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ABSTRACT 

 

HYPERPOLARIZED CARBON-13 MAGNETIC RESONANCE IMAGING AS A TOOL 
FOR ASSESSING LUNG TRANSPLANTATION OUTCOMES 

 

Sarmad Siddiqui 

 

Rahim Rizi 

 

Lung transplantation is the established treatment for patients with chronic, end-stage lung 

diseases such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary 

fibrosis (IPF) and cystic fibrosis (CF). However, its utility remains limited by the chronic 

shortage of donor lungs, limited lung preservation strategies and post-transplant 

complications leading to graft failure. Although efforts have been made to expand the 

limited pool of viable donor lungs via novel preservation strategies such as ex vivo lung 

perfusion (EVLP), our limited understanding of the mechanism and progression of donor 

lung injury continues to inhibit our ability to fully exploit these advances to improve lung 

transplant outcomes. Furthermore, the clinical standard for post-transplant assessment is 

limited to whole lung measurement such as pulmonary functional tests (PFTs) and 

structural imaging via radiography or HRCT, both of which lack the necessary sensitivity 

to detect lung rejection early. Given these limitations of currently available pre- and post-

transplant lung assessment tools, a novel metabolic biomarker may provide higher 

sensitivity for determining the viability of donated lungs, as well as for assessing the onset 

of rejection before permanent structural changes in the lungs become apparent. We 

proposed that hyperpolarized (HP) [1-13C]pyruvate magnetic resonance imaging (MRI)—

which provides real-time metabolic assessment of tissue based on the conversion of [1-
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13C] pyruvate to [1-13C]lactate via glycolysis, or to 13C bicarbonate via oxidative 

phosphorylation—may be an effective tool for assessing the health of donated lungs and 

may also serve as an early biomarker for detecting pulmonary graft dysfunction (PGD)-

associated inflammation or acute lung rejection. In a rat model, we demonstrated the 

feasibility of using HP [1-13C]pyruvate nuclear magnetic resonance (NMR) spectroscopy 

to assess the viability of ex vivo perfused lungs. We further showed that our technique can 

be used to measure the improved viability of those lungs after treatment with ascorbic 

acid. Finally, translating our previously developed technique to in vivo HP [1-13C]pyruvate 

imaging of an inflamed rat lung, we not only demonstrated its utility for detecting lung 

transplantation rejection, but found that the HP lactate-to-pyruvate ratio is a better 

predictor of acute lung rejection in a rat model than computed tomography. 
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Chapter 1: The Current State of Lung Transplantation 

 

Since the first successful long-term lung transplantation was carried out in 19831, it has 

become the established treatment for patients with end-stage chronic lung disease. 

Approximately 85% of worldwide lung transplantations are for performed for patients with 

end-stage chronic obstructive pulmonary disease (COPD), pulmonary arterial 

hypertension (PAH), cystic fibrosis (CF) and interstitial lung diseases (ILD). Over the past 

three decades, numerous improvements in both pre- and post-operative care2,3 have 

dramatically increased survival rates across all diagnoses for which transplantation is a 

viable option, ensuring significantly improved lung function and overall quality of life for 

the majority of recipients4. This improvement is reflected by the increasing number of 

transplants performed ever year: according to the most recently data published in 2016, 

there has been a 40% increase in total transplants over the past ten years5.  

 

Unfortunately, the long-term success rate of lung transplantation remains significantly 

lower than that of other solid organs. For example, post-transplant survival is 80% at 1 

year and 50% at 5.8 years for the lung5, compared to 97.3% and 90.4% survival rates at 

1 year for kidney and liver, the two most commonly transplanted organs—both of which 

have median survivals of approximately 10 years6,7. 

 

The comparatively poor success rate of lung transplantation has two main causes. First, 

the lung faces the highest oxidative stress of any organ due to the fact that it has two 

separate blood supplies and is directly exposed to air8. Secondly, a majority of transplant 

lungs are sourced after donor brain death (DBD), which is associated with disrupted 

endocrine function as well as an increased level of pro-inflammatory factors that include 
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cytokines interleukin-8 (IL-8) and interleukin-6 (IL-6) and human leukocyte antigen-DR 

(HLA-DR), all of which have been shown to be associated with the development of primary 

graft dysfunction (PGD), the leading source of transplant failure in the first year post-

surgery8,910. The DBD-associated inflammatory milieu has also been shown to play a role 

in the development of both acute and chronic rejection11. As such, the best way to mitigate 

these issues is to optimize methods of lung preservation before transplantation, and 

monitor lungs for early detection of lung failure or rejection post-transplantation.  

 

1.1. Modes of Transplant Failure 

1.1.1. Primary Graft Dysfunction (PGD) 

Primary graft dysfunction (PGD) is a is a syndrome characterized by hypoxemia and 

diffuse radiographic opacities without any other differential diagnoses in the first 24 to 72 

hours after lung transplantation9,12. The syndrome has also been characterized as early 

graft dysfunction and is most likely due to ischemia-reperfusion injury8,13. PGD is 

diagnosed on a severity grade from 0 to 3, based on the ratio of arterial fraction of oxygen 

(PaO2)/fraction inspired oxygen (FiO2), as listed in Table 1.1. 

 

Grade PaO2/FiO2 Radiographic infiltrates 
consistent with edema 

0 > 300 Absent 

1 > 300 Present 

2 200-300 Present 

3 < 200 Present 
Table 1.1: Criteria for grading primary graft dysfunction severity. 

 
Up to 30% of transplant recipients are diagnosed with PGD and it is the leading cause of 

death within the first 30 days after transplantation9. The pathophysiology of PGD depends 
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on a number of factors during the retrieval and transplantation process, the most important 

of which may the conditioning and treatment of lungs acquired after DBD. As such, a 

number of donor management strategies have been applied to minimize hemodynamic or 

inflammatory injury to DBD lungs. For example, treatment with the a-adrenergic 

antagonist phentolamine prevents DBD-induced systemic hypertension, which can cause 

increased capillary permeability leading to neurogenic pulmonary edema (NPE), thereby 

improving oxygenation and lowering airway pressure compared to untreated DBD lungs14. 

Treatment with a vasopressor can block injuries to the donor lung resulting from 

neurogenic hypotension, such as metabolic acidosis15–17. Additionally, glucocorticoids can 

be used to improve oxygenation and ameliorate inflammatory response by preventing the 

cortisol deficiency which often follows DBD18–20. Pre-treatment with antioxidants, such as 

Vitamin C or ascorbic acid, has been shown to lower expression of pro-inflammatory 

cytokines and protect against oxidative stress and microvascular dysfunction21–23. Less 

interventional tactics have also proven effective: several studies suggest that delayed 

organ retrieval partially reverses DBD-induced hemodynamic injury, improving lung 

transplantation outcomes by allowing for a partial reversal of early hemodynamic injury 

subsequent to DBD14,24,25.  

 

Finally, ex-vivo lung perfusion (EVLP) has recently emerged as a valuable tool for both 

evaluating and reconditioning lungs prior to transplant26,27. In addition to enabling the 

reassessment of lungs initially deemed unsuitable, EVLP has demonstrated the potential 

to improve graft viability by enabling alveolar recruitment maneuvers, helping to clear 

bronchial secretions, removing both inflammatory cells and clots in pulmonary circulation, 

and reducing the microbial load in donor lungs28,29. However, because EVLP itself carries 
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a number of risks—including increased vascular stress over time, metabolic alteration of 

the perfused organ, and inflammatory upregulation—tailoring the combination of perfusion 

time, perfusate flow, and perfusate formula to the needs of each individual organ is critical 

to optimizing its successful use26,30,31. Unfortunately, non-invasive EVLP evaluation is 

typically limited to measuring the PaO2/FiO2 to determine the status of the lungs32,33. An 

imaging modality that can provide more direct assessment of the lung’s metabolic state 

and viability would be a boon to improving these successful lung transplant outcomes. 

 

1.1.2. Acute and Chronic Lung Rejection 

Graft rejection is mediated by the adaptive immune system. Specifically, the recognition 

of allogeneic major histocompatibility complex (MHC) by the host T cells activates the 

adaptive immune system, stimulating cytotoxic T cells (CTL), as well as the humoral (via 

stimulated B cells) and complement response34,35. The mainstay of preventing lung 

rejection is the use of immunosuppressants that minimize the T-cell response post-

transplantation. Immediately after transplantation, potent induction immunosuppressive 

induction agents, such as basiliximab (IL-2 inhibitor) or alemtuzumab (CD52 antibody), 

are administrated to deplete or inhibit T-cell activation and proliferation36–38. However, as 

the use of these drugs severely depresses the immune system, their use has to be 

balanced by the increased risks of infections. As the highest immune reactivity towards 

the graft is within the first three to six months, after that period the immune suppression is 

maintained by low doses of drugs with non-overlapping toxicities. Typically, a combination 

of a glucocorticoid, calcineurin inhibitor, and a nucleotide blocking agent are prescribed 

based on the recipient’s tolerance profile37,38. 
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If no acute rejection occurs within the first few days to months, lungs can undergo rejection 

via chronic lung allograft dysfunction (CLAD). CLAD presents as one of two phenotypes, 

bronchiolitis obliterans syndrome (BOS) or restrictive allograft syndrome (RAS)11. BOS is 

the predominant presentation for CLAD and manifests as an obstructive lung disease with 

fibrosis of the small airways. RAS, on the other hand, is characterized by restrictive 

pulmonary function. Although the etiology of CLAD is not well defined, its risk factors 

include PGD, acute rejection, infection and gastroesophageal reflux (GER)39. Despite the 

multitude of factors that could lead to CLAD, monitoring is based pulmonary function 

decline measured via pulmonary function testing (PFT) followed by chest radiography or 

high resolution computed tomography (HRCT) to confirm any observed decline. 

 

1.2. Limitations of Current Monitoring Techniques 

Typically, patients are monitored post-transplantation with routine spirometry and chest 

radiographs obtained at regular intervals. Postoperative lung function is considered to be 

stabilized when the variation in the forced expiratory volume in one second (FEV1) and 

the forced vital capacity (FVC) has a less than five percent variance between two 

measurements taken at least one week apart40. A decline of greater than 10% in 

spirometry values within two days can be a sign of either acute lung rejection or infection40–

42 so follow-up for serology testing, transbronchial biopsy or radiography is needed to rule 

out differential diagnoses43. Furthermore, the sensitivity of spirometry is about 60 percent 

in detecting lung rejection, so stable pulmonary function as measured doesn’t necessarily 

exclude acute lung rejection44. 

 

The diagnosis of chronic lung rejection is also based on PFT measurements. Early stage 

BOS is defined as an FEV1 decline of more than 20% from baseline and/or forced 
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expiratory flow between 25 and 75 percent (FEF25-75) decline of more than 25% from 

baseline39 in two consecutive measurements made at least three weeks apart. It is 

recommended to acquire chest radiographs or high-resolution computed tomography 

(HRCT) if such a decline is observed. However, chest radiographs have a low sensitivity 

for detecting early stages of BOS, although hyperinflation and bronchiectasis can be 

observed in more advanced disease45,46. Although there is no consensus definition of 

RAS, patients with a FEV1 decline of greater than 20% and a forced vital capacity (FVC) 

decline of greater than 20% or a total lung capacity (TLC) decline of greater than 10% are 

given the diagnosis of the restrictive phenotype11,47,48. CT findings are recommended to 

be followed by transbronchial biopsies to confirm a specific diagnosis49. 

 

Given the limitations of the currently available tools for both pre-transplant and post-

transplant lung assessment, perhaps a metabolic biomarker may provide higher sensitivity 

than conventional tools for determining the viability of donated lungs, as well as assessing 

the onset of rejection before permanent structural changes in the lungs become apparent.  
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Chapter 2: An Introduction to Hyperpolarized Carbon-13 Magnetic Resonance 

Imaging 

 

Abstract 

Until recently, molecular imaging using magnetic resonance (MR) has been limited by the 

modality’s low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized 

(HP) MR overcomes this limitation by substantially enhancing the signal of certain 

biologically important probes through a process known as external nuclear polarization, 

enabling real-time assessment of tissue function and metabolism. The metabolic 

information obtained by HP MR imaging holds significant promise in the clinic, where it 

could play a critical role in disease diagnosis and therapeutic monitoring. This chapter will 

provide a comprehensive overview of the developments made in the field of 

hyperpolarized MR, including advancements in polarization techniques and delivery, 

probe development, pulse sequence optimization, characterization of healthy and 

diseased tissues, and the steps made towards clinical translation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been adapted from Siddiqui et al., ‘The use of hyperpolarized carbon-13 magnetic 
resonance for molecular imaging’ published in Advanced Drug Delivery Reviews, Vol. 113:3-23.  
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2.1. Introduction 

Molecular imaging refers to a gamut of imaging modalities that—as succinctly defined by 

the Radiological Society of North America (RSNA)—“directly or indirectly monitor or record 

the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, 

diagnostic, or therapeutic applications”1. Numerous modalities fit this description, most 

prominently positron emission tomography (PET) and single photon emission computed 

tomography (SPECT), both of which are commonly used in the clinic for diagnosing 

various disorders and monitoring therapeutic response2. More recently, fluorescence and 

bioluminescence optical imaging have allowed high-sensitivity molecular imaging in pre-

clinical research, while computed tomography (CT)—traditionally considered a structural 

imaging tool—is now being used as a molecular imaging modality with the advent of cell- 

and tissue-specific nanoparticles and as a combined modality with PET or SPECT3,4.  

 

Clinical use of magnetic resonance imaging (MRI) has largely been limited to structural 

assessment. However, proton (1H), sodium (23Na), phosphorus (31P), and carbon (13C) 

MRI/ nuclear magnetic resonance (NMR) are extensively used as molecular imaging tools 

in pre-clinical studies in animals and cells. In these studies, the modality’s foremost 

limitation—its low sensitivity—can be overcome by the use of longer scan times and signal 

averaging5–7. As such, molecular MRI/NMR using conventional thermally polarized nuclei 

is limited to probing quasi-steady-state metabolism. The advent of hyperpolarized (HP) 

MRI/NMR overcomes this limitation by substantially enhancing the signal of certain 

biologically important probes through a process known as external nuclear polarization, 

enabling real-time molecular imaging with unprecedented temporal resolution. The 

information obtained by HP MR has significant promise in the clinic, where imaging-
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derived metabolomics could play a critical role in disease diagnosis and therapeutic 

monitoring.  

 

Hyperpolarized MR is a burgeoning field in which investigators continue to make rapid 

advancements in an array of areas, which include polarization techniques and delivery, 

probe development, pulse sequence optimization, characterization of healthy and 

diseased tissues, and clinical translation. In light of the rapidly changing and multifarious 

nature of this technology, this review aims to provide a comprehensive overview of the 

current state of molecular imaging using HP MR, the developments that have led to this 

point, and the central challenges that hyperpolarized technology faces as it moves towards 

making a clinical impact.  

 

2.1.1. Molecular Imaging using Non-MR Modalities  

Several well-established molecular imaging techniques are actively used in basic and 

clinical research. This section describes applications of each technology, their advantages 

and limitations, and how they differ from HP MRI/NMR.  

 

2.1.2. PET and SPECT 

Positron emission tomography (PET) and single photon emission computed tomography 

(SPECT) use radioactively labeled metabolic tracers (e.g., 18F-FDG,) to probe the cellular 

uptake of their analogous biologically relevant molecules (e.g., glucose). Both techniques 

are widely used in clinical2,8,9 and pre-clinical10–13 scenarios for a broad range of 

applications including, but not limited to, the diagnosis, staging, and monitoring of a variety 

of cancers14–18, drug development—e.g., probing the bio-distribution of new 

pharmaceuticals19— and neuroimaging20.  
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Although PET and SPECT provide high sensitivity for detection, they suffer from poor 

spatial resolution4,21. As a result CT or MRI are used for accurate reconstruction and 

anatomical localization of tracers22. Another major shortcoming of both modalities is that 

they are limited to revealing abnormalities in the uptake or retention of the tracers; they 

are unable to reveal changes in downstream metabolites that may be crucial to the 

diagnosis and staging of diseases.  

 

On the other hand, hyperpolarized MRI—which probes analogous pathways to PET—

highlights alterations in downstream metabolites using their unique 13C NMR resonance 

frequencies, thus providing non-invasive interrogation of the size of metabolite pools and 

the flux through their corresponding pathways23. However, unlike PET and SPECT, 

absolute quantification of HP MR substrates can be challenging due to variations in 

polarization level and the use of super physiological concentrations of administered 

agents24. Furthermore, despite the large signal gains achieved using hyperpolarization, 

the near-unity photon detection efficiency of radionuclide agents is not achievable. 

Nevertheless, hyperpolarized probes can provide complementary imaging information that 

address the same diagnostic imaging goals as PET and SPECT. 

 

2.1.3. Fluorescence and Bioluminescence Tomography 

Optical tomography is widely used for the preclinical study of biology and pathology. The 

major optical techniques, fluorescence and bioluminescence tomography, are based on 

different underlying mechanisms, but have similar applications and limitations. 

Fluorescence tomography uses injected or genetically inserted dyes and proteins which 

fluoresce at different wavelengths than normal tissue to tag specific cells or molecules and 
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track their distribution, while bioluminescence tomography utilizes the intrinsic light 

emission of select molecules to similar effect4,25. In the latter case, light is produced when 

the light emitting pigment luciferin is catalyzed by the enzyme luciferase, which is 

produced by genetically modified cells that synthesize the enzyme.  

 

Optical imaging benefits from minimal background tissue radiation and high photon 

detection efficiency, and therefore generally has an excellent signal-to-noise (SNR). Both 

modalities offer spatial resolution of approximately 2-3mm. However, the need for genetic 

modification of the cells to allow targeted molecular imaging limits their use within human 

patients; this is particularly an issue with bioluminescence imaging. Additionally, optical 

techniques suffer from low tissue penetrance and the related need for a high concentration 

of imaging agent to successfully perform studies of deeper tissue. There has recently been 

an interest in using fluorescent probes in applications that circumvent this limitation, such 

as for more accurate identification of malignancies during surgical resection26. While PET 

and hyperpolarized MRI interrogate analogous pathways, those targeted by optical 

imaging are typically very different, and as such the modality can provide distinct and 

perhaps complementary molecular information to the former two modalities. 

 

2.1.4. Computed Tomography 

Computed tomography (CT) has not traditionally been considered as a molecular imaging 

technique. However, recent developments in nanoparticle-bound contrast agents (CAs) 

have allowed for selective imaging of specific cell tissues and molecules using CT. 

Iodinated nanoparticles, for example, can change the biodistribution of the iodine upon 

injection depending on the characteristics of the nanoparticle. This method has shown 

promise both in improving upon traditional CAs in blood pool imaging and in specifically 
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labeling certain cell types in various applications including studying angiogenesis in tumor 

growth and response to therapy27–31. Iodinated nanoparticles have also been labeled with 

antibodies to increase their molecular specificity to probe expression of particular 

proteins32. Gold nanoparticles have also become popular due to their easy synthesis and 

low toxicity33. These particles have also shown promise in vascular imaging, tumor 

imaging, and bone tissue damage imaging3,34–37.  

 

Nanoparticle based CAs are an area of interest for industry due to the wide availability of 

clinical CT machines, and there are currently several clinical trials examining the safety of 

gold nanoparticle based contrast agents38. Although the use of iodine and gold 

nanoparticles is promising in molecular imaging, their primary role seems to be to provide 

better structural contrast and anatomic localization by targeting specific proteins or cell 

markers, as opposed to deriving metabolic or functional information. Furthermore, ionizing 

radiation remains a fundamental limitation of this technology when used for clinical 

studies.  

 

2.2. Hyperpolarized MRI 

Hyperpolarization refers to a process in which certain nuclei are aligned to a degree many 

orders of magnitude greater than is normally achievable under in vivo conditions. This 

leads to a magnetic resonance signal that greatly exceeds that which is otherwise 

available and makes qualitatively different applications possible, including imaging of 

gases and low-concentration biological molecules. If the non-equilibrium hyperpolarized 

state is to be useful for medical imaging, the alignment must persist long enough for the 

substance to be administered, arrive at the target organ or system, and perhaps be taken 

into cells and/or metabolized. Typically, the persistent state can be achieved only if several 
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conditions are met. First, the nuclei must be what is known as “spin-½”. Spin-½ nuclei 

have two distinct quantum states of orientation with respect to a magnetic field; all other 

classes of nuclei either have no magnetic moment (and are therefore invisible in MRI) or 

are susceptible to rapid reorientation by the large electric field gradients present in 

molecules and during atomic or molecular collisions. Second, the nuclei must be relatively 

segregated from all other magnetic moments, including unpaired electrons or magnetic 

nuclei on the same molecule. Third, any residual magnetic interactions with the nucleus 

to be hyperpolarized must be limited in duration or frequently randomized in direction, 

again in order to prevent loss of alignment in an extended nuclear precession around the 

depolarizing field. 

 

As a practical matter, this limits hyperpolarization with biological applications to a few 

nuclear species that are found in in vivo (13C, 15N, 31P and potentially 1H), those found in 

some molecules that are not acutely toxic (19F, 29Si) and the two biologically inert gases 

3He and 129Xe. Of these, the gases have been used primarily for imaging of lung function, 

although molecular biosensors and imaging agents based on 129Xe have been proposed. 

Agents based on the other nuclei (primarily 13C) have been studied more extensively in 

molecular imaging applications. 

 

Two straightforward methods have been developed for transferring polarization from light 

to atomic nuclei, and have been used extensively for atomic gases39,40. Unfortunately, 

these techniques are not applicable to molecules41. This is primarily because the strong 

coupling between coherent rotational motion and nuclear spins cases rapid loss of spin 

alignment, but practical issues of chemical reactivity and short-lived electronic excited 

states are also difficult to overcome. There are two alternative approaches, however, that 
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can lead to polarization of order unity of selected nuclei in biologically active compounds. 

These methods are dynamic nuclear polarization (DNP), and parahydrogen-induced 

polarization (PHIP). 

 

2.2.1. Dynamic Nuclear Polarization (DNP) 

DNP refers to a process in which the alignment of an unpaired electron is achieved at 

thermal equilibrium, and this alignment is transferred to a nearby nucleus via a process 

analogous to the Overhauser effect42,43. In order to prepare a sample suitable for DNP, 

the molecule of interest is mixed with a small amount (1 part in 100 or less) of stable free 

radical that supplies the unpaired electron spin. This mixture is then placed in conditions 

of reduced temperature and elevated magnetic field sufficient to achieve near-complete 

electron alignment; as a rule of thumb, the magnetic field (in Tesla) divided by the sample 

temperature (in Kelvin) must be approximately 1 to achieve full alignment. As an intimate 

mixture of radical and target molecule is necessary for spin order transfer, and favorable 

DNP conditions generally imply a frozen sample, additional components may be required 

to assure a homogeneous (glassed) mixture 44. 

 

The transfer of polarization from electron to nucleus is accomplished by means of a 

microwave driving field tuned near the resonance frequency of the free electron in the 

chosen magnetic field. The mechanism of polarization transfer is complex and may differ 

between samples; however, the electron-nuclear interaction is typically described as one 

of three processes: the solid effect, the cross effect, and thermal mixing. The solid effect 

refers to a mechanism in which two closely-spaced magnetic dipoles, one electron and 

one nucleus, simultaneously invert orientations with respect to the field. Because the vast 

majority of electrons are aligned, this results in the net polarization of the nuclear 
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ensemble. This process is greatly suppressed by the large energy difference between 

electronic and nuclear Zeeman transitions, and is only relevant because of the very large 

number of coupled electron and nuclear pairs available in the sample. The cross effect 

refers to a related process in which one nucleus and two electrons, differing in frequency 

by approximately the nuclear Zeeman frequency, are excited simultaneously. Because 

this process is nearly energy-conserving, it is resonant over a duration consistent with 

typical solid state electron-nuclear couplings and is therefore quite rapid. However, the 

number of coupled three-spin systems with the appropriate resonance frequencies is 

relatively small; the relative contribution of solid effect and cross effect polarization is 

therefore dependent on the details of the sample’s frozen state and external conditions 

such as temperature and magnetic field45,46. 

 

Under hyperpolarization conditions useful for molecular imaging studies, the distinction 

between the above two processes (and those involving more electrons) is obscured by 

the strong couplings between closely-spaced radical molecules. The polarization process 

is therefore best described by thermodynamic state transitions in the band-like electron 

system and couplings to the nuclear system. Incorporating aspects of the other two 

processes, this theory is termed thermal mixing. Although lacking an intuitive, conceptual 

explanation, the theory is well-established and successful, and is described in detail in the 

literature45,47,48. 

 

2.2.2. Practical Aspects of DNP for Biomolecules 

In choosing appropriate conditions for efficient DNP, it is important to consider the 

magnetic properties of the molecule to be polarized. Small biological molecules typically 

consist of carbon, oxygen and hydrogen, often contain nitrogen, and sometimes contain 
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other elements (e.g., phosphorus or iron). As a general rule, a nucleus that is suitable for 

hyperpolarization is spin-½ (to eliminate rapid loss of alignment due to electric field 

gradients)49 and is distant from other magnetic nuclei. The latter consideration is 

necessary to avoid loss of alignment due to strong magnetic interactions in solution, and 

as it is usually impossible to eliminate all intramolecular magnetism, small molecules (in 

which interactions change direction frequently due to molecular reorientation) are more 

successful than large ones. Taken together, these characteristics of polarizable nuclei 

have suggested use of the spin-½ isotope 13C, as it can be incorporated into nearly all 

biomolecules in the magnetically isolated carbonyl, quaternary and carboxylic acid forms. 

Small carboxylic acids in particular are near-ubiquitous as TCA cycle intermediates, amino 

acids and in many other biologically central functions. For this reason, nearly all of the in 

vitro and in vivo work described in this review makes use of this class of molecules.  

 

Suitability of a molecule for hyperpolarization by DNP is also determined by the physical 

properties of the bulk or dissolved compound. Because the process takes place at 

cryogenic temperatures, all molecules of interest are in the solid phase; however, the 

intimate radical/biomolecule mixture necessary is best achieved through dissolution in the 

liquid. Substances that are gases at room temperature must be cooled or pressurized 

before mixture, and those that are solids must be co-dissolved with the radical in a suitable 

solvent. Furthermore, the tendency of many solutions to segregate upon freezing must be 

avoided, typically by transitioning past the freezing temperature very quickly, and in many 

cases including a ‘glassing agent’ in solutions that would otherwise crystalize. 

 

Many molecules of interest, particularly those with hydrophobic regions, are sufficiently 

insoluble in water that the sample to be hyperpolarized must also include additional 
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ingredients to facilitate increased concentration. Thus, although some general strategies 

are useful in classes of similar molecules, each sample preparation is somewhat individual 

and is optimized experimentally. A detailed discussion of this process is beyond the scope 

of this article, but it is described in detail in an excellent review 50. It is worth noting that 

one compound, pyruvic acid, is highly favorable from all of the above points of view; it is 

a small (a three-carbon chain, molecular weight 88 Da) carboxylic acid, when 13C-labeled 

in the 1 position the nucleus is remarkably isolated (the nearest magnetic nucleus is three 

bonds away) such that relaxation of the hyperpolarized state is slow51, the neat acid is 

liquid at room temperature and glasses without additional ingredients when frozen. 

Furthermore, pyruvate is metabolized rapidly by most cells, and the metabolic fate is 

indicative of cellular redox state and other biologically important factors. As is apparent in 

subsequent sections of this article, this fortuitous set of circumstances has led to 

pyruvate’s central role in the development of hyperpolarized agents. 

 

The final aspect of DNP hyperpolarization under the user’s control is the choice of radical 

species. In the development of the technology, several types of radical were explored, 

with considerable attention paid to nitroxide moieties and those derived from the 

triphenylmethyl (trityl) radical. In progressing to in vivo and human applications, the latter 

has become very commonly used, because it has the long electron T1 and narrow 

linewidth required to facilitate high polarization under the conditions of low temperature 

and moderate microwave power used in commercial instruments. A hydrophilic derivative, 

termed ‘OX063’ is widely used for pyruvate and similarly hydrophilic substrates52. A slightly 

modified version, known as ‘AH111501’ or simply ‘EPA’ (for Electron Paramagnetic 

Agent), is used in human studies due to the ease with which it can be removed at acidic 

pH by simple filtration53. Other substrate species, including those with hydrophobic 
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properties, are best polarized by other trityl derivatives with less polar functional groups, 

such as the acidified Finland species successfully used for DNP of frozen Xenon54. 

 

However, a wide variety of other radicals, including those with similar electronic properties, 

may be suitable as well. Radicals derived from BDPA have been shown to behave similarly 

to the trityl family52,55 and may be synthesized in a more straightforward manner56. 

Nitrioxide radicals (eg., TEMPO52) are well suited to higher temperature DNP and 

hyperpolarization of hydrogen, including that of water57–59. A variety of biradical species 

have been explored, with the hope of maximizing the cross effect60–62 with judicious 

chemical shift and coupling values. In pyruvate, there has even been exploration of 

metastable radical species induced in the frozen pyruvate sample itself by ultraviolet 

light63. Although as yet not consistent with the high polarization required for effective in 

vivo use, such a strategy is very appealing as no additional species are required for DNP. 

 

A few other experimental details have been found to affect the signal level or utility of 

DNP-derived hyperpolarized species; we mention these here and leave the details to the 

referenced literature. Inclusion of small concentrations of Gd chelates in the sample has 

been shown in increase polarization substantially, perhaps through its effect on radical 

electron T1
64, although the potential for accelerated loss of polarization after dissolution 

must be considered65. The dependence of polarization on magnetic field and temperature 

have been explored as well, with the finding that lower temperature and higher field, while 

more technically challenging, yield generally superior results but require longer 

polarization times (typical small molecules can take anywhere from less than an hour to 

several hours to achieve maximum polarization at 1.4K and 3.3T)66,67. This is not found to 

be true in all systems, however. Finally, certain hyperpolarized nuclei, especially those 
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neighboring a nitrogen atom, require transport at elevated magnetic field to avoid 

substantial loss of polarization68.  

 

2.2.3. Parahydrogen-Induced Polarization (PHIP) 

Two alternate method for liquid state sample hyperpolarization exist, termed Chemically 

Induced Dynamic Nuclear Polarization (CIDNP)69,70 and Parahydrogen-Induced 

Polarization (PHIP)71,72. The former mechanism is based on a nuclear state dependence 

of the recombination rates of optically generated radicals; although it remains an active 

research area 50 years after its discovery, the level of polarization achieved and the 

diversity of target compounds are not yet such that in vivo or clinical molecular imaging 

applications can be considered. Compounds polarized using parahydrogen, on the other 

hand, have been used successfully in cell and animal studies73–75. Although recent efforts 

have been made to design an open-source PHIP polarizer76, in general the adoption of 

PHIP techniques currently lags behind DNP because of the lack of commercial 

instruments, difficulties polarizing small metabolic compounds because of the required 

chemical reaction, and the lack of development in ensuring a pure and safe end-product. 

Nonetheless, the method has fundamental advantages with respect to production rate and 

cost that may justify more widespread use in the near future. 

 

Parahydrogen is the nuclear singlet state of hydrogen gas. Although not hyperpolarized, 

the gas contains a large degree of nuclear spin order and is easily produced at modestly 

reduced temperature through contact with a microscopically heterogeneous magnetic 

substance77,78. After undergoing a catalyst-mediated, pairwise addition to an unsaturated 

substrate, this spin order often persists to a large degree. Subsequent application of a 

specialized NMR pulse sequence, analogous to the commonly-used INEPT polarization 
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transfer technique79, results in near-unity transfer of spin order to hyperpolarization of a 

nearby 13C 80–83. Alternately, in a process called field cycling, the transfer may be effected 

by reducing the magnetic field such that the chemical shift difference approximates the 

internuclear scalar couplings84,85. In either case, a level of polarization approaching or 

even exceeding that which is achievable using DNP86 has led to the most detailed solution 

state hyperpolarized images produced to date74,84. 

 

Use in metabolic imaging, however, has been limited by the need for an unsaturated 

precursor of the agent of interest. In many cases this precursor does not exist or is not 

stable. Even in cases where a suitable precursor exists (e.g., for pyruvate or acetate), care 

must be taken to ensure that only the desired hydrogenation end-product is produced87–

89. Furthermore, the couplings between the nucleus to be hyperpolarized and the para 

proton pair must differ by an amount that is large compared to other couplings to the target 

nucleus90. These requirements can generally be addressed by careful choice of reaction 

conditions and catalyst and by replacing nearby hydrogen by deuterium (or as appropriate, 

14nitrogen by the less magnetic 15N). Details of the experimental design and catalyst choice 

can be found in the referenced literature, but we note that most experimenters have made 

use of a homogeneous Rh-based bis-phosphene catalyst75,86,87,91, a plunging liquid jet 

reactor 92 in an ambient parahydrogen atmosphere of several bar, and somewhat elevated 

temperature (to speed the hydrogenation reaction)86,93,94. More recently, PHIP using a 

heterogeneous phase catalyst—consisting of platinum nanoparticles capped with 

glutathione ligands—was demonstrated, enabling easier removal of the toxic catalyst, a 

necessity for clinical imaging95. 
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Although not significantly metabolized in vivo, the first biomedical application of PHIP 

agents utilized hydroxyethyl propionate as an angiography or perfusion measurement 

agent74,84. Use in molecular imaging was first demonstrated using succinate or its 

esters75,96,97, which are two-step hydrogenation products of acetylene dicarboxylate. 

Phospholactate has also been efficiently polarized using this method87, although biological 

activity has not yet been shown. 

 

Two important modifications to this basic scheme have been introduced recently, and 

each has the potential to dramatically improve the PHIP process’ flexibility and its utility in 

imaging. Reineiri et al. introduced a method to overcome the lack of suitable precursors 

for pyruvate and acetate88. In this scheme, an allyl or vinyl ester of the target molecule is 

para-hydrogenated, and the polarization transfer sequence operates over the ester bond 

to hyperpolarize the labeled carboxyl carbon. Finally, the ester is hydrolyzed, yielding a 

mixture of the hyperpolarized target and ethyl or propyl alcohol. In addition to allowing 

PHIP of pyruvate, this recipe may be generally applicable to carboxylic acids, greatly 

increasing the biological uses of PHIP.  

 

Another novel technique was recently introduced by Adams et al.98, in which the spin order 

of parahydrogen is transferred to a target molecule during the residence time of a short-

lived, catalyst-mediated complex. This method, termed ‘NMR Signal Amplification by 

Reversible Exchange’, or NMR-SABRE, has two significant advantages over traditional 

PHIP. First, the need for an unsaturated precursor is relaxed in that no permanent 

chemical modification of the target molecule occurs. This simplifies synthetic requirements 

while broadening the set of candidate compounds. Second, the same solution may be 

repolarized at will, subject only to availability of parahydrogen and catalyst spoiling. 
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SABRE-polarized compounds have not yet been used in vivo for metabolic imaging, and 

isolation of the target compound remains a technical challenge. Nonetheless, these 

advantages (in addition to the low cost and ~1s polarization time characteristic of PHIP) 

suggest a variety of very useful applications in the near future. 

 

2.3. Hyperpolarized MRI Acquisition Techniques 

2.3.1. Hardware and Equipment  

The most important development in the field of DNP was the development of a fast 

dissolution method that rapidly melted the frozen polarized sample with minimal loss of 

polarization into a liquid state that could then be quickly delivered to an animal or specimen 

in the imaging magnet99,100. This is accomplished by flushing the frozen sample with the 

dissolution solvent at high pressure (~10 bar) and temperature (~ 180 oC). The most 

commonly used DNP polarizer that uses this dissolution method is the commercially 

available Hypersense polarizer (Oxford Instruments, United Kingdom). Generally it can 

polarize up to ~200 µL of sample, limiting its use to studies in small animals. More recently, 

a larger commercially-available polarizer—SpinLab (General Electric)—was developed 

with a much greater throughput (4 simultaneous samples of volume greater than 1mL), 

enabling HP imaging in large animals and humans101,102.  

 

The gyromagnetic ratio of 13C (gC) is approximately four times smaller than that of the 

proton. As such, the MR system must be equipped with a broadband RF amplifier to 

transmit and receive the NMR signal for multinuclear spectroscopy and imaging. This 

option is available for many clinical and preclinical scanners. Additionally, the MR system 

needs to be equipped with transmit/receive coils tuned to the proper frequency. For 
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hyperpolarized 13C studies, surface coils103 have been commonly used for many 

applications including cardiac104, brain105 and subcutaneous tumor106,107 imaging and 

spectroscopy. The key advantage of surface coils is their superior sensitivity over a small 

region-of-interest. However, surface coils suffer from poor B1 homogeneity and sensitivity 

profiles. Alternatively, a setup consisting of a volume transmit, surface receive coil can be 

used for homogenous power transmission101. Volume transmit/receive coils offer superior 

field homogeneity on both transmit/receive ends and, as such, are well suited for imaging 

the larger regions of interest typically used in abdominal and thoracic applications108,109. 

For small animal and perfused cell applications, cryocoils have shown to improve the SNR, 

although the degree of improvement is difficult to determine with certainty109,110; imaging 

researchers have reported SNR increases of 4-7 at 9.4T, consistent with theoretical 

considerations under low-loading conditions109. Utility of the cryocoils is limited due to high 

cost and diminishing gains for larger animals and humans, in which body noise typically 

dominates.  

 

2.3.2. Pulse Sequence and Imaging Considerations 

Although hyperpolarization dramatically increases the initially available signal amplitudes, 

the MR data acquisition is highly affected by irreversible signal losses caused by T1 

relaxation back to thermal equilibrium and RF pulse excitations. This limits signal 

availability to only a brief period after introduction of the agent. Thus, the timing of the data 

acquisition is of key importance in order to obtain metabolite images with maximum signal-

to-noise. For many hyperpolarized substrates, a 25-second delay from the start of the 

injection has been found to be appropriate as it approximately corresponds to the time of 

peak amplitude for the downstream metabolites (Figure 2.1)111. Accounting for signal 

dynamics is also important because for the image reconstruction it is typically assumed 
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that the longitudinal magnetization is in steady state for each excitation; departure from 

this condition can introduce image artifacts or blurring. Variable flip-angle strategies have 

been proposed to ameliorate this problem, in which the flip angle is increased with each 

excitation to compensate for the reduction in available longitudinal magnetization. The 

goal of this strategy is to maintain a constant transverse magnetization throughout the 

image acquisition111. This approach requires accurate calibration of the coil’s RF power, 

which is typically done by placing a labeled 13C phantom inside the coil next to the subject 

prior to administration of the hyperpolarized agent. Ideally, the coil’s B1 map should also 

be obtained and incorporated into the reconstruction to improve image fidelity108,112. This 

is particularly important when single-channel receive surface coils or multichannel phased-

array receive coils are used for parallel imaging. More difficult to deal with is the potential 

for severe flow artifacts due to the presence of high concentrations of the administered 

hyperpolarized agent in the blood pool. Recently, a pair of symmetric flow-sensitizing 

gradients have been added to imaging pulse sequences in applications such as cardiac 

and abdominal imaging to suppress image artifacts caused by rapidly flowing blood and 

thereby improve the accuracy of the spatial information113,114. 

In order to address these challenges and limitations, many pulse sequences have been 

designed and implemented over the past few years that offer significant improvements 

with respect to standard gradient echo or spin echo schemes. This has been possible by 

exploiting the long T2 and T2
*
 relaxation times of 13C species in almost all organs74,115–118 

as well as the sparse nature of the NMR spectrum in which chemical shifts of the 13C 

species of interest span a wide range of the NMR spectrum (~100ppm)119. The most 

desirable imaging pulse sequences achieve superior spatial coverage as well as high 

temporal resolution while providing three dimensional dynamic spectroscopic data for 

accurate and meaningful measurement of cellularity and metabolic pathways. 
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Figure 2.1: Signal-time courses of multiple metabolites derived from dynamic HP [1-13C]pyruvate 
spectroscopy in a rat. The boxed regions specify the time window for a 17-s CSI acquisition at the 
following time delays: 15 s, 25 s, and 35 s. The choice of delay determines the best SNR for the 
metabolites of interest. The insert shows a waterfall plot of the different metabolite peaks: 
bicarbonate, pyruvate, alanine, pyruvate-hydrate, and lactate (from left to right). Each spectrum 
was acquired every 3 s. Reproduced from Ref.111 (License Number #4556230568265). 
 

2.3.3. Global and Local Spectroscopy 

The most basic pulse sequence used for hyperpolarized 13C spectroscopy is the 

nonselective pulse-and-acquire sequence used to assess the time-course of the agent 

and metabolites within the detection volume of the RF coil120. This pulse sequence is ideal 

for applications such as the study of perfused organs and cells104,121,122 where changes in 

flux and pool size of metabolites are being investigated. Spatial selectivity can be 

incorporated by adding slice selection over a region of interest. This method is useful for 

organ-specific applications123,124 as well as tumor xenografts106,107. Other methods with 3D 

localization have been subsequently introduced including a Point RESolved Spectroscopy 

(PRESS) pulse sequence with a slice-selective 90° RF excitation pulse followed by two 

refocusing pulse pairs along the other axes116.  
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2.3.4. Multi-echo Approaches to Chemical Shift Imaging 

Single-point chemical shift imaging (CSI) that uses one RF excitation per sampled FID 

has been used most frequently for generating maps of individual metabolites120. However, 

it suffers from a long acquisition time (typically on the order of 10-20 s for a single slice 

with a 16x16 matrix size and 256 RF excitations). In hyperpolarized imaging, this 

necessitates the use of a low flip-angle which carries a significant signal-to-noise penalty. 

However, due to its simplicity and availability on most clinical and preclinical MR scanners, 

single-point CSI sequence is still a popular pulse sequence102. Furthermore, its simplicity 

makes CSI relatively immune to artifacts; thus, even if higher resolutions or faster 

acquisitions can be achieved using other methods, single-point CSI can yield well-

understood reference images for validation. 

 

Alternatively, the long T2 relaxation time of 13C allows for a long readout duration, during 

which multiple echoes can be generated and spatially or spectrally encoded to reduce the 

acquisition time. Echo-planar Spectroscopy Imaging (EPSI) sequences125 have been 

extensively used to image hyperpolarized 13C metabolites. In these schemes, each 

readout is used to spatially encode the data while the accumulated phase between 

acquisitions associated with the chemical shift, which is not refocused by symmetric 

gradients, is used to encode the frequency information. Spatial encoding in this manner 

reduces the number of excitations significantly when compared to the single-point CSI 

sequence. For instance, a 16x16 single-slice image can be acquired using only 16 RF 

excitations, drastically reducing the total imaging time and permitting the application of 

higher flip angles. These improvements have allowed practical use of a 3D implementation 

of the sequence126. Further improvements to spectral information quality were found when 

using a double spin-echo implementation of EPSI127. This modified sequence has been 
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used in many studies, including the first human studies of prostate cancer101. Multi-echo 

spiral readout trajectories with multiple interleaves have also been demonstrated for 

dynamic two-dimensional128,129 and volumetric imaging105. When compared to the 

Cartesian echo-planar spectroscopic read-out trajectories, spatial encoding can be 

performed more efficiently using a spiral readout trajectory. Additionally, spiral trajectories 

are less sensitive to motion artifacts, making them very robust for cardiac applications. 

Recently a concentric ring readout trajectory was introduced as another alternative to the 

echo-planar readout trajectory130. This scheme can be easily combined with parallel 

imaging for further acceleration, while offering improved acquisition speed and robustness 

to flow artifacts with respect to the echo-planar readout. 

 

Instead of using phase evolution over multiple echoes to encode chemical shift 

information, it is also possible to use a least-square algorithm to iteratively decompose 

different chemical shift components of the NMR spectrum. This method, also known as 

Iterative Decomposition of water and fat with echo Asymmetry and Least square 

estimation (IDEAL) obtains spectral information by shifting the echo time (TE)131. The 

method is used extensively for selective imaging of water and fat in proton MRI; however 

it can be extended to a larger number of resonance frequencies if at least as many echoes 

are acquired as there are spectral peaks132. The reconstruction requires fewer echoes 

than an EPSI sequence but it demands prior knowledge of the location of the peaks in the 

NMR spectrum and a B0 map to successfully separate the individual frequency 

components. The method has been successfully used with Cartesian trajectory gradient 

echo sequences for two-dimensional133 and three-dimensional134 single time-point 

imaging, spiral135 and Echo-Planar Imaging (EPI) readout trajectories136 for 2D dynamic 

imaging, and as a single-shot spin-echo sequence with multiple Cartesian readouts120 for 
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high resolution two-dimensional imaging. The latter approach showed an over 30-fold 

reduction in imaging time compared to a conventional single-point CSI sequence. 

 

2.3.5. Spatial-Spectral Excitation for Chemical Shift Imaging 

A completely different approach is to exploit a sufficiently large chemical shift separation 

between peaks to selectively excite individual metabolites. The advantage of this 

approach is that it eliminates the need to spectrally encode the NMR signal, thereby 

reducing the total imaging time and potentially offering higher signal-to-noise136. It can also 

facilitate efficient time-resolved imaging126 in dynamic applications and in studies requiring 

triggering such as cardiac imaging112. Spatial spectral (SPSP) excitation is achieved by 

using composite pulses consisting of multiple lobes of short RF excitations accompanied 

by time-varying gradients (typically an echo planar gradient waveform). Spatial selectivity 

is determined by the shape of each RF pulse lobe, while spectral selectivity depends on 

the envelope of all the lobes. With a priori knowledge of the underlying spectrum, SPSP 

RF pulses can be optimized for hyperpolarized 13C MRI to achieve superior spectral 

selectivity and minimal duration. Multiband RF pulses can also be designed to excite each 

metabolite with a different flip angle. This technique increases both signal longevity and 

metabolite SNR137–140. SPSP RF pulses can be accompanied by the appropriate EPI 

readout strategy to support two-dimensional136,141 and three-dimensional126,142 time-

resolved imaging, or by a spiral readout for multiline cardiac imaging112, three-dimensional 

imaging143 and time-resolved three-dimensional imaging of tumors144. The latter sequence 

generates high-resolution metabolite images with a single SPSP excitation pulse 

combined with a three-dimensional partial k-space spiral readout over multiple echoes 

generated via double spin-echoes, yielding a 2-second temporal resolution. The pulse 

sequence diagram is shown in Figure 2.2. Such RF pulses can be used for outer volume 
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suppression in in vivo organ-specific spectroscopy145 or with multi-echo approaches, such 

as the EPSI sequence for dynamic imaging136,137. 

 

 

Figure 2.2: A (A) single shot three-dimensional double spin echo pulse sequence and its (B) 3D 
k-space trajectory. The k-space was acquired as a stack of interleaved spirals. Specific 
metabolites were excited via a spectral-spatial pulse. Reproduced from Ref.146 (Re-used under 
CC-BY-4.0). 
 

2.3.6. Other Approaches to Chemical Shift Imaging 

Given the large chemical shift separation between the 13C species, the chemical shift 

displacement artifact (CSDA) can be exploited to acquire images of the individual 

metabolites in a single acquisition. Several studies have demonstrated this approach for 

gradient echo sequences with Cartesian readout trajectories147,148 in which the chemical 

shift separation between all peaks relative to the acquisition bandwidth is sufficiently large 

for complete spatial separation of their corresponding images. Alternatively, the severe 

smearing artifact of off-resonance peaks when using radial149 and spiral150 readout 

trajectories can be exploited to reconstruct images of a single resonance. While this 

approach provides images of all metabolites simultaneously, it can suffer from blurring if 

the T2
* is shorter than the duration of the readout gradient. Thus, the approach constitutes 

a tradeoff; progressively lower bandwidth provides superior peak separation, but requires 

longer gradient durations with the potential for increased blurring.  
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CSDA can also be used along the slice selection orientation by using a small bandwidth 

frequency selective RF pulse excitation such that the displaced excitation band of the non-

desired metabolites shifts outside of the coil146. This approach has advantages over SPSP 

RF pulses due its simplicity, but provides limited slice selection accuracy and the geometry 

of the coil and the subject size limits the imaging parameters.  

 

2.3.7. Perfusion Imaging 

Imaging of perfusion (non-metabolized) agents is generally much less sophisticated than 

chemical shift imaging because it does not require spectral encoding. As such, single-shot 

Fast Spin Echo (FSE)118 or balanced Stead-State Free Precession (bSSFP) sequences 

are capable of producing high-resolution multiline or three-dimensional time-resolved 

images for the quantification of organ perfusion and blood flow74,115,117,147,151. Multivalent 

perfusion imaging152 or simultaneous perfusion and metabolic imaging113,153 can be 

performed as well, as long as some form of spectral encoding is included as discussed 

above.  

 

2.3.8. Accelerated Imaging 

Parallel imaging has been shown to yield significant reductions in acquisition speed and 

generally does not carry the signal-to-noise penalty that is observed in traditional 1H 

MRI130,154,155. Another approach is to implement compressed sensing into the imaging 

sequence to exploit the sparsity of the NMR spectrum. Compressed sensing has been 

combined with single-point CSI156, three-dimensional EPI with SPSP excitation157, EPSI 

and multiband SPSP excitation158. Up to a 7-fold reduction in acquisition time has been 

achieved, allowing efficient time-resolved, three-dimensional imaging. 
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2.3.9. Quantification Methods 

Quantification of HP data is not straightforward because, unlike with other modalities, the 

signal is not directly proportional to the concentration of the imaging agent or metabolite, 

and methods for absolute calibration have not been developed. Most studies to date have 

evaluated the data using one of two divergent methods: through quantification of signal 

ratios or by deriving fitting parameters from a kinetic model. Relative quantification 

typically reports the metabolite signal (area under the curve) normalized by either the 

delivered HP probe's signal, or the total carbon metabolite signal159–162. The advantage of 

this method is that it is trivial to perform, but it limits a direct comparison between studies 

because the normalization does not explicitly account for the delivered probe 

concentration, transport mechanics, T1 or RF-induced relaxation or other sources of signal 

variation.  

 

The second approach generates kinetic parameters (enzyme kinetic rate constants) by 

fitting HP data to a set of differential equations that model the HP label exchange between 

the injected probe and converted metabolites. The most commonly used model is the two-

site exchange model106, although there are a number of other models and analysis 

techniques that vary in complexity163–165. Deriving parameters from a fitted model has the 

advantage that it reflects a physical value (i.e., the rate constants) that can be compared 

to other studies. However, the generalizability of the results is limited by the constraints of 

the chosen model, and thus are in most cases more accurately described as apparent rate 

constants. Currently, there is no consensus on the ideal model that is applicable to all HP 

MRI/NMR studies, but development of such a model is necessitated by the current push 

towards clinical imaging24. 
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2.4. Hyperpolarized Probes Used for Metabolic Studies 

A number of different probes have been successfully polarized over the years for their use 

in biological studies. As described in sections 3.2 and 3.3, the ideal probes are small, 

mobile molecules that have a relatively long T1 relaxation time. Furthermore, a probe that 

is used for metabolic or functional imaging must also be metabolically relevant in the organ 

or tissue of interest. This section highlights the HP 13C probes that have been most actively 

used in metabolic studies due to their ubiquity in the metabolism of many different tissues, 

or their specific applicability to assessing the tissue's state.  

 

2.4.1. [1-13C]Pyruvate 

As alluded to in the earlier sections, the most widely used hyperpolarized DNP probe is 

[1-13C]pyruvate. Its physical characteristics make it an ideal probe for DNP. The labeled 

carbon is a carbonyl that is three bonds away from other magnetic species, minimizing 

dipolar coupling. As a small molecule, it also has low correlation times (τC), resulting in 

longer T1 than larger molecules. As a carboxylate, it also has high aqueous solubility. 

These favorable physical properties enable high polarization (up to 60% polarization 

reported) and long T1 of 40-60s24,166. Moreover, biologically, pyruvate is an intermediate 

in several key metabolic pathways. Together, these physical and biological properties 

make [1-13C]pyruvate perhaps the most attractive HP imaging probe.  

 

Pyruvate is a downstream product of glycolysis, and serves as a key intermediate in 

several metabolic pathways (Figure 2.3). It rapidly and reversibly catalyzes to lactate via 

the enzyme lactate dehydrogenase (LDH)167. Physiologically, conversion of pyruvate to 

lactate is determined by LDH activity and the ratio of NADH to NAD+ 168. However, this 
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does not imply that the HP [1-13C]lactate signal detected after HP [1-13C]pyruvate 

administration represents net conversion of the substrate. In fact, the observed metabolite 

signal is largely representative of label exchange between endogenous lactate and 

injected HP [1-13C]pyruvate23. As such, the observed signal reflects the endogenous 

lactate pool size and the redox state of the system. Many external perturbations or 

pathologies change the lactate pool, thereby allowing HP pyruvate to be used as a 

biomarker in many different pathologies, including acute injury, inflammation, or 

cancer102,122,169,170. 

 

Figure 2.3: (A) The fate of the 13C labeled carbon-1 (red). In most organs, the label will be detected 
on the lactate, alanine, bicarbonate (via PDH). In the liver, the label can also appear on other TCA 
cycle intermediates via the enzyme pyruvate carboxylase (PC). Spectra from (B) fasted and (C) 
fed states of a perfused, isolated rat liver after injection of HP [1-13C]pyruvate. Figures adapted 
from Ref.171 under noncommercial and education use. 
 

Pyruvate is also reversibly catalyzed to the amino acid alanine via the enzyme alanine 

transaminase (ALT). In most tissues, HP [1-13C]alanine signal is substantially less than 

that of [1-13C]lactate, due to the lower activity of ALT, or the lower alanine pool size, 

compared to LDH and lactate, respectively159,172,173. However, HP[1-13C]pyruvate's 
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conversion to HP [1-13C]alanine is a useful biomarker for tissues that are heavily involved 

in alanine metabolism, particularly the liver and skeletal muscles120,174(p13). 

 

The third most common fate of HP [1-13C]pyruvate is its conversion to acetyl coenzyme A 

(acetyl-CoA) and 13CO2 via pyruvate dehydrogenase (PDH). The 13CO2 is then rapidly 

converted to [13C]bicarbonate via the enzyme carbonic anhydrase (CA)175. Although the 

[13C]bicarbonate SNR is too low to be easily quantifiable in most healthy tissues, it is 

prominent in the heart, which is much more energetically demanding than most other 

organs176. Because the acetyl-CoA is not labeled, its fate—typically incorporation into the 

tricarboxylic acid (TCA) cycle via the pyruvate dehydrogenase complex (PDC) or 

conversion to acetylcarnitine (ALCAR)—cannot be determined. Nonetheless, the use of 

HP [1-13C]pyruvate to study TCA cycle activity is possible in the liver and other tissues 

expressing pyruvate carboxylase (PC). This enzyme irreversibly catalyzes pyruvate to 

oxaloacetate (OAA), which can then be used as a substrate for gluconeogenesis or 

converted to other TCA cycle intermediates171. 

 

Due to the versatility of [1-13C]pyruvate, it can be used to study a wide variety of metabolic 

perturbations in many tissues. The most notable difficulty is that the signal-to-noise is too 

low to be useful in true tracer applications. Thus, metabolic perturbations by 

superphysiological agent concentrations (mM and above) must be considered. In some 

circumstances, this may limit sensitivity to disease and the relevance of quantitative 

physiological measurements165,177. 
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2.4.2. [2-13C]Pyruvate 

HP [2-13C]pyruvate is used much less frequently than HP [1-13C]pyruvate. As the 2-carbon 

is labeled, the closest magnetic interaction is two bonds away. This results in a slightly 

lower T1 than that of the 1-carbon178. Nonetheless, HP [2-13C]pyruvate imaging is much 

better suited for studying oxidative phosphorylation. Unlike [1-13C]pyruvate, the HP carbon 

is found on acetyl-CoA after PDH catalysis, so HP [2-13C]pyruvate can be used to study 

PDC flux, fatty acid oxidation (acetoacetate, acetylcarnitine), and conversion to TCA cycle 

intermediates or downstream products (e.g., [1-13C]citrate and [5-13C]glutamate)179,180. 

This is particularly useful for studying cancers that disrupt oxidative phosphorylation. 

Nevertheless, until recently a limited number of studies have been performed using HP 

[2-13C]pyruvate because of the relatively low oxidative phosphorylation activity in many 

tissues. 

 

2.4.3. [1-13C]Acetate 

HP [1-13C]acetate is typically used as a probe to study TCA flux and fatty acid oxidation. 

The enzyme acetyl-CoA synthase (ACS) rapidly converts free acetate into acetyl-CoA. 

The acetyl-CoA can then either enter the TCA cycle and its conversion to TCA 

intermediates can be followed, or it can be reversibly converted to acetylcarnitine (ALCAR) 

via the enzyme carnitine acetyltransferase (CAT), depending on the energy needs of the 

tissue 181. As a probe, HP [1-13C]acetate bypasses the PDH complex, so unlike pyruvate, 

it provides a direct measurement of TCA flux. HP [1-13C]acetate studies are useful in 

tissues that prioritize fatty-acid metabolism as opposed to glucose metabolism, and 

consequently most studies have been done in the heart or skeletal muscles182,183. 
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2.4.4. [1-13C]Alanine 

HP [1-13C]alanine has also been used as an alternate probe for studying pyruvate 

metabolism. Upon injection, HP [1-13C]alanine is converted to HP [1-13C]pyruvate via ALT, 

which can then be converted to HP [1-13C]lactate. Using HP [1-13C]alanine is 

advantageous as it allows relative measurements of endogenous pyruvate and lactate 

pool size 184 without the analytical difficulties arising from the large extracellular pyruvate 

signal. Alanine’s metabolism varies by organ, but ALT is especially active in the muscle 

and liver, which play a key role in the Cahill cycle that shuttles alanine and glucose 

between the two organs185. A recent study has also used a modified alanine moiety, HP 

[1-13C]alanine-NH2, to specifically target aminopeptidase N, an enzyme that is upregulated 

in tumor angiogenesis186. 

 

2.4.5. [13C]Urea 

[13C]urea has also been used as a HP probe. Unlike most other probes, urea is 

metabolically inactive. Instead, it has been used as a contrast agent or a perfusion agent. 

It is a promising alternative to traditional contrast agents (such as gadolinium) as it offers 

the unique advantages of high contrast (no background signal), more straightforward 

quantification, and minimal toxicity113,117,118. 

 

2.4.6. [1-13C]Dehydroascorbic Acid 

Dehydroascorbic acid (DHA) is the oxidized form of ascorbic acid (vitamin C); the relative 

concentration of the two can provide information on the intracellular redox state187. DHA 

uptake varies wildly by tissue, so it cannot be used as a universal probe188,189. Unlike the 

other smaller metabolites, [1-13C]DHA also has a comparatively short T1 (~20s) at high 

fields (9.4-11T), so imaging at those fields requires fast imaging sequences; however, the 
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reported T1 at clinical MRI fields is much higher (~57s), making studies at the lower field 

much more feasible190,191. 

 

2.4.7. [1-13C]Succinate / [1-13C]Diethyl Succinate [1,4-13C2]Diethyl Succinate 

Succinate, a TCA cycle intermediate, can be reversibly catalyzed to either succinyl-CoA 

via the enzyme succinyl-CoA synthetase, or to fumerate via the enzyme succinate 

dehydrogenase192,193. The ability to image the fate of succinate would provide insights into 

many pathologies that affect oxidative phosphorylation194,195, especially in tissues where 

no TCA intermediates are detected with HP [1-13C] or [2-13C]pyruvate. [1-13C] or [1,4-

13C2]succinate have not been successfully polarized using DNP. However, [1-

13C]succinate has been successfully polarized with PHIP using [1-13C, 2,3-2H2] fumaric 

acid and [1-13C]acetylenedicarboxylate, with reported T1 values of 27s (at 4.7T) and ~6s 

(at 1.5T), respectively96,97,196. Other attempts to polarize succinate have used ethyl groups 

to protect the terminal carbonyl groups. The resultant diethyl succinate has been polarized 

via both PHIP and DNP, with a reported T1 of ~38s at lower field strengths (3 and 

4.7T)75,197. 

 

2.4.8. Other Hyperpolarized Metabolites 

There are other less extensively studied molecules that have also been successfully 

polarized. One promising probe is [1-13C]bicarbonate, which rapidly converts into HP 

13CO2 via the enzyme carbonic anhydrase148,198. The ratio of bicarbonate-to-carbon 

dioxide can be used to derive tissue pH, which is a powerful biomarker for both acute and 

chronic pathologies199,200. [U-13C6, U-2H7]glucose, which lies metabolically upstream of 

pyruvate, has also been successfully polarized, but its in vivo use is hindered by its short 

T1 (about 10-13s) and complex spectrum201,202. For an exhaustive list of the molecules that 
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have been successfully polarized, please refer to the comprehensive review by Keshari 

and Wilson119. 

 

2.5. Hyperpolarized Studies by Organ System 

A number of excellent reviews on the state of hyperpolarized DNP, each focusing on 

different aspects of the field, have already been published. Barnes et al.46 focus on the 

physics of DNP, while Karlsson et al.50, and Keshari and Wilson119 concentrate on the 

chemistry of DNP probes. Reviews with a particular biological or pathological focus, e.g., 

on cancer203 or neurology97, also exist. However, none of these reviews has described 

how HP studies vary according to the different tissue or organ systems they have been 

used to assess. Accordingly, this section summarizes the major HP studies by organ or 

tissue in order to characterize their metabolic profile for a given set of HP probes, 

highlighting the unique challenges that each tissue poses for molecular imaging. For 

example, probe delivery to the brain is limited by the blood brain-barrier, whereas the lung 

presents the challenge of the air-tissue interface. Ex vivo, in vivo, and in vitro studies of 

the heart, liver, prostate, kidney and lung are described below. 

 

2.51. Heart 

Proton MRI is often used for structural cardiac imaging. In addition to its high spatial 

resolution, MRI’s sensitivity to flow and ability to freeze motion during the cardiac cycle 

make it suitable for answering many clinical important questions. Other nuclei such as 31P 

have been used to obtain metabolic information about the heart in both healthy and 

diseased states; however, given their low gyromagnetic ratio and metabolite 

concentration, in vivo application is fairly limited.  
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Hyperpolarized 13C MRI provides a new opportunity for real-time metabolic imaging of the 

heart. A number of isolated perfused heart studies, as well as in vivo studies in both small 

and large animals, have been carried out to characterize the metabolic profile of the 

healthy heart using HP agents. Unlike most other tissues for which HP lactate labeling or 

HP alanine labeling is primarily observed, significant conversion of HP [1-13C]pyruvate to 

HP bicarbonate has been detected in the heart112,159,176,204. In healthy hearts, the detected 

HP bicarbonate reflects PDH flux, though not necessarily flux through the TCA cycle176. A 

decrease in HP bicarbonate signal has also been observed in the fasted state, when the 

heart switches to fatty acid oxidation as its primary energy source159,177,204. Adding butyrate 

or octanoate (even-chained fatty acids) to the perfusate has produced a similar decrease 

in HP bicarbonate signal while the TCA flux measured via tissue extracts was unchanged, 

providing direct evidence for decreased PDH flux in the presence of fatty acids176,205. 

Adding dichloroacetate (DCA), a well-known pyruvate dehydrogenase kinase (PDK) 

inhibitor, promotes PDH flux and yields a stronger HP bicarbonate signal, as 

expected181,204,206,207. Adding dobutamine, a selective β-agonist, increased both PDH and 

TCA flux, as determined by HP [2-13C]pyruvate MR. As the studies above clearly 

demonstrate, then, different HP probes can be used to be assess different types of stress 

on cardiac tissue181. 

 

Because the heart can derive the acetyl-CoA needed for the TCA cycle from either 

pyruvate decarboxylation or β-oxidation, a number of studies have focused on using [1-

13C]acetate's conversion to downstream TCA intermediates or reversible conversion to 

acetylcarnitine as another HP biomarker to characterize cardiac metabolism183,208,209. 

These in vivo studies in rats and pigs characterized TCA flux using ratiometric modeling 

of HP acetate, acetylcarnitine, and citrate signals in healthy animals. More recently, HP 
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[1-13C]butyrate was successfully used to characterize TCA intermediates in fed and fasted 

isolated perfused rat hearts, confirming previous findings that the presence of fatty acids 

limits PDH flux without affecting TCA flux205. 

 

These HP markers have also been used to characterize a number of cardiac pathologies. 

HP [1-13C]pyruvate studies of ischemia-reperfusion in rats and pigs have shown a 

decrease in HP bicarbonate signal and an increase in HP lactate signal immediately after 

ischemia210–212. Partial recovery to baseline was observed 15 minutes post-reperfusion210, 

suggesting that HP [1-13C]pyruvate could serve as a marker for ischemia-reperfusion 

injury. The ratio of HP bicarbonate to HP CO2 was also used to characterize this injury, 

and it was found that post-ischemia pH was about 7.12, compared to 7.20 in healthy 

rats212. An HP [2-13C]pyruvate MR study yielded complementary findings, showing an 

increase in HP [2-13C]lactate labeling and a decrease in [1-13C]acetylcarnitine, [1-

13C]citrate, and [5-13C]glutamate in isolated perfused ischemic rat hearts212. 

 

In vivo HP [1-13C]pyruvate NMR also showed a decrease in HP bicarbonate production in 

a streptozotocin-induced type 1 diabetes model in rats159,  confirming the well-established 

finding that type 1 diabetes onset decreases glucose oxidation and PDH flux213.  

 

Although earlier studies were performed in perfused hearts and small animals, the 

adoption of modern pulse sequences and fast sequences has enabled more in vivo 

studies, as well as studies in larger animals where the signal emanating from the heart 

chambers and the myocardium can be resolved. In addition to confirming the results from 

previous studies, these large animal in vivo studies have shown the particular region of 

the myocardium tissue from which the bicarbonate and lactate signals originate113,142. 
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2.5.2. Liver 

The liver is both the largest gland and the most metabolically active organ in the human 

body. Unlike most organs, it is heavily involved in whole-body metabolism214. 

Unsurprisingly, a diverse set of metabolic pathways and HP probes has therefore been 

studied in the liver.  

 

The liver is largely responsible for gluconeogenesis, the process by which glucose is 

synthesized from lactate and alanine (as part of the Cori and Cahill cycles, respectively) 

when blood glucose levels are low185,215. An HP [1-13C]pyruvate study of the liver in fed 

(high blood glucose) and fasted (low blood glucose) rats demonstrated this process in vivo 

by detecting the expected decrease in alanine pool size via a decrease in HP alanine 

labeling in the fasted state184. The liver is also one of the few organs that expresses 

pyruvate carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK), allowing 

conversion of HP [1-13C]pyruvate to [1-13C]oxaloacetate and additional downstream 

metabolites ([1-13C]malate, [4-13C]malate and [1-13C]aspartate) (Figure 2.3)171. Changes 

in the PC flux and PEPCK flux after [1-13C]pyruvate injections in a type 2 diabetic mouse 

model demonstrated that this pathway could be exploited for longitudinal monitoring of 

diabetes development216. 

 

Several other studies have focused on tissue non-specific metabolic pathways and how 

they differ in the liver. Using HP [1-13C]acetate injections, the acetylcarnitine pool size was 

shown to be lower than that in the heart217. HP [1-13C]alanine injections have also been 

used to estimate the intracellular ratio of the pyruvate and lactate pools184, a technique 

that is feasible in the liver due to its relatively high ALT flux compared to other organs. 
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Ethanol administration resulted in increased lactate production in a rat liver, most likely 

due to increased NADH availability after ethanol breakdown124.  

 

A large number of hepatic studies have focused on tumor imaging. Hepatocellular 

carcinoma (HCC) is an aggressive primary tumor with extremely high morbidity and 

mortality218, in which glutamine metabolism plays an important role. The conversion of HP 

[5-13C]glutamine to HP glutamate has been shown to be a potential biomarker for cell 

proliferation in human hepatoma (HepG2) cells219. Other studies have shown that the 

conversion rates and T2 relaxation times of alanine and lactate from HP pyruvate are 

higher in HCC tumors than in normal liver, suggesting a potential set of biomarkers for 

tumor characterization116,220–222. Another in vivo study found that transcatheter arterial 

embolization (TAE) of HCC in rats lead to the increased conversion of HP [1,4-

13C2]fumarate to HP [1,4-13C2]malate after necrosis due to extracellular fumarase, as well 

as a decrease in HP [13C,15N2]urea and HP [1-13C]pyruvate signal, most likely due to 

decreased blood perfusion223. The conversion of HP [1-13C]a-ketoisocaproate (KIC) to HP 

leucine was also shown to be associated with branched-chain aminotransferase (BCAT) 

expression, an enzyme that is more strongly expressed in HCC cells compared to normal 

liver tissue221.  

 

2.5.3. Prostate 

Hyperpolarized 13C methods have been used extensively to study the prostate, in 

particular prostate cancer. Conventional clinical methods rely on prostate specific antigen 

(PSA) for screening and biopsies for diagnosis. In 2011, the United States Preventive 

Services Task Force (USPTF) recommended against PSA screening, as the risk may 
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outweigh the benefits224. Biopsies are often difficult to justify as well, largely due to their 

invasiveness and the difficulty of accurate sampling in this highly heterogeneous gland. 

1H high resolution magic angle spinning (HRMAS) spectroscopy and 1H MRSI studies 

have shown that changes in choline-containing compounds, polyamines and citrates can 

be used to improve cancer localization in prostates, but these compounds cannot be easily 

identified using HP 13C NMR/MRI methods225. 1H HRMAS also showed elevated lactate 

and alanine concentrations in biopsy samples from human prostate cancer patients226. In 

vivo imaging of these metabolites using 1H MRSI is challenging, however, as their 

resonances lie close to the lipid resonances surrounding the prostate tissue. In contrast, 

HP 1-13C pyruvate imaging is an ideal tool for real-time measurements of lactate and 

alanine as potential biomarkers for prostate cancer. 

 

A number of HP 1-13C pyruvate studies have been conducted that demonstrate the 

technique's feasibility for evaluating prostate cancer. The most widely used animal model 

is the transgenic adenocarcinoma of mouse prostate (TRAMP) model227, which has shown 

increased HP lactate labeling in multiple in vivo studies170,172. The lactate signal (or lactate 

to pyruvate ratio) was also correlated with increasing tumor grade228. It is important to note 

that, due to the small size and multi-lobar structure of a normal mouse prostate, the tumor 

lactate measurements in these studies were compared to lactate measurements from 

either the kidney or liver (unchanged in control and TRAMP cohorts). All of these findings 

were confirmed using emerging imaging techniques (section 4) which further showed the 

heterogeneity of the tumor, especially in relationship to disease progression228,229. Other 

TRAMP studies have also demonstrated the use of HP [1-13C]pyruvate spectroscopy to 

extract kinetic parameters for this disease, but have found the fitted rate constants to be 

heavily dose-dependent in the simplistic model used163. 
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Findings from the in vivo TRAMP model have been translated to ex vivo and in vivo human 

studies. Ex vivo HP [1-13C]pyruvate studies using tissue slice culture (TSC) cells derived 

from radical prostatectomy specimens showed different metabolic ratios compared to 

patient biopsies. However, the trend in changes between benign and cancerous tissue 

were similar in all the studies: i.e., increasing lactate with increasing cancer grade230. In 

2013, the first in man HP [1-13C]pyruvate study was performed in 31 patients with prostate 

cancer101. As a phase 1 trial, its primary goal was to study the dose dependent effects of 

delivering HP [1-13C]pyruvate. The study confirmed the safety of the technique at the 

highest delivered dose of 0.43 mL/kg (of 230 mM agent), paving the way for further human 

studies by demonstrating increased HP lactate/pyruvate in biopsy-confirmed regions of 

cancer. 

 

Although most work in the prostate has used HP [1-13C]pyruvate, other HP agents have 

also been used to study prostate cancer. For example, HP [2-13C]fructose’s conversion to 

fructose-6-phosphate via hexokinase was found to increase in the tumor region231; DHA 

was also used in the TRAMP model, and the ratio of DHA to DHA plus ascorbate was 

found to increase in the late stage of the disease187. 

 

2.5.4. Kidney 

Over the last decade, hyperpolarized 13C NMR/MRI has been used extensively to study 

changes in blood flow and metabolism in the kidneys and renal system. The kidneys 

receive approximately 20% of the cardiac output, making high 13C SNR easily achievable 

following intravenous administration of a hyperpolarized bolus.  
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The metabolism of healthy kidneys has been characterized using hyperpolarized [1-

13C]pyruvate in a manner similar to other organ systems. An in vivo rat study demonstrated 

significant conversion of HP pyruvate to both HP lactate and HP bicarbonate, while there 

was minimal conversion to alanine232. In another study, when pigs were given an oral 

sucrose load, it was found that the lactate to pyruvate ratio correlated with the blood 

glucose level, while all other metabolites of pyruvate remained unchanged102.  

 

In addition to the metabolically active pyruvate, the metabolically inert [13C]urea has also 

been used to characterize blood flow and other functional parameters in the kidneys. One 

in vivo rat study using [13C]urea showed a more than three-fold difference in renal blood 

flow compared to hepatic blood flow233, while another demonstrated that the T2 of 

[13C,15N]urea in kidneys was greater than ten seconds, as opposed to 1.3 seconds in 

blood, likely due to deoxyhemoglobin-induced paramagnetic relaxation in the latter117. 

Finally, a third in vivo rat study demonstrated more rapid medullary [13C]urea 

enhancement in the antidiuretic state, suggesting that [13C]urea could be used as a marker 

for urea transporter UT-A1 activity234.  

 

Hyperpolarized imaging techniques have also been used to characterize disease models 

in kidneys. For instance, renal cell carcinomas (RCCs) are a broad group of tumors 

affecting the kidney that have been studied in some detail using hyperpolarized 13C. In 

vitro HP [1-13C]pyruvate studies of two different RCC cell lines (UOK262 and UMRC6) and 

healthy proximal tubule epithelial (HK-2) cells have shown that the observed pyruvate to 

lactate ratio and the ratio of HP intracellular lactate to extracellular lactate (efflux ratio) can 

be used to distinguish the three different cell lines from each other235,236. Furthermore, the 
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HP lactate efflux ratio strongly correlates with MCT4 mRNA expression, suggesting its 

potential use as a biomarker for differential diagnosis of RCCs. 

 

Acute tubular necrosis (ATN) is the most frequent cause of acute kidney injury, but there 

is no clinically available noninvasive tool to differentially diagnose ATN from other similar 

disorders such as glomerulonephritis (GN). An in vivo mouse study showed that the 

conversion of hyperpolarized [1,4-13C2]fumarate to malate was significantly greater in the 

ATN cohort compared to healthy or GN cohorts237, indicating that hyperpolarized [1,4-

13C2]fumarate could be a useful biomarker by providing differentiable diagnostic 

information on the causes of acute kidney injury. 

 

Hyperpolarized [1-13C]pyruvate has also been used to study metabolic changes in the 

renal system following the onset of diabetes. One in vivo rat study using a streptozotocin 

diabetes model showed a 149% increase in the lactate to pyruvate ratio of diabetic rats 

compared to controls238. Another in vivo study demonstrated that reduced oxygen 

availability lead to 23% and 34% increases in lactate and alanine labeling, respectively, in 

diabetic rats, whereas no such difference was observed in the control cohort.239. 

 

2.5.5. Lung 

Hyperpolarized 13C metabolic imaging of the lungs is quite challenging because of their 

low tissue density, high susceptibility/B0 inhomogeneity due to air-tissue interfaces, 

motion, and low metabolic rate compared to solid organs240. At the same time, however, 

since the lung receives the full blood supply during each circulation and plays a key role 

in whole body homeostasis, HP carbon MRI can be a valuable tool for evaluating lung 

metabolism and pathology.  
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HP 13C MRI was first used in the porcine lung as a contrast agent to demonstrate feasibility 

as an angiography tool for evaluating pulmonary perfusion and imaging the pulmonary 

vasculature74. When evaluating the suitability of specific hyperpolarized agents in different 

pulmonary disorders, however, metabolic imaging is most easily performed using ex vivo 

perfused lungs. HP [1-13C]pyruvate spectroscopy of an ischemia-reperfusion model in 

perfused rat lungs showed a significant increase in HP lactate labeling after ischemia; the 

lactate labeling was restored to baseline levels approximately 30-40 minutes after 

reperfusion173. As we will see in Chapter 3, HP [1-13C]pyruvate can also been used to 

investigate the mechanism by which ascorbate prolongs the viability of isolated perfused 

lungs162. We found that ascorbate enhanced viability via interaction with the electron 

transport chain rather than its more common role as a general antioxidant. HP signal 

dynamics and the response to perfusate contents in the healthy lung were addressed 

using a three-compartment model to confirm the experimental finding241 that HP lactate 

labeling is primarily determined by the rate at which NAD+ is reduced to NADH, and scales 

with the intracellular lactate pool size165. As discussed in Chapter 4, we also demonstrated 

a greater than three-fold increase in HP pyruvate-to-lactate ratio during the inflammatory 

phase of a bleomycin induced lung injury model in perfused rat lungs, which was well 

correlated with histological neutrophil count122.  

 

Current research is focused on moving towards in vivo HP 13C lung imaging. The first such 

in vivo study in rats demonstrated an increase in HP lactate labeling compared to controls 

in a radiation-induced lung injury (RILI) model242. These results were consistent with lung 

inflammation as measured from bronchioalveolar lavage. Another pair of studies 

demonstrated increased HP lactate with inflammation in a two-hit model of acute lung 
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injury, as well as its attenuation with protective ventilation techniques243,244. Finally, 

chapter 5 will focus on studies in which we demonstrated that increased HP lactate can 

be used as an early biomarker for lung transplant rejection in a rat model. 

 

2.6. Conclusion 

Over the past fifteen years, considerable advancements have been made in developing 

hyperpolarized injectable agents for use in medical imaging, and tangible progress has 

begun towards the dual goals of developing affordable HP MRI biomedical applications 

and the robust use of this technology in human studies245,246. 

 

The technical improvements which HP liquid MR research has achieved over this period 

are clearly visible in labs around the world. Similar to hyperpolarized gas technology a 

decade earlier, molecular imaging using DNP-hyperpolarized compounds has progressed 

from reliance on homemade equipment to the use of commercial devices suitable for in 

vitro and small animal research and, finally, to equipment capable of safely and efficiently 

producing large samples appropriate for human trials. PHIP has also undergone a 

technical renaissance sparked by recent demonstrations of spin-order transfer in transient 

catalytic complexes and chemical modification of the hyperpolarized compound.  

 

Just as importantly, novel imaging methods have proven capable of using the 

hyperpolarized state more efficiently by improving acquisition speed, metabolite 

selectivity, spatial and temporal resolution, and immunity to motion artifacts. At the same 

time, vigorous effort have also been made to extract the quantitative information (e.g., rate 

uptake and metabolic flux) necessary to attain a fundamental understanding of metabolic 

signals by combining imaging results with kinetic modeling. Indeed, some of the most 
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promising work highlighted in the organ-specific discussion above relies on these 

procedural improvements in image acquisition and analysis. For example, the primary 

focus of most HP MR heart studies has been quantifying PDH flux and its modification 

with physiological stress or pharmaceutical intervention. Similar efforts have been pursued 

in isolated, perfused organs, for which the arterial input function is known, as well as in 

brain and liver, for which it is measured. In addition to detecting low-concentration 

intermediates, these studies have already yielded unique quantitative metabolic flux and 

exchange data and can naturally be extended to quantitative assessments of perfusion 

and/or flux in any organ and in tumors. 

 

The central challenge moving forward will be the clinical translation of sequences and 

modeling techniques suitable for quantification, with the aim of better understanding the 

relationship between these new measurements and human disease. Human studies have 

already begun101,247–249, and will grow dramatically in the immediate future as the solutions 

to technical and regulatory challenges are disseminated.   
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Chapter 3: A Mechanistic Study of Lung Viability during Ex Vivo Lung Perfusion 

(EVLP) Using 31P and Hyperpolarized (HP) [1-13C] Pyruvate Nuclear Magnetic 

Resonance		

 

Abstract 

Ex vivo lung perfusion (EVLP) has recently shown promise as a means of assessing and 

revitalizing the health of lung grafts and improving post-transplant graft performance. 

However, perfusion of ischemic lung promotes energy depletion and leads to a 

progressive loss of normal mitochondrial function; it remains unclear to what extent EVLP 

itself contributes to this metabolic decline. The anti-oxidant ascorbate has been shown to 

mitigate the effects of ischemia–reperfusion injury, but the nature of its effects during 

EVLP are also not clear. In this study we used hyperpolarized (HP) [1-13C] pyruvate NMR 

in conjunction with the more established 31P NMR to answer a series of complementary 

questions on lung metabolism during EVLP and its response to the administration of 

ascorbate. Our experiments demonstrated that the oxidative phosphorylation capacity and 

pyruvate dehydrogenase flux of lungs decline during ex vivo perfusion. The addition of 

ascorbate to the perfusate increased the hyperpolarized 13C bicarbonate signal by a factor 

of 2.7 and prolonged lung viability by 80%. Furthermore, we used HP [1-13C] pyruvate 

spectroscopy to show that the ascorbate effect is not due to its antioxidant properties, but 

rather due to its ability to energize pulmonary mitochondrial activity through an 

independent interaction with ETC complexes. This study established that HP [1-13C] 

pyruvate MRS can be used to assess the response to treatment during EVLP for improving 

procurement and preservation of lungs for transplantation. 

This chapter has been adapted from the published article, ‘Ascorbic acid prolongs the viability and 
stability of isolated perfused lungs: A mechanistic study using 31P and hyperpolarized 13C nuclear 
magnetic resonance’ in Free Radical Biology and Medicine, 89:62-71(2015) 
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3.1. Introduction 

Lung transplantation is the established treatment for patients with chronic, end-stage lung 

disease1. However, its utility is limited both by the chronic shortage of donor lungs as well 

as post-transplant complications2. Although efforts have been made to expand the pool of 

available organs via aggressive donor management and novel lung preservation 

strategies, our incomplete understanding of the mechanism and progression of donor lung 

injury continues to limit our ability to fully exploit these advances to improve lung transplant 

outcomes. In recent years, ex vivo lung perfusion (EVLP) shown promise as a valuable 

technique for reassessing the health of grafts initially classified as high risk3, thereby 

allowing a greater percentage of lungs to be transplanted. Moreover, as compared with 

cold preservation alone, the application of EVLP before transplant results in significantly 

higher post-transplant oxygenation and slower edema formation4. 

 

Despite these highly promising developments, uncertainty about the role of ex vivo 

perfusion in lung graft health remains. The most common mechanism of early mortality 

subsequent to lung transplantation is ischemia–reperfusion injury (IRI)5,6, which can cause 

acute graft dysfunction. When hypoxic cells are reperfused with oxygenated perfusate (or 

blood), reactive oxygen species (ROS) form which are generally accepted as the major 

source of the cellular damage and pulmonary edema characteristic of IRI7–10. Reperfusion 

of ischemic lung leads to fundamental metabolic alterations, including a decline in 

oxidative phosphorylation capacity and reduced activity of the electron transport chain 

(ETC) complexes11–14; in cardiac tissue, ischemia–reperfusion has also been shown to 

decrease activity of the pyruvate dehydrogenase complex (PDHc)15. It is not known, 

however, whether this energy decline is due solely to the reaction of ischemic lung to 

reperfusion, or whether EVLP itself contributes to these changes. 
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In tandem with investigating lung health during reperfusion, recent research has focused 

on identifying methods that can improve graft viability. For example, antioxidant therapy 

and/or preconditioning12,14,16–19 have been shown to limit the extent of IRI, an effect 

conventionally attributed to antioxidants’ mitigation of ROS-induced damage20–24. Among 

all antioxidants, ascorbate appears to be the most attractive option for treating and 

preventing IRI in the lung and other organs25–30. Ascorbate administration has been shown 

to reduce oxidative damage in endothelial cells, improve tissue perfusion, inhibit tumor 

necrosis factor α (TNF α), reduce mitochondrial swelling and damage, preserve 

mitochondrial respiration, reduce edema , reduce proinflammatory chemokine expression 

and reduce oxidative damage31–37.  

 

The goal of this study was to determine whether hyperpolarized (HP) [1-13C] pyruvate 

NMR can be used in conjunction with the more established 31P NMR to answer a series 

of complementary questions on lung metabolism during EVLP and its response to 

ascorbate. First, is the energy decline previously observed during reperfusion completely 

due to reperfusion of ischemic lungs, or does EVLP itself affect the energy status of the 

lungs? Second, how does the administration of ascorbate affect lung energy status during 

EVLP? Third, is the effect of ascorbate on ex vivo perfused lung metabolism a result of its 

antioxidant property, or is it related to other mechanisms (e.g., its ability to energize the 

respiratory chain)?  

 

To assess these questions, we used 31P NMR (nuclear magnetic resonance) to 

continuously monitor adenine nucleotides and energy status during perfusion. We also 

used HP13C NMR to noninvasively and simultaneously measure the conversion of [1-
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13C]pyruvate into [1-13C]lactate and [13C]bicarbonate, which serve as indicators of 

glycolytic and oxidative metabolism, respectively. Persistent lactate release during 

reperfusion as a result of glycolytic upregulation has previously been observed and 

correlated with lung graft quality11,12. In addition, we previously demonstrated a significant 

increase in hyperpolarized [1-13C]lactate signal as a result of anaerobic metabolism of [1-

13C]pyruvate in ischemic isolated perfused lungs38; however, this affect has yet to be 

observed during EVLP itself under normoxic conditions. 

 

3.2. Materials and Methods 

 

3.2.1. Animals 

All animal experiments were conducted in accordance with protocols approved by the 

institutional animal care and use committee of the University of Pennsylvania. Male 

Sprague–Dawley rats weighing 320±70 g were used for all experiments. All rats were 

housed under similar environments and dietary conditions. 

 

3.2.2. Isolated Perfused Lungs 

All imaging studies were performed in ex vivo, isolated, perfused lungs. Prior to excision 

of the lungs, rats were anesthetized with intraperitoneal (IP) pentobarbital, tracheostomy 

was performed, and 200 U of heparin was administered via tail vein. The lungs were 

prepared for NMR study according to the previously reported method of degassing39,40. In 

short, the animals were ventilated with pure O2 (50 breaths/min, 11–14 cmH2O peak 

inspiration pressure) for 10 min to remove all N2 from the airways. Immediately after 

ventilation, the trachea was sealed (end exhalation) with a suture, allowing residual O2 to 
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be absorbed by the circulating blood and perfusate. Thoracotomy was immediately 

started, the heart was cut transversely, and the pulmonary artery was cannulated via the 

right ventricle. After perfusion was started, the lungs were rapidly excised and placed in a 

20 mm NMR tube. Lungs were perfused at 10 ml/min with 500 ml of modified Krebs–

Henseleit buffer that contained 119 mM NaCl, 25 mM NaHCO3, 1.3 mM CaCl2, 1.2 mM 

MgSO4, 4.7 mM KCl, 10 mM glucose, 2 mM lactate, 0.2 mM pyruvate, and 3% (w/v) fatty-

acid-free bovine serum albumin (BSA, Fisher Bioreagents). The perfusate was passed 

through an oxygenating column under a constant flow of 1 atm 95:5 O2 /CO2 and warmed 

via passage through water-jacketed tubing. The CO2 concentration in the oxygenating 

column was chosen to maintain constant perfusate pH during oxygenation, although 

periodic adjustment with 1 N HCl or NaOH was needed to maintain a physiological value 

of 7.4±0.05. The lung was perfused at constant flow throughout the experiment. The 

temperature of the perfusate in the NMR tube was continuously monitored and maintained 

at 36.5±1 °C. 

 

3.2.3. Preparation and Administration of Hyperpolarized [1-13C]pyruvate 

Some of the studies were conducted using hyperpolarized [1-13C]pyruvate. Here, 28.7 mg 

[1-13C]pyruvic acid (Cambridge Isotope Laboratories) was mixed with 15 mM OX063 trityl 

radical (Oxford Instruments) and 1.5 mM Dotarem Gd chelate (Guerbet). This mixture was 

polarized to approximately 20% at 1.42 K and 94.062 GHz with a HyperSense DNP 

system (Oxford Instruments). Then, 4 ml of Tris-buffered saline with 100 mg/L 

ethylenediaminetetraacetic acid (EDTA) was heated to 190 °C at 10 bar and was used to 

rapidly dissolve the frozen sample. Next, 1 ml of this sample was further diluted in 19 ml 

of oxygenated Krebs–Henseleit buffer (without BSA, which was found to cause 
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unacceptable signal loss during sample transport) to yield a neutral isotonic solution of 4 

mM [1-13C]pyruvate. This solution was injected into the perfusate line at 10 ml/min in lieu 

of the steady-state perfusion buffer. After the 120 s required to inject the hyperpolarized 

solution, normal lung perfusion was restarted. 

 

3.2.4. Magnetic Resonance Spectroscopy 

All magnetic resonance spectra and images were obtained using a 9.4-T vertical bore 

magnet (Varian, Palo Alto, CA, USA) equipped with a gradient insert (Resonance 

Research, Billerica, MA, USA) and a 20 mm 1 H/broadband probe (Doty Scientific, Co- 

lumbia, SC, USA). After inserting the probe, the sample was tuned and matched. A 1H 

gradient echo image (1 slice in each axis, field of view = 30x30 mm) was acquired to 

confirm the position and integrity of the organ (lack of edema). The sample was then 

shimmed on proton to a linewidth of approximately 35 Hz. The above-mentioned steps 

required approximately 10 to 20 min.  

 

In each lung studied, a series of 31P spectra was acquired to assess high-energy 

phosphate status during the entire perfusion period. In some cases, one or two sets of HP 

[1-13C]pyruvate spectra were also acquired, bracketed by 31P spectra to evaluate the 

stability of the lung condition and its metabolic activity as well as the reproducibility of the 

measurement. HP 13C spectrum series were separated by the 1 hour required to 

hyperpolarize another pyruvate sample. The 31P spectrum was acquired with the following 

parameters: repetition time (TR) = 1 s, nominal flip angle (α) = 60 °, acquisition time (AT) 

= 200 ms, spectral width (SW) = 100 kHz, and averages (NT) = 512, with a total scan time 

of 8:32 min. If the 31P spectroscopy was followed by HP 13C spectroscopy, the probe was 

then tuned to 13C. During 13C acquisition, the perfusate pump was turned off as the 
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hyperpolarized solution was injected via a secondary line. Low flip-angle spectra were 

acquired for the several-minute duration of the hyperpolarized signal (TR = 1 s, nominal α 

= 10°, AT = 800 ms, SW = 50 kHz, 300 individual spectra acquired), after which the steady-

state perfusion was restored. 

 

3.2.5. Study Protocols 

The study was divided into four sections. 

 

3.2.5.A. Study I: Control and Ascorbate Studies 

In this study, the longevity of the perfused lungs was measured in the absence (control) 

and presence of 2 mM ascorbate (henceforth referred to as the “ascorbate cohort”) 

dissolved in the perfusate. The perfusate was otherwise the same for the two cohorts and 

was as described above. The perfused rat lungs were observed longitudinally by 31P NMR 

in the two cohorts: control (n = 5) and ascorbate (n = 5). Ascorbate (Sigma–Aldrich, St. 

Louis, MO, USA) was dissolved into the perfusate 10 min before the lungs were perfused. 

The perfusate and the particle filter were replaced by fresh oxygenated perfusate after 3 

h of perfusion to replenish depleted nutrients. A phosphorus spectrum was acquired every 

40 min until the endpoint of the study was reached. The study ended when the nucleoside 

signal was undetectable by 31P NMR or when perfusion stopped due to lung edema. 

Edema was detected by a gradient echo image that showed a distended lung as well as 

the abrupt increase in backpressure in the perfusion apparatus. 
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3.2.5.B. Study II: Hyperpolarized [1-13C]pyruvate Studies of Control and Ascorbate 

Cohorts 

In this study, the metabolic activity of the lungs in the absence (control, n = 11) and 

presence of 2 mM ascorbate (ascorbate, n = 12) in the perfusate was evaluated. An HP 

13C spectrum series, bracketed by a pre- and post- 31P spectrum, was acquired 40 min 

after lung perfusion was started. In 6 of the controls, the entire series ( 31P spectrum, HP 

spectrum series, 31P spectrum) was repeated after a 1 h delay to determine the metabolic 

stability of the perfused lung. In 3 of these repeated controls perfusion was continued with 

the control perfusate, but in the other 3 repeats 2 mM ascorbate was dissolved in the 

perfusate after the first set of spectra was acquired. 

 

3.2.5.C. Study III: Antioxidant Studies 

The goal of this study was to determine whether the primary mechanism of ascorbate’s 

effect on lung stability and metabolism was due to its antioxidant effect. As such, the 

perfused lungs were evaluated in the presence of the following compounds: 

dehydroascorbate (DHA, n = 3), glutathione (GSH, n = 3), and α -lipoic acid (ALA, n = 3). 

Here, 2 mM of each compound was added to the perfusate approximately 10 min before 

starting perfusion. The effect of ascorbate’s concentration on the perfused lung was also 

evaluated by dissolving 0, 0.5, 1, 2, 4, 8, and 16 mM ascorbate in the perfusate (n = 3 

each except for the larger 0- and 2 mM cohorts described above). Similar to study II, the 

lungs were perfused and monitored by a series of NMR acquisitions ( 31P spectrum, HP 

spectrum series, 31P spectrum). 
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3.2.5.D. Study IV: Electron Transport Chain Studies 

The goal of this study was to determine the effect of activating complex IV with a 

cytochrome c reducing agent and/or inhibiting complex I (via rotenone) on pyruvate 

metabolism. Similar to studies I to III, the lungs (n = 13) were perfused with control 

perfusate and an initial 31P spectrum was acquired. After this acquisition, the perfusion 

parameters were modified as follows. The flow rate of the perfusate was decreased to 9 

ml/min, and a second infusion at a flow rate of 1 ml/min was started. The two lines were 

merged so that the final flow rate was still 10 ml/min. The second reservoir contained 

identical perfusate except for the addition of either rotenone or TMPD (N,N,N',N'-

tetramethyl-p-phenylenediamine) + ascorbate, such that the combined infusion contained 

20 mM rotenone or 25 mM TMPD + 250 mM ascorbate. After perfusing the lung with either 

rotenone for 10 min or TMPD + ascorbate for 40 min, the second pump was stopped and 

the main line’s flow rate was returned to 10 ml/min. An HP 13C spectrum series was then 

acquired, followed by post-injection 31P spectra to assess the lung’s metabolic and 

energetic state after the HP [1-13C]pyruvate study. Rotenone-perfused lungs (n = 8) were 

subjected to a second HP pyruvate administration. The second HP pyruvate injection was 

administered after either 40 min of treatment with 25 mM TMPD + 250 mM ASA (ascorbic 

acid) (n = 5) or 40 min of additional perfusion by normal perfusate (n = 3). The 

concentration of rotenone was selected based on a previously reported study that 

demonstrated complete blockade of complex I and depression of whole-lung oxygen 

consumption with no detectable impact on complexes III and IV 41. To determine the 

effective concentration of TMPD/ASA, the effect of different concentrations of TMPD/ASA 

(12.5–100 μ M TMPD/10 # ASA, n = 3) was studied on HP pyruvate metabolism. 
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3.2.6. Post-processing of Spectra 

Spectra (carbon and phosphorus) were downloaded for offline processing using custom 

MATLAB (MathWorks, Natick, MA, USA) routines. In general, the spectra were 

automatically Fourier-transformed, line-broadened, baseline-corrected, phase-corrected, 

and then peak-fitted for data evaluation. 

 

31P spectra were least-squares fit to 13 Lorentzian peaks, allowing the individual peak 

heights and common peak width to vary freely. The peak frequencies were kept fixed; 

peak identities (ppm chemical shifts relative to phosphocreatine [PCr]) were PME 

(phosphomonoester, 6.70), Pi (inorganic phosphate, 5.08, 4.32), GPC (glycerol 3-

phosphorylcholine, 3.03), GPE (glycerol 3-phosphorylethanolamine, 2.24), PG 

(phosphoglycans, 1.80), PCr (0.00), g-ATP + b-ADP (–2.36), a-ATP + ADP + AMP (–7.52), 

diphosphodiester/NAD(H) (–8.18, –9.68, –11.49, –13.30), and b-ATP (–16.13). The quality 

of the fit was found to improve substantially by including three additional peaks of fixed 

position (3.5, –4, and –10 ppm) and width (3, 8, and 4 ppm, respectively) to account for 

contributions from unresolved 31P species. Although consistent with previous 

measurements 42,43, the number and identity of resonances are uncertain. The b-ATP peak 

was the best resolved peak with a good fit quality. Because ATP content is accepted as a 

valid viability marker of cells, the b-ATP peak intensity normalized by total 31P signal 

(summation of all 31P peak intensities) was used to evaluate lung viability 44–46. The 

duration of viability and rate of β -ATP reduction for each lung were calculated by 

considering time points for which the β -ATP/total 31P ratio exceeded 50% of the initial ratio 

and total 31P signals exceeded 90% of the initial value (indicating no or minimal edema). 

The greater than 50% β -ATP/total 31P index was chosen as a measure of viability because 
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we observed an abrupt energy status deterioration and the onset of edema once that 

threshold was crossed. The lung’s energy status was evaluated by the adenylate energy 

charge (EC) which is calculated from the peak intensities 47,48 as  

𝐸𝐶 =
𝐴𝑇𝑃 + 12𝐴𝐷𝑃

𝐴𝑀𝑃 + 𝐴𝐷𝑃 + 𝐴𝑇𝑃
 

13C spectra were least-squares fit to five Lorentzian peaks, allowing the individual peak 

heights to vary. The peak positions and widths were set using an initial free fit (amplitude, 

width, and position) to the average of all spectra with a signal-to-noise ratio greater than 

30. The peaks were identified as pyruvate, alanine, pyruvate hydrate, lactate, and 

bicarbonate with ppm chemical shifts relative to pyruvate of 0.00, 5.68, 8.42, 12.26, and –

9.98, respectively. Additional peaks representing natural abundance nuclei or impurities 

were not included in the fit. All metabolite signals were normalized by the integrated 

pyruvate signal and the lung’s weight as calculated from the body mass49. Metabolite ratios 

were calculated by dividing the individual metabolite signals by the total HP 13C metabolite 

signal (lactate + alanine + bicarbonate). 

 

3.2.7. Statistical Methods 

All data in the text, figures, and tables are presented as means + standard errors (SE). 

Separate two-tailed Student’s t-tests with Bonferroni correction were used to evaluate 

significance and calculate P-values of the control and ascorbate cohorts in studies I and 

II. In studies III and IV, to determine whether the model groups were characterized by 

different means when measured using 13C or 31P spectroscopy, analysis of variance 

(ANOVA) followed by Tukey’s HSD (honestly significant difference) post hoc test was 

performed. To determine the extent of a direct relationship between the viability markers 
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as measured using 13C and 31P spectroscopy, simple correlations were calculated across 

all measurements in which both metrics were available. All statistical analyses were 

performed using the open source R statistical package (http://www.r-project.org). 

 

3.3. Results 

Figure 3.1 shows representative time series of 31P spectra acquired during perfusion of 

the isolated lungs with (panel A) and without (panel B) 2 mM ascorbate. In all lungs, 

intensities of the PCr and ATP peaks decreased with time, whereas intensity of Pi 

increased. Perfused lungs in the ascorbate cohort remained viable, defined as greater 

than 50% of the initial β-ATP/total 31P ratio, for a longer duration (6.1±0.3 h) than the 

control lungs (3.4±0.5 h). Figure 3.1C depicts the average β-ATP peak area as a function 

of perfusion time for each cohort. As seen in the figure, the rate of β-ATP decrease was 

reduced approximately 2-fold in lungs treated with ascorbate. In both cohorts, the β-ATP 

decrease accelerated abruptly when the ATP/total 31P ratio was less than 50% of the initial 

ratio. 

 

Figure 3.2A displays a representative series of hyperpolarized 13C spectra from rat lungs 

of the 2 mM ascorbate cohort. The observed linewidths were typically approximately 10 

Hz. Peaks corresponding to [1-13C]pyruvate and [1-13C]pyruvate hydrate appear first, 

followed within a few seconds by [1-13C]lactate, [1-13C]alanine, and [13-C]bicarbonate. In 

control lungs, the [13C]bicarbonate peak is typically small or undetectable in a single 13C 

spectrum, perhaps due to a combination of the lung’s low tissue density and low oxidative 

metabolism. However, all of the ascorbate cohort lungs exhibited both a larger and more 

rapidly appearing bicarbonate signal. The Figure 3.2A inset compares representative 
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averaged 13C spectra of control and ascorbate lungs, exemplifying this several-fold 13C 

bicarbonate signal increase. 

 

Figure 3.1: Representative series of 31P spectra during perfusion in the presence (A) and absence 
(B) of 2 mM ascorbate. 31P NMR spectra assignment: 1, PMEs; 2, Pi; 3, PCr; 4, γ- ATP and β-ADP; 
5, α-ATP, α-ADP, and AMP; 6, NADs (nicotinamide adenine dinucleotides); 7, β-ATP. (C) 
Comparison of 31P β-ATP peak intensity during perfusion in the absence (open circles, control) and 
presence (stars, ascorbate) of 2 mM ascorbate. Data are expressed as percentage changes from 
baseline. Only the points greater than 50% were used to fit the trend linear lines. 
 

Figure 3.2.B summarizes the differences in averaged lactate, alanine, and bicarbonate 

signals between the control (n = 11), and ascorbate (n = 12) lungs. On average, the 
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bicarbonate signal is 2.7 times larger (P < 0.005) in the ascorbate cohort. Average lactate 

and alanine intensities were also larger in the lungs perfused with ascorbate, but these 

increases did not individually reach the level of significance (lactate and alanine, P = 0.70). 

These ascorbate-dependent metabolic changes are summarized in Table 1.  

 

Figure 3.2: (A) Representative time series of stacked 13C spectra (bottom) and comparison of two 
averaged 13C spectra (top) for lungs in the absence and presence of 2 mM ascorbate. The stacked 
series was acquired in an ascorbate lung; bicarbonate signal is typically difficult to observe in 
control lungs. Undefined peaks are due to agent impurities. (B) Comparison of averaged HP 13C 
metabolite production in rat lungs perfused without (control, n = 11) and with (ascorbate, n = 12) 2 
mM ascorbate dissolved in the perfusate. Bicarbonate production in the ascorbate cohort is 
significantly higher than in the control cohort (2.7-fold, P < 0.005). The inset shows the change 
between two hyperpolarized pyruvate administrations (n = 6) with and without 2 mM ascorbate 
dissolved in the perfusate after the first series of HP spectra were acquired. In all cases, the addition 
of ascorbate resulted in a partial reversal of the decline in bicarbonate and the increase in lactate 
signals. 
 

On average, the total metabolite signal (lactate + alanine + bicarbonate) was 24% larger 

in the ascorbate cohort. To distinguish the observed bicarbonate signal increase from 

overall changes in metabolism or transport, Table 3.1 also summarizes the fraction of 

apparent metabolic activity accounted for by each observed process. The bicarbonate 

ratio (i.e., bicarbonate / [lactate + alanine + bicarbonate]) was still 2.3 times higher (P < 

0.05) in the ascorbate group than in the control group. The inset of Figure 3.2B shows the 

progression of metabolite ratios between the first and second administrations of HP 



86 
 

pyruvate in both cohorts. The bicarbonate ratio decreased in all three control lungs for 

which two HP administrations were performed and increased in all three lungs treated with 

ascorbate. The lactate ratio increased in all control lungs and decreased in all lungs 

treated with ascorbate. Differences between the cohorts are significant for both lactate 

and bicarbonate ratios (P < 0.05).  

 

Figure 3.3: (A) All averaged (n = 3 except for control, n = 11) and 2 mM control (n = 12) 
hyperpolarized 13C bicarbonate signals as a function of perfusate ascorbate concentration. The 
data were fitted to B = B0 + Bsat [ASA] / (K + [ASA]), where Bsat is the maximum effect achieved by 
the system at maximum (saturating) substrate concentrations and K is the substrate concentration 
at which the effect is half of Bsat. (B) Correlation of 13C bicarbonate ratio with the ratio of post-
injection to pre- injection β-ATP/total 31P (r = 0.84, P < 0.0001). The post/pre ratio of β-ATP/total 
31P for controls is significantly lower than for the ascorbate cohort (20%, P < 0.0005). The pre/post 
ratio of energy charge for controls also is significantly lower than for the ascorbate cohort (11%, 
figure inset, P < 0.01). 

The effective concentration of ascorbate was evaluated by observing hyperpolarized [1-

13C]pyruvate metabolism with varying amounts (0–16 mM) ascorbic acid added to the 

perfusate. The bicarbonate signal increased in a concentration-dependent manner and 

showed saturation behavior. Figure 3.3A displays the averaged [13C]bicarbonate signal B 

as a function of ascorbate concentration [ASA] and the curve fit to the general form of: 

𝐵 = 𝐵- +
𝐵./0[𝐴𝑆𝐴]
𝐾 + [𝐴𝑆𝐴]
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as suggested by Kepner, et al50. In this expression, Bsat is the maximum effect achieved 

by the system at maximum (saturating) substrate concentrations, and K is the substrate 

concentration at which the effect is half of Bsat. Best fit parameters were Bsat/B0 = 4.9 and 

K = 1.21 mM. The observed HP pyruvate metabolite signals and ratios for each ascorbate 

concentration studied are summarized in Table 3.1. 

Cohort n Conc 
[mM] Lactate % Alanine % Bicarbonate % 

Control 11 - 1.45±0.15 62.7±1.6 0.79±0.10 33.7±1.7 0.08±0.01 3.6±0.5 
Ascorbate 12 2 1.58±0.13 59.9±6.0 0.87±0.08 32.0±4.7 0.20±0.03 8.1±4.7 
Ascorbate 3 0.25 1.59±0.11 61.7±0.7 0.84±0.04 34.0±0.5 0.09±0.01 4.2±0.3 
Ascorbate 3 0.5 1.33±0.16 59.7±2.0 0.80±0.12 35.4±1.3 0.11±0.03 4.9±1.2 
Ascorbate 3 1 1.37±0.23 61.9±1.5 0.71±0.11 32.0±1.2 0.15±0.01 6.7±0.7 
Ascorbate 3 4 1.66±0.04 54.6±1.6 1.16±0.12 38.1±2.3 0.22±0.03 7.4±1.3 
Ascorbate 3 8 1.57±0.17 57.9±3.7 0.91±0.09 34.0±8.1 0.22±0.01 8.1±0.6 
Ascorbate 3 16 1.91±0.12 62.5±2.8 0.93±0.09 30.6±3.0 0.21±0.03 6.9±0.6 
DHA 3 2 1.45±0.25 61.9±1.6 0.84±0.12 35.7±1.8 0.05±0.04 2.2±0.2 
DHA + ASA 3 1 1.46±0.08 57.3±0.7 0.94±0.08 36.9±1.3 0.18±0.01 6.9±0.7 
ALA 3 2 1.88±0.51 65.7±5.9 0.84±0.10 32.5±5.0 0.04±0.01 1.82±0.9 
GSH 3 2 1.47±0.16 59.4±0.5 0.92±0.11 37.0±0.5 0.09±0.01 3.7±0.1 
TMPD/ASA 5 0.025/0.25 1.61±0.06 58.9±1.9 0.93±0.00 33.5±1.9 0.21±0.01 7.5±2.8 
Rotenone(F) 8 0.02 2.23±0.17 81.7±3.6 0.51±0.15 17.3±4.6 0.03±0.00 1.1±0.1 
TMPD/Roten.(S)* 5 - 1.53±0.21 64.0±3.1 0.80±0.11 32.5±3.0 0.06±0.00 2.5±0.3 
Rotenone(S) 3 - 1.98±0.04 82.3±3.1 0.45±0.18 16.8±4.0 0.002±0.00 0.4±0.3 

Table 3.1: HP 13C metabolite signals as a fraction of [1-13C]pyruvate signal in each of the study 
cohorts. The ratios are reported as % and represent the sum of all signals acquired during a series 
of spectra. The ratios reported in parenthesis are the fraction of total metabolites signals accounted 
for by each metabolite. Data are reported as mean ± SE. The (F) and (S) indicate first and second 
HP pyruvate injections, respectively. *Perfusate contained 25 mM TMPD + 250 μM ascorbate for 
40 min after 20 μM rotenone administration for 10 min. 

 
The energy charge of the perfused lungs increased from 0.82 ± 0.05 in controls to 0.88 ± 

0.03 (P < 0.05) in the ascorbate-treated lungs (pre-injection 31P NMR, after 40 min 

perfusion). Analysis of the post-injection 31P NMR spectra showed a significant decrease 

in the lung energy charge of the control cohort compared with the pre-injection energy 

charge (11%, P < 0.05) and no significant change in the energy charge of the ascorbate 

cohort. The β-ATP/total 31P ratio was also significantly decreased after hyperpolarized 
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agent injection in the control cohort (22%, P < 0.001) but was unchanged in the ascorbate 

cohort.  

 

Across all cohorts, the bicarbonate ratio was significantly correlated to the post/pre ratio 

of β-ATP/total 31P (r = 0.80, P < 0.0001) as well as to the energy charge (r = 0.47, P < 

0.05) (Figure 3.3B). The inset of Figure 3.3B compares the post/pre ratio of EC and β-

ATP/total 31P in the control and ascorbate cohorts. Both the post/pre ratios of EC and β-

ATP/total 31P for the controls are significantly lower than corresponding ratios of the 

ascorbate cohort (P < 0.01). 

 

Metabolic changes resulting from the addition of antioxidants and the oxidized form of 

ascorbate (DHA) were also examined to elucidate ascorbic acid’s mechanism of action in 

the isolated lung. The effect of 2 mM GSH and 2 mM ALP, two water-soluble anti-oxidants, 

on HP [ 13C]bicarbonate ratio can be seen in Figure 3.4A. Measurements of bicarbonate 

production in the presence of GSH were indistinguishable from the control cohort. On the 

other hand, GSH significantly increased the alanine ratio (48%) and decreased the lactate 

ratio by 26% (P < 0.01; data not shown). ALP (insignificantly) decreased the bicarbonate 

ratio and significantly elevated the lactate ratio by 20% (P < 0.05; data not shown). No 

significant effect was observed in the post/pre ratio of EC and β-ATP/total 31P for either 

GSH or ALP cohorts. Because ascorbate is oxidized to DHA in solution during the 

perfusion, the effect of 2 mM DHA and 1 mM DHA + 1 mM ASA on lung pyruvate 

metabolism (Figure 3.4B) were also studied. No significant effect was observed on the 

bicarbonate in the presence of DHA alone. However, 1 mM DHA + 1 mM ASA increased 

the bicarbonate ratio by 94%, which is comparable to the effect of 1 mM ASA alone. The 
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lactate and alanine ratios did not change in the presence of either DHA or 1 mM DHA + 1 

mM ASA. 

 

Figure 3.4: Comparison of 13C bicarbonate ratio in perfused control lungs (n = 11) and lungs treated 
with 2 mM GSH (n = 3) or 2 mM ALA (n = 3) (A) and lungs treated with 2 mM DHA (n = 3), 1 mM 
DHA þ 2 mM ASA (n = 3), or 1 mM ASA (B). Means with different letter designations are significantly 
different from one another (P < 0.05), and means with similar letter designations do not differ 
significantly (P 4 0.05). 
 

The metabolism of [1-13C]pyruvate in perfused lungs was also studied in the presence of 

rotenone and TMPD, two compounds commonly used in mitochondrial respiration and 

electron transport chain activity studies, to evaluate whether the observed increase in 

bicarbonate production may be related to increased ETC activity arising from ascorbate’s 

reduction of cytochrome c. Figs. 5A and 5B (top) compare the lactate and bicarbonate 

ratios in three cohorts of isolated perfused lungs: control (n = 11), 10 min perfusion with 

20 mM rotenone (n = 8), and 40 min perfusion with 25 mM TMPD + 250 mM ASA (n = 5). 

As seen in the figure, rotenone depressed the bicarbonate production ratio by 

approximately 68% (P < 0.005), whereas TMPD elevated the bicarbonate ratio by 

approximately 120% (P < 0.001), with respect to control lungs. Rotenone increased the 

lactate signal by 32% (P < 0.005), whereas TMPD did not cause any significant change in 
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the lactate ratio compared with the control. Neither rotenone nor TMPD significantly 

altered alanine production (data not shown). Subsequent treatment of rotenone-perfused 

lungs with 25 mM TMPD + 250 mM ASA restored the bicarbonate ratio and depressed the 

lactate ratio, such that both metabolites became statistically indistinguishable from those 

of the control cohort.  

 

Figure 3.5: (A,B) Hyperpolarized 13C lactate/total metabolite ratio (A, top) and 13C bicarbonate/total 
metabolite ratio (B, top). (C) Top: Effect on energy charge of treatment with 20 mM rotenone for 10 
min and with 25 mM TMPD þ 0.25 mM ASA for 40 min. The bottom panels show comparison of the 
lactate ratio (A), the bicarbonate ratio (B), and the energy charge (C) for two hyperpolarized 
pyruvate administrations in individual lungs. “First” and “Second” indicate first and second 
injections, respectively, and are linked by lines. First injections were performed after 10 min of 
rotenone perfusion (filled circles). Second injections representing perfusion with 25 mM TMPD þ 
0.25 mM ascorbate for 40 min after rotenone administration are shown as filled triangles. Those 
representing perfusion with normal perfusate after rotenone administration are shown as filled 
squares. Means with different letter designations are significantly different from one another (P < 
0.01), and means with similar letter designations do not differ significantly (P > 0.01). 
 

This increase in bicarbonate ratio and decrease in lactate ratio was seen in all lungs where 

rotenone treatment was followed by TMPD + ASA, whereas those not exposed to TMPD 
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+ ASA continued to decline (Figs. 5A and 5B, bottom). Rotenone treatment also depressed 

the 31P-derived energy charge by 18%, and TMPD enhanced it by 14% (P < 0.001). These 

results appear in Figure 3.5C. Subsequent treatment of the rotenone-perfused lung with 

25 mM TMPD + 250 mM ASA also significantly improved the lung’s energy charge. The 

increase in energy charge was seen in all lungs where rotenone treatment was followed 

by TMPD + ASA, whereas those not exposed to TMPD + ASA continued to decline (Figure 

3.5C, bottom). The calculated energy charges were significantly correlated with lactate 

ratios (r = –0.71, P < 0.0001) and bicarbonate ratios (r = 0.80, P < 0.0001). These 

correlations are shown in Figure 3.6. 

 

3.4. Discussion 

The studies described above yielded three principal observations which are then further 

explained by additional experimental work. First, the phosphorylation capacity of control 

lungs, as determined by the β -ATP peak in the 31P spectrum, decreased to 50% of its 

initial value after perfusion for 204 ± 30 min. Second, the addition of ascorbate to the 

perfusate improved both the lung’s viability and metabolic stability, as evidenced by the 

fact that the oxidative phosphorylation capacity dropped to 50% of its initial value only 

after a significantly longer perfusion period of 366 ± 18 min. Third, the addition of ascorbate 

also shifted hyperpolarized [1-13C]pyruvate metabolism toward the oxidative 

phosphorylation pathway, as inferred from the increased bicarbonate ratio (from 3.6% in 

the control cohort to 8.1% in the ascorbate cohort). 
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Figure 3.6: Correlation of calculated energy charge with (A) HP lactate ratio (r = –0.71, P < 0.001) 
and (B) HP bicarbonate ratio (r = 0.80, P < 0.001). 
 

Further complementary studies quantified the effect of varying ascorbate concentrations 

and elucidated some of the mechanisms by which ascorbate increases PDHc activity. 

Ultimately, we concluded that ascorbate influences pyruvate metabolism primarily by 

stimulating the electron transport chain. This in turn influences mitochondrial Ca 2+ 

concentration, which is known to regulate PDH activity in vertebrates51,52. The following 

discussion covers two main topics: (i) the possible pathways for increasing both the HP 

bicarbonate signal and the β-ATP peak intensity in the presence of ascorbate, and (ii) the 

possible mechanism through which ascorbate affects pulmonary oxidative 

phosphorylation. 

 

3.5.1. Origin of Increased HP Bicarbonate Signal 

The HP 13C NMR and 31P NMR experiments of study II suggest that ascorbate improves 

lung viability by increasing oxidative phosphorylation. The HP pyruvate 1-13C NMR studies 

showed that bicarbonate production (Figure 3.2) increased 2.7-fold in ascorbate-perfused 
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lungs compared with controls. Furthermore, ascorbate slowed both the decline in apparent 

PDHc activity and the increase in lactate production that was seen in repeated HP 13C 

NMR measurements of control lungs (Figure 3.2, insets), suggesting an improvement in 

mitochondrial metabolism12,41,53. 

 

Although the observed increase in labeled bicarbonate signal in the ascorbate cohort 

could be due to several different pathways, we believe that the increase of HP bicarbonate 

production is a result of HP [1-13C]pyruvate’s conversion to 13CO2 and acetyl-CoA 

(coenzyme A) through the pyruvate dehydrogenase complex at an increased rate. One 

potential alternate explanation is the direct decarboxylation of pyruvate by intracellular 

reactive oxygen species. We recently measured this process in reaction with hydrogen 

peroxide54 and found that an intracellular ROS concentration approximately 105 times 

higher than the steady-state physiological concentration would be needed for these 

results55,56. Furthermore, the ROS concentration would need to decrease during both 

extended perfusion and induced mitochondrial dysfunction (study III), and would have to 

show either no response or a counterintuitive response to reduction by ascorbate or 

steady-state perfusion with pyruvate57. We therefore find it highly unlikely that ROS-

induced decarboxylation is a significant contributor to the observed bicarbonate signal. 

 

While intracellular HP CO2/HCO3
– could also potentially be produced by the conversion of 

pyruvate to phosphoenolpyruvate during gluconeogenesis, the lung is not actively 

involved in gluconeogenesis and displays low phosphoenolpyruvate carboxykinase 

activity58. Furthermore, we have been unable to detect 13C aspartate or 13C malate peaks 

in the hyperpolarized 13C NMR spectra, which would have been present if 13C oxaloacetate 

had been generated from the hyperpolarized pyruvate (these peaks are observed during 
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gluconeogenesis in the gluconeogenically active liver59). Scholz and Evans previously 

reported that the majority of 14CO2 production from [1-14C]pyruvate in the lung resulted 

from PDHc activity60, and we expect the same to be true in the studies reported here: 

namely, that PDHc-derived 13CO2 is quickly brought into equilibrium with H13CO3
– by 

carbonic anhydrase and leads to the observed HP H13CO3
- signal. Moreover, ascorbate 

has been shown to increase pyruvate oxidation in different cells by minimizing oxidative 

stress and serving as a reducing agent in the electron transport chain. [2-14C]-pyruvate 

studies indicated that the increase in released 14CO2 originates from decarboxylase 

activity in the Krebs cycle 61–63. 

 

3.5.2. Concentration-dependent Effect of Ascorbate 

Ascorbate increased the HP bicarbonate signal in a concentration-dependent manner, 

with saturation occurring at higher concentrations (Figure 3.3A). Although this saturation 

could in principle arise from limited uptake or intracellular concentration as the ascorbate 

concentration is increased, a variety of previously published results suggest that this is not 

the case. Among all cell types of the noninflammatory lung, energy metabolism and 

pyruvate uptake occur primarily in type II pneumocytes and pulmonary alveolar 

macrophages (PAMs) of the normal lung64,65. According to previous studies, transport of 

ascorbate into type II pneumocytes and PAMs is characterized by saturation kinetics with 

KM values of 2 and 5 mM, respectively66—significantly higher than the observed saturation 

kinetics in these studies. However, more detailed measurements highlight the contribution 

of passive diffusion to ascorbate transport in the lung67, particularly at superphysiological 

concentrations. Wright and coworkers68 presented results that are consistent with uni-

directional saturable transport with KM = 0.16 mM, accompanied by diffusion such that the 

two processes’ contribution to ascorbate influx is equal at an extracellular concentration 
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of approximately 3 mM. This allows a quantitative estimation of steady-state intracellular 

ascorbate concentrations under the conditions relevant to our work: 

[𝐴𝑆𝐴]56 = [𝐴𝑆𝐴]78 +
3.3𝑚𝑀

[𝐴𝑆𝐴]78 + 𝐾<
 

where [ASA]in and [ASA]ex refer to intracellular and extracellular ascorbate concentrations, 

respectively. This expression is consistent with previous measurements showing 

intracellular accumulation such that the intracellular ascorbate level of rat lungs is 16 to 

22 times higher than that in plasma at typical physiological concentrations (0.1 mM)68. 

Notably, although the preceding discussion refers to cytosolic ascorbate, previous 

measurements have shown the activity of sodium-dependent vitamin C transporters 

(SVCTs) in transporting reduced ascorbate across the mitochondrial membrane and have 

demonstrated a linear relationship between the mitochondrial and cytosolic ascorbate 

isolated mitochondria69,70. 

 

In interpreting the concentration-dependent effect of ascorbate on apparent PDHc activity, 

it is important to also consider the rate at which equilibrium intracellular concentrations are 

reached. In a previous measurement, perfusion of rat lungs without ascorbate caused a 

17% loss of ascorbate content after 50 min67, indicating a rate constant of approximately 

4.5 h to reach equilibrium under conditions where passive diffusion dominates ascorbate 

transport. The results of Ref.68 also support the slow approach to equilibrium under these 

conditions. It is therefore reasonable to suppose that at the high extracellular ascorbate 

concentrations of Figure 3.3A (e.g., 8 and 16 mM) there was insufficient time for diffusion 

to the intracellular concentration to reach its equilibrium value during the perfused lung 

experiment. The observed concentration dependence may thus represent saturation of 

the fundamental ascorbate-dependent process (e.g., reduction of cytochrome c), the 
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transition to diffusion-dominated ascorbate transport, or a combination of the two. 

Unfortunately, the data of Figure 3.3A are not sufficient to distinguish between these 

possibilities. 

 

3.5.3. Changes in Apparent PDHc Activity 

The increased bicarbonate signal could potentially be caused by a change in the uptake 

of pyruvate by the lung tissue. Although not significantly, the lactate and alanine signals 

were also increased in the presence of ascorbate (Figure 3.2B and Table 3.1), possibly 

indicating a small effect of ascorbate on monocarboxylate transporter activity71. To 

eliminate the HP pyruvate uptake effect, the bicarbonate signals were normalized by the 

sum of all 13C metabolite signals, which is likely to more accurately reflect pyruvate uptake. 

Unlike with other metabolites, the bicarbonate ratio of the ascorbate (2 mM)-treated lungs 

is significantly higher than that of controls (by a factor of 2.3; Table 3.1), suggesting that 

ascorbate’s effect on apparent PDHc activity is qualitatively different from the other 

metabolic processes observed and that transport alone is not responsible for this effect. 

In an attempt to remove altered transporter activity from the analysis, and in light of 

uncertainty regarding the contribution of extracellular pyruvate to the observed signal, 

metabolite fractions (rather than metabolite / pyruvate ratios) are employed in the following 

discussion. 

 

3.5.4. Mitochondrial Function in the Lungs 

Because approximately 85% of the total lung ATP is derived from mitochondrial 

respiration, and because mitochondrial aerobic metabolism is required to maintain the 

lung’s normal energy status, the observed decline in ATP production over time is most 

likely due to declining mitochondrial function during perfusion72. Our HP pyruvate 
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metabolic studies also point to this mechanism, as the bicarbonate ratio continues to 

decrease while the lactate ratio increases with perfusion time (Figure 3.2B, inset) due to 

a relative increase in glycolytic metabolism73–75. Recent studies with isolated perfused 

heart and ex vivo perfused lung graft models have also demonstrated increasingly 

deficient mitochondrial oxidative phosphorylation and significant decline in electron 

transport chain enzyme activities with increasing perfusion time12,76. 

 

The calculated energy charge (after 40 min of perfusion) showed an 8% increase in the 

ascorbate cohort compared with controls. Furthermore, the post/pre ratio (Figure 3.3B, 

inset) of the control lungs’ EC (0.88) is much lower than that of the ascorbate-perfused 

lungs (0.99), suggesting that the oxidative phosphorylation pathway is not only more active 

in the ascorbate-perfused lungs, but also remains stable at those levels for a longer 

duration. This finding is consistent with previous studies77. 

 

3.5.5. Role of Ascorbate in Maintaining Mitochondrial Function 

Ascorbate plays multiple roles in cellular regulation, the most well-understood of which is 

as an antioxidant and ROS scavenger. However, based on previously reported 

experiments as well as studies III and IV as interpreted below, we believe that the 

observed changes to lung viability and metabolism are primarily the result of ascorbate’s 

effect on the ETC rather than its role as an antioxidant. 

 

Ascorbate is known to prevent ROS-induced damage in ischemia–reperfusion injury, 

aging and as a result of drug side effects6,22,78,79. It has also been shown that PDHc activity 

decreases in the presence of ROS in a concentration- and time-dependent manner 80. To 

evaluate whether the observed ascorbate effect is related to altered ROS concentration in 
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the lung, the effects of two physiological water-soluble antioxidants, glutathione and α-

lipoic acid, were studied on lung’s HP [1-13C]pyruvate metabolism. Both of these 

antioxidants have been reported to have a significant effect on ischemia–reperfusion injury 

14,81. 

 

GSH is one of the most important hydrophilic antioxidants in the lungs, protecting cells 

against both exogenous and endogenous toxins, including ROS 82. What is more, given 

that the deficiency of one anti-oxidant leads to a decrease of the other, the antioxidant 

effect of GSH is directly correlated with ascorbate83,84. The hyperpolarized bicarbonate 

signal in the presence of 2 mM GSH in the perfusate did not change significantly relative 

to controls (Figure 3.4A). Although glutathione uptake by the lung remains incompletely 

understood, the significant increase in alanine ratio and decrease in lactate ratio are 

consistent with previous studies and suggest that GSH was taken up by the lung cells that 

are actively metabolizing pyruvate 85–87. ALA is a coenzyme of the PDHc and an effective 

antioxidant against ROS and associated mitochondrial dysfunction81,88. Although the 

decrease in the bicarbonate ratio in the presence of 2 mM ALA was not significant (Figure 

3.4A), the increase in lactate ratio in ALA-perfused lungs shows that sufficient ALA was 

taken up to influence metabolism as well89. These studies suggest that the primary means 

by which ascorbic acid increases PDHc activity is not related to a general ROS-

scavenging or antioxidant effect. 

 

Another related mechanism by which circulating ascorbate could affect PDHc activity is 

through a reaction with its oxidized form, dehydroascorbate: dihydrolipoic acid + DHA à 

ascorbate + ALA. This reaction could serve to regenerate intramitochondrial ALA, which 

serves as a cofactor in PDHc activity90. Furthermore, it is worth noting that, during the 
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experiments described here, ascorbic acid is slowly converted to DHA by reaction with 

dissolved O2
91. Although this oxidation reaction occurs over a relatively long time scale of 

approximately 1 h91, DHA is nonetheless always present in the studies. To assess the 

effect of DHA, we performed perfusion experiments in which 2 mM DHA was added to the 

perfusate as well as others in which 1 mM DHA + 1 mM ASA were used. In the former, the 

hyperpolarized [13C]bicarbonate signal was indistinguishable from that of the control 

cohort; in the latter, this signal was indistinguishable from that of 1 mM ASA alone (Figure 

3.4B). These results suggest that oxidation of dihydrolipoic acid is not the dominant 

mechanism by which ascorbate affects PDHc activity. We note, however, that although 

glucose transporter 1 transports DHA [97], previous studies have suggested that DHA is 

not taken up efficiently by perfused lung and lung cells91; it is therefore impossible to 

entirely rule out a mechanism in which ascorbate is taken up, oxidized to DHA, and 

subsequently regenerates ALA by the oxidation of dihydrolipoic acid based on the studies 

described here. 

 

Nonetheless, the most likely route by which ascorbate influences lung metabolism is 

through its role as a reducing agent in the electron transport chain. Previous studies of 

ascorbate’s protective effects in cardiac arrest and electrical shock, ischemia–reperfusion 

injury, drug side effects and aging have shown that ascorbate plays a role as an activator 

of the ETC complexes6,35,62,78,92. This study and other previous works have shown a 

reduction in EC and ATP production during extended perfusion, indicating a gradual 

decrease in mitochondrial function and oxidative phosphorylation12,76. Accordingly, we 

hypothesized that the direct reduction of cytochrome c by ascorbate is a possible 

mechanism by which PDHc flux (as observed in HP bi-carbonate signal) and mitochondrial 

function (as observed in energy charge) might be simultaneously protected or 
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activated93,94. Study IV was designed to evaluate this hypothesis: lungs were first perfused 

with TMPD + ascorbate, a combination that reduces cytochrome c at a rate 30-fold faster 

than ascorbate alone [100]. Note that adding a small amount of ascorbate is necessary to 

ensure that TMPD remains in the reduced form, but that, as seen in Figure 3.3A, this 

amount is too small to account for the observed effects. Additional studies were performed 

in which the ascorbate concentration was increased to 500 mM (data not shown). 

 

This change did not alter either the bicarbonate ratio or EC, confirming that ascorbate is 

not the primary agent reducing cytochrome c in the presence of TMPD94. In the lung 

perfused with 25 mM TMPD + 250 mM ascorbate, the bicarbonate ratio increased by a 

factor of 2.2—comparable to with the addition of 2 mM ascorbate. The energy charge of 

the TMPD-perfused lung also increased significantly (by 13%) compared with controls 

(Figure 3.5). As shown in study II, ascorbate alone also significantly increased the lung’s 

energy charge (8%), confirming previously reported data in ascorbate-treated cartilage 

cells77. We may therefore conclude that the reduction of cytochrome c and concomitant 

activation of ETC complex IV increases apparent PDHc flux. 

 

In a subset of study IV, lungs perfused with 20 mM rotenone showed a significant decrease 

in both the bicarbonate ratio (68%) and EC (18%). Rotenone-perfused lungs that were 

then perfused with TMPD + ascorbate returned to a state indistinguishable from controls 

in terms of PDHc activity and energy charge, whereas those perfused without TMPD + 

ascorbate continued to decline. Moreover, in agreement with a previous study41, increased 

HP lactate ratio and decreased EC were observed in the rotenone-perfused lungs due to 

the inhibition of mitochondrial electron transport. Both measurements returned to baseline 

after perfusion with TMPD + ascorbate as a result of ETC activation. Further evidence of 
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the link between the electron transport chain and PDHc activity can be seen in the strong 

positive correlation between EC and HP bicarbonate ratio across all cohorts (Figure 3.6). 

A complementary effect is also observed in the strong negative correlation between EC 

and HP lactate ratio across all cohorts: low ETC activity leads to overreliance on glycolytic 

ATP generation and an increase in cytosolic lactate 57. 

 

We note that both correlations are observed independent of the manner in which ETC 

activity is influenced, a fact which appears somewhat counterintuitive at first. Because 

TMPD is known to directly reduce cytochrome c, thereby providing a source of electrons 

for respiratory activity that does not require PDHc-derived NADH, it would be reasonable 

to assume that PDHc activity would be suppressed. However, it is also true that an active 

electron transport chain results in an increased proton concentration gradient across the 

mitochondrial membrane. To maintain charge balance, this gradient is mirrored by a Ca2+ 

gradient; the active mitochondrion is thus characterized by an increased intramitochondrial 

Ca2+ concentration, a condition which is well understood to cause PDHc activity by 

activating pyruvate dehydrogenase phosphatase51,52. We therefore hypothesize that 

ascorbate maintains mitochondrial function during perfusion by activating the electron 

transport chain and that the intramitochondrial Ca2+ concentration of the active ETC, rather 

than a direct interaction between ascorbate and PDHc or its cofactors, is responsible for 

maintaining and stimulating PDHc activity. The exact mechanism by which ascorbate 

activates the ETC is unknown, although many previous studies have highlighted important 

interactions with complex I and complex IV—maintaining their activity after cardiac arrest, 

as well as in aging fibroblasts—which in turn prevents the loss of cytochrome c  and 

maintains the  mitochondrial membrane polarization6,35,92,95,96. Any of these effects, either 
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singly or in combination, may be responsible for increased viability and the observed 

stimulation of the PDHc in ascorbate-perfused lungs. 

 

3.6. Conclusions 

In this study, we demonstrated that the energy status and PDHc activity of perfused lungs 

declines during EVLP, and concluded that a part of the energy depletion and loss of 

viability observed in reperfused ischemic lungs12 is due to perfusion alone. We also 

provided evidence that ascorbate regulates the ex vivo perfused lung’s metabolism toward 

oxidative phosphorylation. Although ascorbate’s role in lessening ischemia-reperfusion 

injury via its ROS scavenging function has been discussed previously21,22, our studies 

suggest that ascorbate can also slow the decline in pulmonary mitochondrial activity 

through an independent interaction with ETC complexes. Based on the observation that 

lungs experiencing significant decline in energy status are highly prone to edema, it seems 

clear that maintaining mitochondrial function during EVLP is critical to maintaining organ 

viability. Finally, we also demonstrated hyperpolarized [1-13C]pyruvate’s suitability as a tool 

for evaluating the lung’s mitochondrial status in ex vivo lung perfusion models due to its 

ability to simultaneously probe both glycolytic and oxidative phosphorylation pathways. 

The study also demonstrates that the addition of ascorbate to the perfusate during EVLP 

may be beneficial in prolonging the viability of the lungs being excised, transported and 

reperfused before transplant. Further studies are warranted to assess the relevance of 

these findings to human lung transplant maintenance and evaluation procedures.  
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Chapter 4: Translating from Ex Vivo Metabolic Spectroscopy to In Vivo Metabolic 

Imaging of HP [1-13C] Pyruvate Using an Acute Inflammation Model 

 

Abstract 
 
In this study, we investigated the feasibility of hyperpolarized [1-13C]pyruvate as a potential 

marker for inflammation in lung tissue. In the first part of the study, we report ex vivo 

metabolic measurements in the isolated, perfused rat lung of healthy controls and in lungs 

undergoing acute inflammation using hyperpolarized [1-13]C-labeled pyruvate. The overall 

apparent lactate labelling was shown to increase significantly (on average by a factor of 

3.3) at the 7-day acute stage and then revert substantially to baseline at 21 days, while 

other markers indicating monocarboxylate uptake and transamination rate were 

unchanged. In the second part of the study, we successfully translated our hyperpolarized 

imaging technique for in vivo imaging. The overall lactate-to-pyruvate ratio showed a 

similar trend as the ex vivo study; it was found to be significantly increased on day 7 (by 

a factor of 1.6) and then reverted to baseline by day 21. Elevated lung lactate signal levels 

correlated well with phosphodiester levels as determined with 31P spectroscopy and to the 

presence of neutrophils as determined by histology, consistent with a relationship between 

intracellular lactate pool labeling and the density and type of inflammatory cells present.  

 

 

 

This ex vivo spectroscopy findings from this chapter have been published as ‘Metabolic 
spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-13C 
pyruvate’ by Shaghaghi et al, in NMR in Biomedicine, 27(8):939-947 (2014). Some of the in vivo 
findings have been presented at the International Society for Magnetic Resonance in Imaging 
(ISMRM) Conference in Paris, France as, ‘A Multimodal Imaging Approach to Characterize the 
Onset of Pulmonary Fibrosis’ by Siddiqui et al. (2018). 
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4.1. Introduction 

The adaptive immune system’s response is essential to the process of lung rejection: the 

mismatch between host and donor MHC molecules stimulates cytotoxic T cells (CTLs), 

which then target the graft tissue for rejection. Directly visualizing the progression of lung 

inflammation would therefore be very useful for detecting lung rejection earlier. 

Unfortunately, conventional techniques for measuring inflammatory cell activity—biopsies 

and lavage—are not very effective in sampling regional differences, while radiological 

methods’ dependence on edema, fibrosis, emphysema, and other alterations to tissue 

density than on the weak direct x-ray absorption of the inflammatory cells make them 

unsuitable as well. However, it has been amply demonstrated that the metabolic state of 

inflammatory cells, and particularly their glycolytic activity, is much greater than that of 

normal lung tissue1. In this study, we therefore investigated the uptake of hyperpolarized 

[1-13C]pyruvate as a potential marker for inflammation in lung tissue. 

 

As described in Chapter 2, although HP MRI uses external nuclear polarization to 

overcome its low sensitivity, several challenges not present in other organs have thus far 

limited HP studies in lungs. These include low tissue density, high susceptibility/B0 

inhomogeneity caused by air- tissue interfaces, cardiac and respiratory motion, and the 

low metabolic rate of the lungs compared to solid organs. In order to minimize many of 

the difficulties mentioned above, we first demonstrated that HP 13C MR spectroscopy can 

be used to differentiate inflamed tissue from healthy tissue in ex vivo isolated, perfused 

lungs before translating this technique to in vivo HP 13C MR imaging. 

 

Although our ultimate goal is to develop a translatable method for imaging lung rejection, 

we used a bleomycin-induced lung injury (BILI) model of inflammation for this study. The 
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etiology of the BILI model is substantially different from that of lung rejection—most 

significantly in that, unlike tissue rejection, it is an innate immune response primarily driven 

by the infiltration of neutrophils into the tissue. Like T cells, however, neutrophils depend 

on glycolysis for their energy1–3, so the successful development of HP [1-13C] pyruvate 

imaging is nevertheless applicable to imaging post-transplantation outcomes. There are, 

moreover, a number of advantages to using a BILI rather than a transplant model for 

developing this technique. For example, the BILI model is a well-developed animal model 

with a large number of studies4 characterizing its inflammatory and eventual fibrotic 

response after bleomycin induction. The model induction itself is rapid, and inflammation 

can be observed within three to seven days. Finally, the imaging technique can be 

developed using half the number of animals that would be needed with a lung 

transplantation model, which requires donor animals as well.  

 

4.2. Materials and Methods 

All animal experiments were conducted in accordance with protocols approved by the 

Institutional Animal Care and Use Committee of the University of Pennsylvania. Eight-

week-old male Sprague Dawley rats weighing 320 ± 20 g were used for all experiments. 

All rats were carefully age matched and maintained under very similar environments and 

dietary conditions. The cohort sizes for both ex and in vivo studies are listed in Table 4.1 

 
Ex Vivo Isolated 
Perfused Lung 
Spectroscopy 

In Vivo Lung 
Imaging 

Control 7 3 
Day 7 10 3 
Day 14 - 3 
Day 21 3 2 

Table 4.1: Cohort sizes for the ex vivo and in vivo studies. 
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4.2.1 Bleomycin Model Induction 

Bleomycin rats were anesthetized using inhaled 2.5% isoflurane, placed supine, and 

intubated with a 2-inch long, 14-gauge angiocatheter. A 2.5 U/kg concentration of 

bleomycin (Bedford Laboratories, Bedford, OH) was then instilled through the catheter, 

followed by a 3 mL injection of air to clear the catheter. Animals were then rocked from 

side to side to distribute the bleomycin throughout the lungs as evenly as possible. The 

animals were subsequently recovered from anesthesia and briefly ventilated with a rodent 

ventilator (CWE, Ardmore, PA); supplemental oxygen was given if they failed to recover 

from anesthesia in a timely manner. 

 

4.2.2. Preparation of Hyperpolarized [1-13C]Pyruvate 

The solid-state pyruvic acid mixture was prepared similarly to the method described in the 

previous chapter; however, the liquid-state concentrations and duration of the HP 

injections were different for these studies. 28.5 mg [1-13C]pyruvic acid (Cambridge Isotope 

Laboratories, Andover, MA, USA) mixed with 15 mM OX063 trityl radical (Oxford 

Instruments, Tubney Woods, Abingdon, Oxfordshire, OX13 5QX, UK) and 1.5 mM 

Dotarem Gd chelate (Guerbet, Roissy, France) was polarized to ~30% at 1.42 K and 94 

GHz with a HyperSense dynamic nuclear polarization system (Oxford Instruments). 4 mL 

of buffer, containing 50 mM Tris, 80 mM NaOH, and 100 mg/L EDTA, was heated to 190 

°C at 10 bar and used to rapidly dissolve the frozen sample.  



115 
 

 

4.2.3 Ex Vivo Isolated Perfused Lung Studies 

4.2.3.A. Isolating Perfused Lungs 

The procedure for excising and perfusing the lungs is similar to that described in the 

previous chapter. In brief, animals were anesthetized with intraperitoneal (IP) 

pentobarbital, tracheostomy was performed, and 200 U heparin was administered via the 

tail vein. The lungs were degassed5,6 by ventilating with pure O2 for 10 minutes to remove 

any residual N2. The trachea was then sealed, and a thoracotomy was performed to 

access the heart. The pulmonary artery was cannulated via the right ventricle for 

perfusion. Once sealed, the lungs were rapidly excised and placed in a 20 mm NMR tube. 

Lungs were then perfused at 10 mL/min with a modified Krebs–Henseleit buffer: 119 mM 

NaCl, 25 mM NaHCO3, 1.3 mM CaCl2, 1.2 mM MgSO4, 4.7 mM KCl, 10 mM glucose, 2 

mM lactate, 0.2 mM pyruvate, and 3% (w/v) fatty-acid-free bovine serum albumin (BSA, 

Fisher Bioreagents). The perfusate was passed through an oxygenating column under a 

constant flow of 1 atm 95:5 O2 /CO2 and warmed via passage through water-jacketed 

tubing. The CO2 concentration in the oxygenating column was chosen to maintain constant 

perfusate pH during oxygenation, although periodic adjustment with 1 N HCl or NaOH was 

needed to maintain a physiological value of 7.4±0.05. The lung was perfused at constant 

flow throughout the experiment. The temperature of the perfusate in the NMR tube was 

continuously monitored and maintained at 36.5±1 °C. 

 

4.2.3.B. Administration of HP [1-13C]Pyruvate for Ex Vivo Spectroscopy 

This 4.0mL sample from the polarizer was further diluted in 6.0 mL oxygenated Krebs–

Henseleit buffer (without BSA) to yield a neutral, isotonic solution of 32 mM [1-13C] 
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pyruvate (in the studies described in the previous chapter, a much lower final 

concentration of [1-13C] pyruvate was used). This solution was injected into the perfusate 

line at 10 mL/min in lieu of the steady-state perfusion buffer. After the 60 s required to 

inject the HP solution, lung perfusion was restored. 

 

4.2.3.C. Ex Vivo NMR Spectroscopy for Isolated Perfused Lungs 

All MR spectra and images were obtained using a 9.4 T vertical bore magnet (Varian, Palo 

Alto, CA) equipped with a gradient insert (Resonance Research, Billerica, MA) and a 20 

mm 1 H/broadband probe (Doty Scientific, Columbia, SC). After insertion into the bore of 

the magnet, the sample was tuned, matched and shimmed to a linewidth of about 40 Hz. 

This process required approximately 20 min. Immediately following, the lung was 1H 

imaged (10 axial 2 mm slices, field of view = 30 × 30 mm) for positioning and to ensure 

the integrity of the organ and the absence of edema. Next, a whole-lung, averaged 31P 

spectrum was acquired to assess energy status (repetition time T R = 1 s, nominal flip-

angle α = 60°, acquisition time AT = 200 ms, spectral width SW = 100 kHz, 512 averages). 

The probe was then tuned to 13C and the perfusate was temporarily replaced by the HP 

solution. Low flip-angle spectra were acquired for the several-minute duration of the HP 

signal (T R = 1 s, nominal α = 10°, AT = 800 ms, SW = 20 kHz, 300 individual spectra 

acquired). Following the 13C spectroscopy, another averaged 31P spectrum was acquired 

in order to evaluate changes in ATP status due to the HP compound injection. In six 

instances, the entire series was then repeated (31P spectrum, HP spectrum series, 31P 

spectrum) after a 1 h delay required to hyperpolarize another pyruvate sample. This 

repetition was performed to evaluate the stability and reproducibility of the lung and its 

metabolic activity. 
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4.2.3.D. Quantification of NMR Spectra from Ex Vivo Perfused Lung Studies 

31P spectra were least-squares fit to 13 Lorentzian peaks, allowing the individual peak 

heights and common peak width to vary freely. The peak frequencies were kept fixed; 

peak identities (ppm chemical shifts relative to PCr; see figure 4.4 caption for acronyms) 

were PME (6.70), Pi (5.08, 4.32), GPC (3.03), GPE (2.24), PG (1.80), PCr (0.00), γ-NTP 

( 2.36), α-NTP ( 7.52), diphosphodiester/NAD(H) ( 8.18, 9.68, 11.49, 13.30), and β-NTP ( 

16.13). Fit quality was found to improve substantially when including three additional 

peaks of fixed position (3.5, 4, and 10 ppm) and width (3, 8, and 4 ppm, respectively) to 

account for contributions from unresolved 31P species. We note that the region containing 

GPC, GPE, and PG is poorly resolved and likely contains other phosphodiesters as well. 

Although consistent with previous measurements7,8 the number and identity of resonances 

is uncertain. 

 

13C spectra were least-squares fit to five Lorentzian peaks, allowing the individual peak 

heights to vary. The peak positions and widths were set using an initial free fit (amplitude, 

width, and position) to the average of all spectra with signal-to-noise ratio > 30. The peaks 

were identified as pyruvate, alanine, pyruvate hydrate, lactate and bicarbonate, with ppm 

chemical shifts relative to pyruvate of 0.00, 5.68, 8.42, 12.26 and 9.98, respectively. 

Additional peaks representing natural abundance nuclei or impurities were not included in 

the fit. All peak fitting was done using custom software written in MATLAB (Natick, MA). 

 

4.2.3.E. Histological Evaluation (Ex Vivo Study) 

Immediately after the final MRS acquisition, nine of the lungs (three each of control, day 

7, and day 21 inflammation) were prepared for histological evaluation. The steady-state 

perfusion buffer was replaced by a 10% formalin solution and perfusion was continued for 
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1 min, after which the lungs were submerged in 10% formalin for 5–7 days and 

subsequently embedded in paraffin. Due to the uncertainty of their response to re-inflation, 

the lungs were not inflated prior to fixation. Although inflating the lungs would have made 

the gross structure easier to visualize, we do not expect that it would have affected our 

ability to count the cells of interest. 25 transverse 5 μm sections were cut from each lung 

(five groups of five contiguous sections spaced by 2 mm). Previous studies have indicated 

that neutrophils and macrophages represent the bulk of the inflammatory response to 

bleomycin-induced injury in rats (18,19). Sections from each group were therefore stained 

with hematoxylin and eosin (H&E), and with anti-neutrophil elastase antibody (ab21595, 

abcam, Cambridge, MA) or CD68 antibody (SPM130, Santa Cruz Biotechnology, Dallas, 

TX), which have previously shown reactivity to rat neutrophils and macrophages, 

respectively. Because of significant non-specific binding, only the H&E sections were used 

to evaluate the extent of neutrophil and macrophage infiltration.  

 

An experienced lung pathologist blindly examined the five whole lung sections from each 

sample and assigned a grade from 0 to 4 with respect to neutrophils, macrophages, 

lymphocytes and organizing pneumonia (OP) foci, based on the number of cells or sites 

present. No distinction was made among lymphocyte types. For each cell type, lungs with 

minimal cell density were assigned a grade of 0, whereas lungs with severe and widely 

distributed inflammatory cells were assigned a grade of 4. The grading scale was relative 

for each type of cell. For example, a section that scored a grade of 4 for both neutrophils 

and macrophages had a much greater number of neutrophils than macrophages. Each 

lung was then assigned a score for each cell type equal to the average rating among the 

sections. 
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4.2.4 In Vivo MR Imaging Studies 

4.2.4.A. Administration of HP [1-13C]Pyruvate for In Vivo Imaging 

4 mL/kg (~1.3mL) of the HP solution was then transferred into a syringe and injected into 

the animal via a tail vein catheter within 10 s of dissolution. The injection lasted 6 s and 

was followed by a 250μL saline flush. The scan started 18 s after beginning injection. 

 

4.2.4.B. In Vivo Magnetic Resonance Imaging 

Animals were anesthetized with isoflurane (2%) on 100% O2 (1.5mL/min) and a tail vein 

catheter was placed before starting the imaging session. MRI imaging was performed on 

a 4.7T horizontal bore magnet (Inova 200, Varian Inc, Palo Alto, CA) using a 72mm dual 

tuned 1H/13C quadrature transmit/receive birdcage coil (Polarean Imaging Plc., Cleveland, 

OH). A T1-weighted coronal 1H GRE of the lungs was acquired for positioning the slice-

selective CSI with HP [1-13C] pyruvate. The acquisition parameters were: TR/TE = 80/1.55 

ms, FOV = 60x60x2 mm3, matrix = 128x128, slices = 16, averages = 16, flip-angle = 20o, 

scan time = 2:03 min. The lungs were manually shimmed using the proton channel to a 

proton linewidth of about 130Hz using a 15mm slice-selective pulse acquire sequence. 

HP [1-13C] pyruvate chemical shift imaging (CSI) was performed immediately after 

shimming. 

 

HP 13C CSI was performed using a spiral 2D slice-selective phase-encoded free-induction 

decay chemical shift imaging (FID-CSI) sequence (Figure 4.1A). The k-space center 

(kx,y = 0) was re-acquired at every 11th acquisition to de-blur the point spread function 

(PSF) of the spectra (Figure 4.1B). The 15mm slice was positioned on the lungs superior 

to the dome of the diaphragm. The scan was started 16 s after the start of the HP injection 
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(see above). The acquisition parameters were: TR/TE =35/0.5 ms, FOV = 45x45x15 mm3, 

matrix size = 16x16, spectral width = 4 kHz, spectral points = 128, flip-angle = 9o, scan 

time = 9s. The matrix size and flip angle were optimized based on the available 

hyperpolarization, such that enough residual signal was left after each excitation (256 for 

our selected parameters). 

 

Figure 4.1: (A) Pulse sequence diagram for the FID-CSI sequence for in vivo rat imaging. The k-
space was traversed using a spiral trajectory, so Gx and Gy are not the traditional frequency and 
phase encoding directions. (B) The k-space was traversed from the lower k-space to the higher k-
space (‘spiral out’). Unlike a conventional trajectory, the kx,y=0 was re-acquired every 11th 
acquisition and then the outward trajectory continued (shown as breaks with red arrows). The 
repeated kx,y=0 acquisitions were used to deblur the reconstructed image. 
 

4.2.4.C. MRSI Data Processing 

All data were processed offline using custom routines in MATLAB 2017b (MathWorks, 

Natick, MA, USA). The free-induction decays (FID) were line-broadened by 30 Hz and 

then Fourier transformed to obtain the spatially resolved spectra. The periodic acquisition 

of the k-space center (kx,y = 0) was used to de-blur the spectra via amplitude 

normalization, thereby providing improved localization. The resultant spectra were then 

baseline-corrected (fourth-order polynomial), local zero-order and global first-order phase-

corrected; the lactate and pyruvate peaks were then fit to Lorentzian functions. The 
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processed carbon-13 spectra were overlaid on the corresponding proton images of the 

thorax and voxels were manually selected from the native lung, transplanted lung and 

heart for regional quantification. Voxels overlying large vessels in the lung parenchyma 

were excluded from selection. As the number of selected voxels from each region varied, 

the average pyruvate, lactate and lactate-to-pyruvate was calculated by summing the 

respective spectra and dividing by the number of voxels. The fitted pyruvate and lactate 

spectra were also used to generate corresponding metabolic maps, which were linearly 

interpolated to match the voxel size of the underlying proton images for clearer 

visualization. 

 

4.2.5. Statistical Methods 

Statistical significance was tested using analysis-of-variance (ANOVA), followed by 

Tukey’s HSD post-hoc test across the different cohorts. In order to determine whether 

there was any evidence that the two measurements made in the same lung were 

systematically different, repeated measures ANOVA was performed in the subset of six 

lungs for which 13C spectroscopy was repeated as well as the 18 lungs in which repeated 

31P spectroscopy was performed. In order to determine the extent of direct relationships 

between inflammation as measured using 13C and 31P spectroscopy, as well as between 

13C spectroscopy and inflammatory cell counts, simple correlations were calculated across 

all measurements in which both metrics were available. All statistical analyses were 

performed using the R software. R is an open-source project that is distributed under the 

GNU General Public License (copyright 2007 Free Software Foundation) 
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4.3. RESULTS 

4.3.1. Ex Vivo 13C Spectroscopy 

Figure 4.2 displays a representative series of individual spectra from an inflamed lung. 

 

Figure 4.2: A time-series of stacked C spectra (bottom) shows the appearance of pyruvate and 
pyruvate hydrate signals, followed by lactate and alanine. The unidentified peaks are impurities 
from the HP pyruvate sample and not indicative of biological activity. Signal level evolution over 
time is very similar between control and inflammatory groups, with the exception of the lactate 
signal, which is significantly increased in the diseased cohort. This can be seen in the three overlaid 
spectra, which are averages of the ten spectra between 20 and 30 s after the end of the HP injection 
(top). The day 7 inflammatory model spectrum (red) is visually indistinguishable from the day 21 
(blue) and control (green) spectra, except at the position of the lactate peak. 
 

 As with all such series, peaks corresponding to [1-13C]pyruvate and [1-13C]pyruvate 

hydrate appeared first, followed within a few seconds by [1-13C]lactate and [1-13C]alanine 

peaks. All peaks were clearly distinguishable and quantifiable for a period of approximately 

2 min after the first appearance of HP signal. Additional peaks corresponding to natural 

abundance 13C, impurities and 13C-bicarbonate, though smaller, were also reliably 



123 
 

quantifiable. In the Figure 4.2 inset, we overlaid spectra acquired 20–30 s after the end of 

the HP injection in control, day 7 and day 21 inflammatory model animals. As expected, 

pyruvate, pyruvate hydrate and alanine signal levels were very similar, but the integrated 

lactate signal of the inflammatory model exceeded that of the control animal by a factor of 

approximately three.  

 

Figure 4.3: The full time-series of fit peak areas, in which the day 7 inflammatory group lactate 
peaks exceed those of the control group at all times and by an average factor of 3.3. Note that the 
signal amplitudes are scaled such that the sum of pyruvate areas Σp(t) = 1, and times are shifted 
such that each injection is centered around t = 50. The inset bar graph shows the mean and average 
integrated lactate signal in the control (green), day 7 (red), and day 21 (blue) groups. In both plots, 
solid circles represent data acquired on the first HP 13C injection and open circles represent data 
acquired on the second HP 13C injection. When only first injections are considered, the day 7 group 
is statistically distinguishable from the other two groups (p = 0.0003). Although only six studies 
were repeated, no systematic change is evident (visually or by repeated measures ANOVA) 
between the groups due to the time delay between the two HP agent injections. 
 

Figure 4.3 displays the result of fits to each spectrum of the timeseries in each subject. 

Although the observed lactate signal is more variable among the inflammatory model 

cohort, each of the day 7 inflammatory model lungs exhibited a greater observed lactate 

signal at all times than any of the control lungs; integrated lactate signals in the day 7 

inflammatory group exceeded those of the control group by a factor of 3.1 on average (if 

repeated measurements in the same lung are excluded from the analysis, the day 7 
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group’s signals are higher by an average factor of 3.3). Lactate signal levels in the day 21 

cohort were midway between the control and day 7 groups, exceeding the control group 

by a factor of 1.8 on average. Means and standard deviations of all three groups are 

summarized in the Figure 4.3 inset. 

 

4.3.2. Ex Vivo 31P Spectroscopy 

Figure 4.4 shows two averaged 31P spectra representing normal (green) and day 7 

inflammatory (red) lung cohorts. Eight distinct 31P-containing species can be discerned7–

10, of which only phosphoglycans and phosphodiesters (primarily GPC and GPE) differ 

significantly between the normal and inflamed lung; on average, these are elevated by a 

factor of 2.5 in inflammation. Some inconsistency in the fit values arises from limited 

signal-to-noise ratio in the 31P spectra. Some inconsistency in the position and width of 

the Pi peak is seen as well, which may indicate variability in tissue pH despite the narrow 

range of perfusate pH. 

 

Figure 4.4. Sample P spectra from control (black with green fit) and day 7 (black with red fit) 
inflammatory model lungs show very similar patterns of high energy phosphates (NTP), inorganic 
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phosphate (Pi), phosphomonoesters (PME) and phosphocreatine (PCr), but differ in a set of three 
peaks consistent with the known chemical shifts of the phosphodiesters glycerophosphocholine 
and glycerophosphoethanolamine (GPC/E) and, slightly upfield, phosphoglycans (PG). The figure 
inset shows a comparison of the three cohorts’ summed GPC/E + GP fit peak areas. Cohort means 
and standard deviations are summarized by the corresponding black bars, and individual GPC/E + 
GP peak areas appear as filled/open black circles for first/second injections. Note that the individual 
peak areas are offset randomly in the horizontal direction for better visibility. Only the GPC/E/PG 
peaks differ between the groups; this difference is highly significant when comparing control and 
day 7 bleomycin groups (p < 0.01 whether all points or only first injections are compared). The day 
21 group was not significantly different from either of the other groups. All amplitudes are scaled to 
the corresponding Pi peak area. 
 

4.3.3. Histology 

Representative H&E sections from the control, day 7 and day 21 inflammatory cohorts 

appear in Figure 4.5. These sections were chosen to highlight the visually apparent trend 

of dramatically elevated neutrophils at day 7, which were partially resolved by day 21, and 

of progressively increasing macrophage count from day 7 to day 21. This trend can be 

seen more clearly in the inflammatory cell scores from each lung (Table 4.2). 

 Control Day 7 Day 21 

Neutrophil 
0.6 2.7 1.0 
0.4 2.8 0.8 
0.8 1.4 2.8 

Macrophage 
0.4 1.4 3.2 
0.4 1.8 2.8 
0.6 2.2 3.2 

Lymphocyte 
0.4 0.6 1.2 
0.0 0.6 0.4 
0.0 1.0 0.4 

Table 4.2: Average neutrophil, macrophage and lymphocyte score for each of the nine animals 
examined histologically. 
 

On average, the neutrophil scores at 7 and 21 days exceeded the control scores by factors 

of 3.8 and 2.6, respectively; the inflammatory macrophage scores exceeded the control 

scores by respective factors of 3.9 and 6.6. There are some transient OP foci present in 

day 7 sections, but most of these foci are resolved by day 21. The day 21 sections have 
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minimal OP foci but are characterized by protein deposits (Figure 4.5) that can signify 

fibrotic remodeling, and which were only minimally apparent at day 7.  

 

Figure 4.5: Representative histological sections from control lung (a), day 7 post-bleomycin lung 
(b) and day 21 post-bleomycin lung (c). The sections were chosen to highlight the common 
characteristics of each group – in particular, the elevated neutrophils at 7 days and elevated 
macrophages at 21 days. A more objective evaluation of inflammatory cell density can be seen in 
Table 1. Note that the alveolar structure is somewhat distorted in all of the sections because the 
lungs were collapsed during the NMR studies and were not reinflated for histology. 
 

Notably, the day 21 cohort contained one subject that was visually similar to the day 7 

cohort with respect to both active neutrophilic inflammation and relative lack of fibrosis. 

This subject also exhibited 13C and 31P spectroscopy results that were elevated with 

respect to both control and the other day 21 lungs, but that were consistent with the day 

7 cohort (Figures 4.2 and 4.3). 

 

Figure 4.6: Among all lungs, the increase in lactate produced by inflamed lungs is significant 
(approximately a factor of 3.3 at day 7 and a factor of 1.8 at day 21) and correlates moderately well 
to the GPC/E peak increase observed using time-averaged 31P spectroscopy. In the figure, the 
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cohorts are distinguished as control (green), day 7 (red) and day 21 (blue). First and second 
injections in the same lung are distinguished as closed and open circles, respectively. 
 

Applying ANOVA to the 16 first 13C measurements revealed that the three experimental 

groups are characterized by significantly different means (F(2,13) = 15.9, p = 0.0004). 

Further analysis using the Tukey HSD test was performed to determine whether 

significance exists between the cohorts. The mean lactate labeling was significantly higher 

for the day 7 bleomycin group than for both control ( p < 0.001) and day 21 (p = 0.03) 

groups; on the other hand, we could not show a significant difference between the day 21 

bleomycin and the control group (p = 0.33). Although with less significance, the 31P 

spectroscopy data yielded identical results in post-hoc analysis. Applying repeated 

measures ANOVA to the six repeated 13C spectroscopy measurements in the two groups 

(two controls, four day 7 bleomycin) showed that there was a significant difference 

between the means of the two groups (F(1,4) = 193.4, p = 0.0002), and the hypothesis 

that the repeated 13C measurements are characterized by the same mean within 

experimental repeats was not rejected (p = 0.88). Similarly, applying repeated measures 

ANOVA among the 18 repeated 31P spectroscopy tests in three groups (six control, ten 

bleomycin day 7, two bleomycin day 21) shows that there is a significant difference among 

the means of the three groups (F(1,4) = 4.27, p = 0.036). Similar to the 13C data, there 

was no difference in the repeated experimental measurements within groups (p = 0.26). 

There is no statistical evidence for any interaction between the experimental group and 

measurement number (p = 0.84 and 0.16 for 13C and 31P spectra, respectively). Figure 4.6 

summarizes the relationship between elevated GPC/E levels and elevated lactate 

production within and between study groups.  
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Figure 4.7: Among all lungs for which histology was performed, the integrated lactate signal 
(normalized to integrated pyruvate signal) correlates well with the average neutrophil score as 
graded by a pulmonary pathologist. The correlation to the average macrophage score was not 
statistically significant. Scores were assigned from 0 (normal cell count) to 4 (severe and widely 
distributed inflammatory cells) based on a blinded, qualitative assessment of five H&E sections 
distributed throughout the lung. 
 

Across all study animals, a significant correlation was found (r = 0.69/0.74 if all/first 

injections are analyzed; p < 0.001 in both cases). Figure 4.7 shows the correlation 

between the measured lactate signal and the histologically determined neutrophil and 

macrophage scores for the eight subjects for which both measures were available. The 

correlation coefficient is statistically significant (r = 0.89, p < 0.005) when lactate signal 

and neutrophil score are compared, but is not significant (r = 0.36, p = 0.39) when lactate 

signal and macrophage score are compared. 

 

4.3.4. Reconstructing CSI Images from In Vivo Studies 

Having demonstrated the feasibility of HP [1-13C]pyruvate imaging for ex vivo studies in 

the bleomycin-induced inflammation model, a set of in vivo studies using the spiral FID-

CSI were subsequently carried out to determine the translatability of our technique.  
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Figure 4.8: (A). The raw (orange) and de-blurred (blue) FID of the spiral CSI sequence. The 
correction was based on the exponential fit at k0 as seen in (B). (C) The first 11 k-space acquisitions 
as well as the repeat acquisition of k0 can been seen in this zoomed in sub-region of the FID. 
 

Figure 4.8A shows a representative raw FID (orange) alongside the de-blurred FID (blue) 

based on the exponential fitting of the repeated kx,y=0 acquisitions, as seen in Figure 4.8B. 

Figure 4.8C is zoomed-in to the first 12 acquisitions of the acquired FID. The signal at 

kx,y=0 has the largest SNR contribution to the final Fourier transformed image. 
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The FID was processed as described in Methods section 3.2.4.C to generate a 16x16 

spectroscopic image of the lungs (Figure 4.9A). The highest signal is observed in the 

heart, followed by the lungs, with some signal apparent in the peripheral muscles as well.  

 

Figure 4.9: (A): A representative carbon-13 MRSI overlaid on a proton image from a day 7 inflamed 
animal. The inset (B) shows the signal from one manually selected voxel in the heart. The three 
peaks that can be quantified are lactate (183 ppm), pyruvate (171 ppm) and bicarbonate (160 ppm). 
The uncorrected (C) and de-blurred (D) reconstructed images can be seen, with the improved 
resolution of the latter easily observable in the heart.  
 

Figure 4.9B shows the spectrum from a single voxel in the heart. The pyruvate is centered 

at 171ppm and the lactate peak can be observed at 183 ppm; a small bicarbonate peak 

at 160ppm can also be observed. The latter peak is not typically found in the lungs, most 

likely due to both a lower pyruvate signal and the lower metabolic activity of healthy lungs. 

Figures 4.9C and 4.9D demonstrate the difference between an uncorrected and de-blurred 

reconstruction. We can qualitatively observe the higher resolution of the de-blurred image: 

the uncorrected reconstruction shows a blurry pyruvate distribution over the entire heart, 

while the pyruvate distribution is resolved into two regions in the corrected version, each 

of which is centered over a separate heart chamber.  
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Figure 4.10: Representative HP pyruvate (top) and HP lactate (bottom) maps for the healthy, day 
7, 14 and 21 cohorts. The pyruvate distribution is similar across all four cohorts; however, an 
increased lactate distribution can be observed on day 7. The quantified lactate-to-pyruvate values 
can be observed in Figure 11. 
 

As described in Methods 3.2.4.C, the fitted pyruvate and lactate spectra were used to 

generate their respective metabolic maps (Figure 4.10). The lactate-to-pyruvate ratio of 

the heathy, day 7, day 14 and day 21 cohorts were 0.15±0.08, 0.25±0.8, 0.16±0.6 and 

0.11±0.06, respectively. The day 7 cohort was significantly different than all three other 

cohorts (p < 0.001 in all cases). The day 21 cohort was significantly different than the 

control (p = 0.03) and day 14 (p = 0.003) cohorts. The control and day 14 cohorts were 

not significantly different (p = 0.71). (Figure 4.11). 
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Figure 4.11: Mean lactate-to-pyruvate ratios for all four cohorts from the in vivo MRI study. 
 

4.4. Discussion 

The main finding of this work is that a common experimental model of lung inflammation 

affects the metabolic activity of the lung such that the overall apparent lactate labeling is 

increased substantially 7 days post-induction. Activity largely returns to baseline 21 days 

post-induction, although the smaller sample size at the latter timepoint means that there 

is a possibility that activity remains somewhat elevated. Although the magnitude of change 

was different between the ex vivo and in vivo models, both models showed this trend. We 

believe that the observed increase at 7 days is indicative of direct uptake and metabolism 

of pyruvate by inflammatory cells—primarily neutrophils—which have infiltrated the lung 

in response to the bleomycin insult.  

 

Several other explanations are possible, however, all of which we will discuss individually. 

First, it is known that other conditions may affect apparent LDH activity. In a previous 

study11, for instance, we showed that temporary hypoxia can increase lactate labeling in 

the perfused lung by a factor similar to that observed here, most likely due to the increased 

intracellular lactate pool size and consequent increase in oxidized nicotinamide adenine 
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dinucleotide (NAD+ ) reduction rate. While it is possible that damage to the lung (e.g. 

fibrosis or emphysema-like tissue degradation) may adversely affect gas transport and 

tissue oxygenation, the primary means of oxygenation in this study is via the oxygenated 

perfusate. Any tissue damage that prevents adequate contact with the perfusate would 

also hinder access to the HP agent delivered through the same flow path, making HP 

lactate signals unobtainable in these regions. Furthermore, the hypoxic lung exhibited a 

distinctively low PCr and NTP signal in 31P spectroscopy when studied previously11—

distinctive changes that were not observed in this study. 

 

Another possible cause of increased lactate signal is a change in the uptake of pyruvate 

by the lung tissue. Although transporter activity may be affected by energy status, pH and 

other factors of the extra- and intracellular environment, no alteration in transport was 

detected in the inflammatory model lungs12. We note that HP alanine signal is not 

significantly increased in the inflammatory model animals; if pyruvate uptake by 

pneumocytes were increased sufficiently to explain the increased lactate signal, we would 

expect a measurably increased rate of transamination in these cells as well. It is possible 

that pyruvate uptake and transamination were both significantly and inversely altered such 

that label transfer to the alanine pool remained unchanged. However, we would consider 

this an unlikely coincidence. 

 

Third, it is possible that the increased apparent LDH activity observed arises in part from 

extracellular LDH. Although intracellular in healthy tissue, LDH is known to be present in 

substantial concentration in the extracellular space in regions experiencing cell death; 

tests of bronchoalveolar lavage fluid LDH activity are a common non-specific indicator of 

tissue damage13,14. In this case, however, the persistence of the lactate signal (along with 
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pyruvate and alanine, but in contrast to pyruvate hydrate) is a clear indication of its 

intracellular origin; extracellular signal would be washed out rapidly once ordinary 

perfusion was restored, as is the case for the extracellular pyruvate hydrate and other 

impurities (Figure 4.2). The continued linear increase of the lactate/pyruvate ratio during 

this washout period most likely indicates the intracellular rate constant for forward LDH 

activity, although it may also reflect the efflux of pyruvate from the lung epithelium—a 

process which has been shown to be rapid and dynamic15.  

 

A final possible cause of increased lactate signal in the inflammatory model lungs is the 

change in redox status of the lung tissue due to reactive oxygen species originating from 

the respiratory burst phase of neutrophil activity. These compounds may interact directly 

with the NADH/NAD + redox couple, indirectly through modulation of glutathione-mediated 

inhibition of LDH, or through a variety of other inflammatory signaling pathways16,17. 

Although this possibility cannot be ruled out based on the studies described here, it seems 

more likely that the increased lactate production arises from the rapid glycolysis of 

inflammatory cells. With respect to the similarly increased 18FDG-PET signal in 

inflammation, autoradiographic studies18–20 have confirmed that the source of the increase 

is primarily neutrophilic uptake rather than an inflammatory-mediated change in lung 

tissue activity, and that the significantly greater glycolytic rate of neutrophils (11) is 

sufficient to overwhelm signal originating in the lung epithelium1. Given that the neutrophil 

glycolytic rate is not limited by LDH activity21, we expect that similar dynamics are 

responsible for the substantial increase in lactate signal observed here. 

 

It is possible that increased macrophage density is responsible for some of the lactate 

signal as well. However, the results shown in Figure 4.6 provide evidence that the 
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increased lactate labeling is primarily neutrophilic in origin. As seen in Table 1 (and 

described previously22), neutrophil count in the bleomycin rat model peaks after 

approximately 7 days before re-approaching baseline 21 days after insult. In contrast, 

macrophage count continues to rise, peaking between 14 and 21 days. The neutrophil 

count time course is in qualitative agreement with the observed lactate signal time course 

(which is significantly higher at 7 days than at 21 days), and this agreement is reflected in 

the significance of the corresponding correlation plot in Figure 4.6. 

 

The degree of lactate increase is also fairly consistent with estimates of cell populations 

and metabolic characteristics available from previous ex vivo or in vitro studies. Pyruvate 

uptake and transformation to lactate in the normal lung is likely dominated by type II 

pneumocytes due to both their rapid and highly glycolytic metabolism and large population 

(~5.5 × 107 cells per lung, double that of type I pneumocytes and about six times that of 

alveolar macrophages), as well as conclusions based on cell morphology and oxygen 

uptake experiments23–25. Assuming, as demonstrated previously26,  that the lavage cell 

counts are representative of inflammatory cell sub-populations, bleomycin model lavage 

results suggest that the total inflammatory cell population increases from baseline by a 

factor of approximately six at 7 days and a factor of three at 21 days (Fig. 6 of Ref22), and 

that this increase consists almost exclusively of neutrophilic and macrophagic 

components27,28. Previous studies have also shown that the type II pneumocyte population 

is slightly but not substantially diminished in this model29–31. Although the degree and type 

of inflammatory cell activation is not known, we may approximate the expected relative 

contribution to HP lactate signal by measured lactate production rates in cell culture; 

published results show that per cell lactate production of isolated alveolar macrophages 

(61 nmol/h/106 ) and neutrophils (53 nmol/h/106 ) are approximately equal, and exceed 
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that of type II pneumocytes by approximately a factor of three (17 nmol/h/106 cells23,32,33). 

These general considerations suggest that we should expect HP lactate produced in the 

day 7 and day 21 bleomycin lungs to exceed that of the control lungs by factors of 

approximately 2.7 and 1.7, respectively. These values are comparable to the observed 

factors of 3.1 and 1.8, demonstrating that our explanation is at least plausible given what 

is known about cell populations and metabolic activity.  

 

The correlation between GPC/E levels as derived from 31P NMR and lactate signal is 

another indication that HP lactate imaging provides information about the extent and 

location of lung inflammation. It has been previously demonstrated that granulocytes 

contain very high levels of the phosphodiesters GPC and GPE, PG and related (and 

spectroscopically indistinguishable) compounds34,35. We therefore believe that the GPC/E 

levels of Figure 4.4 are indicative of elevated inflammatory cell count characteristic of 

inflammation, and that the strong correlation with lactate signal seen in Figure 4.5 provides 

evidence that both spectroscopic measures are further elevated in more severe 

inflammation. 

  

However, PET studies have also revealed the need to interpret the signal increase 

carefully by showing that the period of most rapid neutrophil energy metabolism does not 

correspond to the respiratory burst phase, but rather to cell migration and polarization36. 

Because the former phase of neutrophil activity and the associated release of reactive 

oxygen species is likely responsible for the lung tissue damage associated with 

inflammatory exacerbations37,38, it is possible that the period of maximum deleterious 

effect on the lung is not as conspicuous as the initial phase of neutrophil invasion when 

using either HP [1-13C]pyruvate MRI or 18FDG-PET. 
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A secondary finding of this study is that no systematic difference was observed between 

repeated measurements of inflammation in the same model lung using either 13C or 31P 

spectroscopy. Although the number of repeated 13C spectroscopy measurements was 

limited, it is clear that the effect of repeated or delayed measurement on the lung is much 

smaller than the between-group differences. This serves as an indicator of model stability 

during perfusion and suggests that small variations in timing do not affect the results of 

the experiment.  

 

As the ex vivo study was limited to two time-points (7 and 21 days), further investigation 

and comparison to histological markers will be required to relate its findings to more 

established measures of lung inflammation. In particular, we emphasize the highly 

dynamic nature39 of cell counts and metabolic rates during acute inflammation. Alveolar 

macrophages and neutrophils are known to take on a greatly increased glycolytic rate 

during phagocytosis or when exposed to even the lowered O2 tension of the healthy lung40. 

Thus, the quantitative estimate of expected metabolic activity in inflammation is intended 

only as a plausibility argument based on cell populations, not as direct evidence for the 

source of the observed signal.  

 

Furthermore, although the perfused lung model chosen has been shown to recapitulate 

many metabolic features of the ex vivo lung, the utility of this technique for localizing and 

grading lung inflammation relies in part on a low baseline activity of the healthy tissue. The 

lung has previously been demonstrated to play a substantial role in maintaining glycolytic 

intermediate balance in the blood, which suggests that pyruvate and lactate transport and 
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interconversion in the healthy organ may depend on whole-body metabolic activity, 

dynamical perfusion effects, feeding and exercise status.  

 

This can be seen by the difference in magnitude in lactate labeling between the ex vivo 

and in vivo studies. In the ex vivo study, lactate labeling was increased by a factor of 3.1 

and 1.8 on days 7 and 21, respectively, compared to the baseline. In comparison, the 

lactate labeling was increased by a factor of 1.7 on day 7 but decreased by 0.7-fold on 

day 21 compared to baseline in the in vivo study. As the same induction model was used, 

this change may be due to a number of factors. Firstly, the concentration of HP [1-13C] 

pyruvate in the ex vivo study was much higher than that used in the in vivo study. A final 

concentration of 32 mM was used in the former studies, whereas in the latter studies the 

effective bolus concentration was about 1.1mL of 80mM pyruvate diluted by the blood 

volume. Based on estimated blood volumes41, this would be an approximate concentration 

of 4-5 mM HP [1-13C] pyruvate. Although both concentrations are superphysiological42, the 

lower dosage was used to minimize injected blood volume, acidosis, and signal saturation 

given the SNR difference between the in vivo pyruvate and lactate signals. Lastly, the 

observed difference in magnitudes between the two studies may also be a function of 

acquisition timing. In the ex vivo study, the fresh HP pyruvate signal is replenished 

continuously over a period of one minute. Any lactate that is converted from the still-

magnetized pyruvate signal would still be detected during acquisition. On the hand, the 

HP pyruvate bolus is injected within 6s and imaging is acquired after 18s for a total of 9s. 

The pyruvate has to traverse the vena cava and the heart before any pyruvate is delivered 

to the lungs. Some blood cells that uptake pyruvate may already have converted HP 

pyruvate to HP lactate before acquisition has even started. Furthermore, during the 

imaging acquisition period, no new HP pyruvate is delivered, and any pyruvate within the 
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RF coil will suffer RF-induced depolarization. Although pyruvate may be converted to 

lactate, the SNR may be too low to quantify it. All these factors may have contributed to 

the lower observed difference between the three relevant cohorts. 

 

Lung regions may also express high apparent LDH activity during several other 

pathologies, including cancer, environmental exposure to agents causing oxidative stress, 

or interstitial inflammation43,44. It is important to note that, while the metabolic process 

examined here is related to the uptake and sequestration of 18FDG in that increased 

glycolytic activity can be expected to yield a larger signal, the two measurements are not 

equivalent. In particular, the imaging agents are transported into the cell via different 

mechanisms (glucose transporter 1 versus, primarily, monocarboxylate transporter 245). 

The two enzymatic conversion processes are also regulated through different means: e.g., 

hexokinase is inhibited by the FDG product FDG-6-phosphate and is the rate-limiting 

enzyme in neutrophilic glycolysis21, while LDH depends directly on cytosolic redox state 

and is regulated through a variety of other mechanisms including the inhibitory effect of 

the redox-coupled reduced glutathione concentration16. Accurately assessing the relative 

merits of each agent therefore requires further study in a model system. 

 

4.5. Conclusions 

We have demonstrated the use of non-ionizing, HP 13C spectroscopy to detect pulmonary 

inflammation and have provided evidence that infiltrating neutrophils provide the primary 

source of the observed signal. Although HP 13C spectroscopy is dependent on enzymatic 

and transport processes different from those involved in 18FDG imaging, many features of 

the techniques appear to be similar, including the several-fold increase of signal in 

inflammation and the apparent sensitivity to direct metabolism of the neutrophilic 
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inflammatory component. Because the baseline metabolic activity of the lung epithelium 

is relatively low, neutrophilic activity is apparent in high contrast. The overall signal levels 

are raised such that imaging applications become feasible, although the consistency of 

this low baseline and potential sensitivity to other conditions must be further investigated 

in both the isolated and in vivo lung46,47. 
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Chapter 5: Detection of lung transplant rejection in a rat model using 

hyperpolarized [1-13C] pyruvate-based metabolic imaging 

 

Abstract: 

The current standard for non-invasive imaging of acute lung rejection consists of X-ray/CT, 

which derive their contrast from changes in ventilation, the presence of inflammation and 

edema, and structural remodeling during rejection. We propose the use of hyperpolarized 

[1-13C] pyruvate MRI—which provides real-time metabolic assessment of tissue—as an 

early biomarker for tissue rejection. In this study, we used µCT-derived parameters and 

HP 13C MR-derived biomarkers to predict rejection in an orthotopic left lung transplant 

model in both allogeneic and syngeneic rats. On day 3, the normalized lung density—a 

parameter that accounts for both lung volume (mL) and density (HU)—was -0.335 (CI:-

0.598,-0.073) and -0.473 (CI:-0.726,-0.220) for the allograft and isograft, respectively, 

showing no significant difference (p=0.40) between the two cohorts. On the other hand, 

the respective HP 13C MRI-derived lactate-to-pyruvate ratios of 0.200 (CI:0.161,0.240) and 

0.114 (CI:0.074,0.153) for the allograft and isograft were significantly different (p=0.020) 

on day 3. Both techniques show tissue rejection on day 7. A separate sub-study revealed 

CD8+ cells as the primary source of lactate-to-pyruvate signal. Our study suggests that 

hyperpolarized (HP) [1-13C] pyruvate MRI is a promising early biomarker that may be able 

to predict tissue rejection earlier than X-ray/CT by providing a real-time assessment of 

changes in pulmonary cellularity as well as metabolic alterations in lung tissue and 

infiltrating inflammatory cells. 

 

This chapter has been adapted from Siddiqui et al., ‘Detection of lung transplant rejection in a rat 
model using hyperpolarized [1-13C] pyruvate based metabolic imaging’ accepted for publication in 
NMR in Biomedicine, 2019.  
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5.1. Introduction 

Over the last five decades, lung transplantation has evolved from a purely experimental 

technique to an established treatment for end-stage pulmonary disease1. Advances in pre- 

and post-transplantation management have led to a continuous increase in the number of 

lung transplants, with a reported 3973 performed worldwide in 20142. Yet immunological 

rejection continues to contribute significantly to post-transplant morbidity and mortality3,4, 

which remains far higher than that of any other solid organ transplant. Acute lung rejection 

is currently monitored using radiographs or CT, followed by surveillance biopsies. An 

improved biomarker would be able to detect lung rejection earlier and, ideally, non-

invasively.  

 

Several biomarkers have been proposed to improve the detection of lung transplant 

rejection—including 1H magnetic resonance imaging (MRI) with ultra-small 

superparamagnetic iron oxide (USPIO) particles, very short echo time (TE) 1H MRI, 

technetium-99m based single photon emission computed tomography (SPECT), as well 

as blood-based biomarkers like transplant tissue-specific exosomal microRNA and 

proteomic profiles5–8. None of these techniques are routinely used to detect lung rejection 

in the clinic, however, where radiography remains the predominant screening method9–11. 

 

After transplantation, the contrast observed in X-ray/CT images results from inflammation 

and edema combined with changes in ventilation, as well as permanent structural 

alterations due to remodeling during rejection. An imaging technique that derives its 

contrast from the changes in the cellularity and metabolism of lung tissue and the 

infiltrating inflammatory cells that precipitate lung tissue rejection might therefore be able 

to predict tissue rejection earlier than X-ray/CT. Hyperpolarized (HP) [1-13C] pyruvate MRI 
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is a novel imaging technique that provides such a real-time metabolic assessment of 

tissue. The signal of an injected carbon-13 enriched molecular probe can be enhanced 

more than 10,000-fold compared to thermal polarization via dynamic nuclear polarization 

(DNP), allowing molecular pathways to be imaged within minutes12, and the lactate-to-

pyruvate (LtP) ratio derived from this technique has been used in rat models of lung injury 

as a biomarker for ischemia-reperfusion, acute injury and inflammation13–16. Given the 

central role that these mechanisms play in lung tissue rejection, HP [1-13C] pyruvate MRI 

appears to hold significant promise as a biomarker for its early detection. 

 

In this study, we used an orthotopic left lung transplant model in both allogeneic and 

syngeneic rats to investigate HP [1-13C] pyruvate MRI’s ability to generate metabolic 

biomarkers for the non-invasive metabolic assessment of lungs post-transplantation. The 

measured HP lactate-to-pyruvate ratio was compared to micro-CT imaging in predicting 

lung rejection, and a histological sub-study was conducted to elucidate the source of the 

observed signal. 

 

5.2. Methods 

5.2.1. Animals 

20 pairs of rats (40 total) were used for this study. Syngeneic lung transplantation was 

performed in 8 male Wistar-Furth to Wistar-Furth (295±35g) rat pairs, while allogeneic 

transplantation was performed in 12 male Wistar to Lewis (305±27 g) rat pairs. n=5 

recipients from each cohort were used for longitudinal imaging studies on days 3, 7 and 

14, as described in Methods 5.2.3; the remaining recipients were used for the histological 

studies described in Methods 5.2.4. All animal procedures and studies were approved by 

the Institutional Animal Care and Use Committee of the University of Pennsylvania 
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(Philadelphia, PA) and were performed in accordance with the relevant guidelines and 

regulations. 

 

5.2.2. Transplant Procedure 

Detailed methods of the left orthotopic lung transplantation technique were published 

previously12. Transplants was performed under clean, non-sterile conditions, and the 

animals were heated continuously via an infra-red heating bulb. Anesthesia was induced 

in both donor and recipient rats with 100 mg/kg ketamine and 4 mg/kg xylazine, and 

maintained with 1.5% isoflurane/100% oxygen for the duration of the transplantation. Rats 

were intubated with a 14-gauge catheter (BD, Franklin Lakes, NJ, USA) and mechanically 

ventilated using pressure control (VentElite small animal ventilator, Harvard Apparatus, 

Holliston, MA, USA) with the following settings: 16-18 cmH2O peak inspiratory pressure 

(PIP), 2-4 cmH2O positive end-expiratory pressure (PEEP), 1:3 inspiration:expiration ratio 

at a ventilation rate of 52 bpm. All transplantations were performed using a binocular 

surgical microscope (Leica M651, Leica Microsystems, Buffalo Grove, IL, USA). 

 

5.2.2.A. Donor Procedure 

Donor rats were placed in supine position during lung harvest. A median incision from the 

jugular notch to the pubic symphysis was used to access both thoracic and abdominal 

cavities. First, donor animals were systemically heparinized (5000 IU) via the inferior vena 

cava. The diaphragm was then incised, and a median sternotomy was performed to 

access the thoracic cavity via the abdominal route. The thymus was removed, the left atrial 

appendage was then cut, the pulmonary trunk was cannulated and the lungs were 

perfused with 10 mL of cold (4oC) dextran-based preservation solution (Perfadex, XVIVO 

Perfusion AB, Goteborg, Sweden). The thoracic cavity was filled with ice to induce cardiac 
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arrest. The trachea was ligated at end inspiration, and the heart and lungs were removed 

en bloc. On the back table, the left pulmonary vein and pulmonary artery were dissected, 

cut to an appropriate length for secure anastomosis, and flushed with heparin (500 IU).  

Lastly, the left main bronchus was dissected and the distal trachea and proximal right main 

bronchus were ligated and cut to keep the lung inflated during cold ischemic storage. 

Ischemia time was standardized to 2 hours. Subcutaneous buprenorphine (0.1 mg/kg) 

was delivered every 8 hours for the first 24 hours, and subcutaneous meloxicam (2 mg/kg) 

was delivered every 12 hours on days 2-4 for post-operational pain relief. 

 

5.2.2.B. Recipient Procedure 

Recipient rats were placed in a right lateral position for full access to the left hemithorax. 

A transverse incision was made about 1 cm below the inferior margin of the scapula to 

expose the chest wall. Access to the thoracic cavity was gained via the fourth intercostal 

space. The ribs were retracted, after which the left lung was mobilized outside of the 

thoracic cavity. When necessary, bipolar cautery (Erbe GmbH, Germany) was used 

throughout the procedure. The pulmonary artery was clamped prior to the pulmonary vein 

to minimize blood pooling in the lung. The distal pulmonary artery and the inferior 

segmental vein were ligated (7-0 silk suture, Catgut, Markneukirchin, Germany) and cut 

distally. The left main bronchus was clamped (Aesculap FE720 aneurysm clip, Center 

Valley, PA, USA) and the native left lung was excised. A third-hand device was used to 

stabilize the vascular clips for the anastomosis procedure.  

 

The donor lung was placed into the recipient thoracic cavity and covered with ice-cooled 

wet gauze to keep it cool during the implantation procedure. The donor left main bronchus 

was shortened as needed before being anastomosed end-to-end with 10 interrupted 
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sutures (BV130-5, 8-0 Prolene sutures, Ethicon, Somverville, NJ). Anastomosis was 

checked for patency by re-inflating the lung, and for air leakage by filling the left thoracic 

cavity with warm normal saline. Vascular anastomoses (end-to-end pulmonary artery to 

pulmonary artery and end-to-end pulmonary vein to pulmonary vein) were completed 

using the cuff technique described previously12. In brief, recipient vessels were passed 

through a 1mm cylinder cuff cut from a polyethylene catheter (18-gauge for the artery, 16-

gauge for the vein), everted over the cuff and secured with a 7-0 silk ligature. The donor 

vessels were then pulled over the cuff and secured with a 7-0 silk ligature and the clips 

were then removed for reperfusion and ventilation.  

 

The thoracic cavity was drained with a 20-gauge catheter and the ribs were closed with 4-

0 Prolene sutures. Muscular layers, subcutaneous layers and skin layers were re-

approximated in multiple layers with running 4-0 vicryl sutures.  Animals were weaned 

from mechanical ventilation, extubated and monitored until fully awake.  

 

5.2.3. Imaging Timeline 

Micro-CT images were acquired on the following days: 0 (60-120 minutes post-surgery), 

1, 2, 3, 7, 14. Proton MRI and hyperpolarized [1-13C] pyruvate MRS were acquired on days 

3, 7 and 14. 

 

5.2.3.A. CT Imaging 

High resolution CT scans were acquired using a microCT scanner (eXplore CT120, 

Gamma Medica, Inc., Northbridge, CA). Animals were anesthetized with isoflurane (2%) 

on 100% O2 (1.5mL/min) during the scan. Because the animals’ breathing was unstable 

under anesthesia on days 0, 1 and 2, non-gated scans were performed at those time 
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points in order to keep the time under anesthesia under 10 minutes. End-expiratory gating 

was used during imaging on days 3, 7 and 14, which extended the total time under 

anesthesia to about 30 minutes. CT scans had the following parameters: voltage: 32.0 

mA, current: 80 kV (70 kV for the non-gated sequence), exposure time: 16 ms, angle of 

rotation: 0.877O, views: 220 (half-scan), reconstructed resolution = 200 μm (isotropic). 

Total scan time for the non-gated scans was 30 s, whereas gated scans ranged between 

6-9 minutes based on the respiration rate (typically 50-70 bpm). 

 

5.2.3.B. Hyperpolarized Pyruvate Preparation 

The HP [1-13C] pyruvate probe was prepared by adding 15mM OX063 radical (GE 

Healthcare, Little Chalfont, UK) and 1.5mM gadoterate meglumine (Dotarem, Guerbet 

LLC, Bloomington, IN, USA) to neat [1-13C] pyruvate (Cambridge Isotope Laboratories, 

Tewksbury, MA, USA). 28.3mg of this mixture was polarized to a solid state polarization 

of 19.8±1.3% using a commercial DNP polarizer (Hypersense, Oxford Instruments, 

Abingdon, United Kingdom) in approximately 50 minutes. The polarized samples were 

melted with a 4 mL neutral buffered solution (40mM TRIS base, 80 mM NaOH, 50 mM 

NaCl, and 0.1 mg/L EDTA) at 10 bar and 180 °C to yield a 80 mM HP [1-13C] pyruvate 

solution at 37 °C. 1.1±0.2 mL (4 mL/kg) of the HP solution was then transferred and 

injected into the animal via a tail vein catheter within 10 s of dissolution. Injection lasted 6 

s and was followed by a 200μL saline flush. The scan started 16 s after beginning injection. 

 

5.2.3.C. MRI Imaging 

MRI imaging was performed on a 4.7T horizontal bore magnet (Inova 200, Varian Inc, 

Palo Alto, CA) using a 72mm dual tuned 1H/13C quadrature transmit/receive birdcage coil 

(Polarean Imaging Plc., Cleveland, OH). A T1-weighted coronal 1H GRE of the lungs was 
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acquired for positioning the slice-selective CSI with HP [1-13C] pyruvate. The acquisition 

parameters were: TR/TE = 80/1.55 ms, FOV = 60x60x2 mm3, matrix = 128x128, slices = 

16, averages = 16, flip-angle = 20o, scan time = 2:03 min. The lungs were manually 

shimmed using the proton channel to a proton linewidth of about 100Hz using a 15mm 

slice-selective pulse acquire sequence. HP [1-13C] pyruvate chemical shift imaging (CSI) 

was performed immediately after shimming. 

 

HP 13C CSI was performed using a 2D slice-selective phase-encoded free-induction 

decay chemical shift imaging (FID-CSI) sequence. The 15mm slice was positioned on the 

lungs superior to the dome of the diaphragm. The scan was started 16 s after the start of 

the HP injection (see above). The acquisition parameters were: TR/TE =35/0.5 ms, FOV 

= 45x45x15 mm3, matrix size = 16x16, spectral width = 4 kHz, spectral points = 128, flip-

angle = 9o, scan time = 9s. The MRI imaging session typically lasted 60-90 minutes. 

 

5.2.3.D. CT Data Processing 

The CT images were imported into ITK-SNAP for segmentation and quantification, and 

the lungs were semi-automatically quantified via a two-step process. First, the lungs were 

automatically segmented using active-contour technique with an upper threshold of -250 

HU. Once segmentation was complete, the trachea was manually removed and the lung 

masks were separated into native and transplanted. The segmented lungs were then used 

to obtain the average lung density (HU)—a marker for ventilation— and volume (mL) for 

each lung. Both the aforementioned parameters were also used to calculate normalized 

lung density (L*HU), which accounts for the skewed lung density due to the upper bound 

of -250 HU when segmenting the lungs. 
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5.2.3.E. MRSI Data Processing 

All data were processed offline using custom routines in MATLAB 2017b (MathWorks, 

Natick, MA, USA). The free-induction decays (FID) were line-broadened by 30 Hz and 

then Fourier transformed to obtain the spatially resolved spectra. The periodic acquisition 

of the k-space center (kx,y = 0) was used to de-blur the spectra via amplitude 

normalization, providing improved localization. The resultant spectra were then baseline-

corrected (fourth-order polynomial), local zero-order and global first-order phase-

corrected; the lactate and pyruvate peaks were then fit to Lorentzian functions. The 

processed carbon-13 spectra were overlaid on the corresponding proton images of the 

thorax, and voxels were manually selected from the native lung, transplanted lung and 

heart for regional quantification. Voxels overlying large vessels in the lung parenchyma 

were excluded from selection. As the number of selected voxels from each region varied, 

the average pyruvate, lactate and lactate-to-pyruvate was calculated by summing the 

respective spectra and dividing by the number of voxels. The fitted pyruvate and lactate 

spectra were also used to generate corresponding metabolic maps, which were linearly 

interpolated to match the voxel size of the underlying proton images for clearer 

visualization. 

 

5.2.4. Histology and Immunostaining of Lungs 

Because the imaging study was longitudinal, a parallel assessment of both lung tissue 

ultrastructure and distribution of cellular infiltrates post-transplantation on days 3 (n=3 

rejected cohort) and 7 (n=4 rejected cohort, n=3 non-rejected cohort) was also performed. 

After euthanasia, lungs were excised and filled with 10% formalin at a tidal volume of 

10mL/kg to keep the alveoli open. After fixation, lungs were sectioned and sliced axially. 
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The slides were stained with either hematoxylin and eosin (H&E) or Masson Trichrome to 

assess tissue morphology or fibrotic changes, respectively. For H&E staining, each slide 

was divided into 10 sections that were then visually scored at 20x magnification for semi-

quantitative grading. Injury was assessed in the H&E stains by a combination of infiltration 

(scale of 0-2), alveolar structure disruption (scale of 0-3), remodeling (scale of 0-5) and 

edema (scale of 0-3) (Table 5.1). Fibrosis was assessed using the Ashcroft Score of the 

Trichrome stained sections, ranging from 0 (normal lung) to 8 (total fibrous obliteration of 

the field) (Table 5.2)13,14. The final score was expressed as a mean of individual scores 

observed on all microscopic fields across three axial slides from the superior, medial and 

inferior regions of the lungs. 

Feature Score Findings 

Infiltration 

0 No infiltrate 

1 Infiltrate in the perivascular compartment 

2 Infiltrate in alveolar compartment 

Alveolar 
Structure 
Disruption 

0 Regular 

1 Distorted 

2 Collapsed with torn capillary-alveolar membrane 

3 Collapsed with opacity 

Remodeling 

0 None 

1 Detected in 1 or 2 areas 

2 Detected in 3 or 4 areas 

3 Detected in 5 or 7 areas 

4 Detected in 7 or 8 areas 

5 Detected in 9 or 10 areas 

Edema 

0 Regular alveolus 

1 Slight thickening 

2-3 Dilated vessels in alveolar walls and proteinaceous 
material in alveolus 
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Table 5.1: Grading H&E sections for lung injury based on four sub-categories 
 

Additional slices were used to assess polymorphonuclear leukocytes (PMN) by monitoring 

myeloperoxidase expression as well as CD4+ and CD8+ T lymphocytes in grafts post-

transplant. Briefly, the paraffinized sections were deparaffinized in xylene and, after 

sequential ethanol and PBS washes, were immunostained with both anti-MPO and rat-

CD4+/CD8+ primary antibodies. The secondary antibodies used were goat-anti-rat Alexa 

488 (green). Fluorescence imaging was done using a Nikon fluorescence microscope 

(Nikon Diaphot TMD, Melville, NY).  Images were acquired at an excitation wavelength of 

488 nm (for MPO, CD4+ and CD8+). All images were acquired at 100 ms exposure time 

using a preset scale of 0-4095. The PMN, CD4+ and CD8+ were assessed by quantifying 

fluorescence intensity over 5 fields using Metamorph Software (Molecular Devices, 

Downington PA). 

Grade Histological Features 

0 Normal lung 

1 Minimal fibrous thickening of alveolar or bronchiolar walls 

2-3 Moderate thickening of walls without obvious damage to 
lung architecture 

4-5 Increased fibrosis with definite damage to lung structure 
and formation of fibrous bands or small fibrous masses 

6-7 Severe distortion of structure and large fibrous areas 
(“Honeycombing”) 

8 Total fibrous obliteration of the field 

Table 5.2: Criteria for grading lung fibrosis to derive the Ashcroft Score 
 

5.2.5. Statistical Analysis 

Statistical significance between the transplanted and non-transplanted lungs was tested 

using two-way analysis-of-variance (ANOVA). Post-hoc analysis was performed using 

Tukey’s honest significance test. If no significance was observed using ANOVA, a 
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Student’s t-test with the Bonferroni correction was used for post-hoc analysis.  α=0.05 was 

considered statistically significant. All data were expressed as mean±SD. 

 

5.3. Results 

5.3.1. HP [1-13C] Pyruvate Imaging 

Figure 5.1 shows representative 13C spectroscopic images overlaid on the corresponding 

proton images (Figure 5.1A,B) for syngeneic and allogeneic rats on day 7.  

 
Figure 5.1: Representative carbon-13 MRSI overlaid on proton images in day 7 syngeneic (A) and 
allogeneic (B) rats. Voxels in the graft (red), native lung (green) and heart (blue) were manually 
selected for regional quantification (insets C-I) of HP pyruvate and HP lactate. The signal in the 
heart is generally much higher than in either lung. Linewidths are broadest in the native lungs and 
narrowest in the heart (Table 5.3).  
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The insets for figures 5.1A-D show a zoomed-in view of the average spectra in the 

selected voxels for the native lung, transplant lung and heart, respectively. As can be seen 

from these spectra, the linewidths of the voxels depend on the region and state of the 

organ. The quantified linewidths of each tissue are summarized in Table 5.3.  

 
Day 3 Day 7 Day 14 

Syngeneic Allogeneic Syngeneic Allogeneic Syngeneic Allogeneic 

Heart 10.2 ± 1.8 11.5 ± 4.4 12.6 ± 0.8 10.9 ± 3.7 12.0 ± 2.6 8.2 ± 6.6 

Native 28.4 ± 6.0 34.2 ± 3.6 32.6 ± 3.3 32.7 ± 
11.2 30.1 ± 8.3 34.8 ± 0.5 

Graft 20.3 ± 9.2 12.7  ± 4.8 22.7 ± 6.6 10.6  ± 2.2 25.6 ± 8.1 10.7 ± 2.9 

Table 5.3: Pyruvate linewidth (Hz) quantification in the heart, native lung and grafted lung in 
syngeneic and allogeneic cohorts on days 3, 7 and 14 (n=5 for both cohorts on all three timepoints). 
The average linewidth was 11.0±3.2 Hz and 31.8±6.0 Hz in the heart and native lung, respectively, 
across both cohorts and all three timepoints. In contrast, the average linewidth across all three 
timepoints in the isograft was 22.7±7.7 Hz (compared to 11.0±3.2 Hz in the allograft).  
 

As described in the Methods section, the fitted pyruvate and lactate spectra were used to 

generate their respective metabolic maps (Figure 5.2). While the metabolites cannot be 

absolutely quantified, their respective mean intensities from each lung were normalized to 

those from the heart for comparison (Table 5.4). On day 3, the normalized pyruvate 

intensities in the native and transplanted (isograft) lungs of the syngeneic cohort are 

0.44±0.11 and 0.55±0.11, respectively (Figure 5.3A). On day 7, these intensities decrease 

to 0.42±0.10 and 0.45±0.09, respectively, and further decrease to 0.37±0.12 and 

0.42±0.19 on day 14 (not significant, minimum p >0.69).  
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Figure 5.2: HP pyruvate (top), HP lactate (middle), and lactate-to-pyruvate (bottom) maps for 
syngeneic (left) and allogeneic (right) cohorts on days 3 and 7. In each map, the transplanted lung 
is displayed on the left and the native lung is on the right. The scale is normalized to the maximum 
metabolite signal in each map. In the syngeneic (non-rejected) cohort, pyruvate hyperperfusion can 
be observed, most likely due to IR injury; this dissipates by day 7, as the tissue returns to baseline. 
The lactate signal is increased over the lungs (compared to the heart) on day 3 but decreases by 
day 7. Though we see similar hyperperfusion in the allogeneic (rejected) cohort, some of the 
pyruvate is shunted towards the native lung. The allograft has minimal perfusion by day 7 (see 
Figure 5.3), yet a large lactate distribution is observed in that lung. The lactate-to-pyruvate ratio is 
low in both lungs on days 3 and 7 the syngeneic cohorts. On the other hand, the lactate-to-pyruvate 
ratios of the allograft and native lung in the allogeneic cohort are measurably different on day 3; 
this difference is enhanced further by day 7, when the transplanted lung is fully rejected. 

 
In contrast, the pyruvate distribution in the allogeneic cohort has a greater difference 

between the native and transplanted (allograft) lungs. On day 3, the former’s intensity is 

0.75±0.37, whereas the latter’s is 0.48±0.25 (p=0.22). Pyruvate intensity in the native lung 

drops to 0.47±0.10 by day 7, and to 0.45±0.05 by day 14, which is within the range of both 

lungs from the syngeneic cohort and suggests a return to baseline perfusion. In contrast, 
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pyruvate intensity in the transplanted lung was less than the native lungs on days 7 

(0.24±0.12, p=0.004) and 14 (0.29±0.09, p=0.075) post-transplant. 

 
 

Table 5.4: Quantitative analysis summary for pyruvate, lactate and lactate-to-pyruvate ratio in the 
native and transplanted (graft) lungs in both syngeneic and allogenic cohorts. The isograft and 
allograft are the transplanted lungs in the syngeneic and allogeneic cohorts, respectively. The 
pyruvate and lactate signals are normalized to that of the heart. The sample size for both cohorts 
was n=5 at all three timepoints (day 3, 7, 14). 
 
In the syngeneic cohort, the HP lactate intensity is higher in the grafts than in the native 

lungs at all three timepoints (significant, maximum p<0.007) (Figure 5.3B). Lactate 

intensity for the isografts is 0.64±0.19, 0.43±0.11, and 0.39±0.11 on days 3, 7 and 14, 

respectively. In comparison, the normalized intensity for the native lung is 0.36±0.13, 

0.29±0.09, and 0.27±0.04 at the same timepoints. Although lactate intensity decreases by 

32.8% in the isografts between days 3 and 14, it is still 44.4% higher than in the native 

lungs on day 14, suggesting incomplete recovery from the transplant procedure. 
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The native and transplanted lungs in the allogeneic cohort show no significant difference 

in lactate intensity on day 3 (0.50±0.17 and 0.45±0.27, respectively). However, lactate 

intensity in the allografts increases to 0.56±0.16 and 0.38±0.19 on days 7 and 14, 

respectively, whereas it decreases to 0.36±0.08 and 0.28±0.11 on days 7 and 14 in the 

native lungs. 

 
Figure 5.3: Biomarkers derived from quantified HP [1-13C] pyruvate MRI. A) The average pyruvate 
signal in each lung, normalized by the average signal in the heart. The sample size for both cohorts 
was n=5 at all three timepoints (day 3, 7, 14). On day 3, a much larger pyruvate signal is observed 
in the native lung of the allogeneic cohort compared to the other three lungs; by day 14, this signal 
is within the range of both syngeneic lungs, while the signal from the allograft remains 
comparatively low, most likely because perfusion is hampered due to rejection. B) The average 
lactate signal in each lung, normalized by the average lactate signal in the heart. Both syngeneic 
lungs and the native lung from the allogeneic cohort show a decreasing lactate signal with time, 
most likely due to recovery from post-transplant ischemia-perfusion injury. In the allograft, on the 
other hand, lactate signal does not show a monotone decrease, and is similar to that in the isograft 
lungs despite lower perfusion. C) The average HP lactate-to-pyruvate (LtP) ratio in each lung. On 
day 3, The LtP of the allograft is significantly greater than that of the isograft, and continues to 
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increase on day 7, when the lung is fully rejected. The other three lungs show a similar LtP on day 
14, while that of the allograft remains high. 
 

5.3.2. HP Lactate-to-Pyruvate (LtP) Ratio 

Although the pulmonary lactate and pyruvate intensities reported above are normalized 

against the heart, the LtP provides the metabolic state of each lung independent of any 

other organ’s metabolic status. On day 3, the native lungs in the syngeneic and allogeneic 

cohorts have a LtP of 0.078±0.028 and 0.160±0.083 (p=0.090), respectively, whereas the 

grafts show respective ratios of 0.114±0.045 and 0.200±0.05 (p=0.020) (Figure 5.3C). 

There is no significant difference between the native lungs and grafts within the same 

cohort (minimum p > 0.18); however, there is a significant difference between the same 

types of lung in different cohorts. Furthermore, the LtP of the transplanted lung in the 

allogeneic (rejected) cohort is 75.4% greater than in the syngeneic (non-rejected) cohort, 

making it a viable predictor for lung rejection.  

 

On day 7, the LtP in the native lungs is 0.113±0.037 and 0.123±0.029 in syngeneic and 

allogeneic cohorts, respectively. The LtP of the isografts is 0.153±0.027, whereas it has 

increased to 0.413±0.146 in allografts (p=0.0015). This increased LtP coincides with full 

lung rejection, as observed in CT images of the non-aerated allografts. On day 14, the LtP 

of the native lungs in the syngeneic and allogeneic cohorts is 0.079±0.027 and 

0.131±0.065 (p=0.29), respectively; the transplanted lungs have respective LtPs of 

0.100±0.032 and 0.257±0.097 (p=0.097). Although less than on day 7, this is still a 2.57-

fold inter-cohort difference between transplanted lungs. 
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5.3.3. Qualitative Assessment of CT Imaging 

CT images for both cohorts show large aeration variances on day 0 (Figure 5.4A,E): 

typically, the native lungs are partially to fully aerated, while the grafts are non- or slightly 

aerated. By day 3, the native lungs in both cohorts appear almost fully aerated (Figure 

5.4B,F); however, the allogeneic cohort tends to display a higher variance than the 

syngeneic cohort. Meanwhile, the transplanted lungs remain either poorly or partially 

aerated on day 3, with minimal discernible difference between the two cohorts. It is 

therefore difficult to predict the fate of the transplanted lungs based on the day 3 CT 

images. On days 7 and 14, the allografts are completely non-aerated (Figure 5.4G,H), 

whereas both lungs appear fully aerated in the syngeneic cohort (Figure 5.4C,D). 

 
Figure 5.4: Representative coronal CT slices for syngeneic (top) and allogeneic (bottom) transplanted lungs. 
The slices displayed here best represent the median lung density of their respective cohorts. In general, there 
was a much larger variation in both lungs on days 0 and 3 compared to days 7 and 14, as seen in Figure 5.5. 
 

5.3.4. Quantitative Assessment of CT Imaging 

The quantitative parameters—ventilated lung volume (mL), lung density (HU), and 

normalized lung density (L*HU)—confirm the qualitative assessment of the CT images. 
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On day 3, the volume of the native lungs in the syngeneic and allogeneic cohorts is 

3.63±0.51mL and 3.91±0.1.67mL (p=0.71), respectively; the respective volumes of the 

grafts are 1.1±0.63mL and 0.53±0.71mL (Figure 5.5A). Although the mean volume of the 

isografts is more than double that of the allografts, this difference is insignificant (p=0.40) 

due to their large overlapping ranges. On day 7, the volume of the native lungs in the 

syngeneic and allogeneic cohorts is 3.88±0.27mL and 4.17±1.025mL (p=0.62), 

respectively, while the respective volumes of the grafts are 1.27±0.17mL and 

0.01±0.01mL (p<0.00001), suggesting that the allografts have been completely rejected 

by day 7. The isograft volume increases by 21% to 1.54±0.15mL on day 14, whereas the 

allograft volume remains unchanged. The native lung volume increased by 5.3% to 

4.09±0.65mL and by 21.3% to 5.063±.91mL in the syngeneic and allogeneic cohorts, 

respectively. 

 

Similarly, the difference in lung density between the two cohorts on day 3 is insignificant. 

The native lungs of the syngeneic and allogeneic cohorts have a density of -512±24 HU 

and -486±66 HU (p=0.60), respectively, compared to respective densities of -438±29 HU 

and -425±39 HU (p=0.40) in the grafts on day 3 (Figure 5.5B). The density of the native 

lungs in both cohorts decreases slightly on days 7 and 14 as the lungs recover ventilation. 

The isografts have a density of -517±52 HU and -498±59 HU on days 7 and 14, 

respectively, also suggesting recovering ventilation. The nominal density in the allograft 

on day 7 is meaningless given the almost zero volume of the lung at that time point 

(indicating complete consolidation). 
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Figure 5.5:  The aerated lung volume (A), lung density (B) and normalized lung density (C) in native 
(left) and transplanted (right) lungs in both cohorts, based on segmentation of gated CT images. 
CT images could not be accurately segmented before day 3 due to heavy motion artifacts in the 
non-gated CT images. (A) The volume of the native lungs was larger than that of the transplanted 
lungs, as donor rats were typically about 50g smaller than recipient rats. The volume of the native 
lung increases to compensate for the failing transplanted lung on days 7 and 14 in the allogeneic 
cohort. (B) Because values are based on an upper threshold of -250 HU, these lung densities are 
biased towards aerated regions of the lung and, as a result, cannot distinguish between a lung with 
very low overall aeration (high density) versus a lung with high aeration in some regions (low 
density); they are therefore of minimal use as diagnostic markers. (C) The normalized lung density 
(L*Hu) is the product of lung volume and density, and serves as a quantitative surrogate for the 
visual inspection of a radiograph or CT image by a radiologist. The results show a similar trend to 
the previous two CT-derived parameters: the native lungs in both cohorts share a similar 
longitudinal trajectory, whereas the transplanted lungs show similar normalized densities on day 3 
before lung failure in the allogeneic cohort starting on day 7. Note that there are no lung density 
and normalized lung density values on day 14 for the allograft in the allogeneic cohort because the 
segmented lung volume of 0mL. The sample size for both cohorts was n=5 at all three timepoints 
(day 3, 7, 14). 
 

The normalized lung density –which attempts to succinctly quantify the qualitative reading 

of a radiograph—similarly reflects CT imaging’s lack of predictive power. On day 3, the 
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native lungs in the syngeneic and allogeneic cohorts have a normalized density of -

1.87±0.31 L*HU and -1.98±0.99 L*HU (p=0.80), respectively, whereas the transplanted 

lungs show respective normalized densities of -0.47±0.29 L*HU and -0.34±0.13 L*HU 

(p=0.53) (Figure 5.5C). The normalized density of the native lungs in both cohorts and the 

isografts continues to decrease on days 7 and 14, reflecting the increased lung volume 

and improved ventilation seen above. In contrast, given the complete consolidation of the 

allografts, the normalized density is zero L*HU on day 7. 

 

5.3.5. H&E and Trichrome Staining 

On day 7, isografts presented with minor infiltration in the peribronchiolar regions, but no 

edema. The native lung showed very little particulate infiltration. Overall, the isograft 

showed no signs of rejection. Isografts and native lungs scored 4.0 and 3.1, respectively 

(Figure 5.6A,C). 

 

In contrast, allografts showed extensive infiltration as well as complete remodeling of the 

graft, with granulated tissue filling the lumen of the airway. There was alveolar collapse 

and tissue consolidation in most of the graft tissue, marked proliferation of the intima along 

the vessels, and the lumen of most of the vessel had disappeared. Extensive fibrotic 

lesions were observed throughout the graft. Thus, all the classic features of rejection were 

noted. Infiltrates and edema were also observed in the native lungs of the allogeneic 

(rejected) cohort. On our semi-quantitative scale, allografts and native lungs scored 13 

and 5.8, respectively (Figure 5.6E,G). 
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Figure 5.6: H&E staining (left panel) and Masson’s Trichrome (right panel) of both non-rejected (A-
D) and rejected (E-H) cohorts on day 7 post-transplant. A sub-field is magnified in the adjacent 
panels. The blue arrows show collagen deposition in the isograft (D) and allograft (H). The alveolar 
structure and lung architecture appear normal in the non-rejected cohort, with some minor 
remodeling seen in the isograft. In the rejected cohort, the black arrow (E) is proteinaceous edema 
in the alveolus, while the grey arrow (G) shows thickening (smooth muscle proliferation) of an 
airway. Airways are obliterated and the lung architecture is completely destroyed in the allograft. 
Collagen deposition (blue) indicates extensive remodeling of lung tissue. Scale bar is 100 microns. 
 

The average Ashcroft score for both lungs in the syngeneic cohort was 1.0 (Figure 

5.6B,D). Isografts showed the presence of infiltrates and thickening of the alveolar septa 

in some areas. In contrast, allografts showed extensive fibrosis, massive infiltrate 

accumulation and tissue consolidation, and total obliteration of alveoli and extensive 

collagen deposition throughout the graft (Figure 5.6F,H). The allograft’s Ashcroft score 

was 7-8, whereas the native lung’s was 2.5.    
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5.3.6. Immunostaining for Myeloperoxidase (MPO) 

Fluorescence microscopy of immunostained lungs showed high MPO expression in the 

allografts on days 3 and 7 compared to the native lungs (not shown) and the isograft 

(Figure 5.7). In the allograft, MPO expression was marginally higher on day 7 compared 

to day 3, but that difference was not significant (Table 5.5). MPO was predominantly 

expressed along the vessel wall, with some PMN accumulation in the alveolar space.  

 
Figure 5.7: MPO Staining – Immunostaining for immune cells (neutrophils and macrophages) in 
post-transplant grafts from both allogeneic and syngeneic transplants. Lung sections were stained 
for myeloperoxidase (MPO) using rabbit polyclonal anti-MPO. Goat anti-rabbit-Alexa 488 was used 
as a secondary antibody. The boxed inset is expanded to show the presence of MPO positive (i.e. 
azurophilic granulocytes) neutrophils, which are seen as clusters within the allogeneic lung graft 
tissue and were not limited to the lumen. No such cell clusters were observed in syngeneic grafts. 
The black arrow shows an obliterated lumen. Quantifying fluorescence signal (Table 5.5) suggested 
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a high expression of MPO in the transplanted grafts compared to the isograft; in allografts, MPO 
was slightly higher on day 7 than on day 3. Scale bar is 10 microns.  
 

5.3.7. Immunostaining for CD4+ and CD8+ Cells 

The syngeneic cohort showed minimal staining for both CD4+ (Figure 5.8E) and CD8+ 

(Figure 5.9E) in both lungs. Fluorescence imaging showed high CD4+ expression in 

allografts on days 3 and 7 (Figure 5.8A,C, Table 5.5). There was no appreciable 

expression of CD4+ in the native lungs (Figure 5.8B,D). In contrast, CD8+ expression was 

low in day 3 allografts (Figure 5.9A), but increased several-fold at day 7 (Figure 5.9C). 

Both CD4+ and CD8+ expressing T cells accumulated predominantly along the obliterated 

lumen, with little to no accumulation in either the alveolar region or other areas of the lung 

tissue; some T cells were also found along the endothelial layer of the original vessel. 

 
Figure 5.8: Sections depicting airways and lumen are shown (Aw=airway; L=lumen). The presence 
of T-lymphocytes using anti-CD4+ antibodies is indicated by green fluorescent signal in the 
allogeneic cohort on days 3 (A, B) and 7 (C, D), as well as in the syngeneic cohort on day 7 (E, F). 
The syngeneic cohort showed minimal staining for CD4+. The lung allografts showed appreciable 
signal on both day 3 and day 7 (A, C), while the native lungs in this cohort showed minimal signal 
(B,D)—see Table 5.5 for quantification. 
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Figure 5.9: Sections depicting airways and lumen are shown (Aw=airway; L=lumen). Green 
fluorescent signal indicates the presence of T-lymphocytes using anti-CD8+ antibodies in the 
allogeneic cohort on days 3 (A, B) and 7 (C, D), as well as in the syngeneic cohort on day 7 (E, F). 
Most of the CD8+ T lymphocytes were expressed along the lumen. Minimal CD8+ expression is 
apparent in the native lungs in all three cohorts as well as the isograft on day 7. The allograft shows 
elevated fluorescence on day 3, which more than doubles by day 7 (see Table 5.5 for 
quantification). 
 

5.4. Discussion 

In this animal study, we assessed HP [1-13C] pyruvate MRI’s potential as a predictor for 

lung rejection compared to micro-CT, an appropriate analog to clinical radiography. We 

found that the lactate-to-pyruvate (LtP) ratio derived via our technique was able to 

discriminate allografts and isografts better than micro-CT-derived parameters on day 3. 

While the transplanted allografts were completely rejected by day 7 in our model, the 

normalized lung density derived via micro-CT showed no significant difference between 

allografts- and isografts on day 3, whereas the LtP showed a significant difference 

between the two cohorts at this timepoint. 
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Images derived using both these modalities reflect the underlying mechanism of graft 

rejection, which is primarily driven by the adaptive immune system. The recognition of the 

donor MHC complexes by CD4+ and CD8+ T-cell lymphocytes stimulates the 

development of cytotoxic CD8+ T-lymphocytes (CTL) which lyse the cells and tissue, 

leading to organ destruction20,21. While the relative contributions of CD4+ and CD8+ T cell 

subsets to rejection are unclear, the CD4+ alloimmune response is typically short-lived 

due to the destruction of donor antigen-presenting cells (APCs) post-transplantation22–24. 

The principal alloimmune response therefore appears to be largely mediated by CD8+ 

CTLs, although this response may vary according to the transplant model and species25–

27. In our study, both CD4+ and CD8+ seemingly play a role in the rejection process on 

day 3; the CD4+ signal declines on day 7, however, while the CD8+ signal doubles, 

suggesting that the CD8+ T-cell response is the principal mediator of rejection (Figure 

5.8,9). 

 

Although the adaptive immune response is the major driver for tissue rejection, other 

immune responses driven by neutrophils also occur during the rejection process. 

Ischemia-reperfusion (IR) injury due to the transplant procedure results in infiltrating 

leukocytes28 and vascular permeability29,30, and the cascade of events up-regulates 

fibroblast activity in the allograft, eventually resulting fibrosis31,32. Indeed, a major hallmark 

of graft rejection is the complete solidification of the graft tissue, as observed in Figure 

5.6. 

 

Because of its sensitivity to most of the physiological changes described above, CT 

imaging is useful for monitoring post-transplant tissue rejection. The lack of aeration 
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immediately after transplantation, along with any edema or inflammation due to IR injury, 

increases the lung density. Effects of IR injury have been demonstrated in the contralateral 

lungs33–35, suggesting that the observed decrease in CT lung density from day 3 to 14 in 

the native lungs of both cohorts is most likely due to recovery from such IR injury. 

Transplanted lungs from both cohorts are non-aerated immediately post-transplant 

(Figure 5.4AE), but are partially aerated by day 3. The isograft recovers from the IR injury 

between days 3 and 7, as confirmed by H&E histology. In contrast, the lung density of the 

allografts increases and the lung aeration decreases as the CTL lyse donor lung cells, 

typically those in the endothelium of the vessels and airway epithelium, as seen in Figure 

5.636. Despite its utility as a monitoring tool for lung rejection, however, CT is only capable 

of detecting this rejection after native immune cells have induced these structural 

changes37. This deficiency is most apparent in our model on day 3, when both the 

allografts and isografts show overlapping CT volumes and densities despite only the 

allograft staining positive for CD4+ and CD8+ cells. 

 

As seen in our Results, there is a significant difference in LtP between the allograft and 

isograft on day 3, suggesting that this technique can be used as an earlier predictor of 

lung rejection than CT, which does not differentiate between the two grafts at this 

timepoint. The HP lactate signal measured by HP [1-13C] pyruvate MRI is generally based 

on the metabolism and cellularity of the imaged tissue15. The lung has both low cellularity 

and a low glycolytic rate, whereas immune cells have high aerobic glycolysis 38,39. 

Importantly, both activated CD8+ cells and neutrophils have high aerobic glycolysis, so an 

increased lactate and LtP could be attributed to either source40–42; a combination of both 

mechanisms likely produces the contrast observed in our imaging technique.  
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The observed LtP in the syngeneic cohort is likely primarily due to post-transplant IR injury. 

Although no immunohistochemistry was done on day 3 for this cohort, day 7 results show 

minimal fluorescence for CD4+/CD8+, but ~40% signal for MPO compared to the allografts 

(Table 5.5). Furthermore, the HP [1-13C] pyruvate signal, which has been previously used 

as a perfusion marker43–45, shows that both the isograft and native lung have a high 

pyruvate signal (normalized to the heart) on day 3 that continues to decrease until day 14, 

most likely as inflammation subsides. In contrast, the LtP in the allogeneic cohort is most 

likely a function of both IR injury and T-cell response. Both MPO and CD4+ fluorescence 

of the allografts on day 3 and 7 increase about 2.3-fold and 15-fold, respectively, 

compared to the day 7 isograft—suggesting an origin of the increased LtP. Additionally, 

CD8+ fluorescence of the allografts increases from 7.5-fold to 18.9-fold of the day 7 

isografts between days 3 and 7, suggesting that the observed 2-fold increase in LtP 

between days 3 and 7 results from the increased CD8+ cells in the allografts. 

IHC Cohort Lung Day 3 Day 7 

 Mean SD Mean SD 

MPO 
Allogeneic Allograft 1159.1 49.6 1226.6 195.2 

Syngeneic Isograft - - 512.6 49.7 

CD4+ 

Allogeneic 
Native 65.6 10.5 91.5 21.6 

Allograft 848.7 58.7 921.6 282.6 

Syngeneic 
Native - - 118.3 70.4 

Isograft - - 76.2 40.1 

CD8+ 

Allogeneic 
Native 74.9 14.8 135.5 32.4 

Allograft 858.8 115.5 2169.1 243.7 

Syngeneic 
Native - - 114.7 48.9 

Isograft - - 71.9 35.5 

Table 5.5: Fluorescence quantification of MPO, CD4+ and CD8+ immunohistochemical stains on 
days 3 (n=3 allogeneic cohort) and 7 (n=4 allogeneic cohort, n=3 syngeneic cohort). MPO 
expression is used as a marker for neutrophil activity, whereas CD4+ and CD8+ T-cells play a role 
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in the immune rejection of allogeneic tissue. The images were acquired at an excitation wavelength 
of 488 nm. All images were acquired at 100 ms exposure time using a preset scale of 0-4095. The 
PMN, CD4+ and CD8+ were assessed by quantifying fluorescence intensity over 5 fields, and the 
averages are presented here. The data suggests that the majority of the observed lactate-to-
pyruvate signal likely originates from increasing CD8+ cell presence in the allografts. 
 

Based on our day 14 imaging data, both the CT-derived volume and normalized density, 

as well as the perfusion and LtP based on HP [1-13C] pyruvate MRI, suggest recovery to 

baseline in the native lungs and isografts. The CT images clearly show the rejected 

allograft on day 14. The corresponding LtP is 2.6-fold greater than that of the day 14 

isograft, likely due to a decrease in lymphocyte activity since day 7, after the onset of lung 

fibrosis.  

 

Although this study employed HP [1-13C] pyruvate MRI in contrast to CT, other MR or 

imaging-based techniques have been used previously to study graft rejection. 

Conventional T1-weighted gradient echo images and T2-weighted spin echo images result 

in poor SNR of the lung parenchyma due to their long echo times and the lung’s short T2
*; 

however, ultra-short echo (UTE) imaging has been shown to differentiate between 

allografts and isografts as early as day 3 based on their relaxation characteristics in a 

murine model37. UTE also has a number of advantages compared to our HP 13C CSI 

sequence; for example, UTE has a much higher spatial resolution than HP 13C CSI and, 

compared to carbon-13 imaging, would require little or no new hardware (broadband 

amplifier, coils, polarizer, etc.) for translation to modern clinical MRI scanners. It should 

be noted, however, that the implementation of 13C HASTE imaging would provide 

enhanced in-plane spatial resolution comparable to that of UTE46,47. In a different murine 

study, FDG-PET differentiated between allografts and isografts, showing a significant 

difference in %injected dose per cc of lung (%ID/cc) by day 7; this study further showed 
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that the largest glucose utilization was by CD8+ T cells in particular48, a finding echoed in 

our study. 

 

This work demonstrates the sensitivity of HP [1-13C] pyruvate MRI for the early detection 

of lung rejection. However, both our own and other future small animal studies37,48 of novel 

imaging methods must address a number of shortcomings if this technique is to be 

extended to a clinical setting. Comparison with human pathophysiology is limited, as the 

time course of rejection in rat lungs is quite distinct from that in humans; in rats, the onset 

of rejection occurs within days, whereas acute and chronic rejection in humans are distinct 

in both time and presentation49,50. Furthermore, the use of immunosuppressive drugs in 

transplant patients means that the effects of ischemia-reperfusion—which are seen within 

the first few days post-transplantation—can be separated from those of rejection, which 

typically occurs weeks or months later. In this study, the use of syngeneic animals as a 

sham cohort was intended to minimize the complications arising from the use of 

immunosuppressive drugs and account for ischemia-reperfusion injury while investigating 

the feasibility of our imaging technique; further studies should develop a chronic rejection 

model by using immunosuppressive drugs in allografts to better represent the clinical 

presentation.  

 

Although this study proposes that the lactate signal may be attributed to the activity and 

cellularity of both leukocytes and lymphocytes, other possible sources of this increased 

lactate signal are extracellular LDH activity due to cell death during rejection51, or even 

increased B-cell activity and humoral response. However, these avenues were not further 

investigated, as previous findings have shown that in most cases the dominant response 

is T-cell mediated rejection52–54. Another limitation of investigating this technique in an 
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animal model is that it lacks specificity with other differential diagnoses, e.g. aspiration-

induced injury or infections4,55. This is also a limitation of FDG-PET imaging, which relies 

on glucose uptake to drive cellular contrast48. However, given the broad range of available 

HP probes, HP [1-13C] pyruvate could potentially be combined with more specific probes 

to address that shortcoming12,56,57. Overall, this technique has the potential to be a 

promising new tool for post-transplantation monitoring of lung rejection. 
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Chapter 6: Conclusions and Future Work 

 

6.1. Conclusions 

Improving lung transplant outcomes is a vital but imposing endeavor: challenges include 

the limited availability of donor lungs, the necessity preserving and/or revitalizing lungs 

before transplant, and high rates of post-transplant graft failure compared to other solid 

organs. Although a number of novel techniques such as ex vivo lung perfusion are 

currently used to maintain or improve the viability of donated lungs during acquisition and 

transit, there is no established non-invasive assessment tool for evaluating the health of 

the tissue before transplantation. In addition, current post-transplant assessment tools—

primarily spirometry and X-ray radiography or CT—each have their own inherent 

limitations. Because spirometry only provides whole-lung measurements, a large number 

of differential diagnoses must be ruled out by further testing. Both radiography and CT, on 

the other hand, provide only low sensitivity in the early stages of rejection. We showed 

that HP carbon-13 magnetic resonance imaging, since it generates contrast due to the 

metabolism of the tissue or the infiltrating inflammatory cells, is therefore a promising 

technique for both assessing the viability of lungs before transplantation and predicting 

post-transplant lung rejection. 

 

In our first set of studies, we used HP [1-13C] pyruvate MRS and 31P MRS to show that the 

energy status of the lung declines as a function of time during EVLP. The decline in 

conversion of HP [1-13C] pyruvate to 13C bicarbonate showed that the energy decline was 

most likely linked to reduction in pyruvate dehydrogenase complex (PDHc) activity and 

the subsequent decrease in oxidative phosphorylation. As such, we concluded that a part 

of the energy depletion and loss of viability observed in reperfused ischemic lungs is due 
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to perfusion alone. We also demonstrated that ascorbate upregulates oxidative 

phosphorylation in the ex vivo perfused lung. Although previous studies have postulated 

that ascorbate’s role in minimizing ischemia-reperfusion injury is via its anti-oxidative 

properties1,2, our HP [1-13C] pyruvate studies suggest that ascorbate slows the decline in 

pulmonary mitochondrial activity through an independent interaction with ETC complexes. 

Based on the observation that lungs experiencing significant decline in energy status are 

highly prone to edema, it seems clear that maintaining mitochondrial function during EVLP 

is critical to maintaining organ viability. One of the applicable findings of this set of studies 

was that the addition of ascorbate to the perfusate during EVLP may be beneficial in 

prolonging the viability of the lungs being excised, transported and reperfused before 

transplantation. Furthermore, this study also established that HP [1-13C] pyruvate MRS 

can be used to assess the response to treatment during EVLP for improving procurement 

and preservation of lungs for transplantation.  

 

In our second set of studies, we demonstrated that ex vivo HP [1-13C] pyruvate 

spectroscopy can be used to detect pulmonary inflammation and provided histological 

evidence that infiltrating neutrophils are the most likely source of increased signal 

compared to heathy tissue. Although the transport and enzymatic processes of HP [1-13C] 

pyruvate differ than those involved in 18FDG imaging, many features of the techniques 

appear to be similar, including the several-fold increase of signal in inflammation and the 

apparent sensitivity to direct metabolism of neutrophils. We also successfully translated 

these findings into in vivo HP [1-13C] pyruvate imaging using a FID-CSI sequence. Due to 

the inherent problems of imaging lungs in vivo—such as the blood-dependent T1 

depolarization, susceptibility due to the air-tissue interface, and the movement of the chest 

cavity—we see lower metabolite signals than via ex vivo spectroscopy; however,  we were 
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able to detect a significant increase in the HP lactate-to-pyruvate ratio in inflamed lungs 

compared to healthy tissue, paving the way for in vivo studies for lung transplant rejection. 

 

In our last set of studies, we applied our developed in vivo HP [1-13C] pyruvate imaging 

technique to predict lung graft rejection in an orthotopic left lung transplant model in rats. 

We showed a significant increase in the HP lactate-to-pyruvate ratio as early as day 3 in 

the allogenic graft compared to the syngeneic graft. This signal increased further by day 

7 and remained much higher than the isograft or native tissue in either cohort at day 14. 

We also acquired post-transplant microCT imaging at the same timepoints, and found that 

the HP lactate-to-pyruvate was an earlier predictor of lung rejection compared to CT-

derived parameters. Our immunohistochemical staining suggested that the source of this 

signal was a combination of neutrophils, CD4+, and CD8+ cells, with the largest signal 

deriving from CD8+ cells on day 7. However, our study leaves a number of unanswered 

questions, which must be tackled in future studies: how can the role of ischemia-

reperfusion injury be separated from that of the tissue rejection process? Can this 

technique be used to separate differential diagnoses, e.g. aspiration-induced injury or 

infections? Can the technique be used for long term assessment for predicting bronchitis 

obliterans syndrome or restrictive allograft dysfunction? Given the broad range of available 

HP probes, can HP [1-13C] pyruvate potentially be combined with more specific probes to 

address the shortcomings of this technique?  Lastly, can this technique be successfully 

translated towards imaging humans? 

 

6.2. Planned Future Studies 
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6.2.1.  Post-transplant HP [1-13C] pyruvate MRI of lungs acquired after induction of 

donor brain-death in a rat model 

We have already established the metabolic profile of syngeneic and allogeneic grafts in a 

rat model. As donor brain death (DBD) has been associated with increased ischemia-

reperfusion injury and primary graft dysfunction (PGD), we will transplant lungs obtained 

after DBD into healthy rats and compare their graft performance with our established 

transplant model. We will determine whether syngeneic grafts from DBD lungs show a 

similar metabolic profile compared to our current donor model with normotensive brain 

death. We will also image allogeneic grafts from DBD lungs to test the hypothesis whether 

these lungs will show rejection or graft failure earlier than the findings in our current model. 

We also plan to use ex vivo 13C MR and 31P spectroscopy to measure the tissue energy 

status in of DBD lungs using EVLP, and we will assess the metabolism as a function of 

perfusion time, perfusate composition and other factors that have shown to ameliorate or 

degrade EVLP lungs. Graft performance post-transplantation will be assessed to confirm 

the success of any therapeutic strategies.  

 

6.2.2. Imaging Post-Transplant Allogeneic Rats with Acquired Immune Tolerance 

Using Hyperpolarized [1-13C] Pyruvate MRI 

Our findings from imaging post-transplant lungs suggest that the lactate-to-pyruvate signal 

in the allograft originates from both neutrophils and CD3+ lymphocytes. One of the more 

pressing questions in the field of lung transplantation is the role of inflammation after 

ischemia-reperfusion injury in the tissue rejection process. In this study (in progress), we 

plan to image a transplanted allogeneic lung in a recipient rat with acquired immune 
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tolerance to resolve the signal contribution of ischemia-reperfusion injury from that of 

tissue rejection3. Figure 6.1 shows a schematic for generating an adult rat with an acquired 

immune tolerance for a different rat strain. The first step involves crossing two different 

strains to produce a crossbred F1 generation. In our case, inbred Lewis (L) rats were 

crossed with inbred Wistar-Furth (WF) rats to generate a WFxL (F1) rats. The bone marrow 

from the F1 rats is extracted immediately after birth—before T cells are have matured to 

identify self and non-self MHC molecules4,5—and injected into Lewis neonates (also 

immediately after birth). This allows the inoculated Lewis (iL) neonates to develop self 

recognition for both F1 and Lewis MHC molecules. The F1 generation is required to avoid 

graft versus host disease (GVHD) in the inoculated Lewis rat. Once the iL rat is mature, it 

can be used as a recipient for allogeneic lung transplant. 

 

 

Figure 6.1: Schematic for generating a recipient rat with acquired immune tolerance for an 
allogeneic graft.  
 

As figure 6.2 shows, the lung transplant is performed similarly to as described in our 

previous studies (chapter 5). The donated lung is the F1 rats. The recipient is an iL rat. As 

the iL rat recognizes the F1 MHC as self, the lung is not rejected. In our preliminary study, 

we imaged allogeneic, syngeneic, and the acquired immune tolerant rats on days 3, 7, 

and 14. On day 3, the average lactate-to-pyruvate ratios of all three transplanted lungs 



186 
 

ranged between 0.08 to 0.11 compared to a range of 0.05 to 0.07 for the native lungs. By 

day 7, the rejected allograft had a lactate-to-pyruvate ratio of 0.3±.04, a 2.7-fold increase 

compared to the other cohorts, which remained below 0.11. Most importantly, the immune 

tolerant allograft followed a similar trajectory to the syngeneic graft—showing no signs of 

rejection.  A similar trend is observed on day 14: lactate-to-pyruvate remains elevated in 

the allograft (0.23±.02), whereas the other transplanted and native lungs remain below 

0.08. The immune tolerant cohort was also imaged on day 28 to assess the presence of 

chronic rejection; the lungs remained viable at this timepoint, based on their low lactate-

to-pyruvate ratio (below 0.04). Representative pyruvate and lactate maps acquired on day 

7 post-transplantation from our preliminary results can be seen in Figure 6.2. As 

mentioned, the allograft clearly shows a much greater lactate signal than any of the other 

lung cohorts, whereas the syngeneic lungs and acquired immune tolerant lungs show 

similar findings. 

  
Figure 6.2: Preliminary results from a HP [1-13C] pyruvate MRI study showing the pyruvate and 
lactate distribution on day 7 post-transplantation in allogeneic (left), syngeneic (middle), and 
acquired immune tolerant (right) rats.  
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The next step in this study is to abolish the the acquired immune tolerance by injecting 

mature T-cells from any inbred Lewis rat (Figure 6.3). As the recipient rat and the injected 

T-cells are inbred Lewis rats, they will recognize each other as self and no immune 

response will be triggered in the host tissues.  

 

 
Figure 6.3: Abolishing acquired immune tolerance after lung transplantation by injection of mature 
T-cells from inbred Lewis rats.  

 
However, the injected mature Lewis T-cells will not recognize the F1 MHC molecules as 

self. When CD4+ or CD8+ cells will be presented with the appropriate MHC via various 

antigen presenting cells (APC), they will recognize the F1 molecules as foreign antigens 

and activate an immune response, triggering graft rejection. HP [1-13C] pyruvate MRI 

acquired after inducing this lung rejection process will allow us to differentiate between the 

signals emanating from ischemia-reperfusion injury and rejection. 

 

6.3. Further Studies 

Once the answers to the questions posed by the above studies are answered, we can add 

further complexity to our animal models to better mimic the clinical transplantation 

process. This includes using recipients with models of end-stage progressive diseases, 
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such as radiation-induced or bleomycin-induced fibrosis, or elastase-induced 

emphysema. Furthermore, we can use a multimodal approach to imaging, combining the 

findings from HP [1-13C] pyruvate imaging with pre-existing methodologies, as well novel 

imaging techniques such as HP gas imaging, all for the ultimate goal of improving post-

transplant outcomes clinically. 
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