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Abstract

This paper proposes an optimal design of the general distributed nonlinear Kalman-
based filtering algorithm to tackle the discrete-time estimation problem with noisy
communication networks. The algorithm extends the Kalman filter by enabling it
to predict the noisy communication data and fuse it with the received neighboring
information to produce a posterior estimate value. In the prediction step, the un-
scented transformations of the estimate values and covariances originated in the
Unscented Kalman Filter (UKF) are exploited. In the update step, a communica-
tion protocol is appended to the posterior estimator, which consequently leads to
a modified posterior error covariance containing the covariance of the communi-
cation term with its communication gain. Both Kalman and communication gains
are then optimised to collectively minimise the mean-squared estimation error.
Afterwards, stochastic stability analysis is performed to guarantee its exponen-
tial boundedness. To exemplify the performance, this algorithm is applied to a
group of robots in a sensor network assigned to estimate an unknown information
distribution over an area in the optimal coverage control problem. Comparative
numerical experiments finally verify the effectiveness of our design.
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1. Introduction

The field of Kalman filters in a connected sensor network has become an in-
teresting area to investigate. It incorporates the concept of distributed control
systems and the Kalman filtering method. In the case of centralised Kalman fil-
ters, for both the linear and nonlinear systems, intensive investigations have been
carried out, for example, by [1], [2], [3], [4], [5], [6] and [7]. While in the case
of networked linear filter, the study reported by [8] added updating weight on the
measurement dynamics to fuse information from a number of sensors, while [9]
includes the low, high and band-pass consensus filters. The stability of a net-
worked filter, namely, the Kalman-Consensus filter, has been analysed in [10],
while various scenarios of diffusive Kalman filtering for the linear system have
been designed in [11]. Generalising the concept of distributed Kalman filtering,
the networked nonlinear Kalman filtering has also attracted numerous develop-
ments in distributed Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF) and Cubature Kalman Filter (CKF) [12], [13], [14] and [15].

Compared to the centralised Kalman filter, the distributed version has attracted
more attentions due to the high scalability, robustness to failure, and flexibility
[15], [16]. The distributed protocol is able to reduce the computation burden
of a central processor while maintaining the performance of the global result.
In practice, communication medium has noises which can affect the quality of
shared information among agents. Although there have been some works on the
distributed nonlinear Kalman filter algorithms in literature, such as in [9], [15], the
communication noise has not been considered and analysed. Both in the linear and
nonlinear cases, the previous works on distributed Kalman filter have considered
the implementation of consensus protocol to minimise the disagreement of the
estimate results among the sensors. However, the optimal gain of the consensus
term has not been analysed in order to guarantee the performance. If one fails to
pick the consensus gain, the result may oscilate and become unstable. Thus, the
optimal Kalman and consensus gains need to be designed such that the optimality
and boundedness can be guaranteed.

In the application to mobile sensor network, sensors can be referred to as a
group of robots, each carrying a sensor, assigned to measure a physical quantity
over an environment – which, for example, can be applied to find the source of
radiation. One of the important applications in the sensor network is the optimal
sensor coverage – which also leads to the optimised sensor configuration. Loca-
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tional optimisation, originated from the field of operation research aims to find the
best locations of agents given an interest function [17], [18]. Centroidal Voronoi
Tessellation has become a recognised tool to solve this locational problem [19],
[20]. Cooperative control design is important to drive robots towards the opti-
mal locations. The related control protocol has been reported in [20], [21] and
[22], which iteratively minimises the objective function of the locational optimi-
sation. The information of a covered area is represented by a density function
which in reality is unknown but can be estimated by the agents, this is solved in
field estimation problem. Studies about coverage problems with field estimation
of unknown information distribution can be found in [23], [24], and [25]. These
field estimation algorithms have not considered the noises in the measurement
and communication network. Moreover, these algorithms require some gains of
the estimator to be tuned prior to execution and the upper boundary of the gains
has not been given. Failure to choose the suitable gains prior to the execution
might lead to an unstable system.

In this paper, we present an optimal design of nonlinear Kalman filter to es-
timate the state of a dynamical process in a distributed manner using the shared
information among the agents. Different from existing techniques in literature,
such as in [9], [12], [13], [14] and [15], our algorithm generalises the distributed
Kalman filter to accomodate any communication mechanism which uses not only
the measurement from an agent’s own sensor as consideration for estimating the
process, but also the shared information from the neighboring agents. In addition
to standard Kalman filter, this distributed filtering algorithm also considers noisy
communicated information within the network. The proposed technique alters
the procedure in the prediction and update steps of the unscented Kalman filter.
In the prediction, the prior state, measurement and communication estimates and
their covariances are designed utilising the sigma points calculated from the pre-
vious estimate and covariance. While, in the subsequent update step, the posterior
estimator of this filter comprises the prior estimate term, measurement correction
term and communication correction term - leading to the posterior covariance con-
taining the prior state, measurement and communication covariances. Afterwards,
the Kalman and communication gains of the estimator are optimally designed. It
can be said that solving the optimal gain of existing distributed Kalman filter with
consensus algorithm is a special case of this technique. To verify the effectiveness
of the proposed algorithm, it is then applied to estimate the information distribu-
tion of optimal coverage problem in an area by a sensor network. Different with
the state-of-the-art field estimation algorithm reported in [25], the proposed filter
in this paper has considered the noises in measurement and in the communica-
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tion network and also optimised the estimator gains in every iteration to avoid
instability of the system caused by failure to choose the appropriate gains.

The remainder of this paper is structured as follows. In Section II, some nec-
essary mathematical notations and graph theory are reviewed. Section III declares
the formulation of the general distributed estimation problem. Section IV presents
the result on the distributed Kalman-based nonlinear estimation, followed by Sec-
tion V discussing the application of the proposed filter to the field estimation of
the optimal coverage problem. Afterwards, in Section VI, comparative simula-
tions on optimal coverage problem using distributed Kalman filter algorithm and
the modified-consensus observer in [25] are presented to validate the performance
of the proposed methods. Finally, Section VII concludes this work.

2. Preliminaries

2.1. Notations
Throughout this paper, the following notations are used. We use R, R+, Rn

and Rn×m, respectively, to denote the set of real numbers, positive real numbers,
n-dimension vectors with with real-valued entries, and n×m-matrices with real-
valued entries. Related to integer-valued sets, Z, Z+ and Z∗ are to denote the set
of integers, positive integers and non-negative integers, respectively.

For matrix and vector, In, 0n and 1n denote the n× n identity matrix, n-sized
column vector of zero and one, respectively. Let a ∈ Rn and A ∈ Rn×m. Then,
‖a‖ is the Euclidean norm of a; tr(A) is the trace of matrix A; and diag(a) is the
diagonal matrix constructed by the elements of a. Let a = {a1, a2, . . . , ap}, for
p > 0 and aq ∈ Rr, then vecp(aq) ∈ Rpr denotes a vector combining the elements
of a, with 1 6 q 6 p. In this work, we use operator ⊗ for the Kronecker product
of two matrices.

Related to statistics, define X ∈ Rn×m, for n, m ∈ Z+, as a random vari-
able. The statistical notation for expected value of X is given by E[X] and the
covariance of X by cov(X). Correspondingly, the notation to express Gaussian
distribution is in the form of N (µ,Σ), where µ = E[X] and Σ = cov(X).

Since we work on the discrete-time domain, some discrete-time, index-free
notations are used for convenience. Let ϑk ∈ Rd be any discrete-time based
variable at time step k, for k ∈ Z∗. Then, to suppress the expressions, we have ϑ
as the substitute of ϑ(k), ϑ+ of ϑ(k + 1), and ϑ− of ϑ(k − 1).
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2.2. Graph Theory
We now review some useful notations and definitions of graph theory for a

network and control topology. A graph G(V , E) is a collection of vertices V con-
nected by a collection of edges E ⊆ V × V . If there exists an edge (i, j) ∈ E ,
agent i is able to receive information from agent j. If, for (i, j) ∈ E , there exists
(j, i) ∈ E , the graph is called undirected. We refer j ∈ Ni ⊂ V , for j 6= i, to the
neighbor of agent i if (i, j) ∈ E .

To algebraically express the connectivity of a graph with n vertices, we entail
the concept of adjacency, in-degree and Laplacian matrices. The adjacency ma-
trix, denoted asA = [aij] ∈ Rn×n, is a square matrix whose elements are given by
aij = 1 if (j, i) ∈ E , and aij = 0, otherwise. If a graph is undirected, it is straight-
forward to conclude that A is a symmetric matrix. Correspondingly, summing up
the i-th row of A yields an in-degree matrix, i.e., D = diag(di) ∈ Rn×n such that
di =

∑
j∈Ni

aij , for all i ∈ V . The associated Laplacian is subsequently defined
as L = [Lij] ∈ Rn×n, for Lii = di and Lij = −aij . Using arithmetical operation,
a Laplacian matrix can be obtained using L = D −A. The eigenvalues of Lapla-
cian matrix L can sequentially be expressed as 0 = λ1 6 λ2 6 λ3 6 · · · 6 λn.
For a strongly-connected directed graph, there is only one zero eigenvalue of L,
i.e., λ1 = 0. Moreover, according to Courant-Fisher theorem, the smallest and
largest non-zero eigenvalues of L satisfy λ2‖z‖2 6 zTLz for 1T

nz = 0, and
λn‖z‖2 > zTLz for z ∈ Rn, respectively [26].

3. Problem Formulation

Consider a group of n agents connected in a network whose topology is rep-
resented by a graph Gn(Vn, En), for Vn = {1, 2, . . . , n} and En ⊆ Vn × Vn. These
agents are assigned to estimate a dynamical process represented by a function
f : Rp × Rp → Rp, such that

ξ+ = f(ξ, ξv), (1)

where ξ ∈ Rp and v ∈ Rp, respectively, denote the unknown state, and the process
noise at time step k, with k ∈ Z∗.

To estimate the process (1) using a group of networked agents in a distributed
manner, each agent is equipped with a sensor whose measurement data is mod-
elled by a function hi : Rp × Rq → Rq such that

ζi = hi(ξ, wi), for i ∈ Vn, (2)
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where ζi ∈ Rq and wi ∈ Rq, respectively, denote the sensing data and the mea-
surement noise at time step k.

Since each agent within a network requires information from its neighbours to
colaboratively estimate a dynamical process, we need to model the communica-
tion network of the agents and define how each agent use the shared information.
As a proposed mechanism in the distributed nonlinear Kalman filtering, the com-
munication model of a noisy network at time step k is represented by a function
G : Rnp × Rnr → Rnr, i.e.,

z = G(x, s), (3)

where, in this communication model, x = 1n ⊗ ξ, z = vecn(zi) ∈ Rnr and
s = vecn(si) ∈ Rnr are the augmented state to estimate, the communicated data
and the communication noise, respectively.

Remark 1. The communication model of a network provides a representation of
the connection topology of a network. For example, consider a group of n robots
are assigned to estimate p unknown states, ξ ∈ Rp, in which the data received by
agent i is denoted by zi ∈ Rp and the communication noise by si ∈ Rr. Suppose
that the communication topology is modelled via a graph with Laplacian matrix
L ∈ Rnp×np. Then, using the defined model, the communication process can be
expressed as z = Lx+ s.

Throughout this paper, to improve the brevity of the filter design and formu-
lation, augmented expressions of the process, measurement and communication
dynamics are equivalently described as

x+ = F (x, v) (4)
y = H(x,w) (5)
z = G(x, s) (6)

where y = vecn(ζi), F = vecn(fi), H = vecn(hi), v = 1n ⊗ ξv, and w =
vecn(wi).

There are some assumptions made regarding the noises, given as follows.

Assumption 1. The expected values of process, measurement and communication
noises are zero, i.e., E[v] = 0, E[w] = 0 and E[s] = 0.

Assumption 2. The covariances of process, measurement and communication
noises are E[vv>] = Q, E[ww>] = R, and E[ss>] = S, where Qjk = qjkδjk,
Rjk = rjkδjk, and Sjk = sjkδjk, for some scalars qjk, rjk, sjk ∈ R and the Kro-
necker delta δjk.
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Assumption 3. The process, measurement and communication noises are uncor-
related, i.e., E[vw>] = 0, E[vs>] = 0, E[ws>] = 0.

Assumption 4. The process, measurement and communication estimates of agent
i and j, for i 6= j, are uncorrelated, i.e., their cross-covariance matrices are zero.

The objective of the distributed estimation is to minimise the collective mean-
squared error (MSE) of the estimation of the agents. The performance index is
formulated as

min
x̂

E
[
(x− x̂)>(x− x̂)

]
(7)

where x̂ = vecn(x̂i) is the estimate value of x. In the following filter design, the
estimate value of x refers to the posterior estimate of the Kalman filter.

To show the boundedness of the filtering algorithms, we need the lemma about
the stability of a stochastic process which was given in literature, such as [27],
[12].

Lemma 1 (Stochastic Boundedness). If, for θ ∈ Rd being a stochastic process at
time step k, k ∈ Z∗, there exists a scalar stochastic process V (ε) with ε = θ − θ′
satisfying these conditions:

1. v‖ε‖2 6 V (ε) 6 v‖ε‖2, for v, v > 0,

2. E [V +(ε+)|ε] 6 µ+ (1− σ)V (ε), for µ > 0, 0 6 σ 6 1.

Then, the stochastic process ε is exponentially bounded in mean square such that

E
[
‖ε‖2

]
6
v

v
E[‖ε0‖2](1− σ)k +

µ

v

k−1∑
l=1

(1− σ)l. (8)

There are some useful variables that are necessary for the filter design. x̂, x̄,
ȳ, and z̄, respectively, denote the posterior state estimate of x, prior state esti-
mate of x, prior measurement estimate of y, and prior communication estimate
of z at time step k, for k ∈ Z∗. Related to the covariance update, P denotes
the posterior covariance of the error of the posterior estimates; P̄xx, P̄yy, P̄zz,
P̄xy, P̄xz, and P̄yz, respectively, denote the prior state-to-state, measurement-to-
measurement, communication-to-communication, state-to-measurement, state-to-
communication and measurement-to-communication covariances.
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4. Distributed Nonlinear Filter Design

In this filter design, the state, measurement and communication models are
given in (4), (5) and (6), respectively, and these functions are considered to be
nonlinear.

4.1. Prediction
The means of unscented transformation used in the Unscented Kalman Filter

is modified in the prediction step to produce the predicted state, measurement and
communication estimates and their covariances.

Define x̃ = [x̂> v> w> s>]> as a vector of random variables augmenting the
state and noises; while P̃ = diag(P,Q,R, S) as the augmented covariance at time
step k. The augmented form of sigma vectors at time step k − 1 is defined as
X− =

[
(X x−)> (X v−)> (Xw−)> (X s−)>

]> ∈ Ra×(2a+1), a = (2p+ q + r)n. Its
entries are given by

X− =
[
x̃− (1>a ⊗ x̃−) +

√
κP̃− (1>a ⊗ x̃−)−

√
κP̃−

]
, (9)

with κ = a+ b. Expression 1>a ⊗ x̃− augments the previous posterior estimates to
comply with the dimension of the augmented state covariance. Here, b is a scaling
parameter expressed as b = %2

1(a + %2) − a, where %1 correlates with the spread
of sigma points around x̃−, while %2 is another scaling parameter. The details
regarding the criterion of these parameters are provided in [28].

The sigma vector is subsequently transformed through the nonlinear functions.
For every l-th column of X−, with l ∈ {0, 1, 2, . . . , 2a}, the sigma vector is
mapped through (4) such that the prior sigma vector of the state can be written
as

X̄l = F (X x−
l , X v−

l ). (10)

The prior estimate x̄ and covariance P̄xx are attained using the approximated
weighted mean and covariance of the sigma points in the form of

x̄ =
2a∑
l=0

Wm
l X̄l, (11)

P̄xx =
2a∑
l=0

W c
l

[
X̄l − x̄

] [
X̄l − x̄

]>
, (12)
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where the weights are given by

Wm
0 = b/κ,

W c
0 = b/κ+ (1− %2

1 + %2),

Wm
l = W c

l = 1/(2κ), 0 < l 6 2a.

To predict the measurement data, the sigma vector of the state in (10) is also
mapped through the nonlinear measurement function (5) such that the sigma vec-
tor of the measurement is formulated as

Ȳl = H(X̄l, Xw−
l ). (14)

Accordingly, the prior measurement estimate and its covariance, ȳ and P̄yy, are
calculated using the approximation of weighted mean and covariance, i.e.,

ȳ =
2a∑
l=0

Wm
l Ȳl, (15)

P̄yy =
2a∑
l=0

W c
l

[
Ȳl − ȳ

] [
Ȳl − ȳ

]>
, (16)

respectively.
The prediction of the communication data and its covariance can also be at-

tained by mapping the sigma vector (10) to the communication function (6), yield-
ing the communication sigma vector given by

Z̄l = G(X̄l, X s−
l ). (17)

The associated approximation of the weighted mean and covariance can be ex-
pressed as

z̄ =
2a∑
l=0

Wm
l Z̄l, (18)

P̄zz =
2a∑
l=0

W c
l

[
Z̄l − z̄

] [
Z̄l − z̄

]>
. (19)

The prior cross covariance matrices between the state estimate and measure-
ment data, between state estimate and communication data, and between measure-
ment and communication data can, respectively, also be formulated utilising the
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sigma vectors declared previously in the form of

P̄xy =
2a∑
l=0

W c
l

[
X̄l − x̄

] [
Ȳl − ȳ

]>
, (20)

P̄xz =
2a∑
l=0

W c
l

[
X̄l − x̄

] [
Z̄l − z̄

]>
, (21)

and

P̄yz =
2a∑
l=0

W c
l

[
Ȳl − ȳ

] [
Z̄l − z̄

]>
. (22)

Remark 2. Notice that the prior state, measurement and communication covari-
ances are symmetric matrices, i.e., P̄xx = P̄>xx, P̄yy = P̄>yy, and P̄zz = P̄>zz.

4.2. Update
In this paper, an estimator at time step k append the additional communication

term as a correcting parameter to ensure the collective estimate are achieved. The
proposed estimator is formulated as

x̂ = x̄+K(y − ȳ) + C(z − z̄). (23)

This estimator comprises three terms: the first is the prior state estimate; the sec-
ond term is the conditional-mean update of Bayesian estimation method to in-
terfere the measurement data with the prior measurement estimate; and the last
term is the proposed communication term to correct the predicted communica-
tion data with the information obtained from neighboring agents. The parameters
K = diagn(Ki) ∈ Rnp∗nq and C = diagn(Ci) ∈ Rnp∗nr, respectively, denote the
Kalman gain and communication gains. In order to minimise the cost function
(7), one has to find the optimal value of these gains.

Recall the cost function in (7) which can equivalently be expressed as

E
[
(x− x̂)>(x− x̂)

]
= E

[
tr
(
(x− x̂)(x− x̂)>

)]
, (24)

in which E[tr{u}] = tr{E[u]} and tr{u>u}] = tr{uu>}] have been applied. Based
on (24), minimising the mean-squared error is equivalent to minimising the trace
of the covariance of the estimate error, i.e.,

P = E
[
(x− x̂)(x− x̂)>

]
. (25)
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Let ēx = x − x̄ denote the error between the unknown state and the prior
estimate; ēy = y−ȳ the error between the measurement data and its prior estimate;
and ēz = z−z̄ the error between communication data and its prior estimate. Using
these error parameters, the error of the posterior estimate êx = x− x̂ is given by

êx = ēx −Kēy − Cēz (26)

where the posterior estimate in (23) has been inserted. Afterwards, substituting
(26) to the posterior covariance in (25) and applying the linearity property of ex-
pected value result in the posterior covariance of estimate error:

P = E
[
ēxē
>
x

]
−KE

[
ēy ē
>
x

]
− E

[
ēxē
>
y

]
K> − CE

[
ēz ē
>
x

]
− E

[
ēxē
>
z

]
C>

+KE
[
ēxē
>
x

]
K> + CE

[
ēy ē
>
y

]
C> +KE

[
ēy ē
>
z

]
C> + CE

[
ēz ē
>
y

]
K>. (27)

Notice that P̄xx = E[ēxē
>
x ], P̄yy = E[ēyē

>
y ], P̄zz = E[ēz ē

>
z ], P̄xy = E[ēxē

>
y ],

P̄xz = E[ēxē
>
z ], P̄yz = E[ēyē

>
z ]. Also, notice that P̄>xy = P̄yx, P̄>xz = P̄zx, P̄>yz =

P̄zy. Thus, it is straightforward to conclude that the covariance matrix can be
formulated as

P = P̄xx +KP̄yyK
> + CP̄zzC

> +KP̄yzC
> + CP̄>yzK

>

−KP̄>xy − P̄xyK
> − CP̄>xz − P̄xzC

> (28)

The result about the gains update is stated in the following theorem.

Theorem 1 (Kalman and Communication Gains Update). Let (7) be the objective
function of the distributed nonlinear Kalman filter. Let the posterior estimate be
given by (23) and the covariance by (28). Then, the optimal communication and
Kalman gains at time step k ∈ Z∗ are, respectively, formulated by

C = P̄xzP̄
−1
zz , (29)

K = (P̄xy − CP̄>yz)P̄−1
yy . (30)

Moreover, with these gains, the covariance in (28) can be expressed as

P = P̄xx −KP̄yyK
> − CP̄zzC

>. (31)

Proof. Recall the cost function in (7). This cost function can also be written as

E
[
(x− x̂)>(x− x̂)

]
= E

[
tr{(x− x̂)(x− x̂)>}

]
, (32)

11



in which E[tr{u}] = tr{E[u]} and tr{u>u} = tr{uu>} have been applied. Since
minimising the mean-squared error (32) is equivalent to minimising the trace of
the covariance of the estimate error, the optimal Kalman and communication gain
can be derived by taking the derivative of the trace of posterior covariance matrix
with respect to the Kalman and communication gain. Thus, taking the derivative
of (28) with respect to the Kalman gain gives

∂tr(P )

∂K
= KP̄yy + CP̄>yz − P̄xy = 0

which leads to

P̄xy = KP̄yy + CP̄>yz. (33)

Plugging (33) into (28) yields

P = P̄xx −KP̄yyK
> + CP̄zzC

> − CP̄>xz − P̄xzC
>. (34)

Thus, taking the derivative of (34) with respect to C, i.e.,

∂tr(P )

∂C
= CP̄zz − P̄xz = 0

results in the Communication gain given by

C = P̄xzP̄
−1
zz . (35)

Moreover, rearranging (35) to obtain P̄xz and plugging it to (34) give the com-
pact covariance expressed as

P = P̄xx −KP̄yyK
> − CP̄zzC

>. (36)

This completes the proof.

4.3. Instrumental Matrices
To analyse the performance of the estimation algorithm we have designed,

some additional matrices are utilised – which has also been used in Kalman-filter
based performance analysis such as in [29]. In the following analysis, ēx = x− x̄,
êx = x − x̂, ēy = y − ȳ, and ēz = z − z̄ denote as the prior, posterior estimate,
measurement and communication errors at time step k ∈ Z∗, respectively.
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Since x depends on the state estimate at k−1, by employing Taylor expansion
to x in (4) around x̂−, we have

x = F (x̂−) +∇F (x̂−)ê−x +
1

2
∇2F (x̂−)(ê−x )2 + · · ·+ v−, (37)

where

∇nF (x̂)(êx)n =

(
P∑

j=1

êx|j
∂

∂xj

)n

F (x)

∣∣∣∣∣
x=x̂

,

for xj and êx|j referring to the j-th element of x and êx. Similarly, expanding x̄ in
(11) about x̂− and applying Assumption 1 yields

x̄ = F (x̂−) +
1

2
∇2F (x̂−)(ê−x )2 + · · · . (38)

Thus, by subtracting (37) by (38), the estimate error caused by the prior estimate
in (11) can be approximated by

ēx ≈ F̂−ê−x + v−, (39)

where

F̂ =

(
∂F (x)

∂x

∣∣∣∣
x=x̂−

)
. (40)

However, to accomodate the residuals emerging from this Taylor approximation,
we utilise a diagonal matrix defined as α = diag(α1, α2, · · · , αM), such that we
have the approximation formula of error caused by the prior estimate in (11) at
time step k given by

ēx = α−F̂−ê−x + v−. (41)

For measurement approximation, since the measurement estimate is depen-
dent on the prior estimate of x, the Taylor expansion of y in (5) is about x̄. The
Taylor expansion of the measurement dynamics at time step k is given by

y = H(x̄) +∇H(x̄)ēx +
1

2
∇2H(x̄)(ēx)2 + · · ·+ w, (42)

where

∇nH(x̄)(ēx)n =

(
P∑

j=1

ēx|j
∂

∂xj

)n

H(x)

∣∣∣∣∣
x=x̄

,
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for xj and ēx|j referring to the j-th element of x and ēx. Subsequently, expanding
the predicted measurement in (15) about x̄ yields

ȳ = H(x̄) +
1

2
∇2H(x̄)(ēx)2 + · · · . (43)

Hence, subtracting (42) by (43) leads to

ēy ≈ Ĥēx + w, (44)

where

Ĥ =

(
∂H(x)

∂x

∣∣∣∣
x=x̄

)
. (45)

An instrumental diagonal matrix related to the measurement prediction added to
accomodate the residuals of this approximation is β = diag(β1, β2, · · · , βM).
Therefore, we have the error of the measurement prediction in (15) formulated as

ēy = βĤēx + w. (46)

In communication approximation, one may follow similar procedures to ob-
tain the approximation of the measurement error. Since the communication esti-
mate is also dependent on the prior state estimate, the expansion of the commu-
nication data in (6) is also about x̄. The Taylor expansion of the communication
data at time step k is

z = G(x̄) +∇G(x̄)ēx +
1

2
∇2G(x̄)(ēx)2 + · · ·+ s, (47)

where

∇nG(x̄)(ēx)n =

(
P∑

j=1

ēx|j
∂

∂xj

)n

G(x)

∣∣∣∣∣
x=x̄

,

for xj and ēx|j referring to the j-th element of x and ēx. Subsequently, the Taylor
expansion of (18) about x̄ is

z̄ = G(x̄) +
1

2
∇2G(x̄)(ēx)2 + · · · . (48)

Hence, subtracting (47) by (48) yields the approximation error of the predicted
communication data in (18) given by

ēz ≈ Ĝēx + s, (49)
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where

Ĝ =

(
∂G(x)

∂x

∣∣∣∣
x=x̄

)
. (50)

An instrumental diagonal matrix to deal with the residuals of the approximation of
this communication data is γ = diag(γ1, γ2, · · · , γM). Hence, the approximate
of the communication data satisfies the following equality:

ēz = γĜēx + s. (51)

The unscented transformation of the covariance also requires us to design a
approximation of the estimate covariance matrices. In the case of the prior esti-
mate covariance, we insert (41) to P̄ ∗xx = E[ēxē

T
x ] and use Assumption 2 resulting

in

P̄ ∗xx = α−F̂−P−F̂−>α−> +Q+ δ−xx (52)

as the approximation of the prior estimate covariance. Parameter δxx is to acco-
modate the residual approximation error of P̄xx by P̄ ∗xx. For the error covariance
matrix of the measurement, with Assumption 2 and ēy from (46), the approximate
value is given by P̄ ∗yy = E[ēyē

>
y ], i.e.,

P̄ ∗yy = βĤP̄ ∗xxĤ
>β> +R + δyy, (53)

where δyy denotes the approximate error caused by P̄ ∗yy. Subsequently, the er-
ror covariance matrix of the communication data, the approximation is given by
P̄ ∗zz = E[ēz ē

>
z ]. Substituting (51) into it and using Assumption 2 yield

P̄ ∗zz = γĜP̄ ∗xxĜ
>γ> + S + δzz, (54)

where in this case δzz is the approximate error of P̄ ∗zz.
There are three remaining important approximations that have to be defined

prior to the performance analysis, i.e., the error covariance between the esti-
mate and measurement error, between the estimate and communication error, and
between the measurement and communication error. These values are P̄ ∗xy =
E[ēxē

>
y ], P̄ ∗xz = E[ēxē

>
z ] and P̄ ∗yz = E[ēyē

>
z ]. With (41), (46) and (51), we have

P̄ ∗xy = P̄ ∗xxĤ
>β> + δxy, (55)
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P̄ ∗xz = P̄ ∗xxĜ
>γ> + δxz, (56)

and

P̄ ∗yz = βĤP̄ ∗xxĜ
>γ> + δyz, (57)

by denoting δxy, δxz and δyz as the approximation errors caused by P̄ ∗xy, P̄ ∗xz and
P̄ ∗yz, respectively. Notice that, in above three equations, we have also applied the
conditions in Assumption 2.

4.4. Performance Analysis
The following assumptions are made prior to analysing the performance of the

proposed filter.

Assumption 5. There exist non-zero real numbers α, β, γ, f , h, g, and α, β, γ, f ,
h, g, for every k > 0, k ∈ Z∗, such that

α2I 6 ααT 6 α2I, (58)

β2I 6 ββT 6 β
2
I, (59)

γ2I 6 γγT 6 γ2I, (60)

f 2I 6 F̂ F̂ T 6 f
2
I, (61)

h2I 6 ĤĤT 6 h
2
I. (62)

g2I 6 ĜĜT 6 g2I. (63)

Assumption 6. There exist positive real numbers p, q, r, s, δxx, δyy, δzz, δxy, δxz,
δyz, and p, q, r, s, δxx, δyy, δzz, δxy, δxz, δyz, for every k > 0, k ∈ Z∗, such that

pI 6 P 6 pI, (64)

qI 6 Q 6 qI, (65)

rI 6 R 6 rI, (66)

sI 6 S 6 sI, (67)

δxxI 6 δxx 6 δxxI, (68)

δyyI 6 δyy 6 δyyI, (69)
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δzzI 6 δzz 6 δzzI, (70)

δxyI 6 δxy 6 δxyI, (71)

δxzI 6 δxz 6 δxzI, (72)

δyzI 6 δyz 6 δyzI, (73)

Some lemmas stating the upper and lower boundaries of some parameters are
declared as follows.

Lemma 2. Let the conditions in Assumptions 5 and 6 holds. Let the error of the
prior estimates of the nonlinear Kalman filter be approximated using (41), (46)
and (51). With conditions in Assumptions 5 and 6 hold, the prior covariance
matrices are bounded by

α2f2p+ q + δxx 6 P̄ ∗xx 6 α2f
2
p+ q + δxx, (74)

β2h2(α2f2p+ q + δxx) + r + δyy 6 P̄ ∗yy 6 β
2
h

2
(α2f

2
p+ q + δxx) + r + δyy,

(75)

γ2g2(α2f2p+ q + δxx) + s+ δzz 6 P̄ ∗zz 6 γ2g2(α2f
2
p+ q + δxx) + s+ δzz, (76)

(α2f2p+ q + δxx)Ĥ>β> + δxy 6 P̄ ∗xy 6 (α2f
2
p+ q + δxx)Ĥ>β> + δxy, (77)

(α2f2p+ q + δxx)Ĝ>γ> + δxz 6 P̄ ∗xz 6 (α2f
2
p+ q + δxx)Ĝ>γ> + δxz, (78)

(α2f2p+ q + δxx)βĤĜ>γ> + δyz 6 P̄ ∗yz 6 (α2f
2
p+ q + δxx)βĤĜ>γ> + δyz.

(79)

Lemma 3. Let the error of the prior estimates of the nonlinear Kalman filter be
approximated using (41), (46) and (51); and the prior error covariances bounded
by (74)-(79). Then, with the conditions in Assumptions 5 and 6 hold, the square
of communication gain is bounded by

c2I 6 CC> 6 c2I (80)

where

c2 =
γ2g2(α2f 2p+ q + δxx)2 + δ2

xz

(γ2g2(α2f
2
p+ q + δxx) + s+ δzz)2

(81)

and

c2 =
2
(
γ2g2(α2f

2
p+ q + δxx)2 + δ

2

xz

)
(γ2g2(α2f 2p+ q + δxx) + r + δzz)

2
. (82)
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Lemma 4. Let the error of the prior estimates of the nonlinear Kalman filter be
approximated using (41), (46) and (51); and the prior error covariances bounded
by (74)-(79). Then, with the conditions in Assumptions 5 and 6 hold, the square
of Kalman gain is bounded by

k2I 6 KK> 6 k
2
I (83)

where

k2 = 0 (84)

and

k
2

=
4
(

(β
2
h

2
+ c2β

2
γ2h

2
g2)(α2f

2
p+ q + δxx)2 + δ

2

xy + δ
2

yz

)
(β2h2(α2f 2p+ q + δxx) + r + δyy)

2
, (85)

with c2 as the upper bound of the square of communication gain.

Lemma 5. Let K in (29) and C in (30) be bounded by (83) and (80), respectively.
Define M = I −KβĤ − CγĜ. Then, with the conditions in Assumptions 5 and
6 satisfied, the boundaries of MM> are given by

m2I 6MM> 6 m2I (86)

where
m2 = 0, (87)

and

m2 = 3
(

1 + k
2
β

2
h

2
+ c2γ2g2

)
. (88)

Lemma 6. Consider the posterior estimate and covariance update of the dis-
tributed nonlinear Kalman filter formulated by (23) and (31), respectively. Define
a matrix M = (I − KβĤ − CγĜ). If the conditions in Assumptions 5 and 6
hold, then, at every time step k ∈ Z∗, the inverse of the covariance, denoted by
Π = P−1, satisfies the following condition

Π 6 ϕΠ−, (89)

where

ϕ =
1

α2f 2m2

(
1 +

m2q + k2r + c2s+m2δxx

α2f
2
m2p

)−1

. (90)
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Proof. The error of the posterior estimate is êx = x− x̂ which, by plugging (23)
into it, gives

êx = ēx −Kēy − Cēz (91)

where ēx = x − x̄, ēy = y − ȳ and ēz = z − z̄. The measurement and com-
munication errors can be substituted by the approximate values in (46) and (51),
respectively. From this substitution, we have

êx = Mēx −Kw − Cs (92)

where M = (I − KβĤ − CγĜ). Recall the definition of posterior covariance
matrix P = E[êxê

>
x ]. Plugging (92) into it gives

P =MP̄ ∗xxM
> +KRK> + CSC> (93)

in which Assumptions 2 and 3 have been applied. Notice that (93) uses the ap-
proximate value of P̄xx. Using (52), one may have (93) expanded to

P =M
(
α−F̂−P−(α−F̂−)> +Q+ δ−xx

)
M> +KRK> + CSC>. (94)

Rearranging the terms, we have

P =Mα−F̂−
(
I + (Mα−F̂−)−1KRK>(Mα−F̂−)−>(P−)−1

+(Mα−F̂−)−1CSC>(Mα−F̂−)−>(P−)−1

+(α−F̂−)−1Q(α−F̂−)−>(P−)−1

+(α−F̂−)−1δ−xx(α−F̂−)−>(P−)−1
)
P−(Mα−F̂−)>. (95)

Using Assumptions 5 and 6 along with Lemmas 3, 4 and 5, (95) can be ex-
pressed as

P >α2f 2m2

(
1 +

m2q + k2r + c2s+m2δxx

α2f
2
m2p

)
P−. (96)

Therefore, with Π = P−1, taking the inverse of (96) results in the inverse covari-
ance matrix bounded by

Π 6 ϕΠ−, (97)
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where

ϕ =
1

α2f 2m2

(
1 +

m2q + k2r + c2s+m2δxx

α2f
2
m2p

)−1

. (98)

This completes the proof.

The following theorem guarantees the boundedness of the proposed distribued
nonlinear Kalman filter.

Theorem 2 (Stochastic Stabilty of Distributed Nonlinear Kalman Filter). Let the
posterior estimator of the distributed nonlinear Kalman filter be given by (23),
and the covariance by (31). Suppose that Assumptions 1 to 6 hold. Then, there
exists a stochastic function V > 0 such that the estimate error is bounded in mean
square exponentially.

Proof. To proof the theorem, first, let us choose a stochastic function candidate

V = ê>x Πêx (99)

where êx = x− x̂ and Π = P−1. To show the boundedness of V , multiplying the
inequality in the condition (64) by ê>x êx results in

1

p
‖êx‖2 6 V (êx) 6

1

p
‖êx‖2 (100)

v‖êx‖2 6 V (êx) 6 v‖êx‖2. (101)

Therefore, since p and p are positive, V is positively bounded with v, v > 0. Since
V is positively bounded, it can now be used to show that there exist µ > 0 and
0 < σ 6 1 such that the following inequality holds

E[V +(ê+
x )|êx] 6 µ+ (1− σ)V (êx). (102)

Let us consider the stochastic function (101) at time step k + 1, i.e.,

V +(ê+
x ) = (ê+

x )>Π+ê+
x . (103)

Using the definition of the errors for the estimates, i.e., ē+
x = x+ − x̄+, ē+

y =
y+ − ȳ+, and ē+

z = z+ − z̄+, and plugging them into the posterior estimate (23)
at time k + 1 yields the posterior error ê+

x = x+ − x̂+ given by

ê+
x = ē+

x −K+ē+
y − Cē+

z . (104)
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By inserting (41), (46) and (51) at k + 1 to (104), we have

ê+
x = M+αF̂ êx +M+v −K+w+ − C+s+ (105)

where M+ = (I −K+β+Ĥ+ − C+γ+Ĝ+).
Plugging (105) into (103) and taking its expected value with respect to êx lead

to

E[V +(ê+
x )|êx] = E[(M+αF̂ êx)>Π+M+αF̂ êx + (M+v)>Π+M+v

+ (K+w+)>Π+K+w+ + (C+s+)>Π+C+s+|êx] (106)

where Assumptions 3 and 4 have been utilised. With Assumptions 5, applying
Lemma 5 and Lemma 6 to the first term of (106) leads to

E[(M+αF̂ êx)>Π+
xxM

+αF̂ êx|êx] 6 E[tr
(
α2f

2
m2ê>x Π+

xxêx

)
|êx]

6 α2f
2
m2ϕV (êx) (107)

in which we have applied the properties of matrix trace tr(E[A]) = E[tr(A)] and
tr(AB) = tr(BA). Similarly, employing Assumptions 1, 5, and 6, along with
Lemmas 3, 4, and 5 to the second, third and fourth terms of (107) give

E[(M+v)>Π+
xxM

+v + (K+w+)>Π+
xxK

+w+ + (C+s+)>Π+
xxC

+s+|êx]

6
1

p

(
m2q + k

2
r + c2s

)
(108)

where the properties of a trace of matrix have also been used. By denoting

µ =
1

p

(
m2q + k

2
r + c2s

)
, (109)

σ = 1− α2f
2
m2ϕ, (110)

and choosing some constants such that 0 6 σ 6 1 and µ > 0, we are now able to
write (108) as

E[V +(ê+
x )|êx] 6 µ+ (1− σ)V (êx). (111)

Therefore, by employing Lemma 1, we can conclude that êx is exponentially
bounded in mean square with

E[‖êx‖2] 6
v

v
E[‖êx(0)‖2](1− σ)k +

µ

v

k−1∑
l=1

(1− σ)l. (112)

This completes the proof.
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Algorithm 1 Distributed Nonlinear Kalman Filter
Input: x(0), Q(0), R(0), S(0), F (·), H(·), G(·).
Return: x̂, P .
If k = 0, execute
Initialisation:

1: Initialise the estimator x̂ and covariance P :

x̃ = [x̂(0)> 0p 0q 0r]
>, for x̂(0) = E[x(0)],

P̃ = diag(P (0), Q(0), R(0), S(0)), for P (0) = E[(x(0)− x̂(0))(x(0)− x̂(0))>].

If k = 1, 2, . . . , Tk, Tk <∞, execute
Prediction:

1: Calculate the sigma vector X− using Eq. (9).
2: Propagate the sigma vector through F (·),H(·),G(·) using (10), (14) and (17),

respectively.
3: Calculate the prior estimate x̄ using (11), ȳi using (15), and z̄ using (18).
4: Calculate the prior covariances P̄xx, P̄yy, P̄zz, P̄xy, P̄xz, and P̄yz using Eqs.

(12), (16), (19), (20), (21), and (22), respectively.
Update:

Each agent exchanges its predicted value to its neighboring agents.
Update the Kalman and communication gains, K and C using Eqs. (29) and
(30), respectively.
Update the posterior estimate x̂ using Eq. (23).
Update the posterior covariance P using Eq. (31)).

1: Update the Kalman and communication gains, K and C using Eqs. (29)
and (30), respectively.

2: Update the posterior estimate x̂ using Eq. (23).
3: Update the posterior covariance P using Eq. (31)).

4.5. Practical Algorithm
This proposed algorithm can generally be applied to solve many estimation

problem in, but not limited to, engineering field via distributed computation of the
filter whenever the dynamical process of a system, measurement and communi-
cation update can be formulated as in the discussion. For example, this algorithm
can further be employed to estimate the Bellman value and Q function in rein-
forcement learning, such as solving the learning problem in [30] in a distributed
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manner using our proposed filtering algorithm. In the case of sensor network, this
algorithm can also be employed to estimate a spatial information of an area, which
will be discussed in the next section.

The procedure of implementing the proposed distributed nonlinear Kalman
filter is summarised in Algorithm 1. In the beginning, to implement the algorithm
in a distributed manner, one should supply some initial values of the augmented
state variable and the augmented covariance matrix in each agent. Afterwards,
once the system starts, in every iteration each agent will locally perform the pre-
diction step based on the latest available estimate value and its covariances using
unscented transformation technique. This prediction step produces the prior esti-
mate values and their covariance and cross-covariance matrices. The final stage
of each iteration is called the update stage. In this stage, each agent will have to
exhange its local prior estimate values and their covariance matrices to its neigh-
boring agents based on the network topology. This step is followed by calculating
the new posterior estimate value and its covariance matrix. These prediction and
update procedures repeat iteratively.

5. Application to Distributed Coverage Control

In this section, we implement the proposed distributed nonlinear Kalman filter
algorithm to specifically solve an existing problem in sensor network. The prob-
lem considered in this section is the field estimation of coverage control problem.
This part is extended from our previous work in distributed coverage control with
known information distribution elaborated in [22].

5.1. Locational Optimisation
Consider n robots deployed in a convex set Q ∈ Rd, and its connection topol-

ogy represented by graph Gn(Vn, En). The Laplacian of this graph is denoted by
Ln. The set containing the position of robots is denoted by P = {p1, p2, . . . , pn}.
In the real environment, the sensing quality of i-th sensor might be affected by
noises around it. Therefore, we need to design a controller that is able to drive
the robot towards the optimal position to acquire the physical quantity at the point
q ∈ Q.

Sensing unreliability function ρ(‖q − pi‖), ρ : R+ → R+, denotes a function
that provides the quantitative information of the sensing performance at point q
monitored by agent i at pi. We assume the sensing unreliability function to be
isotropic, increasing and convex. In the sense of this unreliability function, the
isotropic, increasing and convex sensing function means the sensing quality at
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point q sensed by robot i decreases proportionally with the distance ‖q − pi‖ –
the greater is the value of sensing unreliability function, the worse is the sensing
quality.

Density function, or information distribution function, is a measure of infor-
mation probability in an area. It indicates the importance of a quantity to measure
at the particular point q ∈ Q. In this case, density function is denoted as φ(q),
φ : Q 7→ R+.

After the sensing unreliability function and density function are described,
we are now ready to introduce the locational optimisation problem. Notice that,
having P as the network configuration, we are able to use the Voronoi partition of
Q described as

Ri = {q ∈ Q|‖q − pi‖ 6 ‖q − pj‖, ∀i ∈ Vn, j 6= i}.

Thus, locational optimisation is defined as a problem aiming to find the best lo-
cation of a group of agents within an area according to a particular cost function.
With the given descriptions, the corresponding cost function of locational optimi-
sation is formulated as

H(P) =
n∑

i=1

∫
Ri

ρ(‖q − pi‖)φ(q)dq. (113)

It can be seen that the best locations of the sensor are achieved ifH is minimized.
Under the convexity assumption of the sensing unreliability function, by using
the properties of convex function in [31], it can be concluded that the objective
function is convex in P .

Furthermore, by employing the concepts of rigid body, we have the mass,
moment of inertia and centroid of i-th Voronoi region expressed as

MRi
=

∫
Ri

φ(q)dq, IRi
=

∫
Ri

qφ(q)dq, and CRi
=
IRi

MRi

, (114)

respectively. Therefore, applying the parallel-axis theorem and choosing ρ(‖q −
pi‖) = ‖q − pi‖2, the cost function in (113) can equivalently be formulated as

H(P) =
n∑

i=1

HRi
+

n∑
i=1

MRi
‖pi − CRi

‖2, (115)

which is also convex. The augmented expression of (115) over the network, we
may write

H(P) = HR + (p− CR)>MR(p− CR), (116)
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whereHR =
∑n

i=1HRi
, p = vecn(pi), CR = vecn(CRi

).
Since the Delaunay triangulation is applied to generate Voronoi partition with-

out limited communication range, in this coverage scenario we will always have
an undirected and connected Delaunay graph of the network.

5.2. Distributed Optimisation
In this part, the coverage controller from distributed optimisation point is

briefly elaborated. Let the augmented vector of the position of robots be defined
as p = vecn(pi)

> ∈ Rnd, for i ∈ Vn, and the augmented Laplacian matrix of the
Delaunay graph as L̂ = L ⊗ Id ∈ Rnd×nd. From our previous result in [22], the
distributed expression of cost function of coverage problem (113) can be formu-
lated as

min
pi

H(P) =
n∑

i=1

∫
Ri

ρ(‖q − pi‖)φ(q)dq, (117a)

s.t. L̂(p− CR) = 0, (117b)

taking CR = vecn(CRi
) ∈ Rnd, for i ∈ Vn, as the offset value.

Subsequently, we augment the constraint to the objective function using the
Lagrange multiplier method. The Lagrangian of this coverage problem, H̃ : Rnd×
Rnd → R, with disagreement function of consensus protocol is

H̃(p, ν) =H + ν>L̂(p− CR) +
1

2
(p− CR)>L̂(p− CR), (118)

where ν ∈ Rnd defines the Lagrangian multiplier of the constraint. Thus, the
control input and Lagrangian multiplier update, which is derived by taking the
gradient of H̃(p, ν) with respect to p and ν, respectively, can be expressed as

u = −2αMR(p− CR)− βL̂(p− CR)− γL̂ν, (119a)

ν̇ = ηL̂(p− CR), (119b)

where α, β, γ, η ∈ R+.
To apply the estimation update from the online field estimator, CRi

in the
control input is modified to be ĈRi

such that the control input of agent i is given
by

u = −kp(p− ĈR)− kcL̂(p− ĈR)− kiL̂
∫ tb

ta

(p− ĈR)dt. (120)

Notice that, in the above expression, we have simplified the gains expression by
choosing kp, kc, ki ∈ R+ to be constant gains.
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5.3. Field Estimation
In this estimation scenario, we consider the information distribution of an area

can be expressed as
φ(q) = K(q)>θ, (121)

withK : Q 7→ Rm denoting a vector of basis function that is known by each robot
[25] [32]. Weight θ ∈ Rm here denotes an unknown parameter to estimate. From
(114), it can be seen that the mass MRi

of the centroid CRi
must be greater than

zero. It also implies that φ(q) > 0. Therefore, a boundary must be set, i.e.,

θl > θ, for l ∈ {1, 2, . . . ,m}, (122)

with θ > 0 denoting the lower bound of l-th entry of θ.
Afterwards, several estimation variables are defined. θ̂i and φ̂i denote, respec-

tively, the estimate weight and information distribution of robot i. Let φ̂i = K>θ̂i
denote the estimate of φ of i-th robot. Then, we may have the estimate of mass,
moment of inertia and centroid of Voronoi region formulated as

M̂Ri
=

∫
Ri

φ̂i(q)dq, ÎRi
=

∫
Ri

qφ̂i(q)dq, and ĈRi
=
ÎRi

M̂Ri

, (123)

respectively.
By letting φi be the measurement value read by sensor i, the estimation error of

θ and φ can, respectively, be expressed as θ̃i = θ− θ̂i and φ̃i = φi− φ̂i = K(q)>θ̃i.
With these notations, we have the error between true and estimate value of the
rigid body properties in the form of

M̃Ri
=

∫
Ri

K>(q)θ̃idq, ĨRi
=

∫
Ri

qK>(q)θ̃idq, (124)

and

C̃Ri
=
ĨRi

M̃Ri

. (125)

Therefore, the distributed field estimation of the coverage control problem is
solved if the following conditions are satisfied:

1. lim
k→∞
‖pi − ĈRi

‖ = 0, for i ∈ Vn,

2. lim
k→∞
K>θ̃i = 0, for i ∈ Vn.

It can also be concluded that if φ̂i = φ, then M̂Ri
= MRi

, ÎRi
= IRi

and
ĈRi

= CRi
.
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5.4. Distributed Estimation with Laplacian-based Graph
To obtain the estimation of the centroid required in the control law (120), the

distributed nonlinear Kalman filter we have designed in Section 4 is utilised.
Consider the estimation dynamics, consisting of the weight of the density

function, sensor reading and communication dynamics which, in augmented ex-
pression, are given by

θ+ = θ + v, (126)
ψ = φ(q, θ) + w, (127)

τ = L̂θ + s, (128)

respectively. Note that θ = vecn(θi), ψ = vecn(ψi), τ = vecn(τi), v = vecn(vi),
w = vecn(wi), s = vecn(si) and L̂ = Ln ⊗ Ip.

Since in this application the network topology is modelled using the Laplacian
matrix, the posterior estimator in (23) may be rewritten as

x̂ = x̄+K(y − ȳ)− CL̂(x̄− x). (129)

Let the element-wise expression of (129) be given by

x̂i = x̄i +Ki(yi − ȳi) + Ci

∑
j∈Ni

((x̄j − xj)− (x̄i − xi)) , for i ∈ Vn. (130)

Since each agent is assigned to track the same dynamical process, we have xi =
xj = x. Thus, the posterior estimator of the Laplacian-based communication
topology can be reduced to

x̂i = x̄i +Ki(yi − ȳi) + Ci

∑
j∈Ni

(x̄j − x̄i) , for i ∈ Vn. (131)

The coverage control procedure with the Kalman-based estimator is summarised
in Algorithm 2.

6. Numerical Experiments

For comparison, two simulation scenarios are presented to estimate the spa-
tial information distribution of an area and drive a group of robots to estimate
the optimal configurations using two different estimation algorithms. The first
scenario, referred to as the modified-consensus observer algorithm, illustrates a
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Algorithm 2 Distributed Coverage Control with Field Estimation

Given information: θ̂(0), Q(0), R(0), S(0).
Return: p.
If k = 0, execute
Initialisation:

1: Initialise the estimator x̂ and covariance P :

θ̃ = [θ̂(0)> 0p 0q 0r]
>, for θ̂(0) = E[θ(0)],

P̃ = diag(P (0), Q(0), R(0), S(0)), for P (0) = E[(θ(0)− θ̂(0))(θ(0)− θ̂(0))>].

2: Calculate Voronoi partitionR.

If k = 1, 2, . . . , Tk, Tk <∞, execute
Control Update:

1: Calculate the new centroid using Eq. (123).
2: Calculate the control input using Eq. (120).
3: Update the position of robot

ṗ = g(p, u).

4: Update the Voronoi partitionR.
Estimation update:

1: With x̂ = θ̂, execute estimation procedures in Algorithm 1.
2: Assign θ̂ = x̂.

drawback arising from using the modified consensus observer in [25]. The second
scenario, referred to as the distributed Kalman filter algorithm, demonstrates the
performance of the proposed distributed nonlinear Kalman filter given in Algo-
rithm 2. The simulations are performed using Python programming language on
a computer with a Linux-based operating system, 2.5-GHz processor, and 4-GB
RAM.

Given n = 12 robots randomly scattered in a square area Q. We consider
the continuous-time dynamics of mobile robots can be represented as a single-
integrator system, i.e.,

ṗ = u, (132)

where p = [x y]T denotes the x − y position, while u = [ux uy]
T is the x − y
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control input. The boundaries of the area are {(0, 0), (0, 1), (1, 1), (1, 0)}; and the
information distribution is in the form of

φ(x, y) = K(q)>θ. (133)

Following the parametrisation in (121), the working area is divided into m = 4
partitions; and the kernel function, K(q) = [K1,K2, · · · ,Km], has elements given
by

Kl =
exp(−1

2
(q − µl)

>Σ−1(q − µl))√
(2π)d|Σl|

,

where d is the dimension of the environment - in this case d = 2. The elements
of the vectorised kernel functions have peaks whose values are given by µ1 =
[0.25, 0.25]>, µ2 = [0.25, 0.75]>, µ3 = [0.75, 0.25]>, and µ4 = [0.75, 0.75]>.
The variances of all partitions are similar with Σl = 0.02I2, for l = {1, 2, 3, 4},
where I2 ∈ R2×2 is an identity matrix. The target value of the weights to track is
θ = [120.0, 2.5, 2.5, 160.0]>. Since the mobile robot and the modified-consensus
protocol are originally in a continuous-time system, in this work we choose to
perform the simulation with sampling time 0.1s.

The parameters required by the coverage controller and the initial values of
the estimated weights, θ̂i, in these two simulations are made identical. Since the
modified-consensus observer requires some parameters to be given, we choose
γ = 3.63, ζ = 0.6 and k = 1.5 to show the oscillation caused by large gains. The
gains chosen here In the distributed Kalman filter, no static constants are set other
than the initial values of estimator and covariance matrix.

By applying the modified-consensus observer algorithm in the first scenario
and the distributed Kalman filter in the second one, we obtain the trajectory of
robots and the Voronoi partitions illustrated in Figs. 1a and 1b, respectively. The
initial positions, final positions and estimated centroids are indicated using red
’x’, blue ’o’ and orange ’x’. From Fig. 1a, it can be seen that there is an agent
that do not converge to the centroid; while according to Fig. 1b all robots can
successfully converge to the estimated centroids.

Related to the performance of field estimation algorithm, the implementation
of the modified-consensus observer yields the convergence results of the estimated
weights θ̂i presented in Fig. 2a; while the distributed Kalman filter yields the con-
vergence results of the estimated weights given in Fig. 2b. These figures shows
that the distributed Kalman filter has successfully driven the estimated weights
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to some values close to the target weights. As comparison, the estimation us-
ing modified-consensus observer shows high-amplitude oscillation with constant
mean of several estimated weights.

The performance of coverage control using the modified-consensus observer
as its field estimator is illustrated in Fig. 3a for convergence of the norm of the
tracking errors ‖pi − ĈRi

‖, and Fig. 4a for the convergence of the objective func-
tion; while results of the coverage control using the distributed Kalman filter are
depicted in Fig. 3b for the convergence of the norm of the errors and Fig. 4b
for the convergence of the objective functions. Since the weights obtained using
the modified-consensus observer do not converge to zero, the errors also do not
converge to zero. According to Figures 3a, the estimated objective function us-
ing the modified-consensus observer has steady state error with the true objective
function. As comparison, using the distributed Kalman filter, the systems are able
to minimise the errors and quickly track the true objective function.

Empirically, in addition to the simulation results presented above, we also cal-
culate the average computation time of 500 iterations of these presented scenarios.
Although there exist variations in the computation time for each iteration, the av-
erage time required to perform the iterations of coverage control with distributed
Kalman filter always less than the one with modified-consensus observer. The
average of the computation time of the first scenario with the modified-consensus
observer varies along the process with average of 37.0349s per iteration, while the
second scenario with our algorithm takes 30.5859s per iteration in average.

From the illustrated figures, it can be concluded that: 1) Both estimators can
be used to estimate the information distribution; 2) It is true that the simulation
result in [25] has shown non-oscillating results with some chosen gains. However,
the algorithm still requires the gains to be tuned but no exact upper boundary of
the estimation gains has been given. Failure to pick the right gains may lead to
oscillating performance and steady-state tracking error of the objective function
as shown in this comparative simulation; 3) Unlike the algorithm in [25], the pro-
posed distributed nonlinear Kalman filter needs no constant gains to be tuned to
produce stable performance; 4) The computation time, which can also indicate the
computation burden, of the distributed Kalman filter is faster than the modified-
consensus observer algorithm in [25]. This might be caused by a number of sur-
face integrations performed to adjust some variables in the modified-consensus
observer where the distributed Kalman filter requires no additional surface inte-
grations in the estimation process.
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Figure 1: Position trajectories and optimal centroidal Voronoi regions.
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Figure 2: Convergence result of the estimated weights of the density function θ̂i,∀i ∈ Vn

7. Conclusions

In this paper, the distributed nonlinear Kalman filter with general communi-
cation scheme has been presented to estimate a dynamical process with additive
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Figure 3: Convergence result of error ‖pi − ĈRi
‖,∀i ∈ Vn.
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(b) Using Kalman-consensus estimator.

Figure 4: Convergence result of the objective function.

white Gaussian noises in the system, measurement and communication. The opti-
mal Kalman and communication gains have been provided such that the estimator
has capability of using measurement and communicated information to produce
an estimate value. Using this mechanism, the consensus protocol combined with
Kalman filter, which was reported in literature, could be considered as a special
case of the proposed algorithm. After designing the estimation algorithm, we
have analytically demonstrated that the estimate error is exponentially bounded in
mean square with regards to some boundaries. As an example, the algorithm has
also been applied to coverage problem scenarios with a previously-unidentified
information distribution. Combined with the coverage control protocol in our
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previous results [22], the proposed algorithm was used to estimate the density
function and find the optimal deployment of robots. Two scenarios of numeri-
cal experiments have been carried out as a comparison with the existing method
used for field estimation in coverage control problem. The results have shown
that the proposed distributed nonlinear Kalman filter algorithm have outperformed
the modified-consensus observer in [25] by successfully estimating the unknown
density function of an environment indicated, driving all agents to the optimal
centroid positions and minimise the true objective function without oscillations.
Moreover, the simulation results indicated that the proposed algorithm needs less
computation time than the existing modified-consensus observer.
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