells 

(Cech, 2012). RNAs with catalytic roles are referred to as ribozymes and among them 

are ribozymes that are capable of self-replication (Johnston et al., 2001; Zaher and 

Unrau, 2007). Such RNA-based systems might be responsible for the emergence of 

early protocells during evolution. 



1 Introduction 1.5 Origin of Life and RNA Segregation 

 

14 

Eigen et al. proposed in 1981 already, that genomes of such early protocells in the 

RNA-world were composed of single-stranded RNA. These haploid protocells would 

have been vulnerable to damage by lethal mutations, which could be reduced by 

maintaining several copies. However, coping with genome damage on the one hand 

while maintaining redundancy on the other hand would have been one fundamental 

dilemma of early protocells (Eigen et al., 1981). To elucidate this problem Bernstein 

and colleagues carried out a cost-benefit analysis, which led to the conclusion that the 

selected strategy would have been to be haploid but periodically fuse with another 

haploid protocell to form a transient diploid. Several cycles of haploid reproduction with 

occasional fusion to transient diploid state, followed by splitting to haploid cells could 

be considered the first sexual cycle in its most primitive form (Bernstein et al., 1984).  

So, if early protocell’s strategy would have been to have rather low-copy number 

genomes they would be dependent on a faithful segregation of genomes to maintain 

genetic stability. Thus, it can be speculated that RNA-based protocells already 

developed a strategy, either active or non-active, to cope with that problem.  

In the context of the development of minimal RNA-based biomimetic systems, the 

establishment of faithful RNA segregation would thus state a crucial biological process 

for RNA-based life and to elucidate this controversial stage of evolution. 

 

1.5.1 Coat Protein of MS2 Bacteriophage and its Cognate RNA 

Recognition Site 

The first step towards synthetic RNA segregation is to identify proteins capable of 

specific RNA binding. One of the main purposes of viral capsids is the packaging of 

cognate nucleic acid genomes. MS2 coat protein (CP) is one of the best-understood 

CP’s and the interactions with its cognate binding site have been studied extensively 

(Kaganman, 2008). It has already proven to be a useful biological tool since it has 

been used to label RNA for live cell imaging (Avogaro et al., 2018) or affinity 

purification of RNA (Yoon, Srikantan and Gorospe, 2012). MS2 is an icosahedral RNA 

bacteriophage (Figure 6, left) carrying a single-stranded RNA genome (Chao et al., 

2008), whose structure has been solved to a resolution of 2.8 Å (Valegård et al., 1990, 

1994). 180 molecules of the MS2 coat protein associate to build the capsid of this 

bacteriophage (Pickett and Peabody, 1993) and bind specifically to a stem-loop of the 

single-stranded RNA genome for its packaging (Figure 6, right).  
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Figure 6: Structures of phage MS2 and its coat protein. Left: 3D structure of the enterobacteria 

phage MS2. The MS2 coat protein binds to the single-stranded bacteriophage genome (ICTV 8th Report 

by Jean-Yves Sgro, 2004, PDB_ID: 2MS2). Right: Crystal structure of the MS2 coat protein dimer 

bound to bacteriophage RNA hairpin (orange, adenine; red, guanine; violet, uridine; yellow, cytidine; 

detail shows RNA hairpin) (Chao et al., 2008)). 

 

Additionally, these CPs are able to form dimers within the capsid shells and act as 

translational repressor by inhibiting replicase synthesis via blocking the replicase 

initiation codon (Pickett and Peabody, 1993; Horn et al., 2006; Chao et al., 2008). It 

has been shown that the translational operator also serves as the viral packing site, 

the signal which mediates the exclusive encapsidation of specific viral RNA (Pickett 

and Peabody, 1993). Responsible for this specific recognition are amino acid residues 

on three adjacent strands of the MS2 coat protein β-sheet, which enables for both 

RNA recognition and translational repression. These side-chains form a patch on the 

interior surface of the viral coat (Peabody, 1993). Subsequent studies revealed that 

the identity of Asn87 is important for specific binding of MS2 RNA (Spingola and 

Peabody, 1997). From the RNA’s perspective it has been shown that the affinity to 

specifically bind the MS2 coat protein is either not impaired or decreased by mutations 

in the sequence of the RNA hairpin. However, one specific uracil to cytosine change 

within the loop increases binding affinity by nearly 100-fold (Johansson et al., 1998). 

The reasons for the tight binding of the cytosine mutation are first, due to an intra-RNA 

hydrogen bond that increases the propensity of the free RNA to adopt the structure 

observed in the complex and second, an increased affinity of hydrogen bonds between 

the protein and the RNA-loop (Johansson et al., 1998).
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2 Aim of this Dissertation 

 

Faithful segregation of replicated genomes to dividing daughter cells is a major 

hallmark of cellular life and needs to be part of the future design of a robustly 

proliferating DNA- or RNA-based minimal cell. So far, the complexity of eukaryotic 

chromosome segregation systems has limited their applicability to synthetic systems. 

Prokaryotic plasmid segregation machineries offer a promising alternative for bottom-

up synthetic biology. Moreover, the coupling of DNA segregation to other fundamental 

life processes poses one of the major challenges towards the creation 

of minimal systems.  

To tackle these challenges, the aim of this dissertation was to explore and reconstitute 

prokaryotic segregation systems to engineer a dedicated segregation machinery 

consisting of only crucial components - a minimal segrosome. After optimizations to 

make it more life-like and prolong its lifetime, this minimal segrosome should be 

coupled to the preceding replication process. Such a system could be applied for the 

rational design of biomimetic systems and thus contribute towards the development of 

a fully functional minimal cell, which might have major implications for fundamental 

research and biotechnological applications.  
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3 Results 

 

3.1 Comparing Segregation Systems in vivo  

Emerging DNA assembly techniques enable the construction of larger replicons and 

pave the way for experimental chromosome construction. To compare plasmid stability 

mediated by the ParABS and ParMRC segregation systems, two vectors derived from 

the synthetic chromosome synVicII-1.3 (Messerschmidt et al., 2015) were 

constructed, one (i) carrying the type II R1-ParMRC system and one (ii) lacking an 

active segregation system. These were compared to (iii) the synthetic chromosome 

(synVicII-1.3) derived from the natural secondary chromosome from V. cholerae, 

where segregation is mediated by the type I ParABS system.  

 

3.1.1 Design of Synthetic Vectors Carrying ParA- and ParM-based 

Segregation Systems 

Although much is known about the roles of ParA- and ParM-based segregation 

systems, little is known about their quantitative efficiencies. The aim of this study was 

the comparison of these two systems by studying their resulting plasmid stability 

in vivo over time. For this purpose, two constructs were designed derived from the 

11 kb synthetic chromosome synVicII-1.3 with (i) R1-parMRC, ΔparAB and (ii) ΔparAB 

as negative control. Their resulting genetic stabilities were compared to the stability of 

the 11 kb synthetic chromosome synVicII-1.3 carrying (iii) the ParABS type I 

segregation system from ChrII of V. cholerae (parABS). The genetic stability of these 

constructs would be determined by their inheritance over generations mediated by the 

respective segregation system. Vectors were assembled via heterologous 

recombination in S. cerevisiae (by Dr. Daniel Schindler, Synmikro). 

 

3.1.2 Resulting Differential Genetic Stabilities  

To investigate and compare the effect of different segregation systems quantitatively 

the final constructs were transformed into wildtype E. coli MG1655. These strains were 

grown for 6 h and their plasmid stability was monitored using the plating assay (Figure 
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7). Strains carrying the respective plasmids were cultivated in LB medium with 

ampicillin at 37 °C and transferred to pre-warmed LB medium lacking ampicillin. At the 

transfer as well as three and six hours after the transfer cells were plated on non-

selective plates. After overnight cultivation colonies were re-streaked on ampicillin and 

non-selective LB agar. The resulting plasmid stability was determined by the 

percentage of ampicillin resistant cells after overnight cultivation. 

Consistent with previous studies (Messerschmidt et al., 2015) the native ParABS 

system led to a genetic stability of 74 % after 3 h and 52 % after 6 h (~ 8 % loss per 

hour), while the ParMRC system led to a stability of 96 % after 3 h and 78 % after 6 h 

(~ 4 % per hour). The negative control lacking any segregation system (Δpar) showed 

a stability of 26 % after 3 h and 5 % after 6 h (Suppl. Table 1).  

The data show that the ParMRC system leads to a higher genetic stability in this 

heterologous system compared to the native ParABS system encoded by the 

secondary chromosome of Vibrio cholerae. This result, together with the fact that it 

constitutes the best-understood segregation system, led to our decision to use the R1-

ParMRC system for the subsequent studies.  

 

 

Figure 7: Genetic Stability mediated by the ParABS and ParMRC system. The resulting genetic 

stability mediated by ParABS, ParMRC and Δpar were compared in E. coli MG1655 and measured via 

plate count method. Strains were cultivated in LB medium with ampicillin at 37 °C to an OD600 of ~ 0.154 

and transferred to pre-warmed LB medium without ampicillin. Cells were cultivated for 6 h at 37 °C. At 

t0, 3 h and 6 h after the transfer cells were plated on non-selective plates. After overnight cultivation 

colonies were restreaked on ampicillin- and non-selective LB agar. Values are given as percentage of 

ampicillin resistant cells. Results are obtained from 200 colonies per time point and strain. The 

experiment was conducted twice. Error bars show deviation of the arithmetic mean. 
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3.2 Development of a Minimal DNA Segrosome 

As mentioned before, the aim of this work was to design a minimal segrosome. Thus, 

the plasmid-based R1-ParMRC system was characterized and reconstituted in vitro 

segregating DNA-covered artificial micro-beads in bulk. The system was optimized by 

equipping it with an ATP-regenerating and oxygen-scavenging system, which 

constitutes the first step towards the coupling of segregation to energy conversion. 

This system has been incorporated into different biomimetic compartments using 

various microfluidic techniques, thus mimicking the cell confinement by providing an 

enclosed reaction space. Moreover, DNA segregation was coupled to the preceded 

replication process using the condensed state of DNA nanoparticles as intermediates 

that result from DNA synthesis during replication. Lastly, the Alp7ARC system was 

reconstituted in vitro. A redundant system would allow for orthogonal segregation of 

various plasmid types and hence for a more controlled segregation in time.  

 

3.2.1 In vitro Reconstitution and Characterization of the R1-ParMRC 

System 

To gain a better understanding of the system to be reconstituted in vitro, functionality 

and behavior of individual purified proteins were characterized first. For ParR, its ability 

to bind the parC sequence specifically was verified via electrophoretic mobility shift 

assay (EMSA, Figure 8A). The functionality of ParM was tested by allowing the 

Alexa488-labeled protein to polymerize in presence of ATP and the non-hydrolyzable 

ATP homolog adenylyl-imidodiphosphate (AMP-PNP) (Figure 8B, C). ParM-ATP seed 

filaments, putative proto-filaments of ParM spindles, formed and were rather short 

(< 2 µm) and more dynamic in comparison to ParM-AMP-PNP seeds, which were 

longer (> 2 µm) and not able to disassemble (Figure 8B, C).  
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Figure 8: Test for functionality of purified proteins ParR and ParM. (A) EMSA for ParRC. 0 and 

1000 nM ParR, respectively, were incubated with Atto633-labeled parC DNA (279 bp; 2 nM) and 

Atto633-labeled ompA (276 bp; 2 nM) as control. (B) 5 µM ParM-Alexa488 polymerized with 10 mM 

non-hydrolyzable ATP homolog (AMP-PNP) and (C) 10 mM ATP on poly-L-lysine-coated glass slides. 

Note: ParM-ATP seed filaments look more indistinct due to their polymerization dynamics, in contrast 

to the static ParM-AMP-PNP seed filaments. (B) and (C): Magnification = 100 x; Scale bars: 2 µm.  

 

To visualize the DNA segregation process, an approach by Garner and colleagues 

(Garner et al., 2007) was adapted, which was originally developed to identify the 

crucial components of this bacterial segregation system. Cy3-labelled and biotinylated 

parC sites acting as DNA anchor were bound to streptavidin-coated micro-beads of 

300-350 nm diameter via biotin-streptavidin chemistry (Figure 9A). First, the precise 

component ratios needed to be established for in vitro reconstitution of the R1-

ParMRC system capable of the formation of asters and productive spindles. Here, the 

term ‘aster’ refers to ParM filaments that are attached to the ParRC complex at one 

end only, seen as filaments growing from beads. The term ‘spindle’ refers to ParM 

filaments that are bipolarly attached to the ParRC complex, resulting in productive 

spindles segregating beads.  

To determine optimal conditions, different ratios of the Alexa488-labeled 

polymerization motor ParM and the nucleoprotein complex ParRC were tested by 

titrating bead concentrations (Suppl. Figure 1). At a bead concentration of 1.4 pM, 

aster formation, and only rare spindle formation was observed, likely due to the large 

distances between beads that reduce the likelihood of encounter. At 14 pM 

(volume fraction = 1:400), aster and spindle formations were observed frequently 

(Suppl. Figure 1). At 140 pM, a dense meshwork of beads was observed that was 

interconnected by spindles. At 1.4 nM, faint spindles connecting beads in close 
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proximities were observed, while aster formation was impaired. At 14 nM, neither aster 

nor spindle formation was detected.  

In addition, the phenotypical effects of ATP and excessive concentrations of ParR and 

ParM were elucidated. It was observed that even in the absence of ATP, ParM still 

associates with the partition complex, as indicated by the Alexa488 signal at the 

beads. However, no polymerizing filaments were observed (Suppl. Figure 2). When 

2.5 µM ParR were used, clusters of interconnected filaments were detected 

(Suppl. Figure 2). When 50 µM ParM was used, non-specific filament-formation in 

addition to specific spindle formation connecting beads was observed 

(Suppl. Figure 2).  

Based on these results, 5 µM ParM, 250 nM ParR and 14 pM parC-coated beads were 

established as optimal concentrations for the in vitro reconstitution. Specific aster and 

spindle formations of Alexa488-labelled ParM were induced by ATP addition (10 mM) 

in a ParRC-dependent manner. ParM asters extended up to ~ 3 µm in length from a 

micro-bead, which led to the formation of dynamic spindles upon association with an 

aster from a second bead. Hence, the maximum distance between two beads to form 

a productive spindel due to lateral associations of their asters was ~ 6 µm (Figure 

9B, C, Figure 10A). Transmission electron microscopy (TEM) was conducted to study 

the architecture of ParM filaments, which revealed that they consisted of bundles of 

multiple filaments (> 20) growing out from the micro-bead (Figure 9D). 
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Figure 9: DNA segregation via the R1-ParMRC system. (A) Schematic representation of in vitro 

reconstitution experiment. Cy3-labelled parC sequences (red) are bound to beads of 300-350 nm in 

diameter using streptavidin-biotin binding. Polymerization of Alexa488-labelled ParM (green) leads to 

filament formation and segregation of beads in a ParR (blue) dependent manner. (B) In vitro 

reconstitution of the ParMRC system. 5 µM ParM containing 30 % Alexa488-labeled ParM, were mixed 

with 250 nM ParR and 14 pM parC-coated beads (volume fraction=1:400). Reaction was started with 

10 mM ATP on silanized glass slides. One spindle consists of two antiparallel double stranded ParM 

(green) filaments linked to the parC site (red) by the adapter protein ParR (unlabeled). Scale bar = 5 µm. 

(C) Time-lapse series of an elongating ParM spindle pushing parC-bound artificial micro-beads apart; 

Magnification (A) – (C): 40 x; 20 s per frame; scale bar = 10 µm. (D) Transmission electron microscopy 

image of filaments growing from a bead. Scale bar = 200 nm. 

 

Apart from bipolar spindles, the ParMRC system was also able to form multipolar 

spindles interconnecting more than two beads (Figure 10B). In the presence of the 

non-hydrolyzable ATP homolog AMP-PNP, ParM asters as well as spindles grew non-

dynamically several hundred micrometer long (Figure 10C). The final lenghts were 

dependent on the initial ParM-AMP-PNP concentration, indicating that filaments grew 

until free ParM-AMP-PNP monomers were depleted and reaction reached equilibrium. 
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Figure 10: Formation of multiple and multipolar spindles. (A) Larger field of view of multiple 

spindles elongating. Frame is 1 min apart. (B) ParM spindles are also able to build multipolar spindles 

(red arrows). In (A) and (B) the established optimal conditions were used. (C) Polymerized using the 

non-hydrolyzable ATP homolog AMP-PNP. Left: Non-dynamic ParM-AMP-PNP filaments growing from 

beads. Middle: Micro-beads coated with Cy3-labeled parC (red). Right: Brightfield image of beads. 

Magnification: 40 x; Scale bars = 10 µm. 

 

When polymerized with ATP, the median for ParM spindle length during steady-state 

was 12.9 µm and 3.1 µm for asters, while the median number of asters per bead was 3 

(
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Figure 11A, B, C; Suppl. Table 2). Moreover, it was observed that the reaction 

continued for approx. 30 min at steady-state, before decaying to inactive equilibrium, 

which was reached after approx. 50 min (

 

Figure 11D, Suppl. Table 3), most likely caused by ATP-limitation. Interestingly, it was 
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observed that the distributions of spindle- and aster length as well as number of asters 

per bead collectively decrease as the reaction shifts towards equilibrium (

 

Figure 11D, Suppl. Figure 3, 4, 5). Moreover, the in vitro polymerization rates of ParM 

were determined by measuring the change of filament length per time using NIH Fiji 

ImageJ software, which was approx. 53 nm/s (~ 23 monomers/s), in agreement with 

previous studies (Suppl. Table 4). 
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Figure 11: Statistical analysis of segregation reaction in bulk. (A) Spindle lengths distributions 

(n = 584) during steady-state of reaction (~ 30 min). (B) Aster lengths distributions during steady-state 

(n = 631). (C) Number of asters per bead during steady-state (n = 1071). (D) Development of medians 

of spindle lengths, aster lengths and asters per bead monitored until segregation reaction stopped. The 

medians stay stable over the steady-state of the reaction (~30 min) and drops to zero when the reaction 

reaches equilibrium. Error bars indicate STD. 

 

During segregation of artificial micro-beads, a swinging behavior of single beads was 

observed (Figure 12A, red arrow) in proximity with other beads, reminiscent of 

oscillatory systems. Since oscillations have never been described for ParM-mediated 

plasmid segregation, the possibility that the system may exhibit such oscillations was 

tested using a mathematical model written by Dr. Seán Murray (MPI Marburg) to 

simulate the behavior of beads in space and time (Figure 12B). In this model, the DNA-

coated beads (300 nm in diameter) can move by either spindle formation, pushing off 

of the boundary or by diffusion. This simulation could indeed confirm the potential for 

oscillatory behavior.  
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Figure 12: DNA segregation as an ongoing, dynamic event supported by mathematical model. 

(A) During spindle assembly using the established optimal conditions it was frequently observed that 

beads are segregated multiple times in between two neighboring beads. Here one exemplary parC-

covered bead is segregated three times by two neighboring beads within 10 min. Time lapse is 30 s per 

frame; Magnification: 40 x; scale bar = 5 µm. (B) Mathematical model for a prediction of bead 

segregation in space and time (written by Dr. Seán Murray, MPI Marburg). Top: Clustered positioning 

of beads before start of reaction. Middle: Filament formation and bead positions 35 s after start of 

reaction. Bottom: Segregated beads after 30 min. Beads can move by either spindle formation, by 

pushing off of the boundary or by diffusion. Simulation runs for 30 min. Lattice unit = 100 nm. 

 

3.2.2 DNA Segregation in Biomimetic Micro-Compartments 

In order to provide a confined reaction space, the segregation machinery was 

encapsulated into biomimetic compartments to mimic a cell envelop. One of the crucial 

aspects in the course of this incorporation is the compatibility of reaction components 

and synthetic confinement. Therefore, several different types of confinements were 

tested (Figure 13). These were water-in-oil droplets (Figure 13A, B, C), a half-open 

Teflon channel sealed with E. coli lipids (Figure 13D), water-in-oil droplet squeezed 

into a microfluidic PDMS channel (Figure 13E), as well as a microfluidic PDMS 

channel (Figure 13F, G). 
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Figure 13: Segregation of parC coated beads in biomimetic micro-compartments. Various 

biomimetic confinements were tested to check for compatibility with the established optimal conditions 

for micro-bead segregation. (A), (B) and (C) show water-in-oil droplets (1.8 % PFPE–PEG–PFPE 

surfactant ‘E2K0660’ in HFE7500 as oil phase). Scale bars for (A) and (B) = 10 µm and for (C) 5 = µm. 

In (B) a bipolar spindle touches droplet border. (D) Half-open Teflon channel covered with lipid-bilayer 

isolated from E. coli. Scale bar = 10 µm. (E) Water-in-oil droplet squeezed into PDMS channel. Scale 

bar = 20 µm. (F). Segregation events in a BSA-passivated microfluidic PDMS channel. Scale 

bar = 10 µm. (G) Time lapse of a segregation event inside PDMS channel. Scale bar = 10 µm. 30 s per 

frame. Magnification: 40 x. Conditions as in Figure 9.  
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It was observed that ParM polymers align with the long axis of the tested confinements. 

Further, no interference or interaction between the ParMRC system and the water/oil 

interface were detected. However, some adhesion events onto the PDMS surface 

were observed despite BSA passivation. No deformation on the confinement caused 

by the force exerted from the growing/pushing spindles was observed. A rod-shaped 

and half-open Teflon system sealed with E. coli lipids (Suppl. Figure 6) would allow 

replenishment of limiting reaction components directly into the reaction chamber. Its 

interference had to be ruled out since the segregation proteins are surface-sensitive, 

which can lead to protein adherence and denaturation. So, the compatibility of 

segregation proteins and membrane was tested first. For this, a glass surface was 

covered with E. coli membrane lipids and subsequently loaded with the aqueous 

reaction phase. No detectable adhesion onto the membrane was observed 

(Suppl. Figure 7). Hence, the half-open Teflon device was loaded with aqueous 

segregation reaction and sealed with E. coli lipids. Segregation reaction was 

unhindered and no interference from lipids was observed (Figure 13D). 

The most stable results were obtained with water-in-oil droplets, which is why this 

approach was used for further experiments. Nevertheless, no segregating spindles 

could be observed in confinements with diameters below a threshold of approx. 10 µm, 

most likely due to a limiting number of molecules. Using the established optimal 

concentrations, the ratio of the three components was determined for a bipolar spindle 

(700,000 ParM monomers, 35,000 ParR monomers, 2 beads). Following this, the 

minimal volume of a confinement was determined were the DNA segregation under 

the established optimal conditions could still function: 

 

𝑉=𝑛/𝑐 

𝑉=240 𝑓𝐿 

 

In a spherical confinement: 

 

𝑑=(6∗𝑉/π)(1/3) 

𝑑=8 μ𝑚 

 

Using these conditions, the minimal confinement size is 240 fL and 8 µm in diameter. 
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3.2.3 Coupling of DNA Segregation to ATP-Regenerating and Oxygen-

Scavenging Systems  

Active segregation and dynamics of ParM filament-formation are dependent on the 

energy source ATP. It was observed that in case of segregating reactions in 

confinements, ATP acts as a limiting factor, thus terminating protein dynamics and 

therefore active segregation after 30 min (

 

Figure 14, final time points). Hence, an ATP-regenerating system based on 

phosphocreatine and creatine kinase was incorporated (Suppl. Figure 8) and its effect 
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was tested in bulk (Suppl. Figure 9) and encapsulated in water-in-oil droplets (

 

Figure 14).  

In bulk assay without ATP-regenerating system, only faint spindles at 50 µM ATP were 

observed. However, when equipped with an ATP-regenerating system faint spindles 

at ATP concentrations down to 10 µM were observed. Furthermore, it was noticed that 

the proteins were prone to oxidation leading to denaturation and loss of function and 

eventually to formation of protein aggregates. To address this issue, the segregation 

machinery was supplemented with an enzymatic oxygen scavenger based on 
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pyranose oxidase and catalase (Suppl. Figure 10) developed by Swoboda and 

colleagues (Swoboda et al., 2012).  

The encapsulated system lacking ATP regeneration and oxygen-scavenging 

deenergizes after approx. 30 min, while with ATP regeneration its dynamics is 

maintained until approx. 2 h. When additionally equipped with an oxygen-scavenging 

system, the lifetime of the non-equilibrium system is prolonged to approx. 3 h (Figure 

14). Hence, these modifications extended the system’s lifetime (~ 6-fold) and made it 

more self-sustainable. 

The development of asters per bead over time was quantified (Figure 14) as it was not 

possible to determine spindle or aster length distributions due to a lower signal to noise 

ratio. An additional hurdle was the measurement of lengths in three dimensions in 

contrast to the bulk assays where spindles were polymerizing in approximately two 

dimensions. The measured distributions are similar to the distributions measured 

during steady-state in bulk, which indicates that the reaction in the encapsulated 

system is at steady-state at measured time points (Figure 11, Figure 14, Figure 15). 

The means of the number of asters per bead stay stable over the steady-state of the 

reaction and decay towards inactive equilibrium (Figure 15). 

 



3 Results 3.2 Development of a Minimal DNA Segrosome 

 

33 

 

Figure 14: Extending lifetime of the segregation system. Experiments were conducted using the 

encapsulated established optimal conditions (A), with ATP regeneration (B) and with ATP regeneration 

and oxygen-scavenging systems (C). Segregation reaction were encapsulated in water-in-oil droplets 

(1.8 % surfactant in HFE7500 as oil phase). Magnification in (A) - (C): 40 x; Scale bars = 5 µm. (Note: 

Since the used droplets are spherical in shape, the depth of the imaged space is bigger than for 

segregation on two-dimensional surfaces e.g. glass slides. This leads to a higher background and less 

resolved ParM spindles). (AI-CIII) Histograms of quantities of asters per bead. Each histogram relates 

to conditions (A) to (C) depicted above at steady-state (from AI to CIII n= 44, 61, 50, 51, 48, 44). When 

compared to the distributions of the summary of aster quantity (Figure 11C) the distributions suggest 

the systems to be in steady-state.  
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Figure 15: Development of means of asters per bead monitored over time in the optimized 

system. The means stay stable over the steady-state of the respective reaction and decays when the 

reaction reaches inactive equilibrium. Error bars indicate STD.  

 

3.2.4 Coupling of DNA Segregation to Replication via DNA Nanoparticles 

An integrative biomimetic system, where the DNA template is faithfully replicated and 

segregated, has not been realized yet. To address this challenge, Phi29 DNA 

replication was reconstituted in vitro (by Dr. Judita Mascarenhas, MPI Marburg) and 

used for amplification of a parC containing plasmid. During the replication process, the 

presence of micro precipitates could be observed, known to be the co-precipitates of 

DNA-Magnesium pyrophosphate that results naturally from DNA synthesis reaction. 

Similar observations of these DNA nanoparticles have been reported earlier 

(Galinis et al., 2016; Kim et al., 2017).  

After 6-12 h of replication 0.5-5 µm sized DNA nanoparticles were formed (Figure 

16 A). These DNA nanoparticles mimic the condensed chromosome state and could 

serve as nucleation points for the segregation machinery. Hence, the DNA 

nanoparticles were enriched via centrifugation and added to ParMR. Specific ParM 

binding and spindle formation on these particles were observed (Figure 16B), in 

contrast to nanoparticles produced by replication of plasmids not containing parC sites 

(Figure 16C). Nanoparticles were subsequently segregated by the ParMRC system 

(Figure 16D, E, Suppl. Figure 11). ParM filaments grew radial from nanoparticles and 

formed stable bundles connecting nanoparticles similar to the bipolar structures 

observed when using artificial micro-beads (Figure 9B). 
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Figure 16: Segregation of DNA nanoparticles via the R1-ParMRC system. (A) Microscopic images 

of DNA nanoparticles generated after plasmid replication. Scale bar = 20 µm. (B) Exemplary DNA 

nanoparticles interconnected by Alexa488-labelled ParM-spindles in a ParR dependent manner. 

Nanoparticles resulting from replication of parC-containing plasmid were incubated with 250 nM ParR 

and 5 µM ParM-Alexa488. Scale bar = 10 µm. (C) As a control plasmid lacking the parC site was used 

(pUC19). Scale bar = 20 µm. (D) One larger nanoparticle can be seen, that is breaking apart, while 

smaller fragments are subsequently being segregated. Each frame is 2 min apart. Scale bar = 20 µm. 

(E) A cluster of smaller nanoparticles (bright foci) are connected by ParM spindles and pushed apart. 

Scale bar = 20 µm. Magnifications (A) to (E): 40 x. 

 

With fluid flow, the bundles and attached nanoparticles moved as one unit, indicating 

that ParM polymers are tightly attached. Moreover, nanoparticles form multipolar 

chains also observed when using artificial micro-beads (Figure 10). Nanoparticles 

carry multiple parC sites due to rolling-circle amplification (RCA), which explains the 

observed dense meshwork (Figure 16B, D). This shows that the R1-ParMRC system 

has the potential to segregate not only artificial micro-beads but also DNA in its 

condensed form of DNA nanoparticles. Hence, this production of DNA nanoparticles 

by in vitro replication and their segregation constitutes the first step towards a full 

coupling of DNA replication to segregation (Hürtgen et al., in preparation). 
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3.2.5 Towards Biomimetic Cell Division: Mechanical Splitting of Rod-

Shaped Compartments 

Cell division usually follows DNA segregation. However, since a minimal divisome has 

not yet been developed, microfluidic techniques were investigated to find alternative 

solutions that would allow for mechanical splitting of biomimetic cell confinements. 

Hence, a microfluidic set-up originally used for pico-injection was modified – a method 

that allows for the injection of liquids into a confinement at a picolitre scale (in 

collaboration with Dr. Jan-Willi Janiesch, MPI Heidelberg).  

Droplet-based microfluidic devices made of PDMS were created by photo- and soft-

lithography methods described elsewhere (Xia and Whitesides, 1998; Gu, Duits and 

Mugele, 2011; Platzman, Janiesch and Spatz, 2013). In order to control droplet 

diameters two different nozzle designs at the flow-focusing junction were 

implemented. Syringe pumps were used to control the flow-rates of hydrophilic and 

hydrophobic phases. Produced droplets were re-injected into the device and the 

spacing in between droplets was controlled via addition of oil through a second oil 

channel. By controlling the speed of the respective liquid jets and their ratios a vertical, 

mechanical division of rod-shaped water-in-oil droplets at approximate mid-cell was 

achieved (Figure 17), which would allow for the downstream process of cell division. 

 

 

Figure 17: Time-lapse of mechanical division of a biomimetic confinement. A pico-injection 

module was modified to achieve vertical splitting of water-in-oil droplets. The fluid flow of the water-in-

oil droplet was right to the left through the horizontal channel and was divided by a pulse from the 

vertical channel. The depicted splitting event took 6.0 s (first to last image). Magnification: 40 x; scale 

bar = 20 µm. 
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3.3 Establishing a Secondary Segregation System  

The aim of this study was the in vitro reconstitution of the less-characterized Alp7ARC 

machinery encoded by the pLS20 plasmid of B. subtilis as a secondary segregation 

system. After protein purification and functional characterization, the Alp7ARC system 

was reconstituted in vitro. A secondary segregation system would allow for orthogonal 

segregation of various plasmid types and hence for a more controlled segregation in 

time.  

 

3.3.1 In vitro Reconstitution of the Alp7ARC System 

First, the functionality of purified Alp7R was verified by EMSA. ompA was used as a 

control, due to its comparable size (Figure 18A). At 200 nM (Alp7R:alp7C ratio of 

100:1) Alp7R exhibited specific alp7C binding. The transition to non-specific binding 

was at 2 µM Alp7R. This result indicates that the purified Alp7R is functional. 

Following the in vitro reconstitution approach from the R1-ParMRC system described 

earlier, Cy3-labeled and biotinylated alp7C sites (225 bp) were used, which were 

subsequently coupled to streptavidin-coated artificial micro-beads of approx. 350 nm 

in diameter. These were incubated with purified Alp7R and Alp7A, which was labeled 

with Alexa488. Upon reaction start by ATP addition, aster and spindle formation could 

be observed in an Alp7R dependent manner (Figure 18B, C, D).  

Alp7A-filaments formed small radial asters surrounding alp7C-coupled micro-beads 

(Figure 18), reminiscent of microtubule asters growing from centrosomes (Moritz et 

al., 1995). They grew dynamically from the bead surface to a maximum of 

~ 4 µm (Figure 18). 
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Figure 18: In vitro reconstitution of the type II segregation system Alp7ARC. (A) EMSA of Atto633-

labeled alp7C (225 bp) and Alp7R as well as a control (Atto633-labeled ompA, 276 bp) of similar size. 

The reactions contained 2 nM of DNA and Alp7R concentrations as indicated. (B) Aster formation on 

micro-beads. Conditions were: 10 µM Alp7A, 1 µM Alp7R, 14pM alp7C-coated beads were incubated 

with 10 mM ATP. Magnification: 40 x; scale bar = 10 µm. (C) Bipolar Alp7A spindle connecting two 

alp7C-coated beads. (D) Merged channels showing Cy3-labeled alp7C signal at the micro-beads (red) 

and the signal from bipolar Alp7A-Alexa488 spindle (green). Magnification: 60 x; scale bars = 10 µm. 

(E) Aster length distribution. Median aster length is 2.3 µm (n=260). (F) Aster quantity distribution. 

Median quantity of asters per bead is 6 (n=68). 
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Moreover, Alp7A filaments connected pairs of alp7C-coated beads, similar to the 

bipolar ParM spindles described earlier and to those observed in vivo (Derman et al., 

2009). These filaments and the attached beads moved as a single unit with fluid flow, 

implying that the beads were tightly bound to the polymer via the Alp7RC complex. 

Hence, Alp7A, Alp7R and alp7C are sufficient to form bipolar DNA segregating 

spindles. The aster length and aster quantity distributions were determined (Figure 

18E, F; Suppl. Table 5) and the segregation process was investigated (Figure 19). 

Alp7A asters exhibited a median of the length of 2.3 µm and a median quantity of 6 

asters per bead. Bipolar segregation of alp7C-coated beads by Alp7A-Alexa488 

filaments in an Alp7R dependent manner was observed (Figure 19). 

However, spindle formations were rare events since asters rarely formed spindles 

upon contact, which is why no statistics could be conducted. This might indicate that 

Alp7A filaments are less prone to lateral associations. This is further supported by the 

observation that splitting events for spindles occurred (Figure 19, red arrows). 

Interestingly, Alp7A was not able to polymerize in presence of non-hydrolyzable 

ATP (AMP-PNP).  

In addition to specific spindles, non-specific filament formation was observed (Figure 

19). This constitutes a proof-of-principle for in vitro segregation via the Alp7ARC 

system. Nevertheless, future studies should aim at further elucidating the 

polymerization properties of Alp7A to create the basis for reliable in vitro segregation 

and its application in minimal biomimetic systems. 
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Figure 19: Bead segregation via the Alp7ARC system. Bipolar spindle elongation pushes two alp7C-

coated beads apart in an Alp7R dependant manner. Red arrows indicate splitting events of spindles. 

10 µM Alp7A, 1 µM Alp7R, 14pM alp7C-coated beads. 2 min/frame; Magnification: 60 x; Scale 

bar = 10 µm.  

 

3.4 Development of a Minimal RNA Segrosome 

The aim of this study was to engineer an RNA-segrosome (Hürtgen et al. in 

preparation). We show that DNA-segregation can be translated to RNA segregation 

via the design of a set of chimeric proteins that are able to bind RNA specifically and 

mediate R1-ParM-based segregation.  
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3.4.1 Design of the RNA Hairpin Crown and the MS2-ParR Fusion Protein 

To enable minimal RNA segregation, an interface had to be designed that allows 

RNA/ParM-interaction. Hence, the MS2 coat protein from the bacteriophage MS2 was 

used. This protein is natively able to recognize the stem-loop structure from the single-

stranded RNA bacteriophage genome. In the native R1-ParMRC system, ParR builds 

a right-handed helix, while one full turn of this helix consists of 12 dimers and results 

in an open clamp that is capable of binding one double-stranded ParM filament (Figure 

4C, E). The RNA to be segregated was designed to mimic the optimal binding 

conformation (Figure 20A).  

To combine the RNA binding properties of the MS2 coat protein, and the ParM filament 

binding properties of ParR, fusion proteins were designed. However, it had to be 

considered that the ParR N-terminal RHH2 domain binds specifically to DNA, while the 

C-terminus interacts with the ParM filament. Thus, the fusion should be performed at 

the N-terminus to replace the natural DNA binding property of ParR with the RNA 

binding property of MS2 coat protein. This would simultaneously conserve the filament 

binding function of the ParR-clamp. On the other hand, the RNA hairpin recognized 

by the MS2 coat protein binds across the extended β-sheet surface formed by the coat 

protein dimer. The 3D structure of the resulting fusion protein was modelled (by Dr. 

Fan Jin) to determine the optimal linker length. As a result, the calculated optimal 

distance between the two fused proteins that would allow for proper protein folding 

and dimerization was 27.2 Å (Figure 20B), which corresponds to approx. 16 amino 

acids. Three construct versions were designed:  

(i) with a rigid linker (Alanine-Proline)10, (ii) with a flexible linker (Glycine-Glycine-

Glycine-Glycine-Serine)3 and (iii) ParR-mCherry-MS2 coat fusion protein, which would 

enable visualization via fluorescence signal. These three versions would translate to 

chimeric proteins of 30.84 kDa, 30.11 kDa and 57.10 kDa, respectively, which are 

expected to enable RNA segregation (Figure 20C, D).  
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Figure 20: Design of the RNA segregation system. (A) RNA hairpin crown as template for RNA 

segregation. The designed RNA comprises of 12 hairpin structures 

((CA)10(AAACAUGAGGAUUACCCAUGU)12), hence capable of binding 12 ParR dimers necessary to 

build a fully functional clamp. (B) 3D structure of the ParR-MS2 coat protein fusion. ParR (top) is fused 

N-terminally to the MS2 coat protein (bottom). The calculated optimal distance for correct protein folding 

and dimerization is 27.2 Å. (C) Schematic representation of RNA segregation via the designed fusion 

protein. The MS2 coat protein part of the fusion protein mediates the RNA binding, while (D) the ParR 

part mediates the binding to the ParM filament, which subsequently leads to segregation of the RNA 

hairpins (Modified from: NATURE REVIEWS | MOLECULAR CELL BIOLOGY VOLUME 16 | 

FEBRUARY 2015). 
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3.4.2 Implementing the Chimeric System for Minimal RNA Segregation 

Out of the three engineered variants designed above, the rigid version (i) carrying the 

rigid (AP)10 linker showed an expression level too low for downstream processing of 

purification. However, the other two showed acceptable expression levels and were 

purified using Ni-NTA columns via His-tag.  

As a next step, it was tested whether the purified versions of the two fusion proteins 

are capable of mediating RNA segregation. Thus, the spindle assembly approach for 

DNA segregation was adapted. 350 nm magnetic beads were coated with a 

biotinylated variant of the constructed RNA hairpin crown via streptavidin-biotin 

binding and incubated with the purified ParR-mCherry-MS2 fusion protein and ParM 

(Figure 21A). The fusion protein was able to recognize the RNA-coated beads and 

mediated spindle assembly and aster formation (Figure 21A).  

However, in addition to specific filament formation and segregation of bead-clusters, 

non-specific filament formation was observed independent of RNA coated beads 

(Figure 21B). It was observed that the fusion protein attached along the sites of ParM 

filaments, thus leading to a non-selective stabilization of ParM (Figure 21C), which 

might point towards an impaired functionality of this fusion protein version (iii).  
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Figure 21: In vitro segregation of RNA-coated beads mediated by the mCherry-version (iii). (A) 

Spindle assembly using 1 µM ParR-mCherry-MS2 fusion protein (5 µM ParM, 14 pM RNA-coated 

beads, 10 mM ATP). Segregation of three bead-clusters can be followed by colocalization of mCherry 

signal (red) and ParM-Alexa488 signal (green). Magnification = 40 x, Frames are 2 min apart. Scale 

bar = 20 µm. (B) Filament formation in absence of RNA-coated beads. Magnification = 20x; Scale bar 

= 20 µm. (C) The fluorescent fusion protein associates not only with the RNA-coated beads (asterisks, 

large red spheres) but also along the sites of formed ParM filament (small red spheres, connecting large 

red spheres). Magnification = 40 x, Scale bar = 10 µm. 

 

Subsequently, the fusion protein variant with the flexible (GGGGS)3 linker was tested. 

This variant of the fusion protein led to association of ParM to the RNA coated beads 

and to aster and spindle formation in a fusion protein dependent manner (Figure 22A). 

Moreover, it led to the formation of bipolar and multipolar spindles segregating RNA-

coupled beads (Figure 22B, C; Suppl. Figure 12) reminiscent of the native ParM 

spindles segregating parC sites. In contrast to the mCherry version (iii), it did not lead 

to such high levels of non-specific filaments. The spindle formation by all means 

behaved very similar to the reconstituted DNA segregation described earlier, also 

regarding the length and quantity distributions during steady-state (Suppl. Table 6). 

Hence, this represents a successful bottom-up engineering of the first cytoskeletal 

RNA segregation machinery to date (Hürtgen et al. in preparation). 
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Figure 22: In vitro segregation of RNA-coated beads mediated by the ParR-(GGGGS)3-MS2 

fusion protein (ii). (A) Spindle assembly using 1 µM fusion protein (5 µM ParM, 14 pM RNA-coated 

beads, 10 mM ATP). Magnification: 40 x; Scale bar = 10 µm. (B) Multiple bipolar and multipolar spindles 

segregate RNA-coated beads in a larger field of view. Magnification = 60 x, Scale bar = 10 µm. (C) Time-

lapse of RNA segregation. Magnification = 60 x, Frames are 1 min apart. Scale bar = 5 µm. (D) Spindle 

(n=163) and aster (n=261) length- as well as quantity of asters (n=203) per bead-distributions during 

steady-state of reaction.  
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4 Discussion 

 

DNA segregation is a fundamental life process, which is why a minimal segrosome 

must function reliably in the context of a minimal cell as well. However, a minimal 

segrosome capable of faithful segregation in a self-sustainable manner has not been 

constructed yet. 

In this dissertation, prokaryotic segregation systems were explored and reconstituted 

to engineer a dedicated segregation machinery consisting of only crucial components 

– a minimal segrosome. Such a system could be applied for the rational design of 

biomimetic systems and thus contribute towards the development of a fully functional 

minimal cell. 

 

4.1 Genetic Stability Mediated by ParA-based and ParM-based 

Segregation Systems 

Retaining genes in a population over time leads to genetic stability. Obviously, any 

chromosomal or extrachromosomal DNA could be stabilized by using selection 

markers or addiction systems (Kroll et al., 2010). These approaches negatively select 

on cells that have lost their selection markers. However, organisms in nature rely on 

a stable genetic inheritance without negative selection, which is of particular interest 

when it comes to the design of a minimal cell and generally minimal biomimetic 

systems. This intrinsic stability could be increased by the addition of active partitioning 

systems (Løbner-Olesen, Atlung and Rasmussen, 1987). In the context of minimal cell 

design, it is therefore crucial to pick a functional and reliable partitioning system to 

ensure stable inheritance across the generations.  

To allow for such a rational design, different segregation systems need to be 

evaluated, which is why the R1-ParMRC system was compared with the native 

segregation system from ChrII of Vibrio cholerae (ParABS). The natural secondary 

chromosome of V. cholerae has been proven to be a suitable basis for the 

development of a synthetic secondary chromosome in E. coli to study biological 

processes (Messerschmidt et al., 2015, 2016). The data show that the R1-ParMRC 

system led to a higher genetic stability than the used type I ParABS system. Large 

error bars for the control can be explained by the number of reference cell counts 
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determining 100 %. When the absolute number of grown colonies at 100 % is rather 

low, this might lead to a larger approximation error. This was mostly the case in this 

study, since even in the t0 sample, many cells (up to 80 %) already lost their plasmid 

(Suppl. Table 1). However, this further underlines the pivotal role of segregation 

systems in the absence of selective pressure.  

Since the synthetic chromosome used in this study for measuring the genetic stability 

mediated by the ParABS system is derived from ChrII of V. cholerae, the observed 

loss rate might have several sources: V. cholerae encodes various toxin-antitoxin 

systems, which i.a. play a role in genomic stabilization (Iqbal et al., 2015), since they 

lead to cell death upon loss. Most of these systems are encoded on ChrII, which further 

supports their role in genetic stability. Moreover, the ParABS system from ChrII of 

V. cholerae is involved in regulation of its replication (Kadoya et al., 2011; Venkova-

Canova et al., 2013), which might thus be perturbed in a minimalized system. This 

might also explain the observation that copy-up mutations within the ori occurred when 

ParABS was deleted entirely from the synthetic chromosome synVicII-1.3. Thus, we 

deleted ParAB only for our control, which led to elimination of plasmid stability, while 

not disturbing copy number. Additionally, replication of ChrII is triggered by the 

replication of an intergenic sequence (crtS), which is located on the primary 

chromosome. It was shown recently, that crtS not only regulates the timing of 

replication initiation of ChrII, but also controls its copy number (de Lemos Martins et 

al., 2018). Hence, the use of this backbone in E. coli constitutes a heterologous system 

lacking such regulatory units. In contrast, the plasmid-based ParMRC system acts 

independent of replication, division or any cell cycle events. 

Based on these results and the fact that it is the best-understood segregation system 

to date, the R1-ParMRC machinery was chosen for the subsequent studies. Future 

research should aim at expanding such comparative studies to evaluate the stabilities 

resulting from other chromosome- and plasmid-based segregation systems.  

Additionally, more time points per segregation system should be investigated to get a 

better resolution in time, while the number of experiments should be increased, 

allowing for more accurate statements and conclusions. Synthetic chromosomes 

could be equipped with FROS (Fluorescent Repressor/Operator System) arrays to 

monitor and compare their localizations in vivo when using different segregation 

machineries. Moreover, the size of the synthetic vectors should be varied to 

investigate a possible size-dependents of segregation fidelity. This is of major 
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importance for minimal cell design since this would set the limit for the size of 

its genome.  

Complemented with mathematical models, this would further deepen the 

understanding of the detailed underlying segregation mechanisms and would allow for 

a classification of segregation systems that could be used as a tool box for the rational 

design of minimal biomimetic systems. 

 

4.2 Development of a Minimal Segrosome 

4.2.1 In vitro Reconstitution Bears Potential to Elucidate Mechanistic 

Details 

In addition to the results obtained in the previous chapter the R1-ParMRC system has 

several advantages: First, its simplicity, since it only consists of three components. 

Moreover, it already has been reconstituted in vitro to identify the required components 

(Garner et al., 2007), which gives a good basis for an application in bottom-up 

synthetic biology. Additionally, it functions independently of any check points and is 

not relying on protein gradients in contrast to ParA-based segregation systems.  

The first step was to characterize the properties of the R1-ParMRC System in vitro. It 

was found that ParM formed seed filaments, which are rather small (< 2 µm), in 

accordance with previous studies (Garner et al., 2004). It might be argued that their 

existence is an in vitro artifact, since they have never been observed in vivo. However, 

this might also be explained by their high polymerization dynamics. Nevertheless, the 

in silico simulations show that these filaments would not lead to a higher genetic 

stability (Dr. Seán Murray, personal correspondence).  

To shed light on this phenomenon, the polymerization rates of ParM spindles were 

determined and compared to previous in vitro and in vivo studies (Suppl. Table 4). It 

was found that the numbers obtained in this study match the numbers from the four 

compared studies, despite the fact that very different ParM concentrations were 

involved. However, it was shown that generally polymerization rates are dependent on 

monomer concentrations, since this changes contact probabilities (Ito, 1975; Kent et 

al., 1992; O’shaughnessy, 1994).The lowest ParM concentration used in vitro was 

0.35 µM (Gayathri et al., 2012), while the physiological cellular concentration in vivo is 

approx. 15 µM (Møller-Jensen et al., 2002). It was argued that the measured in vivo 
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concentration cannot be accurate, since this would lead to six to seven times higher 

polymerization rates (Christopher S. Campbell and Mullins, 2007).  

In that context, the existence of the observed ParM seeds might have two important 

mechanistic implications: First, it has been stated that nucleation of ParM filaments 

in vivo might be mediated by the ParRC complex (Gayathri et al., 2012). The in vivo 

existence of ParM seeds would question the requirement of nucleation factors such 

as the ParRC complex. Second, it offers a possible explanation for the similar 

polymerization rates observed in vitro and in vivo, while their concentrations differ: The 

polymerization of ParM seed filaments would lead to a lower net concentration of 

monomeric ParM, that is available for spindle formation, hence decreasing spindle 

polymerization to the observed rates.  

However, even if the cellular concentration of available, monomeric ParM would be 

closer to the measured steady-state ATP concertation of 2.3 µM (Møller-Jensen et al., 

2002), it is still surprising that no differences in polymerization rates can be detected 

in vitro between 0.35 µM and 7 µM.  

Another open mechanistic question is what the energy from ATP hydrolysis is used 

for. It has been suggested, that it is used for the movement of the ParRC complex to 

incorporate ParM monomers (Salje and Löwe, 2008). However, the observation that 

ParM asters and spindles grow substantially longer in the presence of the non-

hydrolyzable ATP homolog AMP-PNP contradicts this interpretation. Self-assembling 

molecules, such as ParM monomers, adopt the polymeric structure due to its 

thermodynamic minimum. Hence it could be speculated that the energy is not used for 

assembly, but on the contrary for the disassembly of the polymer.  

Furthermore, the mechanism of catastrophic disassembly of ParM spindles remains 

elusive. In general, there are two possible explanations: Either it is based on 

stochasticity, which would be mirrored in an exponential decay of spindle life-time 

distributions, or this phenomenon is connected to e.g. spindle growth rates, which 

would lead to a peak in life-time distributions. Further studies should investigate the 

questions of how and why ParM polymers disassemble. In that context it was 

observed, that the aster length distribution shows a peak instead of an exponential 

decay (Figure 11). This could be a first hint that catastrophic disassembly of spindles 

is not based on mere stochasticity, since asters seem to have a ‘preferential’ length, 

although only stabilized by the ParRC complex at one site. 
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In this study, the dynamics of this segregation machinery were of interest and how the 

in vitro experiments translate to the natural system in vivo. Since the dawn of in vitro 

studies of this plasmid segregation system, most of the research is focusing on 

segregation as a static event, that occurs prior to cell division (Garner et al., 2004; Fink 

and Löwe, 2015; Brooks and Hwang, 2017). Here, observations are reported that 

might suggest segregation being a dynamic, ongoing event, rather than a static one 

(Figure 12). Campbell et al. (Campbell et al., 2007) observed a similar behavior in vivo, 

when some plasmids were segregated by the ParMRC system continuously from one 

pole of the cell to the other. Moreover, a similar case has been described for a type I 

segregation system, where ParB-bound plasmids chased ParA, which was oscillating 

on the nucleoid due to reversible nonspecific DNA binding (S. Ringgaard et al., 2009; 

Vecchiarelli et al., 2010; Hu et al., 2017). Because of these concurring results of 

in vivo, and in vitro studies, it can be hypothesized that ParMRC-mediated DNA 

segregation also constitutes an ongoing dynamic cellular process with oscillatory 

characteristics leading to a standing wave of moving plasmids, rather than a static 

event. The obtained data were verified by computer simulations (by Dr. Seán Murray, 

MPI Marburg) of bead segregation in space and time (Figure 12). 

In summary, despite being the best-understood segregation system many questions 

remain open. Future research should determine the life-time distributions of asters, 

spindles and ParM seeds to unravel the reason for catastrophic disassembly of 

filaments.  Moreover, it would be important to shed light on where the chemical energy 

coming from ATP hydrolysis is used for. Combined with mathematical models this 

could lead to the detailed underlying mechanism of ParM-based segregation, which 

would in turn help to understand the variations and evolutions of other segregation 

systems. 

 

4.2.2 DNA Segregation in an Enclosed Reaction Space 

Here, the R1-ParMRC system was reconstituted in vitro to ensure dynamic 

segregation of artificial, DNA-coated micro-beads and eventually of genetic material. 

Using the established optimal conditions, it was observed that spindles grow longer 

(median 12.9 µm, Suppl. Table 2) than an average sized E. coli cell of ~ 1 x 3 µm 

(Reshes et al., 2008). However, spindle lengths of > 120 µm were described by Garner 

and colleagues (Garner et al., 2007). This might be explained by different component 
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ratios of functional protein. In this study such long filaments were only observed when 

attached onto the glass substrate, which putatively leads to loss of ATPase function, 

thus impairing the dynamic nature of this process. The median of the spindle lengths 

has important implications for minimal cell design since it sets a limit for the 

confinement dimensions of the future minimal cell.  

In nature, the R1-ParMRC system is responsible for segregation of the low-copy 

(~ 6 copies per cell) R1 plasmid (Gayathri et al., 2012), while in the reconstituted 

system it is capable of segregating magnetic beads of 300-350 nm in diameter, which 

are of approx. thrice the mass in comparison to the R1 plasmid (artificial micro-bead 

~ 33 fg vs. R1 plasmid ~ 11 fg). To elucidate this phenomenon, it was observed via 

TEM that each aster growing from a bead, as well as spindles consist of bundles rather 

than of single filaments. This might lead to the fact that bundles are exerting a stronger 

force as well as offer more stability to the polymer, leading to more robust and hence, 

longer filaments. It might be speculated that the number of centromeric sites has an 

effect on number of filaments per bundle and hence limit of maximum cargo mass, 

which might have important implications for the design of minimal biomimetic systems. 

However, next to the mass of the object to be segregated, cargo size plays also an 

important role, since a smaller cargo size leads to a lower susceptibility for 

diffusive motion. 

To match the in vivo environment and the simulations, the system was encapsulated 

into biomimetic micro-compartments. Additionally, an enclosed reaction space is 

another feature of life and would make this biomimetic system more life-like. Several 

intrinsic properties of various protein machineries devoted to spatial organization have 

been investigated in artificial confinements, including actin (Claessens et al., 2006; 

Adeli Koudehi, Tang and Vavylonis, 2016), the Min system (Loose et al., 2008; Caspi 

and Dekker, 2016), and MreB (Maeda et al., 2012; Hussain et al., 2018).  

In order to mimic the natural confinement of rod-shaped bacteria, these droplets were 

deformed by inserting into microfluidic channels. Although in this set-up, water-in-oil 

droplets had only a limited lifetime (< 1 h) due to evaporation of the oil through the 

PDMS, the preferential alignment of ParM filaments along the long-axis of the 

channels could be observed. However, when not encapsulated in droplets it showed 

some adherence onto PDMS upon direct contact even when passivated with BSA. 

The best results were obtained with water-in oil droplets captured in glass capillaries.  
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In that context, it was observed that ParM filaments do not exert any force on the 

droplets, which underpins the functional mode of insertional polymerization, unlike 

actin-myosin based filaments that have been shown to cause membrane shape 

deformation in artificial confinements (Simon et al., 2018). 

A valid point for future improvement is to increase complexity of the confinement. In 

that context, more life-like compartments could be used, e.g. liposomes consisting of 

E. coli membrane lipids, which are having a bigger similarity to native conditions. As a 

preliminary experiment, E. coli membrane lipids were tested for compatibility with the 

segregation machinery. No detectable adhesion onto the membrane was observed 

(Suppl. Figure 7). Further improvements of the synthetic cell envelop might be the use 

of an optimized version of the used half-open Teflon channel (Figure 13D, 

Suppl. Figure 6) covered with a lipid bilayer that would allow for the continuous supply 

of limiting components e.g. ATP.  

 

4.2.3 Coupling of DNA Segregation to Energy Conversion and Oxygen-

Scavenging 

DNA replication, segregation and energy conversion constitute pivotal core-functions 

of all living systems and should hence also be addressed when it comes to the design 

of a minimal cell.  

That energy was the major limiting factor was proven by the observation that the 

presence of an ATP-regenerating system led to larger extension of lifetime (+ 90 min), 

than the additional oxygen scavenger (+ 60 min). This might be one reason why 

equilibrium of the reaction is reached slightly faster when encapsulated (~ 30 min) in 

comparison to reactions in bulk (~ 48 min). In the latter case stabilized filaments can 

recruit ATP from the surrounding space due to diffusion into the ATP-depleted zones.  

Apart from ATP hydrolysis, the so called ‘ADP poisoning effect’ (Møller-Jensen et al., 

2002; Garner et al., 2004) also leads to an increased depolymerization rate of ParM, 

thereby inhibiting filament formation. In 2004, Garner et al. showed that at a 1:4 molar 

ratio of ADP:ATP ParM polymerization is already completely inhibited 

(Garner et al., 2004). Similar experiments performed on the kinetics of actin, led to the 

conclusion that the ‘ADP poisoning effect’ is actually due to nucleotide exchange on 

monomers at the end of filaments (Teubner and Wegner, 1998).  
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This insight is of major importance when nucleotide-dependent molecular machines 

are used, since this implies that not only NTP hydrolysis rates must be considered, 

when estimating the overall energy consumption and longevity of a system, but also 

the spatiotemporal development of the ratio of NTP to NDP. Coupling the DNA 

segregation machinery to an ATP-regenerating system tackles both, ATP depletion as 

well as ADP accumulation. The ATP regeneration system based on creatine kinase 

was incorporated that recycles ATP by phosphorylation of ADP under cleavage of 

creatine phosphate (Suppl. Figure 8). Under these conditions spindles could be 

observed down to 10 µM starting ATP concentration, while at least 50 µM starting ATP 

concentration are required when not using an ATP regeneration system (Suppl. 

Figure 9). No impairment of the segregation machinery could be detected.  

Another important limitation was oxidization of proteins and accompanied loss of 

function. To keep the proteins in their physiological reduced state reducing agents 

such as DTT, β-ME and TCEP have been used. However, since their lifetimes vary 

and can be rather short in solution depending on temperature and pH (from > 100 h 

to 12 min (Stevens, Stevens and Price, 1983)), an oxygen-scavenging system based 

on pyranose oxidase and catalase was incorporated (Suppl. Figure 10). This 

enzymatic scavenger has the advantage that it’s keeping the pH rather stable for at 

least 2 h at the used pH in contrast to other oxygen-scavenging systems that are being 

commonly used (e.g. glucose oxidase and catalase; protocatechuate dioxygenase) 

(Swoboda et al., 2012).  

This drop in pH could be another hurdle for the future task of further increasing 

longevity of the systems. Even in this buffered system, after 3 h the environment might 

have reached a pH that is out of the active range of the employed enzymes. Future 

attempts should therefore aim at stabilizing the pH at a desired level. 

However, this third coupled enzymatic system enabled for active proteins and running 

systems for ~ 3 h. This simple ATP-regenerating system constitutes the first step 

towards the coupling of segregation to energy conversion, which could be achieved in 

the future by aiming at chemical-to-ATP energy and solar-to-ATP 

energy modules, respectively. 

The quantity distributions of the optimized systems were similar to the ones measured 

during steady state, while they decayed collectively when the system reached inactive 

equilibrium (Figure 14, Suppl. Figures 3-5). This might indicate that the spindle and 

aster lengths distributions in confinements develop similar to the distributions 
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measured in bulk and that the conclusions drawn from bulk experiments also translate 

to a confined reaction space. These measures made this system more complex and 

more life-like, as well as enable a better coupling to other biological modules. 

 

4.2.4 Towards a Minimal Replication-Segregation Machinery 

Insights gained from studies of the mechanistic aspects of DNA segregation lay the 

groundwork for the design of a minimal replication-segregation machinery, as 

presented in this thesis, which constitutes an essential step toward creation of a 

minimal cell. In natural systems, chromosome replication, condensation and 

segregation are essential events for the transmission of genetic information that are 

tightly coordinated with division during the cell cycle. In eukaryotes, cell division occurs 

in distinct phases, with chromatin condensation occurring prior to segregation. In 

bacterial systems, condensation and segregation of replicated chromosomes takes 

place in a progressive manner directed by the positioning of replicated origins (Wang, 

Montero Llopis and Rudner, 2013). Thus, the organized condensation state of bulk 

DNA ensures the integrity of the replicated DNA and minimizes loss of information 

during segregation (Hirano, 2005). This already indicates the possible importance of 

DNA condensation when it comes to the design of biomimetic systems. 

Coupling of DNA replication to segregation poses one of the major challenges towards 

the creation of a minimal replication-segregation system. So far, DNA replication 

systems that were successfully reconstituted were mainly derived from viruses and 

bacteriophages, which is why those systems were also used in this study.  

Recently, de novo synthesis and assembly of functional DNA replication components 

using an in vitro transcription and translation system has also been successfully 

demonstrated for E. coli (Fujiwara, Katayama and Nomura, 2013), and Phi29 

bacteriophage replication units (van Nies et al., 2018). It has also been shown that the 

Phi29-mediated replication of a circular plasmid could be coupled to the Cre-lox 

recombination event, resulting in the release of circular DNA (Sakatani, Yomo and 

Ichihashi, 2018). In this study the minimal replisome derived from Phi29 replicating 

system was used. 

Despite the advantages of the R1-ParMRC system described in this dissertation, it 

also poses some disadvantages for the downstream process of DNA segregation. One 

potential drawback of this system is that it evolved for the segregation of plasmids of 
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approx. 100 kb in size and hence might fail segregating larger DNA of the size of 

chromosomes. Another problem might arise especially for DNA that is not condensed 

in vitro by the fact that it normally mediates partitioning of the centromere-like parC 

sequence rather than the bulk of the DNA. Thus, coupling of segregation to replication 

might require condensation of the DNA. Moreover, to observe these processes using 

epi-fluorescence microscopy, especially in a size regime that is feasible to accomplish 

by microfluidic approaches, one needs to have nucleation points. Hence, the products 

of replication should provide nucleation points for the attachment of the segregation 

apparatus that are optimally generated during the condensed state of the DNA. 

To tackle these aspects, inorganic DNA precipitates were used in this study termed 

DNA nanoparticles, created during in vitro DNA synthesis as byproducts (Galinis et 

al., 2016; Kim et al., 2017). The formation of condensed DNA nanoparticles has been 

suggested for several applications, e.g. in intracellular protein targeting or in vitro 

translation, where it allowed the synthesis of even higher protein levels than equimolar 

levels of plasmid could achieve (Galinis et al., 2016; Kim et al., 2017). Since their 

biological functionality as well as accessibility for protein binding has been proven 

(Galinis et al., 2016), the use of nanoparticles implies several advantages. These are 

the mimicking of the condensed state of chromosomes in natural systems and 

providing several centromeric parC sites within one molecule, serving as nucleation 

points for the segregation system. Another advantage is that beads and nanoparticles 

are less prone for diffusive motion in contrast to plasmids, due to a smaller cargo size. 

Hence, they provide a more feasible and more life-like link between DNA replication 

and segregation in comparison to artificial micro-beads or mere plasmids. 

However, as we have seen the heterogeneous sizes of DNA nanoparticles translate 

to one of the major drawbacks when observing the coupled segregation dynamics, 

since their segregation function is influenced by particle size. It was observed that 

nanoparticles can only act as nucleation points for segregation, when their size is 

< 1 µm in diameter. On the other hand, if their size is too small to be visualized by epi-

fluorescence microscopy nanoparticle segregation resulted in less defined foci in 

comparison to micro-bead segregation. Another problem arises by the heterogenous 

number of formed nanoparticles. The segregation system is dependent on a defined 

ratio of the three components (ParMRC). Hence, it is crucial to control the number of 

nucleation points. These two challenges of homogeneous size and number of DNA 

nanoparticles could be addressed in the future by restricting reaction volumes as well 
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as optimizing reaction conditions and the time scale of the replication reaction, for 

which microfluidic approaches could be used. Additionally, future studies should 

address the problem of synchronizing the replication and segregation reactions 

enabling the replication products to be accessible for both subsequent replication- and 

segregation-cycles.  

With this study the basis for the design of a minimal replication-segregation machinery 

was established (Hürtgen et al., in preparation). However, further cycles of testing and 

optimization are required to set up a robust and fully compatible replication-

segregation system that will enable coupling with other biological modules involved in 

cell division, and ultimately incorporating these functions into a minimal cell.  

 

4.2.5 Assembly of Minimal Systems using Microfluidics  

Microfluidics enables not only the creation of complex biomimetic microcompartments, 

but also for the assembly of biological modules to a functional system. In general, 

increasing complexity is necessary to reach the ultimate aim of designing and 

assembling an entire minimal cell. The challenge here is to keep a balance between 

the level of complexity needed for certain processes and holding the upper hand over 

controlling these processes.  

A pico-injection module was used for mechanical splitting of confinements to 

circumvent the fact that minimal cell division has not been reconstituted yet. However, 

microfluidics offers the potential to simulate cell growth by e.g. droplet fusion or even 

to assemble functional modules in a step-wise manner to overcome the problem of 

manipulating biomimetic modules and their sequential assembly to multifunctional 

systems (Figure 23). For instance, used in the context of the coupled replication-

segregation system, it would allow for the continuous supply of limiting components 

such as nucleotides or ATP as well as for mechanical cell division. Such a system 

would be capable of multiple generation cycles and quality control (Figure 23) and 

would ultimately enable open-ended evolution, which has not been demonstrated in a 

synthetic system yet. 
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Figure 23: Using microfluidics for assembly of biomimetic systems. Such a sequential coupling of 

multiple microfluidic modules would allow for quality control of biomimetic systems, multiple generation 

cycles and eventually evolution of synthetic systems (image from Microfluidics Facility, MPI Göttingen, 

MaxSynBio). 

.  

4.3 In vitro Reconstitution of the Alp7ARC-Segregation System 

Establishing a secondary DNA segregation system that acts orthogonally is an 

important step when it comes to increasing complexity of biomimetic systems and 

especially a minimal cell. It would enable a more precise control over segregation of 

distinct classes of genetic material. Furthermore, the Alp7ARC system and its 

mechanistic behaviour remains rather obscure, so that in vitro studies might shed light 

on the underlying mechanism. Hence, the Alp7ARC system was reconstituted in vitro, 

a type II plasmid segregation system, that segregates the low-copy number plasmid 

pLS20 from B. subtilis.  

Although much remains elusive about the detailed segregation mechanism one major 

difference to R1-ParM is that next to dynamic instability Alp7A is also capable of 

treadmilling, which was observed in fully elongated filaments in vivo, suggesting that 

this behavior occurs after plasmid separation (Derman et al., 2009). 

However, no treadmilling behavior was observed in vitro. This might be caused by the 

lack of physical boundaries, since treadmilling has only been observed when spindles 

were fully elongated within the cell envelope. This is why further steps should aim at 

encapsulating the system.  

Next to bipolar spindles the formation of unspecific filaments was observed 

independent of alp7C-coated beads. These were especially abundant at the edges of 

the microscopy slide indicating that they form due to oxidation. However, it might be 

speculated that the system builds overlapping spindles that tend to split from the 
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bundle. This might be supported by the similar phenotype observed in vivo (Derman 

et al., 2009; Petek and Mullins, 2014) and by the fact that an increase of reducing 

agents (e.g. DTT, TCEP) did not prevent their formation. Additionally, the median of 

the quantity of asters per bead was double as much as for ParM. This observation 

together with the bundle-splitting might indicate that the lateral associations for Alp7A 

filaments are less strong in comparison to ParM filaments, which might offer one 

explanation for the rarely observed spindle formation events. Such bundle splitting 

was never observed for the R1-ParMRC system, where bundles stayed associated 

once they were formed. Interestingly, and in contrast to R1-ParM, Alp7A was not able 

to polymerize in the presence of the non-hydrolyzable ATP analog AMP-PNP. This 

could imply a different mode of action and might indicate that ATP hydrolysis is crucial 

for polymerization in contrast to R1-ParM. 

In any case, the system requires optimization. Further steps should aim at elucidating 

the polymerization dynamics of Alp7A. If the physical details are understood this will 

give the basis for a reliable in vitro reconstitution of this elusive plasmid segregation 

system. Subsequently, the precise ratios of this three-component segregation system 

have to be determined and the experimental environment needs to be optimized, such 

as buffer, crowding and reducing conditions.  

In summary, this work shows that the Alp7ARC system is capable of segregating DNA-

covered micro-beads in vitro. Further optimization will enable its use as a secondary 

DNA segregation module for a more precise control of DNA segregation. 

 

4.4 Engineering a Chimeric Segregation System for RNA-based 

Protocells 

While DNA segregation is quiet well studied in the context of cell division, a similar 

RNA segregation process has not been described yet. It is known that RNA is being 

specifically moved during various biological processes like virion assembly 

(Lindenbach, 2015), asymmetric cell division during embryonic development (Kingsley 

et al., 2007; Rabinowitz and Lambert, 2010) or apoptosis (Halicka, Bedner and 

Darzynkiewicz, 2000). However, these processes are quite distant from the DNA 

segregation purpose and mechanisms in the context of cell division.  

Here we engineered a cytoskeletal-based RNA segregation machinery, mediated via 

the designed fusion protein consisting of the adapter protein ParR from the R1-



4 Discussion4.4 Engineering a Chimeric Segregation System for RNA-based 

Protocells 

 

59 

ParMRC plasmid segregation system and the MS2 coat protein from the MS2 

bacteriophage. During in vitro reconstitution experiments it was observed that fusion 

protein version (iii), although able to segregate RNA-coated beads, also bound 

excessively along the ParM filament sites (Figure 21), thereby stabilizing ParM even 

in the absence of RNA coated beads. This might indicate a shift in affinity of the ParR 

part of the fusion protein towards the filaments’ sites rather than its tip. Moreover, this 

might be explained due to an impaired RNA binding property of the MS2 part as a 

result of the protein fusion, e.g. by spatial restriction. This might not be surprising 

considering that monomeric ParR is ~ 13 kDa and monomeric MS2 coat protein 

~ 14 kDa, while mCherry is ~ 29 kDa, meaning that the latter is even bigger than the 

two main proteins of interest in that construct combined.  

For version (ii) with the flexible linker, ParR’s function was less impaired (only few non-

specific filaments were observed), bound to the RNA coated beads and 

simultaneously led to the stabilization of productive spindles for bead segregation. This 

indicates the functionality of ParR and MS2 coat protein within that construct, which 

might be explained by the flexibility of the linker region.  

Overall, a successful bottom-up engineering of a chimeric, cytoskeletal-based RNA 

segregation machinery was shown, capable of segregating RNA-coated artificial 

micro-beads (Hürtgen et al., in preparation). This was possible by the rational design 

of the RNA target sequence as well as of the fusion proteins. However, further 

improvements can be made by increasing the labeling efficiency of the RNA, which 

would lead to more binding sites per bead and hence to more distinguished foci, since 

this might also lead to an overestimation of unspecific filament formation. Moreover, 

the RNA could be dual-labeled with Cy3 to allow for a tracking of the RNA. These 

measures would also allow for a more precise discrimination between specific and 

non-specific filaments and additionally, decrease the formation of non-specific 

filaments. Last the storage conditions of RNA-labeled beads could be improved since 

RNA is rather unstable in comparison to DNA. Furthermore, to allow for a self-

sustaining RNA-based biomimetic system and ultimately for an RNA-based protocell, 

the system could be coupled to RNA-based self-replicating modules. In case the 

replication product would allow the formation of RNA hairpins these could be used for 

the downstream process of RNA segregation. When encapsulated this could serve as 

a model protocell resembling early protocells that might have existed during the RNA 

world era.  
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4.5 Scope and Implications of Molecular Machines for Minimal Cell 

Design – Today and in the Future 

 

4.5.1 The Role of Molecular Machines in Natural and Minimal Systems 

All living cells make use of molecular machines. Many of these active protein systems 

are able to assemble into higher-order structures forming complex molecular 

machineries that, upon energy consumption, perform mechanical work by exerting 

forces. One major group within these active molecular machines is the cytoskeleton 

consisting of polymerization motors, such as actin and actin-like proteins, also used in 

this study. Their mechanical responses are based on a complex spatiotemporal 

interplay, where energy consumption powers the transition between different 

conformational states (Goldhor, 1962; Fletcher and Mullins, 2010) as has also been 

presented in this thesis by using different nucleotides, such as ATP or AMP-PnP.  

Cells use molecular self-assembly and self-organization to create a diverse set of 

structures, with the ability to resist, transmit and generate forces as well as span 

nanometer to micrometer length scales. For example, actin monomers (5.4 nm in 

diameter) assemble into linear double-helical polymers, which are subsequently 

organized by a variety of actin-binding proteins to fulfill their various tasks, like 

displacing  the cell membrane during motility (Henderson and Locke, 1992; 

Guevorkian et al., 2015; Pollard and Borisy, 2003) or assembling into filopodia to 

create protrusions (Mattila and Lappalainen, 2008). In all cases, identical monomeric 

elements assembled into specific structures expressing different physical properties 

leading to unique mechanics and dynamics. As in this case, ParM and Alp7A 

monomers assembled to polymers able to carry out biological work. These examples 

illustrate how the very same building block can be used to perform various functions 

depending on context and architecture. Different arrangements of filaments, cross-

links and branches thus lead to the emergence of various distinct physical and 

biological properties. This property of molecular machines to consist of the same 

building blocks but with high diversity in their final properties and function may be very 

useful towards the design of a minimal cell. They would reduce the number of 

components, yet with the ability to perform various tasks in a minimal system, such as 

genome segregation. Since eukaryotic molecular machines are complex, prokaryotic 

actin-based polymerization motors could offer promising alternatives. 
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4.5.2 In vitro Reconstitution of Prokaryotic DNA Segregation – Recent 

Developments 

Although microscopy has made significant progress in recent years, the knowledge 

that can be gained in vivo is limited by microscopic resolution and the complexity within 

a cell. In vitro reconstitutions on the other hand, follow a minimalistic approach to 

identify and simplify biological processes to minimal biological modules, which 

optimally reproduce the dynamics observed in vivo. The results can be used to 

elucidate mechanistic details and to lay the basis for an application in minimal 

biomimetic systems. In this context recent developments with regard to DNA 

segregation are described in this chapter, emphasizing the need for in vitro studies as 

presented in this dissertation. 

 

Type I segregation:  

For understanding of type I systems, a significant development has been the in vitro 

reconstitutions of the P1 and F plasmid system (Hwang et al., 2013; Vecchiarelli, 

Hwang and Mizuuchi, 2013). For the ParABS system from the F plasmid an external 

magnetic field was applied to trap parS-coated magnetic beads, which would mimic 

the confined space between the membrane and the nucleoid surface (Vecchiarelli, 

Neuman and Mizuuchi, 2014). The results showed that the confined beads induced 

ParA depletion zones surrounding the partition complexes and displayed directed 

motion up the ParA concentration gradient that propagated with the bead. In case 

these depletion zones would merge this could lead to a motion in opposite directions, 

which might indicate that bidirectional segregation of replicated plasmids would be 

expected. These reconstitutions generally support the DNA-relay and the Brownian-

ratchet models of the ParABS function, where the partition complex chases ParA, 

thereby establishing the ParA gradient that leads to directed motion of the plasmids. 

However, further studies are required to fully elucidate the mechanistic details.  

 

Type II segregation:  

The biggest advance so far was the reconstitution of the R1-ParMRC machinery, 

which proved that ParM, ParR and parC are sufficient for DNA segregation 

(Garner et al., 2007). It could be further shown via FRAP and speckle microscopy that 

monomers are exclusively added at the nucleoprotein complex. These observations 
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led to a model where filaments stabilized at one end perform search and capture of 

parC, whereas bipolar spindles capped at both ends actively segregate. The dynamic 

instability of unbound ParM filaments provides the pool of monomers to drive 

elongation of stabilized filaments.  

 

Type III segregation:  

Fink and colleagues recently reconstituted the TubZRC system from the plasmid 

pBtoxis from B. thuringiensis (Fink and Löwe, 2015b). Upon mixing of TubZ and 

immobilized TubR/tubC-complex interaction and polymerization dynamics were 

observed. This interaction of the motor protein with the partition complex led to a 

seven-fold decrease in depolymerization rate, thus stabilizing the filaments. In this 

system the partition complex is pulled by the treadmilling TubZ filaments, which are 

executing a tramming of the cargo. These results are in accordance with in vivo 

observations: In B. thuringiensis it was observed that TubZ polymers pulling DNA 

cargo find and move along the long axis of the cell and deposit plasmids when 

reaching the cell’s pole (Fink and Löwe, 2015b).  

 

4.5.3 Current and Future Challenges of Minimal Cell Design 

Overall, this dissertation constitutes another step towards a minimal cell. However, to 

generate a complete functional minimal cell has still a long way to go, caused by the 

many missing mechanistic details.  

One challenge is to mimic the physiological environment, necessary for the 

functionality of a system, such as buffer, crowding or reducing conditions. Another 

challenge is the development of a biomimetic compartment capable of deformation 

and interaction with the environment via pores, channels or even proteins. Moreover, 

the need for keeping a biomimetic system from inactive equilibrium requires the 

development of energy modules, which could be achieved in the future by the 

development of chemical-to-ATP energy and solar-to-ATP energy modules. Last, 

these biological modules need to be coupled in order to create a fully functional 

biomimetic system. For instance, further coupling to the downstream process of a 

minimal divisome would create a minimal system capable of replication, segregation 

and division (Figure 24).  
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Figure 24: Synchronization of fundamental life processes in space and time for minimal cell 

design. Left path: Towards minimal cell division: A minimal divisome could be engineered by the in vitro 

reconstitution of proteins (Actomyosin/FtsZ system/CdvABC), which self-assemble and form a 

contractile ring. Via coupling to a positioning module (Min system/Cdc42), this constriction ring is 

located at mid-cell leading to two identical daughter cells. Right path: A minimal replisome (T7/Phi29) 

reconstituted in vitro needs to be coupled to a minimal segrosome (R1-ParMRC/Alp7ARC) as 

demonstrated in this dissertation. The two sister chromosomes are thereby distributed to both future 

"daughter cells" upon coupling to the positioning/division modules. These coupled fundamental life 

processes would lead to a functional minimal, biological system. Lower center panel: Left: FtsZ-

mediated cell division in E. coli including FtsZ (green), MinD (dark green), MinE (dark red), MinC (blue 

stars), FtsA (cyan), ZipA (red) and MreB (gray). Middle: CdvABC-mediated cell division in 

S. acidocaldarius including CdyA (yellow), CdvB (red) and CdvC (cyan). Right: Actomyosin cell division 

in eukaryotic cells including actin (red) and myosin (yellow). Upper center panel: Left: DNA segregation 

via the R1-ParMRC system including ATP-ParM (light blue), ADP-ParM (orange), parC DNA (red) and 

ParR (green). Right: DNA segregation via the ParABS system according to the DNA array model 

including ATP-ParA bound to DNA (dark blue stars), ParB in the partition complex (green), parS DNA 

(red) and ADP-ParA (light blue stars) [from Hürtgen et al. submitted].  
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Such a coupling will further unravel how these processes are interconnected 

physiologically and could lead to the initiation of novel rules for the design of 

biomimetic systems. Future attempts should aim at bringing in the features to control 

and self-sustain to have a basic functional synthetic cell. 

Working towards this goal has given us the possibility to understand and address 

nature’s complexities to some extent. Using current metagenomics and structural 

inputs, several novel enzymes with unique properties could be unraveled, hence 

extending the basis for the assembly, engineering and optimization of minimal 

functional modules with distinct properties needed for the assembly of a synthetic 

minimal system based on ‘nature’s toolbox’.  

 

4.6 Concluding Remarks 

DNA segregation is crucial for renewal, reproduction and propagation of all forms of 

life. Hence, a minimal segrosome must function reliably also in the context of a minimal 

cell. The aim of developing a minimal cell already has initiated an entire new 

generation of studies investigating fundamental biological questions and could also 

lead to novel biotechnological applications and processes. 

Whereas other processes such as DNA replication and cell division have been in the 

focus earlier, genome segregation has been a blind spot in bottom-up synthetic 

biology. One reason might be the rather obvious importance of DNA replication and 

cell division in contrast to DNA segregation, but also due to the complexity of 

prokaryotic and eukaryotic chromosome segregating systems. DNA segregation only 

entered that realm, when minimalistic prokaryotic, plasmid-based segregation 

machineries had been discovered, that were consisting of only few components (K 

Gerdes and Molin, 1986). However, understanding the detailed mechanisms of 

genome segregation would not only enable a more sophisticated rational design of 

biomimetic systems. Due to its physiological interconnection and coupling to genome 

replication and cell division it would also lead to deeper insights into these processes. 

A minimal segrosome capable of reliable segregation in a self-sustainable manner, 

which could be applied for the rational design of biomimetic systems such as a minimal 

cell, has not been constructed yet. In this dissertation prokaryotic segregation systems 

were explored and reconstituted in vitro. That included the evaluation of a type I and 

a type II segregation system regarding their resulting genetic stabilities.  
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Based on these results a type II plasmid-based segregation system (R1-ParMRC) was 

characterized and reconstituted in vitro. Its subsequent encapsulation in biomimetic 

microcompartments fulfilled another important hallmark of life - a confined, chemical 

reaction space. As a next step its lifetime was prolonged by coupling to ATP-

regenerating and oxygen-scavenging systems, thereby constituting a first approach 

towards the coupling to energy conversion. Subsequently, it was coupled to in vitro 

DNA replication using the condensed state of DNA nanoparticles, which are 

intermediates that result from DNA synthesis during replication and mimic the 

condensed state of chromosomes.  

Hence, this in vitro reconstituted biological system has addressed the assembly and 

coupling of four fundamental biological processes with in total 9 different enzymes 

involved (Hürtgen et al., in preparation).  

Moreover, another plasmid-based type II segregation system has been reconstituted 

in vitro (Alp7ARC). This could serve as a secondary segregation system, to allow for 

segregation of a second type of genetic units and hence for a higher level of 

segregation-control in time.  

Last, a chimeric, synthetic RNA segregation system has been engineered 

(Hürtgen et al., in preparation), which would enable reliable genome segregation in 

RNA-based minimal systems. This could eventually lead to the development of a 

model protocell resembling early protocells that might have existed during the RNA 

world era, which could be used to elucidate the RNA world hypothesis. 

Such mimicry of fundamental life processes fueled by advances in the biophysics of 

biomimetic micro-compartments could lead to a deeper understanding not only of the 

origin of life but of the nature of living systems.  

 

 

 

‘Perfection is finally attained not when there is no longer anything to add but when 

there is no longer anything to take away.’  

 

Antoine de Saint-Exupery (1900-1944) 
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5 Materials and Methods 

 

5.1 Materials 

 

4.1.1 Chemicals, enzymes, antibodies and consumables 
 
Chemicals, enzymes and consumables used in this study and the corresponding 

suppliers are listed in Table 1, Table 2 and Table 3. 

 
Table 1: Chemicals used in this thesis. 

Chemicals Supplier 

Acrylamide/Bis-acrylamide (30%/0.8% w/v) Carl Roth, Germany 

Adenosine-triphosphate (ATP) Carl Roth, Germany 

Adenylyl-imidodiphosphate (AMP-PNP) Sigma-Aldrich, Germany 

Agarose ultra‐pure Biozym, Germany 

Albumin Fraktion V (BSA) Carl Roth, Germany 

Ammonium persulfate Sigma-Aldrich, Germany 

Ammonium sulfate Roth, Germany 

Ampicillin Applichem, Germany 

CaCl2 x 2 H2O Carl Roth, Germany 

Chloro-Trimethyl-Silane Sigma-Aldrich, Germany 

Creatine Phosphate Sigma-Aldrich, Germany 

D‐Glucose Applichem, Germany 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, Germany 

Di-myo-inositol1,1'-phosphate Sigma-Aldrich, Germany 

Dithiothreitol (DTT) Carl Roth, Germany 

EDTA Merck, Germany 

Glycerol GERBU Biotechnik, Germany 

HFE-7500 Sigma-Aldrich, Germany 

Iso (2)-Propanol Carl Roth, Germany 

Isopropyl‐β‐D‐thiogalactoside (IPTG) Carl Roth, Germany 

Kanamycin sulfate Sigma-Aldrich, Germany 

Lactose Carl Roth, Germany 

Magnesium Chloride (MgCl2) Sigma-Aldrich, Germany 

MES Carl Roth, Germany 

Methyl cellulose (400 cP) Sigma-Aldrich, Germany 

  Midori Green   Biozym, Germany 

PMSF Sigma-Aldrich, Germany 

Poly-di-methylsiloxane (PDMS) Sylgard 184, Dow Corning, USA 

Poly-L-Lysine Carl Roth, Germany 
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Potassium chloride (KCl) Sigma-Aldrich, Germany 

Potassium phosphate dibasic (K2HPO4) Sigma-Aldrich, Germany 

Potassium phosphate monobasic (KH2PO4) Sigma-Aldrich, Germany 

Protease Inhibitor Sigma-Aldrich, Germany 

SDS Carl Roth, Germany 

SDS-Buffer (4x) Carl Roth, Germany 

Sodium chloride (NaCl) Carl Roth, Germany 

SYBR Gold Thermo Fisher Scientific, Germany 

TCEP Sigma-Aldrich, Germany 

TEMED Sigma-Aldrich, Germany 

Trehalose Sigma-Aldrich, Germany 

Tris-Hcl Carl Roth, Germany 

Triton-X-100 Carl Roth, Germany 

Tryptone Sigma-Aldrich, Germany 

Tween-20 Sigma-Aldrich, Germany 

Uranyl-Acetate Sigma-Aldrich, Germany 

Yeast extract Carl Roth, Germany 

β-mercapto ethanol (β-ME) Sigma-Aldrich, Germany 

 
Table 2: Enzymes used in this thesis. 

Enzymes Supplier 

Catalase Sigma-Aldrich, Germany 

Creatine Kinase Sigma-Aldrich, Germany 

Phusion® DNA Polymerase New England Biolabs, Germany 

Pyranose Oxidase Sigma-Aldrich, Germany 

Q5 Hot Start New England Biolabs, Germany 

Restriction Enzymes and buffer Thermo Fisher Scientific, Germany and New England 
Biolabs, Germany 

T4 DNA-Ligase and buffer Thermo Fisher Scientific, Germany 

Phi29 DNA Polymerase New England Biolabs, Germany 

Turbo DNase (2U/µL) Thermo Fisher Scientific, Germany 

 

Table 3: Consumables used in this thesis. 

Consumables Supplier 

Coverslip Carl Roth, Germany 

GeneJET DNA Purification Kit Thermo Fisher Scientific, Germany 

GeneJET Plasmid Miniprep Kit Thermo Fisher Scientific, Germany 

DNA Ladder (1 kb) New England Biolabs, Germany 

Loading Dye New England Biolabs, Germany 

Microscopic slide Marienfeld, Germany 

Microscopic coverslips Marienfeld, Germany 

Prestained Protein Marker New England Biolabs, Germany 
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RNeasy Qiagen, Germany 

Streptavidin Coated Magnetic 
Beads Classical 

Bangs Laboratories 

Transcript T7 Aid High Yield Thermo Fisher Scientific, Germany 

SOB New England Biolabs, Germany 

 

5.1.1 Media 

Media were autoclaved for 20 min at 121 °C and 2 bar. To solidify medium 1.5 % (w/v) 

agar was added prior to autoclaving. Chemicals were resolved in deionized water.  

 

LB (Luria-Bertani Broth)-medium: 

Chemicals Final Concentration 

NaCl 5 g/L 

Tryptone 10 g/L 

Yeast extract 5 g/L 

Chemicals were dissolved in deionized water. 

 

5.1.2 Media Additives 

Protein expression was induced by addition of isopropyl-β-D-thiogalactopyranoside 

(IPTG) or lactose at indicated concentrations to the medium (see protein expression 

and purification methods). Antibiotics used in this thesis are listed in Table 4. 

 

Table 4: Antibiotics used in this thesis. 

Antibiotics Broth Agar 

Ampicillin 100 µg/mL 200 µg/mL 

Carbenicillin 50 µg/mL 100 µg/mL 

Kanamycin 50 µg/mL 50 µg/mL 

 

5.1.3 Buffers 

TAE buffer: 

Chemicals Final Concentration 

Tris base 40 mM 

Na-acetate 40 mM 

EDTA 1 mM 

Chemicals were resolved in deionized water. 
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ParM lysis buffer: 

Chemicals Final Concentration 

TRIS-HCl 30 mM 

KCl 25 mM 

MgCl2 1 mM 

DTT 2 mM 

Triton-X-100 0.1 % 

PMSF 2 mM 

Chemicals were resolved in deionized water and pH was adjusted to 7.5. 

 

Alp7A lysis buffer: 

Chemicals Final Concentration 

TRIS-HCl 25 mM 

KCl 100 mM 

MgCl2 1 mM 

DTT 1 mM 

PMSF 2 mM 

Chemicals were resolved in deionized water and pH was adjusted to 7.6. 

 

Depolymerization buffer: 

Chemicals Final Concentration 

TRIS-HCl 25 mM 

KCl 200 mM 

EDTA 5 mM 

DTT 1 mM 

Chemicals were resolved in deionized water and pH was adjusted to 7.6. 

 

Polymerization buffer: 

Chemicals Final Concentration 

TRIS-HCl 25 mM 

KCl 100 mM 

MgCl2 1 mM 

DTT 1 mM 

Chemicals were resolved in deionized water and pH was adjusted to 7.6. 
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ParR/Alp7R lysis buffer: 

Chemicals Final Concentration 

MES 50 mM 

KCl 100 mM 

EDTA 2 mM 

DTT 2 mM 

Glycerol 5 % 

PMSF 2 mM 

Chemicals were resolved in deionized water and pH was adjusted to 6.0. 

 

Buffer A: 

Chemicals Final Concentration 

Tris-HCl 30 mM 

KCl 25 mM 

MgCl2 1 mM 

DTT 2 mM 

Chemicals were resolved in deionized water and pH was adjusted to 7.5. 

 

Buffer F: 

Chemicals Final Concentration 

Tris-HCl 30 mM 

KCl 100 mM 

MgCl2 2 mM 

DTT 2 mM 

Chemicals were resolved in deionized water and pH was adjusted to 7.5. 

 

Buffer 1: 

Chemicals Final Concentration 

MES 25 mM 

EDTA 1 mM 

DTT 2 mM 

Chemicals were resolved in deionized water and pH was adjusted to 6.0. 

 

Buffer 1 Alp7R: 

Chemicals Final Concentration 

MES 25 mM 

EDTA 1 mM 

DTT 1 mM 

Chemicals were resolved in deionized water and pH was adjusted to 8.0. 
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Buffer R: 

Chemicals Final Concentration 

MES 30 mM 

KCl 300 mM 

EDTA 1 mM 

DTT 1 mM 

Chemicals were resolved in deionized water and pH was adjusted to 6.0. 

 

Bead Wash Buffer: 

Chemicals Final Concentration 

Tris-HCl 10 mM 

NaCl 1 M 

EDTA 1 mM 

Tween-20 0.2 % 

Chemicals were resolved in deionized water and pH was adjusted to 8.2. 

 

Buffer FE: 

Chemicals Final Concentration 

Tris-HCl 30 mM 

KCl 100 mM 

EDTA 1 mM 

Chemicals were resolved in deionized water and pH was adjusted to 7.0. 

 

Buffer FE: 

Chemicals Final Concentration 

Tris-HCl 30 mM 

KCl 100 mM 

EDTA 1 mM 

Chemicals were resolved in deionized water and pH was adjusted to 7.0. 
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5.1.4 Oligonucleotides 

DNA Oligonucleotides were synthesized by Eurofins. Oligonucleotides used in this 

study, their sequences and purposes are listed in Table 5. 

 

Table 5: Oligonucleotides used in this thesis, including DNA and RNA sequences and purposes. 

Oligonucleotide Sequence (5’ to 3’) Use 

Alp7AKCK_fwd ATCTCATATG AATATTTCTCGTATGAAC 
To express Alp7A with KCK 
moiety for subsequent labeling 

Alp7AKCK_rev 
TCATGGATCCTTATTTGCATTTGCTGCC 
AATTGATTGTGCCTCTTTTTC 

To express Alp7A with KCK 
moiety for subsequent labeling 

alp7C_fwd ATCTCATATGCGTTCATACGAGAAATATTC 
To obtain plasmid with this 
centromeric site 

alp7C_rev TCATGGATCCGACTTAACTTACTTTATCTTAC 
To obtain plasmid with this 
centromeric site 

Alp7R_fwd ATCTCATATG GGGAAAAACAAAAGAATTCC To express native Alp7R 

Alp7R_rev 
TCATGGATCC 
TTAAAAATCATAGTCGTATTCTTC 

To express native Alp7R 

Bead_alp7C_fwd 
ACTTTAAGAAGGAGATATACATATGCACTTTT
CGTAAAGCCCCGGGCCTG 

For bead coupling 

Bead_alp7C_rev 
AAACTCCTTATATTCATATTTTTATTCTCTCCT
TTGATTTCACTTTCCTC 

For bead coupling 

Bead_parC_fwd CGGATAACAATTCCCCTCTAGAAAT For bead coupling 

Bead_parC_rev TCCTTTCGGGCTTTGTTAGC 
For bead coupling 

EMSA_alp7C 
AAACTCCTTATATTCATATTTTTATTCTCTCCT
TTGATTTCACTTTCCTC 

Atto633 labeled for EMSA 

EMSA_omp GTACGATGTTGTTGGTCCACTGG 
Atto633 labeled for EMSA 
(control) 

EMSA_parC TCCTTTCGGGCTTTGTTAGC 
Atto633 labeled for EMSA 

ParAB_removal_fwd 
AAAACGCACAAAGCCCGCATCAGCGGGCTT
TGTTATTTGAGTTGACGCGGCCGCTGCCAA 

Together with 
ParAB_removal_rev it forms a 
fragment by annealing and filling-
reaction, which leads to removal 
of ParAB via homologous 
recombination. Leads to 
additional NotI site 

ParAB_removal_rev 
ACTATGCTGTACAATCTGTTTAAAGCCCTAAT
AACGGAAATTGGCAGCGGCCGCGTCAAC 

Together with 
ParAB_removal_fwd it forms a 
fragment by annealing and filling-
reaction, which leads to removal 
of ParAB via homologous 
recombination. Leads to 
additional NotI site 

RNA Hairpin Crown 

((CA)10(AAACAUGAGGAUUACCCAUGU))12 

CACACACACACACACACACAAAACAUGAGGA
UUACCCAUGUCAAAACAUGAGGAUUACCCA
UGUCAAAACAUGAGGAUUACCCAUGUCAAA
ACAUGAGGAUUACCCAUGUCA 
AAACAUGAGGAUUACCCAUGUCAAAACAUG
AGGAUUACCCAUGUCAAAACAUGAGGAUUA
CCCAUGUCAAAACAUGAGGAUUACCCAUGU
CAAAACAUGAGGAUUACCCAUGUCAAAACA
UGAGGAUUACCCAUGUCAAAACAUGAGGAU
UACCCAUGUCAAAACAUGAGGAUUACCCAU
GUCACACACA CACACA 

RNA Hairpin Crown as 
centromeric RNA sequence for 
RNA segregation via chimeric 
proteins. RNA was designed and 
synthesized by Dr. H. Mutschler 
(MPI Martinsried). 

RNA-T7prom_fwd TAATACGACTCACTATAGGG 

Addition of T7 promotor for in 
vitro RNA transcription by Dr. H. 
Mutschler 

RNA-T7prom_rev CGGGTTCATTAGATCTC 
T7 promotor for in vitro RNA 
transcription by Dr. H. Mutschler 
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SynChrom+parC_fw
d 

CGGTTGCCGCCGGGCGTTTTTTATTGGTGAG
AATCCAAGCACTTTTGTTACCCGCCAAAC 

For parC to integrate it via Sce-I 
into vector derived from synVicII-
1.3 

SynChrom+parC_re
v 

TAGAAAGTATAGGAACTTCGCAGACCTATCA
ACATTTATAAAACTCCTTATGGTGTTTTT 

For parC to integrate it via Sce-I 
into vector derived from synVicII-
1.3 

SynChrom+ParM_f
wd 

GTAATGGCAGCAAATGCAAATAAGTAACTTA
TGATGGACAAGCGCAGA 
AC 

For ParM to integrate it via Sce-I 
into vector derived from synVicII-
1.3 

SynChrom+ParM_re
v 

ATCAGCGGGCTTTGTTATTTGAGTTGACTTAA
TTTATTAGCTTCATCG 
CATTTTTTTTGG 

For ParM to integrate it via Sce-I 
into vector derived from synVicII-
1.3 

SynChrom+ParR_fw
d 

  
TACAATCTGTTTAAAGCCCTAATAACGGAAATT
GGCAATGTTGGTATT 
  CATTGATGACGG 

For ParR to integrate it via Sce-I 
into vector derived from synVicII-
1.3 

SynChrom+ParR_re
v 

AAGGCAATGGTTCTGCGCTTGTCCATCATAA
GTTACTTATTTGCATTT 
GCTGCCATTACC 
 

For ParR to integrate it via Sce-I 
into vector derived from synVicII-
1.3 

 

 

5.1.5 Bacterial Strains 

Bacterial strains used in this thesis are listed in Table 6.  

 

Table 6: E. coli strains used in this thesis. 

Strain Genotype Source 

DH5α F– endA1 supE44 thi-1λ-recA1 gyrA96 relA1 

deoRΔ(lacZYA-argF)U169 

Invitrogen, USA 

One Shot® TOP10 

E. coli 

F- mcrA Δ( mrr-hsdRMS-mcrBC) Φ80lacZΔM15 Δ 

lacX74 recA1 araD139 Δ( araleu)7697 galU galK 

rpsL (StrR) endA1 nupG 

Thermo Fisher Scientific 

MG1655 F‐ (λ‐) rph‐1 (Blattner et al., 1997) 

BL21 (DE3) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS 

λ DE3 = λ sBamHIo ∆EcoRI-B 

int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 

New England Biolabs, Germany 

SMS18 E. coli MG1655 synVicII-1.3 AG Waldminghaus, Synmikro 

Marburg (Messerschmidt et al., 

2015) 
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5.2 Molecular Biological Methods 

5.2.1 Polymerase Chain Reaction (PCR) 

PCR was used to amplify specific DNA fragments based on DNA templates using 

oligonucleotides (primers), which flank the region of interest. Standard PCR protocol 

and program are listed in Table 7 and Table 8.  

 

Table 7: Standard PCR reaction. 
Final concentration Component 

0.2 mM dNTPs 

2 mM MgSO4 

1 µM forward primer 

1 µM reverse primer 

0.015 U/µl Phusion DNA polymerase 

0.1-0.5 ng/µl template DNA 

1x 5x Phusion HF buffer 

 

Table 8: Standard PCR protocol. 

Time Temperature Step  

2 min 95 °C Initial DNA denaturation  

30 s 95 °C DNA denaturation  

30 s 65 °C Primer annealing 30 cycles 

30 s/kb 72 °C Elongation  

5 min 72 °C Final elongation  

 

Subsequently, the PCR product was purified using GeneJET DNA Purification Kit, 

according to the manufacturers’ protocol. 

 

5.2.2 Rolling Circle Amplification for Production of DNA-Nanoparticles 

For a robust DNA replication (by Dr. Judita Mascarenhas), to generate nanoparticles, 

Phi29 DNA polymerase (NEB) along with random primers were used. After 12 hours 

of reaction at 30 °C, precipitates of DNA nanoparticles were collected by 

centrifugation, washed thrice with nuclease free water and stored at 4 °C for 

subsequent use.  

 

5.2.3 Restriction Digest and Ligation 

Restriction of amplified DNA was performed via restriction enzymes. Amount of used 

enzyme and respective buffer were chosen according to the manufacturer’s protocol. 

Enzyme and buffer were incubated with 25-250 ng DNA for 1 h at 37 °C and 

subsequently purified using GeneJET DNA Purification Kit according to the 
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manufacturer’s protocol. Ligations of linearized vector and DNA-fragments were 

conducted by mixing 50 ng of linearized vector, the corresponding amount of DNA 

(molar ration vector/insert = 1:6), T4 DNA ligase buffer, 0.04 U/µL T4 DNA ligase and 

incubated for 1 h at RT. The required mass of DNA was determined via following 

formula: 

 

𝑛𝑔 (𝐼𝑛𝑠𝑒𝑟𝑡) =
𝑛𝑔 (𝑉𝑒𝑐𝑡𝑜𝑟) × 𝑘𝑏(𝐼𝑛𝑠𝑒𝑟𝑡)

𝑘𝑏 (𝑉𝑒𝑐𝑡𝑜𝑟)
× 𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 (

𝐷𝑁𝐴

𝑉𝑒𝑐𝑡𝑜𝑟
) 

 

5.2.4 Agarose Gel Electrophoresis 

To separate DNA fragments according to their sizes agarose gel electrophoresis was 

used. DNA was mixed with loading dye (New England Biolabs, Germany) and loaded 

on a 1 % agarose gel (1 % (w/v) agarose in TAE-buffer, 0.005 % Midori Green, Biozym, 

Germany). The gel was placed into a chamber filled with TAE-buffer, separated via 

90 V and size was controlled via 1 kb ladder (New England Biolabs, Germany) under 

UV light. 

 

5.2.5 Electrophoretic Mobility Shift Assay (EMSA) 

The sequences alpC (225 bp) or parC (279 bp) and ompA (276 bp) as control fragment 

were generated using Atto633-labeled primers and PCR purified. The binding reaction 

contained 2 nM of DNA, 0.1 mg/mL BSA and 0.1 mg/mL salmon sperm in binding 

buffer (10mM Tris–HCl pH 7.5, 50mM KCl, 50mM NaCl, 1mM MgCl2, 0.5mM DTT, 

0.5mM EDTA). wt ParR or AlpR was added respectively at indicated concentrations 

and the reactions were incubated for 30 min at 25°C. Following addition of glycerol to 

3 % of final volume, the samples were analyzed by electrophoresis on a 2 % agarose 

gel + MidoriGreen in 1xTAE Buffer at 120 V for 35 min. 
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5.2.6 Spectrophotometric Determination of DNA and Protein 

Concentrations 

Concentration and purity of DNA were determined using NanoDrop2000 

Spectrophotometer. This system measures the absorption spectrum of the specimen 

between 220 and 350 nm wavelength. The quotient 260 nm/280 nm is a measure of 

DNA purity. For DNA a quotient of ~ 1.8 is generally accepted as ‘pure’. If this ratio is 

appreciably lower it might indicate the presence of contaminants that are absorbing ~ 

280 nm, such as proteins or phenol. DNA concentration is determined via following 

formula: 

 

𝐷𝑁𝐴 [
µ𝑔

𝑚𝐿
] = 𝑂𝐷(260) × 50 [

µ𝑔

𝑚𝐿
] 

 

Moreover, NanoDrop2000 Spectrophotometer can be used to determine protein 

concentrations via following Beer-Lambert equation: 

 

𝐴 (280) = ε × 𝑐 × 𝑑 

 

In that context protein purity can be estimated via the A260/A280 ratio. A value < 1 

can be considered as ‘pure’. 

 

5.2.7 Construction of Plasmids 

Plasmids were constructed based on the backbone pET11A or pET28a, respectively, 

which are standard protein expression vectors commercially available (Novagen, 

Merck, Germany). Both encode for T7 polymerase and carry a T7 promotor inducible 

via IPTG and lactose. Backbones as well as the used inserts were digested using the 

enzymes BamHI and NdeI and ligated according to protocols described earlier. 

pET11a offers ampicillin resistance as selection marker. pET28 offers an N-terminal 

and a C-terminal His-Tag including a thrombin cleavage side for subsequent 

enzymatic removal and a kanamycin resistance as selection marker. To allow for 

downstream labeling with organic dyes five amino acids were added (GSKCK) to the 

C-terminus of native Alp7A. A detailed description of plasmids used in this thesis can 

be found in Table 9. 
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Primer design and plasmid construction for comparative study of ParABS and ParMRC 

system was done by D. Schindler (Synmikro, Marburg). All primers used for assembly 

in yeast contained overlapping sequences (at least 26 bp) to the neighboring fragment. 

They also added a I-SceI-site to facilitate release after sub-cloning. The amplified 

fragments were sub-cloned into I-SceI-cut pUC57kan and verified by sequencing. 

Respective fragments were assembled using homologous recombination in 

S. cerevisiae strain pJ69-4a as described (Colot et al., 2006; Gietz and Schiestl, 

2007). 

Primer design and plasmid construction for the RNA segregation project was done by 

Dr. Hannes Mutschler (MPI Martinsried). 

 

 

Figure 25: Expression Systems used in this thesis. pET11a and pET28a backbones were commercially 

purchased (Novagen, Merck, Germany) and respective inserts were ligated via BamHI and NdeI 

restriction sites. 
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Table 9: Plasmids used in this study. 
Plasmid Resistanc

e 

Induction Description Source 

pET11a 

Alp7AKCK 

AmpR IPTG/Lactose Alp7A; 5EC0 (C7F6X5_BACIU) this study 

pET11a alp7C AmpR IPTG/Lactose alp7C Bacillus subtilis this study 

pET11a Alp7R AmpR IPTG/Lactose Alp7R; (C7F6X6_BACIU) this study 

pET11a parC AmpR IPTG/Lactose R1 parC (Ethan C. 
Garner et al., 
2007) 

pET11a ParM  AmpR IPTG/Lactose R1 ParM (stbA) seq; P11904 
(PARM_ECOLX) 

(Ethan C. 
Garner et al., 
2007) 

pET11a ParR AmpR IPTG/Lactose R1 ParR (stbB) seq; 

P11906 (STBB_ECOLX) 

(Ethan C. 
Garner et al., 
2007) 

pET28a+ParR+(A
P)10+MS2-CP 

KanR IPTG/Lactose R1 ParR (stbB) seq; 
P11906 (STBB_ECOLX), connected via 
rigid linker (AP)10 to MS2-coat protein; 
P03612 (CAPSD_BPMS2) 

cloned by Dr. H. 
Mutschler (MPI 
Martinsried)  

pET28a+ParR+(G
GGGS)3+MS2-
CP 

KanR IPTG/Lactose R1 ParR (stbB) seq; 
P11906 (STBB_ECOLX), connected via 
flexible linker (GGGGS)3 to MS2-coat 
protein; P03612 (CAPSD_BPMS2) 

cloned by Dr. H. 
Mutschler (MPI 
Martinsried)  

pET28a+ParR+m
Cherry+MS2-CP 

KanR IPTG/Lactose R1 ParR (stbB) seq; 
P11906 (STBB_ECOLX), connected via 
mCherry to MS2-coat protein; P03612 
(CAPSD_BPMS2) 

cloned by Dr. H. 
Mutschler (MPI 
Martinsried)  

pTL032 AmpR - 14xMS2 sense + 14xPP7 antisense, 
loxP-kanMX-loxP 

Addgene to 
transcribe RNA-
stem loops 

synVicII-1.3 AmpR - Synthetic Chromosome derived vom 
ChrII vom V. cholerae, carrying 
ParABSII (synVicII-1.0 + PA1/04/03-
RBSII-gfp(AAV)) (~11 kb) 

(Messerschmidt 
et al., 2015) 

pMA556+ParMR, 
ΔParAB 

AmpR - synVicII-1.3 + R1 ParM (stbA) seq; 
P11904 (PARM_ECOLX); + R1 ParR 
(stbB) seq; P11906 (STBB_ECOLX); 
ΔParAB; (~11kb) 

cloned by Dr. D. 
Schindler 
(Synmikro, 
Marburg)  

pMA557+ParMR
C, ΔParAB 

AmpR - synVicII-1.3 + R1 ParM (stbA) seq; 
P11904 (PARM_ECOLX); + R1 ParR 
(stbB) seq; P11906 (STBB_ECOLX) + 
parC; ΔParAB; (~11kb) 

cloned by Dr. D. 
Schindler 
(Synmikro, 
Marburg)   

 
 

 

5.2.8 Preparation and Transformation of Chemical Competent E. coli 

Preparation of CaCl2-competent E. coli was done as follows and in accordance to the 

protocol developed by Inoue and colleagues (Inoue, Nojima and Okayama, 1990): 

While vigorously shaking (180 rpm) E. coli was grown in 125 mL SOB-medium at RT 

to an OD600 of 0.6. Subsequently, the culture was cooled on ice for 10 min before it 

was harvested at 4,000 g for 10 min in a cooled centrifuge. The pellet was gently 

resuspended in 40 mL ice-cold TB buffer and incubated on ice for 10 min before it was 

centrifuged as before. The cells were resuspended in 10 mL ice-cold TB buffer, 
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supplemented with 7 % (v/v) DMSO and again incubated on ice for 10 min. Aliquots 

of 100 µL cell suspension were dispensed in micro-reaction tubes and immediately 

frozen in liquid nitrogen. The aliquots of competent E. coli cells were stored at -80 °C. 

 

To transform E. coli with plasmid DNA either 15-30 µL ligation mixture or 10 ng of 

purified plasmid were mixed with 100 µL CaCl2-competent E. coli cells and incubated 

on ice for 30 min. This mixture was then heat-shocked for 45 s at 42 °C and again set 

on ice for 2 min. The cells were subsequently incubated for 1 h at 37 °C in 1 mL SOB-

medium for recovery. The cells were plated on LB agar plates containing the 

respective selective antibiotic. The plate was incubated overnight and single colonies 

of transformants were transferred to a new selective agar plate. Presence of correct 

plasmid was confirmed via PCR. 

 

5.2.9 Amplification, Isolation and Sequencing of Plasmid DNA 

Transformed DH5α was grown on agar plates, harvested and transferred into a 

reaction tube. Cell lysis and plasmid extraction was carried out according to the 

manufacturer’s protocol using GeneJET Plasmid Miniprep Kit. Isolated plasmid was 

stored at -20 °C. DNA sequencing was carried out by Eurofins MWG Operon 

(Germany). 

 

5.3 Microbiological and Cell Biological Methods 

5.3.1 Cultivation of E. coli and Plasmid Stability Test via Plating Assay 

E. coli strains carrying the plasmids to compare were grown as a pre-culture overnight 

in 3 mL LB medium with ampicillin at 37 °C and 275 rpm.  

The next day the 25 mL main-culture was inoculated in LB medium without ampicillin 

at a ratio 1:1000 and grown at 37 °C to an OD600 = 0.1. At this point 100 µL as t0 

sample were taken.  

The remaining culture was centrifuged at 2,500 g for 3 min at RT. The supernatant 

was discarded, and the pellet resuspended in 1 mL pre-warmed 37 °C LB medium 

without ampicillin and transferred to 24 mL fresh LB medium without ampicillin. The 

culture was grown for 3 h and then diluted to an OD600 of 0.1, when the t3 sample was 

taken. The remaining culture was grown for another 3 h, again diluted to an OD600 of 
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0.1, when the t6 sample was taken. 

The samples were diluted (10-3 and 10-4) and plated on non-selective LB plates, which 

were incubated at 37 °C overnight. The next day 200 colonies per sample and 

timepoint were restreaked from the non-selective LB plates to LB plates with and 

without ampicillin. As a control E. coli wildtype (MG1655) and an ampicillin-resistant 

synthetic chromosome (E. coli MG1655 + pMA100; strain SMS18) were also 

restreaked. 

After incubation at 37 °C overnight the grown colonies were determined. The cells 

grown at t0 on selective LB plates set the 100 %. For the clones that grew on LB plates 

with ampicillin it was checked whether they also grew on non-selective plates. If yes, 

this clone was considered as ampicillin-positive. This number of ampicillin-positive 

cells in % determines the plasmid stability mediated via the tested segregation system. 

 

5.4 Microscopy Methods 

5.4.1 Widefield Fluorescence Microscopy 

For widefield fluorescence microscopy an inverted epifluorescence microscope was 

used (Nikon Eclipse Ti-U, Nikon Instrument, Japan) using 20x or 40x objective, 

respectively and with a Zyla 4.2 Plus sCMOS camera (Andor Technology Ltd, UK). 

The microscope was equipped with appropriate dichroic and filters (GFP, mCherry). 

 

5.4.2 Total Internal Reflection Fluorescence (TIRF) Microscopy 

Imaging was performed on a custom-built setup based on an automated Nikon Ti 

Eclipse microscope, equipped with appropriate dichroic and filters (ET dapi/Fitc/cy3 

dichroic, ZT405/488/561rpc rejection filter, ET525/50 or ET610/75 bandpass, all AHF 

Analysentechnik, Germany), and a CFI Apo TIRF 100× oil objective (NA 1.49, Nikon). 

All lasers (405 nm OBIS, 561 nm OBIS, 730 nm OBIS, 488 nm Sapphire; all Coherent 

Inc., Santa Clara, California USA) except 730 nm were modulated via an acousto-

optical tunable filter (AOTF) (Gooch and Housego, Eching, Germany). Fluorescence 

was detected by an emCCD (iXON Ultra 888; Andor, UK). Acquisitions were controlled 

by μManager (Edelstein et al., 2010). This setup was used to visualize ParM seed 

formation.  
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5.4.3 Transmission Electron Microscopy 

Samples were prepared for in vitro spindle assembly but lacking BSA. Polymerization 

was induced by addition of nucleotides and 10 µL were applied to carbon-coated and 

glow-discharged grids. These were subsequently stained using 2 % aqueous uranyl 

acetate. After rinsing by blotting with water twice and evaporation of the water, 

samples were visualized using a Tecnai T20 electron microscope at 200 kV. 

 

5.4.4 Image Processing and Measurement of Length- and Quantity-

Distributions  

Microscopy images were processed using NIH Fiji ImageJ. Contrast or brightness 

adjustments were applied uniformly to the entire image field. The software was also 

used to determine spindle- and aster-length- as well as quantity of asters per bead-

distributions.  

 

5.5 Microfluidic Methods 

5.5.1 Production of Biomimetic Micro-Compartments and Encapsulation 

of Protein Systems 

Water-in-oil droplets were prepared using a 2% (v/v) solution of PFPE–PEG–PFPE 

surfactant ‘E2K0660’ (Holtze et al., 2008) in HFE-7500 fluorinated oil (from 3 M). The 

surfactant was sourced from RAN Biotechnologies (www.ranbiotechnologies.com). 

Droplets were produced by mixing of surfactant-stabilized hydrophobic phase (1.8 % 

surfactant and HFE-7500 oil) with aqueous phase by vortexing (in collaboration with 

Dr. Michael Heymann). For encapsulation experiments the aqueous phase was the 

solution containing respective protein systems (e.g. segregation machineries, oxygen-

scavenging system, ATP regeneration). The droplets were subsequently trapped in 

glass capillaries of 50 µm inner diameter (microcapillary tube, Sigma).  

Microfluidic devices were constructed by standard photolithography techniques 

described elsewhere (Xia and Whitesides, 1998; Gu, Duits and Mugele, 2011; 

Platzman, Janiesch and Spatz, 2013). SU-8 master was prepared on a silicon wafer, 

casted with freshly mixed poly-di-methylsiloxane (PDMS) (silicone elastomer kit 

SYLGARD® 184, 1:10 cross-linker to base ratio, Dow Corning, USA) and polymerized 

overnight at 65 °C. After oxygen plasma treatment microfluidic devices bound on a 
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glass slide. The Teflon device with the lipid bilayer used in this thesis was built by 

Dr. Michael Heymann (MPI Martinsried). 

 

5.5.2 Droplet-based Microfluidics and Pico-Injection Module 

Droplet-based microfluidic devices (by Dr. Jan-Willi Janiesch, MPI Heidelberg) made 

of PDMS (Sylgard 184, Dow Corning, USA) were made by photo- and soft-lithography 

methods described elsewhere (Xia and Whitesides, 1998; Gu, Duits and Mugele, 

2011; Platzman, Janiesch and Spatz, 2013). In order to control droplet diameters two 

different nozzle designs at the flow-focusing junction were implemented. Syringe 

pumps (PUMP 11 ELITE, Harvard apparatus, USA) were used to control flow-rates 

(approximate ratio aqueous phase to oil phase 3:4). To split the produced 

compartment a pico-injection module was used (in collaboration with Dr. Jan-Willi 

Janiesch, MPI Heidelberg). The design unit was adapted from Abate and colleagues 

(Abate et al., 2010). Droplets were put into the device using a MFCS-EZ flow control 

system (Fluigent, France) and the spacing in between droplets controlled via addition 

of oil through a second oil channel. By using a pressurized injection channel, the 

mechanical vertical division of droplets was achieved. 

 

5.6 Biochemical and Biophysical Methods 

5.6.1 Protein Expression- and Solubility-Test in E. coli 

To test whether proteins of interest can be expressed and are soluble one confirmed 

colony was transferred to 5 mL LB medium and the appropriate antibiotic. The cells 

were grown overnight at 37 °C and 250 rpm. The next day this pre-culture was 

transferred to 50 mL main culture (starting OD600 = 0.1). Once the culture reached 

OD600 = 1.0 the equivalent of 1 mL of cells at OD600 = 1.0 was aliquoted into a 1.5 mL 

reaction tube. The sample was centrifuged at 17,000 g for 1 min. Supernatant was 

discarded and the pellet stored at -20 °C (t0 sample, uninduced).  

The remaining culture was induced (0.5 mM IPTG for adapter proteins; 1 mM IPTG 

for motor proteins) and shaking was continued for 4 h. Then one aliquot of culture 

equivalent of 1 mL OD600 = 1.0 was taken, spun down at 17,000 g, supernatant 

removed, and pellet frozen at -20°C (t1, induced sample). 
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To test for solubility of the induced protein the remaining culture was centrifuged for 

30 min at 4,000 g at 4 °C and resuspended in 2 mL of the respective lysis buffer. 

Lysozyme and 1 µL protease inhibitor (alternatively PMSF) were added. The cells 

were lysed by sonication (amplitude 90 %, 1s pulse, 2x15 min, 2 min pause for cooling 

in between). Then the soluble fraction was separated from the insoluble fraction by 

spinning down at 17,000 g for 10 min at 4 °C. 50 µL of the supernatant were transferred 

into a new reaction tube and 50 µL 1x SDS-PAGE buffer were added (soluble fraction). 

The pellet was resuspended in 200 µL of 1x SDS-PAGE buffer (insoluble fraction). 

To test the samples via SDS-PAGE these samples were boiled for 10 min and cooled 

down to RT. The samples were centrifuged for 3 min at 17,000 g at RT before analyzed 

by SDS-PAGE (10 µL). To test the expression, for each construct the t0 and t1 samples 

were thawed and resuspended each in 65 µL of 1x SDS-PAGE sample buffer 

(containing 900 µL 4x SDS-sample buffer + 100 µL β-mercapto ethanol (β-ME) + 1 mL 

buffer + 3 mL milli Q water). The samples were subsequently boiled for 10 min and 

then cooled down to RT. The samples were centrifuged for 3 min at 17,000 g at RT 

before 10 µL of sample were analyzed for protein expression using SDS-PAGE.  

 

5.6.2 SDS-PAGE 

The SDS-PAGE gel in a single electrophoresis run can be divided into stacking gel 

and separating gel (protocol from assay-protocol.com).  

Stacking gel (acrylamide 5%) was poured on top of the separating gel after 

solidification. A gel comb was subsequently inserted into the stacking gel. The 

acrylamide percentage in SDS-PAGE gel depends on the size of the target protein in 

the sample: 

 

Acrylamide [%]     M.W. Range of target protein [kDa] 

6 %              50 kDa - 500 kDa 

10 %             20 kDa - 300 kDa 

12 %             10 kDa - 200 kDa 

15 %              3 kDa - 100 kDa 
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For a 5 ml stacking gel (sufficient for 2 gels): 

 

H2O:                            2.975 ml 

0.5 M Tris-HCl, pH 6.8:                       1.25 ml 

10% (w/v) SDS:                           0.05 ml 

Acrylamide/Bis-acrylamide 

(30 %/0.8 % w/v):                        0.67 ml 

10 % (w/v) ammonium persulfate (AP):    0.05 ml 

TEMED:                                  0.005 ml 

 

For a 10ml separating gel (sufficient for 2 gels): 

 
Acylamide percentage 6% 8% 10% 12% 15% 

 

H2O 5.2ml 4.6ml 3.8ml 3.2ml 2.2ml 

Acrylamide/Bis-acrylamide 

(30 %/0.8 % w/v) 

2ml 2.6ml 3.4ml 4ml 5ml 

1.5 M Tris (pH=8.8) 2.6ml 2.6ml 2.6ml 2.6ml 2.6ml 

10 % (w/v) SDS 0.1ml 0.1ml 0.1ml 0.1ml 0.1ml 

10 % (w/v) ammonium 

persulfate (APS) 

100μ l 100μ l 100μ l 100μ l 100μ l 

TEMED 10μ l 10μ l 10μ l 10μ l 10μ l 

 
Note: TEMED induces polymerization. 

 

SDS-PAGE Electrophoresis Running Buffer (10x):  

 

For 2 L: 

60.6 g Trisbase (FW 121.1)  

288 g glycine (FW 75.07)  

20 g SDS  

pH8.3 

 

After preparing the separating gel as described above it was pipetted in between the 

glass plates. To obtain a horizontal top of the gel it was filled with water. The gel 

gelated within 20 min.  
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Subsequently, the stacking gel was prepared. The water in between the glass plates 

was discarded and the stacking gel pipetted on top of the separating gel. The comb 

was inserted immediately and the gel gelated within another 20 min. Afterwards 

casting frame and comb were removed before the gel was placed in the cell buffer 

dam. 1x running buffer was poured into the chamber until it reached the required level. 

The samples were loaded into the wells as well as pre-stained protein marker (NEB). 

The top was covered, and the anodes were connected. SDS-PAGE ran at 120 V 

for 1 h. 

 

5.6.3 Main Expression and Purification of Proteins used in this Study 

 

ParM: 

Protein purification was performed using the chromatography system ÄKTATM pure 

and columns from GE Healthcare Life Sciences with Unicorn control system 7.0. The 

method was adopted from Garner and colleagues (Garner et al., 2007). 

BL21 (DE3) cells were transformed with pET11a vector + ParM (Garner et al., 2007) 

under the control of a T7 promoter. Main cultures were grown in 1 L LB medium 

including the appropriate antibiotic to an OD600 = 1.0 and induced with 2 % lactose for 

16 h at 30 °C. 

Cells were spun down at 6,000 x g for 1 h and resuspended in five volumes of ParM 

lysis buffer containing 30 mM TRIS-HCl pH 7.5, 25 mM KCL, 1 mM MgCl2, 2 mM DTT, 

0.1 % Triton-X-100, 2 mM PMSF and a small amount of DNase. Cells were sonicated 

(6 x 5 min, 2 min cooling breaks in between). The cell lysate was clarified by 

centrifugation at 100,000 x g, 4 °C for 1 h and subsequently subjected to an ammonium 

sulfate cut (0-40 %). This was centrifuged at 24,000 x g for 30 min at 4 °C, the 

supernatant discarded, and the pellet resuspended in 8 volumes Buffer A (30 mM 

TRIS-HCl pH 7.5, 25 mM KCl, 1 mM MgCl2, 2 mM DTT). This was again clarified at 

100,000 x g at 4 °C for 1 h and then subjected to ATP solution (10 mM ATP, 1 mM 

MgCl2, pH 7.5) for polymerization. These polymers were spun immediately at 

100,000 x g at 4 °C for 15 min. This procedure was performed twice, the pellet 

resuspended in approx. 2 mL of buffer F (30mM Tris HCl pH 7.5, 100mM KCl, 2mM 

MgCl2, 1mM DTT), and subsequently filtered using a Superdex S200 column 

equilibrated in Buffer F. Purest fractions were determined by SDS-PAGE, pooled, and 
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frozen at    -80 °C in 20 % glycerol. The sample was verified to be ParM with MALDI 

mass spectroscopy. Concentration was determined photometrically using molecular 

weight (36.27 kDa) and extinction coefficient (34,505 M-1cm-1) at A280. 

 

ParR: 

Protein purification was performed using the chromatography system ÄKTATM pure 

and columns from GE Healthcare Life Sciences with Unicorn control system 7.0. The 

method was adopted from Garner and colleagues (Garner et al., 2007). 

BL21 (DE3) cells were transformed with pET11a vector + ParR, under the control of a 

T7 promoter. Main cultures were grown in 1 L LB medium with antibiotic and induced 

at OD600 = 1 with 2% lactose for 16h at 30 °C.  

Cells were spun down at 6000 x g for 1 h and resuspended in three volumes of ParR 

lysis buffer (100mM KCL, 50mM MES pH 6.0,  5% glycerol, 2mM EDTA, 2mM DTT, 2 

mM PMSF and a small amount of DNase). Cells were sonicated (6 x 5 min, 2 min 

cooling breaks in between). The cell lysate was clarified by centrifugation at 

100,000 x g, 4 °C for 1 h and subsequently subjected to an ammonium sulfate cut (0-

50 %). Subsequently, this was centrifuged at 24,000 x g for 30 min at 4 °C, the 

supernatant discarded, and the pellet resuspended in 50 mL Buffer 1 (1mM DTT, 

25mM MES pH 6.0, 1mM EDTA). Subsequently, this was clarified at 100,000 x g at 4 

°C for 1 h and then rapidly loaded onto a MonoS column using super loop. Bound 

proteins were eluted with a gradient of 0-1M NaCl in background buffer 1. Correct peak 

fractions were determined by SDS-PAGE, collected and concentrated to 2 mL in a                                         

YM-10 centricon (amicon, Sigma). This was then gel filtered into buffer R (300mM 

KCL, 30mM MES pH 6.0, 1mM EDTA, 1mM DTT) over an S75 column equilibrated in 

Buffer R. Pure fractions were then again determined by SDS-PAGE, pooled, and 

frozen at -80 °C in 20 % glycerol. The sample was verified using MALDI mass 

spectroscopy. Concentration was determined photometrically using molecular weight 

(13.325 kDa) and extinction coefficient (1,400 M-1cm-1) at A280. 

 

Alp7A: 

Protein purification was performed using the chromatography system ÄKTATM pure, 

GE Healthcare with Unicorn control system 7.0.  

Alp7A in pET11a was transformed into BL21(DE3) cells and grown in 1 L LB medium 

with respective antibiotic and 0.2 % Glucose at 37 °C to an OD600 of 1 – 2 before 
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diluting to OD600 0.2 in induction medium (2xLB medium + 1,5 % lactose + antibiotic) 

and shifted to 26 °C for 16 h. Cells were centrifuged at 6,000 g for 30 min. Pellets were 

flash frozen in liquid nitrogen and stored at -80 °C. 

To purify native Alp7A, the pellet was resuspended in five volumes of Alp7A lysis buffer 

(25mM Tris pH 7.6, 100 mM KCl, 1mM EDTA, 1mM DTT, PMSF). Cells were lysed by 

sonication (6 x 5 min, 2 min of cooling in between). The lysate was cleared with a high-

speed spin (60 min at 100,000×g, 4 °C) to remove cellular debris and insoluble protein. 

Ammonium sulfate was added slowly to the cleared lysate to 50% solubility, lysate 

was slowly stirred at 4 °C overnight after all ammonium sulfate has been added. The 

precipitate was removed by centrifugation at 100,000 x g for 1 h, 4 °C. Alp7A remained 

soluble; the supernatant was therefore transferred to a clean ultracentrifuge tube and 

brought to room temperature using an ambient water bath. 5 mM ATP/6 mM MgCl2 

were then added to induce polymerization. After 15 min incubation, the polymer was 

pelleted by high-speed centrifugation (20 min at 100,000 × g, 25 °C) and then 

resuspended in 1/10 volume of cold depolymerization buffer (25mM Tris pH 7.6, 

200mM KCl, 5mM EDTA, 1mM DTT). The resuspended protein was dialyzed overnight 

to remove residual ATP and ensure complete depolymerization. Alp7A was gel filtered 

on Superdex S200 resin into polymerization buffer (25 mM Tris pH 7.6, 100 mM KCl, 

1 mM MgCl2, 1mM DTT); the purest protein fractions (determined via SDS-PAGE) 

were pooled and dialyzed into storage buffer (polymerization buffer + 20% glycerol). 

Aliquots were snap frozen in liquid nitrogen and stored at -80 °C. Protein was 

quantified at A280, by the Alp7A extinction coefficient 34,840 M-1cm-1 and its MW of 

45.319 kDa. 

 

Alp7R: 

Protein purification was performed using the chromatography system ÄKTATM pure, 

GE Healthcare with Unicorn control system 7.0.  

Alp7R in pET11a was transformed into BL21(DE3) cells and grown in LB medium with 

respective antibiotic and 0.2 % Glucose at 37 °C to an OD600 of 1 – 2 before diluting 

to OD600 0.2 in induction medium (2xLB + 1,5 % lactose + antibiotic) and shifted to 26 

°C for 16 h. Cells were centrifuged at 6,000 g for 30 min. Pellets were flash frozen in 

liquid nitrogen and stored at -80 °C. 

To purify native Alp7R, the pellet was resuspended in five volumes of Alp7R lysis 

buffer (50 mM MES pH 6.0, 100 mM KCl, 2mM EDTA, 2mM DTT, PMSF, 5 % glycerol). 
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Cells were lysed by sonication (6 x 5 min, 2 min of cooling in between). The lysate was 

clarified with a high-speed spin (60 min at 100,000×g, 4 °C) to remove cellular debris 

and insoluble protein. The supernatant was diluted to 50 – 100 mL using buffer 1 Alp7R 

(25 mM MES pH 8.0, 1 mM DTT, 1 mM EDTA). It was further purified via anion-

exchange (AIEX) using the column XK16/20 Source 30Q. It was rapidly loaded via 

super loop and eluted with 0-1 M NaCl in back ground buffer 1 Alp7R. The purest 

protein fractions were determined via SDS-PAGE, pooled and subsequently gel 

filtered (30mM MES pH 6.0, 300mM KCL, 1mM EDTA, 1mM DTT) over an S75 column 

equilibrated in Buffer R. Pure fractions were then again determined by SDS-PAGE, 

pooled, and frozen at -80 °C in 20 % glycerol. The sample was verified to be Alp7R 

with MALDI mass spectroscopy. Concentration was determined photometrically using 

molecular weight (16.038 kDa) and extinction coefficient (7,450 M-1cm-1) at A280. 

 

Chimeric Proteins: 

The three variants of chimeric proteins for RNA segregation (ParR-(AP)10-MS2; ParR-

(GGGGS)3-MS2 and ParR-mCherry-MS2) were transformed into BL21(DE3) cells. 

The latter two variants were grown in LB medium with respective antibiotic with 0.2 % 

Glucose at 37 °C to an OD600 of 1 – 2 before diluting them to OD600 0.2 in induction 

medium (2xLB + 1,5 % lactose with antibiotic and osmolytes, such as trehalose, di-

myo-inositol1,1'-phosphate; Sigma)  to increase protein solubility) and shifted to 26 °C 

for 16 h (by Dr. Judita Mascarenhas).  

Cells were centrifuged at 6,000 g for 30 min. Pellets were flash frozen in liquid nitrogen 

and stored at -80 °C (note: since rigid version (i) showed only poor expression levels 

during test expression experiment, only the latter two versions (ii) and (iii) were purified 

subsequently). The respective pellets were resuspended in five volumes of LES-buffer 

(Protino® Ni-TED 2000 Packed Columns Kit, Macherey-Nagel). Cells were lysed by 

sonication (6*5 min, 2 min of cooling in between). The lysate was cleared with a high-

speed spin (60 min at 100,000×g, 4 °C) to remove cellular debris and insoluble protein. 

The supernatant was diluted to 20 mL LES-buffer and purified using Protein 

Purification Kit (Protino® Ni-TED 2000 Packed Columns Kit, Macherey-Nagel). 

Purification method was according to the manufacturer’s protocol. The purest protein 

fractions were determined via SDS-PAGE, pooled and subsequently gel filtered using 

S75 column (GE Healthcare Life Sciences) equilibrated in buffer R (30mM MES pH 

6.0, 300mM KCL, 1mM EDTA, 1mM DTT). Subsequently, concentration was 
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determined photometrically using theoretical molecular weight (flexible version (ii): 

30.11 kDa, mCherry version (iii): 57.18 kDa) and theoretical extinction coefficient ((i): 

18,700 M-1cm-1, (iii): 53,080 M-1cm-1) at A280. 

 

5.6.4 Labeling of ParM and Alp7A with Organic Dyes 

DTT and glycerol were removed using PD10 salt exchange column (following 

manufacturer’s protocol) equilibrated in Buffer F. For labeling a commercially available 

kit was used (Alexa Fluor® 488 Protein Labeling Kit, Invitrogen) and followed 

instructions according to the manufacturer’s protocol. Average labeling efficiency was 

90±10 %. 

 

5.6.5 In vitro RNA Transcription and RNA labeling 

These experiments were done by Viktoria Mayr (Mutschler Group, MPI Martinsried). 

E. coli Top10 were transformed with the ordered plasmid pTL032 and incubated at 

37 °C on selection plates (ampicillin). Primers were designed which encode a T7 

promotor and would allow for subsequent in vitro transcription of the RNA stem-loop 

sequences. PCR was done as follows: 

 

Primer I (RNAT7_fwd (10 µM):   2.5 µL 

Primer II (RNAT7_fwd (10 µM):           2.5 µL 

Polymerase: Q 5 Hot Start 2x Master Mix (NEB): 25 µL                 

ddH2O:                                                                     19.5 µL 

Template: Plasmid DNA pTL032 (50ng/µL)  0.5 µL 

Total volume:      50 µL 

Fragment size: 851 bp 

Annealing temperature: 56 °C 

Extension time: 25 s (28 cycles) 

 

The PCR product was purified using GeneJET DNA Purification Kit (Thermo Fisher) 

and after concentration measurement using Nanodrop (79.50 ng/µL) it was used for 

in vitro transcription according to the manufacturer’s protocol (Transcription T7 Aid 

High Yield, Thermo Fisher). Conditions were pTL032 as template (23,85 ng) in a total 

reaction volume of 20 µL. Incubation at 37 °C for 2 h and subsequent DNase digest 

(1 µL Turbo DNase to 20 µL reaction volume at 37 °C for 30 min. Correct band size 
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(851 nt) was confirmed via 8 % Urea Gel stained with SYBR Gold and subsequently 

purified using RNeasy Kit (Qiagen) according to the manufacturer’s protocol. RNA was 

eluted in ddH2O (4.89 µM). 

 

RNA biotinylation reaction was prepared as follows: 

 

RNA (50-200 pmol):  37 µL 

DMSO:    10 µL  (10 % final) 

Heat for 3 min at 85 °C, then put on ice 

 

Then add: 

 

100 mM ATP:   1 µL   (1 mM final) 

10x buffer:    10 µL  (1x final) 

RNAse Inhibitor (40 U/µL):  2.5 µL  (1 U/µL final) 

T4 RNA Ligase I (30 U/µL): 4.5 µL  (1.35 U/µL final) 

pCp-biotin (1 mM):    5 µL  (0.05 mM final) 

PEG 8000 (50 %):   30 µL  (15 % final) 

 

Total volume:   100 µL 

 

Incubate reaction at 16 °C overnight. 

 

The resulting biotinylated RNA was purified using RNeasy kit (Qiagen) and eluted 

three times into the same tube and correct size was controlled via 8 % Urea gel (final 

RNA concentration: 3.84 µM). This procedure was done by Dr. Hannes Mutschler (MPI 

Martinsried). 

 

5.6.6 Creation of Centromeric Sequences with Functionalized Residues 

Primers were designed (Table 5) that would generate a parC or an alp7C sequence, 

respectively, containing a 5’-biotin and a 3’-Cy3 moiety (Atto633-moieties in case of 

EMSA, respectively). These moieties were crucial for visualization (EMSA, spindle 

assembly) and coupling to streptavidin-coated beads. 
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5.6.7 DNA-Bead Coupling 

50 μL of streptavidin-coated, spherical and magnetic beads (Bangs Laboratories) were 

washed tree times using 1.5 mL wash buffer (1M NaCL, 10mM Tris HCl pH 8.2, 1mM 

EDTA) and a magnetic separator. Subsequently, beads were resuspended in 1.3 mL 

bead wash buffer with 0.2 % Tween-20. 200 µL of biotinylated DNA (300 nM) was 

added to the tube, mixed and incubated for 1 hour at 4 °C. Again, beads were washed 

thrice with 1.5 mL bead wash buffer, followed by washing twice with 1.5 mL buffer FE 

(100mM KCL, 30mM Tris HCl pH 7.0, 1mM EDTA). Last, beads were resuspended in 

50 µL FE and stored at 4 °C. 

 

5.6.8 Glass Slide and Coverslip Preparation 

 

Silanization for Passivation: 

For passivation, pre-cleaned slides and coverslips were purchased. Passivation was 

required to prevent protein adsorption during spindle assembly, which would impair 

protein functionality. Glass substrate was cleaned by sonicating in acetone, ethanol, 

isopropanol and DI water for at least 3 min, each. Then the substrate was dried under 

nitrogen gas (it also removed dust particles) and subsequently plasma treated using 

oxygen plasma (approx. 45 s). Eventually, gas phase silanization was performed by 

putting the glass into a desiccator. Approx. 200 µL of Silane (chlorotrimethylsilan, 

Sigma) was given into a small beaker in the desiccator and a mild vacuum was applied. 

After overnight incubation the treated glass substrates were stored in a dust-free 

environment. 

 

Poly-L-Lysine Coating for Mild Adsorption: 

In case mild attachment of protein onto the glass is desired, as was the case for 

observations of ParM seeds, pre-cleaned glass slides and coverslips were prepared 

as above. However, after plasma treatment the substrate was incubated with 0.01 % 

poly-L-lysine solution for 1 h. Glass was blow-dried using nitrogen-gas and stored in 

a dust-free environment. 
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5.6.9 DNA- and RNA-Segregating Spindle Assembly 

Centromeric DNA (14 pM DNA-coated (parC, alp7C) beads or enriched DNA 

nanoparticles) was combined with 30% Alexa-488 labeled motor protein (ParM (5 µM), 

Alp7A (10 µM)), adapter protein (ParR (250 nM), Alp7R (1 µM), ParR-MS2 fusion 

protein (1 µM)), 0.4 % methyl cellulose (400 cP), 5 mM DTT and 15 mg/mL BSA in 

buffer F. The reaction was spotted on a glass slide and the reaction started with 10 

mM ATP (1/10th of the reaction volume of 100mM ATP). To reduce oxidation, 

reactions were sealed with nail polish after covering with a coverslip.  

 

5.6.10 Oxygen-Scavenging System 

For the oxygen-scavenging system pyranose oxidase and Catalase were purchased 

from Sigma. Final assay concentrations were 3.7 U/mL of pyranose oxidase and 

90 U/mL Catalase. 100 stocks (38 mg/mL) of pyranose oxidase and 100 stocks 

(2 mg/mL) of catalase were prepared by dissolving in adequate volumes of buffer f. 

The solution was filtered using centrifuge filters (0.22 µm). 10 µL aliquots were flash 

frozen in liquid nitrogen and stored at -80 °C. For use, equal volumes of both were 

mixed to get a 50x solution. D-glucose needs to be added in a final concentration of 

0.8 %. A 50x stock can be prepared with 40 % Glucose, which was subsequently 

filtered for sterility and stored at -80 °C. 

 

5.6.11 ATP-Regenerating System 

The used ATP regeneration system was based on creatine kinase and creatine 

phosphate as substrate. To regenerate 0.1 mM ATP in 200 µL solution, 20 mM 

creatine phosphate was added to 0.1 mg/mL creatine kinase. 
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6 Appendix 

 

6.1 Appendix-Figures 

 

 

Suppl. Figure 1: Effect of bead concentration during reconstitution. The established optimal 

reaction conditions were used as described in Figure 9B. Here, parC-coated bead concentration was 

titrated, which was (A) 1.4 pM, (B) 14 pM, (C) 140 pM, (D) 1.4 nM and (E) 14 nM to determine the effect 

of nucleation sites. Magnification: 40 x; Scale bars: 10 µm.  

 

 

Suppl. Figure 2:  Necessity of ATP, ParR and ParM and their defined ratios for spindle formation. 

The established optimal conditions were used but (A) without ATP in a water-in-oil droplet, (B) with 

2.5 µM ParR, (C) with 50 µM ParM. Magnification: 40 x; Scale bars: 10 µm.  
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Suppl. Figure 3: Spindle length distribution in the course of an entire reaction. (A) Distribution at 

32 min (n=293), (B) at 36 min (n=241), (C) at 40 min and (n=119), (D) at 44 min (n=61) after start of 

reaction. When the reaction kinetics shift towards equilibrium the lengths distributions shift towards 

zero. The decrease in countable events mirrors the decay towards equilibrium. After 48 min no spindles 

could be detected. Reaction conditions as in Figure 9. 

 

 

Suppl. Figure 4: Aster Lengths Distributions in the course of an entire reaction. (A) Distribution 

at 32 min (n=34), (B) at 36 min (n=28), (C) at 40 min (n=8 ) and (D) at 44 min (n=7) after start of reaction. 

When the reaction kinetics shift towards equilibrium the lengths distributions shift towards zero. The 

decrease in countable events mirrors this decay towards equilibrium.  After 48 min no asters could be 

detected. Reaction conditions as in Figure 9. 
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Suppl. Figure 5: Distributions of quantity of asters per bead in the course of an entire reaction. 

(A) Distribution at 32 min (n=185), (B) at 36 min (n=135), (C) at 40 min (n=129), and (D) at 44 min after 

start of reaction (n=52),. When the reaction kinetics shift towards equilibrium the lengths distributions 

shift towards zero. The decrease in countable events mirrors this decay towards equilibrium. The 

distributions of spindle, aster and aster quantity are decaying collectively as reaction shifts towards 

equilibrium. Reaction conditions as in Figure 9. 

 

 

 

Suppl. Figure 6: Top view of the Teflon chamber used in Figure 13 D with the lipid bilayer sealing. 

The lipid is labelled with red hydrophobic dye. Magnification: 40 x; scale bar = 15 µm. 
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Suppl. Figure 7: Glass surface covered with E. coli membrane lipids. (A) before and (B) after 

addition of 10 µM Alexa488-labeled ParM proteins (green) pre-mixed with 10 mM ATP. No detectable 

adhesion or non-specific filament formation was observed. Magnification: 40 x; Scale bars = 10 µm. 

 

 

 

 

Suppl. Figure 8: ATP-regenerating system based on creatine phosphate and creatine kinase. 

Creatine kinase catalyzes phosphorylation of ADP to ATP. 
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Suppl. Figure 9: Spindle formation in bulk with and without ATP regeneration system. Without 

ATP regeneration faint and thin spindles start forming at 50 µM ATP concentration (consider high 

exposure). With ATP regeneration formation of faint spindles starts at 10 µM ATP concentration and at 

50 µM they are phenotypically similar to the optimized system in bulk. Apart from ATP concentration, 

conditions as in Figure 9. Magnification: 40 x; Scale bars = 10 µm. 

 

 

Suppl. Figure 10: The oxygen scavenger used in this study. It was developed by Swoboda et al. in 

2012 and is based on pyranose oxydase and catalase. In contrast to commonly used oxygen scavenger 

systems (based on glucose oxydase and catalse as well as protocatechuate dioxygenase) this system 

keeps the pH stable over at least 2 h (Swoboda et al., 2012). 
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Suppl. Figure 11: Exemplary DNA nanoparticle segregation. Specific filament formation can be 

observed upon addition of DNA nanoparticles. Filaments are only formed, if parC nanoparticles are 

added. In (A) one larger nanoparticle can be seen of which ParM spindles elongate. In (B) spindles 

push small nanoparticles apart (brighter foci). Conditions as in Figure 16. Magnification is 40 x; Each 

frame is 1 min apart. Scale bars = 20 µm. 

 

 

 

 

 

 



6 Appendix 6.2 Appendix-Tables 

 

99 

 

Suppl. Figure 12: Larger field of view for segregation of RNA. RNA-coated beads were segregated 

via ParM filaments mediated by the ParR-(GGGGS)3-MS2 fusion protein. Conditions as in Figure 22. 

Magnification = 40 x, Frames are 2 min apart. Scale bar = 10 µm. 

 

 

6.2 Appendix-Tables 

Suppl. Table 1: Raw data of plating assay. Cells were handled as described in the Material & Methods 

section. 100 % is determined by the number of grown cells on plates with LB and selection marker. 
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Suppl. Table 2: Summary of statistical analysis during steady-state of reaction. Steady-state was 

observed up to 28 min after in bulk. Large standard deviations in spindle lengths might arise from in 

vitro artifacts leading to unnaturally large spindles e.g. due to loss of protein function upon glass-

adherence. 

 

 

Suppl. Table 3: Summary of statistical analysis over the entire course of segregation reaction in 

bulk. The transition from steady-state towards equilibrium starts after ~ 30 min. Until 48 min after 

reaction start the distributions will shift towards zero. Reaction conditions as in Figure 9. Figure 11 D is 

based on this table. 

 

 

 

Suppl. Table 4: ParM polymerization rates. Rates were determined in this study and compared to 

previous studies. 
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Suppl. Table 5: Alp7A Aster length- and quantity-distributions compared to R1-ParM 

distributions. Summary of distributions of the Alp7 system and comparison to distributions of the 

ParMCR system.  

 

 

 

Suppl. Table 6: Summary of statistical analysis during steady-state of RNA segregation reaction. 

Overall, the numbers match those measured for DNA segregation (Suppl. Table 2). 
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