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ABSTRACT
The Sunyaev-Zeldovich (SZ) effect has long been recognized as a powerful cosmological
probe. Using the BAHAMAS and MACSIS simulations to obtain > 10, 000 simulated galaxy
groups and clusters, we compute three temperature measures and quantify the differences
between them. The first measure is related to the X-ray emission of the cluster, while the sec-
ond describes the non-relativistic thermal SZ (tSZ) effect. The third measure determines the
lowest order relativistic correction to the tSZ signal, which is seeing increased observational
relevance. Our procedure allows us to accurately model the relativistic SZ (rSZ) contribution
and we show that a & 10%−40% underestimation of the relevant SZ cluster temperature is ex-
pected when applying standard X-ray relations. The correction also exhibits significant mass
and redshift evolution, as we demonstrate here. We present the mass dependence of each tem-
perature measure alongside their profiles and a short analysis of the temperature dispersion as
derived from the aforementioned simulations. We also discuss a new relation connecting the
temperature and Compton-y parameter, which can be directly used for rSZ modeling. Sim-
ple fits to the obtained scaling relations and profiles are provided. These should be useful for
future studies of the rSZ effect and its relevance to cluster cosmology.

Key words: Cosmology - Cosmic Microwave Background; Cosmology - Galaxy Clusters;
Cosmology - Theory - galaxies: clusters: intracluster medium - methods: numerical

1 INTRODUCTION

Galaxy clusters constitute some of the largest structures in our Uni-
verse, forming from the highest overdensities of the cosmic web.
This makes them excellent probes for cosmology, sensitive to fun-
damental cosmological parameters, such as the matter density and
power spectrum (e.g., Voit 2005; Allen et al. 2011; Kravtsov &
Borgani 2012; Weinberg et al. 2013), as well as interesting in their
own right. These clusters, for our purposes, can be considered as
giant pockets of hot ionized plasma, which induce X-ray emission
through both bremsstrahlung and line-emission processes (see, e.g.,
Sarazin 1986, for a review). They are also observable through the
Sunyaev-Zeldovich (SZ) effect (Zeldovich & Sunyaev 1969; Sun-
yaev & Zeldovich 1970), a unique spectral signature caused by the
up-scattering of photons from the Cosmic Microwave Background
(CMB) by free electrons with temperatures of Te & 107 K (i.e.,
& 1 keV).1 For reviews of the SZ effect see, e.g., Carlstrom et al.
(2002) and Mroczkowski et al. (2019).

Galaxy clusters comprise of giant dark matter haloes in which
baryonic plasma is located – while some of this gas cools to form
galaxies, the majority remains as ionised plasma (Briel et al. 1992),
also known as the intracluster medium (ICM). The ICM is often

? E-mail: elizabeth.lee-2@postgrad.manchester.ac.uk
1 In fact, X-rays can be induced already by plasmas at Te & 105 K.

modeled as an isothermal sphere of electrons, allowing for sim-
ple mass-temperature relations to be derived. However, both direct
measurements and hydrodynamical simulations indicate that clus-
ters are neither isothermal nor spherical (e.g., Nagai et al. 2003;
Vikhlinin et al. 2009). As such, instead of directly obtaining the
thermodynamic temperature, we obtain volume-averaged tempera-
tures, weighted according to the physical process they derive from.
It thus becomes necessary to understand the appropriate weight-
ing of each observable. In particular, it has long been established
(Pointecouteau et al. 1998; Hansen 2004; Kay et al. 2008) that X-
ray and SZ measurements do give rise to different temperatures
once realistic cluster atmospheres are being considered.

The SZ distortion is dominated by the thermal SZ (tSZ) sig-
nal (Zeldovich & Sunyaev 1969), which gives rise to a redshift
and temperature independent spectrum. However, relativistic cor-
rections at typical cluster temperatures lead to both a broadening
and drop in magnitude of this signal at fixed y-parameter. The
rSZ effect is caused by the fact that for typical cluster tempera-
ture kTe ' 5 keV (for mass M ' 3 × 1014 M� h−1) the electrons
move at a fair fraction of the speed of light (3/c ' 0.1−0.2). In this
case, the classical non-relativistic tSZ formula (Zeldovich & Sun-
yaev 1969) is no longer sufficient, and higher order temperature
corrections become relevant (Sazonov & Sunyaev 1998; Challinor
& Lasenby 1998; Itoh et al. 1998). The rSZ effect can be efficiently
modeled using SZpack (Chluba et al. 2012, 2013); however, ac-
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2 E. Lee et al.

curate estimates for the y-weighted temperature are required. The
y-weighted temperature is also relevant to precise computations of
the SZ power spectra and the interpretation of SZ data from Planck,
as rSZ can cause biases in cosmological parameters such as σ8 (Re-
mazeilles et al. 2019).

In this paper, we examine the differences between three tem-
perature measures; the first is a proxy for the observed X-ray tem-
perature Tsl (the so-called spectroscopic-like temperature; Maz-
zotta et al. 2004); the second is a proxy for the Compton-y pa-
rameter, Tm (i.e., the mass-weighted temperature), which is closely
related to the line-of-sight pressure and Compton-y parameter
through a cluster; the third is a measure that allows us to account for
the relativistic temperature correction to the tSZ distortion (rSZ),
Ty (the y-weighted temperature; Hansen 2004; Remazeilles et al.
2019). The latter in particular so far has not been studied system-
atically. However, due to the growing sensitivity of planned an on-
going CMB experiments, rSZ is now coming into reach, and future
observations with the Simons Observatory and CCAT-prime ought
be able to extract this signal (e.g., Erler et al. 2018).

Precise SZ power spectrum calculations furthermore depend
directly on the clusters’ average pressure and y-weighted tem-
perature profiles. Cluster pressure profiles have been extensively
studied using simulations (e.g., Nagai et al. 2003; Battaglia et al.
2010, 2012) and also have been calibrated against X-ray observa-
tions (Arnaud et al. 2010; Planck Collaboration et al. 2013). The
y-weighted temperature profiles again have not been studied di-
rectly but will affect the precise shape of the relativistic temperature
power spectrum (Remazeilles et al. 2019), which could become a
novel cluster observable (Remazeilles & Chluba 2019; Basu et al.
2019) for future CMB missions similar to CORE (Melin et al. 2018)
and PICO (Hanany et al. 2019). Here, we carry out a comparative
study of various temperature profiles with a particular focus on ob-
taining a new prescription of the y-weighted temperature profiles.

We base our study on BAHAMAS (McCarthy et al. 2017,
2018) and MACSIS (Barnes et al. 2017a), two giant hydrodynam-
ical simulations generating over 14,000 haloes of mass ' 1013

M� to 4 × 1015 M� with outputs at redshifts of z = 0, 0.5 and
1. These allow us to generate temperature-mass relations for each
of our temperature measures as well as a detailed understanding of
their temperature profiles. To concur with the work of Barnes et al.
(2017a), we also consider the effects of restricting our analysis to
only the hot and relaxed subsets of clusters within our samples. We
will, however, find little change in the conclusions for these cases.

Moreover, since clusters are not isothermal, further correc-
tions to the observed SZ signal must arise. This comes from the
understanding that the distortions are caused by electrons of vary-
ing temperature along the line of sight, and thus will not be com-
pletely modeled by a single temperature. The first corrections to
the signal can be found through a temperature moment expansion
(Chluba et al. 2012, 2013) and is related to the dispersion of y-
weighted temperatures within clusters, which we study systemati-
cally here. Our results suggest that this dispersion scales at around
' 40 per cent of the cluster temperature, but overall leads to neg-
ligible corrections to the rSZ signal (see Sect. 6.1.2). Finally, we
will briefly discuss the relevance of rSZ to determinations of H0
through SZ measurements (Cavaliere et al. 1979; Birkinshaw et al.
1991; Hughes & Birkinshaw 1998; Reese et al. 2002), showing that
it could lead to a systematic shift in the derived H0 values if rSZ is
neglected.

The paper is structured as follows: we clarify the mathemat-
ical meaning behind each of the considered temperature measures
and their purposes in Sect. 2 and describe the simulations used in

Sect. 3. In Section 4, we discuss the cluster-averaged temperature
measures and in Sect. 5 the profiles across the clusters follow. Fi-
nally, we discuss the effects of these temperature measures on com-
mon observables in Sect. 6 and conclude in Sect. 7.

2 DEFINITION OF THE TEMPERATURE MEASURES

In this section, we discuss cluster masses and self-similar redshift
scaling relations and how they are related to simulation quantities.
We will then describe the formulations of our three temperature
measures; the spectroscopic-like temperature, a proxy for X-ray
temperatures, and the mass and y-weighted temperatures, both re-
lated to the SZ effect. The mass-weighted temperature will be seen
to be a proxy for the integrated electron pressure, or the Compton-y
parameter, within clusters, while the y-weighted temperature char-
acterizes the precise shape of the SZ distortion. Finally, we will dis-
cuss the higher order y-weighted temperature moments, and their
relationship to the observed SZ signals.

2.1 Formalism

In general, we can define our dark matter haloes to be spheres colo-
cated with the cluster such that the total mass M∆ contained within
a radius R∆ is given by

M∆ =
4
3

R3
∆
∆ ρcrit(z). (1)

Here, ρcrit is the critical density for a flat universe. We set ∆ =
500 for our main analysis (although a discussion for ∆ = 200 is
presented in Appendix C). In such a halo, for an isothermal sphere
of gas, we can find the temperature to be

kBT∆ =
GM∆µmp

2R∆
. (2)

This is equivalent to the virial temperature and can be used as a
reference. As usual, G is the gravitational constant, mp the proton
mass and µ the mean molecular weight of the plasma2. We note that
in this work we always use the true (simulation) mass of clusters
rather than any proxy for the observed mass, (e.g., the hydrostatic
mass used in Barnes et al. 2017a), which may introduce biases.
Scaling relations: Assuming self-similarity, cluster temperatures
are a simple function of their mass and redshift (Kaiser 1986). We
can recall that the critical density of the Universe is

ρcrit ≡
3H2

0
8πG

E2(z)

E(z) ≡ H(z)
H0
=

√
Ωm(1 + z)3 +ΩΛ.

(3)

Here, H0 is the Hubble constant and the exact form of E(z) is cos-
mology dependent. From this, a simple geometrical consideration
and an assumption of isothermality in the viral sphere gives us that

M∆ ∝ E2(z)R3
∆

T∆ ∝ E2/3(z)M2/3
∆

.
(4)

Temperature measures: Since clusters are not isothermal, we must
instead define weighted averaged temperatures appropriate to each
observable (i.e., X-ray, SZ and rSZ effect). That is,

〈T〉 ≡
∫
wTdV∫
wdV

, (5)

2 The mean molecular mass is set to µ = 0.59.

MNRAS 000, 1–19 (2019)



SZ temperature scalings 3

where, as we will discuss in the rest of this section, it has been
found that for spectroscopic-like, mass-weighted and y-weighted
temperatures we have w = n2 T−α (Mazzotta et al. 2004), n and
n T , respectively, and α ' 0.75.
Connection to simulations: To find all aforementioned quantities
from our simulations we must discretise this process. We first ig-
nore all particles with a temperature lower than 105.2 K as they
make a negligible contribution to the total X-ray or SZ emission
(cf., Barnes et al. 2017a). We can then convert our weighted vol-
ume integrals, to weighted sums, recalling that µmp n dV = dm.
With this procedure we can compute the various temperature mea-
sures discussed below.

2.2 X-ray Temperatures

X-ray emission, from hot clusters (kBT & 3 keV),3 is primarily
caused by bremsstrahlung radiation within the ICM, and as such
has classically been modeled by the emission-weighted tempera-
ture. This can be motivated from a simple consideration of the X-
ray surface brightness,

Sx =
1

4π(1 + z)3

∫
n2(l)Λee(T(l), Z) dl . (6)

Here, n(l), T(l) are the electron density and temperature along line
of sight l and Λee(T, Z) is the X-ray emissivity measured by the
instrument within the energy band used for the observation; z is the
clusters redshift and Z is the metallicity of the ICM.
Spectroscopic-like temperature: It has been shown that, due to the
non-isothermality of the gas, it is more appropriate to use a mod-
ified weighting determined by fitting the X-ray spectrum with a
thermal emission model (Mazzotta et al. 2004; Vikhlinin 2006).
This leads to the spectroscopic-like temperature,

Tsl ≡
∫

n2 T1−αdV∫
n2 T−αdV

(7)

where α ' 0.75. When compared to observational results, this
matches well with data from both Chandra and XMM-Newton, pro-
vided the temperatures are all sufficiently high, e.g., kT & 3.5 keV.
Hydrodynamical simulations have been used to calibrate Tsl to the
observed ‘X-ray’ temperatures and confirm the differences between
various X-ray derived temperatures weightings (e.g., Mathiesen &
Evrard 2001; Rasia et al. 2014; Biffi et al. 2016).

We also can see that both measures, Eq. (6) and (7), lead to
an n2 dependence in the X-ray temperature measurements – and
in general a higher weighting of cooler, denser gas. This indicates
(see Sect. 4.1 and 5) that the X-ray measurements are far poorer
probes of the outskirts of clusters, where the electron density drops
significantly, compared to the SZ measurements, which we will see
has a linear dependence on n. This has also been seen observation-
ally since it requires very long exposures to observe the outskirts of
clusters through X-ray emission (e.g., Simionescu et al. 2011).

2.3 SZ Temperatures

Mass-weighted temperature: The classical tSZ effect gives rise to

3 This cut off is in large part due to the the dominance of emission lines
rather than bremsstrahlung in the observed X-ray spectra below these tem-
peratures.

an intensity distortion that can be written in terms of the Compton-
y parameter as (Zeldovich & Sunyaev 1969):

∆Iν ≈ I0y
x4ex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4
)
≡ I0yg(x). (8)

The spectral function g(x) for the tSZ effect is defined here implic-
itly. To characterize the photon energy we use x = hν/kBTCMB,
where TCMB is the temperature of the CMB, kB the Boltzmann
constant. The intensity normalization constant furthermore is

I0 =
2(kBTCMB)3

(hc)2
= 270.33

[
TCMB

2.7255K

]3
MJy/sr. (9)

The Compton-y parameter, as previously mentioned, is directly re-
lated to the integrated electron pressure, Pe, along the line of sight
and is typically written as,

y ≡
∫

kBT
mec2 dτ = σT

kB
mec2

∫
nTdl =

σT
mec2

∫
Pedl . (10)

Here, τ is the Thomson scattering optical depth and all the other
constants have their usual meaning.

The second equality in Eq. (10) leads to an expression for the
mass-weighted temperature, when we extend this formalism to a
volume-averaged, rather than a line-of-sight, integral:

Tm ≡
∫

nTdV∫
ndV

=

∫
Tdm∫
dm

. (11)

Here m now refers to the mass of the electron gas. We can see that
the volume averaged Compton y parameter is

Y = σT
kB

mec2

∫
nTdV ∝ M Tm (12)

where M denotes the total gas mass, i.e., Y is the total thermal
energy of the gas.
y-weighted temperature: Including the rSZ corrections, the SZ dis-
tortion is no longer temperature/mass independent and the dimen-
sionless signal has to be expressed as S(ν) = ∆I/I0 = y f (ν,Te).
Since the temperature varies within each cluster, we can then con-
sider a temperature moment expansion about some pivot temper-
ature T̄e for each cluster, as detailed in Chluba et al. (2013) and
Remazeilles et al. (2019), to obtain

S`m(ν) ' f (ν, T̄e)y`m + f (1)(ν, T̄e)y(1)`m +
1
2

f (2)(ν, T̄e)y(2)`m (13)

to second order in ∆Te = Te − T̄e. For more generality, we have
expressed S(ν) using spherical harmonic coefficients, introducing
y
(k)
`m
= [∆Tk

e y]`m, where [X]`m denoted the spherical harmonic
expansion of X . These will become relevant for the y2-weighted
temperature measure introduced below. Here, the derivatives of the
SZ signal are f (k) = ∂k

T
f (ν,T) and, if applied to isothermal clus-

ters, one has y
iso,(k)
`m

= ∆Tk
e y`m.

Equation (13) motivates the use of a pivot temperature that
eliminates the first order term in S(ν). We therefore introduce the
y-weighted temperature, by requiring

∫
y
(1)
00 dV = 0, i.e.,

Ty ≡
∫
[T y]00dV∫
y00dV

=

∫
yTdV∫
ydV

=

∫
nT2dV∫
nTdV

. (14)

Thus, setting T̄e = Ty , removes the first order correction to the
volume average of S00, yielding

〈S00(ν)〉 ' f (ν, T̄e)〈y00〉 +
1
2

f (2)(ν, T̄e)〈y(2)00 〉. (15)

MNRAS 000, 1–19 (2019)
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As shown below, even the second order term can become relevant
for our simulation clusters. This is consistent with previous studies
(Chluba et al. 2013), but here we derive explicit scaling relations.

In Planck Collaboration et al. (2016a), the assumption that
f (ν, T̄e) ' f (ν, 0), or equivalently that the observed signals are
well-modeled by the classical tSZ distortion, was used. However, in
Remazeilles et al. (2019), it was shown that due to rSZ this is insuf-
ficient. Relativistic corrections will lead to a lower amplitude of the
SZ signal at fixed y-parameter as well as broadening of the SZ sig-
nal, which causes a miscalibration and underestimation of the true
Compton-y values for each cluster. In Sect. 6.1, we find that this re-
sults in a ' 10 − 20 per cent correction to the derived y-parameters
for typical clusters, and thus is worth quantifying further.
Higher order temperature moments: While using the y-weighted
temperature removes the first-order correction to the SZ signal,
higher order terms proportional to y

(k)
`m

remain. We thus define the
volumetric y-weighted temperature moments as

Ty
k
=

∫
∆Tk

e ydV∫
ydV

=

∫
y(T − Ty)kdV∫

ydV
. (16)

From this we see that4 Ty
0 = 1 and Ty

1 = 0. While we could theo-
retically expand to arbitrarily many orders of ∆T , in this paper we
will consider only the lowest order correction, i.e., Ty

2 . We can see
that this is closely related to the intrinsic variance of the electron
temperature within the cluster gas. To match the dimensionality of
the y-weighted temperature, we will later discuss σ(Ty) = (Ty

2 )
1/2

instead, which provides a proxy for the standard deviation of tem-
perature variation within clusters.

The higher order temperature moments further change the de-
tailed shape of the SZ signal, and thus may cause additional bi-
ases to SZ measurements if omitted (Chluba et al. 2013). We will
see that from simulations this standard deviation is around ' 40
per cent of the cluster temperature (Sect. 4.3); however, overall
this is likely to only lead to a . 0.5 per cent correction in y (see
Sect. 6.1.2).
Compton-y power spectra: As discussed in Remazeilles & Chluba
(2019), to correctly calculate the tSZ power spectrum, we need tem-
perature profiles and in particular the y-weighted temperature pro-
files. They show that for the tSZ power spectrum one requires a y2-
weighted or Cyy

`
-weighted temperature as a pivot. This demands

that for each multipole `, 〈y∗
`
y
(1)
`
〉 = 0, for an isotropic homoge-

neous, spherical cluster. For an isothermal temperature profile for
each cluster, this yields

kT̄yy
e,` =

〈kTe(M, z)|y` |2〉
〈|y` |2〉

=
CTe,yy
`

Cyy
`

. (17)

This assures only second order terms in ∆Te remain in the theoreti-
cal tSZ power spectrum, CtSZ

`
(ν) ∝ |y`m |2. With the outputs from

this work we can improve the calculation by using explicit temper-
ature profiles and their Fourier transforms for the computation of
the relativistic temperature power spectra.

4 In the work Chluba et al. (2013), a different definition for the SZ tem-
perature moments is used. Firstly, they take the mass-weighted temperature
moments Tm

k
, so that their moments are weighted by ndV rather than ydV .

Furthermore, they use dimensionless moments ω(k) = Tm
k+1/(T

m)k+1. In
the limit of many moments, the definitions in terms of Tm and T y are
equivalent and yield the same result.

Table 1. Cosmological parameters used in the BAHAMAS and MACSIS
simulations.

Simulation ΩΛ Ωm Ωb σ8 ns h†

BAHAMAS 0.6825 0.3175 0.0490 0.8340 0.9624 0.6711
MACSIS 0.6930 0.3070 0.0482 0.8288 0.9611 0.6777

† where h ≡ H0/(100 km s−1 Mpc−1)

3 SIMULATIONS

We use a combined sample of clusters from the BAHAMAS and
MACSIS simulations, both of which we explain in more detail be-
low. From the BAHAMAS project (McCarthy et al. 2017), we ob-
tain > 14, 000 haloes with masses M500 ≥ 1013 M� . However,
these simulations provide a limited numbers of high mass clus-
ters. These are supplemented by the compatible MACSIS project
(Barnes et al. 2017a), which generated 390 clusters with M > 1015

M� . The MACSIS simulations were designed to match the hydro-
dynamical properties of the BAHAMAS simulations and use com-
patible cosmologies (see Table 1).

We note that there is a small redshift discrepancy between
the BAHAMAS sample at z = 0.5 and the MACSIS sample at
z = 0.46. However, since the redshift dependence of our quantities
are slight (as we discuss below) this requires no correction. Further
we acknowledge there is a mismatch in cosmological parameters,
however, we believe that this has little effect on our measured val-
ues, and again, is left unadjusted.

In this section, we highlight the key properties of these simula-
tions and discuss how we combine the samples. We also discuss the
subsamples used within the work of Barnes et al. (2017a) for hot
and relaxed clusters, and define the versions we will explore later
in this paper. We also explain the core excision procedure used for
X-ray observations and how it is recreated in simulations.

3.1 BAHAMAS Simulation

The BAHAMAS simulation (McCarthy et al. 2017, 2018) is a cal-
ibrated version of the model used in the cosmo-OWLS simulations
(Le Brun et al. 2014). Following this work, the BAHAMAS sim-
ulation consists of a 400 Mpc/h periodic box. For the simulations
used in this paper, the cosmological parameters used are consistent
with those from Planck 2015 (Planck Collaboration et al. 2016b),
and can be seen in Table 1.

The full run has 2 × 10243 particles, yielding a dark mat-
ter mass of mDM = 4.5 × 109 M�/h and initial baryon particle
mass of mgas = 8.1 × 108 M�/h. The Plummer equivalent grav-
itational softening length was fixed to 4 kpc/h in comoving units
for z > 3 and in physical coordinates thereafter. The simulations
were run with a version of the smoothed particle hydrodynamics
code P-GADGET3, which was last publicly discussed in Springel
(2005) but has since been greatly modified to include new subgrid
physics as part of the ambitious OWLS project (Schaye et al. 2010).
The feedback calibration was set to match the observed gas mass
fraction of groups and clusters and galaxy stellar mass function at
z = 0 (see McCarthy et al. 2017, for details).

3.2 MACSIS Simulation

As already mentioned, to extend the BAHAMAS simulations to
higher mass haloes the MACSIS project (described in detail in
Barnes et al. 2017a) was developed. This entails a sample of 390
massive clusters. To obtain this number of massive clusters, with

MNRAS 000, 1–19 (2019)
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Table 2. Selected halo counts with M500 > 1013 M� , and with a mass cut
between the BAHAMAS and MACSIS samples at the given values.

Redshift BAHAMAS MACSIS M500,cut/M�

0 14333 295 6.03 × 1014

0.5/0.46a 10791 263 3.55 × 1014

1 6344 186 2.00 × 1014

a that is, 0.5 for BAHAMAS and 0.46 for MACSIS.

current computational resources, the MACSIS sample was gener-
ated using a zoomed simulation technique from a very large vol-
ume Dark Matter only simulation. This ’parent’ simulation was a
periodic cube with a side length of 3.2 Gpc. The cosmological pa-
rameters were taken from the Planck 2013 results combined with
baryonic acoustic oscillations, WMAP polarization and high mul-
tipole moments experiments (Planck Collaboration et al. 2014) and
are summarised in Table 1.

The MACSIS sample was then selected by finding all haloes
with a Friends-of-Friends (FoF) mass, MFoF > 1015 M� ,
and grouping them into logarithmically spaced bins of width
∆log10(MFoF) = 0.2. The bins with masses above 1015.6 M� had
less than 100 haloes each and all were selected. The other bins were
further subdivided, each into 10 logarithmic bins, from each of
which 10 haloes were randomly selected – this ensured the sample
is not biased to low masses by the steep slope of the mass function.

These selected clusters were then re-simulated using the
zoomed simulation technique (Katz & White 1993; Tormen et al.
1997) to recreate the chosen sample at an increased resolution com-
pared to the parent simulation. Both a DM only and full gas physics
resimulation was then carried out. The latter, which we use in this
work, had a dark matter mass of mDM = 4.4 × 109 M�/h and gas
particle inital mass of mgas = 8.0×108 M�/h. The softening length
was fixed as in the BAHAMAS simulation. The simulations were
again run with the same version of the smoothed particle hydro-
dynamics code P-GADGET3. The resolution and softening of the
zoom re-simulations were deliberately chosen to match the values
of the periodic box simulations of the BAHAMAS project. Barnes
et al. (2017a) further shows that the MACSIS clusters reproduce the
observed mass dependence of the hot gas mass, X-ray luminosity
and SZ signal at redshift z = 0 and z = 1

3.3 Combined Sample

We combine these simulations to allow for clear comparison with
the work in Barnes et al. (2017a), taking only haloes with M500 >
1013M� . Further we take a mass cut at each redshift, as detailed
in Table 2, above which we take only MACSIS haloes and below
which we take only BAHAMAS haloes. The final halo counts at
each redshift are detailed there. Haloes are identified in both sim-
ulations through the friends-of-friends method described in Mc-
Carthy et al. (2017). The centre of these haloes is taken to be the
minimum of the local gravitational potential, and any sub-haloes
lying outside a given characteristic radius, R∆, are ignored.

3.4 Core Excised Averages

It is a common technique in X-ray observations to exclude the cen-
tral regions of clusters to reduce the scatter in X-ray properties.
These core-excised quantities are often considered to be better mass
proxies (Pratt et al. 2009). Within simulations, this can have an
added effect of reducing the potential impact of the central (more

Table 3. Selected Halo counts with M500 > 1013 M� , and with a Mass cut
between the BAHAMAS and MACSIS samples at the given values for the Hot
and Relaxed samples.

Redshift BAHAMAS MACSIS M500,cut/M� M500,min/M�

Hot Sample

0 271 295 6.03 × 1014 2.29 × 1014

0.5/0.46a 87 263 3.55 × 1014 2.09 × 1014

1 4 186 2.00 × 1014 1.91 × 1014

Relaxed Sample

0 165 188 6.03 × 1014 2.29 × 1014

0.5/0.46a 50 178 3.55 × 1014 2.09 × 1014

1 3 126 2.00 × 1014 1.91 × 1014

a that is, 0.5 for BAHAMAS and 0.46 for MACSIS.

uncertain) physics inside the cores. In the work of Barnes et al.
(2017a), the excluded region is that of r < 0.15R500.

Theoretically it would be possible to core excise all of our
volume averaged quantities, not just the X-ray calculations. How-
ever, it can be seen that while Tsl has a large correction under core-
excision – raising the temperatures increasingly at higher masses,
but undergoing a more complex increase across the entire mass
range – both Ty and Tm undergo very minimal modifications [the
mean corrections are (TCE − Tfull)/TCE = −0.011 ± 0.065 and
−0.003 ± 0.015 for each measure respectively5].

In general, SZ measurements are flux and resolution limited
and the full volume average is taken (since taking core excised val-
ues would be difficult in practice). We will thus use the full volume
averages for Tm and Ty , but the core excised values for Tsl.

3.5 Hot and Relaxed Sub-samples

As previously noted, the models for the X-ray temperatures, all
rely on continuum emission, while at low cluster temperatures the
effects of spectral lines begin to seriously affect the observed X-
ray spectra. Accordingly, following the analysis of Mazzotta et al.
(2004), we note that the spectroscopic-like temperature is validated
only for higher temperatures. This motivates the use of a Hot Sam-
ple, where Tsl is a more reliable proxy for the X-ray emission. To
avoid biases, we introduce a mass cut by finding the minimal mass
that fulfills Tsl(M) ≥ 3.5 keV – this ensures that the maximal tem-
perature at a given mass is Tsl(M) & 3.5 keV.6 These cuts arise
at log10(M500) = 14.36, 14.32, 14.28 M� for z = 0, 0.5 and 1
respectively, with the results summarized in Table 3.

The final sample is a relaxed subsample of these Hot clusters.
Although there are many ways to define a relaxed halo (see, e.g.,
Neto et al. 2007; Duffy et al. 2008; Klypin et al. 2011; Dutton &
Macciò 2014; Klypin et al. 2016; Barnes et al. 2017b), in this paper
we follow the criteria used in Barnes et al. (2017a), that is

Xoff < 0.07; fsub < 0.1 and λ < 0.07,

where Xoff is the distance offset between the point of minimum
gravitational potential in a cluster and its centre of mass, divided by
its virial radius; fsub is the mass fraction within the virial radius that

5 These are the values for the volume average over R500; over R200 instead,
arguably a more applicable volume for SZ measurements, these corrections
reduce to −0.010 ± 0.048 and −0.004 ± 0.009 respectively.
6 In the work of Barnes et al. (2017a), they take the smaller sample of all
clusters with Tsl > 5 keV
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Figure 1. A comparison of the projected temperatures through a range of clusters at z = 0, relative to T500 for that cluster. These projections are taken within
spheres of radius R200 about the cluster centre of potential. From left to right we see Tsl, Tm and T y , and from top to bottom clusters of various masses.
Since these are just the projections for single clusters, they are subject to variations from the median expected behaviours. To guide the eye, on each plot a
dotted line at R500 has been drawn, alongside a hatched region at 0.15 × R500, which would be the core-excised region. These clusters have been chosen with
Tsl,500 > 3.5 keV so that it is an appropriate proxy for the X-ray temperature.

is bound to substructures and λ is the spin parameter for all particles
within R200. It should be noted that, as in Barnes et al. (2017a), this
is not a small sample of the most relaxed objects, but instead a
simple metric to remove those that are significantly disturbed.

4 CLUSTER TEMPERATURE SCALINGS

To understand the cluster-wide, i.e., volume-averaged tempera-
tures, it is instructive to first consider the contributions to each
temperature measure, given by each part of the cluster. These lead
to variations between the temperature measures calculated over
spheres of regions R500 (as typical for X-ray measurements) and
R200 (a proxy for the viral radius and arguably more applicable for
SZ measurements). In this work we will present all our figures with
respect to the R500 sphere, but tabulate all our fits for both regions

in the Appendix. In this section we will discuss both of these ele-
ments, and present our results for the volume-averaged temperature
measures from the simulations. These allow us to generate both
temperature-mass scaling relations as well as some temperature-
temperature scaling relations. Finally, we will discuss the volume-
averaged values for σ(Ty), the standard variation of Ty within clus-
ters.

4.1 Causes for differences in temperature measures

From an illustrative point of view, we can examine the different
temperature measures over clusters through the projected temper-
atures in a selection of clusters. These, as can be seen in Figure
1, give us an indicative understanding of various features (e.g.,
shocks, outflows, sub haloes and filamentary behaviours) that might
exist within haloes under each temperature measure.
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While we generally see that Ty > Tm > Tsl
7, it is also the

case that at larger radii, Ty is more susceptible to the structures
within the haloes. This can be seen by the increase in visibility of
features in the haloes from the Tsl to the Ty projections. This can
be understood fairly simply: Tsl depends on the square of the local
density, so in regions of high density – i.e., the core of the clus-
ter or in dramatic substructures, this will be clearly visible. On the
other hand, Ty depends on both the local temperature and density
(i.e., the local pressure), so it is more affected by areas of diffuse,
but warm gas, and thus highlights shocks. This particularly weights
the observed temperatures in the outer regions, e.g., R500 → R200
which is barely probed by the X-ray temperatures (as reflected in
Tsl). We see that Tm typically lies between these other two temper-
ature measures.

4.2 Volume-Averaged Temperature Measures

First, we will discuss the difference between the temperature mea-
sures averaged over spheres of R500 and R200, and then quantify
the temperature relations to the cluster masses, and the covariance
between these values for each temperature measure. We will then
discuss both the temperature-temperature fits and the fits for the
Hot and Relaxed subsamples.

4.2.1 The effect of averaging over volumes of radii R500 or R200

It is important to determine the difference between averaging over
spheres of radii R200 and R500. X-ray measurements, in particu-
lar, are almost always taken over R500, and as such R500 values
are those commonly used in the literature. However, it can be ar-
gued that R200, as a better proxy for the virial radius, should also
be widely considered. Since R500 generates a smaller region, it en-
capsulates only the hotter core with less of the cooler outskirts of
the cluster. As such, regardless of temperature measure, it returns a
higher temperature than that obtained within R200.

This can be seen graphically in Figure 2. Here, we have plot-
ted the fractional variation between R500 and R200 values. These
appear to be predominantly redshift independent; while there are
variations between each redshift, they are all within the scatter. Sec-
ondly we see that for all measures the differences between the two
measures become smaller at higher masses. This may in fact be an
averaging effect due to the the distribution of temperatures in clus-
ters (see, Section 5), and the mass-dependent changes to the profiles
and thus the fall off of temperatures nearer the outskirts of clusters.
These will lead to the averaged effects that can be seen here.

We see in general that the changes to Tm are the most acute,
followed by Tsl, with Ty undergoing the smallest corrections. How-
ever, this is still a sizeable effect: ' 10 per cent at M200 = 1014 M�
(' 20 per cent for Tm). This indicates that this should potentially
be considered in more detail for future SZ measurements.

For the rest of the paper we will use R500 to reproduce the re-
sults commonly cited in cluster papers – the analysis has also been
carried out across a radii of R200 with few qualitative variations.
The full tabulated numerical results can be found in Appendix C.

4.2.2 Temperature-mass scaling relations

In Figs. 3 and 4, we display the temperature mass scaling relation-
ships for our three temperature measures at each redshift. Figure 3
shows the redshift dependence of each temperature measure indi-
vidually, relative to self-similar scaling – i.e., scaling out E(z)2/3;

7 This can be seen especially in the features, but is generally evident in the
slightly brighter overall colours of the halos from left to right.
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Figure 2. A comparison of the temperature measures depending on whether
they are calculated over a sphere of radius R200 or R500 against the mass of
the same clusters. We also display the redshift dependence of the same. The
vertical dot-dashed, dashed and dotted lines here depict the mass cut offs
between the BAHAMAS and MACSIS samples. The datapoints and errors
show the median, 84th and 16th values for various mass bins, while the solid
line and shaded regions demonstrate the best fits (discussed in Section 4.2.2)
for the same.

while Figure 4 shows the the results divided through by Tm, the
mass weighted temperature, so that the variations between the three
measures are more visible. We see, firstly, that the spread in the data
is far larger for Tsl than for Ty or Tm. This furthers the common ob-
servation that the SZ signal, YSZ, provides a tighter mass proxy than
the X-ray signal. 8

In Figure 3, we can see that in general, the redshift variation
of each temperature measure is similar to the self similar relation
– i.e., T ∝ E(z)2/3. In particular, while with increasing redshift

8 Though, of course, this has many factors, and generally relies on the ac-
curate calibration of the SZ mass relation.
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Figure 3. A comparison of the three temperature measures at three differ-
ent redshifts. The plotted points show the medians of the binned data, with
the error bars demonstrating their 16th and 84th percentiles. The solid lines
show the fits to the data, with the shaded regions showing the 68 per cent
confidence region. The horizontal lines in the top panel show the 3.5 keV
cutoff for the reliability of Tsl as a proxy for the X-ray temperature.

Ty falls a little at low masses and has a slightly steeper mass de-
pendence, overall the y-weighted temperature is consistent within
the intercluster variation with self-similar evolution. The mass-
weighted temperature shows more departures from self-similarity,
and Tsl shows the greatest departure from this E(z)2/3 scaling. The
spectroscopic-like temperature both falls in magnitude and has in-
creasing curvature, indicating that at the highest masses, the differ-
ences under redshift evolution are magnified.

From a physical point of view, this can be understood since at
higher redshifts, the haloes have had a shorter cooling time, lead-
ing to denser cooler gas, and thus a lower Tsl. However, the pres-
sure of the gas is largely fixed to match the potential wells of the
haloes themselves (as they are roughly in hydrostatic equilibrium)
and reduces the redshift dependent Ty , which is less affected by the
evolution of the clusters themselves.
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Figure 4. A comparison of the three temperature measures on a cluster by
cluster basis. Here we consider the temperature measures with respect to
Tm . The solid lines indicate the line of best fit of the data sets, while the
dotted lines show the 16th and 84th percentiles. The horizontal dot-dashed
line lies at T/Tm = 1.1 to guide the eye. In the case against T y we can see
that the minimum values of the means lie at 1.11, 1.16 and 1.21 for z = 0,
0.5 and 1 respectively.

In Figure 4, we can see that Ty has a larger magnitude than
Tm and Tsl, while the latter two are at points consistent, with Tm

higher at both higher and lower redshifts. Furthermore, we see hints
of a strong cluster by cluster correlation in the values of Ty and Tm,
from the & 10 − 20 per cent shift between these two values. This
may be a consequence of the calibration scheme used in defining
the spectroscopic-like temperature, which is focused on clusters at
low redshifts with masses M500 ' 1014 M� , but more work would
have to be done to fully analyse this effect. In fact, with respect to
Tsl we can see that there is a correction for Ty of & 10 per cent (or
& 40 percent) at z = 0 (z = 1), increasing greatly to both higher and
lower masses with equality around 2.3×1014 M� (1.8×1014 M�).
We also find that the differences between these three temperature
measures increase strongly with redshift. We see that at z = 0, for
instance, Tm and Tsl lie within each other’s uncertainties, while by
z = 1 they are clearly separated. This means that accounting for
these corrections will become even more important when consid-
ering distant clusters, which are typically those more easily probed
through the SZ signal.
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Table 4. Best fit values for the medians of each temperature measure at
each redshift. The errors are determined through bootstrap methods. The fit
parameters correspond to those described in Equation (18).

M500 A B C 〈σlog10T 〉

z = 0.0

T y 4.763+0.015
−0.015 0.581+0.003

−0.002 0.013+0.001
−0.001 0.2707 ± 0.0014

Tm 4.248+0.013
−0.012 0.565+0.003

−0.002 0.002+0.001
−0.001 0.2861 ± 0.0012

Tsl 4.295+0.023
−0.025 0.514+0.012

−0.013 −0.039+0.005
−0.005 0.323 ± 0.005

z = 0.5

T y 4.353+0.019
−0.020 0.571+0.006

−0.006 0.008+0.002
−0.002 0.2521 ± 0.0016

Tm 3.702+0.013
−0.013 0.546+0.005

−0.004 −0.006+0.002
−0.001 0.2523 ± 0.0019

Tsl 3.474+0.027
−0.025 0.483+0.023

−0.028 −0.051+0.008
−0.010 0.350 ± 0.007

z = 1.0

T y 3.997+0.021
−0.020 0.593+0.004

−0.004 0.009+0.001
−0.001 0.2438 ± 0.0016

Tm 3.237+0.015
−0.017 0.558+0.004

−0.005 −0.005+0.001
−0.001 0.2142 ± 0.0018

Tsl 2.754+0.036
−0.035 0.478+0.015

−0.014 −0.053+0.004
−0.004 0.401 ± 0.004

We can find in general that our data is well modelled by a 3-
parameter fit, which corresponds to a quadratic equation in log-log
space. We will express our values as

E(z)−2/3 T = A
(

M
Mfid

)B+C log(M/Mfid).
keV, (18)

where Mfid = 3 × 1014h−1M� . Hence, a self similar fit around
M ' Mfid, would be given by B = 2/3. By simply examining these
fit values9, as tabulated in Table 4, we can immediately see the
differences between the three temperature measures. Here, we have
also tabulated the scatter about the best fit relation by calculating
the root mean squared dispersion across all the haloes according to

σlog10T =

√√√
1
N

N∑
i=1
[log10(Ti/Tfit)]2, (19)

where i indexes all the haloes at a given redshift and Tfit is the value
given by the best fit at the mass, Mi , associated with the halo.

In particular, we see, as previously observed in Figs. 3 and 4,
that Ty appears to be systematically higher than Tm, which itself
lies above Tsl. The gradients of these three temperature measures
seem to match this same pattern. Finally we note that Ty always
have a positive curvature, while Tsl has a strong negative curvature
and Tm seems to develop curvature at higher redshifts. Further, we
note that none of these are consistent with hydrostatic equilibrium
scalings, which would have B = 2/3 and C = 0. While Ty has the
closest gradients to this value for hydrostatic equlibrium, even at
the highest cluster masses the curvature is not sufficient for Ty to
match this scaling.

4.2.3 Covariance of Fits

It is now instructive to understand the spread of cluster tempera-
tures about the best fits of the temperature measures as displayed

9 These fits are for the median of the distributions, in Appendix C1 the fits
to the 84th and 16th percentiles of the data set can be found to clarify the
cluster to cluster spread in temperatures.
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Figure 5. A representation of the covariance of log(Tdata(M)/Tfit(M)) for
the three temperature measures at z = 0. That is, a comparison of the overall
distributions abound the line of best fit for each Temperature measure. The
diagonal parts show the overall distributions for each measure, while the
lower triangle shows the contours of these covariances.

in the previous section. In Fig. 5, we show the covariances at z = 0
of the quantity log(Tdata(M)/Tfit(M)) for each of the three temper-
ature measures. Here Tfit(M) is the tabulated best-fit value, while
Tdata(M) refers to the calculated temperature measure for each clus-
ter. We find that this behaviour is replicated well for z = 0.5 and
1.0.

We can immediately see from the diagonal part that, while
Tm is almost normally distributed in the log-log space (that is, log-
normally), the other two temperature measures have visible skews.
This is most apparent for Tsl, which skews to higher temperatures
with a long tail to lower temperatures, while the y-weighted tem-
perature measure seems only gently skewed to lower temperatures
– thus being almost log-normally distributed in the log-log space.

Furthermore, from the lower triangle we can see the correla-
tions between the temperature measures within each cluster – in
particular the strong interdependency between Ty and Tm. This in-
dicates that on a cluster by cluster basis the difference between the
y-weighted and mass-weighted temperatures are maintained. How-
ever, the spectroscopic-like temperature seems to be distributed in-
dependently of the other two measures.

This strong correlation in the values of Tm and Ty motivates
the exploration of temperature-temperature scaling relations – and
moreover, since these two temperatures define the complete SZ sig-
nal, they motivate a volume averaged Y − Ty scaling relation. This
allows for a self calibration of the relativistic corrections to the SZ
signal, from measurements of the SZ signal itself.

4.2.4 Temperature-temperature scaling relations

As an alternative to a temperature-mass relations, we can consider
temperature-temperature scaling relations. These lead to a predom-
inantly mass independent conversion between temperature mea-
sures. We see that a similar fitting formula [to that in equation (18)]
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Table 5. Best fit values for the medians of each temperature measure against
T500 at each redshift. The errors are determined through bootstrap methods.
The fit parameters correspond to those described in Equation (20).

Trel = T500 A B C

z = 0.0

T y 4.812+0.014
−0.013 0.889+0.003

−0.003 0.041+0.002
−0.002

Tm 4.289+0.011
−0.011 0.873+0.004

−0.004 0.021+0.002
−0.002

Tsl 4.293+0.023
−0.022 0.825+0.018

−0.018 −0.049+0.010
−0.011

z = 0.5

T y 4.964+0.021
−0.019 0.868+0.006

−0.005 0.026+0.004
−0.003

Tm 4.247+0.013
−0.013 0.835+0.005

−0.004 −0.006+0.003
−0.002

Tsl 4.039+0.021
−0.022 0.804+0.010

−0.011 −0.093+0.005
−0.006

z = 1.0

T y 5.108+0.024
−0.024 0.875+0.005

−0.005 0.020+0.003
−0.003

Tm 4.196+0.017
−0.016 0.846+0.004

−0.006 −0.010+0.003
−0.003

Tsl 3.681+0.029
−0.029 0.807+0.015

−0.015 −0.118+0.009
−0.009

can be used, replacing Mfid with Tfid = 5 keV,

T = A
(
Trel
Tfid

)B+C log(Trel/Tfid).
keV. (20)

Since we have already discussed that the cluster temperature is of-
ten a good mass proxy we will not discuss these fits in much detail
here as they take a very similar form to those against the mass, al-
though the full tables fitting the temperature relations with respect
to Trel = Tm and T∆ can be found in Appendix C. While it is true
that, due to the covariance of Ty and Tm, we find that the spread in
the fits of Ty against Tm are smaller than those against M500, this
effect is minimal.

A shortened selection of the fits against T500 can be found in
Table 5. First, we see that Ty is always the closest temperature mea-
sure to T500, the temperature assuming the cluster is an isothermal
sphere (agreeing with Kay et al. 2008). However, we can see there
is significant curvature in all of these fits alongside the gradient
of the temperature measures being significantly lower than that for
T500, indicating further that the assumption of isothermality often
used in SZ cluster calculations is inaccurate. In fact, we find that
while T500 is an overestimate of Ty for the most massive clusters, it
becomes an underestimate for lower mass, cooler, clusters, partic-
ularly at higher redshifts. This is likely due to the increased AGN
feedback effects driving gas from these lower mass systems. This
would lead to a decreased T500 (which is mass dependent) com-
pared to the y-weighted temperature.
Volume-averaged Y relations: As already noted, Tm forms a strong
proxy for the volume averaged y-parameter, Y . Since this relates to
the amplitude of the SZ signal, while the shape is dependent on Ty ,
it is instructive to consider the scaling of Ty with respect to Y . This
gives us a self-calibrated scaling relationship to determine the rSZ
signal. We use a fit similar to equations (18) and (20),

Ty = A
(

Y
Yfid

)B+C log(Y/Yfid).
keV, (21)

where we take Yfid = 0.0003 Mpc2. These results are shown in
Table 6 – we also tabulate the Y -M relationship in Appendix C3. It
is interesting to observe that while we have used 3-parameter fits,

Table 6. Best fit values for the medians, 84th and 16th percentiles of T y to
Y500 at each redshift. The errors are determined through bootstrap methods.
The fit parameters correspond to those described in Equation (21).

TY −Y500 A B C

z = 0.0

median 5.017+0.012
−0.011 0.3749+0.0014

−0.0018 0.0044+0.0003
−0.0004

84 5.375+0.019
−0.019 0.3654+0.0021

−0.0021 0.0043+0.0005
−0.0005

16 4.732+0.012
−0.012 0.3796+0.0020

−0.0018 0.0046+0.0005
−0.0004

z = 0.5

median 5.745+0.020
−0.020 0.3707+0.0043

−0.0038 0.0034+0.0009
−0.0008

84 6.096+0.027
−0.027 0.3612+0.0035

−0.0039 0.0033+0.0008
−0.0009

16 5.423+0.021
−0.020 0.3772+0.0033

−0.0029 0.0038+0.0007
−0.0006

z = 1.0

median 6.639+0.037
−0.041 0.3693+0.0054

−0.0065 0.0016+0.0011
−0.0013

84 7.029+0.048
−0.047 0.3555+0.0054

−0.0052 0.0008+0.0011
−0.0010

16 6.254+0.036
−0.036 0.3837+0.0056

−0.0052 0.0038+0.0011
−0.0011

there is significantly less curvature in all of these fits to that seen in
our mass-temperature and temperature-temperature relations.

We note that there is no explicit redshift dependence in these
fits – since we would expect from self-similarity both Ty and Y
to scale with E(z)2/3. However, we do see distinct redshift evolu-
tion in our fit parameters; in particular in the normalisation factor,
A, which seems to almost scale ∝ E(z)1/2, increases dramatically
towards higher redshifts. We see a similar but smaller decrease in
the gradient to higher redshifts. However, overall this dependence
shows that at higher redshifts it becomes increasingly important to
consider the relativistic corrections to the SZ signal.

4.2.5 Hot and Relaxed Samples

Finally, it is useful to consider the behaviors of the Hot and Relaxed
samples, as defined in Section 3.5, for which the median fits are
found in Table 7. Here, we have fitted both the hot and relaxed
samples with a simple 2 parameter model10, or equivalently, we
have taken Equation (18), setting C = 0.

While we can see variations in the medians between the Hot
and relaxed samples, we also find that the 16th and 84th percentiles
are wider for the relaxed sample, so that these two samples give fits
that lie within each others cluster to cluster variance. Further, they
agree well with the 3-parameter combined sample fits for both Tm

and Ty , though the fit can be found to be less appropriate for the
spectroscopic-like temperature due to the strong curvature in the Tsl
combined sample fits.

We can also find that, while the relaxed fits’ larger 68 per cent
error region for Ty and Tm seems to be well centred over the er-
rors predicted by the complete combined sample fits, for Tsl these
extend to higher temperatures, indicating that Relaxed clusters are
more likely to have higher spectroscopic-like temperatures. We can
understand this as Tsl is largely driven by the denser central re-
gion, and since more spherical (i.e., more relaxed) clusters are more

10 Since we ultimately find little difference between these values and those
for the whole combined sample, these 2 parameter fits allow for comparison
with other fits found in previous studies.
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Table 7. Best fit values for the medians of each temperature measure for
the Hot and Relaxed Samples against M500 at each redshift. The errors are
determined through bootstrap methods. The fit parameters correspond to
those described in Equation (18), taking C = 0.

Hot Sample Relaxed Sample
M500 A B A B

z = 0.0

T y 4.693+0.028
−0.028 0.633+0.009

−0.010 4.635+0.035
−0.036 0.626+0.010

−0.010
Tm 4.174+0.023

−0.025 0.598+0.019
−0.010 4.147+0.033

−0.034 0.593+0.019
−0.013

Tsl 4.117+0.064
−0.053 0.531+0.043

−0.055 4.206+0.049
−0.051 0.531+0.051

−0.014

z = 0.5

T y 4.335+0.030
−0.027 0.597+0.017

−0.016 4.329+0.040
−0.034 0.598+0.018

−0.016
Tm 3.677+0.018

−0.021 0.561+0.011
−0.011 3.681+0.021

−0.024 0.561+0.011
−0.011

Tsl 3.433+0.034
−0.033 0.457+0.023

−0.099 3.445+0.036
−0.037 0.455+0.025

−0.098

z = 1.0

T y 3.984+0.029
−0.030 0.611+0.016

−0.016 3.974+0.035
−0.035 0.610+0.020

−0.018
Tm 3.235+0.019

−0.023 0.586+0.008
−0.011 3.228+0.023

−0.024 0.581+0.012
−0.013

Tsl 2.745+0.036
−0.049 0.469+0.017

−0.037 2.767+0.036
−0.043 0.473+0.017

−0.027

likely to have a larger region for the same given mass, they are
likely to lead to higher observed values for Tsl.

4.3 y-weighted Temperature Dispersion

As noted in Section 2.3, the second moment of the y-weighted tem-
perature (Ty

2 ) is a measure of the variance of the temperature dis-
tribution within the cluster11. Here we discuss σ(Ty), the standard
deviation and its comparison to Ty . We recall that under a temper-
ature moment expansion about Ty , the leading order correction is
proportional to [σ(Ty)]2 [see Eq. (15)].

In Figure 6, we explore σ(Ty)/Ty and can see that, while there
is a small variation of the values across the mass range, they are
well approximated by a power law (i.e., straight lines in the log-log
space) – which are tabulated in the Appendix (Table C5). Generally
we can see that, at higher redshifts, σ(Ty)/Ty increases and that at
all redshifts increases slightly with increased mass, approximately
scaling as σ(Ty)/Ty ' 0.39 (1+z)0.34 [M500/Mfid]0.022. Since this
redshift evolution closely matches the evolution of Ty with respect
to T500, it may be that σ(Ty) is mainly dependent on T500 or equiv-
alently the potential well of the cluster rather than the specifics of
the substructure. That is, the variation in σ(Ty)/Ty with redshift
with respect to mass, is dominated by the near self similar redshift
evolution of Ty . It is also possible that there is an effect of clus-
ters thermalising over time, since this would explain the increase
in variance for larger clusters and clusters at higher redshifts. How-
ever, since there are no clear differences between the dispersion of
relaxed sample and the combined sample there is little evidence ei-
ther way. In Section 5.2, we will explore the radial profiles of these
values to see that these clusters see almost constant values across
the whole width of the clusters, so that the overall dispersion is
indicative of the dispersion at each point in the cluster.

Generally we find that the data spread is small, with around

11 Recall that this is different from the distribution between clusters at each
temperature, and as such is a measure of the intrinsic temperature variation
within clusters rather than the variation between different clusters.
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Figure 6. The redshift evolution of σ(T y ) =
√
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y
2 with respect to T y , as

a function of M500. The scattered points show the whole dataset, the error
bars show the same data binned and the straight line shows the 2 parameter
best fit of the data.

' 68 per cent of the values for σ(Ty) lying at around 40 percent of
the overall temperature. However, we do see a characteristic small
dip in the values of σ(Ty) in the middle of our mass range (' 2 −
3× 1014 M� at z = 0). This may be because as the masses increase
from ' 1013−1014 M� , the systems become more resilient to AGN
feedback due to the increased potential well. As the masses increase
further, the temperature variance is likely to increase again, due to
the clusters still thermalising (i.e., they are still forming).

5 CLUSTER TEMPERATURE PROFILES

In this section we discuss various cluster temperature profiles. To
find analytic averages of our temperature profiles (to discern be-
tween each in a quantitative manner) we refer to the fits suggested
by Vikhlinin et al. (2006)

Ttot(r) = T0 tcool(r) t(r)

tcool(r) =
xcool + Tmin/T0

xcool + 1

t(r) =
x−at

[1 + xbt ]c/b
.

(22)
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Here we defined xt = r/rt and xcool = (r/rcool)acool . Tcool(r) ac-
counts for the temperature decline of the central region of most
clusters, while t(r) acts as a broken power law with a transition
region, to model the area outside this central region.12

There are two methods of generating profiles for our simu-
lation measurement, each intuitive in different manners. From a
simulation perspective, it is natural to consider a full radial pro-
file, where we bin the particles in spherical shells from the centre
of the cluster, and volume average the particles within each bin.
However, from an observational standpoint, it is perhaps more rel-
evant to consider the line-of-sight profiles, which we will here refer
to as cylindrical profiles. In the next section we will discuss these
radial profiles, as they are those normally discussed of the litera-
ture, while an exploration of the cylindrical profiles can be found
in Appendix B.

In most observational work, the observed line of sight profiles
are deprojected to generate radial profiles, and radial profiles are
compared in the literature. However, we can see from our cylindri-
cal profiles that care must be taken in this deprojection process, as
the different weighting in each temperature measure, lead to com-
plicated variations in the behaviour of the radial and cylindrical
profiles. We will then finally discuss the profiles derived for the
y-weighted temperature moments in Section 5.2.

5.1 Radial Profiles

In Figure 7 we display the radial profiles at z = 0 where we have
sorted the clusters into 5 mass bins (three of which are graphically
displayed); the 5th bin (lowest panel of figure) corresponds to the
selection of clusters from the MACSIS sample, hence the uneven
bin width. In Figure 8, we show the redshift evolution of the clusters
with 13.5 ≤ log10(M500/M�) ≤ 14, which are indicative of the
variation of all mass bins. The median fits of all of these quantities
can be found in Appendix C4.

Firstly, we can see in Figure 7 that Ty is once again systemati-
cally larger than Tm which is in turn larger than Tsl. Further we can
see that this increase appears systematically larger at larger radii.
This is in agreement with our previous observations that the y-
weighted temperature is more attuned to the affects of larger radii.

We can further see that these differences are enhanced at
higher masses (see also, Henson et al. 2017; Pearce et al. 2019).
For instance, we can see that at higher masses Tsl developes a de-
fined downwards turn between R500 and R200 where the density
falls and thus the contribution to the temperature drops markedly.
We also note that as masses increase, the initial peak in the temper-
ature shifts to smaller radii; that is that the cooled central region of
clusters (which generates the cooling flow) becomes proportionally
smaller for higher mass clusters. This indicates that the highly vari-
able inner regions of the clusters will have a smaller effect on the
overall temperatures in higher mass clusters than smaller.

Considering the redshift evolution as seen in Figure 8, we see
that all of the temperature measures evolve self-similarly in the out-
skirts of clusters (r & R500) while the interior appears to heat up
comparatively from high to low redshift. This indicates that there
is some true increase in temperature in the center of clusters not
explained by self-similar evolution, as redshift decreases. The dif-
ferences between the three temperature measures are very small,

12 This model has 8 fit parameters {T0,rcool,acool,Tmin,rt ,a,b,c}, and re-
quires fitting data within the ’core excised region’ to allow the fit to access
the central cooler region.
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Figure 7. The radial profiles of the three different temperatures across 3
different mass bins – note here m500 = M500/M� . As is standard the tem-
peratures have all been scaled by T500 for the same cluster, and the radii
have been scaled by R500. The vertical dotted lines indicate the core region
(0.15 R500) and virial radius (R200) respectively. The solid lines show the
median values at each radial bin across the clusters and the shaded region
the 68 per cent confidence region. The dotted lines show the fits using the
Vikhlinin model.

largely dominated by the overall scaling of the three volume aver-
aged temperature measures.

5.2 Profiles of y-weighted Temperature Moments

We find that the radial and cylindrical profiles for σ(Ty) behave
very similarly across all masses and redshifts, in that they are ap-
proximately constant with respect to T500. This can be seen in
Figure 9. This approximate mass independence matches what we
observe in Figure 6 where we see that σ is a roughly constant
fraction of Ty . Furthermore, we see that under redshift evolution
σ(Ty)(r)/T500 remains roughly constant, suggesting that the vari-
ation in σ(Ty) seen in Section 4.3 is due to the variation of Ty

against T500 rather than reflective of an increase in temperature dis-
persions within clusters at higher redshifts.

However, the values are not entirely constant, we can see
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Figure 8. The radial profile evolution across z for the clusters of masses
M500 = 13.5 − 14 × 1014 M� clusters. This is indicative of the evolution
of all of the clusters, through the profile fits for the others can be found in
Appendix C4. This figure is otherwise arranged as in Figure 7. Recall also
that T500 is defined to be redshift dependent, so is removing the E2/3(z)
dependence. Note, that these are the same clusters traced over the redshift
evolution, so they would appear to have lower masses at higher redshifts.

that at higher masses σ(Ty) rises at higher radii, implying that
as the temperatures fall the variation in the temperature increase.
This makes sense if we suppose the outskirts of clusters to contain
clumpy substructure, leading to cool and hot regions at the same
radii. Similarly we can see that the variation falls off in the central
regions of the clusters, implying that the central region (as mod-
elled in the simulations) are approximately isothermal and we see
little variation.

6 IMPLICATIONS FOR COSMOLOGY

In this section, we will discuss the effects these different tempera-
ture measures have on determining YSZ, and the further effects of
the higher order moments on the determination of the y-weighted
temperature from examining the spectral shape. Finally, we will

0.0

0.5

1.0

1.5

2.0

2.5

T
/T

50
0

13.0 < log10m500 < 13.5

T y

σ(T y)

0.0

0.5

1.0

1.5

T
/T

50
0

14.0 < log10m500 < 14.5

0.1 1
r/R500

0.25

0.50

0.75

1.00

1.25

T
/T

50
0

14.78 < log10m500

Figure 9. The radial profiles of T y and the first moment, σ(T y ) =
√
T

y
2 .

This figure is arranged as in Figure 7.

discuss the effect of these corrections and related ‘corrections’ to
the radial profiles and their impacts on the common method to de-
termine H0 through the SZ effect – this will give us an indicative
view of the magnitude of the necessary corrections.

6.1 Effect on YSZ − M relation

First we recall that, as mentioned in Section 2.3, to second order in
∆T we can express the SZ signal as

S(ν) = y f (ν,Te) + y(1) f (1)(ν,Te) +
1
2
y(2) f (2)(ν,Te). (23)

By setting the pivot temperature Te = Ty , when we take the volume
averages we can find that

∆I ∝ Y f (ν,Ty) + 1
2

Y (2)
T y f (2)(ν,Ty). (24)
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Figure 10. A comparison of the different spectral shapes determined by
Te = T y givenT y = 0, 5 or 10 keV. The blue vertical lines mark the Planck
bands, with the black line at 217 GHz to show the expected mean of the
distribution. These plots were made with SZpack, taking y = 10−4 and
τ = 0.01.

Here, Y is the volume integrated y-parameter and Y (2)
T y = Y Ty

2 =

Y [σ(Ty)]2 relates to the temperature dispersion. In Remazeilles
et al. (2019), it is explained that in the analysis of Planck Collab-
oration et al. (2016a) f (ν,Te) ' f (ν, 0) is implicitly assumed. As
mentioned above this leads to an underestimation of the deduced y-
parameter and also biases the tSZ power spectrum amplitude. Re-
mazeilles et al. (2019) characterise the correction to Cyy (which
is ∝ S2) showing that for Planck it scales as Cyy

`
(Te)/Cyy

`
(0) '

1 + 0.15[kBTe/5 keV], where the electron temperature should be
the y-weighted temperature. Hence, we could approximate the cor-
rection to the SZ signal around the maximum at ν ' 353 GHz as

f (353 GHz,Te)
f (353 GHz, 0) ' 1 − 0.08

[
kBTy

5 keV

]
, (25)

which can also be seen in Fig. 10, where we have plotted the ob-
served distortions we would expect from our scaling relations given
Te = Ty = 0, 5 and 10 keV. In the presence of foregrounds, this
was found to give a reasonable estimate for the effect of rSZ on the
Planck y-analysis (Remazeilles et al. 2019).

When folded into the analysis of YSZ, for Planck this leads to a
systematic mismatch between the observed relativistic temperature
distortions and the magnitude of the integrated pressure from YSZ.
This leads to the calculation that:

Y (Ty)
Y (Ty = 0) ' 1 + 0.08

[
kBTy

5 keV

]
. (26)

The temperatures here refer to those assumed in the analysis of the
spectral shape. We have established above that, for a given mass,
the spectroscopic-like temperature underestimates the y-weighted
temperature in a mass-dependent way by & 9 − 38 per cent. As
such, these relativistic corrections lead to even larger errors in the
calculations of YSZ than X-ray measurements alone would suggest,
especially for hotter clusters or clusters at higher redshifts.

In Remazeilles et al. (2019), a standard X-ray temperature
mass relation was used, indicating Te ' 5 − 7 keV to be a typical
cluster temperature relevant to tSZ power spectrum measurements.
Using our Ty − M relations, we expect this typical temperature to
increase to ' 6 − 9 keV, which could further help reduce apparent
differences in the deduced hydrostatic mass bias seen in various

SZ observables (Remazeilles et al. 2019). For refined estimates our
new Ty − M500 (i.e., the true mass) relations should thus be very
useful.

As previously discussed, we can also consider the Ty − Y
scaling relations to fully calibrate the SZ signal within SZ mea-
surements. That is, we could consider the SZ signal explicitly
as a function of Y , by defining f (ν,Y ) = f (ν,Ty(Y )), such that
∆I ∝ Y f (ν,Y ). This form of self-calibrated scaling allows for an
X-ray independent calculation of the relativistically-corrected SZ
signal, which could theoretically be confirmed by direct checks of
the shape of the signal.

6.1.1 Comparison to other temperature-mass scaling relations

In Remazeilles et al. (2019), they use a temperature-mass scaling
relationship derived from Arnaud et al. (2005) of

kBTX
e ' 5 keV

(
E(z)M500

3 × 1014h−1M�

)2/3
(27)

for estimates. Arnaud et al. (2005) used 10 nearby relaxed galaxy
clusters with masses ranging between (0.8 − 8) × 1014 M� . This
is a form consistent with the results seen in Barnes et al. (2017a),
although the latter extends this work to higher masses, which fit
the simulated hydrostatic mass to the simulated observed spectro-
scopic X-ray temperature using the BAHAMAS and MACSIS sim-
ulations. Equation (27) can now be replaced with our Ty − M500
relation from simulations to avoid conversion issues.

It is commonly known that there is a hydrostatic mass bias be-
tween X-ray derived masses and the true total mass of clusters (e.g.,
Rasia et al. 2006, 2012; Nagai et al. 2007; Meneghetti et al. 2010;
Nelson et al. 2014; Shi et al. 2015; Biffi et al. 2016; Barnes et al.
2017b; Ansarifard et al. 2019) – which can in particular be seen
in comparisons of the X-ray and weak lensing derived masses of
clusters. Weak Lensing, as a probe of the depth of the gravitational
well, gives a closer result to the true mass of clusters than X-ray
observations. This underestimate of the hydrostatic model is due to
the limitations of the assumption of hydrostatic equilibrium within
clusters. In particular, the mass biases calculated to occur from the
MACSIS and BAHAMAS simulations have been discussed in e.g.,
Henson et al. (2017). Generally, this mass bias is considered to be
Mspec ' (1 − b)Mtotal with b ' 0.2, although in fact, this bias is
both mass and redshift dependent (e.g., Henson et al. 2017; Pearce
et al. 2019; but see also Ansarifard et al. 2019).

However, the temperature-temperature scalings discussed in
Section 4.2.4 will hold entirely independently of the mass mea-
sured of a given cluster. As such, any of these scaling relationships
measured to obtain the X-ray temperatures (at high temperatures
where Tsl is an appropriate proxy for the spectroscopic X-ray tem-
perature) can be adjusted by the & 10 − 40 per cent conversion
discussed before between Tsl and Ty .

We furthermore note that for Ty(M) we currently can only
rely on numerical simulations, as no accurate direct measurements
of this variable exist. In computation of the rSZ effect, the scaling
relations given in Table 4 and 6 should thus be most useful and
directly applicable in computations of the SZ power spectra, e.g.,
using Class-SZ (Bolliet et al. 2018).

6.1.2 Corrections from temperature dispersion

While we have focussed on the leading order rSZ correction, the
2nd order correction due to the temperature dispersion is also worth

MNRAS 000, 1–19 (2019)



SZ temperature scalings 15

discussing. As previously previously noted, the volume averaged
dispersion is significant, scaling with the cluster temperatures, i.e.,
σ(Ty) ' 0.4 Ty . However, as we argue now, at the current level of
precision this rSZ correction remains negligible.

Using the asymptotic expansions (e.g., Sazonov & Sunyaev
1998; Chluba et al. 2012), we can express the fully relativistic SZ
signal at low temperatures as:

f (ν, θ) '
(
Y0(ν) + θ Y1(ν) + θ2 Y2(ν) + θ3 Y3(ν) + . . .

)
,

where we note that these θ = kBTe/(mec2), that is, the dimension-
less temperature.13 This allows us to directly calculate an approxi-
mation for the signal associated with the second order corrections,
f (2)(ν, θ) ' (2Y2(ν) + 6 θ Y3(ν) + . . .). As such we can express the
full signal, with second order corrections as,

S(ν) ' y

(
Y0(ν) + θ Y1(ν) + θ2

(
1 +

[
σ(Ty)

Ty

]2
)

Y2(ν) + . . .
)
.

Now, Y2(ν) has an effect on broadening the SZ signal and push-
ing it to slightly higher frequencies – a full explanation of the
functions can be found in Chluba et al. (2012). In particular, at
343 GHz (the frequency most applicable for determining the SZ
signal magnitude in Planck), Y2(343 GHZ)/Y0(343 GHZ) ' 70).
Assuming a cluster temperature of 5 keV, one has θ ' 0.01 and
with σ(Ty)/Ty ≡ 0.4 we find a ' 70 × (0.01)2 × (0.4)2 ' 0.1 per
cent correction to the overall SZ signal stemming from the average
intracluster temperature-dispersion.

It is worth noting that since the radial σ(Ty) is constant even
as the temperature changes (see Figure 9), this correction accord-
ingly will be larger proportionally near the outskirts of clusters.
However, these outskirts also correspond to lower temperatures –
which would both make the signal itself harder to detect, but also
damp further the corrections from the temperature dispersion. More
work must be done to see how different feedback models effect
these values of σ(Ty) – and thus to see if there is any possibility of
them giving detectable results. We also mention that the intercluster
temperature variations, relating to the shape of the mass-function,
should also be carefully considered.

6.2 Applications to the determination of H0

It has long been established that H0 can be determined through
a combination of X-ray and SZ measurements (e.g., Birkinshaw
1979; Jones et al. 2005; Reese 2004; Bonamente et al. 2006; Koz-
manyan et al. 2019). While these are generally less precise than
those calculations from the CMB (e.g., Planck Collaboration et al.
2018) or direct measurements (e.g., Riess et al. 2019), as the sys-
tematics in the approach are being accounted for, they are becoming
both increasingly competitive and complementary.

The general approach for this is as follows (see also Bour-
din et al. 2017; Kozmanyan et al. 2019). From the X-ray data, the
density and temperature profiles can be constrained [i.e., ne(r) and
Tsl(r)], and from the SZ data the pressure profile, Pe(r) can be con-
strained through the measurements of y assuming the distortion is
wholly non-relativistic. This allows for a second temperature pro-
file to be calculated, Tm(r) = ηTPe(r)/ne(r). By assuming these
two temperature profiles are equal, i.e., Tm(r) ≡ Tsl(r), this al-
lows for a measurement of ηT, which can be found to depend on

13 In our range of interest, i.e., temperatures 1 keV -10 keV, θ assumes
values ' 2 × 10−3 − 2 × 10−2.
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Figure 11. An indicative plot of the potential magnitudes of the corrections
to H0. The dashed line is merely to guide the eye. It should be noted that
this is not a full or complete accounting of the corrections, merely a indica-
tion of the necessity of carrying out these two opposing corrections. These
corrections are measured as H0,corr/H0,0. Note: No errors are quoted as this
is a fast calculation and a true representation of the errors would require an
in depth study of the various interlocking factors.

(among other variables) the angular diameter distance, dA. As such,
ηT ∝ d−1/2

A
∝ H1/2

0 , which provides a way to obtain H0 estimates.
Now, in this consideration, we already have two issues, the

first is the estimation of the Pe which, as discussed above, will be
underestimated due to the omission of relativistic effects [exactly
as in Eq. (26)]. The second is the concordance of Tsl(r) and Tm(r),
which, as can be seen in Figure 7, is not an accurate assumption.
We see that, if Tm(r) > Tsl(r), this method leads to an underestima-
tion of the temperature. As such, these two corrections counteract
one another, and we must determine which one is dominant. The
two temperature profiles furthermore have slightly different shapes,
which will additionally bias the derived value for the H0 parame-
ter. However, we do not go into more detail here. Overall, we can
express the correction due to rSZ as,

H0, corr
H0

'
[

P0
Pcorr

] [
Tm

Tsl

]
, (28)

where P0 is the pressure calculated assuming there are no rela-
tivistic corrections. For instance, to estimate the effect, at Ty = 5
keV, we have already determined that Pcorr ' 1.08P0. We can also
use our previous profile fits to estimate the mismatch in the Tm(r)
and Tsl(r) profiles. Since Ty = 5 keV corresponds to a M500 '
5.0 × 1014 M� , we can see this correction as Tsl(r) ' 0.92 Tm(r).
In this specific case, the two corrections match well and cancel each
other, but we can expect that generally not to hold.

In Figure 11, we ran a calculation of the indicative correction
over. While this is not a full or complete accounting of the rSZ
corrections, this exercise indicates that these corrections have the
potential to swing by ' 10 per cent in either direction, tending to
higher values of H0 for lower masses and smaller values for higher
masses. In, for instance, Kozmanyan et al. (2019) the median of
the observed sample of clusters lies at M500 = 7.3 × 1014 M� ,
which would indicate a potential overestimation of ' 4 per cent
(i.e., naively shifting the derived value of H0 to ' 64±3). This indi-
cates a potentially sizeable correction in the deduced values of H0;
however, it is not clear which way this correction will ultimately
fall, and a more careful analysis of the effect should be undertaken,
in particular focusing on the assessment of the error budget.
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At lower masses, we note that this effect will be dominated by
the profiles of the spectroscopic-like temperature – which, below
masses of ' 2.8 × 1014 M� is no longer a good probe of the ob-
served X-ray signal. Furthermore, these calculation are all at z = 0,
while at higher redshifts E(z)−2/3 Ty will remain almost constant
with mass and the higher order corrections may increase; however,
the behaviours of the profiles are harder to predict. The exact de-
tails of this correction should be studied more carefully, including
an in depth comparison of the different radial profiles from Tm and
Tsl.

7 CONCLUSIONS

The importance of rSZ corrections is increasing with growing sen-
sitivity of future CMB experiments. To incorporate the expected
effects on SZ observables reliable temperature-mass scaling rela-
tions and temperature profiles are required. Here, we have greatly
extended the works of Pointecouteau et al. (1998); Hansen (2004);
Kay et al. (2008) to classify, in detail, the three temperature mea-
sure Tsl, Tm and Ty across the mass ranges allowed through the
combined BAHAMAS and MACSIS simulations. We find differ-
ences ' 10 − 40 per cent between the three temperature mea-
sures, with a general trend that Tsl < Tm < Ty . The differences
increase to both higher redshifts, and when the temperature mea-
sures are determined over the virial radius (i.e., R200), as opposed
to the more commonly (and less applicable for SZ measurements)
used radius, R500 (i.e., Figures 4 and 3). We find that Ty scales al-
most self-similarly, i.e., ∝ E(z)2/3, out to z = 1, while Tsl and Tm

both undergo significant evolution relative to this ‘expected’ scal-
ing. Hence, for higher mass clusters, and clusters to larger redshifts
(e.g., those detected in Planck), Tsl is an increasingly poor proxy for
Ty , or equivalently, the rSZ signal will be larger than X-ray mea-
surements would imply. It also suggests that the y-weighted tem-
perature is a better proxy for cluster mass, a possibility that could
be used for self-calibration of cluster masses using rSZ measure-
ments.

We find a strong correlation between Ty and Tm, with Ty &
1.1 Tm at z = 0. While this correction is more complex for Tsl, we
nonetheless find that Ty & 1.09 Tsl at z = 0, with similarity around
M500 ∼ 2.3 × 1014 M� (Tsl ' 3.0 keV) and these values diverging
increasingly to both higher and lower masses, or equivalently tem-
peratures (see Figure 4). We find, moreover, that these corrections
depend very little of the nature of the cluster, i.e., whether they are
relaxed or not. This strong correlation leads to tight scaling rela-
tions between Y , the volume averaged compton-y parameter, and
Ty [see Eq. (21)]. This relationship can be used to calibrate the rel-
ativistic corrections to the SZ signal, from the signal itself. This
allows for an estimate of the rSZ signal in, for instance, the Planck
SZ whole sky maps and in computations of the SZ power spectra,
e.g., using Class-SZ (Bolliet et al. 2018).

On average our findings suggest that X-ray derived temper-
atures underestimate the level of the rSZ by ' 10 − 40 per cent.
For instance, we can estimate a correction for the averaged temper-
ature of clusters in the Planck maps calculated in Hurier (2016);
Remazeilles et al. (2019). These papers determined them to be
TX = 6.8 keV or TX & 5 keV respectively, which would naively
lead to Ty = 8.4 keV or Ty & 5.7 keV, a correction & 15 per cent
in both cases. These differences will also affect the expected value
for the sky-averaged SZ contribution, as calculated in, e.g., Hill
et al. (2015). There a X-ray temperature-mass scaling relation was
used to determine the size of the relativistic corrections, finding a
value of kTe ' 1.3 keV. This could increase to kTe ' 1.6 keV if our

Ty − M relation is used. Given that in particular low mass haloes
(M . 1013 M�) contribute to the average SZ signal, the differ-
ences in this prediction are further amplified by redshift-evolution,
likely leading to another increase of the expected value, although
they may be mediated by the true spectoscopic temperature in such
regimes being poorly modelled by the spectroscopic-like temper-
ature. Measurements of the sky-averaged rSZ effect with future
CMB spectrometers (Kogut et al. 2019; Chluba et al. 2019) could
lead to interesting constraints to feedback models and thus deserves
more attention.

The profiles of these three radial temperature measures show
similar trends (see Figure 7). These differences will be very impor-
tant when interpreting and combining future X-ray and high resolu-
tion SZ profile measurements (e.g., Ameglio et al. 2009; Morandi
et al. 2013). From these projected profiles, it will also be possi-
ble (see Remazeilles et al. 2019) to calculate a corrected power
spectrum for the tSZ effect, which could play a role in reducing
the tension between σ8 found with Planck and the SZ measure-
ments. An understanding of the differences between the three pro-
files could also be useful for quantifying conversions between the
observed X-ray and SZ signals – in particular an understanding of
the different behaviour of Tsl(r) and Tm(r), which are commonly
taken to be identical. These differences can lead to various miscal-
culations where these are used interchangeably, for instance in the
SZ-derived H0 as discussed in Section 6.2.

The intracluster temperature dispersion is found to be almost
mass independent (at around σ(Ty) ' 0.4 Ty , see Figure 6), but
increases slightly toward higher redshifts as a result of cluster evo-
lution. However, we find that this adds little modification . 0.5 per
cent to the SZ signal. Larger effects due to temperature dispersion
could arise from intercluster temperature variation, which directly
relate to the shape of the halo mass function; however, an estima-
tion of this correction is beyond the scope of this paper.

While we have presented a classification of all three temper-
ature measures and the y-weighted temperature dispersion, further
work must be done to establish the independence of these results
from the simulations (i.e., BAHAMAS and MACSIS) used. In par-
ticular, through comparisons to other simulations it will be possi-
ble to assess the robustness of these results with respect to feed-
back models and other aspects of the gas physics used to generate
these clusters. In particular, it would be interesting to understand
how variations of the microphysics between simulations may lead
to differences in the calculated intracluster temperature dispersion,
σ(Ty) and Ty − Y or Ty − M relations. All these could potentially
be used to learn about the dynamical state of the cluster.

Extracting the rSZ signals with future CMB experiments still
presents a challenge (Basu et al. 2019; Chluba et al. 2019). How-
ever, there is work to be done to establish the utility of rSZ quanti-
ties across a variety of cluster models and simulations. Further, the
significant temperature differences from using the more appropriate
temperature measures (Ty rather than TX ), compounded with cor-
rections from the temperature dispersion effects (and higher order
terms to be considered in future works), will lead to improvements
in the ability to interpret the rSZ signal.
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APPENDIX A: ANALYSIS OF THE MASS DEPENDENCE
OF THE QUALITY OF THE FITS

Although we can see from Section 4.2.3 the skewness of the quality
of fits as a whole, across all the data, it is instructive to consider how
the quality of the fit varies over the mass range of the samples. This
can be seen graphically in Figure A1.

Here we have plotted the contours for the percentiles associ-
ated with what would be the 0.5, 1, 2 and 3σ confidence regions
were the data normally distributed against its line-of-best-fit.

The first thing to note is that there is a change over in data
set at M200 ' 1015 M� , on the left is the BAHAMAS data and
on the right the MACSIS. This is of note simply because the data
in the MACSIS set is less dense than that in the BAHAMAS set,
and this will contribute to the increased errors we see to the right of
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Figure A1. A graphical depiction of the spread of data around the T -M500
fits at z = 0. The shaded regions here are the percentile regions associated
with the σ values, were the data spread normally about the mean, that is at
the 0.2-99.8, 2.5-97.5, 16-84 and 31-69 percentiles for the 3, 2, 1 and 0.5σ
regions labelled. The medians of the data are plotted in yellow.

the graph - the errors are driven by lack of data as much as by the
intrinsic scatter.

Secondly we see, especially in Ty , some anomalous results at
low masses, skewing the 2 and 3σ contours dramatically. In Tm, we
can see that the data is in fact roughly normally distributed across
the entire mass range, with roughly constant errors - this skew at
low masses appears to be the only changing factor. In fact, the 3σ
region outside of this skew is, if anything, underrepresented com-
pared to a normal distribution - that is, indicating smaller tails in the
distribution that would be expected. This may, however, be simply
a limitation in the number of clusters in each mass bin to be con-
sidered.

In Ty , however, we see this low mass skew continued strongly
in 2σ but still present to an extent across the entire range. This
corroborates the long tail seen in the distribution of Tsl in Figure
5 – however, it is worth noting that the skew appears to decrease
to higher masses. A similar, but opposite, phenomena is seen in the
Tsl contours, were we see a persistent and strong skew in the data to
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Figure B1. The cylindrical profiles of the three different temperatures
across the 5 different mass bins. This figure is arranged as in Figure 7.

lower temperatures. This indicates that although the fits model well
the median and, even the 1σ variations, it would be inappropriate
to consider this data as normally distributed.

APPENDIX B: CYLINDRICAL PROFILES

The cylindrical profiles, or line-of-sight profiles, are perhaps of
more value observationally than the radial profiles – to create ra-
dial profiles from observations, it is necessary to deproject the line-
of-sight observations. As such it is of use to consider these pro-
files alongside the radial profiles discussed in Section 5. To cre-
ate these cylindrical profiles, for each cluster the central sphere
of radius R200 was first extracted from the simulation14, and then
cylindrical shells were sliced from this sphere along six maximally
spaced lines of sight through the core of the cluster. These 6 lines-
of-sight cylindrical profiles were then averaged, to reduce the influ-
ence of inhomogeneity between the viewing angles in each cluster.

14 This causes some lack of precision very close to these edges as the num-
ber of particles in each bin becomes small.
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We would expect the cylindrical profiles to have similar qualities to
the radial profiles, albeit smoothed.

We can see this in Figure B1. Here we once again observe that
Ty lies at systematically higher temperatures than the other tem-
perature measures. Curiously however, we see (especially at lower
masses) Tm and Tsl becoming somewhat indistinguishable. How-
ever, at larger radii, Tm does always rise above Tsl which could lead
to the observed volume averages. This is a result of the associated
weightings in each temperature measure. Tsl has a n2

e dependence,
which in line-of-sight averages will substantially upweight the cen-
tral hotter regions of the cluster making the overall line of sight ap-
pear far greater relative to Tm than one would naively assume from
the radial profiles. We can also see here that core-excision removes
a dramatic turn down observed in the Tsl profile for higher mass
clusters, which is not seen as clearly in the other two temperature
measures.

Under redshift variation, these cylindrical profiles follow al-
most identical variation to that seen in the radial profiles, so while
tabulated in the Appendix C4, these are not discussed further here.
By definition, in these cylindrical profiles we do not have the outer
regions of the clusters so we cannot compare their behaviours as
we could in the previous section for the radial profiles.

APPENDIX C: BEST FIT VALUES

In the following tables we display the fits for all of the relations
mentioned above. For each scaling relationship, at each redshift, we
bootstrap our fits with 5000 iterations to gain fits for the binned me-
dians of our data and the 16th and 84th percentiles in each of these
bins. Hence, the errors on each value are the bootstrapped errors in
these median fits, 84th and 16th percentile bounding region edges.
This allows the intercluster variance to be calculated – that is, for
example, at some mass, M500, the median y-weighted temperature
at redshift z = 0 is given by Equation (18), using A, B and C given
by the first row of Table C1. However, the 68 per cent confidence
region of that value, given by the intrinsic intercluster variation can
be found through using Equation (18) using parameters given by
rows 4 and 7 of Table C1.

C1 Volume Averages over R500

Tables C1 to C5 show the temperature-mass and temperature-
temperature volume averaged scalings for the sphere of radius
R500.

C2 Volume Averages over R200

Tables C6 to C10 show the same as the previous section, but for the
sphere of radius R200.

C3 Volume Averaged Y Fits

We display the Y − M and Y − Ty relations over spheres of both
radii in tables C11 to C14.

C4 Profile Fits

In tables C15 to C18, we display the fit quantities for the radial pro-
files of the median temperature measures, (T/T500) and variance,

σ(Ty)/T500. The same quantities for the cylindrical profiles are in
tables C19 to C22.

These mass bins are organised so that the highest mass bin
always corresponds to the MACSIS sample, hence the discrepency
in mass bin sizes.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Table C1. The fit values for the medians, 84th and 16th percentiles of each
temperature measure at each redshift. The errors are determined through
bootstrap methods. The fit parameters correspond to those described in
Equation (18).

M = M500 A B C

z = 0.0, median

T y 4.763+0.015
−0.015 0.581+0.003

−0.002 0.013+0.001
−0.001

Tm 4.248+0.013
−0.012 0.565+0.003

−0.002 0.002+0.001
−0.001

Tsl 4.295+0.023
−0.025 0.514+0.012

−0.013 −0.039+0.005
−0.005

84%

T y 5.147+0.020
−0.020 0.568+0.002

−0.004 0.017+0.001
−0.002

Tm 4.544+0.015
−0.015 0.564+0.002

−0.008 0.005+0.001
−0.003

Tsl 4.660+0.022
−0.022 0.527+0.004

−0.008 −0.027+0.001
−0.003

16%

T y 4.438+0.016
−0.017 0.593+0.003

−0.003 0.014+0.001
−0.001

Tm 4.000+0.012
−0.013 0.571+0.002

−0.003 0.001+0.001
−0.001

Tsl 3.915+0.026
−0.030 0.503+0.009

−0.010 −0.058+0.003
−0.003

z = 0.5, median

T y 4.353+0.019
−0.020 0.571+0.006

−0.006 0.008+0.002
−0.002

Tm 3.702+0.013
−0.013 0.546+0.005

−0.004 −0.006+0.002
−0.001

Tsl 3.474+0.027
−0.025 0.483+0.023

−0.028 −0.051+0.008
−0.010

84%

T y 4.704+0.027
−0.027 0.556+0.008

−0.007 0.008+0.003
−0.003

Tm 3.944+0.016
−0.016 0.541+0.006

−0.006 −0.004+0.002
−0.002

Tsl 3.789+0.028
−0.032 0.497+0.011

−0.046 −0.038+0.004
−0.016

16%

T y 4.083+0.017
−0.018 0.588+0.006

−0.005 0.009+0.002
−0.002

Tm 3.498+0.015
−0.014 0.557+0.004

−0.004 −0.004+0.001
−0.001

Tsl 3.131+0.028
−0.028 0.478+0.040

−0.012 −0.068+0.014
−0.004

z = 1.0, median

T y 3.997+0.021
−0.020 0.593+0.004

−0.004 0.009+0.001
−0.001

Tm 3.237+0.015
−0.017 0.558+0.004

−0.005 −0.005+0.001
−0.001

Tsl 2.754+0.036
−0.035 0.478+0.015

−0.014 −0.053+0.004
−0.004

84%

T y 4.227+0.025
−0.022 0.564+0.006

−0.007 0.007+0.002
−0.003

Tm 3.407+0.017
−0.018 0.540+0.005

−0.006 −0.006+0.002
−0.002

Tsl 2.980+0.027
−0.033 0.450+0.010

−0.018 −0.050+0.004
−0.005

16%

T y 3.785+0.027
−0.023 0.618+0.007

−0.007 0.012+0.002
−0.002

Tm 3.084+0.016
−0.017 0.576+0.006

−0.005 −0.003+0.002
−0.002

Tsl 2.543+0.030
−0.024 0.518+0.017

−0.011 −0.055+0.005
−0.004

Table C2. The fit values for the medians, 84th and 16th percentiles of each
temperature measure against T500 at each redshift. The errors are deter-
mined through bootstrap methods. The fit parameters correspond to those
described in Equation (20).

Trel = T500 A B C

z = 0.0, median

T y 4.812+0.014
−0.013 0.889+0.003

−0.003 0.041+0.002
−0.002

Tm 4.289+0.011
−0.011 0.873+0.004

−0.004 0.021+0.002
−0.002

Tsl 4.293+0.023
−0.022 0.825+0.018

−0.018 −0.049+0.010
−0.011

84%

T y 5.174+0.023
−0.021 0.865+0.005

−0.005 0.047+0.003
−0.003

Tm 4.575+0.013
−0.013 0.859+0.004

−0.004 0.023+0.002
−0.002

Tsl 4.661+0.024
−0.025 0.837+0.019

−0.009 −0.028+0.011
−0.006

16%

T y 4.490+0.016
−0.016 0.906+0.005

−0.006 0.042+0.003
−0.003

Tm 4.020+0.013
−0.012 0.880+0.005

−0.005 0.019+0.003
−0.003

Tsl 3.923+0.025
−0.027 0.801+0.019

−0.015 −0.096+0.010
−0.008

z = 0.5, median

T y 4.964+0.021
−0.019 0.868+0.006

−0.005 0.026+0.004
−0.003

Tm 4.247+0.013
−0.013 0.835+0.005

−0.004 −0.006+0.003
−0.002

Tsl 4.039+0.021
−0.022 0.804+0.010

−0.011 −0.093+0.005
−0.006

84%

T y 5.395+0.030
−0.030 0.843+0.008

−0.007 0.026+0.005
−0.005

Tm 4.535+0.017
−0.018 0.828+0.006

−0.006 −0.003+0.004
−0.004

Tsl 4.390+0.029
−0.033 0.795+0.007

−0.007 −0.073+0.005
−0.005

16%

T y 4.651+0.017
−0.018 0.891+0.004

−0.004 0.029+0.003
−0.003

Tm 4.006+0.015
−0.016 0.851+0.004

−0.005 −0.004+0.003
−0.003

Tsl 3.627+0.027
−0.027 0.827+0.009

−0.008 −0.117+0.006
−0.005

z = 1.0, median

T y 5.108+0.024
−0.024 0.875+0.005

−0.005 0.020+0.003
−0.003

Tm 4.196+0.017
−0.016 0.846+0.004

−0.006 −0.010+0.003
−0.003

Tsl 3.681+0.029
−0.029 0.807+0.015

−0.015 −0.118+0.009
−0.009

84%

T y 5.481+0.034
−0.031 0.835+0.006

−0.006 0.016+0.005
−0.006

Tm 4.457+0.020
−0.021 0.822+0.005

−0.006 −0.014+0.004
−0.004

Tsl 4.048+0.034
−0.034 0.760+0.009

−0.019 −0.113+0.008
−0.011

16%

T y 4.770+0.027
−0.027 0.906+0.008

−0.007 0.028+0.005
−0.005

Tm 3.960+0.019
−0.020 0.869+0.006

−0.006 −0.006+0.004
−0.004

Tsl 3.316+0.026
−0.027 0.870+0.017

−0.012 −0.123+0.010
−0.008
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Table C3. The fit values for the medians, 84th and 16th percentiles of each
temperature measure against Tm at each redshift. The errors are deter-
mined through bootstrap methods. The fit parameters correspond to those
described in Equation (20).

Trel = T
m

500 A B C

z = 0.0, median

T y 5.650+0.015
−0.014 1.028+0.008

−0.008 0.029+0.004
−0.004

Tsl 4.946+0.033
−0.037 0.927+0.029

−0.037 −0.095+0.014
−0.017

84%

T y 5.946+0.024
−0.022 1.013+0.008

−0.008 0.031+0.005
−0.006

Tsl 5.323+0.036
−0.038 0.944+0.012

−0.057 −0.065+0.009
−0.026

16%

T y 5.356+0.016
−0.016 1.037+0.008

−0.008 0.030+0.004
−0.004

Tsl 4.416+0.040
−0.042 0.904+0.054

−0.020 −0.138+0.026
−0.012

z = 0.5, median

T y 5.904+0.018
−0.017 1.035+0.007

−0.006 0.032+0.004
−0.004

Tsl 4.665+0.025
−0.025 0.961+0.009

−0.009 −0.092+0.005
−0.005

84%

T y 6.230+0.022
−0.023 1.036+0.007

−0.007 0.044+0.005
−0.005

Tsl 4.998+0.027
−0.028 0.944+0.009

−0.015 −0.069+0.007
−0.009

16%

T y 5.616+0.017
−0.019 1.040+0.007

−0.007 0.032+0.003
−0.003

Tsl 4.193+0.040
−0.045 0.999+0.022

−0.025 −0.107+0.013
−0.017

z = 1.0, median

T y 6.144+0.039
−0.033 1.031+0.022

−0.013 0.029+0.011
−0.007

Tsl 4.351+0.041
−0.040 0.978+0.029

−0.025 −0.092+0.015
−0.013

84%
T y 6.500+0.032

−0.033 1.014+0.012
−0.013 0.028+0.006

−0.007
Tsl 4.682+0.035

−0.036 0.914+0.016
−0.022 −0.097+0.010

−0.012

16%

T y 5.800+0.031
−0.031 1.046+0.013

−0.014 0.034+0.007
−0.007

Tsl 3.928+0.051
−0.053 1.058+0.031

−0.031 −0.080+0.016
−0.016

Table C4. The fit values for the medians, 84th and 16th percentiles of each
temperature measure for the Hot and Hot, Relaxed Samples against M500 at
each redshift. The errors are determined through bootstrap methods. The fit
parameters correspond to those described in Equation (18), taking C = 0.

Hot Sample Hot, Relaxed Sample
M500 A B A B

z = 0.0, median

T y 4.693+0.028
−0.028 0.633+0.009

−0.010 4.635+0.035
−0.036 0.626+0.010

−0.010
Tm 4.174+0.023

−0.025 0.598+0.019
−0.010 4.147+0.033

−0.034 0.593+0.019
−0.013

Tsl 4.117+0.064
−0.053 0.531+0.043

−0.055 4.206+0.049
−0.051 0.531+0.051

−0.014

84%

T y 5.157+0.035
−0.036 0.622+0.010

−0.010 4.992+0.042
−0.040 0.647+0.010

−0.028

Tm 4.528+0.030
−0.027 0.607+0.012

−0.018 4.433+0.035
−0.030 0.633+0.009

−0.034
Tsl 4.620+0.044

−0.036 0.559+0.012
−0.022 4.632+0.048

−0.044 0.581+0.013
−0.025

16%

T y 4.240+0.032
−0.031 0.646+0.011

−0.010 4.252+0.030
−0.029 0.633+0.010

−0.009
Tm 3.802+0.023

−0.022 0.602+0.011
−0.012 3.835+0.025

−0.027 0.600+0.010
−0.009

Tsl 3.704+0.051
−0.056 0.443+0.043

−0.027 3.839+0.069
−0.074 0.441+0.079

−0.048

z = 0.5, median

T y 4.335+0.030
−0.027 0.597+0.017

−0.016 4.329+0.040
−0.034 0.598+0.018

−0.016
Tm 3.677+0.018

−0.021 0.561+0.011
−0.011 3.681+0.021

−0.024 0.561+0.011
−0.011

Tsl 3.433+0.034
−0.033 0.457+0.023

−0.099 3.445+0.036
−0.037 0.455+0.025

−0.098

84%

T y 4.701+0.042
−0.029 0.579+0.015

−0.017 4.686+0.038
−0.032 0.581+0.017

−0.018
Tm 3.947+0.024

−0.023 0.541+0.011
−0.011 3.926+0.032

−0.027 0.540+0.013
−0.012

Tsl 3.827+0.033
−0.034 0.446+0.016

−0.039 3.809+0.043
−0.043 0.447+0.017

−0.038

16%

T y 4.020+0.029
−0.028 0.621+0.015

−0.013 4.039+0.029
−0.031 0.615+0.015

−0.013
Tm 3.417+0.019

−0.019 0.576+0.010
−0.010 3.442+0.025

−0.027 0.570+0.012
−0.011

Tsl 3.062+0.030
−0.037 0.422+0.066

−0.041 3.073+0.035
−0.035 0.414+0.064

−0.041

z = 1.0, median

T y 3.984+0.029
−0.030 0.611+0.016

−0.016 3.974+0.035
−0.035 0.610+0.020

−0.018
Tm 3.235+0.019

−0.023 0.586+0.008
−0.011 3.228+0.023

−0.024 0.581+0.012
−0.013

Tsl 2.745+0.036
−0.049 0.469+0.017

−0.037 2.767+0.036
−0.043 0.473+0.017

−0.027

84%

T y 4.262+0.044
−0.039 0.581+0.019

−0.022 4.255+0.049
−0.048 0.580+0.019

−0.022
Tm 3.429+0.024

−0.025 0.544+0.010
−0.010 3.423+0.028

−0.029 0.540+0.011
−0.011

Tsl 3.026+0.040
−0.045 0.416+0.018

−0.019 3.024+0.039
−0.041 0.405+0.017

−0.018

16%

T y 3.717+0.031
−0.029 0.644+0.022

−0.015 3.720+0.033
−0.033 0.653+0.022

−0.017

Tm 3.027+0.041
−0.023 0.618+0.027

−0.013 3.044+0.025
−0.035 0.628+0.014

−0.022

Tsl 2.464+0.042
−0.031 0.501+0.033

−0.021 2.510+0.038
−0.049 0.531+0.025

−0.038
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Table C5. The fit values for the medians, 84th and 16th percentiles of
σ(T y ) at each redshift. The errors are determined through bootstrap meth-
ods. The fit parameters correspond to those described in Equation (18), with
C = 0.

(σ(T y )/T y )(M500) A B

z = 0.0

median 0.386+0.002
−0.003 0.026+0.003

−0.004
84% 0.450+0.003

−0.003 −0.013+0.003
−0.003

16% 0.332+0.003
−0.003 0.031+0.004

−0.004

z = 0.5

median 0.446+0.003
−0.003 0.022+0.003

−0.003
84% 0.504+0.004

−0.003 −0.020+0.003
−0.003

16% 0.400+0.003
−0.003 0.042+0.004

−0.004

z = 1.0

median 0.489+0.003
−0.003 0.017+0.002

−0.003
84% 0.519+0.005

−0.005 −0.040+0.005
−0.005

16% 0.455+0.004
−0.004 0.049+0.004

−0.003

Table C6. The fit values for the medians, 84th and 16th percentiles of each
temperature measure at each redshift. The errors are determined through
bootstrap methods. The fit parameters correspond to those described in
Equation (18).

M = M200 A B C

z = 0.0, median

T y 3.488+0.010
−0.009 0.595+0.002

−0.002 0.016+0.001
−0.001

Tm 2.974+0.010
−0.009 0.588+0.003

−0.004 0.008+0.001
−0.002

Tsl 3.128+0.051
−0.023 0.572+0.011

−0.023 −0.022+0.005
−0.014

84%

T y 3.764+0.016
−0.014 0.585+0.003

−0.003 0.018+0.002
−0.001

Tm 3.200+0.012
−0.012 0.587+0.003

−0.003 0.008+0.001
−0.002

Tsl 3.535+0.022
−0.019 0.583+0.008

−0.008 −0.018+0.004
−0.005

16%

T y 3.247+0.010
−0.010 0.599+0.003

−0.003 0.015+0.001
−0.002

Tm 2.760+0.011
−0.011 0.587+0.004

−0.004 0.008+0.002
−0.002

Tsl 2.743+0.028
−0.031 0.554+0.017

−0.012 −0.039+0.009
−0.006

z = 0.5, median

T y 3.221+0.011
−0.010 0.600+0.009

−0.010 0.010+0.004
−0.004

Tm 2.616+0.009
−0.009 0.585+0.004

−0.014 0.000+0.002
−0.006

Tsl 2.555+0.015
−0.015 0.567+0.009

−0.017 −0.033+0.004
−0.007

84%

T y 3.501+0.018
−0.017 0.593+0.006

−0.007 0.013+0.003
−0.003

Tm 2.805+0.011
−0.012 0.585+0.005

−0.006 0.001+0.002
−0.002

Tsl 2.895+0.022
−0.021 0.565+0.007

−0.009 −0.029+0.003
−0.004

16%

T y 2.975+0.011
−0.012 0.599+0.008

−0.006 0.010+0.003
−0.003

Tm 2.413+0.011
−0.012 0.577+0.009

−0.007 −0.000+0.004
−0.003

Tsl 2.200+0.021
−0.019 0.565+0.014

−0.011 −0.039+0.005
−0.004

z = 1.0, median

T y 2.962+0.019
−0.018 0.626+0.008

−0.009 0.013+0.003
−0.003

Tm 2.286+0.013
−0.012 0.600+0.006

−0.007 0.002+0.002
−0.003

Tsl 2.056+0.020
−0.020 0.557+0.010

−0.029 −0.038+0.004
−0.011

84%

T y 3.243+0.030
−0.028 0.599+0.007

−0.009 0.006+0.003
−0.003

Tm 2.467+0.018
−0.017 0.580+0.005

−0.005 −0.006+0.002
−0.002

Tsl 2.302+0.022
−0.019 0.517+0.007

−0.008 −0.046+0.003
−0.003

16%

T y 2.725+0.016
−0.016 0.647+0.008

−0.007 0.020+0.003
−0.002

Tm 2.131+0.012
−0.013 0.616+0.005

−0.006 0.007+0.002
−0.002

Tsl 1.790+0.026
−0.028 0.587+0.019

−0.018 −0.034+0.007
−0.005
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Table C7. The fit values for the medians, 84th and 16th percentiles of each
temperature measure against T200 at each redshift. The errors are deter-
mined through bootstrap methods. The fit parameters correspond to those
described in Equation (20).

Trel = T200 A B C

z = 0.0, median

T y 4.650+0.013
−0.014 0.918+0.004

−0.006 0.038+0.002
−0.003

Tm 3.946+0.010
−0.011 0.896+0.004

−0.003 0.020+0.002
−0.002

Tsl 4.101+0.029
−0.030 0.846+0.010

−0.025 −0.041+0.005
−0.012

84%

T y 5.014+0.025
−0.024 0.900+0.006

−0.004 0.039+0.003
−0.003

Tm 4.243+0.016
−0.016 0.891+0.005

−0.006 0.018+0.002
−0.003

Tsl 4.647+0.026
−0.026 0.850+0.017

−0.008 −0.038+0.008
−0.004

16%

T y 4.329+0.015
−0.015 0.922+0.005

−0.007 0.037+0.003
−0.003

Tm 3.666+0.016
−0.017 0.901+0.005

−0.010 0.023+0.003
−0.005

Tsl 3.538+0.031
−0.032 0.819+0.014

−0.011 −0.062+0.007
−0.005

z = 0.5, median

T y 4.814+0.021
−0.021 0.915+0.016

−0.018 0.026+0.008
−0.010

Tm 3.893+0.014
−0.016 0.886+0.008

−0.025 0.004+0.004
−0.013

Tsl 3.784+0.025
−0.028 0.838+0.016

−0.030 −0.072+0.008
−0.016

84%

T y 5.234+0.033
−0.029 0.907+0.011

−0.013 0.032+0.006
−0.007

Tm 4.182+0.020
−0.019 0.886+0.008

−0.011 0.005+0.004
−0.006

Tsl 4.290+0.035
−0.034 0.836+0.013

−0.015 −0.065+0.007
−0.008

16%

T y 4.440+0.019
−0.020 0.912+0.015

−0.011 0.023+0.008
−0.005

Tm 3.584+0.019
−0.021 0.873+0.017

−0.013 0.001+0.009
−0.006

Tsl 3.250+0.033
−0.030 0.829+0.023

−0.019 −0.087+0.012
−0.009

z = 1.0, median

T y 4.936+0.029
−0.029 0.936+0.011

−0.012 0.028+0.006
−0.007

Tm 3.818+0.021
−0.019 0.900+0.009

−0.010 0.003+0.005
−0.006

Tsl 3.449+0.030
−0.032 0.848+0.014

−0.041 −0.086+0.008
−0.024

84%

T y 5.420+0.049
−0.047 0.896+0.010

−0.012 0.013+0.006
−0.007

Tm 4.129+0.030
−0.028 0.871+0.007

−0.007 −0.014+0.004
−0.004

Tsl 3.876+0.035
−0.031 0.790+0.010

−0.012 −0.105+0.006
−0.007

16%

T y 4.527+0.027
−0.024 0.965+0.011

−0.009 0.044+0.006
−0.005

Tm 3.550+0.020
−0.021 0.923+0.007

−0.008 0.017+0.004
−0.004

Tsl 2.989+0.038
−0.042 0.892+0.025

−0.025 −0.077+0.016
−0.012

Table C8. The fit values for the medians, 84th and 16th percentiles of each
temperature measure against Tm at each redshift. The errors are deter-
mined through bootstrap methods. The fit parameters correspond to those
described in Equation (20).

Trel = T
m

200 A B C

z = 0.0, median

T y 5.936+0.017
−0.016 1.030+0.007

−0.005 0.023+0.003
−0.003

Tsl 5.148+0.047
−0.066 0.935+0.017

−0.076 −0.072+0.008
−0.034

84%

T y 6.275+0.025
−0.024 1.021+0.008

−0.008 0.024+0.004
−0.004

Tsl 5.647+0.031
−0.037 0.927+0.013

−0.017 −0.063+0.006
−0.008

16%

T y 5.632+0.018
−0.021 1.038+0.007

−0.009 0.025+0.003
−0.004

Tsl 4.510+0.066
−0.064 0.868+0.047

−0.040 −0.120+0.022
−0.019

z = 0.5, median

T y 6.257+0.020
−0.019 1.052+0.007

−0.007 0.033+0.003
−0.003

Tsl 4.801+0.038
−0.039 0.942+0.016

−0.018 −0.073+0.008
−0.009

84%

T y 6.623+0.031
−0.028 1.048+0.009

−0.008 0.037+0.005
−0.004

Tsl 5.247+0.035
−0.032 0.925+0.013

−0.011 −0.067+0.007
−0.007

16%

T y 5.953+0.027
−0.028 1.051+0.010

−0.011 0.029+0.005
−0.005

Tsl 4.280+0.052
−0.060 0.929+0.026

−0.035 −0.099+0.012
−0.015

z = 1.0, median

T y 6.546+0.029
−0.039 1.048+0.007

−0.013 0.026+0.004
−0.005

Tsl 4.404+0.063
−0.062 0.901+0.029

−0.031 −0.100+0.013
−0.013

84%
T y 6.921+0.043

−0.042 1.011+0.012
−0.013 0.013+0.006

−0.006
Tsl 4.815+0.034

−0.089 0.855+0.012
−0.056 −0.109+0.006

−0.025

16%

T y 6.207+0.038
−0.040 1.074+0.012

−0.012 0.036+0.005
−0.005

Tsl 3.972+0.063
−0.052 0.960+0.048

−0.021 −0.087+0.021
−0.010
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Table C9. The fit values for the medians, 84th and 16th percentiles of each
temperature measure for the Hot and Hot, Relaxed Samples against M200 at
each redshift. The errors are determined through bootstrap methods. The fit
parameters correspond to those described in Equation (18), taking C = 0.

Hot Sample Hot, Relaxed Sample
M200 A B A B

z = 0.0, median

T y 3.406+0.028
−0.045 0.633+0.025

−0.010 3.422+0.051
−0.053 0.633+0.013

−0.012

Tm 2.915+0.042
−0.041 0.609+0.020

−0.025 2.976+0.037
−0.042 0.600+0.016

−0.013

Tsl 3.103+0.084
−0.116 0.515+0.067

−0.041 3.337+0.122
−0.104 0.516+0.043

−0.050

84%

T y 3.741+0.040
−0.033 0.644+0.010

−0.012 3.713+0.092
−0.067 0.650+0.014

−0.024

Tm 3.174+0.036
−0.031 0.626+0.011

−0.015 3.161+0.066
−0.052 0.636+0.013

−0.032

Tsl 3.573+0.064
−0.054 0.559+0.013

−0.020 3.593+0.077
−0.057 0.576+0.014

−0.024

16%

T y 3.139+0.027
−0.027 0.624+0.011

−0.011 3.129+0.042
−0.040 0.634+0.012

−0.016
Tm 2.692+0.024

−0.023 0.587+0.011
−0.008 2.733+0.043

−0.036 0.599+0.013
−0.024

Tsl 2.761+0.061
−0.068 0.442+0.038

−0.032 3.029+0.097
−0.112 0.434+0.053

−0.030

z = 0.5, median

T y 3.182+0.028
−0.024 0.627+0.012

−0.020 3.195+0.066
−0.052 0.624+0.018

−0.024

Tm 2.592+0.025
−0.024 0.591+0.015

−0.021 2.629+0.038
−0.037 0.580+0.017

−0.021
Tsl 2.594+0.046

−0.048 0.491+0.031
−0.027 2.676+0.084

−0.065 0.469+0.032
−0.033

84%

T y 3.543+0.059
−0.065 0.603+0.020

−0.019 3.518+0.070
−0.067 0.613+0.022

−0.024

Tm 2.831+0.025
−0.028 0.577+0.013

−0.012 2.830+0.037
−0.035 0.576+0.018

−0.017

Tsl 2.993+0.065
−0.048 0.495+0.022

−0.030 3.112+0.086
−0.102 0.452+0.032

−0.031

16%

T y 2.936+0.036
−0.037 0.618+0.028

−0.015 2.939+0.051
−0.045 0.630+0.023

−0.024
Tm 2.396+0.024

−0.025 0.578+0.023
−0.011 2.419+0.040

−0.039 0.581+0.022
−0.020

Tsl 2.236+0.045
−0.064 0.488+0.031

−0.025 2.325+0.054
−0.051 0.455+0.029

−0.024

z = 1.0, median

T y 2.964+0.029
−0.035 0.626+0.019

−0.023 2.944+0.031
−0.032 0.636+0.020

−0.024

Tm 2.275+0.019
−0.018 0.606+0.014

−0.016 2.259+0.023
−0.020 0.614+0.015

−0.017
Tsl 2.079+0.030

−0.038 0.515+0.033
−0.039 2.069+0.038

−0.048 0.508+0.038
−0.040

84%

T y 3.308+0.051
−0.045 0.603+0.022

−0.021 3.235+0.047
−0.043 0.625+0.019

−0.020

Tm 2.512+0.022
−0.022 0.577+0.013

−0.014 2.475+0.025
−0.026 0.587+0.014

−0.015
Tsl 2.368+0.035

−0.032 0.468+0.020
−0.025 2.366+0.047

−0.038 0.465+0.023
−0.033

16%

T y 2.681+0.029
−0.040 0.656+0.026

−0.024 2.704+0.031
−0.042 0.647+0.028

−0.026
Tm 2.079+0.024

−0.024 0.633+0.020
−0.021 2.101+0.021

−0.024 0.627+0.021
−0.022

Tsl 1.765+0.037
−0.033 0.581+0.036

−0.036 1.793+0.046
−0.045 0.556+0.040

−0.038

Table C10. The fit values for the medians, 84th and 16th percentiles of
σ(T y ) at each redshift. The errors are determined through bootstrap meth-
ods. The fit parameters correspond to those described in Equation (18), with
C = 0.

(σ(T y )/T y )(M200) A B

z = 0.0

median 0.437+0.002
−0.002 0.008+0.004

−0.002
84% 0.508+0.003

−0.003 −0.023+0.003
−0.003

16% 0.388+0.002
−0.003 0.016+0.003

−0.004

z = 0.5

median 0.496+0.003
−0.003 0.011+0.004

−0.003
84% 0.560+0.004

−0.004 −0.026+0.004
−0.004

16% 0.451+0.002
−0.002 0.028+0.003

−0.003

z = 1.0

median 0.535+0.003
−0.003 0.007+0.003

−0.003
84% 0.579+0.003

−0.003 −0.044+0.003
−0.003

16% 0.498+0.003
−0.002 0.035+0.003

−0.002

Table C11. The fit values for the medians, 84th and 16th percentiles of
T y to Y500 at each redshift. The errors are determined through bootstrap
methods. The fit parameters correspond to those described in Equation (21).
This is a replica of Table 6 found in Section 4.2.4.

TY −Y500 A B C

z = 0.0

median 5.017+0.012
−0.011 0.3749+0.0014

−0.0018 0.0044+0.0003
−0.0004

84 5.375+0.019
−0.019 0.3654+0.0021

−0.0021 0.0043+0.0005
−0.0005

16 4.732+0.012
−0.012 0.3796+0.0020

−0.0018 0.0046+0.0005
−0.0004

z = 0.5

median 5.745+0.020
−0.020 0.3707+0.0043

−0.0038 0.0034+0.0009
−0.0008

84 6.096+0.027
−0.027 0.3612+0.0035

−0.0039 0.0033+0.0008
−0.0009

16 5.423+0.021
−0.020 0.3772+0.0033

−0.0029 0.0038+0.0007
−0.0006

z = 1.0

median 6.639+0.037
−0.041 0.3693+0.0054

−0.0065 0.0016+0.0011
−0.0013

84 7.029+0.048
−0.047 0.3555+0.0054

−0.0052 0.0008+0.0011
−0.0010

16 6.254+0.036
−0.036 0.3837+0.0056

−0.0052 0.0038+0.0011
−0.0011
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Table C12. The fit values for the medians, 84th and 16th percentiles of
T y to Y200 at each redshift. The errors are determined through bootstrap
methods. The fit parameters correspond to those described in Equation (21).

TY −Y200 A B C

z = 0.0

median 4.197+0.011
−0.010 0.3801+0.0010

−0.0014 0.0045+0.0003
−0.0003

84 4.464+0.019
−0.017 0.3737+0.0021

−0.0016 0.0046+0.0005
−0.0004

16 3.954+0.011
−0.010 0.3831+0.0016

−0.0012 0.0048+0.0004
−0.0003

z = 0.5

median 4.822+0.017
−0.016 0.3839+0.0042

−0.0037 0.0043+0.0009
−0.0008

84 5.184+0.026
−0.025 0.3805+0.0035

−0.0040 0.0047+0.0008
−0.0009

16 4.538+0.014
−0.016 0.3876+0.0030

−0.0025 0.0045+0.0007
−0.0006

z = 1.0

median 5.637+0.033
−0.032 0.3918+0.0053

−0.0059 0.0040+0.0011
−0.0012

84 6.055+0.047
−0.044 0.3774+0.0049

−0.0047 0.0022+0.0010
−0.0010

16 5.278+0.028
−0.029 0.4028+0.0046

−0.0037 0.0058+0.0009
−0.0008

Table C13. The fit values for the medians, 84th and 16th percentiles of
Y500 to M500 at each redshift. The errors are determined through bootstrap
methods. The fit parameters correspond to those described in Equation (18),
with Y in the place of T .

Y −M500 A [×10−4] B C

z = 0.0

median 2.528+0.014
−0.013 1.563+0.004

−0.003 0.0020+0.0017
−0.0013

84 2.855+0.014
−0.014 1.559+0.003

−0.012 0.0028+0.0014
−0.0048

16 2.236+0.011
−0.011 1.576+0.004

−0.004 0.0056+0.0015
−0.0015

z = 0.5

median 2.201+0.011
−0.012 1.545+0.005

−0.005 −0.0056+0.0019
−0.0018

84 2.448+0.015
−0.014 1.532+0.007

−0.008 −0.0066+0.0027
−0.0029

16 2.002+0.009
−0.009 1.566+0.007

−0.005 −0.0021+0.0025
−0.0017

z = 1.0

median 1.925+0.012
−0.014 1.562+0.005

−0.006 −0.0039+0.0020
−0.0020

84 2.130+0.019
−0.021 1.520+0.011

−0.011 −0.0122+0.0034
−0.0035

16 1.749+0.015
−0.015 1.596+0.010

−0.010 0.0027+0.0033
−0.0032

Table C14. The fit values for the medians, 84th and 16th percentiles of
Y200 to M200 at each redshift. The errors are determined through bootstrap
methods. The fit parameters correspond to those described in Equation (18),
with Y in the place of T .

Y −M200 A [×10−4] B C

z = 0.0

median 1.751+0.009
−0.009 1.587+0.003

−0.003 0.0096+0.0017
−0.0016

84 2.024+0.011
−0.012 1.580+0.004

−0.004 0.0034+0.0020
−0.0019

16 1.546+0.009
−0.008 1.592+0.004

−0.005 0.0121+0.0022
−0.0023

z = 0.5

median 1.552+0.007
−0.007 1.585+0.005

−0.012 0.0015+0.0021
−0.0053

84 1.757+0.010
−0.009 1.573+0.006

−0.007 −0.0044+0.0024
−0.0027

16 1.366+0.008
−0.008 1.589+0.009

−0.010 0.0044+0.0040
−0.0039

z = 1.0

median 1.354+0.012
−0.011 1.606+0.012

−0.018 0.0045+0.0047
−0.0065

84 1.568+0.013
−0.012 1.560+0.007

−0.012 −0.0154+0.0030
−0.0042

16 1.193+0.009
−0.009 1.629+0.012

−0.008 0.0122+0.0046
−0.0026
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Table C15. The fit values for the medians of the radial temperature profiles, T/T500, at z = 0. The errors are determined through bootstrap methods – errors
written as 0.00, correspond to very small values, < 10−9. The fit parameters correspond to those described in Equation (22). m500 = M500/M� .

z = 0 T0 rt a b c rcool acool Tmin

log10m500 < 13.5

T y 2.44+0.89
−0.88 0.26+0.28

−0.11 0.27+0.31
−0.37 5.00+0.00

−1.37 0.33+0.39
−0.33 0.193+0.023

−0.055 2.52+0.48
−0.231 0.49+0.29

−0.12
Tm 1.29+2.20

−0.09 0.69+0.08
−0.49 0.32+0.12

−0.28 5.00+0.00
−1.13 0.42+0.32

−0.11 0.161+0.112
−0.015 2.92+0.08

−0.875 0.39+0.29
−0.14

Tsl 1.07+1.13
−0.19 1.00+0.17

−0.23 0.33+0.12
−0.31 2.33+1.01

−1.15 0.73+0.51
−0.16 0.159+0.014

−0.015 3.00+0.00
−0.239 0.33+0.46

−0.11

13.5 < log10m500 < 14.0

T y 1.41+0.17
−0.05 0.50+0.04

−0.08 0.32+0.05
−0.15 5.00+0.00

−1.40 0.28+0.15
−0.05 0.103+0.008

−0.022 2.22+0.35
−0.20 0.32+0.11

−0.11

Tm 1.11+0.72
−0.08 0.76+0.07

−0.34 0.56+0.09
−0.65 5.00+0.00

−3.01 0.24+0.67
−0.07 0.152+0.027

−0.071 1.69+1.31
−0.19 0.05+0.27

−0.05
Tsl 0.43+0.04

−0.04 2.23+0.89
−0.19 0.89+0.04

−0.23 4.09+0.91
−3.03 0.55+1.13

−0.08 0.278+0.027
−0.065 1.49+0.06

−0.04 0.000+0.005
−0.000

14.0 < log10m500 < 14.5

T y 0.77+3.07
−0.06 1.23+0.23

−1.14 0.45+0.03
−1.19 5.00+0.00

−4.00 0.11+1.22
−0.03 0.115+0.030

−0.006 1.73+1.27
−0.20 0.11+2.80

−0.06
Tm 0.53+0.04

−0.05 2.07+0.47
−0.26 0.56+0.04

−0.05 3.27+1.04
−0.98 0.43+0.17

−0.08 0.145+0.013
−0.011 1.60+0.14

−0.12 0.042+0.026
−0.021

Tsl 0.446+0.018
−0.021 2.22+0.17

−0.14 0.61+0.05
−0.06 3.27+0.49

−0.53 1.33+0.20
−0.18 0.168+0.024

−0.014 1.67+0.16
−0.12 0.033+0.024

−0.015

14.5 < log10m500 < 14.78

T y 0.72+0.02
−0.02 1.36+0.11

−0.11 0.29+0.03
−0.02 5.00+0.00

−0.00 0.33+0.04
−0.04 0.099+0.008

−0.009 2.72+0.28
−0.44 0.26+0.05

−0.07
Tm 0.61+0.03

−0.05 1.56+0.26
−0.18 0.35+0.04

−0.05 3.58+1.42
−0.96 0.70+0.15

−0.09 0.110+0.009
−0.008 2.55+0.42

−0.46 0.18+0.05
−0.06

Tsl 0.54+0.03
−0.41 1.66+0.16

−1.47 0.37+0.04
−0.82 3.71+1.17

−0.64 1.62+0.23
−0.73 0.123+1.840

−0.006 2.72+0.28
−0.31 0.15+0.99

−0.04

14.78 < log10m500

T y 0.79+0.61
−0.03 1.23+0.21

−0.51 0.14+0.03
−2.11 2.82+1.07

−0.99 0.68+1.98
−0.16 0.059+0.015

−0.008 2.84+0.16
−0.91 0.33+347

−0.20

Tm 6.62+0.83
−5.93 1.68+1.91

−0.36 −1.39+1.51
−0.11 1.00+0.34

−0.00 3.91+0.40
−0.64 0.075+0.011

−0.011 1.76+1.24
−0.09 124+73

−124

Tsl 0.51+0.02
−0.02 1.34+0.05

−0.05 0.36+0.04
−0.04 4.00+0.45

−0.43 1.66+0.10
−0.11 0.079+0.006

−0.004 2.11+0.31
−0.17 0.00+0.03

−0.00

Table C16. The fit values for the medians of the radial temperature profiles, T/T500, at z = 0.5. The errors are determined through bootstrap methods – errors
written as 0.00, correspond to very small values, < 10−9. The fit parameters correspond to those described in Equation (22).

z = 0.5 T0 rt a b c rcool acool Tmin

log10m500 < 13.5

T y 1.53+0.20
−0.07 0.51+0.05

−0.10 0.23+0.09
−0.19 5.00+0.00

−1.48 0.38+0.18
−0.09 0.115+0.013

−0.022 2.80+0.20
−0.53 0.49+0.19

−0.18

Tm 1.34+0.49
−0.23 0.65+0.19

−0.19 0.26+0.33
−0.35 3.19+1.81

−1.04 0.53+0.37
−0.32 0.126+0.050

−0.031 2.59+0.41
−0.80 0.29+0.50

−0.24

Tsl 0.62+0.96
−0.12 1.83+0.40

−0.78 0.57+0.25
−0.47 1.77+3.23

−0.77 0.92+0.62
−0.52 0.184+0.072

−0.064 1.71+0.99
−0.16 0.014+0.391

−0.014

13.5 < log10m500 < 14.0

T y 1.28+0.08
−0.05 0.50+0.04

−0.06 0.33+0.05
−0.07 5.00+0.00

−0.91 0.24+0.07
−0.05 0.103+0.006

−0.008 2.37+0.37
−0.23 0.40+0.13

−0.09

Tm 0.86+0.09
−0.05 0.99+0.10

−0.12 0.61+0.07
−0.13 4.84+0.16

−1.72 0.22+0.13
−0.05 0.155+0.021

−0.023 1.70+0.29
−0.16 0.07+0.10

−0.04
Tsl 0.46+0.02

−0.02 1.96+0.13
−0.10 0.84+0.04

−0.07 4.19+0.81
−0.90 0.69+0.13

−0.07 0.249+0.024
−0.034 1.50+0.09

−0.04 0.003+0.010
−0.003

14.0 < log10m500 < 14.55

T y 0.70+0.02
−0.03 1.51+0.13

−0.11 0.40+0.02
−0.02 5.00+0.00

−0.00 0.18+0.03
−0.03 0.106+0.005

−0.006 1.84+0.16
−0.17 0.14+0.04

−0.04

Tm 0.55+0.03
−0.03 1.84+0.19

−0.16 0.51+0.03
−0.04 4.33+0.67

−1.19 0.46+0.12
−0.05 0.137+0.010

−0.008 1.72+0.16
−0.14 0.06+0.03

−0.03

Tsl 0.47+0.02
−0.04 2.07+0.15

−0.19 0.55+0.06
−0.14 3.46+0.64

−0.66 1.40+0.21
−0.24 0.155+0.051

−0.013 1.83+0.45
−0.19 0.05+0.07

−0.02

14.55 < log10m500

T y 1.00+1.18
−0.17 0.80+0.37

−0.42 −0.27+0.42
−0.45 1.95+1.20

−0.95 0.89+0.49
−0.42 0.094+0.113

−0.033 3.00+0.00
−1.36 1.64+3.16

−1.19

Tm 0.64+0.07
−0.09 1.61+0.21

−0.16 0.24+0.12
−0.06 2.30+0.69

−0.44 1.22+0.27
−0.20 0.079+0.009

−0.013 2.44+0.56
−0.84 0.23+0.08

−0.23

Tsl 0.57+0.02
−0.45 0.95+0.04

−0.80 0.38+0.04
−1.01 5.00+0.00

−0.44 1.26+0.06
−0.18 0.103+1.190

−0.007 2.40+0.60
−0.37 0.09+0.92

−0.06
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Table C17. The fit values for the medians of the radial temperature profiles, T/T500, at z = 1. The errors are determined through bootstrap methods – errors
written as 0.00, correspond to very small values, < 10−9. The fit parameters correspond to those described in Equation (22).

z = 1 T0 rt a b c rcool acool Tmin

log10m500 < 13.5

T y 1.36+0.18
−0.06 0.53+0.05

−0.10 0.36+0.06
−0.14 5.00+0.00

−1.34 0.24+0.14
−0.05 0.112+0.008

−0.016 2.30+0.47
−0.23 0.33+0.14

−0.11

Tm 1.07+0.62
−0.14 0.80+0.16

−0.33 0.51+0.16
−0.49 3.73+1.27

−1.75 0.30+0.51
−0.15 0.144+0.040

−0.045 1.90+1.10
−0.33 0.11+0.69

−0.08

Tsl 0.44+0.03
−0.04 2.18+0.34

−0.16 0.84+0.05
−0.11 4.88+0.12

−2.25 0.59+0.32
−0.07 0.252+0.028

−0.046 1.53+0.12
−0.05 0.004+0.014

−0.004

13.5 < log10m500 < 14.0

T y 0.86+1.31
−0.06 0.91+0.13

−0.73 0.45+0.03
−0.93 5.00+0.00

−2.90 0.11+0.83
−0.03 0.115+0.140

−0.006 1.95+1.05
−0.24 0.18+2.80

−0.06
Tm 0.59+0.04

−0.04 1.59+0.19
−0.14 0.57+0.04

−0.05 3.34+1.00
−0.84 0.41+0.11

−0.06 0.138+0.010
−0.010 1.73+0.14

−0.13 0.06+0.03
−0.03

Tsl 0.47+0.02
−0.14 1.84+0.09

−1.61 0.61+0.07
−0.95 3.29+0.52

−0.57 1.20+0.16
−0.19 0.162+2.000

−0.016 1.81+0.35
−0.17 0.05+1.37

−0.02

14.0 < log10m500 < 14.3

T y 0.62+0.04
−0.04 2.26+0.34

−0.35 0.33+0.03
−0.03 5.00+0.00

−0.48 0.36+0.09
−0.07 0.104+0.010

−0.013 2.14+0.38
−0.40 0.18+0.06

−0.08

Tm 0.53+0.04
−0.05 2.18+0.46

−0.27 0.41+0.05
−0.07 4.03+0.97

−1.44 0.73+0.29
−0.12 0.120+0.012

−0.010 2.08+0.39
−0.38 0.11+0.06

−0.05
Tsl 0.49+0.03

−0.30 1.78+0.14
−1.57 0.46+0.07

−0.88 4.44+0.56
−1.04 1.30+0.20

−0.40 0.140+2.160
−0.013 2.21+0.79

−0.36 0.09+1.12
−0.04

14.3 < log10m500

T y 0.11+0.14
−0.11 3.46+0.57

−0.48 −0.17+0.10
−0.14 5.00+0.00

−0.27 0.86+0.41
−0.26 0.513+0.245

−0.237 1.08+0.23
−0.10 2.52+2.28

−0.89

Tm 0.52+0.08
−0.04 1.43+0.12

−0.16 0.64+0.11
−0.25 4.55+0.45

−1.77 0.78+0.27
−0.11 0.167+0.070

−0.060 1.32+0.61
−0.07 0.00+0.12

−0.00

Tsl 0.61+0.02
−0.54 0.79+0.03

−0.65 0.35+0.05
−1.08 5.00+0.00

−0.00 1.41+0.06
−0.36 0.103+0.912

−0.008 2.63+0.37
−0.37 0.12+0.86

−0.06

Table C18. The fit values for the medians of the radial profiles of σ(T y )/T500 across all redshifts. The errors are determined through bootstrap methods –
errors written as 0.00, correspond to very small values, < 10−9. The fit parameters correspond to those described in Equation (22).

σ(T y ) T0 rt a b c rcool acool Tmin

z = 0

log10m500 < 13.5 0.401+0.016
−0.386 0.186+0.018

−0.010 −3.00+0.00
−0.00 5.00+0.00

−0.00 3.06+0.02
−0.94 0.118+0.300

−0.010 3.00+0.00
−1.33 0.00+0.47

−0.00
13.5 < log10m500 < 14.0 0.046+0.029

−0.012 0.093+0.004
−0.003 −3.00+0.00

−0.00 5.00+0.00
−0.00 2.58+0.12

−0.06 0.30+0.10
−0.042 1.27+0.10

−0.04 0.418+0.023
−0.020

14.0 < log10m500 < 14.5 0.286+0.025
−0.012 1.04+0.07

−0.14 −1.58+0.26
−0.21 3.83+0.73

−0.34 1.62+0.20
−0.21 0.075+0.022

−0.009 2.23+0.25
−0.10 36.7+41.8

−24.8
14.5 < log10m500 < 14.78 0.374+0.056

−0.022 1.09+0.12
−0.98 −0.61+0.13

−0.17 4.37+0.63
−1.62 0.87+0.18

−0.15 0.16+0.60
−0.03 2.67+0.33

−0.47 1.40+1.12
−1.06

14.78 < log10m500 1.40+0.25
−0.23 1.85+2.52

−0.86 −0.86+0.57
−0.26 1.00+0.17

−0.00 2.07+1.02
−0.16 0.0023+0.0100

−0.0007 1.27+0.67
−0.12 231+727

−226

z = 0.5

log10m500 < 13.5 0.021+0.025
−0.010 0.116+0.008

−0.007 −3.00+0.00
−0.00 5.00+0.00

−0.00 2.36+0.17
−0.14 0.36+0.13

−0.07. 1.51+0.11
−0.04 0.37+0.06

−0.03
13.5 < log10m500 < 14.0 0.025+0.267

−0.025 0.060+0.018
−0.005 −3.00+0.00

−0.00 3.15+1.02
−0.49 2.54+0.29

−0.95 0.05+0.19
−0.03 0.90+1.54

−0.13 0.83+3.97
−0.40

14.0 < log10m500 < 14.55 0.341+0.240
−0.020 1.02+0.08

−0.93 −1.10+0.20
−0.17 3.38+1.39

−0.53 1.26+0.16
−0.17 0.103+0.751

−0.018 2.12+0.76
−0.09 7.33+6.62

−6.98
14.55 < log10m500 0.73+0.19

−0.12 22.5+5.3
−4.2 −0.16+0.04

−0.05 1.44+0.23
−0.18 10.0+0.0

−0.0 0.024+0.007
−0.004 1.86+0.38

−0.24 1.50+0.82
−0.47

z = 1

log10m500 < 13.5 0.030+0.706
−0.019 0.088+0.004

−0.004 −3.00+0.00
−0.00 5.00+0.00

−0.11 2.51+0.18
−0.20 0.23+0.67

−0.08 1.21+1.06
−0.05 0.44+0.05

−0.03
13.5 < log10m500 < 14.0 0.268+0.026

−0.009 0.96+0.05
−0.12 −1.36+0.23

−0.20 4.35+0.65
−0.40 1.38+0.19

−0.17 0.087+0.037
−0.012 2.13+0.14

−0.07 15.9+15.3
−11.2

14.0 < log10m500 < 14.3 0.60+0.39
−0.14 1.08+0.24

−0.31 −1.02+0.23
−0.29 1.76+0.96

−0.55 1.46+0.31
−0.29 0.12+0.04

−0.03 2.33+0.38
−0.23 5.39+8.49

−3.50
14.3 < log10m500 0.57+0.25

−0.16 3.10+1.49
−0.48 −0.15+0.11

−0.10 1.62+2.29
−0.48 1.45+0.58

−0.41 0.102+0.017
−0.011 3.00+0.00

−0.00 0.90+0.71
−0.37

MNRAS 000, 1–19 (2019)



28 E. Lee et al.

Table C19. The fit values for the medians of the cylindrical temperature profiles, T/T500, at z = 0. The errors are determined through bootstrap methods –
errors written as 0.00, correspond to very small values, < 10−9. The fit parameters correspond to those described in Equation (22).

z = 0 T0 rt a b c rcool acool Tmin

log10m500 < 13.5

T y 0.94+0.02
−0.02 2.13+0.36

−0.26 0.24+0.02
−0.02 1.10+0.25

−0.09 0.00+0.00
−0.00 0.120+0.006

−0.007 2.39+0.26
−0.24 0.37+0.04

−0.05
Tm 1.04+0.19

−0.11 0.38+0.14
−0.11 0.10+0.16

−0.21 4.23+5.80
−2.09 0.24+0.22

−0.14 0.092+0.057
−0.058 3.00+0.00

−1.41 0.64+0.43
−0.64

Tsl 1.17+0.45
−0.22 0.40+0.26

−0.09 0.05+0.53
−0.27 2.85+2.13

−1.49 0.48+0.29
−0.40 0.100+0.184

−0.054 3.00+0.00
−1.63 0.68+0.62

−0.68

13.5 < log10m500 < 14.0

T y 0.87+0.07
−0.05 1.03+0.14

−0.16 0.45+0.02
−0.02 1.02+0.10

−0.02 0.00+0.00
−0.00 0.119+0.006

−0.005 1.61+0.14
−0.13 0.18+0.04

−0.04

Tm 1.31+0.77
−0.18 0.34+0.05

−0.07 −0.10+0.08
−0.15 1.68+0.46

−0.68 0.73+0.31
−0.14 0.053+0.477

−0.034 3.00+0.00
−0.36 0.15+1.81

−0.15
Tsl 1.10+0.25

−0.71 0.63+0.19
−0.11 −0.15+0.03

−0.05 2.28+1.18
−0.66 1.19+0.29

−0.54 0.304+0.113
−0.026 3.00+0.00

−1.19 1.56+0.30
−0.12

14.0 < log10m500 < 14.5

T y 0.77+0.25
−0.09 0.98+0.36

−0.72 0.38+0.05
−0.43 11.9+775

−10.0 0.09+0.30
−0.05 0.107+0.035

−0.011 1.46+1.54
−0.24 0.22+0.98

−0.08

Tm 0.64+0.06
−0.06 1.09+0.14

−0.10 0.69+0.07
−0.11 8.85+6.76

−4.35 0.20+0.18
−0.06 0.240+0.096

−0.059 1.12+0.14
−0.07 0.023+0.044

−0.018

Tsl 0.54+0.87
−0.31 1.77+12.5

−0.70 0.24+0.29
−0.51 2.05+1.46

−0.76 2.67+47.3
−1.86 0.141+0.176

−0.038 2.06+0.51
−0.46 0.23+2.17

−0.17

14.5 < log10m500 < 14.78

T y 0.71+0.25
−0.36 1.07+1.15

−0.89 0.18+0.12
−0.32 3.98+20.6

−2.37 0.38+1.07
−0.16 0.106+1.51

−0.017 2.42+0.58
−1.05 0.52+1.15

−0.23
Tm 0.22+1.39

−0.22 0.17+2.01
−0.03 −0.18+0.08

−0.15 2.31+1.73
−1.30 0.61+2.32

−0.25 1.79+0.40
−1.56 2.19+0.81

−0.49 1.10+1.10
−0.11

Tsl 0.54+0.05
−0.48 1.47+1.84

−1.29 0.30+0.08
−0.65 2.89+1.03

−0.92 2.56+6.09
−1.73 0.104+1.23

−0.008 2.60+0.40
−0.40 0.21+0.89

−0.07

14.78 < log10m500

T y 0.80+0.02
−0.04 0.83+0.17

−0.16 0.13+0.01
−0.28 4.88+3.21

−2.02 0.25+0.30
−0.06 0.066+0.109

−0.009 3.00+0.00
−0.78 0.57+0.52

−0.05
Tm 0.69+0.04

−0.09 0.78+0.13
−0.16 0.17+0.04

−1.04 3.54+2.35
−1.47 0.39+0.72

−0.11 0.059+0.023
−0.018 2.34+0.66

−0.80 0.41+11.5
−0.24

Tsl 0.11+0.50
−0.04 0.76+0.04

−0.67 −1.65+0.60
−0.07 4.08+1.14

−1.35 1.10+0.75
−0.28 0.067+0.951

−0.005 2.07+0.93
−0.13 64.3+35.7

−63.2

Table C20. The fit values for the medians of the cylindrical temperature profiles, T/T500, at z = 0.5. The errors are determined through bootstrap methods –
errors written as 0.00, correspond to very small values, < 10−9. The fit parameters correspond to those described in Equation (22).

z = 0.5 T0 rt a b c rcool acool Tmin

log10m500 < 13.5

T y 0.85+0.04
−0.02 1.45+0.16

−0.20 0.38+0.02
−0.03 1.02+0.13

−0.02 0.00+0.00
−0.00 0.121+0.006

−0.006 1.86+0.19
−0.17 0.23+0.04

−0.04

Tm 0.95+0.29
−0.53 0.47+1.58

−0.13 0.03+0.56
−0.16 3.97+3.77

−1.96 0.29+0.31
−0.29 0.206+0.334

−0.104 1.88+1.12
−0.66 0.76+0.63

−0.72

Tsl 0.97+0.26
−0.36 0.59+0.25

−0.19 0.17+0.51
−0.34 3.40+6.38

−1.43 0.53+0.39
−0.40 0.178+0.218

−0.075 2.47+0.53
−1.10 0.68+0.86

−0.64

13.5 < log10m500 < 14.0

T y 1.12+0.15
−0.39 0.47+0.80

−0.12 0.22+0.24
−0.10 2.74+110

−1.05 0.22+0.13
−0.22 0.090+0.019

−0.010 3.00+0.00
−1.60 0.74+0.19

−0.62
Tm 0.74+0.23

−0.26 0.74+0.14
−0.44 0.20+0.48

−0.34 4.72+10.2
−2.86 0.27+0.52

−0.18 0.214+0.268
−0.103 1.44+1.56

−0.27 0.46+1.04
−0.42

Tsl 0.61+0.06
−0.13 1.00+0.32

−0.15 0.63+0.17
−0.45 4.14+1.91

−1.57 0.65+0.55
−0.20 0.162+0.112

−0.042 1.59+0.46
−0.21 0.07+0.40

−0.05

14.0 < log10m500 < 14.55

T y 0.67+0.10
−0.28 1.43+2.30

−0.62 0.34+0.07
−0.19 5.37+7.73

−2.83 0.32+7.32
−0.16 0.105+0.039

−0.013 1.53+0.58
−0.34 0.22+0.31

−0.11

Tm 0.58+0.06
−0.10 1.12+0.36

−0.92 0.45+0.17
−0.54 4.01+5.15

−2.01 0.45+0.48
−0.16 0.155+1.490

−0.056 1.39+1.10
−0.30 0.12+0.95

−0.09

Tsl 0.56+0.03
−0.07 1.23+0.28

−0.16 0.44+0.10
−0.63 3.67+1.02

−0.90 1.37+0.73
−0.42 0.124+0.136

−0.013 1.96+0.47
−0.33 0.14+0.95

−0.06

14.55 < log10m500

T y 0.92+0.14
−0.42 0.74+0.23

−0.53 0.02+0.23
−0.17 3.47+9.16

−2.14 0.32+0.32
−0.18 0.114+1.100

−0.066 1.85+1.15
−0.85 0.86+0.73

−0.68
Tm 0.74+0.19

−0.25 0.70+0.30
−0.55 0.28+0.16

−0.45 3.81+15.2
−2.55 0.31+0.55

−0.18 0.094+1.100
−0.042 1.47+1.53

−0.47 0.16+0.92
−0.16

Tsl 0.62+0.04
−0.19 0.65+0.05

−0.52 0.41+0.11
−1.01 6.80+5.21

−2.85 0.47+0.31
−0.12 0.098+0.823

−0.017 1.76+1.24
−0.26 0.09+0.99

−0.09
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Table C21. The fit values for the medians of the cylindrical temperature profiles, T/T500, at z = 1. The errors are determined through bootstrap methods –
errors written as 0.00, correspond to very small values, < 10−9. The fit parameters correspond to those described in Equation (22).

z = 1 T0 rt a b c rcool acool Tmin

log10m500 < 13.5

T y 1.35+0.29
−0.34 0.34+0.37

−0.08 0.24+0.26
−0.28 2.54+75.1

−1.32 0.22+0.28
−0.22 0.088+0.039

−0.050 1.91+1.09
−0.68 0.20+0.82

−0.20

Tm 1.03+0.83
−0.97 0.36+0.40

−0.18 −0.15+0.54
−0.12 1.73+15.0

−0.72 0.76+0.38
−0.66 0.289+1.170

−0.224 3.00+0.00
−1.85 1.27+0.77

−1.24

Tsl 0.73+0.12
−0.31 0.88+0.70

−0.19 0.42+0.16
−0.39 3.38+1.52

−1.60 0.73+1.23
−0.30 0.119+0.120

−0.014 2.04+0.84
−0.44 0.27+0.77

−0.17

13.5 < log10m500 < 14.0

T y 0.76+0.33
−0.34 0.91+0.35

−0.66 0.41+0.07
−0.54 10.5+454

−8.68 0.10+0.39
−0.06 0.113+0.601

−0.018 1.44+1.56
−0.31 0.23+1.22

−0.14

Tm 0.57+0.41
−0.40 0.92+0.32

−0.21 −0.12+0.08
−0.07 3.61+4.89

−2.14 0.72+0.80
−0.49 0.335+0.072

−0.101 1.62+0.95
−0.39 1.46+0.45

−0.38

Tsl 1.42+1.20
−1.31 1.33+2.09

−0.52 −0.30+0.11
−0.08 1.47+1.76

−0.39 2.93+3.08
−2.11 0.249+0.059

−0.048 2.31+0.69
−0.62 2.44+1.71

−1.25

14.0 < log10m500 < 14.3

T y 0.72+0.06
−0.24 1.16+0.95

−0.39 0.24+0.05
−0.27 5.56+13.1

−2.83 0.29+1.04
−0.10 0.102+0.167

−0.012 2.28+0.72
−0.69 0.43+0.68

−0.15
Tm 0.57+0.37

−0.28 1.07+0.40
−0.89 −0.09+0.50

−0.09 3.49+2.74
−1.78 0.61+1.15

−0.24 0.275+1.45
−0.167 2.02+0.98

−0.57 1.00+0.65
−0.85

Tsl 0.52+0.05
−0.12 1.48+1.39

−0.31 0.37+0.00
−0.64 3.24+1.10

−1.06 2.18+4.25
−0.77 0.112+0.127

−0.009 2.34+0.39
−0.37 0.15+0.92

−0.06

14.3 < log10m500

T y 1.04+0.22
−0.19 0.53+0.24

−0.16 0.08+0.30
−0.16 3.78+42.2

−2.05 0.35+0.32
−0.25 0.115+0.348

−0.081 2.99+0.01
−1.93 0.73+0.62

−0.73

Tm 0.91+0.19
−0.11 0.54+0.26

−0.08 0.10+0.30
−0.13 2.44+4.01

−0.95 0.55+0.29
−0.34 0.066+0.109

−0.036 3.00+0.00
−1.84 0.49+0.23

−0.49

Tsl 0.70+0.05
−0.07 0.60+0.06

−0.05 0.25+0.22
−0.08 3.81+1.78

−0.82 0.88+0.17
−0.26 0.083+0.033

−0.013 3.00+0.00
−1.38 0.28+0.06

−0.28

Table C22. The fit values for the medians of the cylindrical profiles of σ(T y )/T500 across all redshifts. The errors are determined through bootstrap methods
– errors written as 0.00, correspond to very small values, < 10−9. The fit parameters correspond to those described in Equation (22).

σ(T y ) T0 rt a b c rcool acool Tmin

z = 0

log10m500 < 13.5 0.44+0.99
−0.08 0.27+0.09

−0.19 −3.00+0.00
−0.00 3.76+0.98

−1.94 2.76+0.35
−0.18 0.066+1.360

−0.005 2.71+0.29
−0.18 26.5+36.0

−25.2
13.5 < log10m500 < 14.0 0.30+0.49

−0.16 0.64+0.74
−0.50 −1.15+0.12

−0.11 3.9+20.0
−1.9 0.85+0.81

−0.65 0.133+0.044
−0.021 1.76+0.44

−0.10 5.5+16.5
−4.0

14.0 < log10m500 < 14.5 0.20+0.53
−0.08 0.96+0.14

−0.89 −0.94+0.36
−0.33 6.7+18.9

−5.1 0.41+0.67
−0.14 0.053+0.931

−0.020 1.45+0.82
−0.13 10.2+31.8

−9.6
14.5 < log10m500 < 14.78 0.32+0.04

−0.17 1.01+0.12
−0.11 −0.29+0.16

−0.87 16+621
−10 0.34+0.27

−0.12 0.078+0.070
−0.064 1.37+0.97

−0.37 1.1+98.9
−0.6

14.78 < log10m500 0.40+0.04
−0.01 0.96+0.25

−0.10 −0.20+0.02
−0.02 8.97+48.2

−4.86 0.34+0.40
−0.08 0.007+0.001

−0.001 1.00+0.00
−0.00 1.91+0.37

−0.32

z = 0.5

log10m500 < 13.5 0.34+0.07
−0.18 0.30+1.12

−0.10 −2.98+1.46
−0.02 3.5+91.2

−1.6 2.78+0.56
−2.37 0.101+0.057

−0.059 2.42+0.32
−0.55 44.5+51.7

−32.9

13.5 < log10m500 < 14.0 0.29+0.39
−0.11 0.31+0.37

−0.23 −0.92+0.22
−0.52 3.82+2.24

−2.25 0.64+0.91
−0.18 0.110+0.066

−0.059 1.76+0.60
−0.36 1.57+7.09

−1.09

14.0 < log10m500 < 14.55 0.25+0.08
−0.13 1.06+0.11

−0.08 −0.65+0.34
−0.58 12.6+125

−7.6 0.34+0.23
−0.15 0.045+0.060

−0.032 1.24+0.17
−0.25 3.5+96.5

−2.5
14.55 < log10m500 0.49+0.04

−0.02 0.99+0.32
−0.16 −0.20+0.03

−0.03 4.65+1.89
−1.21 0.57+0.54

−0.15 0.012+0.001
−0.001 1.00+0.00

−0.00 1.93+0.41
−0.35

z = 1

log10m500 < 13.5 0.33+0.06
−0.13 0.37+0.31

−0.13 −0.86+0.10
−0.22 5.42+3.36

−1.44 0.67+0.12
−0.29 0.134+0.019

−0.033 2.17+0.83
−0.55 1.56+4.09

−0.62
13.5 < log10m500 < 14.0 0.19+0.11

−0.08 0.92+0.11
−0.10 −0.80+0.32

−0.48 10.4+16.3
−5.5 0.29+0.21

−0.09 0.052+0.061
−0.027 1.33+0.23

−0.12 6.1+40.0
−4.5

14.0 < log10m500 < 14.3 0.19+0.16
−0.07 1.07+0.08

−0.07 −1.02+0.68
−0.23 34.5+922

−30.1 0.38+0.30
−0.13 0.019+0.074

−0.006 1.34+0.14
−0.27 32.0+68.0

−30.8

14.3 < log10m500 0.50+0.03
−0.01 4.30+4.22

−3.45 −0.015+0.011
−0.068 3.23+1.35

−0.79 50.0+0.0
−49.6 0.054+0.011

−0.031 3.00+0.00
−2.00 0.60+0.42

−0.04
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