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Abstract

This thesis has two folds: Firstly, designing mixture failure rate functions by combing few
other existing failure rate functions to obtain desirable mixture failure rate functions. The
first proposed mixture failure rate is the non-linear failure rate. This failure rate is a mix-
ture of the exponential and Weibull failure rate functions. It was designed for modeling
data sets in which failures result from both random shock and wear out or modeling a
series system with two components, where one component follows an exponential distri-
bution and the other follows a Weibull distribution. The second proposed mixture failure
rate is the additive Chen-Weibull failure rate. This failure rate is considered a mixture of
the Chen and Weibull failure rates. It is decided for modeling lifetime data with flexible
failure rate including bathtub-shaped failure rate. The final proposed mixture failure rate
is the improvement of new modified Weibull failure rate. This failure rate is a mixture
of the Weibull and modified Weibull failure rates. It is also decided for modeling lifetime
data with flexible failure rate including bathtub-shaped failure rate. The superiority of
the proposed models have been demonstrated by fitting to many well-known lifetime data
sets. And secondly, applying modern methods and techniques from Bayesian statistics for
analyzing failure time distributions which result from those mixture failure rate functions.
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Chapter 1

Introduction

1.1 The Problem

Before discussing the main problem of the thesis, I explain what is the failure rate function
and why it is important. Let T be the lifetime random variable with F (t), f(t) and R(t)
being its cumulative distribution function (CDF), probability density function (PDF) and
reliability/survival function, respectively. Failure rate function is one way that uses to
specify the properties of the random variable T . Suppose that we are interested in the
probability that a system will fail in the time interval (t, t + ∆t] when we know that the
system is working at time t. That probability is defined as

P(t < T ≤ t+∆t|T > t) =
P(t < T ≤ t+∆t)

P(T > t)
=

F (t+∆t)− F (t)

R(t)
(1.1)

To define the failure rate function, we divide this probability by the length of the interval,
∆t, and let ∆t → 0. This gives

h(t) = lim
∆t→0

P(t < T ≤ t+∆t|T > t)

∆t

= lim
∆t→0

F (t+∆t)− F (t)

∆t

1

R(t)

=
F ′(t)

R(t)
=

f(t)

R(t)
(1.2)

Therefore, when ∆t is sufficiently small,

P(t < T ≤ t+∆t|T > t) ≈ h(t)∆t (1.3)

h(t)∆t gives (approximately) the probability of failure in (t, t+∆t] given that the system
has survived until time t. The failure rate function can be considered as the system’s
propensity to fail in the next short interval of time, given that it is working at time t.
Fig. 1.1 shows four of the most common types of failure rate function which have been
described by Hamada et al. [27].

1. Increasing failure rate (IFR): the instantaneous failure rate increases as a function of
time. We expect to see an increasing number of failures for a given period of time.

2. Decreasing failure rate (DFR): the instantaneous failure rate decreases as a function
of time. We expect to see the decreasing number of failures for a given period of
time.

3. Constant failure rate (CFR): the instantaneous failure rate is constant for the ob-
served lifetime. We expect to see a relatively constant number of failures for a given
period of time.
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Figure 1.1: Four different classifications of failure rate functions

4. Bathtub failure rate (BFR): the instantaneous failure rate begins high because of
early failures (“infant mortality” or “burn-in” failures), levels off for a period of time
(“useful life”), and then increases (“wearout” or “aging” failures).

In some cases, the failure rate function can be unimodal (unique mode), i.e. it has an
upside-down bathtub shape.

The reliability function examines the chance that breakdowns (of people, of experi-
mental units, of computer systems,...) occur beyond a given point in time, while the failure
rate function monitors the lifetime of a component across the support of the lifetime distri-
bution. We know that survival distributions may be equivalently specified by: the PDF, the
CDF, the reliability/survival function and the failure rate function. This means that if one
of these representations is specified, then the others may be derived from it. Therefore, a
discussion of lifetime distributions needs only to concentrate on one of these expressions.
The failure rate function is often modeled and specified because of its direct interpretation
as imminent risk. It may even help identify the mechanism which underlies failures more
effectively than the survival function. Researchers are likely to have first-hand knowledge
of how the imminent risk changes with time for the lifetimes being studied. For example,
light bulbs tend to break quite unexpectedly rather than because they are suffering from
old age; people, on the other hand tend to wear out as they get older. We would expect
the shapes of the failure rate functions for light bulbs and people to be different. People
experience increasing failure rate, whereas light bulbs tend to exhibit constant failure rate
[63].

The most wide used distribution for modeling lifetime data is the Weibull distribution
due to the diversity shapes of its failure rate function. The failure rate can be increasing,
decreasing or constant depending on its shape parameter. However, it fails to capture
some complex situations where the data might result from multiple failure modes or rep-
resent non-monotonic failure rates. For example, let’s consider a series system with two
independent components (Fig. 1.2). Suppose T1 and T2 are the lifetimes of the two com-
ponents. Then T = min(T1, T2) is the lifetime of the system. The reliability of the system
is defined by

R(t) = P(T > t) = P(T1 > t, T2 > t)

= P(T1 > t)P(T2 > t)
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• All advanced methods, as well as innovative theoretical findings must be imple-
mented to an appropriate programming setting.

• New creative mixture models will be developed, analyzed and applied to real data
sets.

• Different estimation approaches will be compared by mean of massive simulation
study.

1.3 The method

The idea of combining failure rates will result in too many parameters of the proposed
model so that the classical approach fails or becomes too difficult for practical implementa-
tion. Nonetheless, Bayesian approach makes these complex settings computationally feasi-
ble and straightforward due to the recent advances in Markov chain Monte Carlo (MCMC)
methods. Since the number of parameters has increased, the conventional MCMC meth-
ods are hard to be implemented to find a good posterior sample. Therefore, the adap-
tive MCMC and Hamiltonian Monte Carlo (HMC) are exploited in order to empower the
traditional methods of statistical estimation. In addition to the Bayes approach, the clas-
sical approach is also presented. The maximum likelihood estimation (MLE) is provided
along with the Bayesian estimation using the cross-entropy method for optimizing the
likelihood function. Traditional methods of maximization of likelihood functions of such
mixture models sometimes do not provide the expected result due to multiple optimal
points. For mixture modes, we usually rely on the expectation-maximization (EM) algo-
rithm. However, the EM is a local search procedure and therefore there is no guarantee
that it converges to the global maximum. As an alternative to EM algorithm, the cross-
entropy (CE) algorithm is used which most of the time will provide the global maximum.
In addition, the CE algorithm is not so sensitive to the choices of its initial values.

1.4 The outcomes

This thesis has developed new failure time distributions which result from mixture fail-
ure rate and provided originally Bayesian analysis of these proposed models. The first
proposed model is the non-linear failure rate model with three parameters, the second is
the additive Chen-Weibull model with four parameters and the third is the improvement
of new modified Weibull model with five parameters. The thesis has also demonstrated
the effect of parameterization on the Bayes estimators and has applied successfully some
MCMC methods, known as adaptive MCMC and Hamiltonian Monte Carlo, for explor-
ing the corresponding posterior distributions, and as a result, providing more accurate
approximate Bayes estimates.

1.5 Outline of the thesis

The outline of the thesis is as follows. Chapter 2 provides a short literature survey of the
area of study, the so-called “state of the art”. Chapter 3 reviews the methods that are used
for the following chapters. Mostly focus on MLE, MCMC and Bayesian inference methods.
Chapter 4 devotes for a Bayes study of the proposed non-linear failure rate model which
considers as the generalization of the linear failure rate model. Chapter 5 deals with the
parameterizations of the Weibull model which help to understand the posterior correla-
tions inside model parameters and to apply successfully Bayesian inference via MCMC
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methods for the Weibull model as well as other models which induce from it. Chapter 6
provides a Bayes study of the proposed additive Chen-Weibull model. Chapter 7 provides a
Bayes study of the improvement of the new modified Weibull model. And finally, Chapter
8 makes conclusions and proposes for future work.
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Chapter 2

State of the Art

The exponential distribution is often used in reliability studies as the model for the time
until failure of a device. For example, the lifetime of a semiconductor chip or a light bulb
with failures caused by random shocks might be appropriately modeled as an exponential
distribution. The lack of memory property of the exponential distribution implies that the
device does not wear out. That is, regardless of how long the device has been operating,
the probability of a failure in the next 1000 hours is the same as the probability of a
failure in the first 1000 hours of operation [45]. However, the lifetime of human who
suffers slow aging or a device that suffers slow mechanical wear, such as bearing wear,
is better modeled by a distribution with increasing failure rate. One such distribution is
the Weibull distribution. The Weibull distribution is one of the best known distribution
and has wide applications in diverse disciplines, see for example Rinne [51]. However, its
failure rate function has limitations in reliability applications which due to the following
reasons.

• First, its failure rate function, h(t) = btk−1, equals 0 at time t = 0. This failure rate
model might be only appropriate for modeling some physical systems that do not
suffer from random shocks. Some physical systems where from the past experiences
the random shocks have been studied, required corrections. The model, where initial
failure rate equals 0 might be inappropriate for modeling some physical systems
that require initial positive failure rate. That is the physical systems that suffer from
random shocks and also from wear out failures.

• Second, its failure rate function can only be increasing, decreasing or constant. For
many real life data sets, failure rate function could possibly exhibit some form of
non-monotonic behavior. For example, the most popular non-monotonic failure rate
function is the bathtub-shaped failure rate.

For these reasons, there have been several proposals to model such behaviors. One such
proposal includes generalizing or modifying the Weibull distribution by adding an extra
parameter into it as, for example, the exponentiated Weibull distribution [47], the modi-
fied Weibull distribution [39], the generalized modified Weibull distribution [14], etc.

Another proposal, also the main interest of the thesis, is to combine failure rate func-
tions into a mixture of failure rates from which the failure time distribution is defined.
On one hand, such models are useful for modeling a series system with independent com-
ponents. On the other hand, such models are useful for modeling a physical system that
suffers from independent competing risks. It is often seen that the first proposal fails
to capture some important aspects of the data whereas the second is quite cumbersome.
Therefore, Bayesian approach will make the second approach be easier and more practical.

Due to the first disadvantage of the Weibull failure rate, i.e h(t) = btk−1 equals 0 at
time t = 0, the linear failure rate (LFR), h(t) = a + bt, was proposed as a remedy for
this problem. The LFR was first introduced by Kodlin [34], and had been studied by
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Bain [4] as a special case of polynomial failure rate model for type II censoring. It can
be considered a generalization of the exponential model (b = 0) or the Rayleigh model
(a = 0). It can also be regarded as a mixture of failure rates of an exponential and a
Rayleigh distributions. However, because of the limitation of the Rayleigh failure rate, as
well as the LFR, which is not flexible to capture the most common types of failure rate,
new generalizations of LFR h(t) = a+btk−1, known as non-linear failure rate (NLFR), was
developed. It is considered as a mixture of the exponential and Weibull failure rates. This
mixture failure rate not only allows for an initial positive failure rate but also takes into
account all shapes of Weibull failure rate. The first research work which attempts to solve
the NLFR is given by Salem [54]. This model was also introduced later by Sarhan [56],
Bousquet, Bertholon, and Celeux [10], and Sarhan and Zaindin [58], but with different
name, motivation, parameterization, model explanation and purpose.

In spite of its flexibility, the NLFR still fails to represent the bathtub-shaped failure
rate. Therefore, the additive Weibull failure rate was proposed by Xie and Lai [75] to
meet this demand. It is a combination of two Weibull failure rates in which its failure rate
function has bathtub-shaped. Many years later, a new combination of the Weibull failure
rate and modified Weibull failure rate, namely the new modified Weibull distribution, was
proposed by Almalki and Yuan [3] which possesses the bathtub-shaped failure rate. It was
demonstrated as the most flexible model compare to all other existed models. However,
short time later, the new model called additive modified Weibull distribution was proposed
by He, Cui, and Du [28] by combining the modified Weibull failure rate and the Gompertz
failure rate [25]. This new model was demonstrated to be better than the preceding
model and all other existing models. In this thesis, we will see that the new modified
Weibull model can be improved to be better than its original model and to some extent
even better than the additive modified Weibull model. Recently, there is a new model have
been proposed by combining the log-normal failure rate and the modified Weibull failure
rate [60].

Bayesian methods have significantly increased over the past few decades that is due
to advances in simulation-based computational tools and fast computing machines. The
recent advances in Markov chain Monte Carlo (MCMC) methods, e.g. adaptive MCMC and
Hamiltonian Monte Carlo (also know as Hybrid Monte Carlo), etc., have revolutionized
the Bayesian approach. In case of failure distributions resulting from mixture failure rate,
the models become so complicated so that the classical approaches fail or become too
difficult for practical implementation. Bayesian approaches make these complex settings
computationally feasible and straightforward. Since mixture failure rate will result in too
many parameters of the proposed model, there is only two research papers so far which
provide Bayesian approach for such models. The first paper was provided by Salem [54]
which intended to provide Bayesian estimation of the non-linear failure rate model. How-
ever, the solutions were hard to obtain due to computational difficulties. The second paper
was provided by Pandey, Singh, and Zimmer [50] which intended to provide the Bayesian
estimation of the linear failure rate model with only two parameters. Of course, there are
several papers which provided Bayesian analysis for lifetime models, but not such kind
of mixture failure rate, and perhaps we have never seen any paper that provide Bayesian
estimation of lifetime models with more than three parameters. This thesis attempts to
explore such complicated models using Bayesian approach.
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Chapter 3

Methodology

The chapter provides brief discussions of statistical methods that will be use in later chap-
ters.

3.1 Total time on test

The scaled Total Time on Test (TTT) plot is used to identify the shapes of failure rate
function of an observed data [1]. The scale TTT transform is defined as

G(u) =
K−1(u)

K−1(1)
, 0 < u < 1 (3.1)

where K−1(u) =
∫ F−1(u)
0 R(t)dt. The corresponding empirical version of the scaled TTT

transform is defined as

Gn(r/n) =

∑r
i=1 yi:n + (n− r)yr:n∑n

i=1 yi:n
, r = 1, . . . , n (3.2)

where yi:n denote the i-th order statistic of the sample. In practice, the scaled TTT trans-
form is constructed by plotting (r/n,Gn(r/n)). It has been show by Aarset [1] that

• If the scaled TTT transform approximates a straight diagonal line, the failure rate is
constant.

• If the scaled TTT transform is convex, the failure rate function is decreasing.

• If the scaled TTT transform is concave, the failure rate function is increasing.

• If the scaled TTT transform is first convex and then concave, the failure rate function
is bathtub shaped.

• If the scaled TTT transform is first concave and then convex, the failure rate function
is unimodal.

Fig. 3.1 displays the 5 different shapes of the scale TTT transform which correspond to
the 5 different shapes of the failure rate function.

3.2 Maximum likelihood estimation

Let D: t1, ..., tn be the random failure times of n devices under test whose failure time
distribution is determined by a pdf f(t|θ) with a d-dimensional vector parameter θ. If
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Figure 3.1: Scaled TTT transform plot

there is no censoring, the likelihood function takes the general form

L(D|θ) =
n∏

i=1

f(ti|θ) (3.3)

The log-likelihood function can be written as

logL(D|θ) =
n∑

i=1

log f(ti|θ) (3.4)

If some observations are censored, we have to make an adjustment to the expression
(3.3). For an observation of an observed failure, we put in the pdf as above. But for a
right-censored observation, we put in the reliability function, indicating that observation
is known to exceed a particular value. The likelihood function in general then takes the
form

L(D|θ) =
n∏

i=1

f(ti|θ)δiR(ti|θ)1−δi (3.5)

=

n∏

i=1

h(ti|θ)δiR(ti|θ) (3.6)

This expression means that when ti is an observed failure, the censoring indicator is δi = 1,
and we enter a pdf factor. When ti is a censored observation, we have δi = 0, and we enter
a reliability factor [46].

The log-likelihood function for censoring case is

logL(D|θ) =
n∑

i=1

δi log f(ti|θ) +
n∑

i=1

(1− δi) logR(ti|θ) (3.7)

When some or all of uncensored, left censored, interval censored and right censored
observations occur in the same dataset, the likelihood function where censoring mecha-
nisms are independent of lifetimes will include products of terms:
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f(t) for observed failure at t
R(tR) for right censored at tR
1−R(tL) for left censored at tL
R(tL)−R(tR) for interval censored at [tL, tR)

Maximizing the L(D|θ) or logL(D|θ) with respect to θ will give us the MLE of θ. In
this thesis, this task is performed by using the cross-entropy method which is introduced
below.

3.2.1 Observed and expected Fisher information matrices

A vector of first partial derivatives of the log-likelihood function, some time called the
gradient vector is given as follows:

∇ logL(D|θ) =




∂ logL(D|θ)
∂θ1

∂ logL(D|θ)
∂θ2
...

∂ logL(D|θ)
∂θd




(3.8)

And a matrix of second partial derivatives is given by

∇2 logL(D|θ) =




∂2 logL(D|θ)
∂θ21

∂2 logL(D|θ)
∂θ1∂θ2

. . . ∂2 logL(D|θ)
∂θ1∂θd

∂2 logL(D|θ)
∂θ2∂θ1

∂2 logL(D|θ)
∂θ22

. . . ∂2 logL(D|θ)
∂θ2∂θd

...
...

. . .
...

∂2 logL(D|θ)
∂θd∂θ1

∂2 logL(D|θ)
∂θd∂θ2

. . . ∂2 logL(D|θ)
∂θ2d




(3.9)

The expected (Fisher) information matrix is defined as

I(θ) = −E
[
∇2 logL(D|θ)

]
(3.10)

However, it is not always possible to calculate expected information. But if we can eval-
uate the log likelihood, then we can calculate the other kind called observed (Fisher)
information. The observed information matrix is defined as

J(θ) = −∇2 logL(D|θ) (3.11)

Here we know the functions I and J, but we do not know the true value of the parameter
θ where we should evaluate them. Hence we do not know either I(θ) or J(θ). However,
using the plug-in theorem, both I and J can be evaluated at θ̂, the MLE of θ

I(θ̂) = −E
[
∇2 logL(D|θ)

]∣∣
θ=θ̂

(3.12)

J(θ̂) = −∇2 logL(D|θ)
∣∣
θ=θ̂

(3.13)

Then the following approximations can be used to construct confident intervals based on
maximum likelihood estimators [24]

θ̂ ≈ N
(
θ, I(θ̂)−1

)
(3.14)

θ̂ ≈ N
(
θ,J(θ̂)−1

)
(3.15)
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3.2.2 Asymptotic Confidence intervals

The 100(1 − α)% symmetric approximate normal confidence intervals of θi, i = 1, . . . , d,
are given by

θ̂i ± z1−α/2

√(
I(θ̂)−1

)
ii

(3.16)

or

θ̂i ± z1−α/2

√(
J(θ̂)−1

)
ii

(3.17)

where z1−α/2 is the 100(1− α/2) percentage point of standard normal distribution.

3.2.3 Bootstrap standard error

For point estimator with complicated form, finding its standard error is difficult or impos-
sible by using standard statistical methods. The bootstrap method can be used in such
situation. To apply the bootstrap method, we draw bootstrap samples from f(x|θ = θ̂)
and calculate a bootstrap estimate θ̂∗ (MLE of θ based on bootstrap sample). This is called
parametric bootstrap. In case the PDF f(x|θ) is unknown or difficult to generate data, the
bootstrap method can be proceeded by considering the original sample data as a popula-
tion and draw bootstrap samples from it with replacement. This is called nonparametric

bootstrap. We repeat this process B times.
Bootstrap sample 1: x11, x

1
2, . . . , x

1
n −→ θ̂∗1

Bootstrap sample 2: x21, x
2
2, . . . , x

2
n −→ θ̂∗2

...
Bootstrap sample B: xB1 , x

B
2 , . . . , x

B
n −→ θ̂∗B

Then we calculate the sample mean of the bootstrap estimates

θ̂
∗
=

1

B

B∑

i=1

θ̂∗i (3.18)

The bootstrap standard error of θ̂ is just the sample standard deviation of the bootstrap
estimates

SEB(θ̂) =

√√√√ 1

B − 1

B∑

i=1

(
θ̂∗i − θ̂

∗)2
(3.19)

B is usually chosen equal to 100 or 200 for obtaining bootstrap standard error and at least
104 − 1 for calculating bootstrap confidence interval.

3.2.4 Bootstrap confidence intervals

Bootstrap method provides five types of confidence intervals. The normal confidence
interval incorporates the estimated bootstrap bias and bootstrap standard error which is
given as

[
θ̂ − B̂iasB(θ̂)− z1−α/2SEB(θ̂), θ̂ − B̂iasB(θ̂) + z1−α/2SEB(θ̂)

]
(3.20)

where B̂iasB(θ̂) = θ̂
∗
− θ̂ is an estimated bootstrap bias of θ̂.
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The basic bootstrap confidence interval is based on the idea that the quantity θ̂∗ − θ̂
has roughly the same distribution as θ̂ − θ. Therefore,

P

[
θ̂∗(B+1)α

2
− θ̂ ≤ θ̂∗ − θ̂ ≤ θ̂∗(B+1)(1−α

2
) − θ̂

]
≈ 1− α (3.21)

P

[
θ̂∗(B+1)α

2
− θ̂ ≤ θ̂ − θ ≤ θ̂∗(B+1)(1−α

2
) − θ̂

]
≈ 1− α (3.22)

P

[
2θ̂ − θ̂∗(B+1)(1−α

2
) ≤ θ ≤ 2θ̂ − θ̂∗(B+1)α

2

]
≈ 1− α (3.23)

Then the basic bootstrap confidence interval is given as
[
2θ̂ − θ̂∗(B+1)(1−α

2
), 2θ̂ − θ̂∗(B+1)α

2

]
(3.24)

where θ̂∗(B+1)α
2

is the (B + 1)α2 th of the B ordered θ̂∗ values. If (B + 1)α2 is not an integer,

linear interpolation can be used.
The percentile confidence interval is based on the quantiles of the B bootstrap repli-

cation of θ̂. A 100(1− α)% bootstrap confidence interval for θ is calculated as
[
θ̂∗(B+1)α

2
, θ̂∗(B+1)(1−α

2
)

]
(3.25)

The studentized bootstrap confidence interval is based on estimating the actual distri-
bution of the t statistic from the data. The estimated distribution of T ∗ is denoted

T ∗ =
θ̂∗ − θ̂√
V̂ ar(θ̂∗)

(3.26)

where θ̂∗ and
√
V̂ ar(θ̂∗) are statistics computed from a bootstrap sample. The studentized

confidence interval is [
θ̂ − T ∗

(B+1)(1−α
2
)σ̂θ̂, θ̂ − T ∗

(B+1)α
2
σ̂θ̂

]
(3.27)

The final bootstrap interval is the BCa confidence interval where the BCa stands for
bias-corrected and accelerated. To compute a BCa interval for θ, first compute the bias
factor

z = Φ−1



∑B

i=1 I
{
θ̂∗i < θ̂

}

B


 (3.28)

where Φ−1 is the inverse of the standard normal CDF. Next, compute the skewness correc-
tion factor:

a =

∑n
i=1

(
θ̂(−i) − θ̂(−i)

)3

6

[∑n
i=1

(
θ̂(−i) − θ̂(−i)

)2] 3
2

(3.29)

where θ̂(−i) is the value of θ̂ when the ith value is deleted from the sample of n values and

θ̂(−i) =
∑n

i=1
θ̂(−i)

n . Using z and a, compute

a1 = Φ

[
z +

z + zα/2

1− a(z + zα/2)

]
and a2 = Φ

[
z +

z + z1−α/2

1− a(z + z1−α/2)

]
(3.30)
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The BCa confidence interval is
[
θ̂∗(B+1)a1

, θ̂∗(B+1)a2

]
(3.31)

For details, readers are referred to Ugarte, Militino, and Arnholt [68]. All of these five
bootstrap confidence intervals can easily be obtained by using the “boot.ci” function in the
R package “boot” [13].

3.3 The cross-entropy method for continuous multi-extremal

optimization

The main idea for the cross-entropy (CE) method for optimization can be stated as follows:
Suppose we wish to maximize some “performance” function S(x) over all elements/states
x in some set X ⊂ Rn. Let us denote the maximum by γ∗, thus

S(x∗) = γ∗ = max
x∈X

S(x) (3.32)

To proceed with CE, we first randomize our deterministic problem by defining a family of
pdfs {f(·;v),v ∈ V} on the set X . Next, we associate with Eq. (3.32) the estimation of

ℓ(γ) = Pu (S(X) ≥ γ) = EuI{S(X)≥γ} (3.33)

the so-called associated stochastic problem (ASP). Here, X is a random vector with pdf
f(·;u), for some u ∈ V (for example, X could be a normal random vector) and γ is a
known or unknown parameter. Note that there are in fact two possible estimation prob-
lems associated with Eq. (3.33). For a given γ we can estimate ℓ, or alternatively, for a
given ℓ we can estimate γ, the root of Eq. (3.33). Let us consider the problem of estimat-
ing ℓ for a certain γ close to γ∗. Then, typically {S(X) ≥ γ} is a rare event, and estimation
of ℓ is a non-trivial problem. The CE method solves this efficiently by making adaptive
changes to the probability density function according to the Kullback-Leibler CE, thus cre-
ating a sequence f(·;u), f(·;v1), f(·;v2), . . . of pdfs that are “steered” in the direction of
the theoretically optimal density f(·;v∗) corresponding to the degenerate density at an
optimal point. In fact, the CE method generates a sequence of tuples {(γt,vt)}, which
converges quickly to a small neighborhood of the optimal tuple (γ∗,v∗). More specifically,
we initialize by setting v0 = u, choosing a not very small quantity ̺, say ̺ = 10−2, and
then we proceed as follows:

Adaptive updating of γt. For a fixed vt−1, let γt be the (1− ̺)-quantile of S(X) under
vt−1. That is, γt satisfies

Pvt−1(S(X) ≥ γt) ≥ ̺ (3.34)

Pvt−1(S(X) ≤ γt) ≥ 1− ̺ (3.35)

where X ∼ f(·;vt−1)
A simple estimator of γt, denoted γ̂t, can be obtained by drawing a random sample

X1, . . . ,Xn from f(·;vt−1) and evaluating the sample (1−̺)-quantile of the performances
as

γ̂t = S⌈(1−̺)N⌉ (3.36)

Adaptive updating of vt. For fixed γt and vt−1, derive vt from the solution of the
program

max
v

D(v) = max
v

Evt−1I{S(X)≥γt} ln f(X;v) (3.37)
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The stochastic counterpart of Eq. (3.37) is as follows: for fixed γ̂t and v̂t−1 (the estimate
of vt−1), derive v̂t from the following program

max
v

D̂(v) = max
v

1

N

N∑

i=1

I{S(Xi)≥γ̂t} ln f(Xi;v) (3.38)

Instead of updating the parameter vector v directly via the solution of Eq. (3.38) we use
the following smoothed version

v̂t = αṽt + (1− α)v̂t−1, i = 1, . . . , n (3.39)

where ṽt is the parameter vector obtained from the solution of Eq. (3.38), and α is called
the smoothing parameter, with 0.7 < α ≤ 1.

Algorithm Generic CE Algorithm for Optimization

1: Choose some v̂0. Set t = 1.

2: Generate a sample X1, . . . ,Xn from the density f(·; v̂t−1) and compute the sample
(1− ̺)-quantile γ̂t of the performances according to Eq. (3.36).

3: Use the same sample X1, . . . ,Xn and solve the stochastic program Eq. (3.38). De-
note the solution by ṽt.

4: Apply Eq. (3.39) to smooth out the vector ṽt. Increase t by 1.

5: Repeat steps 2-4 until a pre-specified stopping criterion is met.

Using normal updating, the sample X1, . . . ,Xn are sample from an n-dimensional
multivariate normal distribution with independent components, N (µ̂t−1, σ̂

2
t−1). While

applying CE algorithm, the mean vector µ̂t should converge to x
∗ and the vector of stan-

dard deviations σ̂t converge to the zero vector. In short, we should obtain a degenerated
pdf with all mass concentrated in the vicinity of the point x∗. Fig. 3.2 gives an example
of the evolution of the sampling pdf for a parameter. More detail for such explanation can
be found in [35], [53] or [8], and a short introduction can also be found in [78].

Figure 3.2: The evolution of the sampling pdf for a parameter (source [8])
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3.4 Bayesian inference

3.4.1 Bayes’ rule

Consider a random variable T that has a probability distribution that depends upon θ (it
can be a scalar or a vector), where θ is an element of a well-defined set Θ. For example
if θ is the mean of a normal distribution, then Θ = R. θ is the unknown parameter, but
in Bayesian inference, it is treated as random variables. We denote π(θ) as the prior pdf

of θ. The prior distribution of θ given by the prior pdf π(θ) reflects subjective belief of θ
before the sample is drawn. We now denote the pdf of T by f(t|θ) since we think of it as
a conditional pdf of T , given θ.

Suppose that D: t1, . . . , tn is a random sample from the conditional distribution of T
given θ with pdf f(D|θ). Then the likelihood function, the joint conditional pdf of D given
θ, can be written as

L(D|θ) =
n∏

i=1

f(ti|θ) (3.40)

Thus the joint of D and θ is
π(D,θ) = L(D|θ)π(θ) (3.41)

If θ is a continuous random variable, the joint marginal pdf of D is given by

π(D) =

∫

Θ
π(D,θ)dθ =

∫

Θ
L(D|θ)π(θ)dθ (3.42)

If θ is a discrete random variable, integration would be replaced by summation. In either
cases, the conditional pdf of θ, given the sample D, is

π(θ|D) =
π(D,θ)

π(D)
=

L(D|θ)π(θ)
π(D)

(3.43)

The distribution defined by this conditional pdf is called the posterior distribution and
(3.43) is called the posterior pdf. The prior distribution reflects the subjective belief of θ
before the sample is drawn, while the posterior distribution is the conditional distribution
of θ after the sample is drawn. For more details, see [31].

3.4.2 Prediction

Predictive inferences are the process of making inferences about an unknown observable.
Before the data D are considered, the distribution of the unknown but observable t̃ is

π(t̃) =

∫

Θ
π(t̃,θ)dθ =

∫

Θ
f(t̃|θ)π(θ)dθ (3.44)

This is often called the marginal distribution of t̃, but a more informative name is the prior

predictive distribution: prior because it is not conditional on a previous observation of
the process, and predictive because it is the distribution for a quantity that is observable.

After the data D have been observed, we can predict an unknown observable, t̃, from
the same process. The distribution of t̃ is called the posterior predictive distribution,
posterior because it is conditional on the observed D and predictive because it is a predic-
tion for an observable t̃:

π(t̃|D) =

∫

Θ
π(t̃,θ|D)dθ
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=

∫

Θ
π(t̃|θ,D)π(θ|D)dθ

=

∫

Θ
f(t̃|θ)π(θ|D)dθ (3.45)

The last step follows from the assumed conditional independence of D and t̃ given θ [22].

3.4.3 Bayesian point estimation

Bayesian point estimation is a process of selecting a decision function θ̂, so that θ̂ is a
predicted value of θ. The choice of the decision function should depend upon the loss
function L(θ, θ̂). A Bayes estimate is a decision function θ̂ that minimizes the conditional
expectation of the loss

E

[
L(θ, θ̂)|D

]
=

∫

Θ
L(θ, θ̂)π(θ|D)dθ (3.46)

In estimation problems, it is natural for the loss function to be a function of the distance
between the true value of the parameter θ and its estimated value θ̂. The most widely
used loss criterion in one parameter estimation problems is squared error loss (SEL) (Fig.
3.3), that is,

L(θ, θ̂) = (θ̂ − θ)2 (3.47)

θθ
^

1 θ
^

2 θ
^

L(θ, θ
^

1)

L(θ, θ
^)

Figure 3.3: Squared error loss function

Squared error loss is a symmetric function that penalizes overestimation and underes-
timation equally, and takes the value zero when the estimate is right on target [55].

The Bayes estimator of θ under the SEL function is the value θ̂ which minimizes
E

[
(θ̂ − θ)2|D

]
. That is

θ̂BS = E [θ|D] (3.48)

where E[·|D] denotes the posterior expectation with respect to the posterior density of θ.
The use of symmetric loss function may be inappropriate in the estimation of reliability

function as has been recognized by Canfield [12]. Overestimate of reliability function or
mean failure time is usually much more serious than underestimate of reliability function
or mean failure time. Also, an underestimate of the failure rate results in more serious
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consequences than an overestimate of the failure rate. For example, in the disaster of
the space shuttle [20] the management underestimated the failure rate and therefore
overestimated the reliability of solid-fuel rocket booster [6].

Varian [70] motivated the use of asymmetric loss functions in estimation problems aris-
ing in real estate assessment, where the overestimation of a property’s value might cause
it to remain on the market unsold for an extended period, ultimately costing the seller
inordinate and unnecessary expenses. The estimation of peak water flow in the construc-
tion of dams or levees clearly has asymmetric consequences; overestimation might lead to
increased construction costs while underestimation might lead to the much more serious
consequence of subsequent overflows which can seriously threaten lives and property in
adjacent communities [55].

There are many forms of asymmetric loss functions. One of the more widely use
versions of asymmetric loss is the linear exponential (LINEX) loss function (Fig. 3.4) which
can be expressed as

L(θ, θ̂) = ec(θ̂−θ) − c(θ̂ − θ)− 1, c 6= 0 (3.49)

θθ
^

1 θ
^

2 θ
^

L(θ, θ
^

2)

L(θ, θ
^

1)

L(θ, θ
^)

Figure 3.4: Linear exponential loss function (c > 0)

This function rises exponentially when θ̂ > θ and approximately linearly when θ̂ <
θ. The sign and magnitude of the parameter c represents the direction and degree of
symmetry, respectively. If c > 0, the overestimation is more serious than underestimation,
and vice versa. For c close to zero, the LINEX loss is approximately SEL and therefore
almost symmetric.

The posterior expectation of the LINEX loss function is

E

[
L(θ, θ̂)|D

]
= ecθ̂E

[
e−cθ|D

]
− c

(
θ̂ − E[θ|D]

)
− 1 (3.50)

The Bayes estimator of θ under the LINEX loss function is the value θ̂ which minimizes Eq.
(3.50). That is

θ̂BL = −1

c
log
{
E

[
e−cθ|D

]}
(3.51)

provided that the expectation E
[
e−cθ|D

]
exists and is finite.
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The modified LINEX loss is the general entropy loss (GEL) function, defined as:

L(θ, θ̂) =

(
θ̂

θ

)c

− c log

(
θ̂

θ

)
− 1 (3.52)

The Bayes estimator of θ under the GEL function is given as

θ̂BG =
(
E
[
θ−c|D

])− 1
c (3.53)

provided that the expectation E [θ−c|D] exists and is finite. It can be shown that, when
c = 1, this loss becomes the entropy loss and the Bayes estimator θ̂BG coincides with
the Bayes estimator under the weighted squared-error loss function. Similarly, when c =
−1 the Bayes estimator θ̂BG coincides with the Bayes estimator under squared error loss
function [62].

3.4.4 Bayesian interval estimation

In order to obtain an interval estimate of θ, we find two functions u(D) and v(D) so that
the conditional probability

P [u(D) < θ < v(D)|D] =

∫ v(D)

u(D)
π(θ|D)dθ (3.54)

is large, for example, 0.95. The the interval (u(D), v(D)) is an interval estimate of θ in
the sense that the conditional probability of θ belonging to that interval is equal to 0.95.
To avoid confusing with confidence intervals, these intervals are often called credible or
probability intervals [31].

3.4.5 Bayesian model checking

In parametric Bayesian analysis, we assume a parametric model for the data. Therefore, in
order to avoid misleading inferences when the model is poor, checking the model is crucial
to statistical analysis. If the model fits, then predictive data generate under the model
should look similar to the observed data. In another way, the observed data should look
plausible under the posterior predictive distribution. The basic technique for checking the
fit of a model to data is to draw simulated values from the posterior predictive distribution
and compare these samples to the observed data. Any systematic differences between the
simulations and the data indicate potential failings of the model [22].

π(t̃|D) =

∫

Θ
f(t̃|θ)π(θ|D)dθ (3.55)

For each draw of the parameters from the posterior distribution, θ(s) ∼ π(θ|D), s =

1 . . .m, we draw a vector of n samples t̃
(s) = (t̃

(s)
1 , . . . , t̃

(s)
n ) from the posterior predictive

distribution by simulating from the data model conditional on parameters θ(s). Notice
that the size of predictive samples is the same as the size of observed data.

Posterior predictive p-values. From a Bayesian context, a posterior p-value or Bayesian
p-value is the probability, given the data, that a future observation is more extreme (as
measured by some test variable) than the data [21]. We choose a test quantity, or dis-
crepancy measure, T (D) that depends only on data, or T (D,θ) that depends on data and
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model parameter. Then the Bayesian p-value is estimated as [22]:

pB = P
(
T (t̃,θ) > T (D,θ)|D

)
≈ 1

m

m∑

s=1

I[T (t̃(s),θ(s))>T (D,θ(s))] (3.56)

The closer this value to 0.5, the better the test quantity values calculated from simulated
data distribute around the observed test quantity.

Posterior predictive loss criterion. We compute the following quantities [5]: Posterior
predictive mean and variance for each observation:

µ̃i = E
[
t̃i|D

]
≈ 1

m

m∑

s=1

t̃
(s)
i , i = 1, . . . , n (3.57)

σ̃2
i = V ar

[
t̃i|D

]
≈ 1

m

m∑

s=1

(
t̃
(s)
i − µ̃i

)2
, i = 1, . . . , n (3.58)

Goodness of fit (a model with lower value is better):

G =

n∑

i=1

(ti − µ̃i)
2 (3.59)

Penalize predictive variance (a model with lower value is better):

P =
n∑

i=1

σ̃2
i (3.60)

Model comparison metric (a model with lower value is better): D = G+ P
Deviance information criterion (DIC). The DIC is proposed based on the principle DIC

= ‘goodness of fit’+‘complexity’ [65]. The DIC is defined as

DIC = D + pD (3.61)

where D is a measure of fit
D = Eθ|D [−2 logL(D|θ)] (3.62)

and pD is a measure of “effective number of parameters”

pD = Eθ|D [−2 logL(D|θ)] + 2 logL(D|θ̃) (3.63)

Here θ̃ is an estimate of θ that can be usually chosen as θ̃ = E [θ|D]. DIC is easily
computed via MCMC methods. A model with smallest value of DIC is considered to be the
best approximating model among a set of alternative models (see also [5]).

3.4.6 Empirical Bayes

In traditional Bayesian inferences, we assume that θ follow a prior distribution with pdf
π(θ). In fact these prior distributions are also depend upon another parameter γ called
hyperparameter with pdf written as π(θ|γ). θ can be a vector of parameters. But in prac-
tice, we usually assume that the hyperparameter is known in advance based upon prior
knowledge of θ. Then we suppress the prior parameter and write the prior pdf as π(θ). In
empirical Bayes inferences, we treat the prior parameter as an unknown parameter and
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empirical Bayes methodology estimates γ based on the data as follow. Recall that

π(D,θ|γ) = π(D,θ,γ)

π(γ)

=
π(D|θ)π(θ|γ)π(γ)

π(γ)

= L(D|θ)π(θ|γ) (3.64)

Then, consider the marginal likelihood function

m(D|γ) =
∫

Θ
L(D|θ)π(θ|γ)dθ (3.65)

An empirical Bayes estimate is obtained by maximizing the marginal likelihood:

γ̂ = argmax
γ

m(D|γ) (3.66)

The empirical Bayes procedure uses the posterior pdf π(θ|D, γ̂) for inference on the pa-
rameter θ.

In nonconjugate setting, the high-dimensional integral in (3.65) poses a major diffi-
culty, preventing a direct analytical solution. The Markov chain Monte Carlo empirical
Bayes is one of the solutions for this problem. This method employs an EM algorithm to
estimate the hyperparameters from MCMC samples. First, write the marginal likelihood
as

m(D|γ) = π(D,θ|γ)
π(θ|D,γ)

(3.67)

Then take the expectation of both sides with respect to π(θ|D,γ ′) and switch to the log
scale to arrive at

Eγ′ [logm(D|γ)] = Eγ′ [log π(D,θ|γ)]− Eγ′ [log π(θ|D,γ)] (3.68)

for some (current value) γ ′. Expand the last term of the preceding equation:

Eγ′ [log π(θ|D,γ)] =

∫
log π(θ|D,γ)π(θ|D,γ ′)dθ (3.69)

and note that by the Gibbs’ inequality this integral is maximized at γ = γ ′. Consequently,
for every γ 6= γ ′, −Eγ′ [log π(θ|D,γ ′)] < −Eγ′ [log π(θ|D,γ)], such that the sequence,
which iteratively maximizes the first term in the right-hand side of (3.68)

γ(k+1) = argmax
γ

Eγ(k) [log π(D,θ|γ)] (3.70)

is nondecreasing and converges. The expectation in (3.70) will generally not be available
in closed form. However, one may approximate it by its Monte Carlo estimate:

argmax
γ

Eγ(k) [log π(D,θ|γ)] ≈ argmax
γ

1

M

M∑

m=1

log π(D,θm,(k)|γ) (3.71)

where θm,(k) denotes the mth MCMC sample from the posterior distribution with hyper-
parameters γ(k). For details, readers are referred to reference Wiel, Beest, and Münch
[74].
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3.5 Accept-Reject sampling method

The accept-reject sampling method allows us to sample from the target density f(x), for
which the inverse transform fails to be able to generate the required random variables, by
sampling from another easy-to-sample proposal distribution g(x). The proposal distribu-
tion g(x) must satisfies the following properties [52]:

• g(x) must have the same support as f(x) (i.e. g(x) > 0 when f(x) > 0).

• There exists a constant M such that f(x) ≤ Mg(x) for all x.

The method only requires us to know the functional form of the density f(x) up to a
proportional constant. The accept-reject algorithm for drawing N samples from the target
density is described as follows:

For i = 1 to N

1. Generate Y ∼ g, U ∼ U(0,1).

2. Accept X = Y if U ≤ f(Y )
Mg(Y ) , otherwise, return to 1.

The accepted Y can be easily show to be drawn from the distribution with density f(x).
Indeed,

P

(
Y ≤ x|U ≤ f(Y )

Mg(Y )

)
=

P

(
Y ≤ x, U ≤ f(Y )

Mg(Y )

)

P

(
U ≤ f(Y )

Mg(Y )

)

=

∫ x
−∞

∫ f(y)
Mg(y)

0 dug(y)dy

∫ +∞
−∞

∫ f(y)
Mg(y)

0 dug(y)dy

=

∫ x
−∞

f(y)
Mg(y)g(y)dy∫ +∞

−∞
f(y)

Mg(y)g(y)dy

=

∫ x
−∞ f(y)dy
∫ +∞
−∞ f(y)dy

=

∫ x

−∞
f(y)dy = P(X ≤ x) (3.72)

3.6 Markov chain Monte Carlo

3.6.1 The Gibbs sampler

Suppose we would like to simulate samples from a posterior distribution π(θ|D) where θ =
(θ1, . . . , θd). If samples can be simulated from the full or complete conditional distributions
{π(θi|θj 6=i,D), i = 1, . . . , d} (directly if the full conditional distributions were standard
forms or indirectly via rejection sampling methods otherwise), the Gibbs sampler can be
used. The Gibbs sampler algorithm for drawing N samples from the target distribution is
described as follows:

• Given a set of starting values {θ(0)2 , . . . , θ
(0)
d }.

• For t = 1, . . . , N , repeat:

1: Draw θ
(t)
1 ∼ p

(
θ1|θ(t−1)

2 , θ
(t−1)
3 , . . . , θ

(t−1)
d

)
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2: Draw θ
(t)
2 ∼ p

(
θ2|θ(t)1 , θ

(t−1)
3 , . . . , θ

(t−1)
d

)

...

d: Draw θ
(t)
d ∼ p

(
θd|θ(t)1 , θ

(t)
2 , . . . , θ

(t)
d−1

)

For t sufficiently large (say, bigger than some n0), {θ(t) = (θ
(t)
1 , . . . , θ

(t)
d ), t = n0+1, . . . , N}

is a (correlated) sample from the posterior π(θ|D) [5].

3.6.2 The Metropolis-Hastings algorithm

The basic idea of the Metropolis-Hastings (MH) algorithm is to generate data from some
target density π(θ|D). Given θn, we generate a “proposed value” θ∗ from some pre-
specified density q(θn, ·), and then with probability α(θn,θ

∗) we set θn+1 = θ∗, otherwise
we set θn+1 = θn, where

α(θn,θ
∗) = min

{
π(θ∗)

π(θn)

q(θ∗,θn)

q(θn,θ
∗)
, 1

}
(3.73)

If the proposed distribution is symmetric, then this acceptance probability reduces to

α(θn,θ
∗) = min

{
π(θ∗)

π(θn)
, 1

}
(3.74)

This special case of the MH algorithm is called the Metropolis algorithm [11].
The success (e.g. rapid convergence) of the MH algorithm depends on a good choice

of the proposed density q. The usual approach is to use the symmetric random-walk
Metropolis algorithm (RWM) in which θ∗ = θn + Z, where the increments Z’s are i.i.d.
from some fixed symmetric distribution (e.g. N(0, σ2Id)). The choice of q then become
how to scale the proposal (e.g. how to choose σ): too small and the chain will move to
slowly; too large and the proposals will usually be rejected [11].

3.6.3 The adaptive MCMC

The proposal distribution is manually improved through trial and error until we obtain a
good sample. However, this can be difficult, especially in high dimensions. An alternative
approach is adaptive MCMC, which ask the computer to automatically “learn” better pa-
rameter value “on the fly”–that is, while algorithm runs. Suppose {Pγ}γ∈Y is a family of
Markov chain kernels, each having stationary distribution π. (e.g. Pγ corresponds to RWM
algorithm with increment distribution N(0, γ2Id).) An adaptive MCMC would randomly
update the value of γ at each iteration, in an attempt to find the best value [11].

The package “adaptMCMC” [59] is recommended for R users. This package provides
an implementation of the generic adaptive Markov chain Monte Carlo sampler proposed
by Vihola [71].

3.7 Hamiltonian Monte Carlo

The following brief introduction of Hamiltonian Monte Carlo is based upon what was
introduced by Neal [49] and Gelman et al. [22]. MCMC was first introduced in the classic
paper of Metropolis et al. [44], where it was used to simulate the distribution of states for
a system of idealized molecules. Not long after, another approach to molecular simulation
was introduced by Alder and Wainwright [2], in which the motion of the molecules was
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deterministic, following Newton’s law of motion, which have an elegant formalization as
Hamiltonian dynamics.

In 1987, Duane and others merged the MCMC and molecular dynamics together [19].
The method was named “hybrid Monte Carlo,” which abbreviates to “HMC,”. However
the name “Hamiltonian Monte Carlo,” retaining the abbreviation, is more specific and
descriptive. Duane and others applied HMC not to molecular simulation, but to lattice
field theory simulations of quantum chromodynamics. Statistical applications of HMC
began with Neal [48] as using it for neural network models. Apparently, HMC seems to be
under-appreciated by statisticians, and perhaps also by physicists outside the lattice field
theory community [49].

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo algorithm that avoids
the random walk behavior and sensitivity to correlated parameters that plague many
MCMC methods by taking a series of steps informed by first-order gradient information.
More specifically, it is a generalization of the Metropolis algorithm that includes ‘momen-
tum’ variables so that each iteration can move further in parameter space, thus allowing
faster mixing and moving much more rapidly through the target distribution, especially in
high dimensions. These features allow it to converge to high-dimensional target distribu-
tion much more quickly than simpler methods such as random walk Metropolis or Gibbs
sampling [22].

3.7.1 Hamiltonian dynamics

In physics, Hamiltonian dynamics is used to describe how objects move throughout a
system. Hamiltonian dynamics describes an object’s motion in terms of its location θ =
(θ1, . . . , θd) and momentum φ = (φ1, . . . , φd) (object’s mass times its velocity) at certain
time t. For each location the object takes, there is an associated potential energy U(θ) (the
height of the surface at a given position), and for each momentum there is an associated
kinetic energy K(φ). The total energy of the system, known as Hamiltonian H(θ,φ), is
constant and defined as the sum of the potential and kinetic energies:

H(θ,φ) = U(θ) +K(φ) (3.75)

The partial derivatives of the Hamiltonian determine how θ and φ change over time t
according to Hamiltonian equations:

∂θi
∂t

=
∂H

∂φi
=

∂K(φ)

∂φi
, i = 1, . . . , d (3.76)

∂φi

∂t
= −∂H

∂θi
= −∂U(θ)

∂θi
, i = 1, . . . , d (3.77)

Based on the expression of ∂U(θ)
∂θi

and ∂K(φ)
∂φi

and the initial location θ0 and initial momen-
tum φ0 of an object at time t0, we can predict the location and momentum of the object
at any time t = t0 + T by simulating these dynamics for a duration T .

3.7.2 The leapfrog method for simulating Hamiltonian dynamics

The leapfrog method for simulating Hamiltonian dynamics for a duration T is performed
by updating the location and momentum variables. A leapfrog step updating the location
variable θ and the momentum variable φ over ǫ units time, starting at time t, is as follows:
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• Take a half time-step to update the momentum variable

φi(t+ ǫ/2) = φi(t)−
ǫ

2

∂U

∂θi
(θi(t)) (3.78)

• Take a full time-step to update the position variable

θi(t+ ǫ) = θi(t) + ǫ
∂K

∂φi
(φi(t+ ǫ/2)) (3.79)

• Take the remaining half time-step to finish updating the momentum variable

φi(t+ ǫ) = φi(t+ ǫ/2)− ǫ

2

∂U

∂θi
(θi(t+ ǫ)) (3.80)

We can run L leapfrog steps to simulate Hamiltonian dynamics over ǫL units of time.

3.7.3 Potential energy, kinetic energy and the target distribution

The target distribution π(θ|D) (posterior distribution) that we wish to sample can be
related to a potential energy function via the concept of a canonical distribution from
statistical mechanics. Given some energy function E(x) for the state x of some physical
system, the canonical distribution over states has probability density function

π(x) =
1

c
e−E(x)/T (3.81)

where T is the temperature of the system and c is the normalizing constant needed for this
function to sum or integrate to one. For Hamiltonian Monte Carlo simulation, we choose
T = 1.

The Hamiltonian H(θ,φ) is an energy function for the joint state of location θ and
momentum φ. Therefore, following the canonical distribution for energy function, a joint
distribution for them is defined as follows:

π(θ,φ) ∝ e−H(θ,φ)

= e−[U(θ)+K(φ)]

= e−U(θ)e−K(φ)

∝ π(θ)π(φ) (3.82)

We see that θ and φ are independent and each has canonical distribution, with energy
functions U(θ) and K(φ). The potential energy U(θ) will be defined to be minus the log
pdf of the target distribution for θ that we wish to sample. The kinetic energy K(φ) is
usually defined as minus of the log pdf of the zero-mean multivariate normal distribution
with covariance matrix M . Therefore,

U(θ) = − log π(θ|D) (3.83)

K(φ) =
φTM−1φ

2
(3.84)

Here M is a symmetric, positive definite mass matrix, which is typically diagonal, and is
often a scalar multiple of the identity matrix. With these forms for U and K, Hamiltonian



26 Chapter 3. Methodology

equations (3.76) and (3.77) can be rewritten as follows, for i = 1, . . . , d:

∂θi
∂t

= [M−1φ]i (3.85)

∂φi

∂t
=

∂ log π(θ|D)

∂θi
(3.86)

3.7.4 Hamiltonian Monte Carlo algorithm

HMC uses Hamiltonian dynamics rather than a probability distribution as a proposal func-
tion to propose future states for Markov chain in order to explore the target distribution
more effectively. Starting with the current state (θ,φ), we simulate Hamiltonian dynam-
ics for a short time using the leapfrog method. Then the final state of the position and
momentum variables of the simulation are used as the proposal states (θ∗,φ∗) for Markov
chain. The proposed state is accepted according to an update rule which is similar to
the Metropolis acceptance rule. Specifically if the probability of the proposed state after
Hamiltonian dynamics

π(θ∗,φ∗) ∝ e−U(θ∗)−K(φ∗) (3.87)

is greater than probability of the state prior to the Hamiltonian dynamics

π(θ,φ) ∝ e−U(θ)−K(φ) (3.88)

then the proposed state is accepted, otherwise, the proposed state is accepted randomly.
If the proposed state is rejected, the next state is the same as the current state. The HMC
algorithm for drawing N samples from the target distribution is described as follows:

• Given a starting position state θ(0)

• For i = 0 to N − 1

1: Draw a momentum variable φ(i) ∼ π(φ)

2: Run the leapfrog algorithm starting at (θ(i),φ(i)) for L steps with step-size ǫ to
obtain proposed state (θ∗,φ∗)

3: Calculate the acceptance probability

r = min
(
1, eU(θ(i))−U(θ∗)+K(φ(i))−K(φ∗)

)
(3.89)

4: Draw u ∼ U(0, 1)

5: Set

θ(i+1) =

{
θ∗ if u ≤ r

θ(i) otherwise
(3.90)

There is no need to keep track of φ(i) after the accept/reject step because we do not care
about it in itself, and it immediately get updated at the beginning of the next iteration.

3.7.5 Restricted parameters and areas of zero density

HMC is build to work with all continuous positive target densities. If the algorithm reaches
a point of zero density at any point during an iteration, the stepping will be stopped and
given up, spending another iteration at the previous value of location θ. This resulting
algorithm allows the chain stays in the positive area and preserves detailed balance. An
alternative way is to check if the density is positive after each step and, otherwise, change
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the sign of the momentum to return to the direction in which it came. Another usual way
to handle bounded parameters is to use transformation, e.g. taking the logarithm of a
positive parameter or the logit for a parameter restricted to fall between 0 and 1, or more
complicated joint transformation [22].

3.7.6 Setting the tuning parameters and the no-U-turn sampler

Beside the choice of the momentum distribution (usually a multivariate normal distribu-
tion with mean 0 and covariance set to a prespecified ‘mass matrix’ M), the efficiency of
the HMC depends also on the choice of the scaling factor ǫ of the leapfrog step, and the
number of leapfrog steps L per iteration. Recently, a variance of HMC called no-U-turn
sampler (NUTS) [30] has been proposed in order to automatically update these parame-
ters during the burn-in (or warm-up) period and then held fixed during the later iteration.
For statistical software R, the Rstan package [66] is used to sample from posterior distri-
bution. Rstan is the R interface to Stan [67] which provides full Bayesian inference using
NUTS.
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Chapter 4

Non-linear failure rate model: A

Bayes study using Markov chain

Monte Carlo simulation

4.1 Introduction

This chapter comes from my study given in [85]. The exponential distribution is often
used in reliability studies as the model for the time until failure of a device. The lack
of memory property of the exponential distribution implies that the device does not wear
out. The lifetime of a device with failures caused by random shocks might be appropriately
modeled as an exponential distribution. However, the lifetime T of a device that suffers
slow mechanical wear, such as bearing wear, is better modeled by a distribution such that
P (T < t + ∆t|T > t) increases with t. Distributions such as the Weibull distribution are
often used in practice to model the failure time of this type of device [45].

However, the failure rate of Weibull distribution, h(t) = btk−1, equals 0 at time t = 0.
This model might only be suitable for modeling some physical systems that do not suffer
from external random shocks. Some physical systems where from the past experiences
the random shocks have been studied, required corrections. For physical systems which
suffer from external random shocks and also from wear out failures, this model might be
inappropriate. In this regard, the linear failure rate (LFR), h(t) = a+ bt, provides partly a
solution.

The LFR was first introduced by Kodlin [34], and had been studied by Bain [4] as a
special case of polynomial failure rate model for type II censoring. It can be considered a
generalization of the exponential model (b = 0) or the Rayleigh model (a = 0). It can also
be regarded as a mixture of failure rates of an exponential and a Rayleigh distributions.
Notice that the mixture of failure rates (or mixture failure rate) is not necessary to be the
convex combination of failure rates as the mixture distribution and the simplest form is
just an addition of failure rates.

Bayesian estimation technique of the LFR model was first considered by Pandey, Singh,
and Zimmer [50]. The LFR has been mentioned in other reliability publications (e.g. Law-
less [40] and Lai and Xie [38]) and has been applied for solving many real world problems.
Because of the limitation of the Rayleigh failure rate, as well as the LFR, which is not flex-
ible to capture the most common types of failure rate, new generalizations of LFR must be
developed.

In this chapter, a generalized version of the LFR called non-linear failure rate (NLFR) is
introduced. It is considered as a mixture of the exponential and Weibull failure rates. This
mixture failure rate not only allows for an initial positive failure rate but also takes into
account all shapes of Weibull failure rate. The first research work which attempts to solve
the NLFR is given by Salem [54] but solutions were hard to obtain due to computational
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difficulties. In addition, this generalization differs from Salem [54] in other details. Such
model was also introduced by Sarhan [56], Bousquet, Bertholon, and Celeux [10], and
Sarhan and Zaindin [58], but with different name, motivation, parameterization, model
explanation and purpose. This model can also be considered as a special case of the
4-parameter model introduced by Xie and Lai [75].

In addition to the model, the modern computational methods known as the cross-
entropy (CE) [53] and Markov chain Monte Carlo (MCMC) methods are exploited. Mix-
ture models often result in too many parameters. For example, the models in this study
and by Salem [54], Sarhan [56], Bousquet, Bertholon, and Celeux [10], and Sarhan and
Zaindin [58] have 3 parameters; the model introduced by Xie and Lai [75] has 4 param-
eters; the models by Almalki and Yuan [3] and He, Cui, and Du [28] have 5 parameters;
the model by Wang [72] has 6 parameters. Maximum likelihood estimate (MLE) of such
model parameters is based on the log-likelihood function. However, traditional methods of
maximization of a log-likelihood function of such mixture models sometimes do not pro-
vide the expected result due to multiple optimal points. For mixture modes, we usually
rely on the EM algorithm [42]. However, the EM is a local search procedure and there-
fore there is no guarantee that it converges to the global maximum. As an alternative to
EM, the CE algorithm, which most of the time will provide the global maximum, is used.
Bayesian estimation is considered under the symmetric and asymmetric loss functions.
Bayesian approach to parameter estimation of lifetime distributions has been considered
by many authors such as Gupta, Mukherjee, and Upadhyay [26], Soliman et al. [64], and
Kundu and Howlader [36]. Likewise, MCMC methods make Bayesian inference for such
models be easier and more practical. However, the efficiency of some MCMC algorithms
relies on a good choice of the proposal distribution. Here the adaptive MCMC algorithm is
used which allows us to sample from posterior distribution without intervening in the pro-
posal distribution but still provides sample better than traditional MCMC algorithms and
converges quickly to the target distribution. In comparison with the Hamiltonian Monte
Carlo, the adaptive MCMC might explore the target density a bit slower. However, it is
easier to implement and can be run in any usual computer.

The benchmark data sets, e.g. the aircraft windshield failure data [9], the lifetime data
of male mice exposed to 300 rads of radiation [33], and the U.S.S. Halfbeak Diesel engine
data [43] are examples showing that the NLFR model is more suitable than other mixture
distributions for modeling, especially when in data files occur failures with more than one
failure mode.

The chapter is organized as follows. The intended NLFR model is introduced in Sec-
tion 4.2 along with the basic characteristics of the corresponding lifetime distribution.
Section 4.3 introduces MLEs of the unknown parameters and reliability characteristics of
the model on one hand, and the Bayesian estimators under symmetric and asymmetric
loss functions on the other hand. Section 4.4 provides a simulation study to compare
Bayes estimators under symmetric and asymmetric loss functions with the MLEs. Section
4.5 provides the applications of the NLFR model to some real data sets. Finally, Sections
4.6 and 4.7 bring discussion and conclusions, respectively.

4.2 The model

4.2.1 Non-linear failure rate model

From the beginning and early age of operation, a physical system suffers only from the
external random shocks which means that the failure rate evinces a constant course. When
the system wears out, due to mechanical wear, it also experiences a wear out failure mode.
So let the failure rate function of the system in these two situations be in either of the
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following two states: (1) initially, it experiences a constant failure model, and (2) when
the system wears out, it also experiences a wear out failure model. That is

h(t) = a+ btk−1, a, b, k, t > 0 (4.1)

This model allows an initial positive failure rate, h(0) = a, whereas h(0) = 0 for most
other increasing failure rate function. As mentioned by Bain [4] for the LFR, this type of
situation would exist if failures result from random as well as wear out or deterioration
course. In fact, the sum of two components in Eq. (4.1) results from the assumption of
two independent competing risks, i.e. the random shock and wear out. This model is
also useful for modeling a series system with two independent components. One com-
ponent follows the exponential distribution and another component follows the Weibull
distribution.

This study is not intending to model shocks themselves. This study models their con-
sequence to the failure rate. That is why, mixtures is considered to increase the model
flexibility and keep its sufficiently simple form and also interpretation.

Fig. 4.1 shows various shapes of the NLFR given in Eq. (4.1) which characterizes three
of the most common types of failure rate functions. That is increasing, decreasing and
constant failure rates.
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Figure 4.1: NLFR model with decreasing failure rate (a = 0.01, b = 4, k = 0.5),
linear failure rate (a = 1, b = 0.1, k = 2), concave increasing failure rate (a =
1, b = 1, k = 1.5), convex increasing failure rate (a = 2, b = 0.005, k = 3) and

constant failure rate (a = 3, b = 0.1, k = 1).

4.2.2 Characteristics of the lifetime distribution

Based on the relationship between failure rate and reliability functions, we have

R(t) = exp

{
−
∫ t

0
h(s)ds

}

= exp

{
−
∫ t

0

(
a+ bsk−1

)
ds

}

= exp

{
−
(
at+

b

k
tk
)}

(4.2)
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Then, the probability density function (PDF) is formulated as

f(t) = h(t)R(t)

=
(
a+ btk−1

)
exp

{
−
(
at+

b

k
tk
)}

(4.3)

The cumulative failure rate (CFR) is calculated by

H(t) =

∫ t

0
h(s)ds = at+

b

k
tk (4.4)

And the MTTF is given by

MTTF = E(T )

=

∫ ∞

0
R(t)dt =

∫ ∞

0
exp

{
−
(
at+

b

k
tk
)}

dt (4.5)

We can use some suitable numerical methods to evaluate this integral.

4.3 Estimation of parameters and reliability characteristics

Let D: t1, ..., tn be the random failure times of n devices under test whose failure time
distribution is given as in Eq. (4.3) and θ = (a, b, k). If there is no censoring, the likelihood
function takes the general form

L(D|θ) =
n∏

i=1

f(ti|θ)

=

[
n∏

i=1

(
a+ btk−1

i

)]
exp

{
−

n∑

i=1

(
ati +

b

k
tki

)}
(4.6)

Then, the log-likelihood function can be written as

logL(D|θ) =
n∑

i=1

log f(ti|θ)

=

n∑

i=1

log
(
a+ btk−1

i

)
−

n∑

i=1

(
ati +

b

k
tki

)
(4.7)

If some observations are censored, we have to make an adjustment to this expression. For
an observation of an observed failure, we put in the pdf as above. But for a right-censored
observation, we put in the reliability function, indicating that observation is known to
exceed a particular value. The likelihood function in general then takes the form

L(D|θ) =
n∏

i=1

f(ti|θ)δiR(ti|θ)1−δi

=

n∏

i=1

h(ti|θ)δiR(ti|θ)

=

[
n∏

i=1

(
a+ btk−1

i

)δi
]
exp

{
−

n∑

i=1

(
ati +

b

k
tki

)}
(4.8)
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This expression means that when ti is an observed failure, the censoring indicator is δi = 1,
and we enter a pdf factor. When ti is a censored observation, we have δi = 0, and we enter
a reliability factor [46].

Then, the log-likelihood function for censoring case is

logL(D|θ) =
n∑

i=1

δi log h(ti|θ) +
n∑

i=1

logR(ti|θ)

=

n∑

i=1

δi log
(
a+ btk−1

i

)
−

n∑

i=1

(
ati +

b

k
tki

)
(4.9)

4.3.1 Maximum likelihood estimation

In this study, the log-likelihood function Eq. (4.7) in case of non-censored data or Eq. (4.9)
in case of censored data is maximized using CE algorithm to produce the maximizer θ̂ =
(â, b̂, k̂). Then, by using the invariance property of MLE’s,

1. The MLE for R(t), say R̂(t), will be

R̂(t) = exp

{
−
(
ât+

b̂

k̂
tk̂

)}
(4.10)

2. The MLE for h(t), say ĥ(t), will be

ĥ(t) = â+ b̂tk̂−1 (4.11)

3. The MLE for H(t), say Ĥ(t), will be

Ĥ(t) = ât+
b̂

k̂
tk̂ (4.12)

4. The MLE for MTTF will be

ˆMTTF = MTTF (â, b̂, k̂) (4.13)

which can be obtained by installing into formula (4.5) and integrating.

4.3.2 Bayesian estimation

For the mixture model in this study, the Bayesian model is constructed by specifying a
prior distribution for θ = (a, b, k), and then multiplying with the likelihood function to
obtain the posterior distribution. Denote the prior distribution of θ as π(θ), the posterior
distribution of θ given D: t1, . . . , tn is given by

π(θ|D) =
L(D|θ)π(θ)∫
L(D|θ)π(θ)dθ (4.14)

Because the denominator in Eq. (4.14) is a normalizing constant, Bayes’ theorem is often
expressed as:

π(θ|D) ∝ L(D|θ)π(θ) (4.15)
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As mentioned by Jiang, Xie, and Tang [32], the prior distribution is given beforehand,
usually based on prior information of the parameters, such as that from historical data,
previous experiences, expert suggestions, even wholly subjective suppositions, or simply
from the point of mathematical conveniences.

Here, adopted Kundu and Howlader [36], a, b, and k are assumed to have independent
gamma(α1, β1), gamma(α2, β2), and gamma(α3, β3) priors respectively, i.e.

π1(a) ∝ aα1−1 exp {−β1a} , α1, β1 > 0 (4.16)

π2(b) ∝ bα2−1 exp {−β2b} , α2, β2 > 0 (4.17)

π3(k) ∝ kα3−1 exp {−β3k} , α3, β3 > 0 (4.18)

If α1 = α2 = α3 = 1, β1 = β2 = β3 = 0 we have a generalized uniform distribution on
R+ [32] or a diffuse prior [6], and if α1 = α2 = α3 = β1 = β2 = β3 = 0, we have a
non-informative prior. Based on the assumption of independence of individual priors, the
joint prior of θ is given by

π(θ) = π1(a)π2(b)π3(k) (4.19)

Since there is no prior information available, the diffuse priors on the model parameters
are used in the rest of the chapter.

Then, under the square error loss function, the Bayes estimator of a, b, k, failure rate
function h(t) and reliability function R(t) are given by

a∗BS = E(a|D) =

∫

θ

aπ(θ|D)dθ (4.20)

b∗BS = E(b|D) =

∫

θ

bπ(θ|D)dθ (4.21)

k∗BS = E(k|D) =

∫

θ

kπ(θ|D)dθ (4.22)

h∗BS(t) = E(h(t;θ)|D) =

∫

θ

h(t;θ)π(θ|D)dθ (4.23)

R∗
BS(t) = E(R(t;θ)|D) =

∫

θ

R(t;θ)π(θ|D)dθ (4.24)

In this study, the adaptive MCMC sampling [59] is used to generate sample {θi = (ai, bi, ki), i =
1, . . . , n} from the posterior distribution π(θ|D). We assume that this sample has been
taken after burn-in (warm-up) period and reducing autocorrelation. Then, the approxi-
mate Bayes estimates of a∗BS , b∗BS , k∗BS , h∗BS(t) and R∗

BS(t) are given respectively by

a∗BS ≈ 1

n

n∑

i=1

ai (4.25)

b∗BS ≈ 1

n

n∑

i=1

bi (4.26)

k∗BS ≈ 1

n

n∑

i=1

ki (4.27)

h∗BS(t) ≈
1

n

n∑

i=1

h(t;θi) (4.28)

R∗
BS(t) ≈

1

n

n∑

i=1

R(t;θi) (4.29)
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Under the linear exponential loss function, the Bayes estimator of a, b, k, failure rate func-
tion h(t) and reliability function R(t) are given by

a∗BL = −1

c
log

(∫

θ

e−caπ(θ|D)dθ

)
(4.30)

b∗BL = −1

c
log

(∫

θ

e−cbπ(θ|D)dθ

)
(4.31)

k∗BL = −1

c
log

(∫

θ

e−ckπ(θ|D)dθ

)
(4.32)

h∗BL(t) = −1

c
log

(∫

θ

e−ch(t;θ)π(θ|D)dθ

)
(4.33)

R∗
BL(t) = −1

c
log

(∫

θ

e−cR(t;θ)π(θ|D)dθ

)
(4.34)

Then, the approximate Bayes estimates of a∗BL, b∗BL, k∗BL, h∗BL(t) and R∗
BL(t) are given

respectively by

a∗BL ≈ −1

c
log

(
1

n

n∑

i=1

e−cai

)
(4.35)

b∗BL ≈ −1

c
log

(
1

n

n∑

i=1

e−cbi

)
(4.36)

k∗BL ≈ −1

c
log

(
1

n

n∑

i=1

e−cki

)
(4.37)

h∗BL(t) ≈ −1

c
log

(
1

n

n∑

i=1

e−ch(t;θi)

)
(4.38)

R∗
BL(t) ≈ −1

c
log

(
1

n

n∑

i=1

e−cR(t;θi)

)
(4.39)

Under the general entropy loss function, the Bayes estimator of a, b, k, failure rate function
h(t) and reliability function R(t) are given by

a∗BG =

(∫

θ

a−cπ(θ|D)dθ

)− 1
c

(4.40)

b∗BG =

(∫

θ

b−cπ(θ|D)dθ

)− 1
c

(4.41)

k∗BG =

(∫

θ

k−cπ(θ|D)dθ

)− 1
c

(4.42)

h∗BG(t) =

(∫

θ

h(t;θ)−cπ(θ|D)dθ

)− 1
c

(4.43)

R∗
BG(t) =

(∫

θ

R(t;θ)−cπ(θ|D)dθ

)− 1
c

(4.44)
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Then, the approximate Bayes estimates of a∗BG, b∗BG, k∗BG, h∗BG(t) and R∗
BG(t) are given

respectively by

a∗BG ≈
(
1

n

n∑

i=1

a−c
i

)− 1
c

(4.45)

b∗BG ≈
(
1

n

n∑

i=1

b−c
i

)− 1
c

(4.46)

k∗BG ≈
(
1

n

n∑

i=1

k−c
i

)− 1
c

(4.47)

h∗BG(t) ≈
(
1

n

n∑

i=1

h(t;θi)
−c

)− 1
c

(4.48)

R∗
BG(t) ≈

(
1

n

n∑

i=1

R(t;θi)
−c

)− 1
c

(4.49)

4.4 Monte Carlo simulations

A Monte Carlo simulation study is conducted to compare the performance of CE and
MCMC estimators for the parameters of the non-linear failure rate. For each of the follow-
ing choice of parameters, 1000 data sets are simulated with sample size n = 25, 50, 100
and 200, respectively, and based on each data set the CE and MCMC estimators for the
model parameters are computed. The data sets are generated from the failure distribution
Eq.(4.3) using the accept-reject method (Chapter 3). In order to obtain MCMC estima-
tors, the adaptive MCMC algorithm is implemented to construct a Markov chain of length
20,000 with burn-in of 1000 and reduced autocorrelation by retaining only every 5 itera-
tions of the chain. The Bayes estimators are obtained under the three loss functions, i.e.
SEL, LINEX loss and GEL. The parameters of the asymmetric loss functions are selected as
c = −1.5 (c1), −0.5 (c2), 0.5 (c3) and 1.5 (c4). Note here that when k = 1, the studying
model coincides with the exponential model with constant failure rate λ = a+ b.

1. a = 0.03, b = 0.07, and k = 0.5

2. a = 0.03, b = 0.07, and k = 2

3. a = 0.03, b = 0.07, and k = 3

Tables 4.1-4.3 list the results of the simulation study. The mean square error (MSE) is
calculated as the mean of the squared differences between 1000 estimators and the true
value.

It is clear from Tables 4.1-4.3 that the MSEs of a and b are relatively small. The most
interesting thing here is the MSEs of k. In the three selected cases of k:

• The MSEs of Bayes estimators under LINEX loss function when c = −1.5,−0.5, 0.5
and 1.5 decrease respectively (see Figs. 4.2, 4.5 and 4.8). And this fact is also true
under GEL (see Figs. 4.3, 4.6 and 4.9).

• In cases k = 2 or 3, the MSEs of Bayes estimators under LINEX (when c > 0) seem
to be always smaller than the MSEs of Bayes estimators under GEL in comparison
to each value of c (see Figs. 4.7 and 4.10). This fact is opposite when k = 0.5 (see
Fig. 4.4).
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Table 4.1: MSEs of MLEs (namely CE) and Bayes estimators under SEL, LINEX, and GEL when k = 0.5

LINEX (LEL) GEL

θ n CE SEL c1 = −1.5 c2 = −0.5 c3 = 0.5 c4 = 1.5 c1 = −1.5 c2 = −0.5 c3 = 0.5 c4 = 1.5

a 25 0.0003 0.0002 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0005

a 50 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0004

a 100 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0004

a 200 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003

b 25 0.0016 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0009 0.0015 0.0028

b 50 0.0009 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0008 0.0014

b 100 0.0006 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0006

b 200 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0002 0.0003 0.0003

k 25 0.0485 0.0241 0.0424 0.0285 0.0204 0.0151 0.0294 0.0195 0.0124 0.0103

k 50 0.0253 0.0118 0.0162 0.0130 0.0108 0.0092 0.0133 0.0105 0.0086 0.0081

k 100 0.0134 0.0077 0.0088 0.0081 0.0075 0.0070 0.0082 0.0074 0.0069 0.0068

k 200 0.0072 0.0056 0.0060 0.0057 0.0055 0.0053 0.0058 0.0054 0.0052 0.0050
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Table 4.2: MSEs of MLEs (namely CE) and Bayes estimators under SEL, LINEX, and GEL when k = 2

LINEX (LEL) GEL

θ n CE SEL c1 = −1.5 c2 = −0.5 c3 = 0.5 c4 = 1.5 c1 = −1.5 c2 = −0.5 c3 = 0.5 c4 = 1.5

a 25 0.0013 0.0028 0.0030 0.0028 0.0027 0.0025 0.0037 0.0019 0.0005 0.0005

a 50 0.0009 0.0012 0.0013 0.0013 0.0012 0.0011 0.0016 0.0009 0.0004 0.0006

a 100 0.0006 0.0007 0.0007 0.0007 0.0007 0.0006 0.0008 0.0005 0.0004 0.0006

a 200 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0004 0.0003 0.0003 0.0005

b 25 0.0013 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.0015 0.0032

b 50 0.0009 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 0.0005 0.0010 0.0019

b 100 0.0006 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0004 0.0007 0.0011

b 200 0.0004 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0006

k 25 0.0669 0.1549 0.5043 0.2135 0.1217 0.0967 0.1710 0.1419 0.1256 0.1284

k 50 0.0415 0.1079 0.2494 0.1378 0.0874 0.0633 0.1173 0.0995 0.0858 0.0757

k 100 0.0274 0.0693 0.1205 0.0814 0.0600 0.0467 0.0736 0.0654 0.0585 0.0527

k 200 0.0168 0.0371 0.0517 0.0408 0.0340 0.0290 0.0386 0.0358 0.0333 0.0312
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Table 4.3: MSEs of MLEs (namely CE) and Bayes estimators under SEL, LINEX, and GEL when k = 3

LINEX (LEL) GEL

θ n CE SEL c1 = −1.5 c2 = −0.5 c3 = 0.5 c4 = 1.5 c1 = −1.5 c2 = −0.5 c3 = 0.5 c4 = 1.5

a 25 0.0012 0.0023 0.0025 0.0024 0.0022 0.0021 0.0031 0.0016 0.0006 0.0007

a 50 0.0007 0.0011 0.0011 0.0011 0.0011 0.0010 0.0014 0.0008 0.0005 0.0007

a 100 0.0004 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.0004 0.0004 0.0006

a 200 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 0.0002 0.0003 0.0004

b 25 0.0017 0.0012 0.0013 0.0012 0.0011 0.0011 0.0014 0.0010 0.0011 0.0020

b 50 0.0010 0.0007 0.0007 0.0007 0.0007 0.0007 0.0008 0.0007 0.0008 0.0012

b 100 0.0007 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0006 0.0007

b 200 0.0006 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

k 25 0.1211 0.2774 0.9352 0.3904 0.2181 0.1845 0.2972 0.2606 0.2351 0.2202

k 50 0.0795 0.1817 0.4082 0.2293 0.1509 0.1192 0.1915 0.1729 0.1579 0.1462

k 100 0.0672 0.1062 0.1607 0.1199 0.0957 0.0818 0.1094 0.1032 0.0979 0.0935

k 200 0.0552 0.0491 0.0596 0.0520 0.0468 0.0437 0.0499 0.0485 0.0473 0.0463
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Figure 4.2: MSEs of Bayes estimators under LINEX when k = 0.5
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Figure 4.3: MSEs of Bayes estimators under GEL when k = 0.5

• The MSEs of Bayes estimators under asymmetric loss function (when c > 0) seem to
be always smaller than the MSEs of Bayes estimators under SEL (see Figs. 4.4, 4.7
and 4.10).

• When k = 0.5, the MSEs of Bayes estimators under asymmetric loss functions seem
to be always smaller than the MSEs of CE estimators (see Fig. 4.4), and this fact is
opposite in cases k = 2 or 3 (see Figs. 4.7 and 4.10).

• The MSEs of Bayes estimators under GEL (when c < 0) seem to be always smaller
than the MSEs of Bayes estimators under LINEX loss in all cases (see Figs. 4.11, 4.12
and 4.13).
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Figure 4.4: MSEs of CE estimate and Bayes estimators under SEL, LINEX and GEL
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Figure 4.5: MSEs of Bayes estimators under LINEX when k = 2

4.5 Illustrative examples

In this Section, three examples are presented to illustrate the estimate procedures dis-
cussed in this paper, and only the Bayes estimators under SEL function is shown.

4.5.1 The aircraft windshield failure data

Table 4.4 contains the failure data of aircraft windshields [9]. Among 153 observations,
there are 88 failed observed windshields and 65 censored observations. The unit for
measurement of this data is 1000 hours.

Bayes estimates via MCMC and MLEs via CE for the parameters and reliability charac-
teristics are provided. Table 4.5 shows Bayes estimates obtained by using adaptive MCMC
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Figure 4.7: MSEs of CE estimate and Bayes estimators under SEL, LINEX and GEL
when k = 2

along with highest posterior density (HPD) intervals for the parameters and MTTF, and
Table 4.6 shows MLEs obtained by using CE along with bootstrap percentile confident
(BPC) intervals for the parameters and MTTF. The bootstrap CIs are obtained by using
the “censboot” function in the “boot” package [13]. The nonparametric estimation of the
failure rate function called ‘step function’ is performed by divided the time domain into
bins of equal width and then estimate the failure rate in each bin as the numbers of events
in that bin divided by the number of items at risk in that bin. This estimate is done by
using the “pehaz” function in the “muhaz” package [23]. Figs. 4.14-4.15 show trace plots
and histograms of a, b and k obtained by adaptive MCMC, and time courses of R(t), h(t)
and H(t) are displayed in Figs. 4.16-4.18. From these results, we see that both methods
provide almost the same results.
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Figure 4.8: MSEs of Bayes estimators under LINEX when k = 3
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Figure 4.9: MSEs of Bayes estimators under GEL when k = 3

Tables 4.7-4.8 represent the Akaike Information Criterion (AIC) values and MLEs of pa-
rameters for mixture models, respectively. The Akaike Information Criterion (AIC) values
for the first seven models have been provided by Blischke, Karim, and Murthy [9]. From
Table 4.7 we see that NLFR model has smallest AIC value. Therefore, it is considered to
be the best approximating model among the given models.

4.5.2 Male mice exposed to 300 rads data

Data in Table 4.9 represent the days until death for male mice exposed to 300 rads of
radiation. The unit for measurement is 1000 days. Here only the group maintained in a
germ-free environment is considered and the causes of death is due to the effect of other
causes. The new feature of male mice data is that more than one failure mode occurs
[33].
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Figure 4.10: MSEs of CE estimate and Bayes estimators under SEL, LINEX and GEL
when k = 3
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Figure 4.11: MSEs of Bayes estimators under LINEX and GEL when k = 0.5

Here the same procedure described in Subsection 4.5.1 is used for MCMC. Table 4.10
shows MCMC point estimates and two-sided 90% and 95% HPD intervals for a, b, k and
MTTF. Table 4.11 shows CE point estimates and two-sided 90% and 95% BCa (bias cor-
rected and accelerated) bootstrap confident intervals for a, b, k and MTTF. The bootstrap
CIs are obtained by using the “boot” function in the “boot” package [13].

Figs. 4.19-4.20 show posterior distributions and trace plots of each parameter of the
Bayesian model obtained by MCMC algorithm, and Figs. 4.21-4.23 show time courses of
all relevant functions obtained by both CE and MCMC methods, i.e. reliability, failure rate
and cumulative failure rate functions.

From Figs. 4.21-4.23, we see, that although the sample size is small, our fitting models
achieved by both CE and MCMC methods are very close to the nonparametric estimate of
the reliability characteristics. In case of small datasets, the CE method seems to be a bit
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Figure 4.12: MSEs of Bayes estimators under LINEX and GEL when k = 2
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Figure 4.13: MSEs of Bayes estimators under LINEX and GEL when k = 3

better than MCMC method. This is due to the stochastic search of CE algorithm. We run
the algorithm through trial and error until we get the optimizer point which corresponds to
the largest optimum value. The AIC value of NLFR model obtained in this case is −18.813.

4.5.3 U.S.S. Halfbeak Diesel Engine data

Table 4.12 gives times of unscheduled maintenance actions for the U.S.S. Halfbeak number
4 main propulsion diesel engine over 25, 518 operating hours [43]. The unit for measure-
ment is 10,000 hours. The data are times of recurrent events on one machine, hence not
typical lifetime data. Here, the time from one maintenance to the following one is assumed
as lifetime data in order to demonstrate the proposed model for uncensored data.

The same procedure described in Subsection 4.5.1 is used for MCMC. Table 4.13 shows
MCMC point estimators and two-sided 90% and 95% HPD intervals for a, b, k and MTTF.
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Table 4.4: Aircraft windshield failure data

Failure Times Service Times
0.040 1.866 2.385 3.443 0.046 1.436 2.592
0.301 1.876 2.481 3.467 0.140 1.492 2.600
0.309 1.899 2.610 3.478 0.150 1.580 2.670
0.557 1.911 2.625 3.578 0.248 1.719 2.717
0.943 1.912 2.632 3.595 0.280 1.794 2.819
1.070 1.914 2.646 3.699 0.313 1.915 2.820
1.124 1.981 2.661 3.779 0.389 1.920 2.878
1.248 2.010 2.688 3.924 0.487 1.963 2.950
1.281 2.038 2.823 4.035 0.622 1.978 3.003
1.281 2.085 2.890 4.121 0.900 2.053 3.102
1.303 2.089 2.902 4.167 0.952 2.065 3.304
1.432 2.097 2.934 4.240 0.996 2.117 3.483
1.480 2.135 2.962 4.255 1.003 2.137 3.500
1.505 2.154 2.964 4.278 1.010 2.141 3.622
1.506 2.190 3.000 4.305 1.085 2.163 3.665
1.568 2.194 3.103 4.376 1.092 2.183 3.695
1.615 2.223 3.114 4.449 1.152 2.240 4.015
1.619 2.224 3.117 4.485 1.183 2.341 4.628
1.652 2.229 3.166 4.570 1.244 2.435 4.806
1.652 2.300 3.344 4.602 1.249 2.464 4.881
1.757 2.324 3.376 4.663 1.262 2.543 5.140
1.795 2.349 3.385 4.694 1.360 2.560
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Figure 4.14: Trace plots of a, b and k produced by adaptive MCMC.

Table 4.14 shows CE point estimators and two-sided 90% and 95% BCa bootstrap confi-
dent intervals for a, b, k and MTTF.

Figs. 4.24-4.25 show posterior distributions and trace plots of each parameter of the
Bayesian model obtained by MCMC algorithm, and Figs. 4.26-4.28 show time courses of
all relevant functions obtained by both CE and MCMC methods, i.e. reliability, failure rate



4.5. Illustrative examples 47

0

200

400

600

0.00 0.05 0.10

a

c
o

u
n

t

0

200

400

600

0.00 0.05 0.10 0.15 0.20

b

c
o

u
n

t

0

200

400

600

2.0 2.5 3.0 3.5 4.0

k

c
o

u
n

t

Figure 4.15: Histograms of a, b and k produced by adaptive MCMC.

Table 4.5: Bayes estimates via MCMC and HPD intervals for the parameters and
MTTF.

MCMC 90% HPD Interval 95% HPD Interval

a 0.0348 [0.0070, 0.0661] [0.0025, 0.0722]

b 0.0716 [0.0307, 0.1077] [0.0274, 0.1201]

k 2.9227 [2.4056, 3.4397] [2.3223, 3.5605]

MTTF 3.0351 [2.8177, 3.2302] [2.7918, 3.2895]

Table 4.6: MLEs via CE and bootstrap percentile confident intervals for the param-
eters and MTTF.

CE 90% BPC Interval 95% BPC Interval

a 0.0269 [0.0000, 0.0569] [0.0000, 0.0626]

b 0.0692 [0.0375, 0.1127] [0.0321, 0.1244]

k 2.9284 [2.5112, 3.4443] [2.4331, 3.5554]

MTTF 3.0535 [2.8478, 3.2726] [2.8105, 3.2996]

and cumulative failure rate functions.
Figs. 4.26-4.28 imply that although the dataset is quite small, the fitting models

achieved by both CE and MCMC methods are very close to the nonparametric estimate
of the reliability characteristics. In case of moderate datasets, CE method also seems to be
slightly better than MCMC method. The AIC value obtained here is 67.348 with respect to
the MLEs represented in Table 4.14.
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Figure 4.16: Time courses of R(t) when fitting to aircraft windshield failure data.
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Figure 4.17: Time courses of h(t) when fitting to aircraft windshield failure data.
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Figure 4.18: Time courses of H(t) when fitting to aircraft windshield failure data.
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Table 4.7: Estimated AIC for nine mixture models for aircraft windshield failure
data

Mixture models Models forms and parameters AIC

1. Weibull-Weibull p× Weib(β1, α1) + (1− p)× Weib(β2, α2) 350.159

2. Weibull-Exponential p× Weib(β1, α1) + (1− p)× Exp(λ) 348.260

3. Weibull-Normal p× Weib(β1, α1) + (1− p)× Nor(µ, σ) 349.710

4. Weibull-Lognormal p× Weib(β1, α1) + (1− p)× Lnor(µ, σ) 351.235

5. Normal-Exponential p× Nor(µ, σ) + (1− p)× Exp(λ) 351.513

6. Normal-Lognormal p× Nor(µ, σ) + (1− p)× Lnor(µ2, σ2) 351.579

7. Lognormal-Exponential p× Lnor(µ, σ) + (1− p)× Exp(λ) 349.301

8. Linear failure rate h(t) = a+ bt 359.106

9. Non-linear failure rate h(t) = a+ btk−1 347.371

Table 4.8: MLEs of parameters for nine mixture models

Mixture models MLEs of parameters

1. Weibull-Weibull β̂1 = 1.249, α̂1 = 0.245, β̂2 = 2.777, α̂2 = 3.485, p̂ = 0.017

2. Weibull-Exponential β̂ = 2.768, α̂ = 3.484, λ̂ = 4.052, p̂ = 0.983

3. Weibull-Normal β̂ = 7.359, α̂ = 4.481, µ̂ = 2.303, σ̂ = 0.868, p̂ = 0.387

4. Weibull-Lognormal β̂ = 1.246, α̂ = 0.395, µ̂ = 1.075, σ̂ = 0.440, p̂ = 0.029

5. Normal-Exponential µ̂ = 3.053, σ̂ = 1.220, λ̂ = 24.003, p̂ = 0.995

6. Normal-Lognormal µ̂1 = 0.302, σ̂1 = 0.182, µ̂2 = 1.073, σ̂2 = 0.443, p̂ = 0.027

7. Lognormal-Exponential µ̂ = 1.080, σ̂ = 0.435, λ̂ = 1.729, p̂ = 0.965

8. Linear failure rate â = 0.004, b̂ = 0.161

9. Non-linear failure rate â = 0.027, b̂ = 0.069, k̂ = 2.928

Table 4.9: Male mice exposed to 300 rads of radiation (other causes in germ-free
group)

0.136 0.246 0.255 0.376 0.421 0.565 0.616
0.617 0.652 0.655 0.658 0.660 0.662 0.675
0.681 0.734 0.736 0.737 0.757 0.769 0.777
0.800 0.807 0.825 0.855 0.857 0.864 0.868
0.870 0.870 0.873 0.882 0.895 0.910 0.934
0.943 1.015 1.019

4.6 Discussion

The results of illustrative examples show that some physical systems that likely suffer
from random shock always have positive initial failure rate, i.e. a > 0. Like the aircraft
windshield failure data and the U.S.S. Halfbeak Diesel engine data, failures actually suffer
from random shocks which are unable to avoid during their operation. These results also
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Figure 4.19: Posterior density of each parameter of the Bayesian model.
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Figure 4.20: Trace plots of each parameter of the Bayesian model.

show that even life data, here used referenced data of animals, might also be originated
from more than one failure mode.

The illustrative examples present only the results of Bayes estimation based on SEL
function. In case one has good knowledge of the consequences of overestimation and
underestimation of a particular problem which one is concerned, one is able to choose the
corresponding loss function.

In case of small datasets like the lifetime data of male mice exposed to 300 rads, the
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Table 4.10: Point estimates and two-sided 90% and 95% HPD intervals for a, b, k

and MTTF

MCMC 90% HPD 95% HPD

a 0.3105 [0.0911, 0.5193] [0.0746, 0.5933]

b 30.774 [14.761, 46.729] [13.695, 52.843]

k 8.1159 [5.9259, 10.376] [5.4736, 10.780]

MTTF 0.7082 [0.6499, 0.7655] [0.6353, 0.7735]

Table 4.11: Point estimates and two-sided 90% and 95% BCa bootstrap confident
intervals for a, b, k and MTTF

CE 90% BCa 95% BCa

a 0.2422 [0.0788, 0.5248] [0.0526, 0.6211]

b 25.925 [16.510, 35.880] [15.270, 38.020]

k 7.4382 [6.0710, 9.3660] [5.7440, 9.7500]

MTTF 0.7202 [0.6560, 0.7712] [0.6449, 0.7799]
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Figure 4.21: The time courses of the reliability functions.

CE method seems to be slightly better in comparison with the MCMC method. This fact
is due to the stochastic search of CE method. To improve the result of CE algorithm, one
can choose the initial value(s) of (vector) standard deviation σ̂0 (sometimes changing
the initial value(s) of (vector) mean µ̂0 is needed) through trial and error until we get
the smallest optimum value which yields the optimal estimator(s). The CE method is not
so sensitive to the choice of the initial values of the algorithm in comparison with other
alternative optimization methods. Both kinds of estimators were completed by confidence
intervals (90% and 95%): Bayes credible intervals versus bootstrap confidence intervals.
The interval analysis shows that most of obtained 90% and 95% bootstrap confidence
intervals are narrower than corresponding HPD intervals, especially for shape parameter
k, what shows on less uncertainty connected with CE estimators, and greater variance
related to MCMC estimators.
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Figure 4.22: The time courses of the failure rate functions.
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Figure 4.23: The time courses of the cumulative failure rate functions.

Table 4.12: U.S.S. Halfbeak Diesel Engine Data

0.1382 0.2990 0.4124 0.6827 0.7472 0.7567
0.8845 0.9450 0.9794 1.0848 1.1993 1.2300
1.5413 1.6497 1.7352 1.7632 1.8122 1.9067
1.9172 1.9299 1.9360 1.9686 1.9940 1.9944
2.0121 2.0132 2.0431 2.0525 2.1057 2.1061
2.1309 2.1310 2.1378 2.1391 2.1456 2.1461
2.1603 2.1658 2.1688 2.1750 2.1815 2.1820
2.1822 2.1888 2.1930 2.1943 2.1946 2.2181
2.2311 2.2634 2.2635 2.2669 2.2691 2.2846
2.2947 2.3149 2.3305 2.3491 2.3526 2.3774
2.3791 2.3822 2.4006 2.4286 2.5000 2.5010
2.5048 2.5268 2.5400 2.5500 2.5518
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Figure 4.24: Posterior density of each parameter of the Bayesian model.
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Figure 4.25: Trace plots of each parameter of the Bayesian model.

4.7 Conclusions

The benchmark datasets, especially the aircraft windshield failure data, show that the
innovative non-linear failure rate might be more appropriate than some mixtures of dis-
tributions for modeling the data which might be originated from more than one failure
mode.

The CE and MCMC methods are recommended for using as the mutual add-in tools
for parameter estimation. In case of small datasets, the CE method seems to be slightly
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Table 4.13: Point estimates and two-sided 90% and 95% HPD intervals for a, b, k

and MTTF

MCMC 90% HPD 95% HPD

a 0.1232 [0.0674, 0.1779] [0.0596, 0.1928]

b 0.0019 [0.0001, 0.0043] [0.0000, 0.0059]

k 11.105 [8.8428, 13.163] [8.5930, 13.667]

MTTF 1.9095 [1.7993, 2.0229] [1.7744, 2.0389]

Table 4.14: Point estimates and two-sided 90% and 95% BCa bootstrap confident
intervals for a, b, k and MTTF

CE 90% BCa 95% BCa

a 0.1182 [0.0710, 0.1819] [0.0624, 0.1949]

b 4.669× 10−4 [0.0002, 0.0006] [0.0002, 0.0006]

k 12.269 [12.070, 13.120] [12.060, 13.300]

MTTF 1.9336 [1.8100, 2.0410] [1.7870, 2.0570]
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Figure 4.26: The time courses of the reliability functions.

more favored in comparison with the MCMC method. However, Bayes credible intervals
are easily obtained by using MCMC method.

Resulting from the simulation study, the asymmetric loss functions are recommended
for the non-linear failure rate model in such reliability situations when overestimation is
more serious than underestimation.

In this study, only the sum of two components in the non-linear failure rate which
results from the assumption of two independent competing risks (i.e. the random shock
and the wear out) is considered. The case of dependent competing risks will be considered
next. And only the diffuse priors on the parameters for Bayesian estimation is used, so
this study can also be continued with other alternative priors. And there are still other loss
functions can be considered (e.g. precaution loss, entropy loss, etc.).
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Figure 4.27: The time courses of the failure rate functions.
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Figure 4.28: The time courses of the cumulative failure rate functions.
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Chapter 5

Reparameterized Weibull model: A

Bayes study using Hamiltonian

Monte Carlo simulation

5.1 Introdoction

This chapter comes from my study given in [86]. The Weibull distribution [73] which was
named after Swedish mathematician Waloddi Weibull, who described it in detail in 1951,
is the widely used distribution not only in reliability but also in many other fields [51]. It’s
cumulative distribution function (CDF) is defined as

F (t) = 1− e
−
(

t
β

)k

, t > 0 (5.1)

where β and k are positive, with β being scale parameter and k being shape parameter.
In this chapter, it is named as standard Weibull (SW) distribution. Notice that, if X ∼
SW (β, k), then X/β ∼ SW (1, k). As mentioned by Lai [37], for some applications, one
may find it be more convenient to reparameterize the standard Weibull distribution as

F (t) = 1− e−btk (5.2)

The shape parameter is still the same as above, but the scale parameter is b = 1/βk. Here
it is named as reparameterized Weibull (RW) distribution. Indeed, this reparameterized
form has been used in medical statistics [16] and many modified Weibull distributions was
based upon this parameterization. The RW model might be convenient and simple. How-
ever, as it will be demonstrated in later sections, it leads to an undesirable problem which
produce a very high correlated parameters, especially when the values of parameters are
large. As a result, Bayesian inference via Markov chain Monte Carlo (MCMC) methods
has been heavily affected when using vague prior.

In fact, there is another frequently used of parameterization of the Weibull distribution
where the CDF is given as follows

F (t) = 1− e−(at)k (5.3)

This parameterization was used by Lawless [40] and Xie and Lai [75]. However, this
parameterization is skipped in this chapter.

This chapter is organized as follows. Section 5.2 gives the examinations for contour
plots of likelihood functions of the two Weibull forms. Section 5.3 brings the methods
of parameter estimation. Section 5.4 provides a Monte Carlo simulation study for some
special selected cases. Section 5.5 brings a special illustrative example on a real data set.
Finally, Section 5.6 gives conclusions.
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5.2 Contour plots of likelihood functions

In this section, the likelihood functions of the two Weibull forms are examined in an
intuitive way via their contour plots for some special selected parameter values in order
to understand the correlated parameters for the two forms. Let D: t1, ..., tn be a random
sample from the Weibull distribution. The likelihood function is defined as

L(D|θ) =
n∏

i=1

f(ti|θ) (5.4)

Figure 5.1 shows contour plots of the likelihood functions of the SW and RW forms
respectively in case data generated from the SW model with β = 250 and k = 0.5. The
contour plot of the RW shows a medium correlated parameters. In case β = 250 and
k = 3, i.e when k > 1, Figure 5.2 reveals that the contour plot of the SW shows almost no
correlated parameters whereas the RW form shows a very high correlation. For the RW
with large value of scale parameter, the larger the value of the shape parameter the higher
the correlated parameters. And, in case β = 1 and k = 10, i.e scale parameter being 1
and large shape parameter, the correlated parameters of the two Weibull forms are very
small and are all most the same, see Figures 5.3. The contour plots of the SW likelihood
function show that the correlated parameters are very small in any case. These analyses
suggest that

• In case k = 0.5, i.e. decreasing failure rate, the two Weibull forms will have no
effects on the Bayesian inference via MCMC methods. The RW might be even better
than the SW in producing the accuracy of parameter estimate.

• In case k = 3, i.e. increasing failure rate, the SW is more appropriate than the
RW for using MCMC methods. However, in case data have a small scale as if it
(approximately) comes from the SW with scale parameter β = 1, both forms are
appropriate. In this case, the RW is recommended due to its simple form.

These conclusions will also be reinforced through the simulation study in a later section.
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Figure 5.1: Contour plots of (a) SW and (b) RW likelihood functions in case β = 250
and k = 0.5.
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Figure 5.2: Contour plots of (a) SW and (b) RW likelihood functions in case β = 250
and k = 3.
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Figure 5.3: Contour plots of (a) SW and (b) RW likelihood functions in case β = 1
and k = 10.

5.3 Parameter estimation methods

5.3.1 Maximum likelihood estimation

The log-likelihood function can be derived from Eq. (5.4) as

logL(D|θ) =
n∑

i=1

log f(ti|θ) (5.5)
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The MLEs of the model’s parameters are obtained by solving the following equations

∂ logL(D|θ)
∂θ1

= 0,
∂ logL(D|θ)

∂θ2
= 0 (5.6)

These equations can not be solved analytically and need to be solved by some suitable
numerical methods. Here the CE method is used to optimize the log-likelihood function
given in Eq. (5.5).

5.3.2 Bayesian estimation

Denote the prior distribution of θ as π(θ), the posterior distribution of θ given D: t1, . . . , tn
is given by

π(θ|D) =
L(D|θ)π(θ)∫
L(D|θ)π(θ)dθ (5.7)

Here θ1 and θ2 are assumed to be independent and have gamma(α1, β1) and gamma(α2, β2)
priors respectively, i.e

π1(θ1) ∝ θα1−1
1 e−β1θ1 , α1, β1 > 0 (5.8)

π2(θ2) ∝ θα2−1
2 e−β2θ2 , α2, β2 > 0 (5.9)

If α1 = α2 = 1, β1 = β2 = 0 we have diffuse priors, and if α1 = α2 = β1 = β2 = 0, we have
non-informative priors. Since there is no prior information available, the diffuse priors are
used in later sections.

Then under the square error loss function, the Bayes estimators of the parameters are
given by

θ∗1 = E(θ1|D) (5.10)

θ∗2 = E(θ2|D) (5.11)

h∗(t) = E(h(t;θ)|D) (5.12)

R∗(t) = E(R(t;θ)|D) (5.13)

Suppose that the sample θ(i) = (θ
(i)
1 , θ

(i)
2 ), i = 1, . . . , N is simulated from the poste-

rior distribution π(θ|D). Then when i is sufficiently large (say, bigger than n0), θ(i) =

(θ
(i)
1 , θ

(i)
2 ), i = n0 + 1, . . . , N is a (correlated) sample from the true posterior. In practice,

we usually run m parallel chains (say, m = 3, 4 or 5), instead of only 1, for assessing
sampler convergence. Then, the approximate Bayes estimates of θ∗1 and θ∗2 by calculating
the means:

θ∗1 ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

θ
(ij)
1 (5.14)

θ∗2 ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

θ
(ij)
2 (5.15)

h∗(t) ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

h(t;θ(ij)) (5.16)

R∗(t) ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

R(t;θ(ij)) (5.17)
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5.4 Simulation study

A Monte Carlo simulation study is conducted to compare the HMC estimators as well
as the CE estimators for the parameters of the two Weibull forms in term of their mean
squared errors (MSE). The data sets were simulated from the SW distribution with differ-
ent selected parameter values as follows:

• β = 250 and k = 0.5

• β = 250 and k = 3

• β = 250 and k = 10

• β = 1 and k = 10

For each of the above choice of parameters, 1000 data sets were simulated for each sample
size n = 25, 50, 100 and 200, and based on each data set the CE and HMC estimators for
the parameters of the Weibull forms were computed. In order to obtain HMC estimators,
samples are simulated from the posterior distribution by using the HMC algorithm to
construct Markov chains of length 2000 with burn-in (warm-up) of 1000. The MSE is
calculated as the average squared difference between estimated values and the true value.
Tables 5.1 - 5.4 show the MSEs of the parameters of the Weibull forms.

Table 5.1: MSEs of the parameters of SW and RW models in case β = 250 and
k = 0.5.

SW RW

n Method β k b k

25 CE 5046.6502 0.0078 0.0012 0.0089
HMC Inf 0.0099 0.0019 0.0060

50 CE 3373.0718 0.0033 0.0006 0.0036
HMC 10753.7600 0.0037 0.0008 0.0030

100 CE 2087.5945 0.0017 0.0003 0.0018
HMC 3768.5854 0.0018 0.0004 0.0016

200 CE 1207.1086 0.0008 0.0001 0.0008
HMC 2026.4754 0.0008 0.0002 0.0008

Since the two Weibull forms have the same shape parameter k, only the comparison of
the MSEs of k is provided. Resulting from the simulation study, we see that

• In case β = 250 and k = 0.5 (decreasing failure rate), the RW form has medium
correlated parameters as demonstrate in Section 5.2. Therefore, it does not much
affect HMC estimates. The MSEs of HMC estimators for the parameter k of the RW
form are smallest compared to the SW form and other CE estimators (see Figure
5.4).

• In case β = 250 and k = 3 (increasing failure rate), the MSEs of HMC estimators for
the parameter k of the RW form are largest whereas their MSEs of CE estimators for
the parameter k are smallest (see Figure 5.5).

• In case β = 250 and k = 10 (increasing failure rate, but with larger shape param-
eter), the MSEs of HMC estimators for the parameter k of the RW form are also
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Table 5.2: MSEs of the parameters of SW and RW models in case β = 250 and
k = 3.

SW RW

n Method β k b k

25 CE 297.3406 0.3019 1.0344× 10−14 0.1297
HMC 304.3224 0.2974 7.1049× 10−9 0.7190

50 CE 163.8943 0.1273 8.5746× 10−15 0.0764
HMC 165.7818 0.1252 7.8539× 10−11 0.2607

100 CE 72.3507 0.0570 6.7516× 10−15 0.0435
HMC 72.4627 0.0568 1.4444× 10−12 0.0989

200 CE 37.9752 0.0297 4.0948× 10−15 0.0248
HMC 37.9923 0.0298 1.0274× 10−13 0.0397

Table 5.3: MSEs of the parameters of SW and RW models in case β = 250 and
k = 10.

SW RW

n Method β k b k

25 CE 28.5926 4.0114 1.1818× 10−48 0.1781
HMC 28.3067 3.9204 6.6065× 10−14 37.5833

50 CE 13.8543 1.3341 1.0774× 10−48 0.1241
HMC 13.7233 1.3193 1.3393× 10−21 18.3233

100 CE 6.9635 0.6270 9.3148× 10−49 0.0927
HMC 6.9416 0.6255 1.1950× 10−29 6.8448

200 CE 3.5088 0.3155 8.1162× 10−49 0.0639
HMC 3.5236 0.3149 1.0723× 10−35 2.1954

Table 5.4: MSEs of the parameters of SW and RW models in case β = 1 and k = 10.

SW RW

n Method β k b k

25 CE 0.0004 3.2768 0.0546 3.2861
HMC 0.0004 3.1911 0.0598 3.3909

50 CE 0.0002 1.5857 0.0248 1.5948
HMC 0.0002 1.5668 0.0259 1.6240

100 CE 0.0001 0.6344 0.0118 0.6376
HMC 0.0001 0.6332 0.0120 0.6440

200 CE 0.0001 0.3204 0.0056 0.3204
HMC 0.0001 0.3189 0.0056 0.3206

largest whereas their MSEs of CE estimators for the parameter k are smallest (see
Figure 5.6).
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Figure 5.4: MSEs of the parameter k of SW and RW models in case β = 250 and
k = 0.5
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Figure 5.5: MSEs of the parameter k of SW and RW models in case β = 250 and
k = 3

• In case β = 1 and k = 10 (also increasing failure rate, but with scale being 1), the
MSEs of estimators for the parameter k of the two Weibull forms obtained by both
methods are almost the same (see Figure 5.7).

• In case increasing failure rate with large scale parameter, the MSEs of CE estimators
of RW form are smallest (see Figures 5.5-5.6).

These results have been obtained because Bayes estimators (reliability characteristics also)
under squared error loss function are based on the posterior mean. Since in case of high
correlation, the marginal distributions of parameters are not symmetric, this fact will affect
the posterior mean.

Figure 5.8 shows the plot of the Weibull PDFs with different selected shape parameter
values. For k < 3, we see the clear differences between these functions, but for k > 3, there
is not much difference between them. So only a large sample can detect the differences.
This is the reason why small sample sizes result in high MSE in the simulation study.
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Figure 5.6: MSEs of the parameter k of SW and RW models in case β = 250 and
k = 10

1

2

3

50 100 150 200

Sample size

M
S

E

Method

CE.SW.k

CE.RW.k

HMC.SW.k

HMC.RW.k

Figure 5.7: MSEs of the parameter k of SW and RW models in case β = 1 and
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5.5 Illustrative example

5.5.1 The Weibull distribution

Data in Table 5.5 are used to demonstrate the consequence of the reparameterization on
the Bayes estimators via HMC. The data represent lifetimes of diesel engines [18]. The
unit for measurement is hour.

Table 5.5: Time to failure of diesel engine.

1276 720 1135 1854 1687 2570 2440
2547 1100 2117 1876 1633 2646 1556
2470 1250 1895 2607 896 401

In order to produce the HMC samples, 4 parallel chains are constructed, each with
length of 2000 iterations and burn-in (warm-up) period of 1000. Figure 5.9 shows the
trace plots and density estimates of HMC output for the SW parameters. The trace plots
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Figure 5.12: Contour plot of RW likelihood function with superimposed by HMC
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Table 5.6: CE and HMC point estimates and HPD intervals for parameters of the
two forms

CE HMC 90% HPD 95% HPD

SW β 1946.4814 1986.5335 [1713.8150, 2254.7640] [1649.3379, 2298.1889]

k 2.8984 2.8976 [2.0225, 3.7430] [1.91296, 3.960445]

RW b 1.6316× 10−10 0.0003× 10−1 [2.0772× 10−11, 9.3965× 10−5] [2.0772× 10−11, 0.0002]

k 2.9742 1.6494 [1.1052, 2.1285] [1.0596, 2.2777]
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Figure 5.13: Estimated (a) reliability and (b) failure rate functions of the SW and
RW forms when fitting to the data using both CE and HMC methods.
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Figure 5.16: Contour plots of (a) the SW and (b) RW likelihood functions superim-
posed by HMC sample points for scaling data.

Table 5.8: CE and HMC point estimates and HPD intervals for parameters of the
two forms; scaling data

Model Parameter CE HMC 90% HPD 95% HPD

SW β 0.9732 0.9951 [0.8502, 1.1227] [0.8341, 1.1719]

k 2.8984 2.9040 [2.0109, 3.7267] [1.8883, 3.9162]

RW b 1.0818 1.1228 [0.8502, 1.1227] [0.8341, 1.1719]

k 2.8984 2.9473 [2.0109, 3.7267] [1.8883, 3.9162]
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Figure 5.17: Estimated (a) reliability and (b) failure rate functions of the SW and
RW forms when fitting to the data using both CE and HMC methods.
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NLFR model, with the failure rate function

h(t) = a+ btk−1 (5.18)

induced from the Weibull model, was designed for modeling data sets in which failures
result from both random shock and wearout. For example, data in Table 5.9 represent the
days until death for male mice exposed to 300 rads of radiation. The unit for measurement
is day. Here only the group maintained in a germ-free environment is considered and the
causes of death is due to the effect of other causes. The feature of the dataset is that more
than one failure mode occurs ([33]). Fig. 5.18 shows that NLFR model is probably more
appropriate than Weibull model for this data set. A reparameterized form of the NLFR
model, named “NLFR1” which is given as follows

h(t) = a+
k

b

(
t

b

)k−1

(5.19)

is also given to observe which form provides good Bayes estimates via HMC. Fig. 5.19
show the Bayes estimates of reliability and failure rate functions of the two forms along
with the MLEs of these functions. From this figure, it is easy to observe that the NLFR1
form provides better result than does the NLFR form. Once again, we observe that the
MLE method is not affected by any forms. In contract, it works quite well with the NLFR
form which provides even better result than the NLFR1 form and this fact has already been
demonstrated in the simulation study for the Weibull forms.

Table 5.9: Male mice exposed to 300 rads of radiation (other causes in germ-free
group)

136 246 255 376 421 565 616 617 652 655
658 660 662 675 681 734 736 737 757 769
777 800 807 825 855 857 864 868 870 870
873 882 895 910 934 943 1015 1019
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Figure 5.18: Histogram along with density plots of male mice data

The way of changing the data scale is provided also in order to obtain good Bayes
estimates. Table 5.10 show the male mice dataset with different scale. In this table, the
data is divided by 1000 which changed the unit of measurement into 1000 days. From
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Figure 5.19: Estimated (a) reliability and (b) failure rate functions in case unit
measurement of data is day.

Figures 5.20 we see that in this scale, any forms of the NLFR model provide good Bayes
estimates.

Table 5.10: Male mice exposed to 300 rads of radiation (measurement unit: 1000
days)

0.136 0.246 0.255 0.376 0.421 0.565 0.616 0.617
0.652 0.655 0.658 0.660 0.662 0.675 0.681 0.734
0.736 0.737 0.757 0.769 0.777 0.800 0.807 0.825
0.855 0.857 0.864 0.868 0.870 0.870 0.873 0.882
0.895 0.910 0.934 0.943 1.015 1.019
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Figure 5.20: Estimated (a) reliability and (b) failure rate functions in case unit
measurement of data is 1000 days.
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5.6 Conclusions

This study shows how the reparameterization and changing data scale can provide good
Bayes estimates via HMC method for the Weibull model as well as the models resulting
from the Weibull model. These ways also work well for Bayesian inference using other
MCMC methods provided that they produce good samples as HMC does. For frequentist
approach, the RW form is recommended due to its simpler form and less MSE than the
SW form. For Bayesian inference via MCMC methods, the SW form is recommended.
However, in case of decreasing failure rate the RW form is recommended. If a dataset is
rescaled as if it (approximately) comes from the SW model with scale parameter 1, then
any Weibull forms can be used.
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Chapter 6

An additive Chen-Weibull model: A

Bayes study using Hamiltonian

Monte Carlo simulation

6.1 Introduction

This chapter comes from my study given in [89]. The Weibull distribution [73], is the
most widely used distribution in reliability data analysis. However, the failure rate func-
tion of the Weibull distribution can only be increasing, decreasing or constant. It fails to
capture a lifetime data with bathtub-shaped failure rate such as human mortality, failure
rate of newly lunched product, etc., which can involve high initial failure rates (infant
mortality, design defects, production errors, inexperienced maintenance errors), then ap-
proximately low constant failure rate for a period of time (useful life, random failure)
and eventual high failure rates due to aging and wearout, indicating a bathtub-shaped
failure rate. Therefore, many generalizations, extensions and modifications of the Weibull
distribution have been developed to meet the requirements. For example Mann, Schafer,
and Singpurwalla [41] proposed mixtures of Weibull distributions. Hjorth [29] studied a
3-parameter family obtained by generalizing the Rayleigh distribution which with increas-
ing, decreasing, and bathtub failure rates. Mudholkar and Srivastava [47] introduced
an exponentiated Weibull (EW) distribution for analyzing bathtub failure rate data. Xie
and Lai [75] proposed an additive Weibull (AddW) distribution by combining two Weibull
distributions with cumulative distribution function (CDF)

F (x) = 1− e−αxθ−βxγ
, x ≥ 0; α, β ≥ 0, θ > 1, 0 < γ < 1 (6.1)

Chen [15] introduced a new two-parameter lifetime distribution with bathtub-shape or
increasing failure rate function. The CDF of the Chen distribution is given by

F (x) = 1− eλ(1−ex
β
), x ≥ 0; λ, β > 0 (6.2)

Xie, Tang, and Goh [76] presented a modified Weibull extension (MWE) distribution by
adding a scale parameter to the Chen distribution with CDF

F (x) = 1− e
αλ

(

1−e(x/α)β
)

, x ≥ 0; α, β, λ > 0

Lai, Xie, and Murthy [39] proposed a modified Weibull (MW) distribution with CDF

F (x) = 1− e−αxθeγx , x ≥ 0; α, θ > 0, γ ≥ 0 (6.3)
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which can have an increasing or a bathtub-shaped failure rate function. Bebbington, Lai,
and Zitikis [7] introduced a flexible Weibull extension which is able to model various
ageing classes of life distributions including increasing and bathtub-shaped failure rates.
Dimitrakopoulou, Adamidis, and Loukas [17] proposed a three-parameter lifetime dis-
tribution with increasing, decreasing, bathtub, and upside down bathtub shaped failure
rates. Carrasco, Ortega, and Cordeiro [14] studied a generalized modified Weibull distri-
bution which has ability to model monotone as well as non-monotone failure rates. Silva,
Ortega, and Cordeiro [61] proposed a beta modified Weibull distribution which accom-
modates monotone, unimodal and bathtub-shaped failure rates. Almalki and Yuan [3]
introduced a new modified Weibull (NMW) distribution by combining the Weibull distri-
bution and the MW distributions with CDF

F (x) = 1− e−(αx
θ+βxγeλx), x ≥ 0; α, β, γ, θ > 0, λ ≥ 0

Sarhan and Apaloo [57] presented an exponentiated modified Weibull extension (EMWE)
distribution with CDF

F (x) =

[
1− e

αλ
(

1−e(x/α)β
)]γ

, x ≥ 0; α, β, γ, λ > 0

He, Cui, and Du [28] proposed an additive modified Weibull (AMW) distribution by com-
bining the MW distribution and the Gompertz distribution [25] with CDF

F (x) = 1− e−(αx
θeγx+eλx−β−e−β), x ≥ 0; α, β, θ > 0, γ, λ ≥ 0

Zeng, Lan, and Chen [77] presented five and four-parameter lifetime distributions for
bathtub-shaped failure rate using Perks mortality equation. More recent, Shakhatreh,
Lemonteb, and Moreno–Arenas [60] introduced a log-normal modified Weibull distribu-
tion by combining the MW distribution and the log-normal distribution.

In this chapter, a new continuous lifetime distribution, called the additive Chen-Weibull
distribution, is proposed by combining the Weibull distribution and the Chen distribution
in a series system with two independent components. One component follows the Chen
distribution and the other follows the Weibull distribution. The new distribution provides
the flexibility and diversity of shapes of failure rate function. The usefulness of the new
distribution is illustrated by fitting to two well-know data sets with bathtub-shaped failure
rate and the proposed distribution is demonstrated to be better than many other existing
distributions when fitting to these data sets.

The rest of the chapter is organized as follows. Section 6.2 introduces the new lifetime
distribution. Some properties of the new distribution are studied in Section 6.3. Section
6.4 deals with the estimation of the parameters. Applications to two real data sets are
given Section 6.5. And finally, Section 6.6 brings conclusions.

6.2 The new lifetime distribution

The CDF of the additive Chen-Weibull (ACW) distribution with four parameters θ =
(α, β, γ, λ) is defined by

F (x) = 1− eλ(1−ex
γ
)−(αx)β , x ≥ 0; α, β, γ > 0, λ ≥ 0 (6.4)

The probability density function (PDF) of the ACW distribution has the following form

f(x) =
(
λγxγ−1ex

γ
+ αβ(αx)β−1

)
eλ(1−ex

γ
)−(αx)β , x ≥ 0 (6.5)
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And the failure rate and reliability/survival functions are, respectively

h(x) = λγxγ−1ex
γ
+ αβ(αx)β−1 (6.6)

and
R(x) = eλ(1−ex

γ
)−(αx)β (6.7)

The reliability function can be written as

R(x) = e−H(x) (6.8)

where
H(x) = λ(ex

γ − 1) + (αx)β (6.9)

is called the cumulative failure rate function.
The new model is useful for modeling a series system with two independent compo-

nents. One component follows Chen distribution and the other follows Weibull distribu-
tion. It can also be used for modeling lifetime data in which failure might be originated
from more than one failure mode.

6.3 Properties of the model

6.3.1 The failure rate function

The failure rate function given in Eq. (6.6) is increasing when β, γ ≥ 1 and bathtub
shaped otherwise. If we choose λ = 0 in Eq. (6.6), we have the Weibull failure rate which
is increasing, decreasing or constant. If we choose α = 0, we have the Chen failure rate
which is increasing or bathtub-shaped. The plot of the PDFs and the corresponding failure
rate functions of the ACW distribution with different values of parameters are displayed
in Fig. 6.1. As we can see that the proposed model provides a variety of shapes of the
distribution and failure rate for modeling complicated lifetime data. Various shapes of the
bathtub-shaped failure rate function of the ACW distribution with long useful lifetime are
shown in Fig. 6.2.
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Figure 6.1: (a) Probability density functions and (b) the corresponding failure rate
functions of the ACW.
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Figure 6.2: Bathtub-shaped failure rate with long useful lifetime of the ACW distri-
bution with different values of parameters.

6.3.2 The moments

The rth non-central moment or the rth moment about the origin of the ACW distribution
can be derived as follows by using the Taylor expression of ex

µ
′

r =

∫ +∞

0
xrdF (x)

= −
∫ +∞

0
xrdeλ(e

xγ−1)−(αx)β

=

∫ +∞

0
rxr−1eλ(e

xγ−1)−(αx)βdx

= re−λ

∫ +∞

0
xr−1eλe

xγ−(αx)βdx



6.4. Parameter estimation 77

= re−λ
+∞∑

n=0

+∞∑

m=0

λnnm

n!m!

∫ +∞

0
xr−1xmγe−(αx)βdx

=
re−λ

β

+∞∑

n=0

+∞∑

m=0

λnnm

n!m!
α−(mγ+r)Γ

(
mγ + r

β

)
(6.10)

for r = 1, 2, . . ., where Γ(·) is the gamma function.

6.3.3 Order statistics

Let X1, X2, . . . , Xn be a random sample from the ACW distribution and Xk:n is the kth
order statistic of the sample, then the PDF of Xk:n is given by

fk:n(x) =
1

B(k, n− k + 1)
F (x)k−1(1− F (x))n−kf(x) (6.11)

where B(·, ·) is the beta function.
Since we have

(1− F (x))n−k = e−(n−k)H(x)

and

F (x)k−1 = (1− e−H(x))k−1 =
k−1∑

l=0

(
k − 1

l

)
(−1)le−lH(x)

Therefore,

fk:n(x) =
1

B(k, n− k + 1)

k−1∑

l=0

(
k − 1

l

)
(−1)lh(x)e−(n+l+1−k)H(x)

= n

(
n− 1

k − 1

) k−1∑

l=0

(
k − 1

l

)
(−1)l

(
λγxγ−1ex

γ
+ αβ(αx)β−1

)
e−(n+l+1−k)(λ(ex

γ
−1)+(αx)β)

= n

(
n− 1

k − 1

) k−1∑

l=0

(
k − 1

l

)
(−1)l

n+ l + 1− k
f(x;α′, β, γ, λ′)

where α′ = α
β
√
n+ l + 1− k and λ′ = (n+ l + 1− k)λ

Using (6.10), the rth non-central moment of the kth order statistics Xk:n is

µ′(k:n)
r =

nre−λ

β

(
n− 1

k − 1

) +∞∑

i=0

+∞∑

j=0

k−1∑

l=0

(
k − 1

l

)
(−1)lλiijα−(jγ+r)

(n+ l + 1− k)(jγ+r)/β−i+1i! j!
Γ

(
jγ + r

β

)

6.4 Parameter estimation

6.4.1 Maximum likelihood estimation

Let D:x1, . . . , xn be an observed sample from the ACW distribution with unknown param-
eter vector θ = (α, β, γ, λ). Then the log-likelihood function is derived as

L =

n∑

i=1

log
(
λγxγ−1

i ex
γ
i + αβ(αxi)

β−1
)
−

n∑

i=1

(
λ(1− ex

γ
i ) + (αxi)

β
)

(6.12)
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To obtain the MLE of θ, we first calculate the first partial derivatives of L with respect
to α, β, γ and λ.

∂L
∂α

=
n∑

i=1

β2(αxi)
β−1

λγxγ−1
i ex

γ
i + αβ(αxi)β−1

−
n∑

i=1

βαβ−1xβi (6.13)

∂L
∂β

=
n∑

i=1

α(αxi)
β−1 + αβ(αxi)

β−1 log(αxi)

λγxγ−1
i ex

γ
i + αβ(αxi)β−1

−
n∑

i=1

(αxi)
β log(αxi) (6.14)

∂L
∂γ

=
n∑

i=1

λxγ−1
i ex

γ
i (1 + γ log xi + γxγi log xi)

λγxγ−1
i ex

γ
i + αβ(αxi)β−1

+
n∑

i=1

λxγi e
xγ
i log xi (6.15)

∂L
∂λ

=
n∑

i=1

γxγ−1
i ex

γ
i

λγxγ−1
i ex

γ
i + αβ(αxi)β−1

+
n∑

i=1

(ex
γ
i − 1) (6.16)

Then setting these expressions to zero and solving them simultaneously gives the MLE
θ̂ = (α̂, β̂, γ̂, λ̂). These equations can not be solved analytically. Therefore, a numerical
method should be employed as, for example, the Newton-Raphson algorithm. However,
in the study the CE method (Chapter 3) is used to optimize the log-likelihood function
given in Eq. (6.12).

6.4.2 Bayesian estimation

The Bayesian model is constructed by specifying a prior distribution π(θ) for θ = (α, β, γ, λ),
and then multiplying with the likelihood function to obtain the posterior distribution. The
posterior distribution of θ given D: t1, . . . , tn is given by

π(θ|D) =
L(D|θ)π(θ)∫
L(D|θ)π(θ)dθ (6.17)

Since the denominator in Eq. (6.17) is a normalizing constant and not necessary for
Bayesian inference using MCMC methods, the posterior distribution is often expressed
as:

π(θ|D) ∝ L(D|θ)π(θ) (6.18)

Here also adopted Kundu and Howlader [36], the prior distributions of α, β, γ, θ and
λ are assumed to be independent and each parameter follows gamma distribution, i.e.

π1(α) ∝ αa1−1 exp {−b1α} , a1, b1 > 0 (6.19)

π2(β) ∝ βa2−1 exp {−b2β} , a2, b2 > 0 (6.20)

π3(γ) ∝ γa3−1 exp {−b3γ} , a3, b3 > 0 (6.21)

π4(λ) ∝ λa4−1 exp {−b4λ} , a4, b4 > 0 (6.22)

If a1 = a2 = a3 = a4 = 1 and b1 = b2 = b3 = b4 = 0 we have generalized uniform
distributions on R+ or diffuse priors, and if a1 = a2 = a3 = a4 = b1 = b2 = b3 = b4 = 0,
we have non-informative priors. Then, under the square error loss function, the Bayes
estimator of α, β, γ, λ, failure rate function h(t) and reliability function R(t) are given by

α∗ = E(α|D) =

∫

θ

απ(θ|D)dθ (6.23)

β∗ = E(β|D) =

∫

θ

βπ(θ|D)dθ (6.24)
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γ∗ = E(γ|D) =

∫

θ

γπ(θ|D)dθ (6.25)

λ∗ = E(λ|D) =

∫

θ

λπ(θ|D)dθ (6.26)

h∗(t) = E(h(t;θ)|D) =

∫

θ

h(t;θ)π(θ|D)dθ (6.27)

R∗(t) = E(R(t;θ)|D) =

∫

θ

R(t;θ)π(θ|D)dθ (6.28)

In this study, HMC (see Subsection 3.7) is used to simulate samples from posterior dis-
tribution. Suppose that {θi, i = 1, . . . , N} is generated from the posterior distribution
π(θ|D). Then when i is sufficiently large (say, bigger than n0), {θi, i = n0 + 1, . . . , N} is a
(correlated) sample from the true posterior. Then, the approximate Bayes estimate of α∗,
β∗, γ∗, λ∗, h∗(t) and R∗(t) by calculating the means:

α∗ ≈ 1

N − n0

N∑

i=n0+1

αi (6.29)

β∗ ≈ 1

N − n0

N∑

i=n0+1

βi (6.30)

γ∗ ≈ 1

N − n0

N∑

i=n0+1

γi (6.31)

λ∗ ≈ 1

N − n0

N∑

i=n0+1

λi (6.32)

h∗(t) ≈ 1

N − n0

N∑

i=n0+1

h(t;θi) (6.33)

R∗(t) ≈ 1

N − n0

N∑

i=n0+1

R(t;θi) (6.34)

In practice, some experts suggest to run m parallel chains (say, m = 3, 4 or 5), instead
of only 1, for assessing sampler convergence. Then the posterior means are obtained as
follows

α∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

αi,j (6.35)

β∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

βi,j (6.36)

γ∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

γi,j (6.37)

λ∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

λi,j (6.38)

h∗(t) ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

h(t;θi,j) (6.39)
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Table 6.1: Aarset data

0.1 0.2 1.0 1.0 1.0 1.0 1.0 2.0 3.0 6.0
7.0 11.0 12.0 18.0 18.0 18.0 18.0 18.0 21.0 32.0

36.0 40.0 45.0 46.0 47.0 50.0 55.0 60.0 63.0 63.0
67.0 67.0 67.0 67.0 72.0 75.0 79.0 82.0 82.0 83.0
84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0

Table 6.2: The MLEs of parameters for fitting ACW distribution along with other
modified Weibull distributions to Aarset data.

Models CDF α̂ β̂ γ̂ θ̂ λ̂

MW 1− e−αxθeγx 0.0626 0.0230 0.3595

MWE 1− e
αλ

(

1−e(x/α)β
)

13.7467 0.5877 0.0088

ACW 1− eλ(1−ex
γ
)−(αx)β 0.0118 86.2313 0.2782 0.0420

AddW 1− e−αxθ−βxγ
1.1095× 10−8 0.0857 0.4765 4.2190

EMWE
[
1− e

αλ
(

1−e(x/α)β
)]γ

49.1958 3.1645 0.1445 7.0213× 10−5

AMW 1− e−(αx
θeγx+eλx−β−e−β) 0.0763 90.1357 0.0104 0.4579 1.0604

NMW 1− e−(αx
θ+βxγeλx) 0.0710 7.0150× 10−8 0.0160 0.5950 0.1970

R∗(t) ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

R(t;θi,j) (6.40)

6.5 Applications

In this section, the proposed model is applied to two well-known data sets and a compar-
ison with other typical models based on Kolmogorov-Smirnov (K-S) statistic, Akaike in-
formation criterion (AIC), Bayesian information criterion (BIC) and bias-corrected Akaike
information criterion (AICc) is provided.

6.5.1 Aarset data

Data in Table 6.1 represent the lifetimes of 50 devices [1]. This failure data has been
analysed by numerous authors, see Almalki and Yuan [3] and He, Cui, and Du [28] and
references therein. It is known to have a bathtub-shaped failure rate function as indicated
by the scaled TTT-transform plot which is first convex and then concave (Fig. 6.3).

Table 6.2 gives the MLEs of parameters of the ACW as well as the MW, MWE, AddW,
EMWE, AMW and NMW models when fitting to Aarset data and the measure of fit values
are given in Table 6.3. From Table 6.3 we find that the five-parameter model AMW pro-
vides the best fit to this data and the proposed four-parameter model ACW fits to the data
almost as good as the AMW model. Fig 6.4 shows the reliability functions and the failure
rate functions of the ACW, MW, MWE, AddW, EMWE, AMW and NMW models when fit-
ting to the data set. From these plots we can see that the ACW is as close as the AMW to
the nonparametric estimates of these functions.

For Bayesian inference, the prior information needs to be specified. Since we have
no prior information available, the diffuse priors are used as the prior information for
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Figure 6.3: (a) Shapes of the scaled TTT-transform plot with corresponding types
of failure rate and (b) the empirical scaled TTT-transform plot for Aarset data.
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Figure 6.4: The estimated (a) reliability functions and (b) failure rate functions
obtained by fitting ACW distribution and other modified Weibull distributions to

Aarset data.

the model parameters. Fig. 6.5 shows the trace plots and density estimates of the pa-
rameters obtained by HMC algorithm. The trace plots show that the 4 parallel chains for
each parameter produced by HMC algorithm converge quickly to the same target distribu-
tion. The densities are distributed approximately symmetrically around the central values
which means that they provide good Bayes estimates under square error loss function. The
scatter plot matrix of HMC output shows the posterior correlations between the parame-
ters (Fig. 6.7). In the graph, most pairs of parameters have small posterior correlations
whereas (γ, λ) appear to have higher posterior correlations. This is due to the parameter-
ization of the Chen distribution. These higher correlations, however, have little effect on
the Bayes estimators in this situation.

Table 6.4 shows the HMC point estimates and two-sided 90% and 95% HPD (highest
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Table 6.4: Bayes estimates via HMC and HPD intervals for the parameters and
MTTF for fitting ACW to Aarset data

Parameter Point estimate 90% HPD 95% HPD

α 0.0118 [0.0117, 0.0118] [0.0117, 0.0119]

β 87.5177 [48.7484, 126.2103] [42.3028, 136.8757]

γ 0.2761 [0.2339, 0.3153] [0.2272, 0.3247]

λ 0.0484 [0.0199, 0.0749] [0.0199, 0.0864]

MTTF 43.7496 [36.7722, 51.0436] [35.0335, 52.0174]
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Figure 6.6: MLE, Bayes and nonparametric estimates of the (a) reliability functions
and (b) failure rate functions obtained by fitting ACW distribution to Aarset data.

of fit values are given in Table 6.7. From Table 6.7 we find that in this case the pro-
posed four-parameter model, ACW, provides the best fit to Meeker-Escobar data. Fig 6.9
shows the estimated reliability functions and the failure rate functions of the ACW, MW,
MWE, AddW, EMWE, AMW and NMW models when fitting to Meeker-Escobar data. From
these plots we can see that the ACW is very close to the nonparametric estimates of these
functions.

For analyzing Meeker-Escobar data, we use the same procedures given in Subsec-
tion 6.5.1 for Bayesian estimation. However, for this data set, the informative prior is
used since we have very little data points. For the prior distributions given in Eqs. 6.20-
6.22, the hyper-parameters have been chosen such that the prior means approximate the
MLEs of the parameters. Since the MLEs of parameters for fitting ACW to Meeker-Escobar

Table 6.5: Meeker-Escobar data: running times of 30 devices

2 10 13 23 23 28 30 65 80 88
106 143 147 173 181 212 245 247 261 266
275 293 300 300 300 300 300 300 300 300
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Table 6.6: The MLEs of parameters for fitting ACW distribution along with other
modified Weibull distributions to Meeker-Escobar data.

Models CDF α̂ β̂ γ̂ θ̂ λ̂

MW 1− e−αxθeγx 0.0181 0.0071 0.4538

MWE 1− e
αλ

(

1−e(x/α)β
)

85.4922 0.8020 0.0016

ACW 1− eλ(1−ex
γ
)−(αx)β 0.00333 259.42759 0.26068 0.01518

AddW 1− e−(αx)β−(θx)γ 1.3109× 10−7 0.0187 0.6024 2.8358

EMWE
[
1− e

αλ
(

1−e(x/α)β
)]γ

197.2165 4.4955 0.1289 5.4673× 10−6

AMW 1− e−(αx
θeγx+eλx−β−e−β) 0.0142 116.9665 0.0019 0.6788 0.3902

NMW 1− e−(αx
θ+βxγeλx) 0.024 5.991× 10−8 0.012 0.629 0.056

Table 6.7: Log-likelihood, K-S statistic, AIC, BIC and AICc for fitting ACW distribu-
tion along with other modified Weibull distributions to Meeker-Escobar data.

Model Log-lik K-S (p-value) AIC BIC AICc

3 parameters

MW −178.06 0.180 (0.282) 362.12 366.32 363.04
MWE −179.20 0.184 (0.261) 364.41 368.61 365.33

4 parameters

ACW −151.34 0.134 (0.652) 310.67 316.28 312.27
AddW −178.10 0.193 (0.214) 364.20 369.80 365.80
EMWE −166.34 0.191 (0.223) 340.68 346.28 342.28

5 parameters

AMW −155.58 0.167 (0.374) 321.16 328.17 323.66
NMW −166.18 0.149 (0.522) 342.36 349.37 344.86
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Figure 6.7: Scatter plot matrix of HMC output with 4 parallel chains obtained by
fitting ACW to Aarset data.

data are (α̂, β̂, γ̂, θ̂, λ̂) = (0.00333, 259.42759, 0.26068, 0.01518), the hyper-parameters have
been chosen as (a1 = 50, b1 = 50/0.00333), (a2 = 50, b2 = 50/259.42759), (a3 = 50, b3 =
50/0.26068), and (a4 = 50, b4 = 50/0.01518).

Fig. 6.10 shows the trace plots and density estimates of the parameters obtained by
HMC algorithm. The trace plots show that the 4 parallel chains for each parameter pro-
duced by HMC algorithm also converge quickly to the same target distribution. The es-
timated densities are distributed almost symmetrically around the central values which
means that they provide good Bayes estimates under square error loss function, thanks
to the informative prior. The scatter plot matrix of HMC output shows the estimated pos-
terior correlations between the parameters (Fig. 6.11). Most pairs of parameters have a
very small correlation whereas the pair (β, λ) appears to have a little higher correlation.

Table 6.8 shows the HMC point estimates and two-sided 90% and 95% HPD (highest
posterior density) intervals for α, β, γ, λ and MTTF. Fig. 6.12 displays the estimated relia-
bility and failure rate functions obtained by MLE and Bayesian methods when fitting ACW
to the data. It is easy to see that both methods also give comparable results.
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Figure 6.8: (a) Shapes of the scaled TTT-transform plot with corresponding types
of failure rate and (b) the empirical scaled TTT-transform plot for Meeker-Escobar

data.
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Figure 6.9: The estimated (a) reliability functions and (b) failure rate functions
obtained by fitting ACW distribution and other modified Weibull distributions to

Meeker-Escobar data.

6.6 Conclusions

The ACW distribution has been developed and has been demonstrated to be better than
many existing models for modeling the two well-known data sets. The new distribution
has a simple form and flexible failure rate function which might appropriate for many
real data sets. Both classical and Bayesian inferences for its parameters have been investi-
gated. With the power of modern computations as, for example, the cross-entropy method
for optimization, MCMC simulation methods such as Hamiltonian Monte Carlo method,
resampling methods like bootstrapping, researchers can develop new statistical models
with many parameters that can be flexible enough to meet the realistic demand.
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Figure 6.11: Scatter plot matrix of HMC output with 4 parallel chains obtained by
fitting ACW to Meeker-Escobar data.
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Figure 6.12: MLE, Bayes and nonparametric estimates of the (a) reliability func-
tions and (b) failure rate functions obtained by fitting ACW distribution to Meeker-

Escobar data.
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Chapter 7

Improving new modified Weibull

model: A Bayes study using

Hamiltonian Monte Carlo simulation

7.1 Introduction

This chapter comes from my study given in [87]. As we know the bathtub-shaped failure
rate function is the most popular non-monotonic failure rate function which can be used
for modeling of human mortality, failure rate of newly launched products, etc. In 2013, a
new modified Weibull (NMW) distribution has been published in a journal of engineering
[3]. This new model provides best fits of specific data sets, that evince bathtub-shaped
failure rate, comparing to all other existing models. (Here we skip the discussion of ear-
lier developments of bathtub-shaped failure rate models since it was already provided by
Almalki and Yuan [3].) Therein, authors introduce a new lifetime distribution by consid-
ering a series system with one component following the Weibull distribution and another
following the modified Weibull distribution [39]. The NMW distribution has been defined
by the following CDF:

F (t) = 1− exp
{
−
(
αtθ + βtγeλt

)}
, t ≥ 0 (7.1)

where α, β, θ, γ and λ are non-negative, with θ and γ being shape parameters and α and
β being scale parameters and λ acceleration parameter. Its corresponding failure rate
function is given as

h(t) = αθtθ−1 + β(γ + λt)tγ−1eλt, t ≥ 0 (7.2)

This is the mixture failure rate of the Weibull and modified Weibull failure rates. The
important property of preceding failure rate function is that it enables a more flexible
bathtub shaped failure rate function comparing to other existing alternative failure time
models.

Short time later, a new additive modified Weibull (AMW) distribution has been re-
leased and published in the same journal as the NMW model [28]. The new model was
demonstrated to be even better than the NMW and other existing models for fitting to the
data sets. Therein, the authors also considered a series system of two components. But
instead, one component is still following the modified Weibull distribution and another is
following a special case of Gompertz’s distribution [25]. The AMW distribution has been
defined by the following CDF:

F (t) = 1− exp
{
−
(
αtθeγt + eλt−β − e−β

)}
, t ≥ 0 (7.3)
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where α > 0, β > 0, θ > 0, γ ≥ 0 and λ ≥ 0. Its corresponding failure rate function is
given as

h(t) = α(θ + γt)tθ−1eγt + λeλt−β , t ≥ 0 (7.4)

This chapter shows that the failure rate function given in Eq. (7.2) can be adjusted
into a slightly different form which fits to bathtub-shaped failure data at least as good
as the model introduced by He, Cui, and Du [28]. Then a full Bayesian analysis of the
model is provided. Bayes estimators under square error loss function are obtained by
using Hamiltonian Monte Carlo (HMC), a Markov chain Monte Carlo (MCMC) method,
for posterior simulations. Furthermore, MLEs of model parameters are obtained by us-
ing the cross-entropy (CE) method to optimize the log-likelihood function and using the
invariance property of MLE to provide the MLEs of reliability characteristics.

As mentioned by Gupta, Mukherjee, and Upadhyay [26], the idea of combining two
or more models will result in too many parameters of the proposed model and, as such,
the resulting inferences may be difficult to obtain, especially in the reliability studies with
too little amount of data. Indeed, we have rarely seen or perhaps have never seen so
far a publication, that provides a full Bayesian analysis of failure time distributions with
more than three parameters. In this regard, the conventional MCMC methods are hard to
implement to find a good posterior sample. Therefore, this study shows the advantage of
the HMC algorithm which allow us to successfully simulate posterior samples from such
models, even in case of high correlated parameters or in high dimensions. Here, the model
under study has five parameters and this study will demonstrate how to apply successfully
HMC algorithm for posterior simulation of the model. Because recently there are only few
publications that provide Bayesian model checking, this chapter provides another routine
to continue search in this issue.

The remainder of this chapter is organized as follows. The improved model is intro-
duced in Section 7.2 along with the basic characteristics of the corresponding lifetime
distribution. Section 7.3 provides MLEs of unknown parameters as well as reliability char-
acteristics of the model on one hand, and Bayes estimators on the other hand. Section 7.4
demonstrates the proposed innovative model to two well-known data sets adopted from
references. Finally, Section 7.5 brings conclusions.

7.2 The model and its characteristics

7.2.1 Improving NMW model (INMW)

Based on the results obtained by Almalki and Yuan [3], this study point out an important
property of the failure rate function in Eq. (7.2). As we can see, the first component
of the failure rate function in Eq. (7.2) is the Weibull failure rate function which can
be increasing, decreasing or constant, and the second component is the modified Weibull
failure rate function which can be either increasing or bathtub-shaped [39] and as pointed
out by Upadhyay and Gupta [69] this failure rate function does not provide a good fit for
bathtub-shaped failure rate data with sharp change in the wear-out phase like Aarset data
or Meeker-Escobar data, for example. When Almalki and Yuan [3] applied their model
for fitting to the data sets, they obtained the estimates of γ and θ both less than unity
in both cases. This means that the first component is decreasing and has been absorbed
into the decreasing part of the second component which has a bathtub curve. This means
that their model is not as flexible as the model introduced by He, Cui, and Du [28]. To
improve the model, the first component of the failure rate function in Eq. (7.2) is coerced
to be always increasing (by restricting θ > 1) which gives the following new formula of
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the mixture failure rate:

h(t) = αθ(αt)θ−1 + β(γ + λt)tγ−1eλt, α, β, γ, λ ≥ 0, θ > 1 (7.5)

In the preceding function, the first component on the right side of (7.2) is also reparam-
eterized in order to reduce correlated parameters so that it can work well with MCMC
methods. In addition, this new modified model has another good property that when re-
duced into a sub-model by setting λ = 0, it produces a four-parameter model which avoids
the non-identifiability problem:

h(t) = αθ(αt)θ−1 + βγtγ−1 (7.6)

whereas the sub-model of the failure rate function in Eq. (7.2) when λ = 0 is

h(t) = αθtθ−1 + βγtγ−1 (7.7)

that commits the non-identifiability problem which means that two or more parameter
sets result in the same model, i.e. such model would be ambiguous. In fact, the failure
rate models in Eqs. (7.6) and (7.7) are just the failure rate model defined by Xie and
Lai [75], but with slightly different parametrization. Notice that the failure rate model
introduced by Xie and Lai [75] does not commit the non-identifiability problem due to the
fact that the authors restricted the parameters.

7.2.2 Characteristics of lifetime distribution

Here the characteristics of the lifetime distribution of the INMW model is derived. Us-
ing the relationship between reliability and failure rate functions, the reliability/survival
function is

R(t) = exp

{
−
∫ t

0
h(s)ds

}
= exp

{
−(αt)θ − βtγeλt

}
(7.8)

Then, the probability density (PDF) function is given as

f(t) = h(t)R(t) =
(
αθ(αt)θ−1 + β(γ + λt)tγ−1eλt

)
exp

{
−(αt)θ − βtγeλt

}
(7.9)

The cumulative failure rate (CFR) function is given by

H(t) = − log(R(t)) = (αt)θ + βtγeλt (7.10)

And the mean time to failure (MTTF) is given by

MTTF = E(T )

=

∫ ∞

0
R(t)dt =

∫ ∞

0
exp

{
−(αt)θ − βtγeλt

}
dt (7.11)

This integral can be obtained by using some suitable numerical methods.
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7.3 Estimation of parameters and reliability characteristics

Let D: t1, . . . , tn be a random sample from the INMW distribution with parameter θ =
(α, β, γ, θ, λ). Then the likelihood function is given as

L(D|θ) =
[

n∏

i=1

(
αθ(αti)

θ−1 + β(γ + λti)t
γ−1
i eλti

)]
× exp

{
−

n∑

i=1

(
(αti)

θ + βtγi e
λti
)}

(7.12)
and the log-likelihood function is derived as

logL(D|θ) =
n∑

i=1

log
(
αθ(αti)

θ−1 + β(γ + λti)t
γ−1
i eλti

)
−

n∑

i=1

(
(αti)

θ + βtγi e
λti
)

(7.13)

7.3.1 Maximum likelihood estimation

In this study, the log-likelihood function in Eq. (7.13) is maximized by using CE algorithm
to produce the maximizer θ̂ = (α̂, β̂, γ̂, θ̂, λ̂). And using the invariance property of MLE,

1. The MLE for R(t), say R̂(t), will be

R̂(t) = exp
{
−(α̂t)θ̂ − β̂tγ̂eλ̂t

}
(7.14)

2. The MLE for h(t), say ĥ(t), will be

ĥ(t) = α̂θ̂(α̂t)θ̂−1 + β̂(γ̂ + λ̂t)tγ̂−1eλ̂t (7.15)

3. The MLE for H(t), say Ĥ(t), will be

Ĥ(t) = (α̂t)θ̂ + β̂tγ̂eλ̂t (7.16)

4. The MLE for MTTF will be

ˆMTTF = MTTF (α̂, β̂, γ̂, θ̂, λ̂) (7.17)

which can be obtained by installing into formula (7.11) and integrating.

7.3.2 Bayesian estimation

The Bayesian model is constructed by specifying a prior distribution π(θ) for θ = (α, β, γ, θ, λ),
and then multiplying with the likelihood function to obtain the posterior distribution. The
posterior distribution of θ given D: t1, . . . , tn is given by

π(θ|D) ∝ L(D|θ)π(θ) (7.18)

The prior distributions of α, β, γ, θ and λ are assumed to be independent and each param-
eter follows gamma distribution, i.e.

π1(α) ∝ αa1−1 exp {−b1α} , a1, b1 > 0 (7.19)

π2(β) ∝ βa2−1 exp {−b2β} , a2, b2 > 0 (7.20)

π3(γ) ∝ γa3−1 exp {−b3γ} , a3, b3 > 0 (7.21)

π4(θ) ∝ θa4−1 exp {−b4θ} , a4, b4 > 0 (7.22)
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π5(λ) ∝ λa5−1 exp {−b5λ} , a5, b5 > 0 (7.23)

If a1 = a2 = a3 = a4 = a5 = 1 and b1 = b2 = b3 = b4 = b5 = 0 we have generalized
uniform distributions on R+ or diffuse priors, and if a1 = a2 = a3 = a4 = a5 = b1 =
b2 = b3 = b4 = b5 = 0, we have non-informative priors. Then, under the square error
loss function, the Bayes estimator of α, β, γ, θ, λ, failure rate function h(t) and reliability
function R(t) are given by

α∗ = E(α|D) =

∫

θ

απ(θ|D)dθ (7.24)

β∗ = E(β|D) =

∫

θ

βπ(θ|D)dθ (7.25)

γ∗ = E(γ|D) =

∫

θ

γπ(θ|D)dθ (7.26)

θ∗ = E(θ|D) =

∫

θ

θπ(θ|D)dθ (7.27)

λ∗ = E(λ|D) =

∫

θ

λπ(θ|D)dθ (7.28)

h∗(t) = E(h(t;θ)|D) =

∫

θ

h(t;θ)π(θ|D)dθ (7.29)

R∗(t) = E(R(t;θ)|D) =

∫

θ

R(t;θ)π(θ|D)dθ (7.30)

In this study, HMC is also used to simulate samples from posterior distribution. Suppose
that {θi, i = 1, . . . , N} is generated from the posterior distribution π(θ|D). Then when i
is sufficiently large (say, bigger than n0), {θi, i = n0 + 1, . . . , N} is a (correlated) sample
from the true posterior. Then, the approximate Bayes estimate of α∗, β∗, γ∗, θ∗, λ∗, h∗(t)
and R∗(t) by calculating the means:

α∗ ≈ 1

N − n0

N∑

i=n0+1

αi (7.31)

β∗ ≈ 1

N − n0

N∑

i=n0+1

βi (7.32)

γ∗ ≈ 1

N − n0

N∑

i=n0+1

γi (7.33)

θ∗ ≈ 1

N − n0

N∑

i=n0+1

θi (7.34)

λ∗ ≈ 1

N − n0

N∑

i=n0+1

λi (7.35)

h∗(t) ≈ 1

N − n0

N∑

i=n0+1

h(t;θi) (7.36)

R∗(t) ≈ 1

N − n0

N∑

i=n0+1

R(t;θi) (7.37)
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Here again, m parallel chains are run (say, m = 3, 4 or 5), instead of only 1, for assessing
sampler convergence. Then the posterior means are obtained as follows

α∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

αi,j (7.38)

β∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

βi,j (7.39)

γ∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

γi,j (7.40)

θ∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

θi,j (7.41)

λ∗ ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

λi,j (7.42)

h∗(t) ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

h(t;θi,j) (7.43)

R∗(t) ≈ 1

m(N − n0)

m∑

j=1

N∑

i=n0+1

R(t;θi,j) (7.44)

7.4 Application

7.4.1 Aarset data

This section provides an application of the new model to the Aarset data given in Chapter
6. It is known to have a bathtub-shaped failure rate function. In order to obtain the
Bayes estimates of the parameters and reliability characteristics, the HMC algorithm is
implemented in order to simulate samples from the posterior distribution by constructing
4 parallel Markov chains, each of length 2000, with burn-in (warm-up) of 1000 and final
posterior sample of size 1000 for each chain is obtained. For the HMC algorithm, there is
no need to reduce the autocorrelation, i.e. setting “lag”, in the samples. The diffuse priors
are used as prior information for parameters.

Fig. 7.1 shows the trace plots and density estimates of the parameters obtained by HMC
algorithm. The trace plots show that the 4 parallel chains for each parameter produced
by HMC algorithm converge quickly to the same target distribution. The densities are
distributed approximately symmetrically around the central values which means that they
provide good Bayes estimates under square error loss function. The scatter plot matrix
of HMC output shows the posterior correlations between the parameters (Fig. 7.2). In
the graph, most pairs of parameters have small posterior correlations whereas the two
pairs (β, γ) and (γ, λ) appear to have higher posterior correlations. This is due to the
parameterization of the modified Weibull distribution [39]. These higher correlations,
however, have little effect on the Bayes estimators in this situation.

Table 7.1 shows the HMC point estimates and two-sided 90% and 95% HPD (highest
posterior density) intervals for α, β, γ, θ, λ and MTTF. Fig. 7.3 displays the time courses
of the estimated reliability and failure rate functions obtained by CE and HMC methods
when fitting INMW and NMW to the data. It is easy to see that INMW fits to the data set
much better than its original NMW.
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Figure 7.2: Scatter plot matrix of HMC output with 4 parallel chains obtained by
fitting INMW to Aarset data.

Table 7.1: Bayes estimates via HMC and HPD intervals for the parameters and
MTTF obtained by fitting INMW to Aarset data.

Parameter Point estimate 90% HPD interval 95% HPD interval

α 0.0118 [0.0117, 0.0118] [0.0117, 0.0119]

β 0.0860 [0.0335, 0.1340] [0.0314, 0.1510]

γ 0.4432 [0.2488, 0.6335] [0.2323, 0.6817]

θ 92.6352 [49.5442, 134.1876] [44.9898, 148.7824]

λ 0.0107 [0.0036, 0.0180] [0.0025, 0.0195]

MTTF 44.8617 [37.9911, 52.2731] [36.9839, 53.6662]

7.4.2 Meeker-Escobar data

Again the Meeker-Escobar data given in Chapter 6 is used for demonstrating the superior
of the proposed model. As mentioned earlier, the data possesses a bathtub-shaped failure
rate. For analyzing Meeker-Escobar data, the same procedure given in Subsection 7.4.1
is used for Bayesian estimation. However, for this data set, the informative prior is used
since very little data points are shown in the data set. For the prior distributions given in
Eqs. 7.20-7.23, the hyper-parameters are chosen such that the prior means approximate
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Figure 7.3: The MLEs via CE and Bayes estimates via HMC of (a) reliability and (b)
failure rate functions obtained by fitting INMW and NMW to Aarset data.

Table 7.2: Log-likelihood, K-S statistic, AIC, BIC and AICc obtained by fitting INMW,
AMW and NMW to Aarset data.

Models Log-lik K-S (p-value) AIC BIC AICc

INMW −203.58 0.067 (0.977) 417.16 426.72 418.52
AMW −203.57 0.068 (0.963) 417.14 426.70 418.50
NMW −212.88 0.075 (0.921) 435.76 445.32 437.12

Table 7.3: The MLEs of parameters obtained by fitting INMW, AMW and NMW to
Aarset data.

Models Failure rate function α̂ β̂ γ̂ θ̂ λ̂

INMW (αt)θ−1 + β(γ + λt)tγ−1eλt 0.0118 0.0771 0.4544 90.0578 0.0105

AMW λeλt−β + α(θ + γt)tθ−1eγt 0.0763 90.1357 0.0104 0.4579 1.0604

NMW αθtθ−1 + β(γ + λt)tγ−1eλt 0.0709 6.9952× 10−8 0.0168 0.6008 0.1976

Table 7.4: Bayesian p-value and DIC obtained by fitting INMW, NMW and AMW to
Aarset data.

Bayesian p-value Deviance information criterion
Model Tmin Tmax DIC D pD

INMW 0.282 0.502 416.420 411.934 4.486
AMW 0.284 0.484 416.655 412.201 4.454
NMW 0.220 0.952 −− 436.726 −130.017

the MLEs of the parameters. Since the MLEs of parameters for fitting INMW to Meeker-
Escobar data are (α̂, β̂, γ̂, θ̂, λ̂) = (0.0033, 0.0198, 0.5942, 154.3077, 0.0025), we have chosen
(a1 = 50, b1 = 16666.67), (a2 = 50, b2 = 2500), (a3 = 50, b3 = 83.33), (a4 = 50, b4 = 0.32),
and (a5 = 50, b5 = 20000).
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Figure 7.4: The MLEs of (a) reliability and (b) failure rate functions obtained by
fitting INMW, AMW and NMW to Aarset data.
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Figure 7.5: Density estimates of (a) smallest ordered future observations and (b)
largest ordered future observations for INMW, NMW, and AMW, vertical lines rep-

resent corresponding observed values for Aarset data.

Fig. 7.6 shows the trace plots and density estimates of the parameters obtained by HMC
algorithm. The trace plots show that the 4 parallel chains for each parameter produced
by HMC algorithm also converge quickly to the same target distribution. However, it
took more time for this small data set. The densities are distributed almost symmetrically
around the central values which means that they provide good Bayes estimates under
square error loss function, thanks to the informative priors. The scatter plot matrix of
HMC output shows the estimated posterior correlations between the parameters (Fig. 7.7).
Most pairs of parameters have a very small correlation whereas the pair (β, λ) appears to
have higher posterior correlation.

Table 7.5 shows the HMC point estimates and two-sided 90% and 95% HPD (highest
posterior density) intervals for α, β, γ, θ, λ and MTTF. Fig. 7.8 displays the time courses of
the estimated reliability and failure rate functions obtained by MLE and Bayesian methods
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Figure 7.7: Scatter plot matrix of HMC output with 4 parallel chains obtained by
fitting INMW to Meeker-Escobar data.

Table 7.5: Bayes estimates via HMC and HPD intervals for the parameters and
MTTF obtained by fitting INMW to Meeker-Escobar data.

Parameter Point estimate 90% HPD interval 95% HPD interval

α 0.0033 [0.0033, 0.0033] [0.0033, 0.0033]

β 0.0199 [0.0151, 0.0241] [0.0147, 0.0252]

γ 0.5915 [0.5214, 0.6620] [0.5008, 0.6718]

θ 172.3540 [134.6809, 211.2877] [127.3370, 217.8504]

λ 0.0025 [0.0019, 0.0031] [0.0018, 0.0032]

MTTF 175.6658 [149.9354, 200.0784] [145.68, 205.0139]

HMC sampling for the INMW model always converges quickly to the target distribution,
whereas the HMC sampling for the AMW model might need many trials to obtain a good
convergence. This will be demonstrated in future work.
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Figure 7.8: The MLEs and Bayes estimates of (a) the reliability and (b) failure rate
functions obtained by fitting INMW and NMW to Meeker-Escobar data.

Table 7.6: Log-likelihood, K-S statistic, AIC, and BIC obtained by fitting INMW,
AMW and NMW to Meeker-Escobar data.

Models Log-lik K-S (p-value) AIC BIC AICc

INMW −153.90 0.099(0.557) 317.80 324.80 320.30
AMW −155.58 0.100(0.896) 321.16 328.17 323.66
NMW −165.02 0.102(0.538) 340.04 347.05 342.54

Table 7.7: The MLEs of parameters obtained by fitting INMW, AMW and NMW to
Aarset data.

Models Failure rate function α̂ β̂ γ̂ θ̂ λ̂

INMW (αt)θ−1 + β(γ + λt)tγ−1eλt 0.0033 0.0198 0.5942 154.3077 0.0025

AMW λeλt−β + α(θ + γt)tθ−1eγt 0.0142 116.9665 0.0019 0.6788 0.3902

NMW αθtθ−1 + β(γ + λt)tγ−1eλt 0.0137 6.1255× 10−10 0.1308 0.7391 0.0692

Table 7.8: Bayesian p-value and DIC obtained by fitting INMW, NMW and AMW to
Meeker-Escobar data.

Bayesian p-value Deviance information criterion
Model Tmin Tmax DIC D pD

INMW 0.226 0.922 310.472 308.490 1.982
AMW 0.316 0.936 314.499 312.505 1.993
NMW 0.158 0.972 335.791 333.999 1.793
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Figure 7.9: The MLEs of (a) the reliability and (b) failure rate functions obtained
by fitting INMW, AMW and NMW to Meeker-Escobar data.
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Figure 7.10: Density estimates of (a) smallest ordered future observations and
(b) largest ordered future observations for INMW, NMW, and AMW, vertical lines

represent corresponding observed values for Meeker-Escobar data.
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Chapter 8

Concluding remarks

The thesis have developed statistical models for modeling failure time data and studied
the convenient statistical computation methods which allow practitioners and researchers
to adopt and apply Bayesian analysis for analyzing such complicated failure time models
with several parameters. The non-linear failure rate model, the additive Chen-Weibull
model and the improvement of the new modified Weibull failure rate model have been
developed and studied in detail. Many well-known lifetime data sets have been analyzed
successfully by using the proposed models. The statistical methods, for example the cross-
entropy method, Markov chain Monte Carlo methods, maximum likelihood, Bayesian in-
ference, bootstrapping, have been applied successfully. Obviously, the main goal of the
thesis involving individual sub-goals has been met. To be successful in this, indispensable
programming codes (in R setting) were created. The successful analyses of the proposed
models by using modern statistical methods will allow researchers to develop new model
with many parameters. For future research, there are a few possibilities as follows:

• Consider a mixture failure rate with more than two components.

• Mixtures of other failure rate models, instead of Weibull and modified Weibull mod-
els, are also worth to consider and whether it would be possible to select the distri-
bution type in advance, based on certain data features.

• Another possibility is to consider failure rates with change points or a simpler case,
an incrementally constructed failure rate.

• In the thesis, all the mixture failure rate models are considered in case of indepen-
dent competing risks. Thus the mixture failure rate models can also be considered
in case of dependent competing risks.
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