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Powerhammering through Glitch Amplification –
Attacks and Mitigation

Abstract—Recent work on FPGA hardware security showed a
huge potential risk through powerhammering which uses high
switching activity in order to create excessive dynamic power
loads. Virtually all present powerhammering attack scenarios
are based on some kind of ring oscillators for which mitigation
strategies exist. In this paper, we use a different strategy to create
excessive dynamic power consumption: glitch amplification. By
carefully designing XOR trees, fast switching wires can be
implemented that together with driving high fanout nets can
draw enough power to crash an FPGA. In addition to the attack
(which is crashing an Ultra96 board), we will present a scanner
for detecting malicious glitch amplifying FPGA designs.

I. INTRODUCTION

The rise of FPGA cloud computing can be observed in
recent years when major cloud vendors such as Amazon [1],
Microsoft, Huawei, and Alibaba offer FPGA resources in their
infrastructures. Meanwhile, multi-tenancy support for FPGA
infrastructure in which more than one user can share the
same FPGA resource is desirable and hence attracting active
research works in both academic [2] and industry [3].

In such multi-tenant scenarios for FPGA cloud computing,
system security is of paramount importance. Security concerns
range from data privacy of users sharing the same FPGA fabric
or FPGAs on the same board to the availability of the system
service itself [4]. Apparently, integrating FPGA resources to
a cloud computing infrastructure is opening a new surface
of attack in the electrical level which is not available in the
software world with CPUs and GPUs, and therefore has not
been well-studied yet. For example, a grid of ring oscillators
implemented in FPGA resources can be used to bring down
an entire FPGA board which needs to be power cycled to
get back the normal operation [5]. Such an attack, known as
powerhammering is a specific threat for FPGAs due to their
full low level hardware programmability.

Currently, all powerhammering circuits are built up on ring
oscillators which may or may not be detected by the vendor
design rule checks (DRC) [6]. However, the fundamental
principle behind this class of attack is to create a circuit with
high switching activity that can consume as much power as
possible to create voltage drops or to exceed the board power
or thermal budget. Alternatively, and the core of this paper, it
is possible to use well-designed XOR trees to generate a great
number of switching activities (a.k.a glitches) per clock cycle.
With the help from academic tools such as GoAhead [7] or
RapidWright [8], we can fine-tune input delays inside XOR
trees to achieve the desired toggling frequency. While other
logic functions may glitch as well, XOR is most effective
as any change at an input creates a change at the XOR
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Fig. 1. Illustration of the presented glitch amplification attack. a) is the attack
circuit; and b) is the waveform getting from the attack circuit..
output (omitting possible canceling effects in real systems).
In our research, the output of a glitch generator will be used
to drive a large network of wires and combinatorial logic
which is acting as the power burning network, as illustrated in
Figure 1. As we will show in Section IV, this allows to create
a powerhammering attack at very low cost that can even crash
an FPGA board.

In this paper, for the first time, such malicious circuits which
are able to crash a Xilinx UltraScale+ FPGA board just by
using a glitch generator and a power burning network are
presented. The presented malicious circuits pass all Vivado
DRCs v2019.1 for bitstream generation as well as all tests that
are performed to deploy designs on Amazon Web Services F1
instances. It is important to highlight that the Power Estimation
feature provided in the Vivado design tool is remarkably
underestimating the potential power consumed by the proposed
circuits, hence the Xilinx vendor tools cannot currently prevent
such an attack. As a mitigation for the attack, we have
extended the open-source tool FPGADefender [9] by providing
additional virus signatures for this class of attack. After adding
the here proposed virus signature, FPGADefender is now able
to detect malicious circuit containing glitch amplification that
may potentially draw excessive power. The test is performed
directly on bitstreams generated by the Xilinx vendor tool.

The threat model considers an adversary with complete or
partial access to FPGA fabric via full or partial reconfiguration.
The adversary goals are to shut down the FPGA service of
an FPGA-based system (e.g., embedded or cloud-based) and
hence to cause denial of service in the system or to manipulate
system states by temporarily reducing supply voltage below
safe operating conditions. The here presented attack can also
serve as a template for FPGA hardware trojans in the sense



that the attack requires only a little amount of logic, passes all
existing DRCs but can crash a large amount of FPGA-based
systems.

The contributions of this work are as follows:

• A new class of powerhammering attack based on glitch
amplification that does not require ring oscillators (Sec-
tion III);

• An extension to the tool FPGADefender to mitigate this
new class of attack on FPGA boards (Section IV);

• Demonstration of the presented attack on the Ultra96
platform equipped with the latest Xilinx Zynq Ultra-
Scale+ MPSoC and evaluation of our mitigation strategy
(Section V).

Moreover, we provide a brief literature review in Section II
and conclude this work in Section VI.

II. BACKGROUND AND RELATED WORK

There are two power sources in FPGAs: static and dynamic
power. The type which consumes most power in modern
devices is dynamic power. Dynamic power can be calculated
using the following formula [10]:

P =
∑

allnodes

1/2CyV
2D(y)f (1)

We can see that the capacitance Cy and the transition density
D(y) at each node y affect the dynamic power consumption
with the swinging voltage V and clock frequency f . When the
transition density at a node is higher than one then the node
can switch its value more often than the clock signal. This is a
result of glitching. Glitching of static CMOS circuits in ASIC
is previously studied, concluding that it may contribute to 20%
to 70% of power dissipation [11]. Furthermore, most of the
FPGA dynamic power is consumed by the routing resources
[12], [13] due to their large capacitive load.

The fact that most power is consumed by the routing
resources and that there is a high possible power dissipation
from glitches means that this can be exploited for powerham-
mering. The transition density is largely affected by the main
input, the architecture of the design, and its exact physical
implementation on the FPGA. This means that an implemented
netlist could be designed to be malicious enough to create a
temporary voltage drop that may manipulate a system (e.g.,
causing a state transition due to making a system timing
critical) [14] or to even crash the system entirely.

Although there are many power models that take the
switching activity into account [10], [12], [13], [15], [16],
the problem is that these methods are not widely used or
find the switching activity with simulation data. To find the
transition density at a node without simulation, we need to
find the probability that the signal changes and that will in
this paper be computed using LUT truth table entries. This
computed probability propagates then further to the rest of
the connecting nodes.

III. GLITCH AMPLIFICATION ATTACKS

A. Principle/Theory

In a synchronous design, the output of a Flip-Flop can
at maximum change its state once each clock cycle, hence,
resulting in an activity factor of 1/2 the clock frequency. This
is the situation when a Flip-Flop implements a T Flip-Flop
(where the output of a Flip-Flop is fed back to the input
through an inverter). However, due to different propagation
delays on routing and for evaluating Boolean functions at
combinatorial primitives on an FPGA (in this paper, we only
consider LUTs but the principle would also hold for other
primitives such as DSP blocks), glitches may be generated
as shown in Figure 1. This fact is widely known and a
good designer usually reduces the glitching effect by either
pipelining or avoid flipping multiple inputs of a combinatorial
logic block at the same time (e.g., using Gray codes for
counters). Depending on the number of inputs N , the output
activity factor can reach up to the maximum of N

2 times the
input’s activity factor. For example, in the implementation of
a 6-input XOR gate in Figure 1, the output of the T Flip-
Flop has an activity of 1/2 which is driven to all inputs of
the XOR gate but routed with different latencies. This results
in an activity factor of 6 × 1/2 = 3. This means that the
XOR output toggles three times faster than the clock. Based
on that principle, an attacker can create an acyclic circuit that
meets timing constraints and appears completely normal but
it can generate a substantial switching activity and can draw
an excessive amount of power. The increasing of the activity
factor through glitch amplification is also a way to perform
powerhammering when the maximum clock frequency usable
for an attack is rather limited (as commonly the case on FPGA
Cloud instances [17]).

B. Attack Implementation

Glitch amplification attacks are comprised of two parts:
the glitch generator and the power burning network (See
Figure 1).

The glitch generator is a normal T Flip-Flop with a delay
chain and a wide-input XOR. In practical attacks, this may be
controlled by some trigger logic. In our attack, we operate the
T Flip-Flop at 200MHz frequency then connect its output to a
delay chain followed by a 6-input XOR. By adjusting latencies
of the physical implementation, this results in an activity factor
of 3 at the output signal of the XOR gate. Consequently, the
output of the XOR can reach 3 times the clock frequency (in
our example 600MHz). Please note that much faster glitch
frequencies can be generated by using networks of XOR gates
and a well-tuned implementation.

The power burning network is built of wires running all
over the FPGA fabric. The main power consumption is not
drawn by the glitch generator itself but by the wires and
components along the routing paths of the power burning
network. This leads to the fact that by using a few logic



primitives and redundant routing resources, a malicious circuit
can be stealthily inserted without being obviously noticed.

IV. MITIGATION STRATEGY

A. FPGADefender flow

To mitigate the presented attacks, bitstreams should be
scanned before they get loaded into the FPGA. The scan
could alternatively be performed at the netlist level but a test
operating on the final configuration bitstream has the advan-
tage that it would even catch malicious circuits implanted
during bitstream generation or after. For this checking purpose,
FPGADefender [9] was used for this paper.

FPGADefender would protect some partial region in a re-
configurable FPGA-based system. An incoming configuration
bitstream is at first translated by an external tool (BitMan
[18]) into a netlist graph. This graph, together with the
virus signatures, allows FPGADefender to perform the scan.
The signatures can be plugged into the scanner engine with
different configuration options to tune the scanner for different
problems and FPGA boards.

B. Detecting glitch-based powerhammering

To detect malicious circuits that draw excessive power by
propagating generated glitchy signals, the transition density
discussed in Section II will have to be computed from the
generated netlist graph. To find that density, the scanner uses
the LUT configuration values in the netlist. These values help
finding the probability that a single input change will cause on
a LUT’s output. That probability will be used while traversing
through the netlist to determine the transition density.

To find a LUT’s output change probability, all of the
possible input values will have all bits toggled and the number
of times the output changed is recorded. Then that value is
divided by the maximum number of output changes which is
when each toggle also flips the output.

Physical LUTs can have more inputs than the design uses
(e.g., a LUT6 may implement a 4-input logic gate). To get
the number of used inputs, the LUT configuration values will
be minimized using the PyEDA Espresso [19] library. We are
also considering constant values. For instance, each CLB has
a VCC primitive in the case a logical ‘1’ is needed and for a
logical ‘0’, Vivado is using a LUT configured to ‘0’. Whenever
a constant is connected to a LUT, the corresponding input will
be skipped for the glitch score computation.

Next, the wires are processed from all of the nodes anno-
tated as Flip-Flops until another Flip-Flop or an antenna is
reached. During the process, if a LUT node is detected, the
number of times the wire can change its output is multiplied by
the chance that the output would flip on an input change. For
catching malicious designs, we assume the worst-case scenario
where the starting Flip-Flop values toggle every clock cycle
and the number of glitches gets amplified with each LUT
encountered without effects that may cancel out glitches.

TABLE I
GLITCH AMPLIFICATION POWERHAMMERING ATTACK ON ULTRA96

BOARD CLOCKED AT 200MHZ. THE VIVADO POWER ESTIMATOR IS SET
TO DEFAULT MODE.

Designs
Description

Activity
Factor

Vivado Power
Estimator (W)

Measured Board
Power (W)

Static Output 0 1.963 4.026
Route Through 0.5 1.964 9.394
2-input XOR 1.0 1.965 10.858
3-input XOR 1.5 1.966 11.834
4-input XOR 2.0 1.967 12.200
5-input XOR 2.5 1.968 crashed
6-input XOR 3.0 1.969 crashed

V. EVALUATION

A. Attack on Xilinx UltraScale+ FPGA

Our experiments are conducted on a Ultra96 platform
equipped with a Zynq UltraScale+ MPSoC ZU3EG. We im-
plemented 47 glitch generators using only 0.03% Flip-Flops
and 0.8% of the LUT resources. Glitching signals are then
connected to long routing paths which are anchored using
transparent latches. Here we guided the routing behavior by
routing through transparent latches and pre-placed them all
over the design. It should be noticed that in this attack, we
do not use high fan-out but we use long deep paths instead.
Therefore, Xilinx vendor tool1 cannot detect the powerham-
mering circuits through a reported high fanout net. Moreover,
we can easily change output’s behavior by setting LUT6 initial
value to realize static output (output always equals to 0), route
through (output always equals to one input), and XOR gates
with inputs varying from 2 inputs to 6 inputs. By keeping the
same routing and changing LUT value, we can observe the
effect of glitching on the power consumption.

The results are shown in Table I. It should be remarked
that the Power Estimator is reported for the FPGA fabric itself
whereas the measured board power is also including the power
consumption of other off-chip components (e.g., regulators,
memory chips, etc.). When we increase the activity factor, the
power ramps up until it eventually crashes the design (when
using 5-input XORs and 6-input XORs). Ultimately, our attack
design is not optimized, and even in this case, just 0.8% of
the LUTs and 25% routing resources are sufficient to crash
the FPGA. Moreover, even the other designs that do not crash
the FPGA can still cause malicious behavior as the FPGA
core voltage may drop and the system has no headroom for
regulating user circuit demands.

B. Evaluation of FPGADefender

To evaluate FPGADefender, 18 designs were scanned with
an additional malicious design. These designs are common im-
plementations of different accelerators. All of the benchmark
designs except FPGA Miner [20] are constrained to a partially
reconfigurable region which takes up to a sixth of the whole
fabric resources. We used FPGADefender with the new virus
signature to measure the overall glitchiness of the design.

1Vivado 2019.1 was used in this experiment.



TABLE II
EVALUATION RESULTS FOR THE MALICIOUS DESIGN AND OTHER

BENCHMARKING CIRCUITS.

Name Activity Sum LUT % FF % Wires %

picoRV 166723.47 5.55 1.32 0.94

i2c 11059.16 0.51 0.14 0.07

SPI 60090.64 1.63 0.23 0.21

PRNG 9778.64 0.40 0.07 0.05

AES 189270.98 6.95 0.40 0.68

DES 24902.57 0.46 0.09 0.04

TRNG 60405.56 1.76 0.11 0.16

BCD adder 4524.12 0.11 0.06 0.02

cordic 102021.77 2.14 0.67 0.28

8b10b encdec 3469.10 0.12 0.03 0.02

FPGA Miner 564668.20 5.12 3.59 2.02

RS232 UART 4195.33 0.17 0.07 0.02

steppermotor 2353.30 0.12 0.04 0.01

parallel scrambler 11772.32 0.11 0.03 0.01

CAN controller 54043.85 2.14 0.45 0.31

SHA3 4101351.79 15.13 1.62 4.94

MIPS CPU 235668.21 6.44 1.00 0.95

pass through mal 1725320.00 0.80 44.57 25.46

Malicious design 10351920.00 0.80 44.57 25.46

From Table II, we can see that the benchmark designs have
lower overall switching activity than the malicious design. The
SHA3 accelerator stands out because it uses extensively XOR
functions and bit-shuffling operations which result in high wire
utilization. Moreover, this particular SHA3 implementation is
unrolled and not well pipelined.

The second last entry in Table II shows, one of the non-
malicious designs that is an exact copy of the attacking design
with the only difference that the LUT is simply routing through
without further glitch amplification. For the pass through mal
design the non-glitchy signal propagation causes the scanner
to evaluate its switching activity count to be 6 times less. This
demonstrates the effect of glitch amplification in a malicious
design.

Additionally, the scanner model assumes that the inputs
always change and that the glitches always propagate through
the entire combinatorial path and that all routing involved in
the glitching. These assumptions are not true in real scenarios
as not all flip-flop values change every clock cycle and some
glitches cancel out if the pulse-width of the glitch is not large
enough.

As a result, the wire segment switching activity values
have been capped to 20 as wire segments on the ZU3EG
won’t switch more often than a rate equivalent to 4GHz.
Additionally, wire segments in the CARRY primitives inside
CLBs have been discarded as well with the multiplexers inside
the logic slices (e.g., F7MUXes) which will be covered in
future work.

VI. CONCLUSION

With this paper, we contribute to an increased amount
of research being undertaken in the field of FPGA hardware

security. We demonstrated that glitch amplification, which has
not be studied for malicious circuit designs before, can be
used to draw excessive levels of power. Our experiments have
proven that an Ultra96 FPGA board can be crashed by using
only less than one percent of the available LUTs and a quarter
of the wires. In that case, we could create an increase of
dynamic power consumption of about 10W (measured on the
12V board supply rail). To put this into perspective, an Alveo
U250 datacenter card provides 22x more LUTs and has a total
thermal power budget of 225W (which also powers 4 large
DDR memories). Considering that the VU11P of the Alveo
card is produced in the same process node than the ZU3EG
of the Ultra96 and that both FPGAs have an identical fabric
architecture, the here presented powerhammering circuit could
potentially already crash that board. Even worse, on Amazon
AWS F1 instances, power is limited to below 100W and our
powerhammering circuit passes all mandatory checks to be
deployed.

This work completes other work that is focusing on self-
oscillating designs only. And with the new glitch amplification
virus scanner rules added to FPGADefender, the tool is now
providing a mostly complete solution for mitigating power
hammering attacks. This would enable a cloud service provider
to offer FPGA-as-Service models where users can even upload
bitstreams (rather than netlists, as common practice today).
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