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Summary 

The inter-differentiation between cell states promotes cancer cell survival under stress and 

fosters non-genetic heterogeneity (NGH). NGH is, therefore, a surrogate of tumor resilience 

but its quantification is confounded by genetic heterogeneity. Here we show that NGH in 

serous ovarian cancer (SOC) can be accurately measured when informed by the molecular 

signatures of the normal fallopian tube epithelial (FTE) cells, the cells of origin of SOC. 

Surveying the transcriptomes of ~6000 FTE cells, predominantly from non-ovarian cancer 

patients, identified six FTE subtypes. We used subtype signatures to deconvolute SOC 

expression data and found substantial intra-tumor NGH. Importantly, NGH-based stratification 

of ~1700 tumors robustly predicted survival. Our findings lay the foundation for accurate 

prognostic and therapeutic stratification of SOC. 

 

Significance 

Serous ovarian cancers represent the most common malignancies of ovarian carcinomas. 

Molecular stratification of high-grade serous ovarian cancer (HGSOC) has been difficult, 

presumably because of profound genetic heterogeneity limiting reproducible prognostic 

classifications. We now overcome this limitation by investigating the differentiation trajectory 

of non-cancer FTE cells using single-cell RNA sequencing and discovering four FTE secretory 

subtypes. Using the subtype molecular markers of non-cancer cells, we define a gene signature 

that robustly identifies a poor-prognosis EMT-high subtype of HGSOC. Conceptually, we show 

how examining non-cancer cells of origin could enable the accurate prediction of cancer 

behavior. Moreover, our work has important prognostic implications for ovarian cancer patients 

and enables future efforts for therapeutic optimization for EMT-high tumors.  
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Introduction 

Intratumor heterogeneity is a key mechanism for survival and evolution of tumors (Brock et 

al., 2009; Marusyk et al., 2012). Genetic heterogeneity has been established as a mechanism of 

survival for most cancer types (Greaves and Maley, 2012; McGranahan and Swanton, 2017; 

Nowell, 1976). Additionally, cancer cells of the same genetic background may have different 

phenotypic cell states that enable essential tumor characteristics such as invasion, metastasis 

and resistance to chemotherapy (Brock et al., 2009; Pisco et al., 2013). The ability of cancer 

cells to change from one cell state to another (plasticity) is a key feature for cancer survival 

(Meacham and Morrison, 2013). While genetic heterogeneity is acquired, phenotypic 

heterogeneity is often inherited from the parent cell-of-origin of a tumor, due to epigenetic 

regulation or other mechanisms (Gupta et al., 2011; Visvader, 2011). Understanding cancer 

cell plasticity is dependent on the accurate identification and characterization of individual cell 

states. Recognizing that cancer cells have plasticity should be reflected on tumor stratification 

strategies that take into account the co-existence of multiple cancer cell states within any one 

tumor. However, the direct molecular characterization and identification of such states in a 

tumor is significantly confounded by genetic heterogeneity. An alternative approach for 

elucidating the phenotypic repertoire of a tumor type is to study the cell states of its cell-of-

origin and use those characteristics to decompose an individual tumor into its constituents 

(Baron et al., 2016; Gupta et al., 2011; Newman et al., 2015).  

 

High-grade serous ovarian carcinoma (HGSOC) is the most aggressive gynecological 

malignancy (Koshiyama et al., 2017), which is characterized by ubiquitous TP53 mutations 

and frequent chromosomal alterations (Ahmed et al., 2010; Bell et al., 2011; Etemadmoghadam 

et al., 2009; Macintyre et al., 2018). One of the major challenges of HGSOC is the late 

presentation with almost 80% of patients diagnosed at Stage III or IV disease and a 5-year 
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survival rate of about 30% (Torre et al., 2018). The absence of robust methods to stratify 

HGSOC has been a challenge against therapeutic innovation. Previous studies demonstrated 

the transcriptomic heterogeneity of HGSOC (Bell et al., 2011; Tothill et al., 2008). However, 

analyses using bulk transcriptomes are confounded by a variety of factors, such as copy number 

variation (Macintyre et al., 2018) and infiltration by non-cancer cells. Importantly, such 

analyses do not take into consideration the possibility of multiple cell states co-existing in one 

tumor. Such confounding factors lead to unstable classifications with variable prognostic power 

across independent datasets (Chen et al., 2018). It is plausible to hypothesize that phenotypic 

states of the cell-of-origin of ovarian cancer may be echoed in daughter cancer cells. Linking 

basal and luminal cells from the mammary epithelium to corresponding breast cancer subtypes 

is a clear example of achieving a stable molecular classification based on understanding 

phenotypic diversity of the cell-of-origin. This approach has also been successful in other 

cancers (Fessler and Medema, 2016; Gilbertson, 2011; Ince et al., 2007; Wang et al., 2013). 

 

Recent studies strongly support that SOC can originate from the fallopian tube epithelium (FTE) 

with evidence from mouse models and genetic evolutionary studies (Ducie et al., 2017; Kim et 

al., 2012; Labidi-Galy et al., 2017; Perets et al., 2013). Previous work reported that the FTE is 

composed of PAX8 positive secretory, TUBB4 positive ciliated and CD44 positive basal cells 

(Clyman, 1966). However, whether there are additional cellular subtypes and whether these 

subtypes are connected to subtypes of HGSOC have remained elusive. The advent of single-

cell RNA sequencing (scRNA-seq) has enabled the identification of cellular subtypes (Grün et 

al., 2015). There are two major types of scRNA-seq techniques (Svensson et al., 2018); a) the 

droplet-based methods that have the advantage of high throughput (from 10 to 100 thousand 

cells) , such as InDrop (Klein et al., 2015), Drop-Seq (Macosko et al., 2015) and the 

commercially available 10x Genomics Chromium system and b) plate-based methods that 
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require fewer cells and have higher gene coverage, such as Smart-Seq2 (Picelli et al., 2014; 

Ziegenhain et al., 2017). Recent studies suggest that higher sequencing depth can compensate 

for a smaller sample size (Seirup et al., 2019; Svensson et al., 2019), and two studies have 

demonstrated that Smart-Seq2 can robustly identify cell states with relatively small sample 

sizes. Grün et al. sequenced only 238 cells from mouse intestinal organoids with the coverage 

of 3000 genes per cells, which enabled the identification of rare intestinal cell types (Grün et 

al., 2015; Patel et al., 2014); Patel et al. analyzed 430 cells from 5 human glioblastoma samples 

with the average coverage of 6000 genes per cell, which revealed the structure of transcriptional 

programs and cell phenotypes (Patel et al., 2014). Here, we characterized the cell subtypes of 

human fallopian tube epithelium by using this deep scRNA-seq technique; and investigated the 

association between the composition of bulk SOCs and prognosis. 

 

Results 

Culturing substantially alters single-cell transcriptomes 

We first analyzed 3,877 single cells from the fallopian tubes of 5 ovarian cancer patients and 5 

endometrial cancer patients using the Smart-Seq2 technique (Picelli et al., 2014) (Figures 1A, 

S1A and Table S1). Flow Cytometry was used to identify and sort single FTE cells (EpCAM+, 

CD45-), leukocytes (EpCAM-, CD45+) and stromal cells (EpCAM-, CD45-) prior to sequencing. 

To overcome the confounding batch effects and patient-specific variability in clinical samples, 

we used differential-expression-based clustering (Figure 1B and STAR Methods). Using this 

approach, we successfully differentiated between epithelial and non-epithelial cells (Figure 1C). 

  

Cryopreservation and cell culture are common techniques to maintain live primary cells, 

especially for rare clinical samples. To test the effect of the cell maintenance approach, we 

compared the single-cell transcriptomes between fresh and cultured FTE cells. We observed 
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striking effects induced by culture conditions on the transcriptomes of single cells by 

comparing freshly dissociated cells with cultured ones (Figures S1B-H and Tables S2, S3). For 

example, overnight culture induced the expression of genes that are rarely expressed in FTE 

cells such as CD44 (log2 fold-change [log-FC] = 3.8) (Paik et al., 2012) and reduced the 

expression of key markers of secretory cells, such as Estrogen Receptor alpha (ESR1) and 

Oviductal Glycoprotein 1 (OVGP1) (Figure S1F and Table S3) (Cerny et al., 2016; Wu et al., 

2016). Cilium organization was also downregulated in the overnight-cultured ciliated cells. A 

recent study showed that the Wnt pathway is essential in regulating the homeostasis of FTE 

cells (Kessler et al., 2015). Our analysis showed that the expression level of LGR5 decreased 

in secretory cells after overnight culture, in line with the previous finding that LGR5 was not 

expressed in FTE organoids (Kessler et al., 2015) (Figure S1D-E). The expression of RSPO1, 

another key player in the Wnt signaling, was reduced after culture, suggesting that the Wnt 

signaling was affected by the culture condition. Moreover, pseudotime analysis (Campbell and 

Yau, 2018) across three conditions revealed that the transcriptomes of long-term (LT) cultured 

cells were more similar to the fresh cells compared to the overnight-cultured group (Figures 

1D-E). For instance, the fatty acid metabolic process was transiently downregulated after 

overnight culture and then upregulated in the LT group, while the RNA processing pathway 

was upregulated temporarily (Figures S1B-C, G). This suggests that including the overnight-

cultured cells in subsequent analysis may introduce significant biases that would preclude 

meaningful conclusions. Similarly, although the LT group resembled the fresh group of cells, 

they showed a unique split into two sub-groups and perturbed expression of Stathmin (STMN1) 

as well as cell cycle genes that probably represented an artefact of LT culture (Figures 1D, E 

and S1B, H). Therefore, overnight and LT culture likely introduced nontrivial alteration in gene 

expression. To avoid these substantial effects from preservation methods, we focused our 

downstream analysis on fresh cells only. Although fresh cells were affected by early response 
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genes (e.g. FOS and JUN), our analysis indicates that such affected cells can be detected by 

unsupervised clustering.  

 

A cell census of human fallopian tubes in cancer patients 

We partitioned the fresh FTE cells (2132) into two previously established subtypes: secretory 

(1986) and ciliated cells (146) (Figure 2A). Secretory cells were characterized by the 

expression of PAX8 and KRT7 (Figures S2A, B) as well as a large number of newly identified 

markers of secretory cells (Table S4). The ciliated population was represented by the strong 

expression of FOXJ1 and members of the coiled-coil domain containing protein family, such 

as CCDC17 and CCDC78 (Figures S2C-D). This protein family is essential for cilia 

functioning (Klos Dehring et al., 2013). We also identified a list of previously unrecognized 

markers of fallopian tube ciliated cells (Table S4), such as the calcium binding protein 

Calcyphosin (CAPS), that were enriched in the cilium-related pathways (Figures S2B-C, E-F) 

(Wang et al., 2002).  

 

We next identified secretory cell subtypes based on their transcriptomes. For this, only 1410 

fresh secretory cells with strong expression of KRT7 and EPCAM and no expression of 

CCDC17 or PTPRC (also known as CD45) were included in the analysis. In addition, to avoid 

including potential contaminating cancer cells, we excluded the cells that had detectable copy 

number variants or apparent loss-of-heterozygosity (Figure S2G) (Fan et al., 2018). We applied 

the aforementioned differential-expression-based clustering method and identified nine 

clusters with distinct transcriptional profiles within the secretory cell population (Figures 2B-

C, Table S5). Except for a patient-specific cluster (C8) that was enriched in inflammatory 

markers, all other clusters contained cells from multiple patients (Figures 2B and S2H-I). 

Cluster 8 was, therefore, not considered for further analysis. Three out of nine clusters (C1, C2 
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and C5) had no particular distinguishing features and clusters C1 and C2 had low library 

complexity (Figure S2J). This result suggests that these three clusters probably represented a 

quiescent population due to cell senescence or loss of hormonal influence (CROW et al., 1994; 

van Deursen, 2014). These clusters were, therefore, excluded from further analysis. Cluster C6 

had evidence of cell stress as shown by the high expression levels of early response genes, such 

as FOS and JUN (Honkaniemi et al., 1992). This cluster was excluded from further analysis 

because such stress response is probably the result of sample preparation prior to sequencing.  

 

Cluster C9, that we termed cell cycle cluster, comprised ~1.6% of fresh FTESCs and was 

enriched in three pathways, namely cell cycle (e.g. MCM2-7, MKI67, TK1 and STMN1), DNA 

repair (e.g. FANCD2, FANCI and MSH2) and chromatin remodeling (e.g. HMGB2 and SMC1A) 

(Figures 2C-E). MKI67 (also known as Ki-67) is a well-known marker for proliferation in FTE 

and other cells (Kuhn et al., 2012). The two Fanconi Anemia proteins, FANCD2 and FANCI, 

can form a heterodimer that is essential for DNA repair and can interact with MCM2-7 (Nalepa 

and Clapp, 2018). The relatively low percentage of cycling cells is consistent with the ages and 

postmenopausal status of patients from whom the cells were obtained. Cluster C3, was termed 

the differentiated subtype, had significantly increased representation from genes involved in 

RNA synthesis and transport pathways (e.g. PTBP1, ZNF259 and PRPF38A). It also shared 

several markers with cluster C9. This may represent a transient differentiating cell population 

following cell division.  

 

Cluster C4, termed the KRT17 subtype, was characterized by the upregulated expression of 

major histocompatibility complex (MHC) Class II genes (e.g. HLA-DQA1, HLA-DPA1 and 

HLA-DPB1), cytokeratins (KRT17 and KRT23), aldehyde dehydrogenases (ALDHs, e.g. 

ALDH1A1 and ALDH3B2) and CDKN1A (also called p21) (Figures 2C, F, Table S6). This 
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subpopulation of secretory FTE cells that were enriched in MHC Class II expression has not 

been characterized previously (Comer et al., 1998). Importantly, we validated this KRT17 

positive cluster in human FTE and organoids derived from human FTE cells, suggesting that it 

represents a robust group of cells with potentially important biological functions (Figures 2G-

I).  

 

C7 showed high expression of a regulator of G protein signaling (RGS16) and genes enriched 

in the extracellular matrix (ECM) pathway (false discovery rate [FDR] = 1.80e-17), such as 

TIMP3 and SPARC (Figures 2C, S2K-L and Table S6). We assumed that this cell type is 

generated by partial epithelial-mesenchymal transition (EMT) (Nieto et al., 2016), which can 

be induced by the chronic exposure to oxidative stress (Mahalingaiah et al., 2015) and 

contribute to cancer development (Hanahan and Weinberg, 2011). Hence, we termed C7 as the 

EMT subtype. To verify that this cell type is not a contamination from FT stromal cells, we 

checked the expression level of epithelial markers, doublet likelihood and the expression of 

stromal markers. This EMT population strongly expressed KRT7 and EPCAM (Figure S2L) as 

expected following the aforementioned filtering. It also passed our filter for doublets; 40 (100%) 

out of 40 cells in the EMT cluster were detected as singlets (McGinnis et al., 2019). Moreover, 

two stromal markers (COL1A2 and COL3A1) were specifically expressed in stromal cells but 

not in the EMT population (Figure S2M). These results demonstrate that this population is not 

contaminated by mesenchymal cells.  

 

To exclude the potential paracrine effect of cancer cells on non-cancer FTE cells, we validated 

the existence of the four secretory subtypes in the FTE cells obtained from benign (non-cancer) 

donors. We first analyzed 1857 single-cell transcriptomes of fallopian tubes from five patients 

with benign conditions (Figures 3A, S3A-B and Table S1). Next we integrated the fresh 
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secretory cells from the benign patients with the annotated ones from cancer patients by 

computing batch-correcting anchors (Stuart et al., 2019). Clustering of the integrated data 

illustrated that the four secretory subtypes also existed in the FTE of non-cancer donors 

(Figures 3B-D). Further validation using immunofluorescence (IF) and immunohistochemistry 

(IHC) in FT samples from benign donors confirmed the above results (Figures S3C-E). Overall, 

these results demonstrate that the new secretory subtypes were not artefacts caused by the 

influence of nearby cancer cells or by systemic effects of cancer burden. 

 

In addition to the four secretory cell types, we discovered a rare intermediate cell type that was 

characterized by the expression of the secretory cell marker KRT7 and high expression of the 

ciliated cell marker CAPS (Figures 4A-B and S4A-B), whilst other KRT7 positive secretory 

cells were CAPS negative. PAX8 was expressed in a subset of this intermediate population, 

possibly due to its moderate expression level leading to a higher dropout rate. This population 

was validated in human FTE tissue sections (Figures 4A-B). Additionally, this subtype was 

enriched in overnight cultured cells and recapitulated in the organoid culture derived from 

human FTE tissues (Figure 4C). This intermediate population most probably represents an 

intermediate state between secretory and ciliated cells, which accords with the previously 

assumed transition from secretory to ciliated cells (Ghosh et al., 2017; Hellner et al., 2016).  

 

Because we observed that chemokines and MHC genes were frequently expressed in FTE cells 

(Figure 2B), we examined fallopian tube sections for the expression of lymphocyte markers 

and identified a basal CD45+ EpCAM+ cell population. This population was also positive for 

CD3, CD44, CD69 and CD103 (Figures 4D-H), suggesting that these basal cells are tissue-

resident memory T lymphocytes (TRMs) (Topham and Reilly, 2018) and that the FTE is not 

immunologically inert. This is in line with previous studies (Ardighieri et al., 2014; Peters, 
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1986). Nevertheless, we demonstrate that this basal cell population was also EpCAM positive, 

which is surprising because TRMs have not been reported to be positive for epithelial markers 

in human.  

 

Revealing the cell state composition of HGSOCs using deconvolution  

Given the link between types of cell-of-origin and tumor types that has been reported in other 

cancers such as breast cancer (Bertucci et al., 2012; Dai et al., 2015) and the known shared key 

markers between HGSOC and FTE cells (e.g. PAX8, WT1 and ESR1) (Ince et al., 2015; Perets 

et al., 2013), we hypothesized that HGSOC cell states are linked to FTE cell subtypes. Based 

on our profiling of single-cell transcriptomes, we computed a reference matrix with cell-type 

derived transcriptomic signatures from the five major FTE cellular subtypes (cell cycle, EMT, 

differentiated, KRT17 cluster and ciliated) as previously described (Baron et al., 2016) (Figure 

5A and Table S7). The resulting reference matrix was then used in the deconvolution analysis 

(Newman et al., 2015) of the bulk HGSOC RNA-seq data from The Cancer Genome Atlas 

(TCGA) (Bell et al., 2011) and the microarray data from the Australian Ovarian Cancer Study 

(AOCS) (Tothill et al., 2008) to compute the factions of five cell states within each tumor. The 

decomposition of bulk tumor samples revealed intra-tumor transcriptomic heterogeneity 

according to the proportions of cell subtypes in both datasets (Figures 5B-E). Remarkably, the 

ciliated tumor subtype was highly enriched in the low-grade tumors (Grade 1) compared to the 

high-grade ones (Grades 2-3) in the AOCS dataset and an additional dataset that also comprised 

both high- and low-grade tumors (Yoshihara et al., 2010) (p = 1.3e-10, one-sided Wilcox test, 

Figures 5F and S5). This strongly suggests that grades of SOC are associated with their ability 

to differentiate into cells that molecularly resemble FTE ciliated cells. In contrast, the TCGA 

dataset, which only included HGSOCs, had no tumors that were enriched in the ciliated subtype 

(Figure 5B). Therefore, the enrichment in these ciliated markers is most probably a 
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distinguishing molecular feature of low-grade tumors.  

 

Most notably, we identified a class of EMT-enriched tumors in multiple datasets. These tumors 

were enriched in the genes previously linked to the “mesenchymal” HGSOC subtype. We found 

that the marker genes of these tumors were enriched in the extracellular matrix, focal adhesion 

and PI3K-Akt signaling pathways (FDR < 0.0002, by DAVID, Table S8), that are critical for 

tumor cell survival (Fresno Vara et al., 2004; McLean et al., 2005). Furthermore, three key 

EMT transcription factors, TWIST1, TWIST2 and SNAI2 (Ansieau et al., 2008; Kang and 

Massagué, 2004; Yang et al., 2004), were upregulated in the EMT-high tumors (Figure 5G), 

while the miRNA-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) that 

represses EMT (Gregory et al., 2008; Nieto et al., 2016) was downregulated in EMT-high 

tumors (FDR < 0.01, log-FC < -0.5, Figure 5H), suggesting that EMT may be the underlying 

mechanism of enrichment of mesenchymal cancer cells in this tumor subtype. We also found 

that miRNA-483 and miRNA-214 were significantly upregulated in EMT-high tumors, while 

miRNA-513c, miRNA-509 and miRNA-514 were downregulated (Figure 5H). Although 

previous studies suggested that miRNA-483 and miRNA-214 play an important role in cancer 

progression (Chandrasekaran et al., 2016; Liu et al., 2013), their regulatory role in the EMT 

process has not been evaluated. 

 

EMT-high subtype is robustly correlated with poor prognosis 

We next tested whether any of the five tumor subtype scores from the deconvolution analysis 

was associated with survival. We found that the EMT score was significantly associated with 

poor overall survival and that this association was independent from the effect of age, stage or 

residual disease (p < 0.05, by Cox proportional hazard model, Table 1). The robustness of this 

association was confirmed by permutation testing (n = 500) leaving out 10% of the samples 
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each time (empirical p values = 0.012 [TCGA] and 0 [AOCS], by permutation test). The 

mesenchymal subtype was previously reported to be associated with poor prognosis (Konecny 

et al., 2014; Tan et al., 2013), but the reproducibility of this observation was inconsistent 

probably because of the difficulty in defining this group of tumors. We first compared the 

prognosis of EMT-high tumors with the previously defined “mesenchymal” HGSOC subtype 

in the TCGA data. The analysis showed that the EMT score had higher sensitivity of identifying 

poor-prognostic patients (Figure S6A). Importantly, among the 238 cancers that were labeled 

as non-mesenchymal in TCGA we identified 87 tumors that were EMT-high. These tumors 

carried worse prognosis when compared with the non-mesenchymal and EMT-low group of 

cancer. Furthermore, by using EMT scores from deconvolution, we reached a robust 

classification with consistently significant correlation with poor survival (p < 0.05) in eight 

independent datasets, including TCGA dataset, AOCS dataset and six additional microarray 

datasets (n > 100 patients in each set) from the CuratedOvarianData database (Ganzfried et al., 

2013) (Table 1 and Table S9). When we combined and dichotomized all the samples (n = 1,626), 

the EMT-high tumors had significantly worse prognosis (p = 5.92e-10, hazard ratio = 1.5, 95% 

confidence interval [CI] = 1.3 – 1.7, by log-rank test, Figure 6A). This demonstrates that 

deconvolution analysis using the identified panel of genes is strongly predictive of prognosis 

in SOC.  

 

To test whether the EMT-high tumor subtype was merely a reflection of stromal cell impurities 

in tumor samples, we performed RNA sequencing on 36 laser capture microdissected (LCM) 

tumor samples collected from 15 patients with HGSOC (termed the Oxford Ovarian Cancer-

Predict Chemotherapy Response [OXO-PCR] cohort) and classified tumors based on the 

deconvolution analysis (Figure 6B). We next compared the expression of genes in the EMT 

signature between laser capture microdissected tumor and stroma samples. As expected, the 
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expression levels of PAX8 and EPCAM were significantly higher in both EMT-high and EMT-

low tumor samples compared to stroma in which these markers showed almost no expression 

(Figure S6B). In contrast, the EMT markers (SPARC, TIMP3, DCN and SFRP4) were highly 

expressed in EMT-high tumor confirming that EMT-high tumors truly expressed these genes 

(Figure 6C), further confirming EMT-high as a genuine tumor subtype. SPARC, one of the 12 

genes that constitute the EMT signature, was previously described in the mesenchymal subtype 

of HGSOC (Tothill et al., 2008), while certain other markers were reported to be related to 

EMT in ovarian cancer or other cancers, such as SFRP4 (Ford et al., 2013), TIMP3 

(Anastassiou et al., 2011), MYH11 (Li and Yang, 2016) and EFEMP1 (Yin et al., 2016). 

Nevertheless, the link between this tumor subtype and a particular FTE cellular subtype was 

previously unrevealed. To further confirm that the EMT-high marker SPARC is strongly 

expressed in cancer cells, we performed immunofluorescent staining on pre-chemotherapy 

tumor frozen sections, where we indicated cancer cells by co-staining with an antibody that 

recognized pan-cytokeratin. Our results revealed the co-existence of at least two populations 

of cancer cells, a pan-cytokeratin high, SPARC negative population and a pan-cytokeratin low 

and SPARC positive population within the same tumor (Figures 6D, S6C and Video S1). In 

addition, pan-cytokeratin negative and SPARC high cancer cells could also be identified by 

their abnormal nuclei (Figures 6E and S6D), which were distinct from the SPARC high 

fibroblasts cells (Tan et al., 1999). We also confirmed the expression of SPARC in p53 positive 

tumor cells by performing IHC on p53-expressing HGSOC samples (Figures S6E-F). 

 

Similarly, this SPARC positive, pan-cytokeratin negative and mesenchymal-like subpopulation 

was observed in the KURAMOCHI cell line, which is known to faithfully represent HGSOC 

(Domcke et al., 2013). KURAMOCHI cells exhibited two phenotypes, a mesenchymal-like 

phenotype that was SPARC positive and pan-cytokeratin negative and an epithelial phenotype 
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that was SPARC negative and pan-cytokeratin positive (Figures 6F and S6G-H), suggesting 

that this cell line could be a potential in vitro model to study the mesenchymal subtype of 

HGSOC. Importantly, SPARC positive cells expressed p53 (Figure S6I) providing further 

confirmation of the existence of EMT-high cancer cells. Moreover, TP53 sequencing of this 

cell line showed a single peak for the previously described mutation (c.841G>T) in this cell 

line (Anglesio et al., 2013), validating that the phenotypic heterogeneity was not caused by 

contamination with another cell line. 

 

Discussion 

In this study, we performed deep single-cell RNA-seq on thousands of nonmalignant epithelial 

cells from the FTE and uncovered a strong link between diverse secretory cell populations and 

HGSOC subtypes. This elucidates the repertoire of phenotypic heterogeneity in cancer cells 

that are inherited from the cell-of-origin. We propose a model whereby individual HGSOCs 

are composed of a mixture of cancer cell states that we revealed by single-cell sequencing of 

the putative cell-of-origin (Figure 7). Unraveling the trajectory of differentiation from one 

cancer cell state to another will be needed in future studies to understand the mechanistic basis 

of HGSOC cell plasticity.  

 

Within the FTE, our analyses recognized a KRT17 positive population with high expression of 

ALDHs and MHCII. ALDH was reported as the marker of mammary stem cells (Biton et al., 

2018; Ginestier et al., 2007). Moreover, a subpopulation of intestinal stem cells was recently 

reported to express MHCII. The latter was found to regulate the stem cell fate through the 

interaction between T helper cells and stem cells (Biton et al., 2018; Ginestier et al., 2007). 

Such evidence implies that the KRT17 cluster that we identified could include a progenitor 

population. This opens a door for studying self-maintenance and differentiation of epithelial 
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cells in fallopian tubes. 

 

Phenotypic diversity exists in HGSOC at the transcriptomic level (Bell et al., 2011; Tothill et 

al., 2008). Based on the single-cell profiling of FTE cells, our deconvolution analysis revealed 

the association between the FTE cellular subtypes with ovarian cancer cell states within 

individual tumors. The correspondence between tumors and normal tissues can be explained 

by at least two hypotheses that are not necessarily mutually exclusive. The first one is that each 

tumor subtype originates from an individual cell type of origin (Ince et al., 2007; Visvader, 

2011). The second hypothesis is that multiple tumor subtypes come from one single cellular 

subtype, sometimes referred to as the cancer stem cell, while the plasticity of cancer cells 

mimics that of the normal cell-of-origin (Gupta et al., 2011; Visvader, 2011). Both concepts 

are compatible with our findings. Lineage tracing will be needed to investigate the underlying 

mechanism of the correspondence between tumors and the tissue-of-origin. Although the FTE 

plays as a strong candidate for the cell-of-origin of HGSOC, there is a possibility that the 

ovarian surface epithelium gives rise to a proportion of HGSOC cases as supported by the 

mouse model (Zhang et al., 2019b). The association between ovarian surface epithelium and 

HGSOC has not been addressed by our work. 

 

Despite the fact that the mesenchymal-like tumor subtype was previously reported as a distinct 

subtype in HGSOC (Tothill et al., 2008), it has been controversial whether the expression of 

EMT markers originated from tumor cells, infiltrating stromal cells or both (Schwede et al., 

2018; Zhang et al., 2019a). Our results demonstrate that the expression of mesenchymal-related 

genes, such as SPARC, occurs in tumor cells. This further supports the existence of the EMT 

process in human tumors, which may enhance their invasion ability and drug resistance 

(Schmidt et al., 2015; Singh and Settleman, 2010). This notion is consistent with our finding 
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that the EMT-high HGSOC subtype is related to poor survival. However, we cannot exclude 

the possibility that the expression of EMT genes in bulk tumor analyses may arise from stromal 

infiltration or cancer-associated fibroblasts (CAFs). Since CAFs can potentially promote 

cancer progression (G. M. Chen et al., 2018; Kalluri, 2016; Schwede et al., 2018; Eckert et al., 

2019), it will also be important to scrutinize the role of CAFs in HGSOC and the interaction 

between CAFs and ovarian cancer cells. 

 

Compared to the previously developed prognostic signatures of HGSOC that were difficult to 

be reproduced in multiple datasets (Bell et al., 2011; Bonome et al., 2008; Chen et al., 2018; 

Jiang et al., 2006; Karlan et al., 2014; Konecny et al., 2014), our classifier (we term, the Oxford 

classifier of serous ovarian cancer) is strongly reproducible across eight independent datasets 

and is based on the expression of only fifty-two marker genes. Robust identification of tumor 

subtypes is a prerequisite for identifying treatment strategies that limit the ability of cancer cell 

to acquire a mesenchymal state (Davis et al., 2014; Ishay-Ronen et al., 2019). Given these 

factors, our approach possesses potential translational significance to improve the survival of 

HGSOC patients. 

 

In conclusion, our single-cell profiling illuminates the cellular landscape of human fallopian 

tube epithelium, the presumed tissue-of-origin of HGSOC. Our work not only expands the 

understanding of FTE, but also provides a benchmark dataset on FTE to study HGSOC. The 

combined analysis of single-cell data and tumor expression data revealed the connection 

between FTE cellular subtypes and HGSOC tumor subtypes and identified the EMT-high 

subtype with important prognostic implications.  
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Figure 1. A cell census of human fallopian tubes.  

(A) Diagram shows the single-cell RNA sequencing and analysis workflow. We collected and 

processed normal fallopian tube tissues from 10 cancer patients. All cells (directly sorted or 

maintained then sorted) were processed using with the Smart-Seq2 protocol. After the initial 

filtering, there were 3877 good-quality cells left for downstream analysis. We compared the 

cells from three conditions to select the optimal condition for single-cell RNA-seq. Cells from 

cultured or cryopreserved conditions, as well as cells carrying copy number variations and non-
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epithelial cells, were filtered out, which left 2132 fresh FTE cells. Next, we used differential-

expression-based clustering to identify secretory subtypes.  

(B) Diagram shows the clustering approach. Three steps are used to overcome the confounding 

batch effects and inter-patient variability. 

(C) UMAP shows the dimensionality reduction of ~3,800 single-cell transcriptomes from 

fallopian tube cells. The cells are colored by their patient sources and annotated with cluster 

names. 

(D) Principal component (PC) analysis plot shows the cells under different conditions (fresh, 

overnight cultured and LT cultured) colored by the imputed pseudotime values.  

(E) Violin plot shows the distribution of pseudotime under different conditions. The y-axis 

corresponds to the predicted pseudotime and the x-axis the conditions. Pseudotime analysis is 

defined as the quantification of pseudo-temporal ordering by projecting high-dimensional data 

to one dimension. 

See also Figure S1; Tables S1-S3. 
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Figure 2. Single-cell RNA sequencing of FTE cells identifies four secretory subtypes.  

(A) UMAP plots of fresh FTE cells show the difference between secretory and ciliated cells. 

Each dot denotes one cell. The cells are colored by donors and the side of tubes (left panel), 
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the expression levels of an epithelial marker, EPCAM (middle panel), and a secretory marker, 

KRT7 (right). 

(B) t-Distributed Stochastic Neighbor Embedding (t-SNE) plot shows the clusters within fresh 

secretory cells. Each point represents one cell that is colored by its cluster/subtype as shown in 

the legend. The quiescent population and the stress population are not shown in this plot.  

(C) Heatmap shows the clustering result of fresh secretory cells and the expression levels of 

their top marker genes. Each column represents a single cell and each row represents a top 

marker gene. Colors indicate the expression levels as shown in the scale bar. The color bar at 

the bottom denotes the donors.  

(D) IHC staining confirms the existence of the cell cycle cluster (arrows) by its marker STMN1 

(Stathmin) in a human fallopian tube section.  

(E) Violin plots show the expression of nine representative marker genes of the Cell Cycle 

Cluster (C9) that are respectively related to the cell cycle, DNA repair or chromatin remodeling 

pathways. Each dot is one cell. 

(F) Violin plots show the expression of six representative marker genes of the KRT17 cluster 

(C4) that respectively belong to MHCII, cytokeratins or ALDHs. 

(G-H) IF staining using the antibodies against KRT17 with PAX8 (G) or HLA-DR (H) in the 

human fallopian tube sections. Scale bars, 50 µm. 

(I) IF double staining of KRT17 and an epithelial marker E-cadherin in the organoid derived 

from human FTE. Scale bars, 50 µm. 

See also Figure S2; Tables S4, S5 and S6. 
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Figure 3. Validation of the secretory subtypes in the FTE of benign donors by using 

scRNA-seq.  

(A) UMAP shows the populations in the FT samples from 5 benign patients. Each dot is a cell 

colored by its donor. 

(B) UMAP plots show the populations in the FT samples from cancer patients (n = 5) and 

benign patients (n = 5). The left, middle and right subpanels contain the cells from all 10 

patients, 5 cancer patients and 5 benign patients respectively.  

(C) UMAP plot shows the populations in the FT samples from 5 benign patients. Each dot 

represents a secretory cell from a benign patient. The dots are colored by their donors as shown 

in the legend.  
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(D) Scatter plots show the transcriptomic characteristics of each subtype in benign and cancer 

patients. Cells (dots) are colored by the score of each transcriptomic signature (subtitle). The 

score of a transcriptomic signature was computed by the scaled and centered sum of expression 

levels of the marker genes in each transcriptomic signature. The scores correspond to the 

expression of marker genes of each cluster. The transcriptomic signatures are listed in Table 

S7.  

See also Figure S3. 
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Figure 4. Non-traditional cell subtypes in the fallopian tube epithelial layer. 

(A-B) IF staining for KRT7 and CAPS in human FTE samples (A and B). Arrows indicate the 

double positive intermediate cell population. 

(C) IF staining for KRT7 and CAPS in the cultured human fallopian tube organoid. Arrow 

indicates the KRT7+ CAPS+ intermediate cell population. 

(D-F) IF staining of CD44 and CD3 (D), CD45 and CD3 (E) as well as CD45 and EpCAM (F) 

in human FTE. Yellow arrows indicate the intra-epithelial CD44+ CD3+ cells that are also 

CD45+ and EpCAM+. Red arrows indicate the extra-epithelial CD44+ CD3+ CD45+ EpCAM- 

cells in the stromal region.  

(G-H) IF staining for EpCAM and two markers of tissue-resident memory T lymphocytes, 

CD103 (G) and CD69 (H), in the human FTE.  

See also Figure S4. 
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Figure 5. The repertoire of phenotypic heterogeneity of serous ovarian cancer revealed 

by deconvolution analysis. 

(A) A reference matrix was calculated from our scRNA-seq data of FTE cells, where columns 

correspond to 5 cell subtypes in FTE as indicated. The reference matrix heatmap depicts the 

magnitude of the expression levels of the 52 marker genes (rows) across 5 cell subtypes, 

including 7 differentiated markers, 10 KRT17 cluster markers, 12 EMT markers, 15 cell cycle 

markers and 8 ciliated markers. The heatmaps in the right panel depict the proportions of cell 

states (rows) across bulk tumor samples (columns) in AOCS and TCGA datasets. Beneath these 
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heatmaps, three cartoon barplots that correspond to three samples show a schematic 

composition of these samples.  

(B) Stacked barplot shows the deconvolution result of 308 tumors from the TCGA ovarian 

carcinoma study. Colors of the bars denote 5 cell states as shown in the legend. The y-axis 

represents the proportion of each state in a given bulk tumor sample. In the x-axis, each column 

represents one tumor case. The annotation bar above denotes the subtypes of bulk tumors that 

are defined by the dominant cell state within each tumor, where grey represents the mixture of 

multiple cell states. 

(C) Barplot shows the prevalence of 5 cell states in the TCGA dataset. The x-axis represents 

the proportion of tumor samples in TCGA that harbor the given cell state (y-axis).  

(D) Stacked barplot shows the deconvolution result of 285 tumors from the AOCS dataset as 

in B.  

(E) Barplot shows the prevalence of 5 cell states in the AOCS dataset.  

(F) Violin plot shows the ciliated scores in low-grade SOC compared to HGSOC. We combined 

samples from both AOCS (20 low-grade, 260 high-grade) (Tothill et al., 2008) and GSE17260 

(26  low-grade, 84 high-grade) (Yoshihara et al., 2010). Each dot is one sample, colored by the 

grade. p = 1.3e-10, by one-sided Wilcoxon rank-sum test.  

(G) Violin plots show expression of TWIST1, TWIST2 and SNAI2 in the EMT-high tumors 

compared to the EMT-low ones in the TCGA dataset (log-FC > 1.8, FDR < 2e-14, by limma 

voom).  

(H) Volcano plot shows the miRNAs that are differentially expressed between EMT-high and 

EMT-low tumors in the TCGA dataset. The green and blue dots correspond to the miRNAs that 

are significantly differentially expressed (log-FC > 0.5, FDR < 0.05).  

See also Figure S5 and Table S7. 
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Figure 6. EMT-high tumors comprise mesenchymal-like cancer cells.  

(A) Kaplan-Meier curves show the effect of EMT scores on survival. The cases of SOC (n = 

1626) are combined from nine datasets (Table 1). Patients are dichotomized into EMT-high and 

EMT-low by the median of EMT scores in each dataset. Each short vertical line indicates a 
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censoring event. p = 5.92e-10, hazard ratio = 1.5 (95% CI 1.3 - 1.7), by log-rank test. 

(B) Stacked barplot visualizes the deconvolution result of 36 LCM tumor samples collected 

from 15 patients with HGSOC in the OXO-PCR cohort. The y axis denotes the proportion (0-

1) of the 5 cell states (colors) across LCM tumor samples (rows). The annotation bar above the 

barplot corresponds to the tumor subtypes that are defined by the dominant cell state within 

each tumor, where grey represents the mixture of multiple cell states. 

(C) Violin plots show the expression levels of four EMT markers in the EMT-high LCM tumor 

samples compared to the EMT-low ones with one LCM stromal sample as control (p < 0.001, 

one-sided Wilcox test). Each dot is a sample colored by patients. 

(D) IF staining in the pre-chemotherapy HGSOC tumor frozen section, using an EMT marker, 

SPARC, and an epithelial marker, pan-cytokeratin (Pan-CK). White arrow indicates cells that 

are double positive for SPARC and Pan-CK; red arrow indicates cells that are SPARC+ only; 

yellow arrow indicates cells that are Pan-CK+ only. Scale bars, 20 µm. 

(E) IF staining for SPARC and Pan-CK in the pre-chemotherapy HGSOC tumor frozen section. 

Arrow shows a tumor cell that is SPARC+ and Pan-CK-. Scale bars, 20 µm. 

(F) IF staining for SPARC and Pan-CK in the KURAMOCHI cell line. Red arrow indicates 

cells that are SPARC+ and Pan-CK-; green arrow indicates cells that are SPARC- Pan-CK+. 

Scale bars, 20 µm.  

See also Figure S6; Table S8; Video S1.  
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Figure 7. HGSOCs are composed of a mixture of cancer cell states inherited from its cell-

of-origin in the FTE. The diagram proposes a model that HGSOCs are assembled from 

multiple cancer cell states that echo the cellular phenotypes of its tissue-of-origin. The upper 

panel exhibits 5 cellular subtypes of FTE. In the lower panel, 5 t-SNE plots demonstrate the 

cell state hubs within the deconvolution result of TCGA data. Each dot is a HGSOC bulk 

sample. The color scale denotes the proportion of cancer cell states. Grey dashed circles 

highlight the hubs representing the tumor subtypes of SOC.  
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Table 1. EMT-high serous tumors are robustly correlated with poor prognosis.  

Dataset Samples Hazard ratio p 95% CI Citation 

E.MTAB.386 128 3.11 0.018 1.21 – 7.95 (Bentink et al., 2012) 

GSE49997 170 2.83 0.022 1.16 - 6.88 (Pils et al., 2012) 

GSE13876 144 2.96 0.011 1.28 – 6.83 (Crijns et al., 2009) 

GSE26712 185 2.03 0.031 1.07 – 3.89 (Bonome et al., 2008) 

GSE26193 79 2.58 0.041 1.04 – 6.42 (Mateescu et al., 2011)  

GSE51088 113 2.09 0.022 1.11 - 3.92 (Karlan et al., 2014)  

GSE32062.GPL6480 260 1.89 0.055 0.99 - 3.60 (Yoshihara et al., 2012) 

AOCS 253 2.11 0.008 1.21 - 3.67 (Tothill et al., 2008) 

TCGA 305 2.12 0.011 1.18 – 3.81 (Bell et al., 2011) 

See also Table S9.  
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STAR Methods 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources should be directed to and will be fulfilled by the 

Lead Contact, Ahmed Ahmed (ahmed.ahmed@wrh.ox.ac.uk). This study did not generate new 

unique reagents. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell line  

KUARMOCHI cell line (cell number ID: JCRB0098) was obtained from Japanese Collection of 

Research Bioresources (JCRB) Cell Bank. KURAMOCHI cells were cultured in RPMI 1640 

media (Gibco) with Fetal Bovine Serum (FBS, 10%; Gibco) and Penicillin-Streptomycin (100 

U; Gibco) at 37 °C, 5% CO2 and 95% humidity. 

Human fallopian tube and tumor samples 

The cases in this study were recruited under the Gynecological Oncology Targeted Therapy 

Study 01 (GO-Target-01, research ethics approval #11-SC-0014), the Oxford Radcliffe 

Biobank (ORB, research ethics approval 09/H0606/5+5 and 19/SC/0173) and the Oxford 

Ovarian Cancer-Predict Chemotherapy Response Trial (OXO-PCR-01, research ethics 

approval #12-SC-0404). All participants involved in this study were appropriately informed 

and consented.  

  Fallopian tube (FT) biopsies for single-cell RNA-seq were collected from the distal end of 

fallopian tubes. In total, we collected FT samples from six patients with HGSOC, five patients 

with endometrial cancer and five patients without cancer conditions (Table S1). Tumor samples 

were biopsied during diagnostic laparoscopy, immediately frozen on dry ice and stored in 

clearly labelled cryovials in -80 °C freezers. 

 

METHOD DETAILS 
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Sample dissociation 

The fallopian tube samples were processed in 1 hr, after being collected from the hospital. The 

tissues were dissociated with Human Tumor Dissociated kit (Miltenyi Biotec) and filtered 

using 100 µm SmarterStrainers (Miltenyi Biotec).  

Culture, cryopreservation and harvest 

Certain samples were cultured or cryopreserved in this study (Table S1). To culture primary 

cells from patients, we adopted the medium for FTE culturing (Kessler et al., 2015) (41.7 ml 

Advanced DMEM/F12 Medium, 540 µl HEPES, 450 µl P/S, 4.5 µl (10 ng/ml) EGF, 2.25 ml 

FBS (5%), 45 µl (9 µM) Rock inhibitor/Y0503-5MG, Y-27632 dihydrochloride Sigma-Aldrich, 

termed as FT culturing medium). Immediately after dissociation, cells were transferred into a 

6-well plate for primary cell culture with the FT culturing medium at 37 °C in a CO2 cell 

incubator, where they were cultured for overnight or long-term (LT, 2 days or 6 days).  

  For cryopreservation, cells were suspended in 1ml Synth-a-Freeze Cryopreservation Medium 

(Thermo Fisher). Cell suspension was frozen in freezing containers (Thermo Fisher) with 

Isopropyl alcohol at -80 °C for 24 hr before being transferred into liquid nitrogen. The 

cryopreservation cells were frozen down immediately after dissociation, stored in liquid 

nitrogen and recovered in FT culturing medium overnight after thawing. We were not able to 

generate cDNA from single cells that were immediately thawed from liquid nitrogen. Therefore, 

the frozen cells were recovered overnight in the FT culturing medium before cell sorting. 

  For cultured cells, cells were harvested with TrypLE (Thermo Fisher) for 5 min at 37 °C and 

dispensed in FACS buffer (1×	PBS, 1% BSA, 2 mM EDTA, 0.0025% RNasin plus), and then 

they were processed as for the freshly dissociated cells. 

Organoid culture 

The three-dimensional organoid cultures were conducted as previously described (Kessler et 

al., 2015). The FT tissue was cut into small pieces of around 2-4 mm in length and incubated 
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in pre-warmed Digestive Medium containing Advanced DMEM/F12 (Gibco), 12 mM HEPES 

(Gibco), 1% Penicillin/Streptomycin (Gibco), 2 mg/ml Trypsin (Sigma), 0.5 mg/ml DNase I 

(Sigma) and 100 U/ml Collagenase Type I (Invitrogen); this was incubated for 45 min in 

rotation at 37 °C. Using forceps, decellularized tissue was removed and immediately filtered 

through a 100 µm cell strainer and pelleted by centrifugation at 300×g for 10 min. The cell 

pellet was washed once with ice-cold DPBS and resuspended in Matrigel Matrix (Corning). 

Using an 8-well chamber slide (Thistle Scientific), 20 µl of Matrigel were placed into each 

well by drops and the mixture was incubated at 37 °C for 20 min to allow Matrigel 

polymerizing and solidifying. Finally, cells were overlaid with pre-warmed organoid medium 

containing Advanced DMEM/F12, 12 mM HEPES, 1% Penecillin/Streptomycin, 1% N2 

Supplement (Thermo Fisher), 2% B-27 Supplement (Thermo Fisher), 100 ng/ml human 

Noggin (Peprotech), 100 ng/ml human FGF10 (Peprotech), 1 mM Nicotinamide (Sigma), 0.5 

μM TGF-b R Kinase Inhibitor VI (SB431542; ThermoFisher), R-Spondin1 protein (RSPO1) 

and 25% Wnt3a conditioned medium (ATCC). RSPO1 protein was produced in-house using a 

HA-RSPO1-Fc 293T cell line (Cultrex). Protein expression was performed according to 

Culturex protocol while protein purification was done using Pierce Protein A Agarose kit 

(ThermoFisher Scientific).  

Cell sorting 

To sort freshly dissociated cells or harvested cells, the cells were dispensed in the FACS buffer 

(1×	PBS, 1% BSA, 2 mM EDTA, 0.0025% RNasin plus) and stained with EpCAM-APC 

antibody (Miltenyi Biotec) and CD45-FITC antibody (BioLegend) for 30 min at 4 °C in the 

dark. Afterwards, cells were washed once with FACS buffer and kept on ice in the dark. 10 

µg/µl DAPI was added 10 min before cell sorting with SH800 sorter (Sony). The alive 

EpCAM+CD45-DAPI- fallopian tube epithelial cells were sorted into 96-well plates with one 

cell per well. Each batch was sorted with bulk controls (10 or 100 cells) and empty controls. A 
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small number of EpCAM-CD45-DAPI- or EpCAM-CD45+DAPI- cells were sorted as control 

for epithelial cells. The cells were sorted into 4 µl lysis buffer with 0.1 µl RNase inhibitor 

(Clontech), 1.9 µl 0.4% Triton X-100, 1 µl 10 µM 5`-biotinylated oligo-dT30VN (IDT) and 1 

µl 10 mM dNTP (Thermo Scientific), snap frozen on dry ice and stored at -80 °C before single-

cell RNA sequencing. 

cDNA synthesis and library construction 

The SMART-seq2 protocol (Picelli et al., 2014) was used to generate single-cell cDNA and 

libraries with optimization and automation. To lyse the cells, the aforementioned lysis buffer 

with single cells were removed from -80 °C, heated at 72 °C for 3min and then kept at 4 °C 

before adding the reverse transcription master mix. The reverse transcription step exactly 

followed SMART-seq2 protocol with 5'-biotinylated TSO (Qiagen). The first round of 24-cycle 

PCR started with 10 µl reverse transcription product, 0.125 µl 10 µM 5’-Biotinylated ISPCR 

primers (IDT), 12.5 µl KAPA HIFI PCR Master Mix (Roche Diagnostics) and 2.375 µl RT-

PCR grade water (Invitrogen). PCR products were cleaned up with 0.8:1 Ampure XP beads 

(Beckman Coulter) with Biomek FxP Laboratory Automation Workstation (Biomek).  

  The quality of single-cell cDNA was checked on TapeStation with HD5000 Tapes and reagent 

(Agilent) and single-cell qPCR of GAPDH or ACTB with QuantiNova SYBR Green PCR Kit 

(Qiagen). The concentration was measured with Quant-iT™ PicoGreen™ dsDNA Assay Kit 

(Invitrogen) on the CLARIOstar Plate Reader (BMG Labtech). The wells where Ct values of 

GAPDH or ACTB were less than 20 were defined as the wells with good-quality cDNA. Good-

quality cDNA was cherry-picked and normalized to 2 µg/ml with EB (Qiagen) on the Biomek 

FxP Workstation into a new 384-well plate (4titude). 

  We used the miniaturized Nextera XT (Illumina) protocol (Mora-Castilla et al., 2016) with 

Mosquito HTS (ttplabtech) to generate libraries from normalized single-cell cDNA in a 384-

well Endure plate (Life Technology) with 400 nl input cDNA per reaction. The Nextera index 
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set A and D were used in parallel to multiplex 384 cells per batch. All 384 single-cell libraries 

in each batch were pooled and cleaned up with 0.6:1 Ampure XP beads (Beckman Coulter). 

The multiplexed RNA-seq library was normalized to 4nM with Suspension Buffer (provided 

in Nextera XT kit) to be sequenced on the NextSeq 500 Sequencer (Illumina). 

Whole-exome sequencing  

The buffy samples and tumor biopsies were stored at -80 °C. Tumor biopsies were frozen in 

the O.C.T. Compound (Fisher Scientific) and sectioned into 1.5 mL tubes for DNA extraction. 

The tumor sites were confirmed by H&E staining. Genomic DNA (gDNA) was extracted from 

buffy and tumor samples with the DNeasy Blood & Tissue Kits (Qiagen). The whole-exome 

sequencing libraries were prepared with the SureSelect Low Input Target Enrichment System 

(Agilent) and sequenced pair-ended on Illumina HiSeq. The reads were filtered with Trim 

Galore!, and mapped with Bowtie2 (Langmead and Salzberg, 2012). The somatic mutations 

were called via Platypus (Rimmer et al., 2014) and VarScan2 (Koboldt et al., 2013), and then 

analyzed by R package VariantAnnotation (Obenchain et al., 2014).  

Laser capture microdissection  

Tissue sectioning, H&E staining and the assessment by a gynecological oncology pathologist 

were performed as previously described (Hellner et al., 2016). Tissue biopsies were frozen 

down with Fisher Healthcare™ Tissue-Plus O.C.T. Compound (NEG-50, Richard-Allan 

Scientific) and sectioned by 10 µm in CryoStar NX50 Cryostat (Thermo Scientific). The tissue 

sections were stored at -80 °C before proceeding with the staining step.  

  The pre-chemotherapy tumor biopsies were fresh frozen in OCT and sectioned onto 

polyethylene naphthalate membrane (PEN) glass slides (MembraneSlide 1.0 PEN, Zeiss) at 6 

µm and immediately stored at -80 °C until the laser capture microdissection (LCM). Prior to 

LCM, the slides were taken out from -80 °C, immediately immerged in 70% ethanol for 2 min, 

in Cresyl Violet (Sigma Aldrich) for 2 min, rinsed in 95% ethanol five times to remove residual 
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cresyl violet and dried at room temperature for 2 min.  

  LCM was conducted on the PALM Laser Microdissection System (Zeiss) and the captured 

cells were collected onto the adhesive caps of PCR tubes (AdhesiveCap 500 opaque, Zeiss), 

then immediately resuspended in 10 µl lysis buffer (RNAqueous™-Micro Total RNA Isolation 

Kit, Invitrogen). RNA was extracted according to the manufacturer’s instructions and 3 µl of 

eluate before DNase treatment was kept for Whole Genome Amplification and stored at -20 °C. 

The remaining RNA was DNase treated, assessed with the Agilent TapeStation 2200 (Agilent) 

and then stored at -80 °C. 

Bulk RNA sequencing 

The SMARTer Stranded Total RNA-Seq kit v2 - Pico Input (Takara) was used to prepare 

sequencing libraries which were indexed, enriched by 15 cycles of amplification, assessed 

using the Agilent TapeStation and then quantified by Qubit. Multiplexed library pools were 

quantified with the KAPA Library Quantification Kit (KK4835) and sequenced using 75 bp 

pair end reads on the Illumina NextSeq500 platform. Fastq files were trimmed for adapter 

sequences and quality. Trimmed reads were then mapped to the human hg19 reference genome 

using STAR (v2.4.2a) and read counts were obtained using subread FeatureCounts (v1.4.5-p1).  

Immunofluorescent staining 

To do immunofluorescent staining on the frozen OCT-embedded tissue sections, slides were 

taken out from -80 °C and thawed at room temperature for 5 min. The slides were washed with 

ice-cold PBS twice to remove the OCT and then fixed in ice-cold 4% PFA for 10 min. The 

fixed slides were washed with PBS/Glycine buffer to remove residual PFA and then 

permeabilized with Permeabilization Buffer (1´ PBS, 0.5% Triton X-100) for 10 min at RT. A 

hydrophobic circle was drawn around the tissue region with the PAP pen (Abcam) and dried 

for 5 min at room temperature (RT). The permeabilized slides were washed in Wash Buffer (1´ 

PBS, 0.2% Triton X-100, 0.05% Tween-20) and blocked in Blocking Buffer (Wash buffer, 10% 
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donkey serum, Sigma) for 1-2 hr. The diluted primary antibodies were incubated at 4 °C 

overnight or at RT for 1-2 hr. The slides were washed and incubated with the secondary 

antibodies (1:200) and DAPI (1:1000) at RT for 1-2 hr. The stained slides were washed, 

mounted with the mounting medium without DAPI (Vector Laboratories) and covered. Then 

they were dried for 1-2 hr at RT in dark before being imaged using a confocal microscope 

(Zeiss 780). The samples used for staining are listed in Table S1. 

Immunohistochemistry 

The Formalin-Fixed Paraffin-Embedded (FFPE) samples were sectioned into 2.5 or 4 µm. We 

used the Leica Bond Max autostainer (Leica Microsystems) or Autostainer plus Link 48 (Dako) 

to automatically stain the tissue sections. The standard Heat Induced Epitope Retrieval (HIER) 

in retrieval buffer pH 6 was used. Tissue sections were kept at 100 °C for 20 min and incubated 

with the primary antibody or lgG control for up to 1 hr. We used the Aperio slide scanner 

(Aperio) to scan the stained slides at 20× or 40× magnification. The samples used for staining 

are listed in Table S1. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Preprocessing scRNA-seq data 

Sequencing files were trimmed by Trim Galore!, mapped to UCSC hg19 human genome 

assembly by STAR (Dobin et al., 2012) and counted by FeatureCount (Liao et al., 2014). The 

quality of the expression data was checked by the R package scater (McCarthy et al., 2017) 

and the low-quality cells were filtered out from further analysis. We used three criteria to filter 

cells for further analysis: first, the number of genes detected per cells was more than 1200 and 

less than 7500; second, the total number of read counts was more than 0.1 million per cell; 

third, the percentage of counts of the top highly expressed 200 genes was less than 85% to 

ensure enough complexity of the transcriptomes. The upper cutoff for numbers of genes per 



39 

  

cells was aimed to filter out the putative doublets. After filtering, the numbers of detected genes 

per cell were between 1,202 and 7,496 (mean: 3,665). The numbers of total reads per cell were 

between 102,319 and 9,668,129 (mean: 763,233).  

Detecting doublets 

To effectively detect doublets, we used R package DoubletFinder (McGinnis et al., 2019). In 

brief, we combined all fresh cells (secretory cells, ciliated cells, fibroblasts and leukocytes), 

constructed a Seurat S4 object (Butler et al., 2018) and ran DoubletFinder with its default 

pipeline. 

Visualization of expression data 

The uniform manifold approximation and projection (UMAP) plots were based on the 

functions of runUMAP and plotUMAP, and the violin plots of expression were plotted by the 

function plotExpression from the R package scater. Heatmaps were plotted by R packages 

pheatmap and ggplot2 (Ginestet, 2011).  

Comparing fresh and cultured cells 

To investigate the effects of cell culture, we first combined secretory cells from Patient 11553 

and Patient 15072. Then we used limma-voom to identify the DE genes in three pairs of 

comparisons, namely fresh versus overnight, fresh versus LT and overnight versus LT. The 

threshold of DE genes was fold-change ≥ 2 and FDR < 0.05. The total number of DE genes 

affected by culture condition was 4061. The GO analysis was conducted by Gorilla with cutoffs 

at FDR < 0.05. 

Pseudotime analysis  

We used the R package PhenoPath (Campbell and Yau, 2018) to perform the pseudotime 

analysis that projected the high-dimensional transcriptomic data to one dimension, in which 

we compared fresh, overnight cultured and long-term cultured cells. The expression matrix that 

was normalized by the R package scater was used as the input and the first principal component 
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was used as the initialization of the latent trajectory to accelerate the convergence. 

Filtering to select fresh secretory cells 

Only the cells that belonged to the secretory cluster and the fresh group were kept expect for 

the cells from the 15066-left tube (15066L), because the cells from 15066L formed a patient-

specific cluster (Figure 1F) and it was reported to have salpingitis on this side. Secretory cells 

with strong expression of KRT7 and EPCAM (log [CPM+1] > 2), no expression for PTPRC 

(log [CPM+1] = 0) or CCDC17 (log [CPM+1] < 1) and no observed copy number variants 

were kept for the clustering analysis. Copy number variants were detected by HoneyBADGER 

with default settings (Fan et al., 2018). 

  Single-nucleotide variants (SNVs) were called from piled up BAM files by MonoVar (Li et 

al., 2009; Zafar et al., 2016) with the recommended parameters (samtools mpileup -BQ0 -

d10000 -f ref.fa -q 40 -b filenames.txt | monovar.py -p 0.002 -a 0.2 -t 0.05 -m 2 -f ref.fa -b 

filenames.txt -o output.vcf). SNVs in exome regions were intersected by the Bedtools (Quinlan 

and Hall, 2010). 

Differentially-expressed-based clustering  

We used an in-house clustering algorithm to identify the cell populations across patients. In 

brief, the clustering method contained three steps: (1) an initial clustering step within the 

individual patients by Spectral Clustering (Karatzoglou et al., 2004; Ng et al., 2002); (2) 

calculation of distance between each pair of initial clusters by differential expression (DE) 

analysis; (3) a final hierarchical clustering across different patients based on the calculated 

distance matrix (Figure 1B).  

  The clustering approach for clinical scRNA-seq data required the input of an expression 

matrix, where the rows corresponded to genes/features and the	columns corresponded to cells. 

The patient source of all cells was denoted by a vector. The length of this source vector was 

equal to number of cells and the number of different values in the source vector was equal to 
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the number of patients. For the dataset containing multiple patients, our method consisted of 

three main steps.  

  The count matrix was preprocessed by log-normalization, selection of high variance genes 

(Satija et al., 2015), centered and dimensionally reduced by the principal component analysis. 

The first step was initial clustering of the cells within individual patients by the weighted k-

nearest neighbors spectral clustering provided by kknn (Hechenbichler and Schliep, 2004). 

After spectral clustering, each cell was assigned to a patient-specific initial cluster. Cells from 

different patients were clustered into separate patient-specific clusters.  

  The second step was pairwise differential expression (DE) analysis by limma voom (Law et 

al., 2014; Phipson et al., 2016; Ritchie et al., 2015) between initial clusters across patients to 

build a distance matrix, because it was reported to be one of the top ranking DE analysis 

methods for scRNA-seq (Soneson and Robinson, 2018). There were two modes to calculate 

the distance. The first one was unweighted, meaning that the distance between two initial 

clusters was defined as the number of differentially expressed genes (DEGs) between them. 

The second mode was weighted. The DE genes had different weights in the distance. The DE 

genes with higher fold change and larger ratio of expression had higher weight. The weighted 

method had advantages in identifying rare but functionally distinguished cell types. As a result, 

a distance matrix of functional dissimilarity was constructed among all initial clusters. 

  In the last step, all initial clusters were assigned to the final clusters by hierarchical clustering 

based on the aforementioned distance matrix. Accordingly, the single cells were assigned to 

the final cluster containing the initial cluster that the cells belong to. The hierarchical tree was 

plotted to help dividing the final clusters.  

Data integration 

To validate the discovered secretory subtypes in the samples from benign patients, we used the 

data integration from Seurat v3 (Stuart et al., 2019). The integration step merged the high-
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quality fresh secretory cells from five cancer patients and five benign patients. The cells were 

first split by their batches. We normalized the count matrix by the vst method and selected the 

top 1000 high variance genes by using Seurat. Then we computed the integration anchors by 

using the first 10 dimensions and set the number of k nearest neighbors for finding anchors as 

5 (other parameters were default), and then we merged the data by using the computed anchors. 

Identifying marker genes  

The identification of markers was based on limma-voom, which has good performance with 

scRNA-seq data (Soneson and Robinson, 2018). To spot the positive markers in the target 

cluster, we conducted the differential expression analysis between the target cluster and 

background (non-target) clusters. Only if one gene emerged in all the pairwise comparisons 

between the target cluster and background clusters with FDR < 0.05 and log2 fold-change > 

0.4, this gene was defined as the marker gene of this target cluster. 

Gene ontology enrichment analysis 

Gene ontology enrichment analysis was conducted on GOrilla (last updated on May 26, 2018) 

(Eden et al., 2007; 2009). The statistical overrepresentation was conducted by the PANTHER 

Gene list analysis (Thomas, 2003). Pathway enrichment analysis was done by the DAVID 

Bioinformatics Resources 6.8 (Huang et al., 2009b; 2009a). The threshold of significance was 

FDR < 0.05. 

Bulk expression data 

TCGA data was downloaded from the UCSC Xena Data Hub (https://tcga.xenahubs.net) 

(Goldman et al., 2018) and the Broad firehose (https://gdac.broadinstitute.org), which was 

derived from the TCGA Data Coordinating Centre (version: Jan 2016). We used the 

“IlluminaHiSeq UNC” RNA-seq dataset (version: 2017-10-13) and the “TCGA OV gene 

expression subtype” phenotype data (version: 2016-05-27). The AOCS dataset was 

downloaded from GSE9899. The other microarray datasets were retrieved from the R package 
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CuratedOvarianData (Ganzfried et al., 2013). 

Deconvolution of bulk expression data 

On the basis of our FTE scRNA-seq data, we firstly selected the marker genes for five FTE 

subtypes, namely Differentiated (C3), KRT17 cluster (C4), Cell cycle (C9), EMT (C7) and 

Ciliated signatures by using the following cutoffs: (1) log2 fold-change ≥ 1.5; (2) FDR ≤ 0.01; 

(3) dispersion ≥ 0.2 that was measured by the variable loadings in the principal component 

analysis of TCGA RNA-seq data; (4) the correlation with each other markers was less than 0.9 

in TCGA data to avoid redundancy. We calculated the reference matrix (Figure 5A and Table 

S7) by BSEQ-sc (Baron et al., 2016) that measured that average expression levels of marker 

genes in each cell subtype. We used this reference matrix to deconvolute the RNA-seq data 

from TCGA, the microarray data from AOCS and CuratedOvarianData and the OXO-PCR 

RNA-seq data by CIBERSORT as previously described (Newman et al., 2015), which is based 

on the u-parameter support vector regression and is robust to noise and outliers. The 

CIBERSORT was ran in the relative mode with non-logged expression matrices. For the 

microarray data, if a gene corresponded to multiple probes, we selected the probe that had the 

highest average expression level to represent that gene. The deconvolution analysis generated 

scores of the five transcriptomic signatures in each tumor sample (Figure 5A). This score of a 

signature can be interpreted as the proportion of the corresponding cell state in a tumor sample. 

Survival analysis 

The survival analysis was conducted by fitting a Cox proportional hazards regression model. 

This analysis used age, grade and residual disease as covariates. We repeated the survival 

analysis in TCGA RNA-seq dataset, AOCS microarray dataset and other seven microarray 

datasets from the CuratedOvarianData database (Ganzfried et al., 2013). The criterion of 

selecting datasets was that a dataset contained over one hundred clinical samples. We filtered 

out the non-serous cases. The following analysis was performed on SOC cases only. For the 
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datasets from CuratedOvarianData that contained both low and high grades or early and late 

stages, we used the multivariate analysis to eliminate the effects of confounding factors. In the 

multi-variate survival analysis, we dichotomized grades to low-grade (Grade 1) and high-grade 

(Grades 2 and 3) and dichotomized stages to early (Stages I and II) and late (Stages III and IV) 

(Table S9). EMT scores and overall survival were negatively correlated in the independent 

eight datasets (P < 0.05), except for the “GSE32062.GPL6480” dataset (see Table 1). The 

hazard ratios of EMT scores in all the nine independent datasets were larger than 1 (range: 1.88 

– 3.31). For the survival curve of the meta-analysis (Figure 6C), we dichotomized the EMT-

low and EMT-high groups by the median of EMT scores of each dataset to avoid batch effects. 

Data and code availability 

The code generated during this study are available at GitHub (web link: 

https://github.com/zhiyhu/scFT-paper). Single-cell RNA sequencing datasets of fallopian tubes 

from cancer and benign patients are deposited at Gene Expression Omnibus (GEO accession 

numbers: GSE132149 and GSE139079, respectively). The bulk RNA sequencing dataset is 

deposited at Gene Expression Omnibus (GEO accession number: GSE132107). 
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Supplementary Video 

 
Video S1, related to Figure 6. Z-stack of IF staining shows the pan-cytokeratin and SPARC 

double positive cells in HGSOC. 
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Excel table title and legends 

 

Table S1, related to Figure 1. Patient information of GO-TARGET subjects. 

Table S2, related to Figure 1. Results of gene ontology enrichment analysis (GOEA) between 

fresh and overnight-cultured cells. 

Table S3, related to Figure 1. List of differentially expressed (DE) genes between fresh and 

overnight-cultured cells. 

Table S4, related to Figure 2. List of markers of secretory and ciliated cells. 

Table S6, related to Figure 2. List of marker genes of secretory subtypes. 

Table S7, related to Figure 5. Reference matrix for deconvolution. 

Table S8, related to Figure 5. List of marker genes and miRNAs of EMT-high tumors. 
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Figure S1, related to Figure 1. Landscape of single-cell transcriptomes in fallopian tube 

epithelium.  

(A) Flowchart shows the process of cell filtering and analysis by using the cells from ten 

cancer patients.  

(B) Heatmap shows the differences among fresh, overnight-cultured and long-term-

cultured groups. Rows represent differentially expressed genes (fold-change > 2, FDR < 0.05) 

between the fresh and cultured cells. The genes are ordered by the gene ontology that they 

belong to. Columns represent single cells with the annotation bar that indicates the condition 

of each cell. LT, long-term. 

(C) Violin plots show representative genes in three pathways (cell cycle, RNA processing 

and stress response) that are differentially expressed between fresh and overnight-cultured 

groups. FDR < 0.05, by limma voom. ON, overnight. 

(D) Violin plots show the expression of representative genes (LGR5, RSPO1 and WNT7A) 

in the Wnt signaling pathway that is dysregulated by the culturing conditions. FDR < 0.05, by 

limma voom. 

(E) Dot plot shows that the Wnt and Notch signaling pathways are influenced by culture 

condition. The size and color of each dot represents the proportion of cells that express genes 

(rows) across three conditions (columns) as shown in the scales.  

(F) Violin plots show the dysregulated expression of three genes (CD44, ESR1 and OVGP1) 

after overnight culture. FDR < 0.05, by limma voom. 

(G) Violin plots show that genes that are enriched in fatty acid processing are transiently 

switched off after overnight culturing. FDR < 0.05, by limma voom. 

(H) Violin plots show that three genes (STMN1, CCNA1 and TK1) related to the cell cycle 

pathway are significantly upregulated and expressed in most of cells after LT culturing. FDR 

< 0.05, by limma voom. 

 
  



59 

  

 



60 

  

Figure S2, related to Figure 2. Single-cell RNA sequencing of FTE cells identifies four 

novel secretory subtypes. 

(A) Violin plots show the specific expression of secretory markers (KRT7 and PAX8) in 

fresh secretory cells compared to fresh ciliated cells. 

(B) IF staining of KRT7 and CAPS in the human FT, showing that KRT7 is a secretory marker 

and CAPS is a ciliated marker. Arrows indicate the examples of ciliated cells.  

(C) Violin plots show the specific expression of ciliated marker genes (CCDC17, CCDC78, 

CAPS and FOXJ1) in fresh ciliated cells compared to fresh secretory cells.  

(D) Immunohistochemistry (IHC) staining of a ciliated cell marker CCDC17 in the 

Formaldehyde Fixed-Paraffin Embedded (FFPE) human fallopian tube section. This CCDC17 

antibody stained the cytoplasmic and membrane region of ciliated cells brown. Scale bar, 50 

µm. 

(E) IHC staining of a ciliated cell marker CAPS in the FFPE human fallopian tube section. The 

ciliated cells show strong brown staining of CAPS in the cytoplasm, which is absent in the 

secretory cells. Scale bar, 50 µm.  

(F) IF staining shows an FTE ciliated cell (arrow) that was positive for both TUBB4 and CAPS 

positive in the human FT.  

(G) Relative copy number variation inferred from the expression data. The arrow shows a small 

proportion of cells in patient 11528 that seemed to have copy number variation at Chr6. These 

cells also showed a somatic mutation of TP53 in the single-cell RNA-seq data, which is same 

as the one found in the tumor of patient 11528 (chr17: 7577515T>G). Each heatmap contains 

the cells from one patient. In the heatmap, each row is a single cell and columns represent the 

positions on chromosomes. Each block represents one chromosome in the order from Chr1 to 

Chr22. The color scale denotes the possibility of amplification or deletion. Red means 

amplification and blue means deletion as shown in the scale bar.  

(H) t-SNE plot shows each secretory cluster consists of cells from multiple donors. Each point 

represents one cell that is colored by its donor as shown in the legend. 

(I) UMAP plot shows the clusters within fresh secretory cells. Each point represents one cell 

that is colored by its cluster/subtype as shown in the legend. 
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(J) Violin plot shows that all cells that underwent the clustering analysis and passed the filter 

of doublets (number of genes detected ≤ 7,500). The y-axis represents the total number of 

genes detected per cell. Each dot is one cell arranged by the cell subtypes (x-axis). 

(K) IHC staining validates the EMT cluster with its marker, RGS16, in human FTE (dashed 

box). Scale bars, 20 µm. 

(L) Violin plots showing that the EMT cluster of FTE cells has strong expression of KRT7 and 

EPCAM as well as the upregulated expression of SPARC and RGS16.  

(M) Violin plots show that two stromal markers were specifically expressed in mesenchymal 

cells but not in the EMT cluster of FTE secretory cells. 
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Table S5, related to Figure 2. Summary of the clustering results and annotations of 

secretory cells. 

Clusters* Name Representative pathways Marker genes 

C1, C2, C5 Quiescent - - 

C6 Stress Response to stress FOS and JUN 

C9 Cell cycle Cell cycle 

DNA repair 

Chromatin remodeling 

MCM2-7, MKI67, TK1 and STMN1 

FANCD2, FANCI and MSH2  

HMGB2 and SMC1A 

C3 Differentiated RNA synthesis and transport PTBP1, ZNF259 and PRPF38A 

C4 KRT17 cluster MHC Class II 

Cytokeratins 

Aldehyde dehydrogenases 

HLA-DQA1, HLA-DPA1 and HLA-DPB1 

KRT17 and KRT23 

ALDH1A1 and ALDH3B2 

CDKN1A 

C7 EMT   

Extracellular matrix  

RGS16 

TIMP3 and SPARC 

* The clusters were ordered by when it was described in the main text. 
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Figure S3, related to Figure 3. Validation of the secretory subtypes in the FTE of benign 

donors by using scRNA-seq. 

(A) Flowchart shows the processing of the validation set, in which we profiled 2185 single-

cell transcriptomes from five benign patients. After the initial filtering, 1875 cells were left as 

shown in Figure 3A. By using the data integration, we removed the batch effects between the 

discovery set and the validation set and then merged the two datasets. We next clustered the 

merged datasets to identify the four secretory subtypes in the FTE secretory cells from benign 

patients.  

(B) Scatter plots show the expression of marker genes in the FT cells from five benign patients. 

The x- and y-axes represent the first two components of the UMAP analysis. Each dot (cell) is 

colored by the expression level of the marker gene (subtitle). The result shows the CD45+ 

leukocytes, COL1A1+ stromal cells, KRT7+ PAX8+ EPCAM+ secretory cells and CAPS+ 

EPCAM+ ciliated cells. 

(C) IHC shows the STMN1 positive cell cycle subtype in the FTE of a benign patient. 

(D) IF staining shows a KRT17 and EPCAM double positive cell (KRT17 subtype) in the FTE 

of a benign patient. 

(E) IHC images show the SPARC and PAX8 double positive cells in the FTE in the FTE of 

multiple benign patients (arrows and dashed circles).  
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Figure S4, related to Figure 4. Non-traditional cell subtypes in the fallopian tube epithelial 

layer. 

(A) PCA plots show that the intermediate cell population (grey circles) has the expression of 

both secretory markers (KRT7 and PAX8) and ciliated markers (CCDC17 and CAPS). 

(B) Scatter plots highlight the position of intermediate population. The cells are colored by 

whether they belong to the intermediate population or not as shown in the legend. The arrow 

indicates the intermediate population that is close to the ciliated cells in the two-dimensional 

space computed by UMAP. 
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Figure S5, related to Figure 5. The repertoire of phenotypic heterogeneity of serous 

ovarian cancer revealed by deconvolution analysis.  

Violin plots visualize the different composition of cell states between low-grade and high-grade 

serous ovarian cancer in the AOCS dataset and GSE1726. The p values were calculated by the 

Wilcoxon test between the low-grade and high-grade tumors.  
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Figure S6, related to Figure 6. Mesenchymal-like tumor cells in pre-chemotherapy tumors 

and KURAMOCHI cell line. 

(A) Kaplan-Meier curves compare the overall survival of three groups of patients, namely 

EMT-high mesenchymal (EMT-high, Mes), EMT-high non-mesenchymal (EMT-high, non-

Mes) and EMT-low non-mesenchymal (EMT-low, non-Mes). The result showed that the 

prognosis of the EMT-high non-Mes tumors was close to EMT-high Mes tumors, and worse 

than that of the EMT-low non-Mes tumors. By using the two-variate proportion hazards 

regression model, the hazard ratio of the EMT-high group was 1.51 (95% CI: 1.07-2.13, p = 

0.018), and the hazard ratio of the mesenchymal group was 1.10 (95% CI: 0.74-1.64, p = 0.63). 

There were three EMT-low mesenchymal samples, which were excluded from the analysis due 

to the small group size. In the figure, the x-axis represents the time (days), and the y-axis 

represents the survival probability. Each short vertical line indicates a censoring event. In the 

table, each entry denotes the number of survived cases at each time point (column) for each 

group of patients (row).  

(B) Expression levels of ovarian cancer markers (EPCAM, KRT7, MUC16 and WT1) were 

significantly higher in both EMT-high and EMT-low tumor samples compared to stromal 

samples in which these markers showed almost no expression. 

(C) IF staining shows a SPARC and pan-cytokeratin double positive cell (arrow). Scale bars, 

20 µm. 

(D) IF staining shows a SPARC positive and pan-cytokeratin negative population with similar 

nuclear sizes as tumor cells. Scale bars, 20 µm. 

(E) IHC shows the expression of SPARC in p53-expressing HGSOC cells (arrows). The p53 

antibody stained the nuclei pink and the SPARC antibody stained the cytoplasm brown. The 

two small subfigures are the zoomed-in images of the larger subfigure on the right top. 

(F) IHC shows more examples of SPARC and p53 double positive cancer cells from six serous 

ovarian cancer patients (dashed circles). 
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(G) KURAMOCHI cells exhibited two phenotypes, a SAPRC positive mesenchymal-like 

phenotype and a pan-cytokeratin positive epithelial phenotype (arrow). Scale bars, 20 µm. 

(H) A SPARC and pan-cytokeratin double positive population also exists in KURAMOCHI 

cells (arrow). Scale bars, 20 µm. 

(I) IF images show that SPARC was expressed in the p53-expressing KURAMOCHI cells. We 

zoomed into three regions (white boxes, numbered) as shown in the three small subfigures on 

the right side. Scale bars, 20 µm. 
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Table S9, related to Table 1. Full results of survival analysis for TCGA, AOCS and 

CuratedOvarianData. 

TCGA n = 305, number of events = 183   

  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 2.124 1.184 3.812 0.0116 
Stage (late vs early) 1.671 0.779 3.585 0.1871 

     
AOCS n = 253, number of events = 109   
  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 2.110 1.214 3.666 0.0081 
Stage (late vs early) 3.880 1.180 12.756 0.0255 
Grade (high vs low) 1.598 0.488 5.238 0.4386 
     
E.MTAB.386 n = 128, number of events = 73   
  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 3.107 1.214 7.953 0.0181 
     
GSE13876 n = 144, number of events = 105   
  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 2.958 1.282 6.826 0.0110 
Grade (high vs low) 1.136 0.763 1.690 0.5290 
     
GSE26193 n = 79, number of events = 60   
  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 2.582 1.038 6.421 0.0413 
Grade (low vs high) 1.760 0.989 3.130 0.0546 
Stage (late vs early) 2.949 1.349 6.444 0.0067 

     
GSE26712 n = 185, number of events = 129   
  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 2.0345 1.065 3.886 0.0315 

     
GSE32062.GPL6480 n = 260, number of events = 121   
  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 1.886 0.987 3.603 0.0547 
Grade (low vs high) 1.040 0.726 1.487 0.8322 
 
 
 
      
GSE49997 n = 170, number of events = 47   
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  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 2.825 1.159 6.884 0.0223 
Grade (high vs low) 3.451 1.450 8.210 0.0051 
Stage (early vs late) 1.876 0.440 8.000 0.3955 

     
GSE51088 n = 113, number of events = 93   
  Hazard ratio Lower 95% CI Upper 95% CI p value 
EMT score 2.0874 1.1126 3.916 0.0219 
Grade (low vs high) 1.2295 0.6338 2.385 0.5411 
Stage (late vs early) 1.5325 0.5531 4.246 0.4117 

 
 
 

 

 
 
 


