

A Combinatorial Parametric Engineering Model for Solid Freeform

Fabrication

J.C. Boudreaux
NIST/Advanced Technology Program

Abstract: Fabricated parts are often represented as compact connected smooth 3-manifolds with
boundary, where the boundaries consist of compact smooth 2-manifolds. This class of mathematical
structures includes topological spaces with enclosed voids and tunnels. Useful information about these
structures are coded into level functions (Morse functions) which map points in the 3-manifold onto their
height above a fixed plane. By definition, Morse functions are smooth functions, all of whose critical
points are nondegenerate. This information is presented by the Reeb graph construction that develops a
topologically informative skeleton of the manifold whose nodes are the critical points of the Morse function
and whose edges are associated with the connected components between critical slices. This approach
accurately captures the SFF process: using a solid geometric model of the part, defining surface
boundaries; selecting a part orientation; forming planar slices, decomposing the solid into a sequence of
thin cross-sectional polyhedral layers; and then fabricating the part by producing the polyhedra by additive
manufacturing. This note will define a qualitative and combinatorial parametric engineering model of the
SFF part design process. The objects under study will be abstract simplicial complexes K with boundary
∂K. Systems of labeled 2-surfaces in K, called slices, will be associated with the cross-sectional polyhedral
layers. The labeled slices are mapped into a family of digraph automata, which, unlike cellular automata,
are defined not on regular lattices with simple connectivities (cells usually have either 4 or 8 cell
neighborhoods) but on unrestricted digraphs whose connectivities are irregular and more complicated.

1. Introduction

 Engineering designs are complicated data sets which contain such essential
information about industrial products as CAD data , material specifications, dimensioning
and tolerancing data, surface condition specifications, and much else besides. The
complexity of designs mirrors the structural complexity of products. Products are
properly modeled as networks of interacting components, each of which separated from
the others by a (physical or conceptual) boundary, and all of which are interconnected by
links such that outputs of one component may be passed as inputs to others. Products are
also stratified structures, that is, a component at one level (a parent) may be refined into
networks of components (the children) at the next-lower level. In the stratification
process, the links of the parent component are preserved: every input of the parent must
be an input to at least one child and every output an output of at least one child.
 Stratification also leaves the parent’s boundary in tact, allowing it to become a
container of the boundaries the children. Boundaries drawn in this manner impose a nest
structure on the product: at the highest level is the product itself, followed by its
immediate descendants, and so on, until all of the boundaries have been accounted for. In
the product-as-network model, stratification boundaries mark off key components which
can be then be identified by symbolic “tags” or labels. This symbolic structure permits
stratified product networks to form a framework with respect to which the design features
of components are defined. Features of one component may be either synthesized from
those of its descendant components in a defined stratification or inherited by virtue of its
links to other (in some cases, all other) components. The multiplicity of these relational
ties goes a long way in explaining the observed conceptual diversity among feature

563

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/287648793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

categories. For example, functional features are inherited from above by considering the
constraints imposed by the component's children. Specifically, the functional capabilities
and operational behavior of components may be modeled by transfer functions which,
given time-sequences of inputs (and possibly information about the current state of the
component), produce time-sequences of outputs (and possibly a new state) after a
specified time lag. Mating features are both synthesized from below and inherited from
above because of the requirements imposed by assembly and joining processes. Form
features are those through which all of the (often) contending requirements of the part are
finally reconciled and by which the connectivity-induced constraints are resolved.
 Lurking in the background is the difficult notion of design completeness, which
might be roughly defined as data sets which are sufficient to determine all of the essential
properties of the components which instantiate them. However, since no fixed meaning
can be attributed to this notion, a few illustrative examples might suggest lines for future
study. First, given a model of the “local” context of the component in the product
network, a complete design for that component will need to be elaborated to the point that
it possible to decide with confidence that its instances would satisfy all of the
requirements and constraints active in that context. Second, a complete design and an
inventory of available manufacturing capabilities and plant layouts should yield either
manufacturing process plans and material flow routes or a determination that the
component lies beyond the available productive capabilities. These two examples show
why the notion of complete designs is as difficult as it is!
 In any event, constructing engineering designs is a difficult and costly
undertaking. It has often been proposed that the thing to do is to reuse designs by
“instrumenting” them by defining a system of parameters for them. This has proven to be
a difficult undertaking in its own right. Parametric engineering is based on the premise
that an adequate inventory existing designs can be used to create active design templates
and that by “plugging” in reasonable values for the embedded parameters, it is possible
to automatically generate novel variant designs.

In an earlier note [4], it has been argued that it is reasonable to model SFF-
eligible parts as 3-manifolds with boundary. The boundary consists of a possibly
disconnected set of compact smooth 2-manifolds (topological surfaces). For example,
the 2-sphere is the single boundary of the closed 3-ball. In the general case, the class of
structures includes more complicated objects that have enclosed voids and tunnels. But
the fact that every compact 3-manifold M can be triangulated by an abstract simplicial
complex K whose geometric realization in Euclidean 3-space, written |K|, is
homeomorphic to M suggests that it is possible to construct a parametric engineering
model directly on discrete combinatorial structures. From the parametric engineering
point of view, geometric part definitions are massively overdetermined.

Moreover, this note will suggest that a major part of the burden can be carried
by even simpler mathematical structures, called directed graphs, shortened to digraphs.
A digraph is defined as a pair (V,E), where V is an unempty set of vertices, E is a set of
edges, together with a pair of functions start,stop:E →V such an edge h is interpreted as
an arrow from the vertex start(h) to the vertex stop(h). This definition admits a very
large class of structures. For example, digraphs may have many (even infinitely many)
distinct parallel and antiparallel edges between the same two vertices. Digraphs may
also have loop edges for which the start vertex is the same as the stop vertex.

564

Stratified product networks are complicated enough to illustrate the technical
usefulness of digraphs. The first step is straightforward: the vertices of the product
diagraph are symbolically “tagged” components; and the arrows consist of both
structural links which connect parents with their children and general links between
components. The second step handles repeated stratifications and is only a bit more
complicated. Suppose that A is any arbitrary digraph whose vertices are distinct from
those of V and that v is any vertex of V, then the desired stratification may be obtained
by replacing v by A and adding one or more arrows to parallel those which originally
connected v. In effect, the addition of A induces a three-fold partition of the edges of the
new digraph: interior edges whose start and stop vertices are both in A, exterior edges
whose start and stop vertices are both not in A, and boundary edges one of whose start
or stop vertices is in A and other is not in A. This procedure shows that products may be
represented by series of digraphs linked to one another by successive stratifications.

The full power and potential of the parametric engineering model is strongly
apparent in the context of SFF. This style of manufacturing is based on additive
manufacturing processes which may resolved into the following steps: (1) create a solid
geometric model of the part, defining surface boundaries and identifying interior
(material) regions from the exterior (void) regions; (2) select a part orientation and then
form planar slices, decomposing the solid into a sequence of thin cross-sectional
polyhedral layers; and (3) fabricate the part by producing all of the polyhedra by any of
several methods, including: stereolithography, selective laser sintering, laminated object
manufacturing, fused deposition modeling, and three dimensional printing. In classical
manufacturing work is applied to the surface of the part either through deformation
process or by material removal. But the primary advantage of SFF is that it reduces the
3-space shape of compact objects to a sequence of 2-space slices (and possibly some
mild “skinning” conditions).

The necessary topological details are sketched in Sections 2 and 3 (see [11] for
details). In Section 4 below, I will describe how the notion of a digraph can be applied to
define a class of automata, called digraph automata, which I suggest will provide a
natural computational framework for a parametric engineering model for SFF.

2. Simplicial Complexes, Pseudomanifolds, and Edge Paths

 An abstract simplex is a finite unempty set of elements, called vertices. If s is a
simplex containing q+1 vertices, then s is a simplex of dimension q, that is, a q-simplex.
Simplexes have a clear geometric meaning: a 0-simplex is a set containing a single vertex
representing a point (with the usual mild abuse of notation, points and vertices are
identified); a 1-simplex is an unordered pair of vertices representing an edge; a 2-simplex
is an unordered triple of vertices representing a triangle; a 3-simplex is an unordered
quadruple of vertices representing a tetrahedron; and so on.
 Every unempty subset of a q-simplex s is a p-simplex, for some dimension p≤q,
which is called a face (resp., a p-face) of s. For example, if s is a 3-simplex, then s
contains four distinct 2-faces, six 1-faces, and four 0-faces. Every (proper) subset of s is
called a (proper) face of s.

565

 An abstract simplicial complex (henceforth, complex) K is a set of abstract
simplexes such that if simplex s is an element of K then all faces of s are elements of K.
A complex is determined by the simplexes that it contains. Every complex is partially
ordered by the inclusion relation between its faces. Thus, the pair (K,⊂) is a digraph
whose vertices are the simplexes of K and whose arrows link each simplex with its proper
faces. Those simplexes of K that are not proper faces of other simplexes are called
maximal faces of K. The set of all maximal faces completely determines the complex,
which may be generated by closing the set of maximal faces under the formation of
subsets. For example, if {1,2} is a maximal face, then let [1,2] be the set of its unempty
subsets, that is, {{1,2},{1},{2}}.
 If K is a complex, then its dimension (written dim K) is -1 if K is empty, and q if K
contains at least one q-simplex but no (q+1)-simplex. Suppose K is a complex, then the
q-dimensional skeleton (henceforth, q-skeleton) of K, written Kq , is the set of all of the p-
simplexes of K such that p≤q. The q-skeleton of a complex is itself a complex. In
particular, the 1-skeleton of a complex consists of its vertices and edges.
 A simplicial mapping is a function from the vertices of one simplicial complex to
to the vertices of another such that the images of the simplexes of the first are simplexes
of the second. Two simplicial complexes are isomorphic if there is a bijective simplicial
mapping from one to the other such that the inverse mapping is also simplicial. Given a
Euclidean n-space of suitably high dimension, the convex hull every set of (k+1)
pointwise independent points is a geometric k-simplex. Every finite abstract simplicial
complex is isomorphic to a geometric simplicial complex, called its geometric
realization.
 Since exotic complexes will have no role in this note, some additional restrictions
on complexes will be imposed. For example, only those complexes that have finitely
many elements will be considered. These complexes are not only of finite dimension but
are also locally finite in the sense that each of their simplexes is a face of at most finitely
many other component simplexes. Suppose that K is a finite simplicial complex, then:

(R1) dim K ≤ 3.
(R2) K is a pure complex if all maximal faces of K are of equal dimension, that is, K is a
q-complex and every simplex s in K is a face of at least one q-simplex in K.
(R3) K is a q-pseudomanifold (with boundary), that is, K is a pure q-complex and every
(q-1)-face of K is the face of at most two distinct q-simplexes of K.

The first two restrictions insure that the complexes under study have no isolated or
dangling points, edges or triangles. A simple example shows that restriction (R3) can be
violated even if both (R1) and (R2) are satisfied. Suppose that K # is the 3-complex
whose maximal faces are 3-simplexes [4,1,2,3], [5,1,2,3], and [6,1,2,3] whose vertices
are distinct. Then K # is both a finite and a pure 3-complex, thereby satisfying the first
two restrictions, but obviously fails to satisfy the third, since the 2-simplex {1,2,3} is a
proper face of each of them. K # is mildly pathological in the sense that it cannot be
realized as a polyhedron in 3-space, which is one of the pathologies which (R3) is
designed to remedy.
 Let K be a 3-pseudomanifold and s be any arbitrarily chosen 2-simplex of K, then
there are only two possible cases: either s is common face of two distinct 3-simplexes or s

566

is a face of exactly one 3-simplex in K. In the first case, the 2-simplex is said to be an
interior face of K. In the second case, the 2-simplex and all of its unempty subsets are
said to be boundary elements of K. Let ∂K be the set of all such boundary elements.
Thus, the restrictions induce a partition on the 2-simplexes of 3-pseudomanifolds. The
restrictions also imply that ∂K is a 2-complex, that is, that ∂K is a finite pure 2-complex,
and that every 1-simplex (edge) in ∂K is a common face of precisely two 2-simplexes,
that is, ∂K is a 2-pseudomanifold without boundary.
 Imagine a walk through a 3-pseudomanifold: start at a vertex, say v, then step
across any of the finitely many edges containing that vertex, say {v,w}, to the companion
vertex w, at which point either stop or repeat the process with w as the new starting point.
Such a walk can be unambiguously encoded by a list of ordered pairs of vertices <v,w>
representing the case in which one started at v, stepped across {v,w}, and then landed on
w. A list of ordered pairs generated in this manner is called an edge path. If K is a 3-
pseudomanifold, then let �(K) be the set of all edge paths through K. This list is contained
in the 1-skeleton of K and has important algebraic properties. For example, every edge
path has an inverse, that is, a path which starts from the original stop vertex and traverses
the list of ordered pairs in the reverse order, stepping across <w,v> whenever the original
stepped across <v,w>, and stops at the original start vertex. A composition operator can
be defined for any pair of edge paths such that the stop vertex of the first is identical the
start vertex of the second. The resulting algebra is called the edge path groupoid (see
[11], 134-139).
 If there is at least one edge path between every pair of vertices of K, then K is said
to be (edge) connected. If a q-pseudomanifold is not connected, then it resolves into
finitely many component q-pseudomanifolds which are connected. Henceforth, all
pseudomanifolds will be assumed to be edge connected.
 Other types of paths, each having an associated definition of connectedness, may
also be defined. For example, there are walks through 3-pseudomanifolds in which one
starts an edge and then steps across any one of the 2-faces containing that edge to another
edge of that 2-face. The associated path structure is a natural extension of the one defined
for edge paths.

More generally, let P be any one of these paths, then P may be represented as a
digraph whose vertices are the (q-1)-faces encountered along the path and whose arrows
are the q-faces across which one steps.

3. Slices, Patches, and Reeb Graphs

 Given the importance of thin cross-sectional polyhedral layers in SFF-style
manufacturing, the next step is to build a combinatorial mechanism to represent them:

A slice of a 3-pseudomanifold K is a 2-pseudomanifold with boundary X such that
(S1) X is a subcomplex of K and ∂X is a subset of ∂K;
(S2) X decomposes K into upper and lower subcomplexes Ku(X) and Kl(X) whose union is
K , whose intersection is X, and whose vertices are disjoint except for the shared vertices
of X; and
(S3) if v is any vertex of Ku(X) and w of Kl(X), every edge path in �(K) from v to w
contains at least one vertex in common with X.

567

If X is a proper subcomplex of ∂K consisting of one or more 2-simplexes and their faces,
then X is a slice of K and in this case Ku(X)=X and Kl(X)=K. All sets X of this kind will
be called boundary slices of K. Boundary slices may be composed of multiple
components, each of which is a connected 2-complex with boundary. These components
will be called (boundary) patches. Thus, every boundary slice resolves into one or more
patches. Since 3-pseudomanifolds are required to be finite, there must be minimal
patches, specifically all boundary 2-pseudomanifolds consisting of a single 2-simplex and
its faces. Let P be any unempty set of boundary slices of K closed under set intersection.
Then every unempty element of P is itself a boundary slice and the pair (P,⊂) is a
digraph whose arrows connect slices with subslices. The pair (P,⊂) will be called a
boundary system for K.
 A sequence of slices (X1,...,Xm) is a cross-sectional slicing (cs-slicing) of K just in
case for all 1≤i<j≤m the slices Xi and Xj are disjoint and Xj is a subset of Kl(Xj), or
equivalently Xi is a subset of Ku(Xj). Keep in mind that cs-slicing is defined
combinatorially and does not require the 3-pseudomanifold to be embedded in any
Euclidean space.
 From the perspective of Morse theory (see [2] [6],[10],[11]), the most interesting
cs-slicings are those which (1) begin and end with minimal patches and which (2) mark
the critical regions of the 3-pseudomanifold under study, that is, regions in which either
the number of components or their topological properties change. An example of a
change of the second kind is the first appearance of a new boundary patch (or void
surrounded by boundary elements) in a patch whose earlier stages had none. Let cs-
slicings of this kind be called Morse slicings. In general, 3-pseudomanifolds admit of
many Morse slicings.
 Given a 3-complex K and a Morse slicing (X1,...,Xm), it is possible to build a
combinatorial variant of a Reeb graph (compare [9]):

Under the assumption that the slicing has already been reduced by eliminating
consecutive pairs of homeomorphic slices, then
(RG1) the vertices of the Reeb graph are components of slices; and
(RG2) the arrows of the Reeb graph link each component of slice Xi to all of the
components of slice Xi+1 which descend from it.

As in the smooth case, Reeb graphs concisely encode important topological properties of
3-pseudomanifolds: the vertices encode the components of slices, and the arrows encode
the 3-pseudomanifolds (like cylindrical solids) which link a component of slice Xi with
all of the components of slice Xi+1 from which descend from it. The 3-pseudomanifolds
paired with Reeb graph arrows may have voids and tunnels. However, Reeb graphs are
less successful in capturing properties affecting the geometric realizations of 3-
pseudomanifolds. For example, there are many ways to embed an encoded Reeb graph
into 3-space which are not geometrically equivalent (isotopic) to one another. This has to
do with the mathematics of knots in 3-space (see [1]).

4. Digraph Automata

568

 In this section, I will propose a class of automata, called digraph automata, which
I can provide a plausible computational framework for a parametric engineering model
for SFF. In particular, I propose that this framework be based upon a functional model of
computation in which lists are used to specify the application of a function (the first, or
head, expression of the list) to its arguments (the rest of the list), and in which the
computational processes are carried out by entities called evaluators (see [3]).
 Though evaluators may differ in their implementational details, they are all
founded on an interpretive mode of operation. The behavior of the evaluator is described
as a potentially infinite loop:

(E1) read expressions from sources of input expressions, called input streams;
(E2) evaluate the expressions in the context of the symbolic environment env (a list of
symbol/value pairs), modifying env as required; and then
(E3) write the expression resulting from the evaluation to an output stream, as required.

The set of expressions includes three main classes. First, there is a collection of atoms,
which includes such familiar elements as characters, strings, integers, and floating-point
numbers. When the evaluator is given any of these expressions to evaluate, it returns the
expression itself. Second, symbols are expressions that have a more complicated role:
when given a symbol, the evaluation procedure tries to match the symbol with the entries
in the symbolic environment env. If a match is found, value corresponding to the symbol
is returned; but if there is no match, then the interpreter returns a message to that effect.
Third, when the evaluator is given a list to evaluate, it assumes that the expression is the
application of a function, which must be the first component of the list, to the interpreted
values of the arguments, which must be the remaining components of the list. The value
obtained is then returned as the value of the original list.
 The organization and control of the symbolic environment is perhaps the single
most important task of the evaluation process. Each evaluator has access to an
environment and can modify it in the course of operation. Moreover, during the
evaluation of an expression a new local environment may be created and then destroyed
after the evaluation is completed. The process is to create a list of symbol/value pairs and
then append that list to the current environment; and when the appended material is no
longer needed, remove it. Symbolic environments may be nested within each other and
access rights for different evaluators can be precisely controlled (see [3], 44-46 for
details). Thus, the value of a given expression is a context-sensitive function of the
inputs and the currently active symbolic environment.

It’s now a short step to digraph automata. The general approach to be taken is to
develop a computational theory based on an agent-oriented model of computation.
Agents are computing elements that have persistent internal states, which are able to
sense and act upon their external environment, and which, if suitably configured, are able
to communicate with one another. Agents which share the same communication
conventions and which are mutually accessible to one another, form a society of agents.
The complexity of the behavior of such a society depends in part upon the complexity of
the conventions governing the semantic interpretation of the messages that agents can
send one another.

569

To handle the combinatorial structures of interest to SFF, it will be sufficient to
establish that the SFF-family of digraphs can be correlated with societies of agents.
 First, every vertex is mapped onto to a pair (Λ, env), where Λ is an evaluator
and env is a mutable symbolic environment. That is, vertices behave as iterative
functions that are presented a time-sequence of inputs, and then in the context of the
current state of env produce within a bounded time a time-sequence of outputs and
possibly a revision of env.

Second, every edge is associated with a transfer function which, given a time-
sequence of values on the start vertex, yield a corresponding time-sequence of values
on the stop vertex by applying the transfer function.

Digraph automata are distributed networks of evaluators that communicate with
each other by transfer functions. Among the expression that they may communicate are
those that cause changes in env.
 It is possible to implement digraph automata as asynchronous networks but this
interesting approach has been only partially implemented in [3]. There are also other
execution styles. For example, since each node is connected to its neighbors in a
precisely defined way, it is not unreasonable to adopt a computational approach in which
the updates happen by a Jacobi sweep. That is, all nodes are evaluated at time t and all
are determined values for time t+1, then the state is updated by swapping in the t+1
values. This style is used by cellular automata (see [12] for details).

5. Concluding Remarks

 Suppose that a digraph automaton has been wired up and that each vertex has
been assigned a reasonable env. How would one use it to generate geometric realizations
of 3-pseudomanifolds?
 First, if K is the 3-pseudomanifold being worked on, then there are huge numbers
of realizations in Euclidean 3-space. But given the focus on a single component, this
reduces to a specific set of requirements, specifications, and constraints which have been
derived from the stratified product network that the component is being designed for. It is
a reasonable assumption that these requirements, specifications, and constraints can be
coded in a symbolic environment
 Second, a boundary system (P,⊂) for K and the set of active patches in ∂K must
be selected and symbol/value pairs for each of them must be added to the symbolic
environment. The associated symbol will be the official way to reference a patch and the
value will be the set of simplexes that are elements of the patch. Patches go proxy for
geometric surfaces in 3-space that are homeomorphic to disks. These patches are the
sources or sinks of edges which connect the part under study with other components of
the product, thereby anchoring requirements, specifications, and constraints inherited
from the product digraph, and thus marking the regions in which co-design will be
required.
 Third, a reasonable sample of Morse slicings must be generated. This will be a
difficult task, but once a sample has been provided, it is exercise to code all of them in
the symbolic environment.
 Fourth, produce a Reeb digraph for every Morse slicing in the sample. This can
be coded directly into our fictional digraph automaton, but with a surprising twist. Every

570

vertex and every edge of the Reeb digraph is assigned its own separate evaluator. Let’s
call them v-evaluator and e-evaluators. The edges of the digraph automaton are
connected in a manner prescribed by the Reeb digraph, that is, every edge in the Reeb
digraph is mapped onto an edge path in the digraph automata which links up the source v-
evaluator, the corresponding e-evaluator, and the sink v-evaluator. The local environment
of each v-evaluator contains a symbol/value pair for the component of Morse slice paired
with corresponding vertex in the Reeb digraph. The local environment of each e-
evaluator has access to the local environment of its companions.
 To obtain geometric realizations for K at this point is a matter of outputting
polygons from v-evaluators, blended cylindrical solids from e-evaluators, and surface
geometries for the active patches – and of course to do all that while satisfying the
product-based constraints!
 To make this agenda technically plausible will require a better understanding of
role of algebraic topology in the optimal design of physical shapes and a working
prototype of digraph automata.

References

[1]Adams, C.C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, W.H.
Freeman, 2001.
[2] Bott, R, “Lectures on Morse Theory, Old and New,” Bulletin (new series) AMS, vol 7 (1982); 331-358.
[3] Boudreaux, J.C. "Concurrency, device abstraction, and real-time processing in AMPLE," in W.A.
Gruver and J.C. Boudreaux (eds.), Intelligent Manufacturing: Programming Environments for CIM,
Springer-Verlag, 1993; 31-91.
[4] Boudreaux, J.C. “Solid Freeform Fabrication and Parametric Engineering,” Solid Freeform
Fabrication Symposium, (SFF ‘02), University of Texas at Austin, August 5-8, 2002; 297-304.
[5] Dey, T.K., H. Edelsbrunner and S. Guha, “Computational Topology,” in B. Chazzle, J.E. Goodman, and
R. Pollak (eds.), Advances in Discrete and Computational Geometry, AMS, 1999.
[6] Forman, R. “A User’s Guide to Discrete Morse Theory,” Seminaire Lotharingien de Combinatoire, 48
(2002), B48c.
[7] Koenderink, I. Solid Shape, MIT Press, Cambridge, MA, 1990.
[8] Kunii, T.L. “Research Issues in Modeling Complex Object Shapes,” IEEE Computer Graphics and
Applications, vol 14(1994); 80-83.
[9] Shinagawa, Y. and T.L. Kunii, “Constructing a Reeb Graph Automatically from Cross Sections,” IEEE
Computer Graphics and Applications, vol 11(1991); 44-51.
[10] Shinagawa, Y., T.L. Kunii Y.L. Kergosien, “Surface Coding Based on Morse Theory,” IEEE
Computer Graphics and Applications, vol 11(1991); 66-78.
[11] Spanier, E.H., Algebraic Topology, Springer-Verlag, 1966.
[12] Toffoli, T. and N. Margolus, Cellular Automata Machines: A new environment for modeling, MIT
Press, 1987.

Contact information:
J.C. Boudreaux, NIST/Advanced Technology Program
Admin A221
Gaithersburg MD 20899
tel (301)975-3560
jack.boudreaux@nist.gov

571

