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Abstract

Rhabdoviruses are enveloped negative-sense RNA viruses that have numerous biotechno-

logical applications. However, recovering plant rhabdoviruses from cDNA remains difficult

due to technical difficulties such as the need for concurrent in planta expression of the viral

genome together with the viral nucleoprotein (N), phosphoprotein (P) and RNA-dependent

RNA polymerase (L) and viral genome instability in E. coli. Here, we developed a negative-

sense minigenome cassette for Lettuce necrotic yellows virus (LNYV). We introduced

introns into the unstable viral ORF and employed Agrobacterium tumefaciens to co-infiltrate

Nicotiana with the genes for the N, P, and L proteins together with the minigenome cassette.

The minigenome cassette included the Discosoma sp. red fluorescent protein gene

(DsRed) cloned in the negative-sense between the viral trailer and leader sequences which

were placed between hammerhead and hepatitis delta ribozymes. In planta DsRed expres-

sion was demonstrated by western blotting while the appropriate splicing of introduced

introns was confirmed by sequencing of RT-PCR product.

Introduction

Lettuce necrotic yellows virus (LNYV) is a plant cytorhabdovirus with a negative-sense, single-

stranded, RNA genome that infects lettuce and garlic [1, 2]. In planta, the virus replicates

within the cytoplasm accumulating in membrane-bound viroplasms [3, 4]. LNYV genomic

RNA (gRNA) encodes six monocistronic genes: Nucleoprotein (N), Phosphoprotein (P), cell-

to-cell movement protein (4b), Matrix protein (M), Glycoprotein (G), and Large Polymerase

(L), flanked by the untranslated 3’ leader and 5’ trailer regions [5]. As with other members of

the Rhabdoviridae family, gRNA coiled with N protein acts as the template for de novo mRNA

synthesis by the viral RNA-dependent RNA polymerase [6]. The viral transcription and repli-

cation processes are controlled by cis-acting sequences in the leader (le) and trailer (tr) regions

[7–9].

The inherent characteristics of rhabdoviruses, such as having well-defined transcription

start/stop signals [10] and the ability to incorporate recombinant glycoprotein into their
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envelope [11], make them attractive candidates for various biomedical applications. For exam-

ple, established reverse genetic systems for animal rhabdoviruses [12, 13] enabled rescue of

vesicular stomatitis virus (VSV) as recombinant viral vaccine [14, 15]. In such systems, cells

are transfected with plasmids encoding the viral genome together with the N, P, and L proteins

(helper proteins) [16]. The viral genome is provided in the positive (antigenomic) sense [17]

and auto-cleaving ribozymes such as hammerhead [18] and hepatitis delta [19] are used to

increase yield by generating the exact termini of the de novo transcribed viral RNA. Recently,

this system was adapted for the plant nucleorhabdovirus, Sonchus yellow net rhabdovirus

(SYNV), where Agrobacterium tumefaciens was used to deliver plasmids encoding the antige-

nomic-sense of the viral genome together with the N, P, and L proteins [20].

Here we attempted to adopt such a system to rescue LNYV. We employed a minigenome

(MG) system [21, 22], in which the full-length viral cDNA was substituted by that of a reporter

gene cloned between the viral le and tr sequences. Minigenome-based systems are a rapid and

simple approach for proof-of-concept studies. As with full-virus RNA transcripts, the MG-

derived reporter gene RNA transcripts undergo transcription and replication by the helper

proteins. Detection of the reporter protein demonstrates the productive interaction between

the viral cis- and trans- acting elements. We assembled LNYV negative-sense MG cassette

with Discosoma sp. red fluorescent protein gene (DsRed) cloned in the negative-sense between

LNYV le and tr sequences and hammerhead (HHz) and hepatitis delta virus (HDz) ribozymes

at the 5’ and 3’ termini respectively, in the plant expression vector pTRAk.2 [23]. Similarly, we

cloned the N and P genes open reading frame(s) (ORF) into pTRAk.2.

However, our initial attempts to clone the L gene ORF into pTRAk.2 were hampered due to

its instability in E. coli. Viral sequence instability in E. coli has been observed previously where

bacteria harbouring plasmids with viral sequences fail to grow or yield plasmids with nucleotide

mutations. The reason for this instability remains unknown but different strategies such as cell-

free cloning [24] or intron introduction [25, 26] have been employed to circumvent this problem.

In the present study, we overcame L gene instability by introducing three introns and using an E.

coli strain that enabled downregulation of plasmid copy-number.

Following successful molecular cloning of all four constructs, we used A. tumefaciens to co-

deliver the plasmids into Nicotiana glutinosa and Nicotiana benthamiana. The former is

known to be susceptible to LNYV infection and has been the plant of choice for studying this

virus biology and pathogenesis while the latter is the species of choice for production of recom-

binant proteins in plants using Agrobacterium-mediated transient expression [27, 28].

Materials and methods

Bacterial strains

E. coli strain MAX Efficiency1DH10B™ (Thermo Fisher Scientific, UK) and E. coli strain

CopyCutter™ EPI400™ (Epicentre, US) were used for molecular cloning. For plant infiltrations,

A. tumefaciens strain GV3101::pMP90RK (German Collection of Microorganisms and Cell

Cultures (DSMZ), Leibniz Institute, Germany) was employed.

Molecular biology

Plasmid DNA extraction was undertaken using the QIAprep Spin Miniprep (Qiagen, Man-

chester, UK). DNA restriction endonucleases and ligase were purchased from New England

Biolabs (NEB) (Hitchin, UK). Chemicals were purchased from Sigma Aldrich (Dorset, UK) or

Thermo Fisher Scientific (Dartford, UK). PCR amplifications were completed using Phusion1

High-Fidelity PCR Master Mix with HF Buffer or with Q5 Master Mix (NEB).
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Gene constructs

LNYV cDNA was synthesized by GeneArt Gene Synthesis (Regensburg, Germany) as separate

constructs with sequences cloned in the opposite sense to the antibiotic resistance gene in the

plasmid. Constructs for MG cassettes, N, and P genes were generated using PCR with appro-

priate DNA oligonucleotides and cloned into the pTRAk.2 plasmid using compatible restric-

tion endonuclease sites. Similarly, the L gene with three introduced introns was synthesized

by Genscript (New Jersey, USA) and cloned into the pTRAk.2 plasmid. The pTRAk.2 plant

transformation vector includes (i) Cauliflower mosaic virus (CaMV) promoter with duplicated

transcriptional enhancer and (ii) CaMV-35S transcription polyadenylation signals for in
planta expression [23]. The gene for DsRed protein with transit peptide sequence at its N—ter-

minus was PCR-amplified from pTRAp-2G12-Ds plasmid with appropriate DNA oligonucleo-

tides and cloned into assembled in vitro MG LNYV construct using compatible restriction

endonuclease sites. The DsRed gene used was that of Discosoma sp. red fluorescent protein

(R2G mutant) ORF with H. vulgare granule-bound starch synthase I transit peptide sequence

at its N–terminus.

In vitro transcription

For in vitro assessments, a DNA fragment containing the minigenome cassette was amplified

by PCR using priV set of primers (S1 Table) from an assembled construct covering (i) the T7

promoter, (ii) the hammerhead ribozyme, (iii) the LNYV tr, (iv) the multiple cloning site, (v)

the LNYV le, (vi) hepatitis delta ribozyme, and (vii) T7 terminator. The PCR amplicon was

used as a template for in vitro transcription using the TranscriptAid T7 High Yield Transcrip-

tion Kit (Thermo Fischer Scientific) which was incubated at 25˚C in the presence of 11 mM

MgCl2 for two hours to allow ribozyme activity as described previously [22, 29].

Plant agroinfiltration

N. glutinosa and N. benthamiana plants were grown at 23˚C ± 2˚C in a 16/8 h light and dark

cycle and agro-infiltrated using A. tumefaciens strain GV3101::pMP90RK as described previ-

ously [30].

Total RNA extraction and RT-PCR analysis

Total RNA was extracted from leaf tissue 7 days post infiltration using TRI Reagent1 Solution

(Applied Biosystems, UK). Extracted RNA was treated with rDNaseI using Ambion1DNA-

free™ Kit (Thermo Fischer Scientific). RT-PCR amplifications were performed using Access

RT-PCR System from Promega (Southampton, UK) according to the manufacturer’s protocol.

RT-PCR transcribed cDNA was sequenced (Genewiz, Bishop’s Stortford, UK).

Western blot analysis

Infiltrated and non-infiltrated plant leaf samples (100 mg) were frozen in liquid nitrogen,

homogenized on ice with plastic pestles in PBS pH 7.4 buffer. Crude protein samples were

heated in NuPAGE1 LDS Sample Buffer with 500 mM dithiothreitol (DTT) (Thermo Fischer

Scientific) at 70˚C for 10 minutes and loaded onto an Invitrogen™ NuPAGE1Novex1 Bis-

Tris 4–12% gel (Thermo Fischer Scientific).

Separated proteins were then blotted onto Amersham Hybond ECL Nitrocellulose Mem-

brane (GE Healthcare, Amersham, UK) using Invitrogen™ semi-dry transfer system (Thermo

Fischer Scientific). To detect DsRed protein, the membrane was probed with mouse monoclo-

nal [6G6] anti-red fluorescent proteins (ChromoTek, GmbH, Planegg-Martinsried, Germany).
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Antibody 6G6 has been used previously to detect red fluorescent protein in different plant

expression platforms such as Nicotiana benthamiana [31] and Arabidopsis thaliana [32].

Antibody 6G6 was diluted at 1:2500 in 5% w/v non-fat dried skimmed milk (NFDS) in

PBST (0.1% v/v Tween 20 PBS pH 7.4 buffer) and incubated with the nitrocellulose membrane

overnight at 4˚C. This was followed by sheep anti-mouse IgG-HRP conjugate (The Binding

Site, UK) diluted 1:5000 in 5% w/v NFDS milk in PBST and incubated for 1 hour at room

temperature. The membrane was washed three times with in PBST after each step. The mem-

brane was developed by Amersham™ ECL™ Prime Western blotting reagent (GE Healthcare)

and visualised using SynGene G:Box gel imaging technology with Genesys software (Syngene,

UK).

Results

Introns stabilise L gene ORF in E. coli and are correctly spliced in planta

We previously attempted conventional methods to clone the L gene ORF in E. coli but we

could not recover the correct construct. Based on the observation that introns stabilise viral

genomes in E. coli [25] we introduced the second intron of the Phaseolus vulgari nitrite reduc-

tase (NIR) gene [33], the second intron of the Solanum tuberosum light-inducible tissue-spe-

cific ST-LS1 gene [34], and finally the first intron of Nicotiana tabacum ribulose

1,5-bisphosphate carboxylase small subunit (NtRbcS) gene [35] into the L gene ORF (Fig 1A).

Furthermore, the E. coli strain CopyCutter™ EPI400™ was employed to maintain low construct

copy numbers. The L gene (with introns) was successfully cloned into the plant expression

plasmid pTRAk.2 (int-L.pTRAk.2) using this strategy (confirmed by Sanger sequencing).

The fidelity of intron splicing was subsequently tested in planta. Total RNA was extracted

from N. glutinosa infiltrated with int-L.pTRAk.2 and used as a template for RT-PCR using

prin1, prin2, and prin3 set of primers (S1 Table). The primers were designed to amplify three

segments spanning introns I, II, and III respectively. The expected cDNA size of each segment

with introduced introns was 500 bp, while 279, 312, and 407 bp respectively if introns were

spliced out (Fig 1A). As shown in Fig 1B, all three introns were removed giving bands of the

expected size. Furthermore, the correct splice-site sequence was confirmed by Sanger

sequencing.

A minigenome system for LNYV

Initially, we assembled LNYV in vitro MG cassettes to assess ribozyme auto-cleavage in an in
vitro transcription assay. The MG cassette consisted of tr–multiple cloning site (MCS)–le

cloned between hammerhead and hepatitis delta and under the control of T7 promoter (Fig

2A). We also changed the first 8 nucleotides of HHz (accession number GU299211) to 5’—
UCGUCCGU-3’, to allow base-pairing with the first 8 nucleotides of the LNYV tr (5’—ACGG
ACGA-3’) as indicated in a previous study [18].

As shown in (Fig 2B), gel electrophoresis of the transcribed products yielded a fragment of

expected size for the tr–MCS–le sequence (358nt) suggesting auto-cleavage by both HHz and

HDz ribozymes. Putative bands comprising HHz–tr–MCS–le (412nt) and HDz–T7 (233nt)

terminator were also seen.

We next sought to test the LNYV MG cassette in planta to assess the interaction between

LNYV cis- and trans- acting elements. We substituted the MG MCS with the DsRed gene

ORF, cloned in the negative-sense with a plastid targeting sequence at the N–terminus. The

plastid targeting sequence was employed to minimize metabolic burden on the endoplasmic

reticulum [36]. The coding region was cloned between LNYV L gene 3’ UTR (extending

between 12,564 and 12,613nt of LNYV genome accession number AJ867584) and N gene 5’
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Fig 1. Genome organization of LNYV L gene with or without introduced introns. (A) Diagram showing the

expected size for RT-PCR amplicons from int-L gene pre- and mature mRNA using prA, prB, and prC primers. (B)

Agarose gels int1, int2, and int3 showing mRNA amplicons detected by RT-PCR compared to PCR of the int-L gene

for second intron of the Phaseolus vulgari nitrite reductase (NIR) gene, the second intron of the Solanum tuberosum
light-inducible tissue-specific ST-LS1 gene, and the first intron of Nicotiana tabacum ribulose 1, 5-bisphosphate

carboxylase small subunit (NtRbcS) gene respectively. A RT-PCR without addition of reverse transcriptase enzyme was

used as a negative control.

https://doi.org/10.1371/journal.pone.0229877.g001

Fig 2. Testing ribozyme auto-cleavage in the LNYV minigenome cassette. (A) Diagram of construct used in T7 in vitro RNA transcription showing

the LNYV minigenome cassette tr–MSC—le flanked by hammerhead and hepatitis delta ribozymes for generating exact viral termini by auto-cleavage.

The minigenome cassette is flanked by the T7 promoter and terminator for in vitro transcription. (B) RNA sequence of HHz and the 5’ end of tr used in

the minigenome cassette. The first 8 nucleotides of HHz were changed to allow base-pairing with the first 8 nucleotides of the tr sequence. (C) Agarose

gel showing putative bands of tr–MCS—le fragment (358 nt), HHz—tr–MCS—le (412 nt), and HDz—T7T (233 nt). (D) The expected secondary

structure of the HHz with its first 8 nucleotides complimenting those of the tr sequence plus the putative cleavage site [18].

https://doi.org/10.1371/journal.pone.0229877.g002
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UTRs (extending between 92 and 168nt). The construct was cloned into the pTRAk.2 plant

expression plasmid (Fig 3A) under the control of the cauliflower mosaic virus 35S double pro-

moter for transient expression in Nicotiana [37]. N, P and int-L genes were cloned in separate

plasmids.

N. glutinosa leaves were co-infiltrated with the MG cassette, N, P and int-L. 7 days post-

infiltration, total RNA was extracted from co-infiltrated leaf samples and used as a template

for RT-PCR using N, P, int-L, and DsRed gene-specific primers (sets prRN, prRP, prRint-L

and prRR respectively). Transcription of DsRed, N, P and L genes was confirmed by detection

of bands of expected size (Fig 3B). Two bands were detected for the int-L gene mRNA (lane

int-L). The smaller-sized band is consistent with int-L mRNA having all introns spliced out

(expected size 1,955 bp) whilst the larger band is consistent with the int-L gene pre-mRNA

containing introns I and II (expected size 2,365 bp).

Plant samples were subsequently assayed for DsRed expression. Chlorophyll autofluores-

cence complicated detection of DsRed fluorescence, so western blotting with specific antise-

rum was used to confirm the expression of DsRed protein (33.5 kDa, Fig 4A). This was

observed in N. glutinosa infiltrated with MG cassette, N, P and int-L plasmids (lane MG+-

NPint-L) only. As shown in Fig 4A, no bands of DsRed protein could be seen in N. glutinosa

Fig 3. Genome organization of LNYV minigenome cassette together with the N, P, and int-L gene used to develop

reverse genetics for LNYV in Nicotiana. (A) Diagram of LNYV minigenome construct used in planta together with

the N, P, and int-L genes. All genes were flanked by cauliflower mosaic virus 35S double promoter and transcription

polyadenylation signal (35SP and 35ST respectively) for in planta expression. The minigenome cassette constituted of

(tr): LNYV trailer, 3’UTR: LNYV L gene 3’ untranslated region, DsRed: DsRed gene ORF with plastid targeting signal

(PTS) at N-terminus, 5’UTR: LNYV N gene 5’ untranslated region cloned between hammerhead and hepatitis delta

ribozymes (HHz and HDz respectively). (B) Agarose gels ag-N, ag-P, ag-MGdsRed, and ag-int-L showing the expected

RT-PCR bands for N gene (889 bp), P gene (1,319 bp), DsRed (761 bp), and int-L genes (1,955 bp) respectively.

https://doi.org/10.1371/journal.pone.0229877.g003
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sample infiltrated with the MG cassette without helper plasmids (lane MG), samples infiltrated

with individual helper plasmids without the MG cassette (lanes N, P, and int-L respectively)

or in non-infiltrated N. glutinosa sample (lane WT). Furthermore, DsRed protein band was

observed in N. glutinosa infiltrated with positive control construct (harbouring DsRed gene

cloned in the positive-sense downstream CaMV35S promoter) (lane R) equivalent to that seen

in lane (MG+NPint-L).

Similarly, western blotting of crude N. benthamiana extract samples confirmed the presence

of DsRed protein in samples infiltrated with MG cassette, N, P and int-L plasmids (Fig 4B, lane

mrR+NPint-L) and in the positive control (lane R). No bands were seen in N. benthamiana
infiltrated with MG cassette only (lane MG), or in samples infiltrated with individual helper

plasmids (lanes MG, N, P, and int-L respectively) or in non-infiltrated sample (lane WT). A

Fig 4. Detection of DsRed in agroinfiltrated Nicotiana. (A) DsRed protein detection using western blot in agro-

infiltrated N. glutinosa. Infiltration was with MG cassette plus helper proteins (MG+NPint-L), MG alone (MG), helper

proteins alone (N), (P), (int-L) and the positive control (R). WT is wild type non-infiltrated N. glutinosa. Bands were

detected in samples infiltrated with MG cassette plus helper proteins (MG+NPint-L) and in positive control (R). (B)

DsRed protein detection using western blot in agro-infiltrated N. benthamiana, samples are as in (A) but with an

additional negative control (NPintL) consisting of infiltration of all helper proteins.

https://doi.org/10.1371/journal.pone.0229877.g004
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further negative control consisting of sample infiltrated with all three helper plasmids but with-

out MG was included here and did not produce DsRed expression (lanes NPint-L).

Discussion

In the present study, we have investigated the feasibility of a reverse genetic system for LNYV

based on a negative-sense MG cassette. The MG-derived DsRed RNA-transcripts underwent

transcription and expression in plant cells co-expressing N, P, and L proteins. Reverse genetic

systems based on positive-sense constructs have been long established for animal and plant rhab-

doviruses [12, 13, 22]. However, to the best of our knowledge, only two negative-sense RNA

viruses have been rescued from negative-sense constructs, these are rabies and Sendai virus [17,

38]. The advantage of reverse genetic systems based on negative-sense constructs is that it

excludes any possibility of MG cassette basal expression independent of the N, P, and L proteins.

The MG cassette together with the genes of the three helper proteins N, P, and L were inde-

pendently cloned into pTRAk.2 vector and were agro-infiltrated into N. glutinosa and N.

benthamiana using A. tumefaciens. Cloning the L gene in E. coli was initially problematic.

Difficulty in cloning RNA virus genomes or viral genes in E. coli is common among the RNA

viruses [24, 39–41]. The presence of prokaryotic promoters in viral sequences and spurious

activity of eukaryotic promoters are found to be contributing factors for the observed instabil-

ity [42, 43]. Strategies including the use of single point mutations, insertion of introns, and use

of low-copy plasmid have been used to overcome these problems [26, 44, 45]. Nevertheless,

success is predominantly a matter of trial and error as demonstrated by attempts to clone

dengue virus type 1 (DV1) where a low-copy plasmid approach was suitable for cloning a DV1

replicon, but failed to produce the full-genome DV1 cDNA [46]. Ultimately, we succeeded in

cloning the full-length L gene by incorporating three different introns into the 5’ half of the

gene and using an E. coli strain with modified pcnB gene for reduction of plasmid copy num-

ber [47]. While all three chosen introns have previously been demonstrated to be correctly

spliced in their plant of origin [33–35], none have previously been tested as part of a cytorhab-

dovirus genome or in N. glutinosa. Insertion sites for introns were chosen between thymine

and guanine nucleotides of ATG as described previously [25]. Introns were inserted at the 5’

end of the gene to further enhance in planta mRNA translation [48]. Attempts to clone the

full-length L gene using an intron-only approach (i.e., without plasmid copy number reduc-

tion), or solely by plasmid copy number reduction (i.e., without incorporation of introns)

were unsuccessful (transformed E. coli either did not grow or yielded plasmids with large

deleted sequences, although a number of strains were used with different growth conditions).

A possible explanation is that disruption of cryptic sequences by introns and low template

number (plasmid copy number) minimized inadvertent transcription [49]. Post-agroinfiltra-

tion, RT-PCR assessment performed on total RNA revealed the correct splicing of all three

introns to yield mature mRNA, which was further confirmed by cDNA sequencing.

The first assessment undertaken with the assembled MG cassette was to confirm ribozyme

auto-cleavage. The generation of exact 50 and 3’ termini of vRNA enhances transcription and

replication efficacy [50, 51]. Gel electrophoresis of MG RNA transcribed in vitro at 25˚C sug-

gested ribozyme auto-cleavage at both termini with the putative HDz auto-cleavage being more

rapid than that of the HHz (which contradicts the results of previous studies [22]). Variation in

ribozyme efficacy could have occurred due to differences in incubation temperature [52], and

in future studies northern blotting with specific probes should be used to better identify the

bands. From these in vitro results we expected ribozyme auto-cleavage and the production of

MG precise ends to be replicated in planta at 25˚C. Indeed, in previous studies, both ribozymes

have demonstrated successful in vivo auto-cleavage in both cytoplasm and nuclei [53–55].
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The first in planta assessment of the LNYV MG strategy was to investigate the transcription

of the infiltrated MG in planta cassette (harbouring the DsRed ORF), N, P, and int-L genes.

RT-PCR confirmed the presence of their respective mRNAs in samples co-infiltrated with

MG, N, P, and int-L plasmids. Interestingly, int-L gene cDNA bands revealed the presence of

mature and pre-mRNA. The presence of pre-mRNA may be due to intron-induced increase in

transcription levels or an increase in mRNA stability [56, 57]. Further RT-PCR assessments

and cDNA sequencing confirmed the correct splicing of all three introns. Any error in the

intron splicing process would cause non-sense mediated mRNA decay or reading frame dis-

ruptions [58–60] and such mechanisms would have caused absence or loss-of-function of the

product L protein. However, expression of the DsRed protein (discussed below) demonstrated

the biological function of the L protein.

The success of the MG strategy was subsequently confirmed by detection of DsRed protein.

Red fluorescence in leaf sections was observed using confocal microscopy (not shown), but sig-

nificant background fluorescence, presumably from chlorophyll [61], prevented us from defin-

itively confirming DsRed visualisation. In addition, as the MG cassette, N, P and int-L

plasmids must all be in the same cell for DsRed to be produced, the concentration present may

only have generated low levels of fluorescence. However, subsequent western blotting unequiv-

ocally demonstrated DsRed expression in agroinfiltrated N. glutinosa and N. benthamiana,

generating bands of equivalent immunoreactivity to the positive control (Fig 4). These assess-

ments revealed the presence of DsRed protein in samples co-infiltrated with four constructs

encoding the MG cassette and the helper proteins but not in plant samples infiltrated with the

MG cassette alone or with any the helper plasmids without the MG cassette. Independent

expression of the DsRed protein from the MG construct should not be possible as the primary

RNA transcripts are in the negative-sense. It is only through the biological interaction between

the helper proteins and the cis- signals of the primary RNA transcript that the latter could be

transcribed into positive-sense RNA, capped, polyadenylated and then translated into DsRed

protein. The absence of DsRed protein in N. glutinosa or N. benthamiana infiltrated with the

MG cassette alone provided further confirmation of the necessity for the biological interaction

between LNYV cis- and trans- acting elements.

In conclusion, we have utilised introns to stabilise viral genomic sequence in E. coli and

established a genomic-sense MG cassette system for a plant cytorhabdovirus, which will be a

powerful tool for investigating virus replication and pathogenesis. Our work provides a plat-

form for mutagenesis studies and functional analysis of the N, P, and L proteins and the cis-
acting sequences of the virus genome. Furthermore, it is a successful proof-of-principle study

that comprises the first step in the rescue of LNYV virus from cDNA.
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