
Work-in-Progress: Research Plan for Introducing Problem Solving
Skills through Activities to an Introductory Computer Science

Course

Stephany Coffman-Wolph, Kimberlyn Gray, and Marcia Pool

Department of Computer Science, The University of Texas at Austin
2317 Speedway, Austin, TX, 78712, USA

E-mail: sscw@cs.utexas.edu

Department of Chemical Engineering, West Virginia University Institute of Technology
512 S Kanawha St, Beckley, WV, 25801, USA

E-mail: Kimberlyn.Gray@mail.wvu.edu

Department of Bioengineering, University of Illinois at Urbana Champaign
1304 W. Springfield Avenue, Urbana, IL, 61801, USA

E-mail: mpool@illinois.edu

Abstract
 This work-in-progress research plan paper describes the
process of developing and planning an introductory com-
puter science course utilizing fundamental problem-solving
skills in combination with hands-on visual activities to
explain various Computer Science (CS) concepts. Problem
solving skills, as observed by the authors of the paper, are
challenging for students across multiple STEM disciplines,
but those who develop these skills perform better within
their STEM courses. The authors hypothesize that introduc-
tion of these skills within a first-year computer science
course will benefit a student’s successful completion of a
STEM degree and their future STEM career [1]. The goal
of this research is to integrate fundamental problem-solving
skills into the existing course material and in-class activi-
ties. The research project will use two-sections of the same
course taught during the same semester with approximately
200 students in each section. Nine hands-on activities,
each covering a fundamental programming concept, were
created to explain these concepts to students with a visual,
real-world component. Both sections will cover the same
computer science material, but some activities will be dif-
ferent between the two sections to allow for comparison of
performance. There are nine planned activities: three will
be performed with both sections; three will be performed

only in section 1; and the remaining three will be per-
formed only in section 2. Student performance on exams
and programming assignments for these topics will be same
and compared across both courses. This paper details the
similarities and differences between the two sections of the
course in terms of setup, activities planned, targeted prob-
lem-solving skills, and learning objectives. Additionally,
the paper explains the evaluation plan and assessment tools/
measures to be used (including pre- and post-surveys and
assessment of student performance).

1. Introduction
 Problem solving skills have been shown to be extremely
important for successfully completing a degree in a STEM
field and becoming a successful practitioner [1]. Below, the
authors describe the activities which will be used in the
course to integrate problem-solving into the curriculum
while teaching the programming course concepts required
for an introductory computer science class. The course is
taught with a high-level of active learning as is shown in
the descriptions of activities offered. Using two sections of
the introductory course, two test groups will be created in
which one group will utilize certain real-world, hands-on
activities and the other group will not. Researchers will
compare student performance on exams, assignments, and

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference 
The University of Texas at Austin

April 4-6, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/287648678?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

other course work between the two groups. Additionally, all
students in the course will be surveyed to identify their
views on the in-class activities.

2. Course Learning Objectives
 This introductory computer science course is entitled
“Elements of Programming and Problem
Solving” (CS303e). The students will learn the basics of a
high-level programming language, Python, and problem-
solving techniques for both numerical and scientific prob-
lems. CS303e is part of the “Elements of Computing” cer-
tificate program in the Computer Science Department at
The University of Texas at Austin. The certificate program
courses are designed to allow students from a variety of
majors to develop an understanding of the technologies
they will encounter in life and to gain important computer
skills valuable in the job market. Thus, the student popula-
tion is highly diverse and includes students from the busi-
ness school, the communication school, other STEM fields,
several engineering fields, and computer graphics. Given
CS303e is an introductory course, it assumes no prior tech-
nical or computer science background and has no prerequi-
sites. Learning objectives designed to guide the content
delivered are as follows. By the end of the course students
will be able to (1) define, in their own words, the basics of
computer architecture; (2) explain, to a classmate, the ba-
sics of the special features of the Python language; (3) ex-
plain, to a classmate, the basics of the Python Syntax and
how they are used; (4) explain and use correctly the basics
of programming (i.e., variables, arrays/lists, if statements,
loops, functions, classes, etc.); (5) create Python programs
to solve problems using the correct syntax; and (6) use
Python programming knowledge to create Python programs
to solve numerical and scientific problems. The measure-
ment instruments used to evaluate the learning objectives
will be used as part of the assessment process for this study.

3. Course Design
3.1 Summary of Proposed Study
 Nine, hands-on activities have been developed and used
to aid college students in learning introductory program-
ming concepts [2,3]; these activities were inspired by the
work of “CS Unplugged” [4,5]. These activities have been
used in introductory classes to supplement traditional lec-
ture, with anecdotal positive feedback from students. To
evaluate the effectiveness of these activities, the authors
propose to use different activities in two sections of an
introductory programming course, taken by students minor-
ing in computer science or receiving a certificate in com-
puter science, and compare the student performance on
these topics.
 Both sections (known as A and B) of the course are
offered as MWF, fifty-minute sessions in the afternoon

(1:00 pm and 3:00 pm) and will share the same instructor,
four graduate teaching assistants (TAs), and two under-
graduate proctors. In other words, the teaching staff will be
consistent across both sections and grading of student work
will be consistent between sections as well (e.g. question 2
on variables will be graded by the same person on all ex-
ams for both sections). Students enroll in sections by their
preference or as permitted by their schedule, and the com-
position of each class by student background and major
will be examined at the end of the course. Course atten-
dance will also be recorded, as Friday afternoon sessions
have a history of higher number of absences.
 Of the nine total activities, three will be used in both
sections (A and B), three will be used in only section A, and
three will be used in only in section B. Lecture material for
these topics will be the same in both sections of the class.
An overview of the activities and placement of the activity
in the course schedule is shown in Table 1. Both sections
will use the “Understanding Variables and Arrays with
Paper Bags” activity in the first two weeks of the course so
that students in each section can become comfortable with
the idea of a real-world activity to explain a programming
concept. Then section A will have activities that focus on
arrays, try/catch statements, and sorting algorithms while
section B activities will focus on if statements, loops, and
classes. Both groups will have the same activity on for and
while loops in week four as well as a recursion activity in
week thirteen.
 For each activity, students will have one or two assign-
ments, one low stakes quiz, and one exam to measure their
skill development. Exam one will cover four activities: two
of the shared activities and one separate activity for each
section. Exam two will cover three activities: one for sec-
tion A and two for section B. Exam three will cover two
activities: one shared activity and one for section A. Table 1
illustrates the specific activities and the section(s) that the
activity will be performed for each exam. The course con-
tent and topics covered for both sections will be the same.
The only difference will be which activities are performed
in each section (Table 1). Additionally, the exam topics and
types of questions will be the same for both sections with
multiple versions of the exam distributed in both sections.
3.2 Selection of Activities for Each Course Section
 As stated above nine total activities will be used during
the course with each section completing six of these activi-
ties (three overlapping (both sections A and B) and three
different (three unique to section A and three unique to
section B)). Each of the activities attempts to use real-world
problems or examples students are familiar with to help
illustrate and explain the computer programming concept.
Table 1 provides a summary of each activity, the activity
type, the skills covered by each activity, the section(s) in
which the activity will be performed, the week during the
semester, and the exam that will cover the topic.
 The activities completed in both sections of the intro-
ductory programming course were selected for a particular

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference 
The University of Texas at Austin

April 4-6, 2018

reason. The first joint activity, which is performed in the
second week, sets the tone of the course and allows stu-
dents to become familiar with the active learning concept.
The second joint activity “Loops with Music” was selected
because loops and conditional statements are important
fundamental programming concepts. The third joint activi-
ty, recursion, was selected because the authors’ experiences
teaching have found this to be an extremely difficult topic
for students to grasp. The remaining activities were divided
between section A and B in order to divide skills and spread
the activities throughout the semester.
3.2 Summary of Activity Types
 The materials for each activity are low/minimal cost and
use items that are readily available or easily attainable.
There are three types of activities: Demo, Groups in Lec-
ture, and Hybrid (demo and groups in lecture). All three
types incorporate elements from active learning. The demos
tend to need fewer supplies for the entire classroom, and
most of the “action” happens in the front of the lecture style
classroom. During the demos, students will attempt to do
related problems/questions individually and then work with
the students near them in pairs or in small groups. With the
groups in lecture activities, students will be placed into
groups for the duration of the activity with the instructor,
TAs, and proctors visiting individual groups throughout the
activity to provide guidance, feedback, and at times to just
check-in. In other words, the “action” happens completely
within the group (and each group will need a set of sup-
plies). With the hybrid model, the majority of the “action”
still happens at the front of the room (as with the demo),
but the students will be placed in groups (like a group in
lecture activity) to complete related tasks while receiving
feedback from the instructor, TAs, and proctors visiting
groups throughout the activity.
 Of the nine activities, five are demos, three are groups in
lecture, and one is a hybrid. The demo activities are the
easiest to do within large lecture hall style classrooms. The
activities that require groups requires more pre-planning
and resources. (This pre-planning includes deciding how to
divide the students, where they will sit, how many of the
TAs or proctors can attend, prepackaging the supplies for
each group, etc.).

 4. Summary

 It has been the authors’ observation that students often
have difficulty understanding fundamental programming
concepts because they cannot relate the new information to
their experiences. These activities were designed to help
bridge the gap and, hopefully, help the students become
better programmers. Up to this point, the authors have been
working on anecdotal evidence only. In order to determine
if the activities are having the desired outcome, the experi-
ment outlined within this paper was designed to allow for
formal assessment. The authors will use the outcomes of
this experiment to alter the already designed activities or
create new activities.

References
[1] J. Wai, D. Lubinski, and C.P. Benbow, "Spatial Ability
for STEM Domains: Aligning Over 50 Years of Cumulative
Psychological Knowledge Solidifies Its Importance," Jour-
nal of Educational Psychology, vol. 101, no. 4, pp.
817-835, November 2009.

[2] Coffman-Wolph, S., Innovative Activities to Teach
Computer Science Concepts Inside the Classroom and at
Outreach Events Paper presented at 2016 ASEE Annual
Conference & Exposition, New Orleans, Louisiana.
10.18260/p.25715, June 2016.

[3] Coffman-Wolph, S., Fun, Innovative Computer Science
Activities for the Classroom and Outreach Paper presented
at 2017 ASEE Annual Conference & Exposition, Colum-
bus, Ohio. https://peer.asee.org/28394, June 2017.

[4] T. Bell, et al., “Computer Science Unplugged: School
Students Doing Real Computing Without Computers,”
Computing and Information Technology Research and
Education, New Zealand (CITRENZ), vol. 13, no. 1, pp.
20-29, 2009.

[5] T. Bell, et al., CS Unplugged: Computer Science with-
out a Computer. www.csunplugged.org., 2015.

Table 1: 
Name Type Summary Skills Class

Understanding
Variables and
Arrays with
Paper Bags [2]

Demo The instructor demonstrates the
various types and sizes of variables
with labeled bags or bins.
Additionally, demonstrate that only
one value can be stored in any bag/
bin at a time.

Variables
Arrays
Syntax

Both
(Week 2)
Exam 1

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference 
The University of Texas at Austin

April 4-6, 2018

https://peer.asee.org/28394

Arrays with
Household
Goods [2]

Demo Students determine what the various
objects have in common and, thus,
learn the concepts of arrays. Time is
spent discussing individual elements
within the array.

Various objects that have
an “array-like” structure

A
(Week 2)
Exam 1

Branching and
Looping
Statements with
Starburst
Candies [2]

Groups
in lecture

Students practice branching to
determine who is the team leader of
the group for the day. In the second
part of the activity, students pass the
paper of candies until they find a red
Starburst (i.e., while loop).

If Statements
While Loops

B
(Week 3)
Exam 1

Loops with
Music [3]

Demo The entire class participates by
doing certain actions during various
conditions (i.e., loop).

While loops
For Loops
Conditional Statements

Both
(Week 4)
Exam 1

Monsters Hate
Chocolate:
Learning Try/
Catch Blocks
[2]

Groups
in
Lecture

Each group tries to “feed” the
monster (i.e., the paper sack). The
statements that contain an
exception (i.e., the chocolate
candies) do not fit. The statements
that are valid code match the
Starburst candies and fit.

Try/Catch Statements
Exceptions

A
(Week 7)
Exam 2

General Class
Structure with
Bags, Boxes,
and a Bin [2]

Demo The large storage bin represents a
class in a computer language.
Develop the contents of the class by
adding bags/bins (variables) and
boxes (functions).

Classes
Functions
Class Variables

B
(Week 8)
Exam 2

Dr. Doolittle’s
Vet Office:
Learning
Classes with
Stuffed Animals
[2]

Demo Using a variety of stuffed animals,
students practice designing a class
(variables and functions) for animals
in a vet program.

Classes
Functions and Variables
Class Design

B
(Week 9)
Exam 2

Sorting
Algorithms with
Paper Bags [3,
4, 5]

Hybrid
(demo
and
groups
in
lecture)

Students develop their own
algorithms for sorting a series of
paper bags with numbers on each.
The bags are then used to
demonstrate the basic sort
algorithms.

Bubble, Selection, and
Insertion Sort
Algorithm Development

A
(Week 11)
Exam 3

Recursion
Introduction:
Simple Tower of
Hanoi with
Colored Paper
[3]

Groups
activity

Students develop the algorithm for
the Tower of Hanoi using 3, 4, and 5
disks to work out the similarities in
movement.

Recursion
Algorithm Development

Both
(Week 13)
Exam 3

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference 
The University of Texas at Austin

April 4-6, 2018

