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SUPERVISOR: Michael Boylan-Kolchin

Among the various outstanding small scale challenges to ΛCDM Cosmology

is the observation of apparently thin, kinematically coherent planes of satellites

around galaxies in the Local Group and beyond. The issue remains remarkably

contentious, with conflicting claims about the significance of observed planes, the

efficacy of dark matter only simulations in exploring this phenomenon, and broad

theoretical disagreement about the occurrence of planes of satellites even between

analyses of the same suites of simulations. In this paper, we build upon existing

analyses planes of satellites around z = 0 Local Group analogs in the ELVIS suite

of dissipationless simulations by making use of the full ELVIS merger trees. These

allow us to track the kinematic coherence and evolution of “present-day” planes

back through cosmic time, and weigh in on their relation to host galaxy properties

and environment. Modeling our plane search on observational claims about M31,

we find that comparable distributions of z = 0 satellites are rare in the ELVIS

simulations, but they do exist. However, their co-rotation ratios are less impressive

than, for example, the apparently strong co-rotation of M31’s plane of satellites, and

their other properties do not hold up under further scrutiny. These planes are rarely

uniquely-defined or kinematically coherent by more robust measures at z = 0, and
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their properties vary significantly across cosmic time, even with our most generous

selection criteria. We interpret these results with the aid of z = 0 analogs from the

FIRE Latte simulations – both with and without the contribution of a stellar disk

component. The Latte sample suggests that a stellar disk potential helps create less

radially concentrated, more statistically significant present-day planes but, as with

our ELVIS DMO sample, these configurations are not particularly kinematically

coherent by our metrics. We therefore conclude that, to the degree that planes

like M31’s exist in the ELVIS simulations, they are chance alignments of satellites

that do not constitute a significant challenge to CDM. Finally, we weigh in on

existing arguments concerning the utility of DMO simulations in plane analyses,

demonstrating that thoughtful subhalo sample selection can help systems from DMO

simulations recreate the kinematic effects of a baryonic contribution in the form of

a stellar disk potential.
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Chapter 1

Introduction

The concordance cosmological model, in which our Universe is dominated by con-

stant dark energy (Λ) and cold dark matter (CDM), has been remarkably successful

at explaining observations of large scale structure (& 10 Mpc). However, challenges

persist on galactic and sub-galactic scales; in particular, the observed abundance,

distribution, and mass-density profiles of low-mass galaxies continue to defy model

predictions (Bullock & Boylan-Kolchin, 2017). The observed spatial distribution of

satellite galaxies around their hosts is perhaps the longest-running conflict in near-

field cosmology, yet it is also arguably the least-studied. In CDM theory, structure

forms via the hierarchical assembly of dark matter haloes, one result of which is the

approximately isotropic distribution of substructure in dark-matter-only (DMO)

simulations. If observed dwarf satellites correspond to some subset of this DM halo

population, we would expect their spatial distribution to reflect that fact. Yet,

1



observational claims of flattened distributions (“planes”) of satellite galaxies span

nearly half a century.

The first evidence of planar structure came from Lynden-Bell (1976), who

observed that the 11 brightest satellites of the Milky Way lie in a thin plane ori-

ented nearly perpendicular to the Galactic disk. Later studies used proper motion

measurements to show that many of these satellites are co-rotating, suggesting that

the plane is rotationally supported (Metz et al., 2008; Pawlowski et al., 2013). A

comparable structure has been observed in the dwarf satellite population of M31

(Koch & Grebel, 2006). Ibata et al. (2013) found that ∼ 50% of its satellites lie

within a vast, thin plane, and radial velocity measurements of these objects suggest

that 13 of the 15 are co-rotating.

There are also claims of satellite planes outside of the Local Group (Chibou-

cas et al., 2009; Bellazzini et al., 2013), most notably around the galaxy Centaurus

A (Cen A). Tully et al. (2015) described evidence for two distinct but nearly parallel

planes in the Cen A Group, arguing that the system’s approximately edge-on ori-

entation left little room for ambiguity regarding satellite distribution. Müller et al.

(2016) combined the Tully et al. (2015) sample with line-of-sight positions of dwarf

galaxies considered to be candidate Cen A group members to argue that, despite

the apparent “dip” in satellite density near the mid-plane of the system, statistical

analysis favors a unimodal satellite distribution – a single plane.

2



One explanation for the seemingly unlikely morphologies of the aforemen-

tioned systems is that filamentary accretion of substructure onto a host galaxy can

produce a flattened distribution of satellites. This mechanism is supported by a

number of simulations (e.g., Libeskind et al., 2005), and used by Buck et al. (2015)

to question the significance of observed planes around the MW and M31 as a chal-

lenge to CDM. Others have proposed that the satellites comprising local planar

structures are, in fact, “tidal dwarf galaxies” (TDGs) – remnants of a single, sig-

nificant galaxy interaction that shaped the Local Group as we know it today (e.g.,

Kroupa, 2012). However, this explanation appears to be in conflict with the observed

mass-metallicity relation for dwarf satellite galaxies (Kirby et al., 2013).1

Indeed, there is ample evidence to suggest that baryonic processes alter the

spatial distribution of satellite galaxies around their host. Numerous hydrodynam-

ical simulations indicate that the presence of a central galaxy tends to lead to the

tidal destruction of nearby substructure (e.g., Wetzel et al., 2016; Garrison-Kimmel

et al., 2017), in some cases leaving a satellite population that is entirely separate

from its DMO counterpart (e.g., D’Onghia et al., 2010). Ahmed et al. (2017) even

argue that baryonic physics is critical to our understanding of the plane problem. In

their simulations, statistically significant planes are only possible via the inclusion of

baryonic processes to deplete the inner ∼20 kpc of the system and shape a distinctly

1For another perspective, see Recchi et al. (2015).
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different, less radially-concentrated subhalo population.

Other criticisms of the “plane problem” are rooted in statistics. Buck et al.

(2016) found that planes with properties comparable to that of M31 are common

in their simulations – chance alignments that may appear co-rotating from a va-

riety of viewing angles – but they are not kinematically coherent by more robust

measures such as the clustering of angular momentum vectors in the plane, and not

persistent in their properties when traced back in time. Cautun et al. (2015) raise

similar critiques by defining a statistic (the plane “prominence”) to quantify the

relative likelihood of a given satellite alignment occurring by chance, and conclude

that ∼ 5% of galactic haloes in their simulations have alignments more prominent

than that of the MW, and ∼ 9% more prominent than the plane of M31. They

therefore argue that accounting for the look-elsewhere effect reduces the claimed

statistical significance of plane detections in the Local Group, such that at least

local observational claims would no longer clash with CDM predictions.
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Chapter 2

Planes of satellites in Local

Group analogs

2.1 Scientific Justification

However compelling one finds the arguments outlined in Chapter 1, recent obser-

vations of the Cen A group have revitalized the plane debate. Müller et al. (2018)

evaluated dwarf galaxy kinematics around Cen A and found a single, thin plane

of satellites with a level of co-rotation found in < 0.5% of analogous systems in

standard cosmological simulations; this, even with the inclusion of baryonic physics

(gas physics, star formation and feedback processes) and conditional statistics to

mitigate the look-elsewhere effect. The authors are gradually expanding their study

to the larger Centaurus group (Cen A, M83, and their satellites), enabling greater

comparison with local observations (Müller et al., 2019).

5



For the time being, though, the Local Group continues to provide the best

and most complete dataset for analysis of small-scale challenges to the cosmolog-

ical concordance model. Within it, many questions persist: Are the products of

high-resolution dissipationless simulations sufficient to model satellite galaxy distri-

butions, or do baryonic processes play a crucial role in plane formation? If so, which

processes in particular? What statistics best describe the significance of one plane

detection relative to another, and to simulation results?

In this work, we approach the above questions from several angles. First,

we build upon existing analyses of planes of satellites around z = 0 Local Group

analogs in the ELVIS suite of dissipationless simulations (Pawlowski et al., 2012;

Pawlowski & McGaugh, 2014) by making use of the full merger trees. These allow

us to track the kinematic coherence and evolution of “present-day” planes across

cosmic time, and weigh in on their relation to host galaxy properties. We separately

assess the spatial and kinematic properties of satellites around z = 0 LG analogs

from the FIRE Latte simulations, with and without baryonic contributions, and

compare them with the ELVIS results to weigh in on the significance of LG plane

detections and the relative value of different types of simulations in assessing them.

In § 2.2, we describe the simulation suites used to generate our sample of

LG analogs, and outline our routine for fitting planes of satellites and studying

the spatial and kinematic evolution of their components. In § 2.4, we describe the
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properties of z = 0 planes found in our DMO sample and, where possible, dissect

those properties as a function of time. In § 2.5, we do the same for the DM+disk

sample at z = 0. Finally, we compare our results to the existing literature in § 2.6,

and discuss their implications for future studies of satellite planes and other small-

scale challenges to the concordance cosmological model.

2.2 Halo Sample

2.2.1 ELVIS haloes

Exploring the Local Volume in Simulations (ELVIS) is a suite of high-resolution

dissipationless simulations modeling the Local Group in a cosmological context

(Garrison-Kimmel et al., 2014). The full ELVIS data release includes merger trees

and z = 0 halo catalogs for 48 simulated Galaxy-sized haloes – 12 Local Group ana-

log halo pairs and 24 mass-matched isolated haloes – each within a high-resolution

volume of 2-5 Mpc and with surrounding substructure resolved down to a peak

mass of Mpeak = 6 × 107M�. Notably, the authors find no significant difference

in the abundance or kinematics of substructure within the virial radius of isolated

hosts compared to their paired counterparts. On larger (Mpc) scales, however, the

paired hosts average nearly twice as many subhaloes, and the kinematics of subhalo

populations are hotter and more complex in the paired environments.

Of the Local Group-analog pairs in the ELVIS suite, Zeus & Hera provide
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the most promising comparison to our own system (M31 and the MW, respectively).

Garrison-Kimmel et al. (2014) note that the virial volumes of the two galaxies in

this system overlap, but the effects of this feature should be negligible because only

one subhalo resides in the overlapping volume.

2.2.2 FIRE Latte haloes

The Latte simulation suite is an extension of the Feedback In Realistic Environments

(FIRE) project focused on ultra-high resolution simulations of MW-like galaxies

(Garrison-Kimmel et al., 2017). In this work, the authors compare simulations of

two separate haloes across each of three scenarios: (1) dark matter-only (DMO)

(2) full baryonic physics, and (3) dark matter with the addition of a stellar disk

potential matching the one from the FIRE simulation. They find that the third

scenario does an excellent job of reproducing the number and spatial distribution of

satellites from the full hydrodynamical simulation at a fraction of the computational

cost. We thus consider only the first and third scenarios in this analysis, using the

z = 0 results to examine the effects of a stellar disk potential on planar distributions

of satellites.

2.2.3 Physical consistency in our samples

The peculiarities of different algorithms for tracking dark matter haloes and assem-

bling their merger histories inevitably results in some number of physically incon-
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sistent objects within a given simulation. The nature of this inconsistency depends

in large part on the relative importance assigned to various halo properties (e.g.,

halo mass, position, circular velocity,) and subjective plausibility of various changes

between simulation timesteps. While dynamically inconsistent objects might only

slightly bias larger population studies, they can significantly impact outcomes on

the scale of our work.

The halo catalogs and main branches presented in Garrison-Kimmel et al.

(2014) were generated using the ROCKSTAR halo finder (Behroozi et al., 2013a) and

Consistent Trees algorithm (Behroozi et al., 2013b). For the Latte haloes from

Garrison-Kimmel et al. (2017), the authors used the AMIGA halo finder (AHF) (Knoll-

mann & Knebe, 2009) and Consistent Trees to get to the z = 0 catalogs used

here.

A preliminary analysis of the time evolution of Mvir (and, to a lesser extent,

Vmax) for ELVIS subhaloes chosen by our plane fitting routine reveals a small num-

ber of objects of questionable physical consistency. While Consistent Trees breaks

“problematic” links in merger trees on the basis of mass, position, and velocity conti-

nuity, it does not explicitly prioritize mass consistency in repairing them. Instead, it

ranks the potential progenitors by their relative proximity in position-velocity phase

space and chooses the nearest (i.e., highest likelihood) within a certain threshold. It

is therefore the case that unphysical changes in Mvir (often corresponding to major
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mergers) may slip through the cracks – particularly when it comes to subhaloes, for

which Mvir and Vmax are not necessarily correlated.

We emphasize the importance of removing such gravitationally inconsistent

objects from precision analyses like this one. Although they are decently rare, their

erratic mass evolution seems to bias at least the initial steps of our fitting routine in

their favor because we begin with the subset of satellites with the largest values for

Mpeak. Even when these objects are not chosen for the “best-fit” plane for a given

sample, their initial inclusion inevitably invites comparison with satellites outside of

observed planes (e.g., the 12 dwarf galaxies which lie beyond Andromeda’s observed

planar structure in Ibata et al. (2013)). We experiment with various thresholds for

what is considered an unphysical change in Mvir between adjacent timesteps and

find that the initial link-breaking threshold of 0.5 dex from Behroozi et al. (2013b)

works nicely. We henceforth refine our ELVIS sample to exclude all haloes with a

factor of five or greater change in virial mass between adjacent timesteps.

2.3 Plane-fitting Routine

2.3.1 Fitting at z = 0

Drawing on observational results from Ibata et al. (2013), we define our “best-fit”

solution as the thinnest plane that can be fit using half of the 30 most massive

subhaloes within the virial radius of each host. We find this solution by taking
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the full catalog of subhaloes in the simulation volume of the host, eliminating all

objects outside of its virial radius (∼300 kpc at z = 0), and selecting the 30 most

massive. With this sample in place, we randomly generate normal vectors from a

uniform spherical distribution, each representing a plane centered on the origin, and

compare the root-mean-square (RMS) distances, or thicknesses, of the 15 subhaloes

closest to this “test” plane to find the thinnest. The RMS radial distance of this

subhalo population, while also calculated and included in our results, is not expressly

minimized or maximized by this routine. We consider 10,000 test plane orientations

per host halo.

We also experiment with the plane definition from Buck et al. (2016), in which

the best-fit solution minimizes the RMS thickness of the plane while maximizing the

number of objects fit. For each of the 10,000 attempted planes in our fit, we test if

more objects can be added to the fit without any increase in the RMS thickness to

four significant figures. Where this proves possible, we use the corresponding plane

as our final fit. Otherwise, the first instance of the thinnest plane is used and the

number of planes of the same thickness to four significant figures is noted.

One subject of particular interest in this analysis is the relative uniqueness

of each best-fit plane. The existence of numerous and diverse thin plane solutions

for a given host clearly undermines any apparent planar symmetry. We examine the

uniqueness of our fit results by plotting the RMS thickness of the thinnest possible
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configuration of 15 subhaloes as a function of normal vector orientation.

Of course, the present configuration of subhaloes matters very little if it is not

kinematically coherent. We must consider the motion of the subhaloes comprising

each best-fit plane: Are they co-rotating, or will the apparent structure dissipate

as the subhaloes slowly scatter? We determine the dominant motion of each host’s

best-fit plane by calculating the perpendicular components of its individual subhalo

orbital poles and generating number counts of objects rotating in each direction.

These counts allow for direct comparison with observational claims of rotationally

supported (i.e., highly co-rotating) planes of satellites in the literature within a more

robust analysis of the three-dimensional kinematics of each plane configuration.

For each host, we also plot the angular separation, in degrees, of individual

subhalo orbital poles from their perpendicular components to demonstrate how much

of the motion of each subhalo is in the plane. The goal in doing so is to provide a

more nuanced understanding of each co-rotation ratio.

Finally, we employ a statistic known as the spherical standard distance (SSD)

to quantify scatter in the motion of the subhaloes comprising the plane. There

are multiple definitions of this quantity and approaches to its application in the

literature, but we follow the convention from Buck et al. (2016). The SSD of each

plane is calculated using the formula below, in which n̂i represents the individual

components of a satellite’s angular momentum, k is the number of satellites in the
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sample, and ~n is the mean angular momentum vector across all k satellites. We

include the full sample comprising each plane in our calculations, as opposed to

choosing subsets of more favorable kinematic coherence.

ssd =

√∑k
i=1[arccos(|〈~n〉 · n̂i|)]2

k
(2.1)

2.3.2 Fitting across cosmic time

Having performed a full kinematic analysis of the z = 0 results from both simu-

lation suites, we use the ELVIS merger trees to examine the evolution of planar

distributions of satellites across cosmic time. Several variations of this analysis are

worthwhile, but we focus on the one which is most pertinent to local observations.

We find the best-fit plane at z = 0 via the same routine previously described, and

track the component subhaloes back in time. At subsequent timesteps, the routine

first fits the n subhaloes from the z = 0 best-fit plane that are still within the virial

radius of the host. Then, as necessary, it finds the 30 − n largest subhaloes within

the virial radius.

Preliminary analysis of the ELVIS merger trees via this expanded routine

highlights two distinct populations of satellites around each host: 1) subhaloes that

are found at significant distances at earlier times but settle within the virial radius

by z = 0, and 2) subhaloes which orbit at least partially within the virial radius at
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earlier times and which lie within it at z = 0. Both are shown in Figure 2.1. For

analysis of the ELVIS merger trees, we henceforth refine our “best-fit” definition to

consider the relative impact of each population on the spatial and kinematic evolu-

tion of the planes in our study. We examine three possibilities for plane composition:

(I) In the most generous “persistent plane” scenario, a given plane of

satellites is comprised entirely of subhaloes whose motions have

been dominated by its gravitational influence since early times.

Thus, such a plane would contain only objects from the second

population described above. Visual inspection of figures such as

Figure 2.1 for each host suggests the following means of minimiz-

ing the contribution of the first (infalling subhalo) population:

Keep only the objects that pass within ∼ 1.5 times virial radius

before z ∼ 0.4. We thus make this condition the defining prop-

erty of Sample I, which will henceforth be the primary focus of

this work.

(II) It is possible that the criteria used to generate Sample I could bias

our results against certain observed z = 0 properties. Accordingly,

we perform a “neutral” version of the analysis with no constraints

on the infall time of the chosen satellites. Thus Sample II is the full

14



Figure 2.1: Radial distance of iZeus subhaloes from their host in preliminary ELVIS
results (later referred to as “Sample II”) as a function of time. This figure illustrates
the bimodality observed in the spatial evolution of subhalo populations comprising
z = 0 best-fit planes across the ELVIS sample. While the relative proportion of
each population and their separation in parameter space differ somewhat between
the paired and isolated host configurations, we find that we can reliably separate
them with selection criteria based on the time of a subhalo’s first infall.
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sample of subhaloes with gravitationally consistent progenitors.

(III) Finally, we consider the inverse of our Sample I criteria for com-

parison with various claims from the literature regarding relevant

underlying physical mechanisms.1 Sample III is comprised primar-

ily of objects experiencing their first infall at later times (z . 0.4).

2.4 DMO Results

2.4.1 ELVIS: Sample I

At z = 0, the RMS thickness of the thinnest plane solution averages 22.9 kpc across

the 48 ELVIS hosts, with a minimum value of 13.7 kpc (for Oates in the paired

configuration), and a maximum of 36.6 kpc (Lincoln in the paired configuration).

The RMS radial extent of the plane is, on average, 183.4 kpc, with a minimum

value of 123.5 kpc (Hera in the paired configuration) and a maximum of 230.5 kpc

(iHamilton). The best-fit plane solutions for the most successful Local Group analog

pair, Zeus and Hera, are shown in Figure 2.2 and Figure 2.3, respectively.

In most cases, these thin plane solutions are far from unique. Visual in-

spection of plots such as Figure 2.4 and Figure 2.5, showing the thickness of the

1These mechanisms are particularly well-summarized in Section 3.2 of Garrison-Kimmel et al.

(2017), along with the choice of Mpeak to differentiate between total subhalo destruction and mass-

loss due to tidal stripping.
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Figure 2.2: (top) Edge-on view and (bottom) face-on view of the z = 0 best-fit plane
solution for the ELVIS Sample I paired version of Zeus (the M31-analog in the Zeus
& Hera system), which has an RMS thickness of 19.2 kpc and RMS radius of 213.3
kpc.
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Figure 2.3: (top) Edge-on view and (bottom) face-on view of the z = 0 best-fit plane
solution for the ELVIS Sample I paired version of Hera (the MW-analog in the Zeus
& Hera system), which has an RMS thickness of 15.9 kpc and RMS radius of 123.5
kpc.
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Figure 2.4: Uniqueness of the z = 0 best-fit plane for the ELVIS Sample I paired
version of Zeus, as indicated by RMS thickness of the thinnest plane of 15 satellites as
a function of test plane orientation. Each combination of values represents a normal
vector with a different orientation in spherical coordinates. This plane solution is
not particularly unique, and indeed no plane solution for this host exceeds an RMS
thickness of ∼75 kpc.
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Figure 2.5: Uniqueness of the z = 0 best-fit plane for the ELVIS Sample I paired
version of Hera. Like its partner, Zeus, this host’s solution is not particularly unique.
However, it is worth noting that no plane solution for this host exceeds an RMS
thickness of ∼45 kpc.
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thinnest plane of 15 satellites around a given host as a function of test plane orien-

tation, reveals that in nearly every case a significant fraction of the parameter space

is occupied by equivalent or comparable solutions. In fact, our algorithm returns

planes of . 70 kpc at any orientation for > 60% of the hosts in our sample, and the

thinnest plane solution never exceeds ∼100 kpc for any host.

The kinematics of these planes vary widely. By co-rotation ratio alone, it

would appear that 12.5% of the hosts have 11 of 15 satellites co-rotating. However,

when we plot the angular separation, in degrees, of individual subhalo orbital poles

from their perpendicular components, we find that most of the satellite motions are

primarily out of the plane for well over half of the host haloes. Furthermore, of

the six most strongly co-rotating planes as judged by perpendicular component of

angular momentum alone, only half have motion which is primarily within the plane

– and even these show quite large scatter in their trajectories. Indeed, the lowest

SSD in our sample is 33.6 degrees, and the average across all hosts 54.9 degrees.

For Sample I, the majority of the best-fit planes exhibit dramatic variations

in the thickness between z = 0 and z = 1, generally hovering between ∼50-100 kpc

and with most of their subhaloes leaving the host’s virial radius before z = 0.5 (see

Figure 2.7 and Figure 2.8. One notable exception is iOrion, which retains at least 11

of its 15 subhaloes at all times out to z = 1 and rarely exceeds an RMS thickness of

∼50 kpc. It is also worth specifying that we see little difference in the thickness
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Figure 2.6: Largest number of “co-rotating” satellites in z = 0 planes across all 48
ELVIS Sample I hosts.
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Figure 2.7: Time evolution of the thickness of the z = 0 best-fit plane for the ELVIS
Sample I paired version of Zeus and number of component subhaloes still within its
virial radius.
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Figure 2.8: Time evolution of the thickness of the z = 0 best-fit plane for the ELVIS
Sample I paired version of Hera and number of component subhaloes still within its
virial radius.
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parameter space occupied by the paired and isolated host configurations across

cosmic time, a finding which appears to be consistent with results from Garrison-

Kimmel et al. (2014) that within the host’s virial radius, there is no significant

difference in the spatial distribution or kinematic properties of substructure between

the paired and isolated halo configurations.

As for the kinematic evolution of these planes, we find that, in most cases,

the average angular momentum vector orientation of the best-fit plane repeatedly

changes sign normal to the plane, meaning that the average co-rotation of the com-

ponent subhaloes reverses. In fact, only 12.5% of hosts in our sample maintain their

average direction of co-rotation out to z = 1, and these still exhibit extremely large

average scatter about the mean angular momentum vector.

Finally, we probe the persistence of the planes in our sample via the initial

infall times of their component subhaloes. The average redshift at which the chosen

subhaloes first enter the host’s virial radius ranges from z ∼ 1.57 for pDouglas to

z ∼ 0.67 for iRemus. More context for these values is provided in Figure 2.9.

2.4.2 ELVIS: Sample II

At z = 0, the RMS plane dimension statistics for the full ELVIS sample (Sample II)

are comparable to Sample I, albeit systematically larger by a few kpc. The RMS

thickness of the thinnest plane solution averages 24.4 kpc across the 48 ELVIS hosts,
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Figure 2.9: RMS plane thickness at z = 0 vs. average redshift of first infall for (left)
the 15 subhaloes selected for the best-fit plane, and (right) the remainder of the 30
largest subhaloes that were not selected by our fitting routine (as ranked by peak
virial mass, Mpeak). These plots serve as a useful check of our Sample I selection
criteria and demonstrate that even alternative subhalo selections within the Sample
I plane fits would tend to produce more persistent planes with marginally smaller
RMS thicknesses at z = 0.
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Figure 2.10: RMS thickness vs. RMS radius of the z = 0 best-fit plane for each host
halo in this study. Observed planes for MW and M31 (from Pawlowski et al. (2015)
and Ibata et al. (2013), respectively) are overplotted for comparison.
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with a minimum value of 14.8 kpc and a maximum of 39.8 kpc. The RMS radial

extent of the plane is, on average, 197.2 kpc, with a minimum value of 140.8 kpc

and a maximum of 242.7 kpc.

By co-rotation ratio alone, the kinematics of the planes in this sample appear

slightly more coherent than those of Sample I. However, SSD calculations reveal that

their component subhalo orbital poles are actually more scattered on average than

those of Sample I.

Following the evolution of Sample II planes back to z = 1, we see more

substantial variations in plane thickness and larger average thickness values at vir-

tually every timestep. Interestingly, the overlapping parameter spaces occupied by

the paired and isolated halo configurations in Sample I break down somewhat for

Sample II. Here, it is paired host haloes that have the largest plane thickness values

at most timesteps – and by ∼20-50 kpc.

2.4.3 ELVIS: Sample III

As expected, the systematically larger plane dimensions of the Sample III population

explain the increases observed in the full population (Sample II). In fact, because

Sample III haloes are far more numerous than Sample I, the Sample II statistics

almost exactly match those of Sample III.

Similarly, the co-rotation ratios of Sample III planes suggest slightly more
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kinematic coherence than Sample I, thus accounting for the larger ratios seen in

the combined Sample II. Interestingly, though, both Samples I and III have lower

average SSDs, a fact which validates our sample selection methods and underscores

the differences between the Sample I and III populations. The higher average SSD

in the full sample, Sample II, clearly indicates that Samples I and III are more

kinematically different than they are alike.

2.4.4 FIRE Latte results at z = 0

For the Latte sample in the DMO scenario (henceforth referred to as M12f-DMO

and M12i-DMO), we find best-fit planes with RMS thicknesses of 12.9 kpc and 15.2

kpc, and corresponding RMS radii of 133.4 kpc and 98.1 kpc, respectively. These

plane solutions are shown in Figure 2.11 and Figure 2.12 below.

As Figure 2.13 and Figure 2.14 demonstrate, neither Latte solution is par-

ticularly unique. While the M12i-DMO solution superficially appears more unique

than that of M12f-DMO, it is worth noting that no solution for the former exceeds

∼37 kpc in thickness. Solutions for M12f-DMO, on the other hand, rarely exceed

∼50 kpc, though most are closer to ∼25 kpc.

By co-rotation ratio alone, both M12f-DMO and M12i-DMO seem to be

minimally kinematically coherent. Only 9 out of the 15 subhaloes in the best-

fit plane for M12f-DMO appear to be rotating in the same direction, while M12i-
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Figure 2.11: (top) Edge-on view and (bottom) face-on view of the z = 0 best-fit
plane for the Latte halo M12f-DMO – with an RMS thickness and radius of 12.9
kpc and 133.4 kpc, respectively.
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Figure 2.12: (top) Edge-on view and (bottom) face-on view of the z = 0 best-fit
plane for the Latte halo M12i-DMO – with an RMS thickness and radius of 15.2
kpc and 98.1 kpc, respectively.

31



Figure 2.13: Uniqueness of the z = 0 best-fit plane for the Latte halo M12f-DMO.
This plane solution is far from unique. In fact, no solution for the host exceeds an
RMS thickness of ∼52 kpc.
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Figure 2.14: Uniqueness of the z = 0 best-fit plane for M12i-DMO. This plane
solution is not particularly unique, and no solution for the host exceeds an RMS
thickness of ∼37 kpc.
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Figure 2.15: Kinematic breakdown of the z = 0 best-fit plane around Latte halo
M12f-DMO. The dominant motion of the subhaloes is within the plane.
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Figure 2.16: Kinematic breakdown of the z = 0 best-fit plane around Latte M12i-
DMO. The dominant motion of the subhaloes is perpendicular to the plane.
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DMO has 10 out of 15 subhaloes co-rotating. Breaking down these kinematics in

Figure 2.15 and Figure 2.16, we see that in fact the dominant motion of M12i-DMO

subhaloes is out of the plane. The motion of M12f-DMO subhaloes, on the other

hand, is primarily within the plane, but just barely.

2.5 DM+disk Results

2.5.1 FIRE Latte results at z = 0

In the DM + stellar disk potential scenario, the Latte haloes (henceforth M12f-

DM+d and M12i-DM+d) have slightly larger best-fit planes. We find RMS thick-

nesses of 18.4 kpc and 25.2 kpc, with corresponding RMS radii of 157.1 kpc and

166.6 kpc respectively (see Figure 2.17 and Figure 2.18) below.

Once again, examination of the thickness as a function of plane orienta-

tion (see Figure 2.19 and Figure 2.20) indicates that neither solution is particularly

unique. More notable is the fact that the range of solution thicknesses increases for

both haloes, with the M12i-DM+d plane getting as thick as ∼50 kpc and M12f-

DM+d up to ∼75 kpc. This change, along with the increase in the thickness of the

best-fit plane, could be explained by the contribution of the stellar disk potential,

which is expected to destroy substructure at smaller radial distances (Garrison-

Kimmel et al., 2017).

These halo solutions are also less strongly co-rotating, with ratios of 8 out
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Figure 2.17: (top) Edge-on view and (bottom) face-on view of the z = 0 best-fit
plane for the Latte halo M12f-DM+d – with an RMS thickness and radius of 25.2
kpc and 166.6 kpc, respectively.
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Figure 2.18: (top) Edge-on view and (bottom) face-on view of the z = 0 best-fit
plane for the Latte halo M12i-DM+d – with an RMS thickness and radius of 18.4
kpc and 157.1 kpc, respectively.
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Figure 2.19: Uniqueness of the z = 0 best-fit plane for M12f-DM+d. This plane
solution is far from unique, and no solution for the host exceeds an RMS thickness
of ∼75 kpc.
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Figure 2.20: Uniqueness of the z = 0 best-fit plane for M12i-DM+d. This plane
solution is not particularly unique, and no solution for the host exceeds an RMS
thickness of ∼50 kpc.
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Figure 2.21: Kinematic breakdown of the z = 0 best-fit plane around Latte halo
M12f-DM+d. The dominant motion of the subhaloes is within the plane.
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Figure 2.22: Kinematic breakdown of the z = 0 best-fit plane around Latte halo
M12i-DM+d. The dominant motion of the subhaloes is perpendicular to the plane.
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of 15 for M12f-DM+d and 9 out of 15 for M12i-DM+d. As shown Figure 2.21

and Figure 2.22 latter’s motion is primarily out of the plane, while the former’s is

primarily within the plane by a small margin.

2.6 Discussion

By refining our “best-fit” plane definition for the initial ELVIS sample to 1) ex-

clude subhaloes that lack gravitationally consistent progenitors and 2) focus on the

population of subhaloes which orbit at least partially within the virial radius even

at early times, we are able to find planes of satellites which are somewhat persis-

tent over time and thus at least minimally kinematically coherent. However, their

RMS thicknesses are, on average, nearly twice as large as those of observed planes

described in the literature (for comparable radii).2 As shown in Figure 2.10, the

“highly statistically significant” M31 satellite plane described in Ibata et al. (2013)

lies just at the edge of the parameter space occupied by our refined ELVIS sam-

ple. Thus, its dimensions alone are not implausible in this study. As illustrated in

Figure 2.6, we are unable to recreate its co-rotation ratio (13 out of 15 plane satel-

lite galaxies co-rotating3), although our larger kinematic analysis supports various

2Furthermore, many of these planes have an abundance of comparable thin-plane solutions at

different orientations.
3But note that we are drawing our best-fit planes of 15 subhaloes from the 30 largest haloes

(by peak virial mass) within the host’s virial radius, compared to the 27 total satellites in Ibata

et al. (2013)
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criticisms regarding the utility of this metric (e.g., Buck et al., 2016).

Because our primary halo sample is drawn from a study designed in part to

understand the relative importance of a large galactic companion in shaping local

substructure, we first compare our plane subhalo properties to Garrison-Kimmel

et al. (2014) results for the larger subhalo populations around paired vs. isolated

hosts. The authors describe broad agreement between the formation times and

concentrations of paired vs. isolated host haloes, as well as the abundance and

kinematics of substructure within the virial radii of these hosts. The similarities

break down in the region beyond the virial radius but within a distance of 1 Mpc

(which they term the “Local Field”). In this region, paired environments have a

much higher abundance of small haloes (even after subtracting subhaloes that lie

within the companion’s virial radius) and nearly twice as many subhaloes overall.

Their kinematics are statistically “hotter and more complex,” with whole subsets of

subhaloes dominated by early interactions (Garrison-Kimmel et al., 2014).

Superficially, it would seem that only the region within a host halo’s virial

radius would be relevant to our study. Indeed, statistical properties of z = 0 planes

are nearly identical between the paired and isolated host configurations. Following

Sample I planes back to z = 1, these similarities arguably persist better than the

plane properties themselves. However, Sample III (and, as a result, Sample II)

properties begin to diverge. Paired hosts dominate the upper ∼ 20 − 50 kpc of
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the thickness parameter space from 0 < z < 1, yet remain comparable to their

isolated counterparts on the lower end. This seems to suggest some non-negligible

contribution at earlier times from the more complex kinematics of the Local Field

environment in paired host configurations.

The ELVIS haloes constitute our largest DMO sample, but they are not the

whole story. As shown in Figure 2.10, the best-fit planes for our DMO Latte haloes

are, at least by their axis ratios, outliers in this study. They are also quite varied in

their properties for such a small sample, although their uniqueness and kinematics

are unremarkable in the larger context of this study. Interestingly, the best-fit planes

for our DM+disk Latte sample, more closely resemble our ELVIS DMO sample in

Figure 2.10.

Comparing our best-fit planes for the FIRE Latte haloes in both the DMO

and DM+disk scenarios to claims from the literature that the formation of statisti-

cally significant planes requires the destruction of satellites by a baryonic component

(in particular, Ahmed et al., 2017), the results are inconclusive. It is certainly true

that the depletion of substructure near the host halo is reflected in the increased

dimensions of the planes in the DM+disk scenario. However, the small halo sample

size – combined with the large scatter in plane properties – makes it difficult to draw

any strong conclusions. We therefore consider claims from the literature about the

importance of the baryonic contribution in creating statistically significant planes at
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least plausible in this study – though Ahmed et al. (2017) use this logic to question

the utility of DMO simulations in plane analyses, arguing that they are ‘misleading.’

This argument is interesting in light of our finding that ELVIS DMO planes

bear a stronger resemblance to the Latte DM+disk planes than their DMO counter-

parts – a comparison which turns out to be strengthened by our Sample I selection

criteria. We look to detailed analyses of the Latte disk contribution for explanation

and find the following: Garrison-Kimmel et al. (2017) state that, while the near-

total destruction of the population of subhaloes that pass within ∼10-20 kpc of host

galaxy seems to imply the preferential destruction of subhaloes “on radial, plunging

orbits with low specific angular momentum,” plots of the cumulative distribution

of subhalo Vtan and Vrad values as a function of pericentric distance reveal that it

is actually the tangential velocity distribution that is sensitive to the presence of

the galactic disk. Subhaloes with lower tangential velocities will be significantly

suppressed within ∼ 100 kpc of a given host when the disk contribution is included.

Our ELVIS Sample I, selected to optimize the persistence of z = 0 planes across

cosmic time, is dominated by long-term, highly-tangential orbits.4 This brings our

ELVIS DMO analysis closer to the Latte DM+disk results and to observational

analyses like Cautun & Frenk (2017). In doing so, it seems to offer some remedy to

the Garrison-Kimmel et al. (2017) finding that Latte DMO simulations over-predict

4This, as opposed to slowly infalling haloes with higher radial velocity components.

46



the number of subhaloes within ∼100 kpc with Vtan < 100 km s−1 by a factor of

ten – as well as criticisms of plane studies using DMO simulations (Ahmed et al.,

2017).

2.7 Conclusion

In this work, we use Local Group analog haloes from the ELVIS and FIRE Latte sim-

ulations to assess observational claims regarding planes of satellite galaxies around

the Milky Way and Andromeda. We present a refined ELVIS subhalo sample de-

signed to maximize plane persistence over time, and find that its z = 0 plane

properties are not entirely inconsistent with observational claims, though their bulk

statistics suggest thicker planes with less coherent kinematics. The effects of our

ELVIS sample selection criteria compare quite favorably to findings from Garrison-

Kimmel et al. (2017) that a stellar disk potential preferentially destroys subhaloes

with low tangential velocities, and we therefore conclude that thoughtful sample

selection could ameliorate similar DMO studies.

Though results for even our most optimistic DMO sample seem to support

earlier claims that observed planes in the literature are merely chance alignments of

satellites with misleading line-of-sight kinematics, we acknowledge that we cannot

fully recreate the robust properties touted in some systems and leave it to future

studies to determine if these differences can be explained by such factors as the

47



plane orientation relative to the host’s galactic disk (or to the vector connecting the

host galaxy and a massive companion), the viewing angle of the system, etc.
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