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ABSTRACT

MODULI OF CERTAIN WILD COVERS OF CURVES

Jianru Zhang

David Harbater

A fine moduli space (see Chapter 2 Definition 28) is constructed, for cyclic-by-p

covers of an affine curve over an algebraically closed field k of characteristic p > 0.

An intersection (see Definition 51) of finitely many fine moduli spaces for cyclic-by-p

covers of affine curves gives a moduli space for p′-by-p covers of an affine curve. A

local moduli space is also constructed, for cyclic-by-p covers of Spec(k((x))), which

is the same as the global moduli space for cyclic-by-p covers of P1 − {0} tamely

ramified over ∞ with the same Galois group. Then it is shown that a restriction

morphism (see Lemma 82) is finite with degrees on connected components p powers:

There are finitely many deleted points (see Figure 1) of an affine curve from its

smooth completion. A cyclic-by-p cover of an affine curve gives a product of local

covers with the same Galois group, of the punctured infinitesimal neighbourhoods

of the deleted points. So there is a restriction morphism from the global moduli

space to a product of local moduli spaces.
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Chapter 1

Introduction

The paper mainly generalizes the results in [H80] for p-groups to cyclic-by-p groups

defined in Chapter 2 Definition 16 a. See Chapter 2 for notations and terminology

below. Since [H80] is frequently cited, the statements of its main results are given

in the Introduction.

In [H80], it is shown that (Theorem 1.2 [H80]) when P is a finite p-group, there

exists a fine moduli space for pointed principal P -covers (see Chapter 2 Definition 19

b and c for the definition) of an affine curve over an algebraically closed field k of

characteristic p > 0, which is an ind affine space (see Definition 25 b). When P ′

is a finite group whose order is prime to p, there are only finitely many pointed

principal P ′-covers of an affine curve. The wild case, where p divides the order

of the Galois group of the cover, and the tame case, where p does not divide the

order of the Galois group of the cover, are very different. The fine moduli space for
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Figure 1.1: a trivial Z/2-cover of A1 − {0}

pointed principal P -covers of P1−{0} gives a coarse moduli space for local pointed

principal P -covers of Spec(k((x))) (Proposition 2.1 [H80]). This is a special case

of the next result, since the finite etale morphism there becomes an isomorphism

here. Finally it is shown that a restriction morphism is finite etale (Proposition

2.7 [H80]), where the restriction morphism is described in the Abstract with the

cyclic-by-p group there replaced by P here. The result can be interpreted as a

local-global principle: Given a pointed P -local cover at each of the deleted points

of the affine curve from its smooth completion, there are only finitely many global

pointed P -covers of the affine curve, whose restrictions at the deleted points are the

ones given.

In Figure 1, points 0 and ∞ are the deleted points of A1 − {0} from its s-

mooth completion P1. The infinitesimal neighborhood of 0 is Spec(k((x))) and the

infinitesimal neighborhood of ∞ is Spec(k((x−1))). f gives a trivial Z/2-cover of

A1 − {0}. The restriction of the global cover at 0 is a trivial Z/2-cover of the

infinitesimal neighborhood. Similarly for ∞.

The fine moduli space for pointed principal P -covers of an affine curve in [H80]

2



is constructed in an inductive way with the base case for P = Z/p.

Cyclic-by-p groups are the next simplest after p-groups in the wild case. In the

local situation, the Galois group of a connected Galois cover of Spec(k((x))) is a

cyclic-by-p group when k is algebraically closed.

The fine moduli space for pointed principal cyclic-by-p covers of an affine curve

is also constructed in an inductive way, using similar methods to those in the proof

of Theorem 1.2 of [H80]. The fine moduli space is a disjoint union of finitely many

ind affine spaces. Its relation to the the fine moduli space for pointed principal

P -covers of an affine curve constructed in Theorem 1.2 [H80], is shown in Chapter 4

Lemma 47.

The next simplest groups after cyclic-by-p groups are p′-by-p groups defined in

Chapter 2 Definition 16 a. A disjoint union of finitely many unions, of certain

irreducible components in an intersection, of finitely many fine moduli spaces for

cyclic-by-p covers of affine curves, gives a moduli space for p′-by-p covers of an affine

curve.

Two local-global principle results similar to those in [H80] described above are

obtained, based on the construction of the fine moduli space for pointed principal

cyclic-by-p covers of an affine curve, again using similar methods to those in [H80].

Here is the structure of the paper.
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In Chapter 2, notations and terminology are given, which are used throughout

Chapters 3, 4, and 5 without explanation again. In Chapter 3, a fine moduli space

for pointed principal G-covers of an affine curve (Theorem 44), where G is a cyclic-

by-p group, is constructed. In Chapter 4, it is shown that a disjoint union of finitely

many unions, of certain irreducible components in an intersection, of finitely many

fine moduli spaces for cyclic-by-p covers of some affine curves, gives a moduli space

for p′-by-p covers of an affine curve (Corollary 58). In Chapter 5, a global fine moduli

space is constructed (Proposition 64) for cyclic-by-p covers of an affine curve at most

tamely ramified over finitely many closed points, as well as a parameter space for

local cyclic-by-p covers of Spec(k((x))) (Proposition 75). Then it is shown that

a restriction morphism is finite with degrees on connected components p powers,

which is from the global moduli space to a product of the local parameter spaces

(Proposition 83).

Leitfaden:

Chapter 2

��
Chapter 3

))))
Chapter 4 Chapter 5.

Similar work can be found in [K86] and [P02]. In [K86], Main Theorem 1.4.1

is essentially the version over a general field of characteristic p > 0 of Proposi-

tion 76. In [P02], a configuration space C(I, j) is constructed in 2.2, which is for
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I = Z/poZ/n-covers of Spec(k[[u−1]]) with jump j. This is related to the param-

eter space given in Proposition 75.

For the results in [H80] below, Gr is a finite group, P a finite p-group, k an

algebraically closed field, (U0, u0) geometrically pointed Spec(k((x))) and (U, ug) a

geometrically pointed affine curve, as defined in 2.0.2.

Let (S, s0) be a pointed (see Definition 17 b and Definition 21 a) connected

affine k-scheme. In Definition 21 b, when two pointed S-parameterized Gr-covers

of U are equivalent is defined; two such covers are equivalent if they agree pulled

back to a finite etale cover T of S. Since a pointed S-parameterized Gr-cover of

U corresponds to a homomorphism ϕ̃ : π1(S × U, (s0, ug)) → Gr, the definition of

an equivalence class of ϕ̃ is induced in Remark 22 a. Similarly for the local case;

in Definition 66, the w-equivalence class of a pointed S-parameterized Gr-cover of

Spec(k((x))) is defined, which induces the definition of a w-equivalence class of a

homomorphism ϕ̃ : π1(S × Spec(k((x))), (s0, u0))→ Gr.

With these terminology, the following definition can be given.

Definition 1. a. Define FU,P as the functor: S1 →(Sets); (S, s0) 7→ {[ϕ̃], where

ϕ̃ : π1(S × U, (s0, ug)) → P is a group homomorphism and [ϕ̃] is the equivalence

class (see above or Remark 22 a) of ϕ̃.}

b. Define Fw
U0,P

as the functor: S1 →(Sets); (S, s0) 7→ {[ϕ̃]w, where ϕ̃ : π1(S ×

U0, (s0, u0))→ P is a group homomorphism and [ϕ̃]w is the w-equivalence class (see

5



above or Definition 66) of ϕ̃.}

See 2.0.5 for the definition of a fine moduli space. Theorem 2 means that MU,P

represents the moduli functor FU,P . The “direct limit of affine spaces” in Theorem 2

is called an ind affine space in the paper (See 2.0.4 Definition 25 b).

Theorem 2. (Theorem 1.2, [H80]) There is a fine moduli space MU,P (denoted by

MG there with G = P ) for pointed families of principal P -covers of U , namely a

direct limit of affine spaces AN
k .

The local case, moduli problem for P -covers of Spec(k((x))), is simpler than

the global case. A parallel construction to the one in the global case gives a coarse

moduli space of pointed P -covers of Spec(k((x))). Proposition 3 below means that

MP1−{0},P represents the moduli functor Fw
U0,P

.

Proposition 3. (Proposition 2.1, [H80]) The fine moduli space MP1−{0},P for point-

ed principal P -covers of P1−{0} is also a coarse moduli space for pointed principal

P -covers of Spec(k((x))), compatibly with the inclusion Spec(k((x))) ⊆ P1 − {0}.

Proposition 4. (Proposition 2.7, [H80]) Let MU,P → ΠiM
l
U0i

,P be the restriction

morphism described in the Abstract. It is an etale cover. Its degree is a power of p,

and is equal to the number of pointed principal P -covers of the completion Ū .

Theorem 5. (Theorem 1.12, [H80]) Let MU,P be the fine moduli space for pointed

principal P -covers of (U, ug). There is a natural action of Aut(P ) on MU,P , and

a dense open subset M0
U,P of MU,P parameterizing connected principal covers, such
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that M̄0
U,P := M0

U,P/Aut(P ) is a fine moduli space for pointed families of Galois

covers of (U, ug) with group P .

1.0.1 More detailed explanation

More detailed explanation and some basic facts with [S09] the main reference:

Given a finite group Gr and a curve U , how many principal Gr-covers (see

Definition 19 b) of U are there? Is there a fine moduli space for these covers? That

is to ask if there is a space M whose points parameterize all these covers, such that

the covers vary naturally over the points of M .

First, definitions like covers are given, as well as some basic facts involved to

answer the questions above.

The starting point is topological covers.

A continuous map between topological spaces Y
pr−→ X is a topological cover,

if every point x ∈ X has an open neighborhood U , such that pr−1(U) is
∐
Vi, a

disjoint union of open subsets of Y , with each Vi homeomorphic to U under pr.

Let Gal(Y/X) be the group consisting of all homeomorphisms from Y to itself over

X. The cover Y
pr−→ X is Galois, if Y is connected and Gal(Y/X) acts simply

transitively on pr−1(x) for every point x ∈ X. In this situation, |Gal(Y/X)| is

called the degree of the cover.

Example 6. Let S1 be the unit circle in the complex plane given by |z| = 1. The

map S1 pr−→ S1 given by z 7→ zn is a Galois cover of degree n.

7



The theorem to classify topological Galois covers of a topological space X, is

Theorem 7 whose statement involves some terminology given below. It is analogous

to the fundamental theorem of Galois theory for finite Galois field extensions.

Let Fibx be the functor: (Covers of X) → (Sets); Y 7→ Yx, where Y
pr−→ X is a

cover and Yx denotes the fiber pr−1(x).

For every point x ∈ X, the fundamental group π1(X, x) is defined as the group

consisting of homotopy classes of loops based at x.

The group π1(X, x) has an action on pr−1(x) that is called the monodromy

action: Under certain restrictions on X, given a point y ∈ pr−1(x), every loop

α based at x has a unique lifting path in Y that starts at y. The action of the

homotopy class of α sends y to the end point of the lifting path. Hence pr−1(x) is

a left π1(X, x)-set.

Theorem 7. (Theorem 2.3.4 in [S09]) Let X be a connected and locally simply con-

nected topological space. The functor Fibx (defined under Example 6) induces an

equivalence between the category (Covers of X) and the category of left π1(X, x)-sets.

Connected covers correspond to π1(X, x)-sets with transitive actions and Galois cov-

ers to coset spaces of normal subgroups.

Theorem 8 below is the algebraic analogue of Theorem 7.

Let k be an algebraically closed field, X a connected k-scheme, and x any

geometric point of X.

A Gr-cover of X, as well as the pointed version, is defined in Definition 19

8



b and c; Fibx and (FetX) in Definition 19 a; P is a finite p-group and (U, ug) a

geometrically pointed affine curve, as defined in 2.0.2. The definition of profinite

groups can be found in Wikipedia or [S09].

Theorem 8. (Theorem 5.4.2 in [S09])

1. The group π1(X, x) is profinite, and its action on Yx is continuous for every

Y in (FetX).

2. The functor Fibx induces an equivalence from (FetX) to the category of

finite continuous left π1(X, x)-sets. Here connected covers correspond to sets with

transitive π1(X, x)-action, and Galois covers to finite quotients of π1(X, x).

Corollary 9. There is a natural bijection between the set of isomorphism classes of

Gr-covers of X pointed over a fixed base point x0, and the set of homomorphisms

from π1(X, x0) to Gr(, hence below a pointed Gr-cover is often identified with the

homomorphism corresponding to it).

Proof. Directly from Theorem 8. See also proof of Proposition 5.4.6 in [S09].

If Gr is abelian, the set of homomorphisms from π1(X, x0) to Gr is a group. It

may be identified with the etale cohomology group H1(X,Gr) ([SGA 1, XI 5] or

[M13, Example 11.3]), or in terms of group cohomology with H1(π1(X, x0), Gr).

Now attempts begin to answer the two questions at the beginning of 1.0.1.

Proposition 10. With the notations above Theorem 8. Let Gr be a finite group

whose cardinality is prime to p. There are only finitely many pointed Gr-covers of

9



(U, ug), up to isomorphism.

Proof. Need to show that there are only finitely many group homomorphisms from

π1(U, ug) to Gr, by Corollary 9. Any homomorphism factors through π
(p′)
1 (U, ug)

since |Gr| is prime to p. By Theorem 4.9.1 in [S09], π
(p′)
1 (U, ug) is topologically

finitely generated. The proposition follows.

Hence the tame case is simple; the moduli space is a finite set with discrete

topology. With the notations above Theorem 8. For the simplest wild case, how

many pointed Z/p-covers are there of the pointed curve (U, ug)? By Remark 20,

base points do not matter here. By Artin-Schreier sequence (see the beginning

of the proof of Theorem 32), they are all given by zp − z = a with a ∈ A and

U = Spec(A); two given by a and a′ respectively are isomorphic if and only if

a − a′ ∈ ℘(A) = {ap − a|a ∈ A}. Hence Z/p-covers of (U, ug) are parameterized

by A/℘(A). Theorem 1.2 in [H80] shows how to rearrange elements in A/℘(A) to

build a fine moduli space for Z/p-covers of (U, ug).

The method to rearrange elements in A/℘(A): Let DivU be the divisor that

is the sum of the deleted closed points of U from its smooth completion. Then

elements in A have a k-vector space filtration: H0(U,DivU) ≤ H0(U, pDivU) ≤

H0(U, p2DivU) ≤ ... , which will give rise to the 0th piece, the 1st piece, the 2nd

piece and so on, of the fine moduli space. Choose a basis Ln for H0(U, pnDivU)

inductively such that Ln ⊃ Ln−1 and Ln ⊃ (Ln−1−Ln−2)p (see paragraph (32.1) for

an analogue). It turns out that vectors in the k-linear span of Ln−Ln−1 correspond

10



bijectively, to all the Z/p-covers of U given by zp− z = a with a ∈ H0(U, pnDivU).

Let Mn = Spec(k[L∨n − L∨n−1]), where L∨n consists of dual vectors of Ln. Mn is

the n-th piece of the fine moduli space desired. The transition morphism from Mn

to Mn+1 is given by Frobenius (see the last two paragraphs of Theorem 32 for an

analogue, or Remark 11 b). The fine moduli space is an ind affine space (see 2.0.4

and 2.0.5).

Remark 11. a. The inductive choice of H0(U, pnDivU)’s basis Ln is crucial in the

construction of the moduli space. An arbitrary choice of its basis can not construct

a moduli space.

b. As described above, MU,P is an ind affine space, whose n-th piece is Mn =

Spec(k[L∨n − L∨n−1]). The transition morphism Mn
fn−→ Mn+1 corresponds to a ring

homomorphism k[L∨n−L∨n−1]← k[L∨n+1−L∨n ] : f ∗n. Suppose Ln−Ln−1 = {lni}. Then

Ln+1 − Ln = {ln+1j} ⊃ {lpni}. f ∗n sends (lpni)
∨ to (l∨ni)

p, ((lpni)
∨ is the dual of lpni, an

element in k[L∨n+1−L∨n ]. (l∨ni)
p is the pth-power of l∨ni, an element in k[L∨n −L∨n−1]),

and every l∨n+1j with ln+1j not in {lpni} to 0. Hence fn can be decomposed into two

parts

Mn

fn

��

f1n

&&
MnkKιn

xx
Mn+1,

where Mn = Spec(k[{(l∨ni)p}]) and ιn is a closed embedding. f1n is a bijection

between closed points in Mn and Mn.

11



c. What is the relationship between the ind affine spaceMU,P and Spec(lim←−n k[L∨n−

L∨n−1])? The projective limit over n’s of k[L∨n − L∨n−1]’s consists of tuples with the

form (Gn({lni}))n, where Gn({lni}) is a polynomial in lni’s. The transition morphis-

m given in b, would imply that any non constant entry in a tuple should have the

infinite degree as a polynomial, a contradiction. Hence the projective limit consists

of constants only and is the base field k. Therefore, MU,P is a much bigger space

than the spectrum of the projective limit.

The case P = Z/p is the base case of Theorem 2.

With the notations above Theorem 8.

See 2.0.5 for the definition of a fine moduli space. Theorem 2 means that MU,P

represents the moduli functor FU,P (see Definition 1 a). The “direct limit of affine s-

paces” in Theorem 2 is called an ind affine space in the paper (See 2.0.4 Definition 25

b).

Theorem 12. (Theorem 1.2, [H80]) There is a fine moduli space MU,P (denoted

by MG there with G = P ) for pointed families of principal P -covers of U , namely a

direct limit of affine spaces AN
k .

For a general finite p-group P , how many pointed P -covers are there for (U, ug)?

Theorem 1.2 in [H80] builds a fine moduli space for these P -covers using induction

based on the concrete Z/p case: Choose an H ≈ Z/p in the center of P . Let

P̄ = P/H. MV,H and MV,P̄ exist and are ind affine spaces, by the base case and

the inductive hypothesis respectively. A ϕ̃ : π1(S × U, (s0, ug))→ P can be decom-

12



posed into two parts ¯̃ϕ : π1(S × U, (s0, ug)) → P̄ and η̃0 : π1(S × U, (s0, ug)) → H.

The decomposition process below would yield MV,P = MV,P̄ ×MV,H , again an ind

affine space. ¯̃ϕ is ϕ̃ composed with P � P̄ . And η̃0 is the “quotient” of ϕ̃ “di-

vided” by ¯̃ϕ. To get η̃0, first lift a universal family representative (see Remark 34)

µ̃0 : π1(MU,P̄ × U, (m,ug))→ P̄ on MU,P̄ , to a ψ̃0 : π1(MU,P̄ × U, (m,ug))→ P , us-

ing the p-cohomological dimension of the fundamental group is ≤ 1 ([Serre], I Prop.

16). The group homomorphism ¯̃ϕ determines a morphism from S to MU,P̄ , since

MU,P̄ is a fine moduli space, which induces from ψ̃0 a lift ψ̃ : π1(S×U, (s0, ug))→ P

of ¯̃ϕ. Then η̃ can be defined as ϕ̃ψ̃−1 (see paragraph (39.3) for an analogue).

The next simplest groups after p-groups in the wild case are cyclic-by-p groups.

The method to build a fine moduli space for pointed cyclic-by-p covers of (U, ug),

is still to treat the concrete case of H oρ Z/n first, with (H, ρ) in the case of Theo-

rem 32. In this case equations of covers can be written down using the Artin-Schreier

sequence (see the beginning of the proof of Theorem 32). Then use induction to

treat the general case.

The base case of pointed HoρZ/n-covers of (U, ug): The idea is to focus on the

upper p-part of a H oρ Z/n-cover.

For anyHoρZ/n-cover (W,wg) of (U, ug), take the pointed connected component

(V, vg) of the quotient (W,wg)/H and get (V, vg)→ (U, ug) a Z/n′-cover with n′|n,

called the cyclic part of (W,wg) → (U, ug). Connected covers are easier to deal

13



with and the induced Z/n-cover (construction 3.5.2, p84, [S09]) of (V, vg)→ (U, ug)

is the original cover (W,wg)/H → (U, ug). (W,wg) → (V, vg) is called the p-part.

Without loss of generality, assume n′ = n below.

Then figure out which pointed H-covers of (V, vg) composed with V → U

can give pointed H oρ Z/n-covers of (U, ug). These H-covers, denoted by X,

are “ρ-liftable pointed H-covers of (V, vg)” defined around diagram (3.1). Iden-

tify a pointed H-cover of (V, vg) with the group homomorphism corresponding to

it ϕ : π1(V, vg) → H. The pointed H-cover is ρ-liftable iff ϕ makes diagram (30.1)

commutative, a fact used in the construction of Theorem 32.

Suppose |H| = q. Similarly to the case in [H80], all the H-covers of V can be

given by zq−z = b with b ∈ B and V = Spec(B). The covers in X are given by b’s in

the kernel of some operator D, denoted by KerD (see proof of Theorem 32). Then

similarly rearrange elements in KerD to build a fine moduli space (Theorem 32)

for covers in X, pointed ρ-liftable H-covers of (V, vg). The fine moduli space is also

an ind affine space.

The fine moduli space of the base case is the building block for the fine mod-

uli space (Theorem 44) for pointed G-covers of (U, ug) (G defined in Definition 16

c): Theorem 32⇒ Theorem 39⇒ Theorem 44. The first ⇒ is an induction proof,

similarly to the case of Theorem 2 with detailed description above. The second

⇒ is to decompose a pointed G-cover (W,wg) → (U, ug) into its cyclic part and

p-part, and to put the cyclic part of (W,wg)→ (U, ug) and its p-part together. The

14



decomposition process is given above for the base H oρ Z/n case.

Above is the global case. Below starts the local case.

The local case, moduli problem for pointed P -covers of Spec(k((x))), is simpler

than the global case. A parallel construction to the one in the global case gives a

coarse moduli space of pointed P -covers of Spec(k((x))).

Proposition 3 means that MP1−{0},P represents the moduli functor Fw
U0,P

defined

in Definition 1 b.

Proposition 13. (Proposition 2.1, [H80]) The fine moduli space MP1−{0},P for

pointed principal P -covers of P1 − {0} is also a coarse moduli space for pointed

principal P -covers of Spec(k((x))), compatibly with the inclusion Spec(k((x))) ⊆

P1 − {0}.

Combining global moduli spaces and local moduli spaces, there is a global-to-

local restriction morphism.

As described in the Abstract and Figure 1, a global cover can give a product of

local covers. Hence, there is a restriction morphism from the global moduli space

to a product of local moduli spaces. The restriction morphism is finite etale. An

ingredient in the proof is to compute the dimensions, of the n-th pieces of the source

and the target of the restriction morphism, which turn out the same. Using this

fact it can then be checked that the restriction morphism is finite etale.

Proposition 14. (Proposition 2.7, [H80]) Let MU,P → ΠiM
l
U0i

,P be the restriction
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morphism described in the Abstract. It is an etale cover. Its degree is a power of p,

and is equal to the number of pointed principal P -covers of the completion Ū .

In the cyclic-by-p case, analogues of Proposition 3 (Proposition 76) and Propo-

sition 4 (Proposition 83) also hold and are proved by similar methods.

The relationship between one of the main moduli spaces Mρ•
V,P to MV,P (let

U=V in Theorem 2) in [H80] is given in Chapter 4. Each connected component

(see Remark 26) of Mρ•
V,P turns out to be “a closed subscheme” (see Remark 49)

of MV,P . This is shown by induction as well. In the base case when P = H and

(ρ,H) is in the case of Theorem 32, the “embedding morphism” (see Lemma 47)

from Mρ
V,H , a connected component of Mρ•

V,H , to MV,H can be given explicitly using

the constructions of both moduli spaces (see Theorem 32 for the one of Mρ
V,H ; the

one for MV,H is in the proof of Theorem 2 and similar).

An intersection of several such closed subschemes of MV,P can give a moduli s-

pace for p′-by-p covers of an affine curve (Corollary 58). The rest of the Introduction

is devoted to Corollary 58 alone.

Given a p′-by-p group P oρ′ P
′, for each p′i ∈ P ′, a cyclic-by-p group P oρ′i

〈p′i〉

can be formed, with 〈p′i〉 the subgroup generated by p′i and ρ′i : 〈p′i〉 → Aut(P ) the

restriction of ρ′.

Suppose (V ′, v′g)→ (U ′, u′g) is a connected P ′-cover. Let (V ′i′ , v
′
gi) be the quotient

of (V ′, v′g) by 〈p′i〉. The pointed 〈p′i〉-cover (V ′, v′g) → (V ′i′ , v
′
gi) is the counterpart

of the pointed Z/n-cover (V, vg) → (U, ug) in Theorem 39 of Chapter 3. Apply
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Theorem 39 on (V ′, v′g) → (V ′i′ , v
′
gi) and a fine moduli space M

ρ′i,•
V ′,P for ρ′i-liftable

pairs of (V ′, v′g) is got.

For every p′i denote by {Mρ′i
V ′,P,ij} the set of finitely many connected components

of M
ρ′i,•
V ′,P . Denote by (M

ρ′i
V ′,P,ij)i a tuple of connected components indexed by i, an

element in Πi{M
ρ′i
V ′,P,ij}. For each tuple (M

ρ′i
V ′,P,ij)i do their intersection in MV ′,P ,

an intersection of closed subschemes. Then take the disjoint union of intersections

belonging to different tuples intersecting furthermore the dense open M0
V,P of MV,P .

M0
V,P parameterizes connected covers.

Theorem 15. (Theorem 1.12, [H80]) Let MU,P be the fine moduli space for pointed

principal P -covers of (U, ug). There is a natural action of Aut(P ) on MU,P , and

a dense open subset M0
U,P of MU,P parameterizing connected principal covers, such

that M̄0
U,P := M0

U,P/Aut(P ) is a fine moduli space for pointed families of Galois

covers of (U, ug) with group P .

The disjoint union is denoted by M0ρ′

V ′,P (see Definition 51). Its closed points

parameterize all connected pointed P oρ′′t
P ′-covers of (U, ug) that factor through

(V ′, v′g) (see Proposition 57) with {Poρ′′t
P ′} a finite set of groups related to Poρ′P

′

(see Remark 53). Getting more groups than Poρ′P
′ is because a connected pointed

P -cover of (V ′, v′g) that is ρ′i-liftable for every i, does not necessarily have P oρ′ P
′

as its Galois group over U (see Remark 53). The case of disconnected covers is even

more complicated and hence excluded here.

Take the union of all the finitely many irreducible components of M0ρ′

V ′,P to whose
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closed points Poρ′P
′ belong to (see the end of the proof of Proposition 57). In other

words, pick the irreducible components of M0ρ′

V ′,P that parameterize P oρ′ P
′-covers

of (U, ug) factoring through (V ′, v′g), but leave out the rest irreducible components

parameterizing P oρ′′t
P ′-covers for other P oρ′′t

P ′’s. A disjoint union taken over

all possible (V ′, v′g)’s of such unions of certain irreducible components of M0ρ′

V ′,P , is

a fine moduli space for pointed P oρ′ P
′-covers of (U, ug) (see Corollary 58). An

ER-equivalence is introduced to make the intersection argument work smoothly.

Otherwise more technical work would be needed.
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Chapter 2

Notations and Terminology

Terms and symbols are defined here that will be used in Chapters 3, 4, and 5

without being explained again.

2.0.2 General settings

Definition 16. a. Groups of the form PoρZ/n are called cyclic-by-p groups, where

p is a prime number, P a finite p-group and ρ : Z/n → Aut(P ) an action of Z/n

on P with n and p coprime. Groups of the form P oρ′ P
′ are called p′-by-p groups,

where P ′ is a finite group whose order is prime to p and ρ′ : P ′ → Aut(P ) an action

of P ′ on P .

b. Let nt be a factor of n, xt = n/nt, ιnt the embedding of Z/nt into Z/n sending

1̄ ∈ Z/nt to x̄t ∈ Z/n and ρnt = ρ ◦ ιnt .

c. Gr always represents an arbitrary finite group and G represents P oρ Z/n.
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Definition 17. a. Let k be an algebraically closed field of characteristic p > 0

and fix a primitive n-th root of unity ζn in k. Write U0 = Spec(k((x))) and Ū0 =

Spec(k[[x]]). Denote the fiber product S ×k X by S × X, where S and X are

k-schemes.

b. Pointed means geometrically pointed unless otherwise stated. A geometric

point of a scheme X is a morphism from Spec(Ω) to X with Ω an algebraically

closed field. Curve means a connected smooth integral affine 1 dimensional scheme

of finite type over k.

c. Denote by S (resp. S1) the full subcategory of the category (Pointed k-

schemes) of all pointed k-schemes, whose objects are connected affine pointed finite

type k-schemes (resp. connected affine pointed k-schemes). Denote by S ′ (resp.

S ′1) the non pointed version of S (resp. S1).

d. (U, ug) always represents a pointed curve.

Remark 18. The word “lift” has two meanings in the paper. The first meaning

is to extend a group homomorphism whose domain is a fundamental group, to a

group homomorphism with domain a bigger fundamental group. This meaning is

given around diagram (3.1) in the definition of ρ-liftable. The second meaning is to

lift a morphism φ̄ mapping to a quotient group P̄ , to some morphism φ mapping

to the original group P :

P

��
π1(U, ug)

φ

::

φ̄
// P̄ .
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2.0.3 Covers

Definition 19. a. Let X be a connected scheme and (FetX) the category of finite

etale covers of X. For every point x of X (recall from Definition 17 b that a point on

X always means a geometric point), the fiber functor Fibx: (FetX)→(Sets) sends

a finite etale cover Y
pr−→ X to Yx, the geometric fiber (pullback of Y to x) of Y at

x. The fundamental group π1(X, x) is defined as the automorphism group of the

fiber functor Fibx. Then Yx is a left π1(X, x)-set.

b. A principal Gr-cover of a connected scheme X not necessarily over k, is a

finite etale cover Z → X together with an embedding of Gr in the group Aut(Z/X),

such that Gr acts simply transitively (left group action) on every geometric fiber

of Z → X. A Gr-cover means a principal Gr-cover.

c. With the notations of b, Z is pointed over x0 means Z is pointed at some

point z0 that maps to x0 under Z → X. Two pointed Gr-covers of (X, x0) are

isomorphic if there is an isomorphism between them:

(Z, z0)
f' //

%%

(Z ′, z′0)

yy
(X, x0),
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such that the triangle diagram commutes and the diagram

Z

g

��

f // Z ′

g
��

Z
f // Z ′

commutes for each g ∈ Gr.

Remark 20. a. There is a natural bijection between the set of isomorphism classes

of Gr-covers of X pointed over a fixed base point x0, and the set of homomorphisms

from π1(X, x0) to Gr, hence below a pointed Gr-cover is often identified with the

homomorphism corresponding to it.

b. If Gr is abelian, the set of homomorphisms from π1(X, x0) to Gr is a group.

It may be identified with the etale cohomology group H1(X,Gr) (SGA 1, XI 5, or

Example 11.3 in [M13]), or in terms of group cohomology with H1(π1(X, x0), Gr).

c. Let Gr be an abelian group and W → U be a Gr-cover of U . Then W pointed

at a point wg over ug is isomorphic to, as pointed Gr-covers of (U, ug), W pointed

at any other point w′g over ug.

Definition 21. a. A point (s0, vg) on a fiber product S × V of k-schemes means a

commutative diagram by the universal property of a fiber product:

Spec(Ω)

s0

��

vg // V

��
S // Spec(k),

(2.1)
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where Ω is some algebraically closed field.

b. A pointed family of Gr-covers of a pointed connected k-schemeX, parametrized

by a pointed connected affine k-scheme S, means an equivalence class of pointed

Gr-covers of S × X, two being equivalent if they become isomorphic after being

pulled back by some finite etale cover (T, t0)→ (S, s0).

Remark 22. a. Two elements φ̃ and φ̃′ in Hom(π1(S × U, (s0, ug)), Gr) are equiv-

alent if their corresponding pointed Gr-covers of (S × U, (s0, ug)) are equivalent.

Denote the equivalence class of φ̃ by [φ̃].

b. Using equivalence classes (see Definition 31, Definition 35, Definition 37,

Definition 43), rather than isomorphism classes, a fine moduli space can be con-

structed. The definition of equivalence, using finite etale covers, arises naturally in

the proof of Theorem 32: Assume for instance eρ = 1, then the last paragraph in

the proof gives F (S, s0) = H1(S×U,Fq)
H1(S,Fq) . The equality holds because the definition of

equivalence uses finite etale covers (see c). With the equality it can be shown that

F is represented by an ind affine space.

c. If Gr is abelian, then the set of such pointed families may be identified with

H1(S×X,Gr)/H1(S,Gr), where H1(S×X,Gr) and H1(S,Gr) are standard etale

cohomology groups. This is proved at the end of this subsection.

Definition 23. Suppose X is a connected scheme and x, x′ two geometric points

on X. A chemin x′ → x means an isomorphism from the fiber functor Fibx to

the fiber functor Fibx′ ([S09], Remark 5.5.3, p171). Since the fundamental group

23



π1(X, x) is defined as the automorphism group of the fiber functor Fibx, a chemin

x′ → x : Fibx
i−→ Fibx′ induces an isomorphism π1(X, x)

'−→ π1(X, x′) : α 7→ iαi−1.

Lemma 24. If Gr is abelian, then the set of pointed families defined in Defini-

tion 21 b can be identified with H1(S × X,Gr)/H1(S,Gr), where H1(S × X,Gr)

and H1(S,Gr) are standard etale cohomology groups.

Proof. By Example 11.3 in [M13], H1(Xet, Gr) = Hom(π1(S×X, (s0, x)), Gr). Re-

placeH1(S×X,Gr)/H1(S,Gr) byHom(π1(S×X, (s0, x)), Gr)/Hom(π1(S, s0), Gr).

A pointed family of Gr-covers of X parameterized by S can be identified with

[φ̃] (see Remark 22 a) with φ̃ : π1(S × X, (s0, x)) → Gr corresponding to a rep-

resentative in the family. Denote {[φ̃]|φ̃ : π1(S × X, (s0, x)) → Gr} by A, and

Hom(π1(S × X, (s0, x)), Gr)/Hom(π1(S, s0), Gr) = {[φ̃]′|φ̃ : π1(S × X, (s0, x)) →

Gr} by B, where [φ̃]′ denotes the coset containing φ̃ in the quotient group. Want

to show that the two maps

A→ B; [φ̃] 7→ [φ̃]′(24.1)

and

A← B; [φ̃]← [φ̃]′(24.2)

are both well defined, hence inverse to each other.

Suppose φ̃i : π1(S×X, (s0, x))(i = 1, 2) are equivalent. Then by definition, there

exists a connected finite etale cover (T, t0)
f−→ (S, s0) such that φ̃i’s composed with
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π1(T × X, (t0, x))
f̃∗−→ π1(S × X, (s0, x)) are the same. Define ∆φ := φ̃1 − φ̃2. For

the map in (24.1) to be well defined, want to show ∆φ ∈ Hom(π1(S, s0), Gr).

Denote by iS∗ : π1(S, s0) → π1(S × X, (s0, x)) the homomorphism induced by

iS : S ↪→ S × X, and prS∗ : π1(S × X, (s0, x)) → π1(S, s0) the homomorphism

induced by prS : S ×X → S. Then prS∗ ◦ iS∗ = Id. Define φ : π1(S, s0) → Gr as

∆φ ◦ iS∗.

π1(T ×X, (t0, x))

prT∗
��

f̃∗

// π1(S ×X, (s0, x))

prS∗
�� ∆φ

��

π1(T, t0)
f∗ // π1(S, s0)

φ

''
Gr

(24.3)

Want to show φ ◦ prS∗ = ∆φ, then ∆φ ∈ Hom(π1(S, s0), Gr).

By taking Galois closure of T over S, assume T
f−→ S is Galois below. Then

there is a short exact sequence for some θ′′ after choosing an isomorphism from

Gal(T/S) to Gr:

1→ π1(T, t0)→ π1(S, s0)
θ′′−→ Gr → 1.

Choose si(1 ≤ i ≤ |Gr|) in π1(S, s0) that maps to gi ∈ Gr under θ′′. Denote by si•

in the image of si under iS∗.

By its definition ∆φ = 0 on π1(T × X, (t0, x)). Since π1(S × X, (s0, x)) is

generated by π1(T ×X, (t0, x)) and si•’s, want to show that φ ◦ prS∗ = 0 on π1(T ×

X, (t0, x)) and agrees with ∆φ on si•’s. Both can be verified using diagram (24.3).
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Conversely want to show the map in (24.2) is well defined. Suppose φ̃1 − φ̃2 =

φ ◦ prS∗ for some φ ∈ Hom(π1(S, s0), Gr). Then φ gives a pointed Gr-cover (T, t0)

of (S, s0) by Corollary 9. WLOG., assume T is connected. It is easy to verify that

φ̃i’s (i = 1, 2) become the same pulled back to T ×X.

2.0.4 Ind schemes

Definition 25. a. An ind scheme means, in the paper, a direct system of k-schemes

{Xi} indexed by natural numbers with transition k-morphisms {Xi
xi−→ Xi+1}.

b. An ind scheme is an ind affine space, if every Xi is an affine space Ani
k .

Remark 26. Every moduli space M in the paper is a disjoint union of finitely

many ind affine spaces, then each ind affine space is called a connected component

of M . An ind affine space M can be viewed as a functor: S1 →(Sets); (S, s0) 7→

Hom(S,M). The disjoint union of finitely many ind affine spaces {Mi} is the

functor qMi: S1 →(Sets); (S, s0) 7→ qiHom(S,Mi).

Definition 27. a. A pre-morphism from a k-scheme X to an ind scheme {Xm} is

the equivalence class of a k-morphism between schemes gm0 : X → Xm0 for some

m0, where two morphisms gm0 and gm1 are equivalent if for some m2 ≥ m0,m1 the

two composition morphisms X
gm0−−→ Xm0 → Xm2 and X

gm1−−→ Xm1 → Xm2 are the

same.

b. A pre-morphism from an ind scheme {Xm} with transition morphisms {xm}

to another ind scheme {Ym} with transition morphisms {ym}, is the equivalence
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class of a system of compatible k-morphisms {fm|m ≥ m0} between schemes with

fm : Xm → YNm . The system {fm|m ≥ m0} is compatible means that for every

m ≥ m0, there exists an nm such that the following diagram is commutative:

Xm

xm

��

fm // YNm
yNmnm

##
Xm+1

fm+1 // YNm+1

yNm+1nm// Ynm ,

where yNmnm is the transition morphism from YNm to Ynm and similarly for yNm+1nm .

Two compatible systems {fm|m ≥ m0} and {gm|m ≥ m1} are equivalent, if there

exists an m2 ≥ m0,m1 such that for every m ≥ m2 the two morphisms fm and

gm are equivalent in the sense of a. Every pre-morphism between ind schemes in

the paper, in Lemma 47, Lemma 48, Lemma 81 and Lemma 82, can be given by a

compatible system {fm} of the special form: Xm
fm−→ Ym and the following diagram

commutes

Xm

xm
��

fm // Ym

ym

��
Xm+1

fm+1 // Ym+1.

(27.1)

c. In either a or b, a presheaf can be gotten. In b, the presheaf Pre is from the

site of (ind schemes)×(ind schemes) with etale topology to (sets); ({Xm}, {Ym}) 7→

PreMorph({Xm}, {Ym}). Let sPre be the sheafification of Pre. A morphism

between {Xm} and {Ym} is an element in sPre({Xm}, {Ym}). Similarly for a. Since

the construction is canonical, it suffices to check assertions on pre-morphisms.
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d. In the cases of Lemma 47, Lemma 48, Lemma 81 and Lemma 82, the mor-

phism given by {fm} in diagram (27.1), is surjective (resp. finite, finite etale), if

there exists some natural number m0 such that for every m ≥ m0 the k-morphism

fm is surjective (resp. finite, finite etale).

2.0.5 Fine moduli space

Definition 28. A fine moduli space M for a contravariant functor F from the

category S1 to the category (Sets), is an ind scheme such that F is isomorphic to

the functor Hom(•,M): S1 →(Sets); (S, s0) 7→ {k-morphisms from S to M}.

Below is a list of moduli functors in the paper, with their rough meanings and

places where they are defined.

List of moduli functors

FU,P ; the functor for pointed P -covers of (U, ug) using equivalence classes; Defi-

nition 1 a

Fw
U0,P

; the functor for pointed P -covers of (Spec(k((x))), u0) using w-equivalence

classes; Definition 1 b

F ρ
V,H ; the functor for pointed ρ-liftable H-covers of (V, vg) using equivalence

classes; Definition 31 and Definition 61

F ρ•
V,H ; the functor for ρ-liftable pairs (of pointed H-covers) of (V, vg) using equiv-

alence classes; Definition 35

F ρ•
V,P ; the functor for ρ-liftable pairs (of pointed P -covers) of (V, vg) using equiv-
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alence classes; Definition 37

FU,G; the functor for pointed G-covers of (U, ug) using equivalence classes; Defi-

nition 43

F T
U,G; the functor for pointed G-covers of (U − T, ug), at most tamely ramified

over T consisting of finitely many closed points on U , using equivalence classes;

Definition 59

F
ρnl•/T
Vl,P

; the functor for ρnl-liftable pairs (of pointed P -covers) of (Vl, vl) using

equivalence classes, with Vl a cover of U at most ramified over T consisting of finitely

many closed points on U ; Definition 60

Fwρ•
V0,P

; the functor for ρ-liftable pairs (of pointed P -covers) of (V0, v0) using w-

equivalence classes; Definition 66

Comments about several subtle concepts are collected below for reference con-

venience.

Comments concerning ind schemes include Remark 26.

Comments concerning universal families include Remark 34, Definition 38, Re-

mark 40, Remark 41, and Definition 50.

Comments concerning fine moduli spaces include Remark 22, Remark 33, Re-

mark 26, Remark 41, Remark 42, Remark 49, and Definition 50.
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2.0.6 Table of symbols

Below is a table of symbols, which are used in Chapters 3, 4 and 5 without expla-

nation again after their definitions. It gives meanings of symbols and places where

they are defined. “Beginning” of a section means beginning of the rest of the section

below the introductory part.

Table of symbols

c; a fixed element in π1(U, ug) that maps to 1̄ under θ; Chapter 3, beginning

ci: similar to c

c′i; a fixed element in π1(V ′i , v
′
gi) that maps to p′i under θ′i; Chapter 4, beginning

H; an elementary abelian group of order a p-power; Lemma 29

{pri : (Vi, vi)→ (U, ug)}; the set of all connected pointed Z/ni-covers of (U, ug)

with ni running over factors of n; Chapter 3, beginning

T ; a finite set of closed points on U not including ug; Chapter 5, beginning

U0; U − T ; Chapter 5, beginning

(U0, u0); pointed Spec(k((x))); Chapter 5, Notation 65

(V, vg); a fixed connected pointed Z/n-cover of (U, ug); Chapter 3, beginning

(V ′, v′g); a fixed connected pointed P ′-cover of (U, ug); Chapter 4, beginning

(V ′i′ , v
′
gi); quotient of (V ′, v′g) by 〈p′i〉; Chapter 4, beginning

{(V 0
l , vl)}; the set of all connected pointed Z/nl-covers of (U0, ug) with nl run-

ning over factors of n; Chapter 5, beginning
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Vl; extension of V 0
l , by putting back in the closed points over T ⊂ U to V 0

l ,

which are originally missing from V 0
l ’s smooth completion; Chapter 5, beginning

(V0t, v0t); a connected pointed Z/nt-cover of (U0, u0) with nt a factor of n; Chap-

ter 5, Notation 65

ρ; an action of Z/n on P ; 2.0.2 Definition 16 a

ρ′; an action of P ′ on P ; same as ρ above

[φ̃]; the equivalence class of φ̃; Remark 22

ρ′i; an action of 〈p′i〉 on P given by restriction of ρ′; Chapter 4 below Remark 45

θ; the group homomorphism π1(U, ug) → Z/n corresponding to (V, vg) →

(U, ug); Chapter 3, beginning

θi: similar to θ

θ′; the group homomorphism π1(U, ug)→ P ′ corresponding to (V ′, v′g)→ (U, ug);

Chapter 4, beginning

θ′i; the group homomorphism π1(V ′i , v
′
gi) → 〈p′i〉 corresponding to (V ′, v′g) →

(V ′i , v
′
gi); Chapter 4, beginning
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Chapter 3

Existence of moduli space for

cyclic-by-p covers

In Chapter 3, a fine moduli space that represents the functor FU,G defined above

Theorem 44, for pointed G-covers of the pointed affine curve (U, ug), where G is

a cyclic-by-p group, is constructed. The construction is done in 3 steps: Theo-

rem 32⇒Theorem 39⇒ Theorem 44. Theorem 32 is the base case of an induction,

and Theorem 39 is the inductive step. Theorem 44 collects building blocks given in

Theorem 39 to build the target fine moduli space.

As always, we follow notations and terminology defined in Chapter 2. For ex-

ample G represents a cyclic-by-p group.

Here are necessary settings for Theorem 32.
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Since (n, p) = 1, for every factor n′ of n, there are only finitely many connected

pointed Z/n′-covers of (U, ug), up to isomorphism. See also Remark 20.

Denote these covers by pri : (Vi, vi) → (U, ug), for all n′’s. For each i, pri :

(Vi, vi) → (U, ug) is of some degree ni|n and corresponds to some surjective group

homomorphism π1(U, ug)
θi−→ Z/ni; fix a ci ∈ π1(U, ug) that maps to 1̄ ∈ Z/ni under

θi. Pick a pr : (V, vg) → (U, ug) that is a Z/n-cover. Suppose it corresponds to

π1(U, ug)
θ−→ Z/n with c the chosen element in π1(U, ug) above. There is a short

exact sequence of groups

1→ π1(V, vg)→ π1(U, ug)
θ−→ Z/n→ 1.

Let Hom(π1(V, vg), P ) be the set of group homomorphisms from π1(V, vg) to P .

A group homomorphism φ ∈ Hom(π1(V, vg), P ) is ρ-liftable, if there exists a group

homomorphism φ̂ such that the diagram

π1(V, vg)� _

��

φ // P� _

��
π1(U, ug)

φ̂ // G
QP // // Z/n

(3.1)

commutes and the bottom horizontal arrow π1(U, ug)→ Z/n is θ, where QP is the

projection map. We also say that φ̂ lifts φ. There are two different meanings of

“lift” in the paper (see Remark 18). In this situation, the pointed P -cover of (V, vg)

corresponding to φ is called a pointed ρ-liftable cover of (V, vg). If φ̂(c) = (p, 1̄) for
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some p ∈ P then (φ, p) is called a ρ-liftable pair.

Let (S, s0) ∈ S1. When (V, U) is replaced by (S×V, S×U), similarly a ρ-liftable

φ̃ ∈ Hom(π1(S × V, (s0, vg)), P ) is defined; the pointed family of P -covers of V

parameterized by S corresponding to φ̃ is called a pointed ρ-liftable family.

Denote by c• the image of c under the group homomorphism π1(U, ug) →

π1(S × U, (s0, ug)) induced by U ↪→ S × U . Similarly a ρ-liftable pair (φ̃, p) is

defined. A pointed ρ-liftable family pair means a pair whose first entry is the point-

ed ρ-liftable family corresponding to φ̃ and the second entry p, for some (φ̃, p) a

ρ-liftable pair. The pair is also denoted by ([φ̃], p).

Below are two Lemmas for Theorem 32.

Irreducible linear representations of Z/n over the field Fp correspond to the

direct summands in Fp[x]/(xn − 1) = ⊕iFp[x]/(fi(x)), where fi(x)’s are irreducible

factors of xn − 1 over Fp. The action of 1̄ ∈ Z/n on Fp[x]/(fi(x)) is multiplication

by [x], where [x] means the equivalence class of x. Thus for a pair (H, ρ) in the case

of Lemma 29, there is a group isomorphism H
τ−→ Fq, where q = pm, such that the

induced action of ρ(−1̄) on Fq is the multiplication by some eρ ∈ Fq with enρ = 1.

Lemma 29. Let P = H = (Z/p)m, an elementary abelian group, and suppose the

action ρ on H is irreducible (i.e. ρ can not be an action on any subgroup of H). A
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group homomorphism φ ∈ Hom(π1(V, vg), H) is ρ-liftable iff for every b ∈ π1(V, vg)

φ(c−1bc) = ρ(−1̄)(φ(b)). (∗)

Moreover, if ρ = 1, there is only one φ̂ that can lift φ, and in this case φ̂(c) =

(n−1φ(cn), 1̄), where n−1 is a natural number such that n−1n ≡ 1 (mod p). If ρ 6= 1,

there is a set {φ̂h|h ∈ H} consisting of |H| elements that can all lift φ and in this

case φ̂h(c) = (h, 1̄).

Proof. Only if : If there is a φ̂ fitting in the diagram of (3.1), then φ(c−1bc) =

φ̂(c)−1φ(b)φ̂(c). Since φ̂(c) = (h, 1̄) for some h ∈ H, φ(c−1bc) = (h, 1̄)−1φ(b)(h, 1̄) =

ρ(−1̄)(φ(b)).

If : Suppose (∗) holds. For every element h ∈ H define a map φ̂h : π1(U, ug)→

H oρ Z/n by φ̂h(bc
i) = φ(b)(h, 1̄)i. The map is well defined since every element in

π1(U, ug) can be written uniquely in the form bci with b ∈ π1(V, vg) and 0 ≤ i ≤ n−1.

Such φ̂h’s are not necessarily homomorphisms; they make the diagram commute.

The map φ̂h is a homomorphism iff φ(cn) = (h, 1̄)n. If ρ = 1, (h, 1̄)n = (nh, 0̄). Then

there is a unique h0 = n−1φ(cn) ∈ H such that φ̂h0 is a homomorphism. If ρ 6= 1, the

condition automatically holds since both sides equal 0. One can compute (h, 1̄)n = 0

using ρ(−1̄)(h) = eρh. Hence for every h ∈ H, φ̂h is a homomorphism.

Here is the second lemma needed in the proof of Theorem 32.

Let σ be the automorphism in Gal(V/U) corresponding to 1̄ ∈ Z/n. Since U
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and V are affine, U = Spec(A) and V = Spec(B) for some rings A and B. Then σ

corresponds to a ring automorphism σ ∈ Gal(B/A).

Lemma 30. A group homomorphism φ ∈ Hom(π1(V, vg), H) satisfies condition (∗)

of Lemma 29 iff φ makes the diagram commutative:

π1(V, vg)

σ∗
��

φ // H

ρ(−1̄)

��
π1(V, vg1)

φ1
// H,

(30.1)

where vg1 is the image of vg under σ, σ∗ induced by σ and φ1 induced from φ using

any chemin vg → vg1.

Proof. Since H is abelian, any chemin vg → vg1 gives the same isomorphism

π1(V, vg1) ' π1(V, vg), thus induces the same φ1 from φ.

Denote by Fibv0 (resp. Fibv1) the fiber functor from (Finite etale covers of V )

to (Sets) at vg (resp. vg1). Similarly denote by Fibu0 the fiber functor from (Finite

etale covers of U) to (Sets) at ug. Denote by PLV U the pullback functor from

(Finite etale covers of U) to (Finite etale covers of V ) using V → U . There are

canonical isomorphisms i0 from Fibv0 ◦ PLV U to Fibu0 and i1 from Fibv1 ◦ PLV U

to Fibu0.

The element c ∈ π1(U, ug) maps to 1̄ under θ, and 1̄ ∈ Z/n corresponds to

σ ∈ Gal(V/U), which sends vg to vg1. And since every finite etale cover of V

composed with V → U is a finite etale cover of U , c ∈ π1(U, ug) induces c01 a
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chemin vg1 → vg. So the first and the last squares of diagram (30.2) commute:

Fibv0 ◦ PLV U
i0
��

c01 // Fibv1 ◦ PLV U
i1
��

σ∗(b) // Fibv1 ◦ PLV U
i1
��

c−1
01 // Fibv0 ◦ PLV U

i0
��

Fibu0
c // Fibu0

π∗(b) // Fibu0
c−1

// Fibu0.

(30.2)

Since π∗(b) = π∗σ∗(b) for every b ∈ π1(V, vg),

π1(V, vg)
σ∗ //

π∗ &&

π1(V, vg1)

π∗xx
π1(U, ug).

The middle square of diagram (30.2) commutes.

Hence the whole diagram (30.2) is commutative, which shows φ(c−1bc) = φ(c−1
01 σ∗(b)c01).

Since φ(c−1
01 σ∗(b)c01) = φ1(σ∗(b)), the lemma follows.

The two lemmas above are used to prove Theorem 32, the first step in the three

step construction of the fine moduli space in Theorem 44.

Definition 31. Define F ρ
V,H : S1 → (Sets) as the contravariant functor given by

F ρ
V,H(S, s0) = {[φ̃]| φ̃ : π1(S × V, (s0, vg)) → H is ρ-liftable}, the set of ρ-liftable

families of H-covers of V parameterized by S pointed over (s0, vg).

Let S = Spec(k) with s0 determined by vg using diagram (2.1). Then F ρ
V,H(S, s0)

is the set of all isomorphism classes of ρ-liftable pointed H-covers of (V, vg).

Theorem 32. Let H be an elementary abelian group (Z/p)m, ρ : Z/n → Aut(H)

an irreducible action of Z/n on H, and V → U as above in this Chapter. There is
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a fine moduli space Mρ
V,H representing F ρ

V,H , the functor for isomorphism classes of

pointed ρ-liftable H-covers of (V, vg), which is an ind affine space.

Proof. In the proof, we will pass between Fq and H freely using the isomorphism τ

between them given above Lemma 29.

Let F = F ρ
V,H .

The Artin-Schreier short exact sequence 0 → Fq → Ga
℘−→ Ga → 0, where

℘(f) = f q−f , yields H0(V,O)
℘−→ H0(V,O)→ H1(V,Fq)→ 0, where 0 = H1(V,O).

This is a short exact sequence of Fq-vector spaces.

Let X be the subset of Hom(π1(V, vg), H) that consists of all the isomorphism

classes of pointed ρ-liftableH-covers of (V, vg). Let φ be any element inHom(π1(V, vg), H).

By Lemma 30, φ ∈ X iff φ1 ◦ σ∗ = eρφ. Let σ∗ : H1(V,Fq) → H1(V,Fq) be in-

duced by σ; it is a homomorphism of Fq-vector spaces. Identify H1(V,Fq) with

Hom(π1(V, vg),Fq). By definition of σ∗, σ∗(φ) = φ1 ◦ σ∗. So φ ∈ X iff

σ∗(φ) = eρφ, (∗1)

which shows that X is an Fq-subspace of H1(V,Fq).

There is a commutative diagram consisting of two short exact sequences of Fq-
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vector spaces with every symbol already defined above:

B = H0(V,O)

σ
��

℘ // H0(V,O)

σ
��

π // H1(V,Fq)
σ∗

��

// 0

H0(V,O)
℘ // H0(V,O) π // H1(V,Fq) // 0,

(32.1)

which comes from a commutative diagram consisting of two Artin-Schreier short

exact sequences of sheaves:

0 // Fq

��

// Ga

��

℘ // Ga

��

// 0

0 // σ∗Fq // σ∗Ga
℘ // σ∗Ga

// 0,

where Fq → σ∗Fq is induced by V
σ−→ V and similarly for Ga.

Let b ∈ B. By the right square of diagram (32.1), (∗1) implies

φ := πb ∈ X ⇔ σb ∈ eρb+ ℘B. (∗2)

Define D = σ − eρ: B → B, an A-module endomorphism of B, where eρ acts

on B by multiplication. Similarly to the proof of Theorem 1.2 in [H80], there is

an exact sequence KerD
℘−→ KerD

π−→ X → 0, of Fq-vector spaces. (Denote the

restriction of ℘ (resp. π) to KerD also by ℘ (resp. π).)

(32.1) Now construct Mρ
V,H using the Ker short exact sequence above. Let

(KerD)n = KerD ∩ H0(V, qnDivV ), where DivV = ΣPi the sum of all the closed
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points in V − V and V is the smooth completion of V . There is a k-vector space

filtration (KerD)0 ≤ (KerD)1 ≤ ... ≤ (KerD)n ≤ ... . Let Xn = π((KerD)n).

There is a short exact sequence (KerD)n−1
℘−→ (KerD)n

π−→ Xn → 0 obtained

from the similar one above. Inductively choose bases Kn of each (KerD)n as a

finite dimensional k-vector space, such that Kn+1 includes both Kn, and {f q|f ∈

Kn − Kn−1 and f is not in k}. This is the way to choose bases inductively in

a similar situation in the proof of Theorem 1.2 in [H80]. The restriction of π to

the k-linear span 〈Ki −Ki−1〉k of Ki −Ki−1 is an isomorphism of Fq-vector spaces

〈Ki −Ki−1〉k
π−→ Xi, which gives a k-vector space structure to Xi.

Let (S, s0) ∈ S1 with S = Spec(R). Similarly there is a commutative diagram

consisting of two short exact sequences of Fq-vector spaces:

H0(S × V,O)

σ̂
��

℘ // H0(S × V,O)

σ̂
��

Π // H1(S × V,Fq)
σ̂∗

��

// 0

H0(S × V,O)
℘ // H0(S × V,O) Π // H1(S × V,Fq) // 0,

where σ̂ is an R⊗k A-module endomorphism: R⊗k B → R⊗k B, r⊗ b 7→ r⊗ σ(b)

and ℘ : r ⊗ b 7→ (r ⊗ b)q − r ⊗ b. Let D̂ = σ̂ − eρ. As above, there is a short

exact sequence of Fq-vector spaces KerD̂
℘−→ KerD̂

Π−→ X̂ → 0, where X̂ denotes

{φ̃ ∈ H1(S × V,Fq)|σ̂∗(φ̃) = eρφ̃} and σ̂ ∈ Gal(S × V/S × U) corresponds to σ̂.

One can check that KerD̂ = R⊗k KerD.

If two S-parametrized P -covers of V pointed over (s0, vg) are equivalent, they

are considered the same element in F (S, s0), by definition of F . Hence F (S, s0) =
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X̂+H1(S,Fq)
H1(S,Fq) = X̂

X̂∩H1(S,Fq)
(see Remark 22 b). The automorphism σ̂ of S × V does

not change the S-factor, thus for any φ̃ ∈ H1(S,Fq), σ̂∗(φ̃) = φ̃. If eρ 6= 1, X̂ ∩

H1(S,Fq) = 0 and F (S, s0) = X̂ = Π(KerD̂) = Π(R ⊗k KerD). Let the transition

map from R ⊗k 〈Kn −Kn−1〉k to R ⊗k 〈Kn+1 −Kn〉k be Frobenius (r ⊗ b 7→ (r ⊗

b)q). Then lim−→n
R ⊗k 〈Kn − Kn−1〉k is an Fq-vector space. There is an Fq-vector

space isomorphism lim−→n
R ⊗k 〈Kn −Kn−1〉k

Π−→ Π(R ⊗k KerD). Hence F (S, s0) =

lim−→n
R⊗k〈Kn−Kn−1〉k. Write out elements in Kn−Kn−1 as {k1, ..., kdK}, whose dual

vectors are {k∨1 , ..., k∨dK}. Define A(〈Kn−Kn−1〉k) as Spec(k[k∨1 , ..., k
∨
dK

]). Now R⊗k

〈Kn−Kn−1〉k = Homk(〈Kn−Kn−1〉∨k , R) = Homk(S,A(〈Kn−Kn−1〉k)). Therefore

Mρ
V,H := the ind scheme {A(〈Kn−Kn−1〉k)}, where the transition morphism between

A(〈Kn −Kn−1〉k) and A(〈Kn+1 −Kn〉k) is given by Frobenius, represents F .

If eρ = 1, then F (S, s0) = H1(S×U,Fq)
H1(S,Fq) . This is the case, if H = Z/p, of the

base step in the proof of Theorem 1.2 in [H80]; the proof there also works for any

elementary abelian group H. Hence F is represented by Mρ
V,H := MU,H , which is

denoted by MG there with G = H, an ind affine space with transition morphisms

given by Frobenius as well. Since now G is a product H × Z/n, it can be derived

directly that F is represented by MU,H ,

Remark 33. a. By Theorem 32, for any pointed affine connected k-scheme (S, s0),

there is a bijection between F (S, s0) and Mρ
V,H(S), where the latter set is the set of

k-morphisms from S to Mρ
V,H .

b. Let S = Spec(k) with s0 determined by vg using diagram (2.1). Then
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F (S, s0), the set of all ρ-liftable pointed H-covers of (V, vg), are in bijection with

Mρ
V,H(S), the set of k-points of Mρ

V,H , same as the set of closed points of Mρ
V,H .

c. Let Mρ
V,H,n = Spec(k[k∨1 , ..., k

∨
dK

]) if ρ 6= 1. It is the n-th piece of Mρ
V,H .

Similarly the n-th piece of Mρ
V,H when ρ = 1 can be defined.

Remark 34. (Remark/Definition)

With the same notations of Theorem 32.

Let Mρ
V,H,n be the n-th piece of Mρ

V,H (see Remark 33 c). A compatible system

of H-covers of V over Mρ
V,H means a collection of covers {H-covers Z̃n of Mρ

V,H,n×

V |n ≥ 1} such that Z̃n pulled back to Mρ
V,H,n−1 × V is isomorphic to Z̃n−1. Since

H is abelian, given any point m on Mρ
V,H,n, where we point Z̃n over (m, vg) does

not matter by Remark 20.

A universal family representative over the moduli space Mρ
V,H means, a compat-

ible system of H-covers {H-covers Z̃n of Mρ
V,H,n×V |n ≥ 1} of V over Mρ

V,H , which

can be used to give the isomorphism of functors Hom(•,Mρ
V,H)

'−→ F ρ
V,H : S1 →

(Sets) given in Theorem 32 as follows: Sending a k-morphism f from a k-scheme

S with (S, s0) ∈ S1 to Mρ
V,H (see Definition 27 a), to the equivalence class of the

pullback of Z̃n, using the morphism f , to S × V pointed arbitrarily over (s0, vg),

is the isomorphism of functors Hom(•,Mρ
V,H)

'−→ F ρ
V,H given in Theorem 32. Since

the Z̃n’s are compatible any n can be used.

It is derived from definitions that any two universal family representatives are

equivalent. The equivalence class of a universal family representative is the universal
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family over the moduli space Mρ
V,H . There must be a universal family representative:

Let S be Mρ
V,H,n. Identity morphism of Mρ

V,H,n determines a morphism S →Mρ
V,H .

The morphism gives an equivalence class in F ρ
V,H(S,m) using Hom(•,Mρ

V,H)
'−→

F ρ
V,H given in Theorem 32, for any point m on S. Then ρ-liftable representatives

in the equivalence class are candidates for the n-th element of a universal family

representative. Use the same kind of argument as in Lemma 4.25 of [TY17], a

compatible system of H-covers can be chosen.

If ρ 6= 1, a universal family representative over the moduli space Mρ
V,H can be

given by {the H-cover of Mρ
V,H,n×V given by zq−z =

∑
ki∈Kn−Kn−1

k∨i ⊗ki |n ≥ 1},

by the construction of Mρ
V,H . The H-covers are compatible for different n’s.

If ρ = 1, similarly a universal family representative over Mρ
V,H can be given

explicitly: Replace zq−z =
∑

ki∈Kn−Kn−1
k∨i ⊗ki above by zq−z =

∑
li∈Ln−Ln−1

l∨i ⊗

li. Ln, an analogue of Kn, is the basis chosen inductively for An/k
+ in the proof of

Theorem 1.2 in [H80]; here An = H0(U, qnDivU) with p there replaced by q and Bn

there is denoted by Ln here.

The universal family representative over Mρ
V,H given above is the canonical uni-

versal family representative over Mρ
V,H . The n-th H-cover in every other universal

family representative over Mρ
V,H , differs from the n-th H-cover in the canonical one

by an element in H1(Mρ
V,H,n, H), as shown in the last two paragraphs in the proof

of Theorem 32.

The corollary below is a version of Theorem 32 for pairs, which will be used in
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the proof of Theorem 39.

Definition 35. With the same setting as in Theorem 32. Define F ρ•
V,H : S1 → (Sets)

as the contravariant functor given by F ρ•
V,H(S, s0) = {([φ̃],h) | φ̃ : π1(S×V, (s0, vg))→

H and (φ̃, h) is a ρ-liftable pair}, the set of ρ-liftable family pairs of H-covers of V

parameterized by S, pointed over (s0, vg).

Let S = Spec(k) with s0 determined by vg using diagram (2.1). Then F ρ•
V,H(S, s0)

is the set of ρ-liftable pairs of V .

Corollary 36. Under the same setting of Theorem 32, there is a fine moduli space

Mρ•
V,H representing F ρ•

V,H , the functor for ρ-liftable pairs of V . It is a disjoint union

of finitely many copies of Mρ
V,H in Theorem 32.

Proof. Let Mρ•
V,H be Mρ

V,H if ρ = 1 and qh∈HMρ
V,H,h if ρ 6= 1, where Mρ

V,H,h means a

copy of Mρ
V,H indexed by h.

Let φ ∈ Hom(π1(V, vg), H) and (φ, h0) be a ρ-liftable pair. The map φh0 , as

defined in the proof of Lemma 29, is in fact a homomorphism. As stated in Lem-

ma 29, if ρ = 1 then h0 is the only element in H such that (φ, h0) is a ρ-liftable

pair. If ρ 6= 1 then for every h ∈ H the pair (φ, h) is ρ-liftable. Using this fact and

Theorem 32 F ρ•
V,H is represented by Mρ•

V,H .

By Corollary 36, Mρ
V,H is a connected component of the ind scheme Mρ•

V,H . See

Remark 26.

Here is the 2nd step of the 3 step construction of the fine moduli space in

Theorem 44. Let P be an arbitrary finite p-group now.
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Definition 37. Let F ρ•
V,P : S1 → (Sets) be the contravariant functor given by

F ρ•
V,P (S, s0) = {([φ̃],p) | φ̃ : π1(S × V, (s0, vg)) → P and (φ̃, p) is a ρ-liftable pair},

the set of ρ-liftable family pairs of P -covers of V parameterized by S, pointed over

(s0, vg).

Let S = Spec(k) with s0 determined by vg using diagram (2.1). Then F ρ•
V,P (S, s0)

is the set of ρ-liftable pairs of V .

Definition 38. A similar definition for pairs to a universal family representative

over Mρ
V,H in Remark 34 will be given.

Assume there is an ind scheme Mρ•
V,P , consisting of finitely many connected com-

ponents (see Remark 26), representing F ρ•
V,P with an isomorphism between functors

Hom(•,Mρ•
V,P )

'−→ F ρ•
V,P .

Below Mρ•
V,P is viewed as a scheme instead of an ind scheme (see Remark 41).

Connected components of Mρ•
V,P are denoted by {Mρ

V,P,j}.

A system of universal family pair representatives over Mρ•
V,P , means a collection

of a ρ-liftable pair (φ̃0j,mj : π1(Mρ
V,P,j × V, (mj, vg)) → P, pφ̃0j,mj

) for every base

point mj over each Mρ
V,P,j, which can be used to give the isomorphism of functors

Hom(•,Mρ•
V,P )

'−→ F ρ•
V,P as follows: Sending a k-morphism S

c−→Mρ
V,P,j with (S, s0) ∈

S1 and s0 mapped to mj under c, to the pair ([φ̃0j,mj ◦ c̃∗],pφ̃0j,mj ) with S × V c̃−→

Mρ
V,P,j × V induced by c and c̃∗ the homomorphism between fundamental groups

induced by c̃, is the given isomorphism of functors Hom(•,Mρ•
V,P )

'−→ F ρ•
V,P .

It can be derived from definition that any two φ̃0j,mj and φ̃′0j,mj in two differ-
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ent systems of universal family pair representatives over Mρ•
V,P are equivalent and

pφ̃0j,mj
= pφ̃′0j,mj

.

Similarly to Remark 34, there must be a system of universal family pair repre-

sentatives over Mρ•
V,P .

Theorem 39. With the notations above, there exists a fine moduli space Mρ•
V,P

representing F ρ•
V,P , the functor for ρ-liftable pairs of V . It is a disjoint union of

finitely many ind affine spaces.

Proof. Induct on |P |.

Let F = F ρ•
V,P .

(39.1) Take a minimal normal subgroup H of G inside C(P ), the nontrivial

center of P . It is a product of copies of some simple group S. Hence H ≈ (Z/p)m

for some m ≥ 1. Let ρ0 : Z/n → Aut(H) be the Z/n-action induced by ρ; ρ0 is

irreducible by the minimality of H. If H = P , then this is in the case of Corollary 36.

Hence assume H < P below. Let ρ̄ : Z/n → Aut(P̄ ) be the Z/n-action induced

by ρ, where P̄ = P/H. By the inductive hypothesis and Corollary 36 respectively

M̄ := M ρ̄•
V,P̄

and M0 := Mρ0•
V,H exist.

Denote F ρ̄•
V,P̄

by F̄ .

It will be shown that M̄ ×M0 is the moduli space desired.

(39.2) First need to lift a system of universal family pair representatives over M̄ .

For every point m̄ of M̄ , there is a ρ̄-liftable pair (µ̃0 : π1(M̄×V, (m̄, vg))→ P̄ , p̄0) in

the system, which is the counterpart of (φ̃0j,mj : π1(Mρ
V,P,j×V, (mj, vg))→ P̄ , pφ̃0j,mj

)
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in Definition 38. Denote by c• the image of c under the group homomorphism

π1(U, ug) → π1(M̄ × U, (m̄, ug)) induced by U ↪→ M̄ × U . The pair gives a ̂̃µ0 :

π1(M̄ ×U, (m̄, ug))→ P̄ oρ̄ Z/n with ̂̃µ0(c•) = (p̄0, 1̄), similar to the diagram (3.1).

As π1(M̄ × U, (m̄, ug)) has cdp ≤ 1 ([H80], p1101), ̂̃µ0 lifts (a different meaning of

“lift”, see Remark 18) to a
̂̃
ψ0 : π1(M̄ × U, (m̄, ug)) → P oρ Z/n ([Serre], I Prop.

16) with
̂̃
ψ0(c•) = (p0, 1̄), for some p0 ∈ P mapping to p̄0 ∈ P̄ , under the quotient

map P � P̄ . Denote the restriction of
̂̃
ψ0 on π1(M̄ × V, (m̄, vg)) by ψ̃0.

(39.3) Then use the lift ψ̃0 obtained above to separate a ρ-liftable pair of S × V

into two parts. Let (S, s0) ∈ S1 and suppose (φ̃ : π1(S × V, (s0, vg)) → P , p1) is a

ρ-liftable pair. Its quotient (
¯̃
φ : π1(S × V, (s0, vg))→ P̄ , p̄1) is a ρ̄-liftable pair. By

the inductive hypothesis, the quotient pair corresponds to a morphism β : S → M̄ .

Denote β × IdV by β̃. Denote the induced homomorphism π1(S × V, (s0, vg)) →

π1(M̄ × V, (β(s0), vg)) by β̃∗, and let ψ̃ := ψ̃0 ◦ β̃∗ (letting m̄ above be β(s0) here).

Then define a “quotient homomorphism” η̃ : π1(S×V, (s0, vg))→ H by φ̃ψ̃−1: Since

M̄ is a fine moduli space for F̄ that involves equivalence classes,
¯̃
φ and

¯̃
ψ only agree

pulled back to some finite etale cover T of S, by definition of F̄ . Pick a point t0

on T mapping to s0. Define η̃T (a) = φ̃T (a)ψ̃T (a−1) for every a ∈ π1(T × V, (t0, vg)),

where φ̃T means φ̃ pulled back to T and similarly for ψ̃T . Actually η̃T maps to H

and the centrality of H in P implies that η̃T is a homomorphism . Let h1 = p1p
−1
0 .

Then (η̃T , h1) is a ρ0-liftable pair and hence corresponds to a morphism αT : T →

M0. By etale decent ([H80], p1109, second paragraph) αT descends to a morphism
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α : S →M0. Hence get (α, β) : S →M , where M = Mρ•
V,P := M0 × M̄ .

It is straightforward to verify that the assignment (φ̃, p1); (α, β) is well defined

on ρ-liftable family pairs (i.e. is independent of the choice of φ̃ in its equivalence

class), and yields a bijection between F (S, s0) and Hom(S,M). As the bijection is

compatible with pullback, it follows that M represents F .

Remark 40. Keeping track of universal family representatives in the inductive

construction, a ρ-liftable universal family representative over (each connected com-

ponent of) Mρ•
V,P = M0 × M̄ can be given by the product of a ρ0-liftable universal

family representative over M0 and a ρ-liftable lift of a ρ̄-liftable universal family

representative over M̄ , using the inclusions M0 ↪→M0 × M̄ and M̄ ↪→M0 × M̄ .

Remark 41. Since the moduli spaces are ind schemes, strictly speaking the argu-

ment above needs to be carried out for each n and check compatibility for different

n’s. The argument given above has the advantage of being more concise, which

follows the way of presentation in Theorem 1.2 of [H80].

Remark 42. In the inductive proof of Theorem 39, (P, ρ) is said to be decomposed

to (H, ρ0) and (P̄ , ρ̄). If (P̄ , ρ̄) is not in the case considered in Theorem 32, then

it can be further decomposed similarly. Repeat the inductive step in Theorem 39

until the last pair got is in the case of Theorem 32. The pairs got in the process

are denoted by (Ht, ρt)t, which are all in the case of Theorem 32 and the first of

which is (H, ρ0). Then Mρ•
V,P = ΠtM

ρt•
V,Ht

, which consists of finitely many connected

components of the form ΠtM
ρt
V,Ht

.
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Here is the main theorem of this Chapter, on moduli for covers with a given

cyclic-by-p Galois group.

Definition 43. Let FU,G: S1 → (Sets) be the contravariant functor given by

FU,G(S, s0) = {[φ̃] | φ̃ : π1(S × U, (s0, ug)) → G}, the set of families of G-covers

of U parametrized by S, pointed over (s0, ug).

Let S = Spec(k) with s0 determined by ug using diagram (2.1). Then FU,G(S, s0)

is the set of pointed G-covers of (U, ug).

Theorem 44. There exists a fine moduli space MU,G representing FU,G, the functor

for pointed G-covers of (U, ug), which is a disjoint union of finitely many ind affine

spaces.

Proof. It will be shown that FU,G is isomorphic to qViF
ρni ,•
Vi,P

(see 2.0.6 “Table of

symbols” for Vi). The disjoint union of functors means taking disjoint union of sets,

since the functors map to the category of sets. Hence it is represented by qViM
ρni ,•
Vi,P

,

by Theorem 39.

First the left to right direction map is given in the isomorphism wanted.

Let (S, s0) ∈ S1 and (W̃ , w̃g) → (S × U, (s0, ug)) be a pointed G-cover corre-

sponding to some
˜̃
φ ∈ Hom(π1(S × U, (s0, ug)), G). Let (W̃m, w̃g) be the pointed

connected component of W̃/P , a (Z/n′)-cover of (S × U, (s0, ug)) with (Z/n′) the
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order n′ subgroup in Z/n for some n′|n. The diagram commutes:

π1(W̃m, w̃g)� _

��

φ̃m // P� _

��
π1(S × U, (s0, ug))

˜̃
φ // G.

Let T be a connected component of the inverse image in W̃m of S×{u′g}, where

u′g is any k-point on U . The fibers of W̃m over k-points of U does not vary since

the degree of the cover is prime to p. The k-scheme T is a finite etale cover of S

and pick any base point t0 that maps to s0. The cover W̃m pulled back to T ×U is

isomorphic to a disjoint union of copies of a product T ×Vi for some Vi a Z/ni-cover

of U : ∐
(T × Vi, (t0, vi))

��

// (W̃m, w̃g)

��
(T × U, (t0, ug)) // (S × U, (s0, ug)),

as (Z/n′)-covers of T × U , using the canonical embedding ιni of Z/ni in Z/n given

in Chapter 2 Definition 16 b.

Let φ̃T be the composition π1(T × Vi, (t0, vi)) → π1(W̃m, w̃g) → P induced by

T × Vi → W̃m. Let ci• be the image of ci under π1(U, ug)→ π1(S ×U, (s0, ug)). Let

p0 be the first entry of
˜̃
φ(ci•) ∈ G = P oρ Z/n. Then (φ̃T , p0) is a ρni-liftable pair.

It corresponds to a morphism cT : T → M
ρni ,•
Vi,P

. By etale decent again cT descends

to a morphism cS : S → M
ρni ,•
Vi,P

. The morphism cS corresponds to an element in

F
ρni ,•
Vi,P

(S, s0). In fact a morphism δ : FU,G → qViF
ρni ,•
Vi,P

is got.

Conversely, suppose (φ̃, p0) is a ρni- liftable pair with π1(S × Vi, (s0, vi))
φ̃−→ P .
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The diagram commutes:

π1(S × Vi, (s0, vi))� _

��

φ̃ // P� _
��

π1(S × U, (s0, ug))
̂̃
φ // P oρni

Z/ni ↪
ι̃ni−→ G,

where
̂̃
φ sends ci• to (p0, 1̄), and ι̃ni is the group embedding induced by ιni . Hence

a pointed family of G-covers of U parametrized by S corresponding to ι̃ni ◦
̂̃
φ is got.

In fact a morphism γ : qViF
ρni ,•
Vi,P

→ FU,G is got, which is inverse to δ.
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Chapter 4

Moduli for p′-by-p covers

In Chapter 4, it is shown that, given a pointed affine curve (U, ug), an intersection

of finitely many fine moduli spaces for cyclic-by-p covers of some affine curves gives

a moduli space for p′-by-p covers of the curve (Corollary 58).

The next simplest groups after cyclic-by-p groups are p′-by-p groups. The first

idea on how to get a moduli space for p′-by-p covers of (U, ug), out of fine moduli

spaces for cyclic-by-p covers of affine curves constructed in Chapter 3, is to intersect

them.

The fine moduli spaces for cyclic-by-p covers of some affine curves, intersect in

a fixed fine moduli space MV ′,P,0 for some affine curve V ′, which is given first below

in Remark 45.

Lemma 47 and Lemma 48 show how to embed a fine moduli space for cyclic-

by-p covers of an affine curve in MV ′,P,0. The first lemma is the base case for the
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induction in the proof of the 2nd lemma.

Then an intersection in MV ′,P,0 gives a target moduli space M0ρ′

V ′,P in Defini-

tion 51. However, it is not a moduli space for covers of (U, ug) with Galois group

the p′-by-p group given, because pieces do not patch together well when P is not

abelian (see Remark 53). It is a moduli space for something else; see Proposition 57.

Similarly pieces may not patch together well for a disconnected P -cover. Therefore

M0ρ′

V ′,P only contains connected covers. The moduli space for covers of (U, ug) with

Galois group the given p′-by-p group is a corollary of Proposition 57.

One final thing for the intersection idea to work, is to use a weaker definition

of equivalence. A new ER-equivalence is introduced below in the definition of

F
er,Gal/ρ′

V ′,P , the functor to present, and that of M er0ρ′

V ′,P , a functor related to the moduli

space M0ρ′

V ′,P . Using ER-equivalence F
er,Gal/ρ′

V ′,P and M er0ρ′

V ′,P are proven isomorphic in

Proposition 57.

As always, we follow notations and terminology defined in Chapter 2.

First the space where intersections take place is given.

Let (V ′, v′g) → (U, ug) be a pointed connected P ′-cover of (U, ug), which corre-

sponds to a surjective group homomorphism θ′ : π1(U, ug)→ P ′.

Remark 45. Since P can be decomposed in different ways in the construction of

MV ′,P (see proof of Theorem 1.2 in [H80]; see Remark 42 for a ρ-liftable version),

there are different forms of MV ′,P . Since they are all fine moduli spaces of FV ′,P ,
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it is derived from the definition that they are isomorphic. Fix a fine moduli space

MV ′,P,0 for FV ′,P below, where intersections take place.

Now the objects that intersect later are given.

Let (V ′i′ , v
′
gi) be the quotient of (V ′, v′g) by 〈p′i〉, the subgroup generated by p′i,

and let ρ′i : 〈p′i〉 → Aut(P ) be the restriction of ρ′. There is a short exact sequence

of groups:

1→ π1(V ′, v′g)→ π1(V ′i , v
′
gi)

θ′i−→ 〈p′i〉 → 1.

Let π′i∗ be the homomorphism between fundamental groups induced by π′i : V ′i → U .

The following diagram commutes:

π1(V ′i , v
′
gi)

π′i∗
��

θ′i // 〈p′i〉

⊂
��

π1(U, ug)
θ′ // P ′.

For every p′i ∈ P ′, fix a c′i in π1(V ′i , v
′
gi) that maps to p′i under θ′i. The pointed

〈p′i〉-cover (V ′, v′g)→ (V ′i′ , v
′
gi) is the counterpart of the pointed Z/n-cover (V, vg)→

(U, ug) in Theorem 39 of Chapter 3. Apply Theorem 39 on (V ′, v′g)→ (V ′i′ , v
′
gi) and

a fine moduli space M
ρ′i,•
V ′,P for ρ′i-liftable pairs of (V ′, v′g) is got.

For every p′i denote by {Mρ′i
V ′,P,ij} the set of finitely many connected components

of M
ρ′i,•
V ′,P . Denote by (M

ρ′i
V ′,P,ij)i a tuple of connected components indexed by i, an

element in Πi{M
ρ′i
V ′,P,ij}. For each tuple (M

ρ′i
V ′,P,ij)i do their intersection in MV ′,P,0,

the way of which will be defined below. Then take the disjoint union of intersections
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belonging to different tuples. The disjoint union is almost M0ρ′

V ′,P , the moduli space

in Proposition 57.

Below are two lemmas to embed everyM
ρ′i
V ′,P,ij inMV ′,P,0 for intersection purpose.

The base case is for (ρ,H) in the case of Theorem 32. With the same setting

as in Theorem 32. Let the morphism Mρ
V,H

ι−→ MV,H be given by the canonical

universal family representative over Mρ
V,H (see Remark 34). The morphism ι can be

given explicitly by tracking the construction of both moduli spaces in Lemma 47.

Example 46. Here is an example that is a prototype for the morphism Mρ
V,H →

Mρ
V,H in the diagram of Lemma 47 below. The subring k[Xp] of k[X] is also a

polynomial ring. The inclusion k[Xp] ⊂ k[X] induces a bijection between closed

points in Spec(k[X]) and those in Spec(k[Xp]), given explicitly by (X − λ) ↔

(Xp − λp).

Lemma 47. There is a closed subscheme Mρ
V,H of MV,H which ι factors through

and whose closed points are in bijection with those of Mρ
V,H under ι.

Mρ
V,H

ι

��

%%
Mρ

V,H
kK

xx
MV,H

Proof. Theorem 32, Remark 42 and the base step for induction in the proof of
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Theorem 1.2 in [H80] are the references for this proof. Every fact used here can be

found in one of the three places.

The explicit expression of ι on each n-th piece of Mρ
V,H (see Remark 33 c) will

be given, using which the statements in the Lemma can be shown.

Denote by Mρ
V,H,n the n-th piece of Mρ

V,H . The affine space Mρ
V,H,n can be i-

dentified with Spec(k[K∨n −K∨n−1]), where Kn, containing Kn−1, is the basis chosen

for the k-vector space (KerD)n = KerD ∩ H0(V, qnDivV ) in the proof of Theo-

rem 32. Denote by K∨n the set of the dual’s of vectors in Kn. Write out elements in

Kn −Kn−1 as {ki, 1 ≤ i ≤ dK}. Then Spec(k[K∨n −K∨n−1]) = Spec(k[k∨1 , ..., k
∨
dK

]).

Similarly denote by MV,H,n the n-th piece of MV,H . The affine space MV,H,n can

be identified with Spec(k[L∨n−L∨n−1]), where Ln, containing Ln−1, is the basis chosen

for H0(V, qnDivV )/k+. Denote by L∨n the set of the dual’s of vectors in Ln. Write

out elements in Ln−Ln−1 as {lj, 1 ≤ j ≤ dL}. The way to choose Ln is described in

the base step for induction in the proof of Theorem 1.2 in [H80], analogous to the

way to choose Kn. Only need to change the symbol U there to V , Bn there to Ln,

and An = H0(U, qnDivU) there to Bn = H0(V, qnDivV ). Recall that U = Spec(A)

and V = Spec(B). An and Bn denote k-subspaces of A and B respectively.

Denote by ιn the restriction of ι on Mρ
V,H,n. The morphism ιn maps every closed

point in Mρ
V,H,n to the closed point in MV,H,n that represents the same pointed

H-cover as it. Denote the k-algebra homomorphism that corresponds to ιn by

ι∗n : k[L∨n − L∨n−1] → k[K∨n − K∨n−1]. It turns out that ι∗n has the form: l∨j 7→
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ΣiΣt∈Xj(λitk
∨
i )qtj , where Xj some finite set, λit ∈ k and qtj is some p-power.

The form of ι∗n is obtained as follows. All pointed H-covers of (V, vg) can be given

by elements in B using Artin-Schreier equations zq−z = b with b ∈ B. Elements in

the k-linear span of Ln−Ln−1 give bijectively all the pointed H-covers of (V, vg) that

can be given by zq−z = b with b ∈ Bn. Every element
∑

i λiki in the k-linear span of

Kn−Kn−1 is in Bn. Hence the pointed H-cover of (V, vg) given by zq− z =
∑

i λiki

is isomorphic to the pointed H-cover of (V, vg) given by zq − z =
∑

j λ
′
jlj, for some

unique
∑

j λ
′
jlj in the k-linear span of Ln − Ln−1. The correspondence

∑
i λiki ↔∑

j λ
′
jlj is what is used to get the form of ι∗n: A closed point in Spec(k[K∨n −K∨n−1])

has the form (k∨1 − λ1, ..., k
∨
dK
− λdK ). The maximal ideal represents the pointed

H-cover of (V, vg) given by zq − z =
∑

i λiki, pointed anywhere above vg. There

is a unique k-algebra homomorphism k[L∨n − L∨n−1]→ k[K∨n −K∨n−1] such that the

inverse image of (k∨1 − λ1, ..., k
∨
dK
− λdK ) is (l∨1 − λ′1, ..., l∨dL − λ

′
dL

), which represents

the pointed H-cover of (V, vg) given by zq − z =
∑

j λ
′
jlj, for every closed point

(k∨1 − λ1, ..., k
∨
dK
− λdK ) in Spec(k[K∨n −K∨n−1]). Hence the homomorphism is ι∗n, by

the definition of ι∗n. It is left as an exercise to the reader to write out the precise

formula of the homomorphism, which has the form given above.

Let Mρ
V,H,n = Spec(Imι∗n), which is a closed subscheme of MV,H,n. After simpli-

fication by elimination Imι∗n turns out a polynomial ring k[{k′i, 1 ≤ i ≤ dK}], where

k′i is a sum of powers Σi≤t≤dKk
nit
t and nii is a p-power. Moreover for every i the

polynomial ring Imι∗n contains a k
qi
i with qi a p-power. Similar to Example 46, ιn
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gives a bijection between the closed points of Mρ
V,H,n and those of Mρ

V,H,n.

The ιn’s for different n’s are compatible.

Here are some necessary settings to prove the 2nd lemma for embedding M
ρ′i
V ′,P,ij

in MV ′,P,0.

With the same setting as in Theorem 39. The ind scheme Mρ,•
V,P consists of

finitely many connected components {Mρ
V,P,j}. For every j, the universal family

(see Remark 38 for more precise terminology) over Mρ
V,P,j determines a morphism

Mρ
V,P,j

ι−→MV,P , since MV,P is the fine moduli space for FV,P .

If (ρt, Ht)t is a decomposition of (ρ, P ) (see Remark 42), then Mρ,•
V,P = ΠtM

ρt,•
V,Ht

and MV,P = ΠtMV,Ht . Hence Mρ
V,P,j has the form ΠtM

ρt
V,Ht

for every j. The mor-

phism ι can be given componentwise for each t.

Lemma 48. With the notations above, the morphism Mρ
V,P,j = ΠtM

ρt
V,Ht

ι−→ ΠtMV,Ht

is given by Πtιt, where Mρt
V,Ht

ιt−→MV,Ht is the morphism given in Lemma 47.

Proof. Theorem 32, Remark 42 and the base step for induction in the proof of

Theorem 1.2 in [H80] are the references for this proof. Every fact used here can be

found in one of the three places.

Induct on |P |.

(48.1) The base case is done in Lemma 47. Moreover for every t since MV,Ht is the

fine moduli space for FV,Ht , the canonical universal family representative over MV,Ht

given in 1.9 Rmk of [H80] pulled back to Mρt
V,Ht

via ιt, differs from the canonical
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universal family representative over Mρt
V,Ht

given in Remark 34 by some element in

H1(Mρt
V,Ht

, H), by tracking definitions. Lemma 47 shows that ιt gives a bijection on

closed points of Mρt
V,Ht

and Mρt
V,Ht

. Using this fact and the same kind of argument in

Lemma 4.25 of [TY17], a universal family representative over MV,Ht can be chosen

such that it pulls back to the canonical universal family representative over Mρt
V,Ht

.

Below is the inductive step.

In Theorem 39 an H inside the center C(P ) of P is taken, and then the inductive

process is carried out, which gives Mρ•
V,P as M ρ̄•

V,P̄
×Mρ0•

V,H . The notation ΠtM
ρt
V,Ht

means that (H, ρ0) is denoted by (H1, ρ1) here and the inductive step there is carried

out for some finite steps until the induction ends (see Remark 42). Thus a connected

component of M ρ̄•
V,P̄

can be denoted by Πt≥2M
ρt
V,Ht

and MV,P̄ by Πt≥2MV,Ht .

(48.2) By inductive hypothesis, the universal family over Πt≥2M
ρt
V,Ht

determines

a morphism Πt≥2M
ρt
V,Ht

Πt≥2ιt−−−−→ Πt≥2MV,Ht with ιt given in Lemma 47; and there

is a universal family representative over Πt≥2MV,Ht such that it pulls back to a

ρ̄-liftable universal family representative over Πt≥2M
ρt
V,Ht

. Then lift the ρ̄-liftable

universal family representative over Πt≥2M
ρt
V,Ht

as in the proof of Theorem 39, and

pick any lift of the universal family representative over Πt≥2MV,Ht . Again using the

same kind of argument in Lemma 4.25 of [TY17], the latter lift can be modified such

that its pullback to Πt≥2M
ρt
V,Ht

is the previous lift. (Strictly speaking, Definition 38

needs to be used and pairs should be dealt with, which however will make the proof

unnecessarily longer.)
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A ρ-liftable universal family representative over ΠtM
ρt
V,Ht

can be given by the

product of a ρ1-liftable universal family representative over Mρ1
V,H1

and a ρ-liftable

lift of a ρ̄-liftable universal family representative over Πt≥2M
ρt
V,Ht

(see Remark 40).

A universal family representative over ΠtMV,Ht is a similar product. Paragraphs

(48.1) and (48.2) together show that the pullback of some universal family repre-

sentative over ΠtMV,Ht via ΠtM
ρt
V,Ht

Πtιt−−→ ΠtMV,Ht is a ρ-liftable universal family

representative over ΠtM
ρt
V,Ht

. By the definition of the fine moduli space MV,P ,this

means that Πtιt is the morphism ι determined by the universal family over Mρ
V,P,j =

ΠtM
ρt
V,Ht

.

Remark 49. By Lemma 47 and Lemma 48, Πtιt factors through ΠtMρt
V,Ht

, a closed

subscheme of MV,P .

ΠtM
ρt
V,Ht

ι

��

''
ΠtMρt

V,Ht
iI

vv
ΠtMV,Ht

Definition 50. If a MV,P = ΠtMV,Ht , a Mρ
V,P,j = ΠtM

ρt
V,Ht

and their respective uni-

versal family representatives are constructed together, using the inductive process

in the proof of Lemma 48. Then the MV,P is called attached to the Mρ
V,P,j.

Definition 51. With the preparation of the two lemmas above, the moduli s-

pace M0ρ′

V ′,P for Proposition 57 can be defined. There is a closed subscheme image

(like ΠtMρt
V,Ht

in Remark 49) of M
ρ′i
V ′,P,ij in the MV ′,P attached (see Definition 50)

to M
ρ′i
V ′,P,ij. Using the isomorphism (see Remark 45) from the MV ′,P attached to
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M
ρ′i
V ′,P,ij, to the fixed MV ′,P,0, the closed subscheme image has its isomorphic image

in MV ′,P,0, which is denoted by Mρ′i
V ′,P,ij. Denote the morphism M

ρ′i
V ′,P,ij → Mρ′i

V ′,P,ij

by ιρ′i,ij. Let Mρ′

V ′,P =
∐

(M
ρ′
i
V ′,P,ij)i

⋂
iM

ρ′i
V ′,P,ij (see between Remark 45 and Exam-

ple 46 for the tuple (M
ρ′i
V ′,P,ij)i). Let M0 be the dense open subset of MV ′,P,0 which

parameterizes all connected pointed P -covers of (V ′, v′g) ([H80], Theorem 1.12). Let

M0ρ′

V ′,P =
∐

(M
ρ′
i
V ′,P,ij)i

(
⋂
iM

ρ′i
V ′,P,ij

⋂
M0).

Remark 52. What does the space M0ρ′

V ′,P parameterize?

Every closed point in M0ρ′

V ′,P represents a connected pointed P -cover (W,wg)→

(V ′, v′g) corresponding to some homomorphism π1(V ′, v′g)
φ−→ P that is ρ′i-liftable for

every i. In fact, for every i the closed point gives a ρ′i-liftable pair (φ, pi) for some

pi ∈ P , by the definition of M0ρ′

V ′,P and the fact that every point in Mρ•
V,P represents

a ρ-liftable pair as shown in Theorem 39.

See between Remark 45 and Example 46 for c′i and θ′. The cover (V ′, v′g) →

(V ′i′ , v
′
gi) corresponds to some homomorphism π1(V ′i′ , v

′
gi)

θ′i−→ 〈p′i〉 that maps c′i to p′i.

There is a similar diagram as in (3.1) with φ̂i(c
′
i) = (pi, p

′
i):

π1(V ′, v′g)� _

��

φ // P� _

��
π1(V ′i′ , v

′
gi)

φ̂i // P oρ′i
〈p′i〉

QP // // 〈p′i〉,

where the composition of the bottom two arrows π1(V ′i′ , v
′
gi)→ 〈p′i〉 is θ′i.

Hence the cover (W,wg) → (V ′i′ , v
′
gi) is a pointed P oρ′i

〈p′i〉-cover. Denote by

γi the element in the Galois group of W/V ′i′ corresponding to (1, p′i) with 1 the
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identity of P . Denote by γp′i the automorphism in the Galois group of V ′ → U that

corresponds to p′i ∈ P ′. Denote by γp the element in the Galois group of W/V ′

that corresponds to p ∈ P . γi lies over γp′i , and satisfies ord(γi) = ord(p′i) and

γiγpγi
−1 = γρ′(p′i)(p) for every p ∈ P . These three conditions are called condition

(∗ ∗ ∗i).

So a closed point in M0ρ′

V ′,P gives a pair ((W,wg) → (V ′, v′g), {γi}) with the first

entry a connected pointed P -cover of (V ′, v′g) and the second entry a subset of

the Galois group of W/U with cardinality |P ′|, the i-th element of which satisfies

condition (∗ ∗ ∗i). The set of such pairs is denoted by GalV ′/ρ
′.

Reading backwards the discussion above, every pair in GalV ′/ρ
′ has a unique

closed point in M0ρ′

V ′,P which represents the pair. Hence there is a canonical bijection

between closed points in M0ρ′

V ′,P and GalV ′/ρ
′.

Remark 53. There is a finite partition of closed points in M0ρ′

V ′,P by covers’ Galois

groups over U .

With the same notations as in the previous remark, the cover W/U is Galois by

a group order counting argument.

Denote Gal(W/V ′) by Γp, Gal(W/U) by Γ, and Gal(V ′/U) by Γp′ . The isomor-

phism Γp ' P is already given since (W,wg) → (V ′, v′g) is a P -cover. Similarly for

Γp′ ' P ′.

Fix a subgroup Γ̂p′ in Γ which maps isomorphically to Γp′ under the canoni-

cal quotient map Γ � Γp′ . The existence of such a subgroup is given by Schur-
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Zassenhaus since (p, |P ′|) = 1. Then Γ is canonically isomorphic to Γp o Γ̂p′ , an

inner semiproduct.

The isomorphism Γp′ ' P ′ induces an isomorphism Γ̂p′ ' P ′. Substituting Γp

by P and Γ̂p′ by P ′ in Γp o Γ̂p′ , an induced semiproduct P oρ′′ P
′ and an induced

isomorphism Γ ≈ P oρ′′ P
′ are got. The diagram is commutative:

1 // Γp

'
��

// Γ

≈
��

// Γp′

'
��

// 1

1 // P // P oρ′′ P
′ // P ′ // 1.

(53.1)

For every p′ ∈ P ′, the action of ρ′(p′) on P differs from that of ρ′′(p′) by the

conjugation of some element pp′ ∈ P , since γi and its counterpart in Γ̂p′ differ by

some element in Γp.

When P is abelian, the two groups P oρ′ P
′ and P oρ′′ P

′ are the same. The

Galois group over U for any element in GalV ′/ρ′ is P oρ′ P
′. If P is not abelian, the

two groups P oρ′ P
′ and P oρ′′ P

′ may not be the same. The Galois group can not

be nailed down.

The action ρ′′ that arises above motivates the definition of a finite set consisting

of certain semidirect products. Define Gpρ′ as the finite set {P oρ′′s P
′ | for every p′i

there exists a (pi, p
′
i) in Poρ′′sP

′ such that ord(pi, p
′
i)=ord(p′i) and (pi, p

′
i)p(pi, p

′
i)
−1 =

ρ′(p′i)(p)}, where ρ′′s : P ′ → Aut(P ) is an action of P ′ on P .

By the end of Remark 52, the closed points of M0ρ′

V ′,P are in canonical bijection

with GalV ′/ρ
′. Every pair in GalV ′/ρ

′ gives a pointed P oρ′′s P
′-cover (a similar
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diagram to diagram (3.1)):

π1(V ′, v′g)� _

��

φ // P� _

��
π1(U, ug)

φ̂ // P oρ′′s P
′ QP // // P ′,

(53.2)

for some ρ′′s using the process given above diagram (53.1), where the composition

of the bottom two arrows is θ′. The group P oρ′′s P
′ is said to belong to the pair

or belong to the closed point corresponding to the pair. A different P oρ′′s1
P ′ can

belong to the same pair, if a different section Γ̂p′ is chosen in the process. If two

P oρ′′s P
′ and P oρ′′s1

P ′ belong to the same pair, then a similar diagram to (53.2)

π1(V ′, v′g)� _

��

φ // P� _

��
π1(U, ug)

φ̂1 // P oρ′′s1
P ′

QP // // P ′

is also commutative. It together with diagram (53.2) gives a commutative diagram:

1 // P

=

��

// P oρ′′s1
P ′

'
��

// P ′

=

��

// 1

1 // P // P oρ′′s P
′ // P ′ // 1.

Hence P oρ′′s P
′ and P oρ′′s1

P ′ are isomorphic extensions. Pick a representative

(pick P oρ′ P
′ in its class) in each isomorphism class of extensions and denote the

subset obtained in this way of Gpρ′ by Ḡpρ′ . The set GalV ′/ρ
′ has a finite partition

by elements in Ḡpρ′ = {P oρ′′t
P ′} by discussion above.
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For any P oρ′′s P
′ ∈ Gpρ′ and any pointed P oρ′′s P

′-cover (W,wg) → (U, ug)

corresponding to some π1(U, ug)
ˆ̂
φ−→ P oρ′′s P

′, a pointed P oρ′′si
〈p′i〉-cover (W,wg)→

(V ′i′ , v
′
gi) can be got for every i:

π1(V ′, v′g)� _

��

// P� _

��

= // P� _

��
π1(V ′i′ , v

′
gi)

��

// P oρ′′si
〈p′i〉

' //
� _

��

P oρ′i
〈p′i〉

π1(U, ug)
ˆ̂
φ // P oρ′′s P

′,

(53.3)

where ρ′′si is the restriction of ρ′′s on 〈p′i〉. The pointed P oρ′′si
〈p′i〉-cover (W,wg) →

(V ′i′ , v
′
gi) is also a pointed P oρ′i

〈p′i〉-cover, as shown in the commutative diagram

(53.3), where the group isomorphism P oρ′′si
〈p′i〉 → P oρ′i

〈p′i〉 sends (pi, p
′
i) to (1, p′i)

and every p ∈ P to p. Then Remark 52 shows that (W,wg) → (U, ug) gives a

pair in GalV ′/ρ
′ corresponding to some closed point in M0ρ′

V ′,P , which can be used to

discover the original (W,wg) → (U, ug) using diagram (53.3). If a closed point in

M0ρ′

V ′,P is used to discover, using diagram (53.3), a pointed P oρ′′s P
′-cover of (U, ug)

for some P oρ′′s P
′ in Gpρ′ , there are several possibilities for ρ′′s .

To define the functor F
er,Gal/ρ′

V ′,P in Proposition 57, several new definitions are

needed. The inclusion of polynomial rings Imι∗tn ⊂ k[{ki, 1 ≤ i ≤ dK}] in the proof

of Lemma 47 and the morphism ΠtM
ρt
V,Ht
→ ΠtMρt

V,Ht
in Remark 49 motivate the

first two definitions given below respectively.

Definition 54. Let k[X1, ..., Xd] be a polynomial ring. Suppose k[X ′1, ..., X
′
d] is a
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subring where each X ′i is a sum of powers Σi≤t≤dX
nit
t with nii a p-power, such that

the subring also contains Xpli
i with some li ≥ 0 for every i. Let P ′ be a polynomial

ring with an injective k-algebra homomorphism f : P ′ ↪→ k[X1, ..., Xd]. If f gives

an isomorphism between P ′ and k[X ′1, ..., X
′
d], then f : P ′ ↪→ k[X1, ..., Xd] is an

R-extension.

Let {Pi ←↩ P ′i} be a collection of finitely many R-extensions, with possibly dif-

ferent Pi’s and P ′i’s. Tensoring over k gives a morphism Spec(⊗iPi)→ Spec(⊗iP ′i).

For any (S ′, s′0) ∈ S and (S ′, s′0)
f−→ (Spec(⊗iP ′i), x′0) a morphism in S, the pullback

(S, s0) → (S ′, s′0) of (Spec(⊗iPi), x0) → (Spec(⊗iP ′i), x′0), for some x0 mapping to

x′0, is called a morphism of type R:

S

��

f ′ // Spec(⊗iPi)
��

S ′
f // Spec(⊗iP ′i).

A morphism (T, t0)→ (S, s0) in S is of type ER, if it can be decomposed into a

finite sequence of finite etale covers and morphisms of type R.

Remark 55. The morphism M
ρ′i
V ′,P,ij

ιρ′
i
,ij

−−−→ Mρ′i
V ′,P,ij in Definition 51 is an example

of the right column in the square diagram in Definition 54.

Below is the definition for the functor to present in Proposition 57, which is

motivated by the discussion in Remark 52. Let (S, s0) ∈ S and letGal(S,s0) be the set

of T -parameterized P -covers (W̃ , w̃g)→ (T ×V ′, (t0, v′g)) of V ′ pointed over (t0, v
′
g)

for some (T, t0) → (S, s0) of type ER with connected fibers over the closed points
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of T , such that the composition (W̃ , w̃g) → (T × V ′, (t0, v′g)) → (T × U, (t0, ug)) is

Galois. For a pointed P -cover (W̃ , w̃g)→ (T × V ′, (t0, v′g)), and an element p ∈ P ,

denote by γ̃p the automorphism in its Galois group that corresponds to p. Denote

by γ̃p′i the automorphism in the Galois group of T×V ′ → T×U that corresponds to

p′i ∈ P ′. Let Gal/ρ′(S,s0) be the set of pairs ((W̃ , w̃g)→ (T×V ′, (t0, v′g)),{γ̃i}), where

(W̃ , w̃g)→ (T × V ′, (t0, v′g)) is in Gal(S,s0) and γ̃i is in the Galois group of the cover

W̃ → T ×U that lies over γ̃p′i and satisfies ord(γ̃i) = ord(p′i) and γ̃iγ̃pγ̃
−1
i = γ̃ρ′(p′i)(p)

for every p ∈ P . The set Gal/ρ′(S,s0) is an S-parameterized version of GalV ′/ρ′ ; by

Remark 52, the set F
er,Gal/ρ′

V ′,P (Spec(k), s0), with s0 determined by v′g using diagram

(2.1), is the set GalV ′/ρ
′. Two elements ((W̃j, w̃gj) → (Tj × V ′, (tj0, v

′
g)),{γ̃ji})

(j = 1, 2) in Gal/ρ′(S,s0) are ER-equivalent if there exists a morphism (Td, td0) →

(S, s0) of type ER, where (Td, td0) also maps to (Tj, tj0) (j = 1, 2) in the category

S, such that the two pointed P -covers, together with {γ̃1i} and {γ̃2i}, pulled back

to Td become isomorphic. Let F
er,Gal/ρ′

V ′,P be the functor: S → (Sets); (S, s0) 7→

{ER-equivalence classes of ((W̃ , w̃g)→ (T × V ′, (t0, v′g)),{γ̃i}) ∈ Gal/ρ′(S,s0)}.

Here is the last definition involved in the statement of Proposition 57. Two

morphisms Tj
fj−→M0ρ′

V ′,P (j =1 or 2, where (Tj, tj0)→ (S, s0) is of type ER) are ER-

equivalent, if there exists a morphism (Td, td0) → (S, s0) of type ER with (Td, td0)

also mapping to (Tj, tj0) (j = 1, 2) in the category S, such that the fj’s pulled

back to Td are the same. Let M er0ρ′

V ′,P be the functor: S → (Sets); (S, s0) 7→{ER-

equivalence classes of T → M0ρ′

V ′,P , where (T, t0) → (S, s0) runs over all morphisms
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to S of type ER}.

Remark 56. The two ER-equivalences in the definitions of functors F
er,Gal/ρ′

V ′,P and

M er0ρ′

V ′,P arise naturally in the proof of Proposition 57 based on the intersection idea.

Proposition 57. With the same notations as above, the ind scheme M0ρ′

V ′,P is the

moduli space for F
er,Gal/ρ′

V ′,P in the sense that there exists an isomorphism between

functors F
er,Gal/ρ′

V ′,P 'M er0ρ′

V ′,P .

Moreover, on each of the finitely many irreducible components of M0ρ′

V ′,P , there

is a unique P oρ′′t
P ′ in Ḡpρ′ which belongs to (defined in Remark 53) all the closed

points. Conversely, for every P oρ′′t
P ′ in Ḡpρ′, there is an irreducible component,

such that P oρ′′t
P ′ belongs to all the closed points of the component.

Proof. Proof of the first statement:

Let (S, s0) ∈ S and ((W̃ , w̃g) → (T × V ′, (t0, v′g)), {γi}) be a representative in

an ER-equivalence class of F
er,Gal/ρ′

V ′,P (S, s0). Then (W̃ , w̃g) → (T × V ′i′ , (t0, v′gi)) is

Galois (see Remark 52). Letting γi correspond to (1, p′i) ∈ P oρ′i
〈p′i〉, (W̃ , w̃g) →

(T×V ′i′ , (t0, v′gi)) is a pointed Poρ′i
〈p′i〉-cover. By the definition of M

ρ′i,•
V ′,P , the pointed

P oρ′i
〈p′i〉-cover corresponds to a morphism T

ci−→M
ρ′i,•
V ′,P . Since T is connected, the

morphism ci lands in a connected component M
ρ′i
V ′,P,ij of M

ρ′i,•
V ′,P . Embedding M

ρ′i
V ′,P,ij

in MV ′,P,0 as in Remark 55, a morphism T
ĉi−→ MV ′,P,0 is got. The morphism ĉi is

the same as the morphism from T to MV ′,P,0 determined by the pointed P -cover

(W̃ , w̃g)→ (T × V ′, (t0, v′g)), using that MV ′,P,0 is the fine moduli space for pointed

families of P -covers of (V ′, v′g) ([H80], Theorem 1.2). The above discussion applies

68



for every i. Hence a morphism T
ĉ−→M0ρ′

V ′,P is got, by the definition of M0ρ′

V ′,P .

Conversely, given T
ĉ−→M0ρ′

V ′,P for some (T, t0)→ (S, s0) of type ER, a morphism

T
ĉ−→MV ′,P,0 is got by the definition of M0ρ′

V ′,P and the connectedness of T . For each

i, there is a morphism T
ĉi−→Mρ′i

V ′,P,ij, for some Mρ′i
V ′,P,ij (see Definition 51 for Mρ′i

V ′,P,ij)

that ĉ factors through

T

ĉ ""

ĉi //Mρ′i
V ′,P,ij� _

��
MV ′,P,0.

After pointing M
ρ′i
V ′,P,ij

ιρ′
i
,ij

−−−→ Mρ′i
V ′,P,ij (see Definition 51) properly, the pullback

morphism (Ti, ti0)→ (T, t0) is of type R, by Remark 55 and the lower square of the

diagram, in which both squares are pullbacks:

Tdi

��

//Mij

��

Ti

��

ci //M
ρ′i
V ′,P,ij

��

T
ĉi //Mρ′i

V ′,P,ij.

The (ind) (see Remark 41) scheme Mij in the upper right corner is a finite etale

cover of M
ρ′i
V ′,P,ij, such that a fixed universal family representative over MV ′,P,0 pulled

back to Mij, is the same as the pullback to Mij of a ρ′i-liftable universal family

representative over M
ρ′i
V ′,P,ij (see the discussion between Lemma 47 and Lemma 48).

The relationship between Mij and M
ρ′i
V ′,P,ij is the same as that between T and

S in the proof of Theorem 39. Hence the pullback (Tdi, tdi0) → (Ti, ti0) is a finite
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etale cover.

The two diagrams together imply that the fixed universal family representative

over MV ′,P,0, which is a pointed P -cover of (MV ′,P,0× V ′, (ĉ(t0), v′g)), pulled back to

Tdi is ρ′i-liftable. Let (Td, td0) be the common pullback of the (Tdi, tdi0)’s over (T, t0).

The pullback to Td of the fixed universal family representative over MV ′,P,0 is ρ′i-

liftable for every i. Consider ρ′i-liftable pairs, rather than merely ρ′i-liftable covers,

at some places in the discussion above. Then a pair (see Remark 52) ((W̃ , w̃g) →

(Td × V ′, (td0, v
′
g)), {γi}) is got, a pointed P -cover together with |P ′| elements in

Gal(W̃/Td × U), whose ER-equivalence class is in F
er,Gal/ρ′

V ′,P (S, s0).

The two maps are well defined for equivalence classes and inverse to each other.

Proof of the statements after “Moreover”: Every component
⋂
iM

ρ′i
V ′,P,ij

⋂
M0

of M0ρ′

V ′,P is a dense open of
⋂
iM

ρ′i
V ′,P,ij, which itself is an affine closed subscheme

of MV ′,P,0. Pick any irreducible component of
⋂
iM

ρ′i
V ′,P,ij

⋂
M0 and a covering of it

consisting of connected affine open subsets of finite type over k, which are all dense

and intersect each other. Denote any of the affine open subsets by M and apply the

first statement proven above to M. The inclusion of M in M0ρ′

V ′,P , with any base point

mg, gives a pointed P -cover of (M′ × V ′, (m′g, v′g)) for some (M′,m′g)→ (M,mg) of

type-ER. The pointed P -cover satisfies a M′-parameterized version of (∗ ∗ ∗i) for

every i and thus gives a pointed Poρ′′t
P ′-cover of (M′×U, (m′g, ug)) for some unique

P oρ′′t
P ′ in Ḡpρ′ (see Remark 52 and Remark 53). Hence for every closed point m

(need to use chemins for base point issues) in M, P oρ′′t
P ′ belongs to the pair in
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GalV ′/ρ′ that m corresponds. Then Remark 52 and Remark 53 suffice to give all

the statements.

Denote the maximal union of irreducible components of M0ρ′

V ′,P , to all of whose

closed points Poρ′P
′ belongs (see the last paragraph in the proof of Proposition 57),

by MU,V ′,Poρ′P ′ . Denote by MU,Poρ′P ′ the disjoint union of MU,V ′,Poρ′P ′ ’s over all

possible (V ′, v′g)’s pointed connected P ′-covers of (U, ug).

Define a functor M er
U,Poρ′P ′

: S → (Sets); (S, s0) 7→{ER-equivalence classes of

T →MU,Poρ′P ′ , where (T, t0)→ (S, s0) runs over all morphisms to S of type ER}.

Similarly to M er0ρ′

V ′,P and M0ρ′

V ′,P above.

Define a functor F er
U,Poρ′P ′

: S → (Sets); (S, s0) 7→{ER-equivalence classes of

pointed P oρ′ P
′-covers (W̃ , w̃g)→ (T × U, (t0, ug)) whose fibers over closed points

of T are all connected, where (T, t0)→ (S, s0) runs over all morphisms to S of type

ER}. The definition of ER-equivalence classes here is obvious (see definition of the

functor F
er,Gal/ρ′

V ′,P ).

Corollary 58. The functor F er
U,Poρ′P ′

is isomorphic to the functor M er
U,Poρ′P ′

, which

shows that MU,Poρ′P ′ is a moduli space for P oρ′ P
′-covers of (U, ug).

Proof. Directly from Proposition 57 and its proof. See also proof of Theorem 44.
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Chapter 5

Local vs. global moduli

In Chapter 5, a fine moduli space (Proposition 64) for cyclic-by-p covers of an affine

curve at most tamely ramified over finitely many closed points, is constructed. The

new type of fine moduli space is obtained by modifying the proof for the previous

global fine moduli space constructed in Theorem 44 Chapter 3, and is constructed

in similar 3 steps. The new type of fine moduli space is the global side of a local-

global principal Proposition 76. There is a different phenomenon for cyclic-by-p

covers from that for p-covers. In [H80] the similar local-global principal for p-

groups stated in Proposition 2.1 does not involve (tamely) ramified global covers;

there the global covers are etale. The local-global principal Proposition 76 has a

version over a general field of characteristic p > 0, which is Main Theorem 1.4.1 in

[K86].

A parameter space for local cyclic-by-p covers of Spec(k((x))) is constructed in

72



Proposition 75, which is the local side of the local-global principal Proposition 76.

The construction is also by modifying the one in Chapter 3 and has similar 3 steps.

Finally it is shown that a restriction morphism (a general case of the local-global

principal Proposition 76 with the isomorphism there replaced by a finite morphism

now) is finite, which is from the new type of global moduli space to a product of the

local parameter spaces (Proposition 83), an analogue to Proposition 2.7 in [H80].

It is proved by a similar argument.

As always, we follow notations and terminology defined in Chapter 2. For ex-

ample G represents a cyclic-by-p group.

Here are some necessary settings for the construction of the fine moduli space

(Proposition 64).

Let T be a finite set of closed points on U not including ug and U0 = U − T .

Denote by {(V 0
l , vl)} the set of all the finitely many connected pointed Z/nl-covers

of (U0, ug), where nl can be any factor of n. Let (Vl, vl)→ (U, ug) be the extension

of (V 0
l , vl)→ (U0, ug), obtained by putting back in some deleted closed points from

the smooth completions of both curves.

Definition 59. Let F T
U,G be the functor: S1 →(Sets), (S, s0) 7→{equivalence classes

of possibly ramified G-covers W̃ → S×U pointed over (s0, ug), where the restriction

of W̃ over S×U0 is a G-cover and W̃ → W̃/P is finite etale}. Let S = Spec(k) with

s0 determined by ug using diagram (2.1). Then F T
U,G(S, s0) is the set of possibly
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ramified pointed G-covers (W,wg) → (U, ug) whose restriction W 0 over U0 is a

G-cover and W → W/P is finite etale.

A group homomorphism φ̃0 : π1(S × V 0
l , (s0, vl)) → P factors through Vl if

φ̃0 = (π1(S × V 0
l , (s0, vl))

(IdS×(V 0
l ⊂Vl))∗−−−−−−−−−→ π1(S × Vl, (s0, vl))

φ̃−→ P ) for some φ̃.

Definition 60. Let F
ρnl•/T
V 0
l ,P

be the functor: S1 →(Sets), (S, s0) 7→ {([φ̃0], p), where

(φ̃0, p) is a ρnl-liftable pair with φ̃0 factoring through Vl.}. Let S = Spec(k) with s0

determined by vl using diagram (2.1). Then F
ρnl•/T
V 0
l ,P

(S, s0) is the set of ρnl-liftable

pairs of (V 0
l , vl) the first entries of which can all extend to P -covers of Vl.

Below is the first of the 3 steps in constructing the fine moduli space in Propo-

sition 64.

Definition 61. (Remark/Definition)

The cover Vl → U above is ramified at finitely many closed points on U . Hence

the old definition of ρ-liftable can not apply here. New definition: A group homo-

morphism φ : π1(Vl, vl) → H with (ρ,H) in the case of Theorem 32 is ρ-liftable

if φ makes the diagram in Lemma 30 commutative. Using the new definition of

ρ-liftable in the definition of F ρ
V,H , Theorem 32 still holds and F ρ

V,H is presented by

the same fine moduli space Mρ
V,H .

The new definition of ρ-liftable is used below for Vl → U .

Lemma 62. With the notations above, suppose (ρnl , P ) is in the case of Theorem 32

and write H for P in this case. The functor F
ρnl•/T
V 0
l ,H

for ρnl-liftable pairs of (V 0
l , vl)
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the first entries of which can all extend to H-covers of Vl, has a fine moduli space,

a disjoint union of finitely many ind affine spaces.

Proof. It is to be shown that F
ρnl•/T
V 0
l ,H

= qhF
ρnl
Vl,H

, copies of F
ρnl
Vl,H

indexed by h,

where depending on (ρnl , H) the h runs over H or it is just 1 (see Corollary 36).

Suppose a ρl-liftable pair (φ̃0 : π1(S × V 0
l , (s0, vl)) → H, h0) with φ̃0 factoring

through Vl is a representative for an equivalence class ([φ̃0], h0) in F
ρnl•/T
V 0
l ,H

(S, s0).

Since (IdS × (V 0
l ⊂ Vl))∗ is surjective, φ̃ is also ρnl-liftable (see Definition 61 and

see the definition of “factoring through Vl” above for φ̃). The left to right map

sends ([φ̃0], h0) to [φ̃] in the copy of F
ρnl
Vl,H

(S, s0) indexed by h0. The inverse map

is obvious. By Theorem 32 (see also Definition 61), F
ρnl
Vl,H

is represented by an ind

affine space M
ρnl
Vl,H

.

Here is the 2nd of the 3 steps in constructing the fine moduli space in Proposi-

tion 64.

Lemma 63. The functor F
ρnl•/T
V 0
l ,P

for ρnl-liftable pairs of (V 0
l , vl) the first entries of

which can all extend to P -covers of Vl, has a fine moduli space, a disjoint union of

finitely many ind affine spaces.

Proof. The proof is by simply replacing with their obvious counterparts symbols in

and slightly modifying the proof of Theorem 39.

Denote Vl by V and ρnl by ρ in the proof. Replace F ρ•
V,P with F

ρ•/T
V 0,P , Corollary 36

with Lemma 62, M ρ̄•
V,P̄

with M
ρ̄•/T
V 0,P̄

, and Mρ0•
V,H with M

ρ0•/T
V 0,H .
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In paragraph (39.2) of the proof of Theorem 39, since the first entry of some

universal pair (µ̃0
0 : π1(M̄ × V 0, (m̄, vl)) → P̄ , p̄0) can factor through V : µ̃0

0 =

(π1(M̄ × V 0, (m̄, vl)) → π1(M̄ × V, (m̄, vl))
µ̃0−→ P̄ ) for some µ̃0, lift (µ̃0, p̄0) first to

get (ψ̃0, p0) with restriction ψ̃0
0 on M̄ × V 0.

Paragraph (39.3) in the proof of Theorem 39 carries over with some obvious

modification involving the property of factoring through V .

Below is the last of the 3 steps in constructing the fine moduli space in Propo-

sition 64.

Proposition 64. There is a fine moduli space representing F T
U,G, the functor for

pointed G-covers of (U, ug) tamely ramified over finitely many closed points T on

U , which is a disjoint union of finitely many ind affine spaces.

Proof. By the same argument for Theorem 44 with slight modification, F T
U,G =

qVlF
ρnl•/T
V 0
l ,P

which has a fine moduli space by Lemma 63.

Above is the construction of the global side of the local-global principal Proposi-

tion 76, whose local side is the local parameter space in Proposition 75, constructed

below in similar 3 steps.

Below are necessary settings of Proposition 68.

Notation 65. Recall U0 = Spec(k((x))) and point U0 at u0. Let (V0t, v0t) run over

all the finitely many connected pointed Z/nt-covers of (U0, u0), where nt can be any

factor of n. Let V0 be a connected Z/n-cover of U0 given by k((x))[Y ]/(Y n − x) =
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k((y)) with 1̄ ∈ Z/n acting on k((y)) as y 7→ ζny. Since Z/n is abelian, V0 can be

pointed at any v0 over u0, by Remark 20.

Definition 66. Two pointed Gr-covers of (S×U0, (s0, u0)) with (S, s0) ∈ S1 are w-

equivalent if they become isomorphic pulled back to (T̃ 0, t̃0), which is the restriction

over S × U0 of some finite etale cover (T̃ , t̃0)→ (S × Ū0, (s0, u0)).

Let ϕ̃i : π1(S ×U0, (s0, u0))→ Gr (i=1,2) be two group homomorphisms. They

are w-equivalent if their corresponding pointed Gr-covers of (S × U0, (s0, u0)) are

w-equivalent. Denote the w-equivalence class of ϕ̃1 by [ϕ̃1]w.

Let Fwρ
V0,P

be the functor: S1 →(Sets), (S, s0) 7→{w-equivalence classes of ρ-

liftable P -covers of S × V0 pointed over (s0, v0)}.

Remark 67. The definition of w-equivalence is taken from the 2nd paragraph in

the proof of Proposition 2.1 in [H80], which is the right definition of equivalence in

the local case to make the proof work.

Below is the building block needed in the first of the 3 steps in constructing the

local parameter space in Proposition 75.

Proposition 68. Let (V0, v0) be given in Notation 65. Suppose (ρ,H) is in the case

of Theorem 32. Then there exists a fine moduli space Mwρ
V0,H

for Fwρ
V0,H

, the functor

for w-equivalence classes of pointed ρ-liftable H-covers of (V0, v0).

Proof. The proof is parallel to that of Theorem 32.
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Similarly to the proof of Theorem 32, start with a short exact sequence k((y))
℘−→

k((y))
π−→ H1(V0, H)→ 0 given by the Artin-Schreier sequence. It can be simplified

to y−1k[y−1]
℘−→ y−1k[y−1]

π−→ H1(V0, H)→ 0 (68.1).

Denote by σ0 the automorphism in Gal(k((y))/k((x))) given by y 7→ ζny. The

action of ρ(−1̄) on H is given by multiplication by some eρ ∈ Fq (q = |H|; see proof

of Theorem 32). Similarly let D0 be the x−1k[x−1]-module endomorphism σ0 − eρ

of y−1k[y−1].

Similarly extract from (68.1) an Fq-vector space short exact sequence KerD0
℘−→

KerD0
π−→ X0 → 0, where X0 is the set of ρ-liftable pointed H-covers of (V0, v0).

From the Ker exact sequence construct the fine moduli space Mwρ0
V0,H

same as before,

which is also an ind affine space. Choose basis K0i, an analogue to Ki in the

proof of Theorem 32, inductively for i ∈ N. The affine space Spec(k[K∨0i+1 −K∨0i])

can be identified with the (i + 1)-th piece of Mwρ
V0,H

; the transition morphism from

Spec(k[K∨0i−K∨0i−1]) to Spec(k[K∨0i+1−K∨0i]) is given by Frobenius as before. Finally,

with slight modification to the last two paragraghs of the proof of Theorem 32,

Mwρ
V0,H

can be shown to represent Fwρ
V0,H

.

Remark 69. Similar to Remark 34, a canonical universal family representative

over Mwρ
V0,H

can be given by zq − z =
∑

k0i∈K0n−K0n−1
k∨0i ⊗ k0i (n ≥ 1). Precise

description can be got by some obvious replacement of symbols in Remark 34.

Remark 70. The remark is the base case in the proof for the local-global principal

Proposition 76. Let A1′ = Spec(k[x−1]). Suppose A1′ is pointed at ag such that the
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map U0 → A1′ sends u0 to ag.

Let V → A1′ be the Z/n-cover given by k[x−1][Y −1]/((Y −1)n − x−1) = k[y−1]

ramified at ∞, with 1̄ ∈ Z/n acting as y−1 7→ ζ−1
n y−1. Point V at vg such that

V → A1′ sends vg to ag. Its restriction (pullback) at 0 gives (V0, v
′
0) and let v0

above be v′0:

(V0, v
′
0)

��

// (V, vg)

��
(U0, u0) // (A1′ , ag).

The constructions show that Mwρ
V0,H

= Mρ
V,H :

The short exact sequence y−1k[y−1]
℘−→ y−1k[y−1]

π−→ H1(V0, H)→ 0 in the proof

of Proposition 68, is similar to the one k[y−1]
℘−→ k[y−1]

π−→ H1(V,H) → 0 for V

in the proof of Theorem 32, after modding k[y−1] by k. The short exact sequence

KerD0
℘−→ KerD0

π−→ X0 → 0 above, is similar to the short exact sequence KerD
℘−→

KerD
π−→ X→ 0 for V in the proof of Theorem 32 and KerD0 = KerD. Then the

constructions of the two moduli spaces out of the Ker short exact sequences are

the same, which shows that Mwρ
V0,H

is the same ind scheme as Mρ
V,H .

Moreover, there is a triangle compatibility diagram. For any pointed ρ-liftable

H-cover (W,wg) of (V, vg) corresponding to some k-morphism Spec(k)
cg−→Mρ

V,H , its
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restriction (W0, w0) over (V0, v0) is a pointed ρ-liftable H-cover of V0:

(W0, w0)

��

// (W,wg)

��
(V0, v0) // (V, vg).

The local cover corresponds to some k-morphism Spec(k)
c0−→Mwρ

V0,H
. The following

diagram commutes:

Spec(k)

cg $$

c0 //Mwρ
V0,H

=

��
Mρ

V,H .

(70.1)

Remark 71. All the Z/nt-covers of U0, where nt can be any factor of n, correspond

bijectively to all the Z/nt-covers of A1′ ramified at ∞, since these covers can be

given by explicit equations of the type in Proposition 68 and that in Remark 70.

Below is the first of the 3 steps in constructing the local parameter space in

Proposition 75 using the building block in Proposition 68.

Definition 72. For the local case, a pointed ρ-liftable P -cover of (V0, v0) is defined

in the obvious similar way to the global case defined in diagram (3.1). Similarly for

a ρ-liftable pair.

The k-points of an ind scheme M parameterize certain covers, if there is a

bijection χ together given with M between the set of k-points of M and the set of

these certain covers.
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Lemma 73. Suppose (ρ,H) is in the case of Theorem 32. There exists a parameter

space Mpρ,•
V0,H

, a disjoint union of finitely many ind affine spaces, whose k-points

parameterize (see Definition 72) all the ρ-liftable pairs of (V0, v0).

Proof. Let S = Spec(k) pointed at s0 that is determined by v0, using diagram (2.1).

Since Mwρ
V0,H

represents Fwρ
V0,H

, there is a bijection χwρV0,H between Fwρ
V0,H

(Spec(k), s0)

and Mwρ
V0,H

(Spec(k)). Fwρ
V0,H

(Spec(k), s0) is the set of pointed ρ-liftable H-covers of

(V0, v0).

Let Mpρ,•
V0,H

= qhMwρ
V0,H

, an analogue of Corollary 36. Depending on (ρ,H), h

runs over H or it is just 1. By the same kind of argument of Corollary 36, there is

a bijection χpρ,•V0,H
between the set of ρ-liftable pairs of pointed H-covers of (V0, v0),

and Mpρ,•
V0,H

(Spec(k)).

Here is the 2nd of the 3 steps in constructing the local parameter space in

Proposition 75.

Lemma 74. There exists a parameter space Mpρ,•
V0,P

, a disjoint union of finitely many

ind affine spaces, whose k-points parameterize (see Definition 72) all the ρ-liftable

pairs of (V0, v0).

Proof. The proof is parallel to that of Theorem 39 but simpler. It simply replaces

some symbols in and do a little modification to the proof of Theorem 39.

First of all there is no longer an F , instead there is Cρ•
V0,P

the set of ρ-liftable

pairs (of pointed P -covers) of (V0, v0).
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In paragraph (39.1) replace M ρ̄•
V,P̄

by Mpρ̄•
V0,P̄

and Mρ0•
V,H by Mpρ0•

V0,H
.

In paragraph (39.2) replace V by V0.

In paragraph (39.3), there is no longer an S. Replace every V by V0, and vg by

v0. Replace (φ̃, p1) by an element (ϕ : π1(V0, v0) → P, p1) in Cρ•
V0,P

and (
¯̃
φ, p̄1) by

(ϕ̄ : π1(V0, v0)→ P̄ , p̄1). Then replace β by a k-morphism Spec(k)
cβ−→ M̄ and β̃∗ by

c̃β∗. There is no need for etale descent now and one directly gets a cα : Spec(k) −→

M0. Then replace Mρ•
V,P by Mpρ•

V0,P
. Finally the assignment ϕ 7→ (cα, cβ) is a bijection

between Cρ•
V0,P

and M(Spec(k)), which gives the bijection χpρ,•V0,P
desired.

Here is the last of the 3 steps in constructing the local parameter space in

Proposition 75.

Proposition 75. There exists a parameter space Mp
U0,G

, a disjoint union of finitely

many ind affine spaces, whose k-points parameterize (see Definition 72) all the

pointed G-covers of (U0, u0).

Proof. Let Mp
U0,G

= qV0tM
pρnt ,•
V0t,P

, an analogue of Theorem 44. Using the argument

of Theorem 44 with some obvious modification and Lemma 74, there is a bijection

χpU0,G
between k-points of Mp

U0,G
and pointed G-covers of (U0, u0).

Let M∞
A1′ ,G

, with A1′ defined in Remark 70, be the short hand notation for

M
{∞}
A1′ ,G

, the fine moduli space for F
{∞}
A1′ ,G

given by Proposition 64. Below is the local-

global principal that involves the global moduli space in Proposition 64 and the

local parameter space in Proposition 75.
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Proposition 76. The fine moduli space M∞
A1′ ,G

, is the same ind scheme as the

parameter space Mp
U0,G

, compatibly with the inclusion of U0 in A1′ (see diagram

(70.1)).

Proof. In the construction of both spaces, there are similar 3 steps to the global

case, i.e. Theorem 32⇒Theorem 39⇒ Theorem 44. Hence the equality wanted will

be proven in similar 3 steps. The bijections χ’s given in Lemma 73, Lemma 74 and

Proposition 75 will be used but not written out unnecessarily.

First both spaces have as building blocks an analogue of the moduli space in

Theorem 32. Let V0 and V be the same as in Remark 70, which shows that the local

building block is the same as the global one and a triangle compatibility diagram

holds. Then using the same kind of argument as in Corollary 36 Mpρ•
V0,H

= Mρ•
V,H

and a triangle compatibility diagram similar to that in Remark 70 holds. Moreover,

by Remark 70, Remark 34, Corollary 36 and Remark 69, the canonical ρ-liftable

universal family representative of H-covers of V0 over each connected component of

Mpρ•
V0,H

, is the restriction of the canonical ρ-liftable universal family representative

of H-covers of V over the corresponding connected component of Mρ•
V,H , which is

M
ρ•/{∞}
V 0,H by Lemma 62. Here U = A1′ , T = {∞}, and V 0 is defined at the beginning

of this Chapter.

Next Mpρ•
V0,P

= Mpρ0•
V0,H
×Mpρ̄•

V0,P̄
and M

ρ•/{∞}
V,P = M

ρ0•/{∞}
V,H ×M ρ̄•/{∞}

V,P̄
given respec-

tively in Lemma 74 and Lemma 63. By inductive hypothesis Mpρ̄•
V0,P̄

= M
pρ̄•/{∞}
V,P̄

, a

triangle compatibility diagram similar to that in Remark 70 holds, and a ρ̄-liftable
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universal family representative of pointed P̄ -covers of (V0, v0) over each connected

component of Mpρ̄•
V0,P̄

, is the restriction of a ρ̄-liftable universal family representa-

tive of pointed P̄ -covers of (V, vg) over the corresponding connected component of

M
ρ̄•/{∞}
V,P̄

. (Strictly speaking, Definition 38 needs to be used and pairs should be

dealt with, which however will make the proof unnecessarily longer.) A ρ-liftable

lift of the previous representative can be got from the restriction of a ρ-liftable lift

of the latter representative. By this fact and the paragraph above Mpρ•
V0,P

= M
ρ•/{∞}
V,P

and a triangle compatibility diagram similar to that in Remark 70 holds.

Finally by Remark 71, Proposition 64 and Proposition 75, the proposition follows

and there is a triangle compatibility diagram similar to that in Remark 70.

Corollary 77. Any pointed G-cover of (U0, u0) extends uniquely to a pointed G-

cover of (A1′ , ag) which is tamely ramified at ∞.

Proof. By the compatibility assertion in Proposition 76.

Here are some necessary settings for the last result in Chapter 5, Proposition 83.

Notation 78. Let U0i be the spectrum of the fraction field of the complete local

ring at the i-th closed point of Ū−U , which is an infinitesimal neighborhood of that

point. Let n′ be a factor of n. Let V0in′ be a fixed connected Z/n′-cover of U0i . All

the connected Z/n′-covers of U0i are isomorphic to V0in′ (see Remark 71); they only

differ by the action of Z/n′. Any two actions differ by an element in Aut(Z/n′).

For any (ni)i, where ni is a factor of n, there exists a possibly ramified connected

Z/n-cover V of U that may ramify at a finite set of closed points T on U , such that
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its ramification index at U0i is ni. The cover V can be obtained as follows: Suppose

U = Spec(A) and denote the fraction field of A by K. Pick a0 ∈ A, such that

a0 has poles
∑

iNiQi, where Qi is the i-th closed point of Ū − U and Ni >> 0

with (Ni, n) = n/ni. By Riemann-Roch, such an a0 exists. By adding a constant

in k to a0, Y n − a0 can be assumed an irreducible polynomial in K[Y ]. Denote

K[Y ]/(Y n − a0) = K(y) by F . The normalization of U in F gives V , which may

ramify over the zeros of a0 on U .

Suppose U0i is pointed at u0i and (U0i , u0i) maps to (U, ugi). Choose vgi such

that (V, vgi) → (U, ugi). Let the pointed connected component of V ’s restriction

(pullback) over U0i be (Vi0, vi0):

(Vi0, vi0)

��

// (V, vgi)

��
(U0i , u0i)

// (U, ugi).

Then Vi0 is isomorphic to V0ini that is one of those fixed above, as covers of U0i .

Choose vg such that (V, vg) → (U, ug) and chemins ωi from vgi to vg that induce

chemins $i from ugi to ug.

Let U0 = U − T and V 0 be V ’s restriction over U0, same as the beginning of

this Chapter. A ρ-liftable pointed P -cover of (V 0, vg) gives a ρni-liftable (see proof
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of Theorem 44) pointed P -cover of (Vi0, vi0) for each i using the following diagram:

π1(Vi0, vi0)� _

��

// π1(V 0, vgi)� _

��

τωi // π1(V 0, vg)� _

��

// P� _

��
π1(U0i , u0i)

// π1(U0, ugi)
τ$i // π1(U0, ug) // P oρ Z/n,

where τωi is the isomorphism induced by the chemin ωi and similarly for τ$i .

Here is a definition involved in the statement of Proposition 83.

Definition 79. For every (V0ni , v0i) a degree ni cover of (U0i , u0i), denote by M
pρni
V0ni ,P

a connected component (see Remark 26) of M
pρni•
V0ni ,P

.

Let i be the index for the i-th closed point of Ū −U and (ni)i the same notation

in Notation 78. A morphism from an ind scheme that is a disjoint union of finitely

many ind affine spaces, to ΠiM
p
U0i

,G is essentially surjective, if for any (ni)i there

is a connected component of the source ind scheme that maps surjectively (see

Definition 27 d) to a connected component of the target ind scheme, whose i-th

factor for each i is M
pρni
V0ni ,P

for some (V0ni , v0i) a degree ni cover of (U0i , u0i).

Remark 80. The definition of essentially surjective is needed because: Suppose

(Vi0)i is a tuple whose i-th component is the restriction of a possibly ramified Z/n-

cover V of U and of degree ni over U0i . The Galois actions of Z/ni’s on the Vi0’s

are related to each other as shown in the example below. Thus not every tuple

(V0ni)i (same notation as in Definition 79) could be the image of the restrictions of

some V . Hence the restriction morphism in Proposition 83 below is not surjective.
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However in some sense it is surjective, which motivates the definition of essential

surjectivity.

Suppose p = 3. The Z/3-cover of U = Spec(k[x, x−1]), the affine line with

0 deleted, given by V = Spec(k[x, x−1][Y ]/(Y 3 − x)) = Spec(k[x, x−1][y]) with

1̄ ∈ Z/3 acting on V over U as y 7→ ζ3y, has restrictions at 0 and ∞. At 0, its

restriction is a Z/3-cover of Spec(k((x))) given by V00 = Spec(k((x))[Y ]/(Y 3−x)) =

Spec(k((x))[y]) with 1̄ ∈ Z/3 acting on V00 over Spec(k((x))) as y 7→ ζ3y. At∞, its

restriction is a Z/3-cover of Spec(k((x−1))) given by V0∞ = Spec(k((x−1))[Y ]/(Y 3−

x)) = Spec(k((x−1))[y]) with 1̄ ∈ Z/3 acting on V0∞ over Spec(k((x−1))) as y 7→ ζ3y.

Changing the Z/3 actions on the two local Z/3-covers at 0 and ∞ above, the

pair of local Z/3-covers ( (Spec(k((x))[Y ]/(Y 3 − x))→ Spec(k((x))), 1̄ : y 7→ ζ3y),

(Spec(k((x−1))[Y ]/(Y 3 − x)) → Spec(k((x−1))), 1̄ : y 7→ ζ−1
3 y) ) got can not come

from restrictions of a global Z/3-cover of Spec(k[x, x−1]).

Below is another ingredient involved in the statement of Proposition 83.

For any (ni)i, as shown in Notation 78, there exists a V(ni)i that may ramify at a

finite set of closed points on U , denoted by TV(ni)i , such that its ramification index

at U0i is ni. Let T = ∪(ni)iTV(ni)i .

The last ingredient involved in the statement of Proposition 83, the restriction

morphism, is given in two steps in Lemma 81 and Lemma 82. First a map r involved

in the statements of Lemma 81 and Lemma 82, is defined.
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A pointedG-cover of (U0, ug) gives a local cover of (U0i , u0i) for each i: π1(U0i , u0i)→

π1(U0, ugi)
τ$i−−→ π1(U0, ug)→ G. Thus there is a map r from the closed points (same

as k-points) of MT
U,G (see Proposition 64), which parameterize certain pointed G-

covers of (U0, ug), to the closed points of ΠiM
p
U0i

,G, which parameterize tuples each

of which consists of covers indexed by i with the i-th entry a pointed G-cover of

(U0i , u0i). Similarly there is a map r0 from the closed points of Mρ
V,H to those of

ΠiM
pρni
Vi0,H

.

Lemma 81. Suppose (ρ,H) is in the case of Theorem 32. With the notations above,

there is a restriction morphism r0 : Mρ
V,H → ΠiM

pρni
Vi0,H

such that every closed point

of Mρ
V,H maps to the same closed point of ΠiM

pρni
Vi0,H

under r0 or r0.

Proof. r0 is given by giving for every i its i-th factor using M
pρni
Vi0,H

= M
wρni
Vi0,H

is a fine

moduli space.

Denote by Z̃ the canonical ρ-liftable universal family representative of H-covers

of V overMρ
V,H , which corresponds to, for every point m on Mρ

V,H , some group homo-

morphism π1(Mρ
V,H ×V, (m, vg))→ H. The composition π1(Mρ

V,H ×Vi0, (m, vi0))→

π1(Mρ
V,H × V, (m, vgi))

τ̃ωi−−→ π1(Mρ
V,H × V, (m, vg)) → H, where τ̃ωi is induced by

ωi similar to τωi given at the end of Notation 78, gives a pointed H-cover of

(Mρ
V,H × Vi0, (m, vi0)) the non pointed version of which is denoted by Z̃0. By Re-

mark 20, base points here do not matter. It is the restriction (pullback) of Z̃ to
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Mρ
V,H × Vi0:

Z̃0

��

// Z̃

��
Mρ

V,H × Vi0 //Mρ
V,H × V.

Since M
pρni
Vi0,H

= M
wρni
Vi0,H

and M
wρni
Vi0,H

represents F
wρni
Vi0,H

by Proposition 68, there is a

morphism Mρ
V,H

r0i−→ M
pρni
Vi0,H

given by Z̃0. A different base point m′ gives the same

r0i. Then define r0 := (r0i)i.

Now it is enough to verify that a closed point m′ of Mρ
V,H maps to the same closed

point under r0i or r0i, where r0i is the i-th factor of r0. Tracking definitions, r0i(m
′)

represents the restriction to (Vi0, vi0) of the pointed H-cover of (V, vg) represented

by m′. And ri does the same thing by its definition. So r0i and r0i agree.

Lemma 82. Let G = H oρ Z/n for some (ρ,H) in the case of Theorem 32. There

is a restriction morphism r : MT
U,G −→ ΠiM

p
U0i

,G, such that every closed point of

MT
U,G maps to the same closed point of ΠiM

p
U0i

,G under r or r, where r is defined

above Lemma 81.

Proof. By construction, MT
U,G and ΠiM

p
U0i

,G are both a disjoint union of finitely

many ind affine spaces. The morphism r will be given for each connected component

of MT
U,G.

Proposition 64 and Lemma 62 give MT
U,G = qVlM

ρnl•/T
V 0
l ,H

and M
ρnl•/T
V 0
l ,H

= qhM
ρnl
Vl,H

respectively. A connected component of MT
U,G is of the form M

ρnl
Vl,H

.

Let the pointed connected component of Vl over U0i be Vli0, a Z/ni-cover of
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U0i . Using Notation 78, r should map M
ρnl•/T
V 0
l ,H

to ΠiM
pρni•
Vli0,H

, since it is required to

agree with the map r on closed points. Similarly the target connected component of

each connected component of M
ρnl•/T
V 0
l ,H

under r can be identified. Denote by M
ρnl
Vl,H

a connected component of M
ρnl•/T
V 0
l ,H

, by ΠiM
pρni
Vli0,H

its target connected component,

and by rlj (suppose M
ρnl
Vl,H

is the j-th component of M
ρnl•/T
V 0
l ,H

) the restriction of r on

M
ρnl
Vl,H

.

Finally let rlj be the restriction morphism given in Lemma 81 for every index

lj. One can check that the morphism r satisfies the requirement.

With the preparation from Notation 78 to Lemma 82, the last result in Chapter 5

can be given.

Proposition 83. Let G = HoρZ/n for some (ρ,H) in the case of Theorem 32. The

restriction morphism MT
U,G

r−→ ΠiM
p
U0i

,G given in Lemma 82 is essentially surjective

and finite. And the degrees of r on different connected components of MT
U,G are all

powers of p.

Proof. The proof follow the points of the proof of Proposition 2.7 in [H80]. A

calculation of the dimensions of the n-th pieces of both source and target shows that

they are the same. By this fact the map r restricted on each connected component

of the source can be proven surjective. Then all the three statements follow.

With the same notations as in the proof of Lemma 82, denote a connected

component of M
ρnl•/T
V 0
l ,H

by M
ρnl
Vl,H

, whose n-th piece is M
ρnl
Vl,H,n

. Denote the connected
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component of ΠiM
pρni•
Vli0,H

, which M
ρnl
Vl,H

maps to under rlj, by ΠiM
pρni
Vli0,H

, whose n-th

piece is ΠiM
pρni
Vli0,H,n

.

For n >> 0, Riemann-Roch shows that the dimension of M
ρnl
Vl,H,n

is at least that

of ΠiM
pρni
Vli0,H,n

for a subsequence {nk} of N: A simpler but similar computation is

done in the 1st paragraph of the proof of Proposition 2.7 in [H80]. Here pass from

Vl to U first using ramification indices and then do a similar computation to [H80].

Denote by Σidi0n the dimension of ΠiM
pρni
Vli0,H,n

. For n >> 0 Riemann-Roch gives

Σidi0n = Σi(b q
n−i0
ni
c − b qn−1−i0

ni
c) with some natural number i0 between 0 and nl.

Denoted by dn the dimension of M
ρnl
Vl,H,n

. For n >> 0 a similar computation gives

dn = bΣi
qn

ni
+ δc − bΣi

qn−1

ni
+ δc for some δ ∈ Q. Since the remainder of qn divided

by ni is periodic for n ∈ N there is a subsequence {nk} of N such that dnk
≥ Σidi0nk

.

rlj is quasi finite of degree a p-power: The restriction of rlj on the n-th piece of

M
ρnl
Vl,H

gives M
ρnl
Vl,H,n

rljn−−→ ΠiM
pρni
Vli0,H,n

using Lemma 81, which is in fact a homomor-

phism between Fp-vector spaces (The closed points of any moduli space involved

here form a Fp-vector space, by the definitions of the moduli spaces.). Since there

are, up to isomorphism, only finitely many pointed (etale) P -covers of the comple-

tion Xl = V̄l [SGA1, X 2.12], the kernel of rljn is finite (and equal to this number

when n >> 0). Thus every non empty fiber of rljn (hence of rlj) contains the same

finite number of points. This number is a power of p, being the cardinality of a

Fp-vector space.

The 2nd paragraph in the proof of Proposition 2.7 in [H80] shows that since dnk
≥
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Σidi0nk
for every k large enough and rljnk

is quasi finite, the morphism M
ρnl
Vl,H,nk

→

ΠiM
pρni
Vli0,H,nk

is surjective. Thus for every n large enough, using Lemma 81, the

morphism M
ρnl
Vl,H,n

→ ΠiM
pρni
Vli0,H,n

is surjective. Hence the map r restricted on every

connected component of M
ρnl•/T
V 0
l ,H

maps surjectively to a connected component of

ΠiM
pρni•
Vli0,H

.

Direct computation shows that the restriction morphism is finite. The choice of

T shows that r is essentially surjective.
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