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ABSTRACT 

Laser path planning is an important step in solid freeform fabrication processes such as 
Stereolithography (SLA).  An important consideration in the laser path planning is to compensate 
the shape of laser beam.  Currently the compensation is divided into two steps, Z-compensation 
and X-Y compensation, and the shape of laser beam is assumed to be uniform for the whole 
platform.  In this research, we present a sampling based non-uniform offsetting method which 
accounts for the different shapes of laser beam at various locations.  We discuss the related steps 
and algorithms.  We demonstrate its effectiveness by using various test cases.  Besides 
improving the accuracy of SLA machine, non-uniform offsetting can also be applied to address 
other accuracy issues caused by thermal and structural variations. 
 
1. INTRODUCTION AND MOTIVATION  

It is well known that the accuracy of a Stereolithography machine varies from the center to 
the borders of a platform.  To achieve better accuracy in various applications, the users are 
suggested to put their parts as close to the center of the platform as possible.  For example, 
although the platform of a Viper HR machine (www.3dsystems.com) is 10.25 x10.25 inch in X 
and Y direction, the platform area which can build part with high accuracy is about 5 x 5 inch.  
These areas are called the “sweet spots” in the platform. 

There are two major reasons for the existing of “sweet spots” in the SLA machines. 
(1) The distance from the mirror to the resin surface varies from the center to the border (L 

verse L’ as shown in Figure 1).  This may affect laser’s focus;  
(2) The laser enters the resin surface in an angle other than vertical to the surface (α as shown 

in Figure 1).  This may change the cured resin shape related to the laser beam. 

 
Figure 1: Illustration of laser beams in the platform of a Stereolithography machine. 
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In the newly developed Viper-Pro machine (www.3dsystems.com), laser focus can be 
dynamically adjusted.  This addresses the first problem, that is, the laser may be out of focus in 
the border areas of the platform.  However, the second problem, changing cured resin shape due 
to different entering angle of a laser beam, has never been addressed in tool path planning before.  
Currently, 3D Systems’ slicing algorithm assumes all the laser beams have a uniform bullet shape 
as shown in Figure 1 (right).  Therefore, the tool path compensation due to the shape of a laser 
beam can be divided into two independent steps [Jacobs 1992][Jacobs 1996]:  

(1) X-Y compensation by half of a laser beam’s size: for example, for a laser beam’s size of 
0.01’’, the sliced 2D contours are offset by 0.005’’.  This is a 2D offsetting problem.  The offset 
contours are the laser’ drawing path for the current layer;  

(2) Z-compensation by a given cure depth: for example, for a cure depth of 0.016’’ and layer 
thickness of 0.004’’, the slicing contours of four consecutive layers are used in a set of Boolean 
operations.  The calculated Boolean results, which compensate the cure depth of a laser beam, 
are the final drawing path of a laser beam.   

However, systematic accuracy errors exist by treating laser beams as a uniform bullet shape 
instead of varying by different entering angles.  As shown in Figure 1 (left), if we assume the 
cured resin shape as a rotated uniform bullet by an entering angle α, the accuracy error can be 
significant.  For example, for a Viper HR machine with a platform size 10 x 10 inch, the 
maximum error is ~0.0024’’ corresponding to a maximum α around 11.3o; while for a Viper Pro 
machine with a platform size 30 x 25 inch, the maximum error can be ~0.0077’’ corresponding 
to a maximum α around 32.6o. 

In this paper, we present a non-uniform offsetting approach to address the changing entering 
angle of a laser beam at different locations.  We address the tool path calculation in order to 
compensate the different laser beam shapes.    

The central contributions of this paper are: 
(1) we systematically define a non-uniform offsetting problem, which is related to but 

different from problems such as uniform offsetting, general Minkowski operation, volume 
sweeping, and dynamic implicit surfaces; 

(2) we propose a general framework for the non-uniform offsetting problem; 
(3) we presented a sampling point based method and related algorithms to calculate the non-

uniform offsetting boundary. 
For an input STL file, the proposed method will generate a valid offset model as the tool path 

for the input model.  Therefore it is easy to integrate our method into the current usage of SLA 
systems.  By considering different laser beam shapes at various locations, the accuracy 
difference related to the platform positions (i.e., within or outside “sweet-spots”) will be 
significantly smaller.  This is especially important for the Viper-Pro system, which has a 
comparably big platform size.  The research is also a step toward the goal of the same accuracy 
within the whole platform.  This is an important requirement for all Rapid Manufacturing 
applications.   

 
2. PROBLEM FORMULATION  

As shown in Figure 2 (left), when α=0, it is an appropriate simplification by treating a laser 
beam shape as a set of 2D circles for multiple layers.  Consequently, the 3D tool path planning 
can be divided into two compensation processes, X-Y compensation and Z-compensation.  
However, when α is comparably big, the simplification is not appropriate any more.  As shown 
in Figure 2 (left), the compensation values at different slicing layers are slightly different.  For 
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example, the laser beam size at layer 1 is the same or close to the case of α=0; while there is a 
noticeable error at layers 3 and 4.    

In addition, compensation values and orientations are different depending on its positions in 
the platform.  As shown in Figure 2 (right), angle α varies at different locations.  Consequently, 
the laser beam shapes constantly change.  Some examples of projected laser beam shapes on XY 
plane are shown in Figure 2 (right).  It’s obvious that the laser beam orientations and sizes to be 
compensated are quite different at various locations. 

          
Figure 2: Illustration of laser beams in the platform of a Stereolithography machine. 

 
In this paper, we use a general non-uniform offsetting problem to formulate the above laser 

shape compensation problem. Offsetting operations are special cases of Minkowski sums and 
differences. Suppose two sets A and B are closed and regular subset of Euclidean space E2 or E3.  
The Minkowski sum of A and B, denoted BA⊕ , is defined as },|{ BbAabaBAC ∈∈+=⊕= , 
where “+” denotes the normal vector addition of two points. The Minkowski difference, denoted 

BA⊗  is BA⊕ .  Usually both A and B are given with fixed geometries [Farouki et al. 2000].  A 
challenge in our problem is that only one shape (A) is fixed while another shape (B) has different 
geometry depending on its relative position within the platform.  Suppose the laser drawing path 
is h(x, y, z).  For a point v(x, y, z) on h(x, y, z), the corresponding laser shape is defined as g(x, y, 
z).  The laser paths and shapes will form a geometry f(x, y, z) which can be defined as: 

),,(),,(),,( zyxgzyxhzyxf ⊕= . 
However, in our tool path planning problem, we need to calculate the laser drawing path h(x, 

y, z) for a given geometry f(x, y, z) to be fabricated. According to the property of Minkowski 
operations [Ghosh 1993], we can define h(x, y, z) as:   

1)),,((),,(),,( −⊕= zyxgzyxfzyxh ,  
where 1)),,(( −zyxg  is the reciprocal set of g(x, y, z).  
Let o denote the origin point of the coordinate system in which a convex polytope B is 

placed.  Clearly }{oB⊕  is equal to B, since set {o} is a singleton point set.  Therefore, 
}{1 oBB =⊕ − .  That is, 1)),,(( −zyxg  is actually the symmetrical set of g(x, y, z) with respect to 

the origin point.  For every point v∈ g(x, y, z), there exist a point v’ ∈ 1)),,(( −zyxg  such that v + 
v’ = 0, where “+” denotes vector addition of two points, and 0 denotes zero vector which is 
equivalent to the origin point.  In addition, if we use “sense” of a normal to specify whether the 
normal is diverging outward from the object or converging inward, the object B-1 will have the 
negative sense.  The above operations are illustrated in Figure 3 with two different shapes of g(x, 

α=0 α>0 
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y, z).  Notice g(x, y, z) and related 1)),,(( −zyxg are symmetrical around origin points o1 and o2 
respectively.   

),,(),,(),,( zyxgzyxhzyxf ⊕=

1)),,((),,(),,( −⊕= zyxgzyxfzyxh

 
Figure 3: Illustration of reciprocal set for Minkowski operations. 

 
The computational process for Minkowski operations may also be facilitated by transforming 

the equations in the following forms: 
b

Bb
ABA

∈
=⊕ U , where “∪” denotes set union operation. 

b
Bb

ABA −
∈−

=⊗ I , where “∩” denotes set intersection operation. 

The non-uniform offsetting is a quite difficult and unique problem.  (1) It is different from 
general offsetting problem studied by [Rossignac and Requicha 1986] [Chen et al. 2006], in 
which a uniform offsetting distance r is given.  Therefore, we can use a ball with radius r to 
represent g(x, y, z) for all v(x, y, z).  Since the shape of g(x, y, z) is fixed as a sphere, the problem 
can be simplified based on some geometric properties related to the ball.  (2) Most literatures 
related to general Minkowski operations also only studied the cases in which both objects A and 
B are fixed.  (3) The non-uniform offsetting problem has similarity to the volume sweeping 
problem which can be defined as: Sweep(A on B) = )(@ bMA

Bb∈
U  [Kim et al. 2003], that is, 

swept volume is the volume generated by sweeping a solid (A) along a smooth trajectory (B).   
Even though some researcher studied changing the shapes of sweeping body along the trajectory, 
the volume sweeping problem is generally simpler since the trajectory B is usually a 3D curve.  
(4) The non-uniform offsetting problem is also different the dynamic implicit surfaces studied in 
level set methods [Osher and Fedkiw, 2003].  For the dynamic implicit surfaces, each point along 
the boundary can constantly change its moving speed and direction.  Therefore, a dynamic 
programming with multiple iterations is generally required. In comparison, in our problem, the 
offsetting shape at each point is fixed and given.  Therefore, we can calculate the offsetting shape 
more quickly with only one iteration.   
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3. CURED RESIN SHAPE FUNCTION  
The shape function g(x, y, z) used in the non-uniform offsetting depends on the irradiance of 

a laser beam and the curing of liquid resin by the laser beam.   
(1) The irradiation profile of an UltraViolet (UV) laser: Commercial SLA systems use a 

stationary UV laser with galvanometer-driven mirrors to scan a cross-section of a layer.  The 
negative effect of the galvo scanner and the (optional) f-T lens on the geometric distortion of the 
scanned image is usually corrected by means of a software-based compensation.  Sager and 
Rosen [2004] presented a dynamic laser beam model, in which, (a) laser beam size and shape 
may change according to location on surface; (b) irradiance profile may change depending on the 
point of focus; (c) laser beam angle with vertical axis changes during scanning; (d) refraction 
changes size, shape and location of cure profile.   

(2) The curing model of liquid resin:  Based on [Jacob 1992], the photopolymer resin obeys 
the Beer-Lambert law of exponential absorption. The laser irradiance distribution is Gaussian. 
That polymerization produces "bullet shaped" cured profiles. The models are only an 
approximation to the real situation and incorporate some assumptions, such as: (a) the flow of 
material due to convection or diffusion in any direction is negligible; (b) there are no light 
scattering, diffraction, refraction or reflection effects; (c) the heat generated is due to heat of 
polymerization only and the heat loss from the surface of the vat is negligible; (d) the evolution 
of the polymerization zone is unaffected by volume shrinkage; and (e) the evolution of 
polymerization is unaffected by oxygen inhibition.  There are other researches who try to model 
the laser beam and how its intensity decreases with depth in a vat of resin. For instance, Brulle et 
al. [1994] used the Beer-Lambert Law to suggest an ideal model of laser-induced 
polymerization.  Narahara and Saito [1992, 1993] suggested a mathematical representation based 
purely on the optical analysis of the laser beam path as it travels through the photosensitive resin, 
calculating the exposure distribution in the resin. Using this model, a solidified profile is 
determined by a threshold level of exposure. 

In this paper, we assume the exact cure profile g(x, y, z) at various locations within a SLA 
platform is known to us.  The function g(x, y, z) can be given either as an analytical model or a 
set of experimental data.  Our non-uniform offsetting method is quite general. The proposed 
framework can take the shape function g(x, y, z) as either an analytical model or discrete 
sampling data.  In this study, we will use a clipped ellipse as the shape function g(x, y, z) to test 
our method.  An ellipse function is a good approximation to the "bullet shaped" cured profiles 
presented in [Jacobs 1992].   

For the galvanometer-driven laser system, we will use a spherical coordinate system (r, α, φ) 
to represent any point v(x, y, z) within the platform. Suppose the center of the platform at the 
curing plane is the origin O.  Therefore, the position of the mirror is at O’(0, 0, L) (refer to 
Figure 1).  For any point v(x, y, z), the main axis of the ellipse is v-O’.  Suppose we define a new 
coordinate system at v based on the axis v-O’. The three new axes are U, V, W, which are 
defined as:   

||),,(),0,0(||
),,(),0,0(

zyxL
zyxLW

−
−

= , 
||)0,0,1(||

)0,0,1(
×
×

=
W
WV , 

|||| WV
WVU

×
×

= ,  

Based on the axes U, V, W, the ellipse at point v can be defined as: 
WcVbUavzyxg )sin()cos()cos()sin()cos(),,( θφθφθ +++= , z ≤ 0. 

where, a = b = radius of laser beam, and c = cure depth of liquid resin. 
Suppose the radius of a laser beam is 0.005’’ and the cure depth is 0.015’’.  Further suppose 

L = 13.7’’.  Some ellipse examples generated for various locations based on the above equations 
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are shown in Figure 4. Notice ellipse is symmetric around it center v.  Therefore it is quite easy 
to calculate 1)),,(( −zyxg  from the sampling points of g(x, y, z).  

                        
 

Figure 4: Cured resin shapes at three different locations. 
 
4. NON-UNIFORM OFFSETTING APPROACH  

For a given geometry f(x, y, z) and a cured resin shape function g(x, y, z), we need to develop 
an efficient and accurate algorithm to calculate the tool path 1)),,((),,(),,( −⊕= zyxgzyxfzyxh .  
Since a continuous object cannot be specified as a collection of finite number of points, such an 
object, in general, is specified by its boundary.  This necessitates the computation of the 
boundary of the products )( BA⊕∂  from the boundaries of the operands ∂A and ∂B.   

The boundary, )( BA⊕∂ , of the Minkowski sum of two sets A and B is a subset of the 
boundary of the Minkowski sum of their boundaries.  That is,   

))()(()( BABA ∂⊕∂∂⊂⊕∂ .   
Therefore, we can calculate ))()(( BA ∂⊕∂∂  first. Based on the generated results, we will then 

use a point-based method to clean up all the boundaries that are inside the offsetting distance and 
therefore do not belong to )( BA⊕∂ .  Finally we will use the remaining boundaries as )( BA⊕∂  
to reconstruct h(x, y, z).  

In the non-uniform offsetting problem, a difficulty is that ∂(g(x, y, z)-1) is constantly changing 
its shape within the platform.  Consequently, it is very difficult, if possible, to calculate an exact 
solution of h(x, y, z).  We will calculate an approximation solution of h(x, y, z) instead.   

Suppose g1(x, y, z) and g2(x, y, z) are the cured resin shape functions at two vertices v1 and v2.  
We know: (1) if v1 = v2, g1 = g2; (2) if the distance ||v1 - v2|| increases, the difference (g1 - g2) also 
increases; (3) for any given tolerance ε, we can find ||v1 - v2|| < α such that (g1 - g2) < ε. 
Therefore, within an error tolerance, we can use g(x, y, z) at vertex v(x, y, z) to approximate all 
the shape functions at a small region around v.  This will significantly simply the computation of 

))()(( BA ∂⊕∂∂  while it will still provide us with certain accuracy (less than an error bound ε). 
Therefore, our non-uniform offsetting method can be described as follows: 
(1) Based on a given error tolerance ε and laser shape function g(x, y, z), we calculate a 

sampling resolution α for f(x, y, z);  
(2) We use the calculated resolution α to resample the given geometry f(x, y, z); 
(3) We calculate ))),,((),,(( 1−∂⊕∂∂ zyxgzyxf  as the candidate offsetting boundary; 

v=(-10, -10, 0) v= (0, 0, 0) v= (2, 5, 0) 
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(4) We use a point-based method to sample the candidate offsetting boundary and deleting 
all the sampling points that are inside the offsetting distance; 

(5) We reconstruct a valid mesh from the remaining points as the offsetting result ),,( zyxh∂ . 
The remainder of this paper has been organized in the following manner.  Section 5 presents 

a uniform resampling approach for any given mesh f(x, y, z) and a sampling resolution α.  
Section 6 describes modeling operations to calculate the candidate offsetting boundary.  Section 
7 presents our approaches for sampling point generation and processing.  The mesh 
reconstruction method is also briefly discussed in the section.  Section 8 presents several 
examples of non-uniform offsetting results.  Finally, Section 9 presents the conclusions and 
future research.   
 
5. UNIFROM RESAMPLING OF INPUT MESHES  

Mesh optimization methods, such as geometric and topological optimization based on vertex 
insertion and deletion, have been studied in lots of meshing literatures.  They can be applied to 
offer improvements to mesh quality, even though the notion of mesh quality itself is an evolving 
concept [Shewchuk, 2002].  In our non-uniform offsetting method, a maximum mesh resolution 
α is given such that any two points v1 and v2 within a triangle satisfy ||v1 - v2|| < α.  At the same 
time, we would like a minimum number of triangles to achieve the above condition, since the 
computational cost in the following steps increases with more triangles in f(x, y, z).  Therefore, 
for an input mesh f(x, y, z), our goal is to find a resampling of the mesh such that we can use the 
minimum number of triangles to satisfy the mesh size control (that is, any two points v1 and v2 
within a triangle satisfy ||v1 - v2|| < α).  

We use a mesh optimization technique based on the concept of centroidal Voronoi 
tessellation [Du et al. 1999].  Given an open set NR⊆Ω , the set k

iiT 1}{ = is a tessellation of Ω if 

0=∩ ji TT  for i≠j and 
_

1 Ω=∪ = i
k
i T .  Given a set of point k

iiv 1}{ = belonging to 
_
Ω , the Voronoi 

region 
^

iV  corresponding to the point vi is defined by Ω∈= xVi {
^

  |  |||||||| ji vxvx −<−   for j = 

1,…, k, j≠i}.  The set k
iiv 1}{ =  is a Voronoi diagram of Ω, and each 

^

iV  is referred to as the Voronoi 
region corresponding to vi. 

Given a region NRV ⊆  and a density function ρ defined in V, the mass centroid v* of V is 

defined by 
∫
∫=

dxy

dxyx
v

V

V

)(

)(
*

ρ

ρ
.  Given points vi, i = 1,…, k, the centroidal voronoi tessellation 

k
iiT 1}{ =  is the one such that the Voronoi points are the same as the mass centroids of Voronoi 

regions (that is, vi = vi
*, i = 1,…, k).   

The centroidal Voronoi tessellation has a good property.  Let energy is defined as 

∑∫
=

−=
k

i
iVii dxvxxvVE

i
1

2||||)(),( ρ .  A necessary condition for E to be minimized is that the Vi 

are the Voronoi regions corresponding to the vi, and the vi are the centroid of the corresponding 
Vi.  The convergence of the centroids was proved for the Euclidean metric under certain 
uniqueness assumptions [Du et al. 1999].  We use uniform density function ρ in this research, 
although we can use density functions such as geometric curvature to generate a mesh that is 
curvature based (that is, more triangles at high curvature areas and less triangles at flat areas).   
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We use Lloyd’s method [Lloyd 1982] to calculate the centroidal Voronoi tessellation.  It is a 
deterministic approach based on iterations of finding centroids and Voronoi regions, which is 
described as follows.   

0. select an initial set of k points k
iiz 1}{ = ; 

1. construct the Voronoi tessellation k
iiV 1}{ =  of Ω associated with the points k

iiz 1}{ = ; 
2. compute the mass centroid of the Voronoi regions found in step 1; these centroids are the 

new set of points . 
3. If this new set of points meets some convergence criterion such as maximum distance is 

less than a given tolerance, terminate; otherwise, return to step 1. 
Lloyd’s method is a fixed point iteration.  We can calculate the number of points k based on 

the region area and the given mesh resolution α.  In addition, the mesh is constrained on the 
geometric boundary.  One approach for the constrained centroidal Voronoi tessellation is to 
project the set of generators whose corresponding Voronoi regions contain a portion of the 
boundary of the domain onto the geometric boundary.  In this research, we predetermine a subset 
of points along the boundary and fixed them at each iteration. 

Therefore, for an input mesh f(x, y, z), we take out each planar region and use Lloyd’s method 
to generate its centroidal Voronoi tessellation.  An example of a 2D region and the resampling 
result is shown in Figure 5.  In the figure, randomly generated initial points and corresponding 
tessellation are shown in the left side; the calculated centroidal Voronoi tessellation for the 
region is shown in the right side.  An example of a 3D model and the resampling result is shown 
in Figure 6. The input mesh is shown in Figure 6 (left) and the uniform resampling mesh is 
shown in Figure 6 (right).  

     
Figure 5: An uniform resampling example of an input 2D region. 

   
Figure 6: An uniform resampling example of an input 3D mesh. 
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6. TOOL PATH COMPENSATION OF VARIABLE SHAPES 
For an input mesh S, )()()( SFSESVS ∪∪=∂ , where V(S), E(S), and F(S) refer 

respectively to the sets of all the vertices, edges and faces of S.  Therefore, we will consider the 
offsetting of V(S), E(S), and F(S) in order to calculate the candidate offsetting boundary. 
(1) Faces F(S):   

For a triangle )(SFT ∈ , suppose a point Tp∈ . The corresponding laser shape function at p 
is g(x, y, z).  Suppose the offset point related to p is q.  In a neighborhood of q, there is a 
parameterization q = q(u, v), and distance ||p - q|| must reach a maximum along the triangle 
normal. Suppose the unit triangle normal at p is N.  For the laser shape function defined as 

WcVbUavzyxg )sin()cos()cos()sin()cos(),,( θφθφθ +++= , we can calculate the point q in 
order for ||p - q|| to reach a maximum value along N based on:  

 0)),,((
=

∂
⋅∂

θ
Nzyxg  and 0)),,((

=
∂

⋅∂
φ

Nzyxg .   

 Therefore, we can calculate q by: 

NV
NU
⋅
⋅

=)tan(φ  

NVbNUa
NcW

⋅+⋅
⋅

=
)cos()sin(

)tan(
φφ

θ  

Notice we have a constraint z ≤ 0 for 
g(x, y, z).  Correspondingly, we have z ≥ 0 
for (g(x, y, z)-1).  Therefore, if the 
calculated q based on the above equations 
has z < 0, we need to find a new θ such 
that zq = 0.  This is the offset point for 
(g(x, y, z)-1) by considering the Z 
constraint.  That is, the compensation component in Z direction is only required for down-facing 
triangles; for up-facing triangles, we only need to consider the compensation component in XY 
direction.  This is illustrated in Figure 7.   

Suppose the three vertices of triangle T are p1, p2, and p3.  Their corresponding offsetting 
points are q1, q2, and q3 respectively.  After resampling the input mesh, we know T is within a 
region with a radius less than α.  Therefore, we can approximate the offset result of T by a linear 
interpolating of q1, q2, and q3. 
(2) Edges E(S):   

Suppose Ep∈  and the normals of two neighboring faces (f1, f2) of p are n1, n2. Suppose 
the offsetting point related to p is q.  Parameterizing the curve in a neighborhood of q as q = q(t) 

and differentiating the ||p - q|| yields 0)( =
∂
∂
⋅−

t
qqp .  Therefore, for the corresponding laser 

shape function g(x, y, z), we can calculate the offsetting point q1 and q2 corresponding to n1 and 
n2.  We then sample a set of normal points between n1 and n2 which are perpendicular to the 
edge.  The calculated offset points form a curve on the surface of g(x, y, z).   
(3) Vertices V(S):   

Suppose Vq∈  and the neighboring edges of q are e1, e2, …, ei. Suppose the offsetting point 
related to p is q.  q lies in a region on the surface of g(x, y, z) which are formed by the offset 
curve of edges e1 ~ ei.   

Figure 7: Different offsetting results for up-facing 
and down-facing triangles.  
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For an input mesh as shown in Figure 6, the generated candidate offsetting boundary for a 
simple sphere is shown in Figure 8.  The offsets of F(S), E(S) and V(S) are illustrated in a close-
up view.  Notice not all the surfaces in the generated offsetting boundaries belong to ),,( zyxh∂ .  
Also the offsetting mesh does not form a valid STL model since there are lots of self-
intersections.  In the next section, we will present a point-based method to clean up the candidate 
offsetting boundaries and to reconstruct a valid offset mesh.  

   
Figure 8: Candidate offsetting boundary for an input mesh. 

 
7.  TOOL PATH PROCESSING BASED ON SAMPLEING POINTS  

The candidate offsetting boundary, ))()(( BA ∂⊕∂∂ , is a super set of the boundary of the 
Minkowski sum )( BA⊕∂ .  These candidate faces may intersect each other; also some of them 
are invalid for )( BA⊕∂ .  As shown in Figure 9, the faces that do not lie ON the boundary of the 
Minkowski sum will lie inside the sum.  Therefore, we can judge if a small region of a face is 
valid based on if it is inside the Minkowski sum.  If it is, we can set it as invalid for )( BA⊕∂ ; 
otherwise, it lies ON the boundary of the Minkowski sum.  However, it is difficult to directly trim 
the offset boundary due to the computational complexity and numeric instability during the 
trimming operation; it is also difficult to directly judge if a triangle lies ON the boundary of the 
Minkowski sum since the candidate offsetting boundary may have self-intersections.  

In this research, we use a point-based 
approach for the classification of grid points 
and sampling points related to the boundary 
of the Minkowski sum [Chen et al. 2006].  We 
first generate a set of sampling points for 
geometric objects Gi of the candidate 
offsetting boundary.  For each sampling point 
vi, we calculate the related point vk in the 
original model which we use to generate vi.  
We construct a “stick” (a line segment vivk) 
and use it to check all the intersecting cells.  
We can label all the offset points as either too 
close to the original solid or possibly 
containing the offset surface.  A 2D 
illustrative example is given in Figure 9.  
Offset surfaces of vertices v1 and v2 intersect 

 
Figure 9: An illustration of our point-based 

offsetting method.  

Offsets 
by E(S) 

Offsets by 
F(S) 

Offsets by 
V(S) 
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at point A.  Surface regions below A are self-intersection.  We use “sticks” to determine all the 
cells along the lines.  In the figure, valid offset points are marked as yellow dots while invalid 
points (too close to v1 and v2) are marked as green dots.  Detail algorithms are presented in [Chen 
et al. 2006].   

After all the invalid offsetting points are deleted, we use a modified Dual Contouring method 
for reconstructing polygons from the remaining offsetting points.  The major difference between 
our approach and the one given in [Ju et al. 2002] is the way of calculating a point in each cell 
for constructing polygons. That is, we calculate a QEF point based on the sampling points of 
geometric objects that intersect a cell; while in [Ju et al. 2002], a QEF point is calculated based 
on the intersection points (position and normal) of 12 cell edges with geometric objects.  

Besides a uniform cell, we also construct an adaptively subdivided octree cell.  By using the 
sub-divided cell, we can use a higher sampling rate to generate boundary points in a volumetric 
cell with small features or high curvatures. The approach for adaptive sampling of boundary cells 
is presented in [Chen 2007].  Based on the sampling points and volumetric cells, we can 
construct the isosurface of the volumetric grids as the offsetting boundary surface.  Unlike the 
marching cube algorithm, Dual Contouring algorithm will not generate cracks for an adaptive 
grid with different grid sizes.   
 

                        
 
 

 
 

Figure 10: A non-uniform offsetting test example. 
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8. RESULTS AND DISCUSSIONS 
We used C++ programming language with Microsoft Visual C++ compiler to implement the 

presented algorithms.  We have also tested our algorithms using a commodity PC with a 3.2 GHz 
Pentium IV processor and 2GB DRAM running Windows XP.   

A test case is shown in Figure 10.  In the test, we place four simple cubes in different 
locations within a platform as shown in Figure 10 (top left).  For a 4’’x4’’x1’’ cube at the top 
right corner, the bottom faces of the generated non-uniform offsetting result are shown in Figure 
10 (top right).  We select some triangles at various locations (shown as red triangles) and check 
their Z height.  The Z values of the triangles vary from 0.0122’’ ~ 0.0132’’.  The distribution of 
the Z values is shown in the figure.  It is quite obvious the offset bottom surface is not flat any 
more due to the different cured resin shapes at different locations.  However, by using them as 
the laser’s tool path, the fabricated part will have a more flat bottom surface.   

The offset results for three 1’’x1’’x1’’ cubes are shown in Figure 10 (bottom).  The offset 
distances for the bottom surfaces, the left and right vertical walls are shown in the figure.  It is 
quite obvious that: (1) the offset distances for different faces of the same part are different; (2) 
the offset distances for the same face of the same part at different locations are different. 
 
9. CONCLUSION AND FUTURE WORK 

It is essential for a solid freeform fabrication (SFF) machine to have the capability of 
building parts with the same accuracy regardless of the building positions within its platform.  
This is required by all Rapid Manufacturing applications.  In order to achieve the goal, we need 
to consider all kinds of systematic errors in the accuracy compensation including the one caused 
by different laser beam shapes.  In the paper, we have presented a new non-uniform offsetting 
method for the tool path planning of SLA systems.  Based on our approach, the generated tool 
path will consider various cured resin shapes within the platform.  The test results on some 
simple geometry demonstrate the effectiveness of our method. The proposed non-uniform 
offsetting method will generate a compensated STL model from an input STL file.  Since both Z-
compensation and XY-compensation have been considered in our calculation, we can skip these 
steps in the slicing software of a SLA system and directly output slicing contours as the laser 
path.   Therefore, our approach is very easy to be adopted in the current usage of SLA systems.  

The non-uniform offsetting problem has much wider applications.  For example, gantry-type 
CMMs suffer from “linear displacement” in which error margins grow as a sensor moves toward 
its center of its workspace along an axis.  However, CMM control software can automate the 
offset compensation for these errors.  As another example, the thermal distribution of a SLS 
platform is quite non-uniform.  We are exploring the application of non-uniform offsetting to 
compensate the non-uniformity of the thermal distribution, and hence, to improve the accuracy 
of SLS system.   
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