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ABSTRACT 

INNVOATIVE APPROACHES TO IDENTIFY REGULATORS OF LIVER REGENERATION 

Amber W. Wang 

Klaus H. Kaestner 

 

The mammalian liver possesses a remarkable ability to regenerate after injury to prevent immediate 

organ failure. However, amid a rising global burden of liver disease, the only curative treatment for 

patients with end-stage liver disease is transplantation. Elucidating the mechanisms underlying 

tissue repair and regrowth will enable identification of therapeutic targets to stimulate native liver 

regeneration, thereby circumventing the great paucity of available transplant organs. Here, utilizing 

the Fah-/- mouse model of liver repopulation, I applied transcriptomic and epigenomic techniques 

to investigate the changes occurring as hepatocytes restore organ mass following toxic injury. By 

labeling ribosomal or nuclear envelope proteins, I performed the first extensive characterization of 

gene expression and chromatin landscape changes specifically in repopulating hepatocytes in 

response to injury. Transcriptomic analysis showed that repopulating hepatocytes highly 

upregulate Slc7a11, a gene that encodes the cystine/glutamate antiporter. I demonstrated that 

ectopic Slc7a11 expression promotes liver regeneration and Slc7a11 mutation inhibits hepatocyte 

replication. Integrative bioinformatics analyses of chromatin accessibility revealed dynamic 

changes at promoters and liver-enriched enhancer regions that correlate with the activation of 

proliferation-associated genes and the repression of transcripts expressed in mature, quiescent 

hepatocytes. Furthermore, changes in chromatin accessibility and gene expression are associated 

with increased promoter binding of CCCTC-binding factor (CTCF) and decreased enhancer 

occupancy of hepatocyte nuclear factor 4α (HNF4α). In summary, my thesis work identifies Slc7a11 

as a potential driver of liver regeneration, and provides insights into the complex crosstalk between 

chromatin accessibility and transcription factor occupancy to regulate gene expression in 

repopulating hepatocytes. 
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CHAPTER 1 

INTRODUCTION 
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LIVER BIOLOGY 

I. Function  

As the hub of various biological processes, the liver performs a multitude of functions that 

can be categorized as the following.  

(1) Regulation of carbohydrate, protein, and lipid homeostasis. The liver undergoes 

gluconeogenesis to release glycogen as glucose in response to fasting, packages excess lipids for 

storage in other tissues, and processes amino acids via deamination to convert the non-

nitrogenous carbon skeleton to glucose or lipids [1,2]. 

(2) Metabolism of nutrients, wastes, and xenobiotics. The metabolic process consists of 

phases I and II. Phase I involves direct modification including oxidation, reduction, and hydrolysis 

often achieved by cytochrome P450 (CYP450) proteins. Phase II is carried out by enzymes to 

conjugate large molecules of phase I metabolites to decrease activity and increase solubility [3].  

(3) Synthesis of bile, amino acids, coagulation factors, and serum proteins. The liver 

performs the conversion of ammonia to urea through the urea cycle [4] and carries out the 

conjugation of bilirubin for secretion into the bile that drains into the intestine for degradation [5]. 

The liver also synthesizes non-essential amino acids, bile acid from cholesterol, clotting factors for 

blood coagulation, and various serum proteins such as albumin (ALB) and transferrin [2,6]. 

 

II. Cell types 

The liver consists of cell types of divergent embryological origin – with two main 

parenchymal cell types, hepatocytes and cholangiocytes, and nonparenchymal cells including 

Kupffer cells, stellate cells, and sinusoidal epithelial cells.  

Hepatocytes are the main cell type that performs the majority of liver functions mentioned 

above. They occupy 60% of the liver by cell number and 80% by cell mass [7]. Cholangiocytes, 

also known as biliary epithelial cells (BEC), are cuboidal cells that line the bile duct to allow passage 

of bile acid from the liver to the intestine. They are less metabolic active compared to hepatocytes 

but still exhibit functions such as bicarbonate synthesis and electrolyte secretion [8]. 
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Cholangiocytes also play an important role in regulating immune and inflammatory responses [8]. 

Small ducts embedded deep within the liver are called intrahepatic bile ducts whereas large ducts 

that exit the liver are extrahepatic bile ducts [7].  

Kupffer cells are resident hepatic macrophages that recognize stimuli introduced through 

the portal circulation to perform phagocytosis and secret pro- or anti-inflammatory mediators to 

defend liver against bacterial and viral infections [9]. Stellate cells exist in two states – under 

quiescent conditions, they store vitamin A in lipid droplets whereas other functions remain unclear 

[2]; upon liver damage, they are activated to become proliferative myofibroblasts [10]. The 

myofibroblasts derived from stellate cells deposit collagen that contributes to the fibrosis or scarring 

of the liver tissue, which could progress to cirrhosis with chronic liver injury [10]. Sinusoidal 

endothelial cells are specific nonparenchymal cells that line the capillaries of the liver, also known 

as sinusoids, to form fenestrated sieve plates that permit access of macromolecules from the space 

of Disse, an interstitial area that surrounds hepatocytes. This structure allows hepatocytes to 

extract a variety of protein-bound substrates and xenobiotics from the circulation [11]. 

 

III. Structure 

The liver is composed of building blocks termed ‘lobules’, which contains parenchymal and 

nonparenchymal cells, the bile duct, and vessels of the circulatory system including the hepatic 

artery, portal vein, and central vein (Figure 1.1). The portal vein, hepatic artery, and the bile duct 

are often referred to as the portal triad due to their spatial proximity. A typical lobule is considered 

to be a hexagonal unit with the central vein in the middle and the portal triad at the six corners [12]. 

The portal vein and the hepatic artery are the two main sources of blood supply for the liver, with 

the portal vein providing two-thirds of the blood from the small intestine and the hepatic artery 

contributing to the remaining one-third of the blood from the celiac artery. The blood from these two 

sources mixes as it passes through sinusoids, and enters the central vein to exit the liver [7]. Owing 

to the direction of the blood supply, which moves from the portal triad to the central vein, the portal 

area is considered ‘zone one’ and the central area as ‘zone three’.  
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Hepatocytes synthesize and transport bile acids via a specialized channel formed by two 

adjacent cells, also referred to as the canaliculus. Bile is produced in the canaliculi as a mixture of 

bile acids, metabolites, and bilirubin secreted from hepatocytes; it enters the bile ducts that 

ultimately drain into the duodenum. Bile acids assist in lipid and cholesterol emulsification in the 

intestines, and are reabsorbed from the terminal ileum and transported back to the liver through 

the portal vein, recycling in a route known as the enterohepatic circulation. Contrary to the blood 

flow, bile flows from zone three to zone one [6]. Hepatocytes in proximity to the portal triad are 

referred to as periportal or zone one hepatocytes, those adjacent to the central vein are pericentral 

or zone three hepatocytes, and cells between zone one and three are referred to as zone two 

hepatocytes. 

Apart from the spatial distribution, hepatocytes from different zones express divergent sets 

of genes to carry out various metabolic functions, a property known as metabolic zonation, which 

is tightly controlled by the Wnt/β-catenin signaling pathway [13]. Periportal hepatocytes perform 

gluconeogenesis, fatty acid oxidation, urea production, and glutathione (GSH) detoxification, 

whereas pericentral hepatocytes conduct glycolysis, lipogenesis, ketogenesis, and xenobiotic 

metabolism [14]. Multiple cell types coupled with metabolic zonation allow the liver to carry out 

diverse metabolic and biosynthetic functions central to homeostasis. 

 

IV. Development 

In mice, the parenchymal cells of the liver develop from the definitive endoderm from the 

anterior primitive streak of the gastrulating embryo on embryonic day (E) 7.5 [15]. By E8.5, 

endoderm patterning is complete and can be categorized from the anterior to posterior as the 

foregut, midgut, and hindgut regions [16]. Hepatic specification subsequently begins on E9.0 when 

hepatic endoderm cells extend off the posterior foregut [17] and continue to thicken to establish the 

liver diverticulum [18]. Early signals important for the initiation of liver specification include fibroblast 

growth factor (FGF) family members emanating from the developing heart [19] and bone 

morphogenic proteins (BMP) from the septum transversum mesenchyme [20] of the mesoderm. 
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Simultaneously, transcription factors of the GATA binding proteins [21] and forkhead box A (FOXA) 

subfamily [22] activate transforming growth factor β (TGFβ), WNT, and NOTCH signaling within the 

endoderm. Additionally, FOXA1 and GATA4 function as ‘pioneer factors’ that bind to 

heterochromatic DNA to establish transcriptional competence of downstream gene programs 

required for further differentiation [2,23]. The liver bud gives rise to hepatoblasts, bipotential 

progenitor cells that express α-fetoprotein (AFP) and ALB [24,25]. Prior to differentiation, 

hepatoblasts continue to migrate and proliferate into the septum transversum assisted by a gradient 

TGFβ signal from the portal vein mesenchyme starting on E13.5 [26]. Cells in proximity to the portal 

vein receive a higher TGFβ concentration that promotes expression of hepatocyte nuclear factors 

1β (HNF1β) and HNF6, leading to the expression of cholangiocyte marker genes such as 

cytokeratin 19 (CK19) [26]. Hepatoblasts located away from the portal vein receive lower levels of 

TGFβ, resulting in elevated expression of HNF1α and HNF4α, which induce hepatocyte-specific 

gene expression such as ALB and CYP450 [27]. Beginning on E18, the differentiated hepatocytes 

continue to mature and undergo a metabolic switch from a glucose-consuming tissue to a glucose-

producing organ. Developing hepatocytes at distinct locations in the liver also experience metabolic 

zonation to establish differential gene expression and protein production [2]. This process is 

regulated by complex crosstalk of signaling networks including the hepatocyte growth factor (HGF), 

glucocorticoids, HNF, and the Wnt/β-catenin pathway [27].  

 

V. Homeostasis 

Tissue turnover typically occurs through two models: replication of existing cells and 

differentiation of progenitor cells. While the presence of stem cells in the adult liver has long been 

contested, it is currently accepted that mature resident hepatocytes proliferate for homeostatic 

maintenance. Since differentiated hepatocytes are long-lived cells with a turnover rate of up to 

several months in vivo, under normal physiological conditions, fewer than 0.1% of the hepatocytes 

undergo replication at any time in the uninjured adult liver [28]. It is, therefore, questionable whether 
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stem cells are required at all for normal liver maintenance considering the long life span and low 

replication rate of mature hepatocytes. 

Lineage-tracing in rodents is widely used to identify the source of hepatocyte homeostasis. 

The most debated model, the ‘streaming liver hypothesis’, implemented DNA radiolabeling assays 

in the rat liver and observed that newly-formed hepatocytes occur near the portal vein and flow 

towards the central vein to replenish the liver parenchyma [29]. The streaming liver hypothesis 

implies the existence of a stem cell compartment proximal to zone one and posits that periportal 

hepatocytes display a higher replication capacity, hence the ability to derive new cells from the 

portal vein to the central vein. Over time, it is found that the entire liver lobule contains hepatocytes 

derived from zone one [29]. However, evidence both for and against the streaming liver hypothesis 

has been provided. Genetic tracking that utilizes the cholangiocyte marker ‘sex-determining region 

Y (SRY)-box 9’ (SOX9) to label all BECs via a tamoxifen-inducible system in the adult liver of 

Sox9CreERT2;RosaLSL-LacZ mice observed LacZ spreading in a portal-to-central direction that 

eventually occupied the entire liver parenchyma within a year [30]. These studies suggest SOX9-

positive cholangiocytes as a source of mature hepatocytes to maintain the homeostatic liver.  

Nonetheless, studies using different lineage-tracing systems have not observed the same 

evidence [31,32]. Other radiolabeling assays failed to detect movement of marked periportal 

hepatocytes towards the pericentral area in the adult liver [32]. Another transgenic 

Sox9CreERT2;RosaLSL-YFP line generated with a bacterial artificial chromosome (BAC) found that YFP-

positive cholangiocytes are restricted within the bile ducts and do not migrate to the central vein 

[33]. Labeling of adult hepatocytes of the RosaLSL-YFP mouse through injection of AAV8-TTR-Cre, a 

hepatotropic adeno-associated virus (AAV) serotype 8 that expresses the Cre recombinase under 

the hepatocyte-specific transthyretin (TTR) promoter, did not demonstrate any YFP-negative 

hepatocytes in the liver parenchyma or near the periportal region [34]. These results indicate that 

all newly-derived hepatocytes are from preexisting mature cells and exclude the possibility of 

progenitors contributing to adult liver homeostasis. More recently, a ‘reverse-streaming hypothesis’ 

in which WNT-enriched pericentral hepatocytes expand to the periportal region have been 
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proposed [35], albeit with much controversy. In summary, the current evidence does not support 

the notion of liver stem cells as a source of mature hepatocytes during normal homeostasis; 

instead, hepatocytes are likely maintained by replication of preexisting cells. 

 

VI. Diseases 

Liver disease accounts for roughly 2 million annual deaths worldwide, of which 15% of the 

mortality results from acute hepatitis, 35% from hepatocellular carcinoma (HCC), and 50% from 

complications related to cirrhosis [36]. Strikingly, the combination of cirrhosis and HCC constitutes 

3.5% of global deaths [37]. Although accurate statistics are not available due to the scarcity of 

mortality data from developing countries [36] and the underestimation of liver diseases as a cause 

of death [38], there is a discernible increase in the global burden of both acute and chronic liver 

disease [36,37,39].  

 

A. Types of liver disease 

Alcoholic liver disease 

Alcohol contributes to over 50% of cirrhosis-related mortality and heavy alcohol 

consumption is associated with the development of cirrhosis [40]. For heavy drinkers — daily 

ethanol consumption of over 30g — the incidence of cirrhosis ranges from 1-6%, depending on the 

dose [41]. Furthermore, alcohol use exacerbates preexisting liver injuries [37]. Approximately 20% 

of patients with alcoholism develop alcoholic hepatitis, a clinical representation of jaundice and liver 

failure after chronic alcohol abuse, with a daily mean ethanol consumption of 100g [42]. Coupled 

with the rising rate of obesity globally, the severity of alcoholic liver disease, especially alcoholic 

fatty liver disease, is expected to worsen [37].  

The molecular mechanism of alcohol-induced liver injury involves the oxidative metabolism 

of ethanol that shifts the oxidative-reduction potential in the liver, preventing fatty acid oxidation 

and inhibiting the tricarboxylic acid cycle that normally promotes lipolysis [43]. Additionally, ethanol 

activates sterol regulatory element-binding protein 1 (SREBP-1) [44], prevents peroxisome 
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proliferator-activated receptor α (PPARα) binding to the DNA [45], and inhibits AMP-activated 

protein kinase (AMPK) activity [46], leading to activation of fatty acid synthesis and metabolic 

remodeling that contributes to the development of fatty liver [47].  

 

Non-alcoholic fatty liver disease (NAFLD) 

Fatty liver, also called steatosis, is defined as excess accumulation of triglycerides in over 

5% of fat in hepatocytes [48]. NAFLD encompasses two distinct conditions, steatosis without liver 

injury and steatosis with hepatocyte necrosis, referred to as non-alcoholic steatohepatitis (NASH) 

[48]. The global prevalence of NAFLD is estimated to be 25.2% [49] and of NASH is between 2-

7% [49–52]. Current epidemiological studies potentially underestimate due to the difficulty of 

detecting fatty liver unless through imaging or liver biopsies [49]. Moreover, the increasing rates of 

comorbid conditions associated with NASH such as obesity, type 2 diabetes mellitus, and 

hyperlipidemia contribute to the rapidly growing burden of NAFLD [49]. Particularly in the case of 

NASH, chronic liver injury followed by lobular and portal inflammation in the form of collagen 

deposition and scar tissue production often lead to progression to fibrosis, cirrhosis, and HCC [48]. 

The exact mechanisms of NAFLD and NASH development are not completely understood 

and likely involve extensive interactions between various pathways. Three leading sources have 

been identified to contribute to NAFLD. (1) Increased uptake of fatty acids via diet, activation of de 

novo lipogenesis, and increased adipose tissue lipolysis, resulting in the accumulation of hepatic 

fatty acids. (2) A combination of fatty acid-induced extrinsic cell death through upregulation of cell 

death receptors and their ligands [53], as well as intrinsic cell death via increased endoplasmic 

reticulum (ER) stress [54], leading to Jun N-terminal kinase (JNK) activation, reactive oxygen 

species (ROS) production, and mitochondrial uncoupling [55]. Fatty acid-induced cell death is 

followed by the release of damage-associated molecular patterns (DAMPs) into the extracellular 

space [56–58]. (3) Triggering of hepatic inflammation due to fatty acids, DAMPs released by dying 

hepatocytes, and endotoxin from the intestine [59], inducing the production of cytokines and 

chemokines with subsequent recruitment of immune cells [60] and activation of nonparenchymal 
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cells [61,62]. In particular, the transformation of stellate cells into collagen-producing myofibroblasts 

further exacerbates NASH and promotes progression to fibrosis [63,64]. 

 

Drug- or toxin-induced liver injury 

The liver is the first organ to be perfused by blood through the portal vein from the intestine 

for first-pass metabolism and is thus the initial filter for molecules before they enter into the general 

circulation. Therefore, exposure to environmental toxins can be severely damaging to hepatocytes. 

Substances such as alcohol, acetaminophen, Amanita phalloides mushrooms, and 

idiosyncratically, common drugs including anabolic steroids and antibiotics can cause acute liver 

failure [65]. At a rate of 18%, drug-induced liver injury is the leading cause of post-market 

withdrawal during drug development [66]. Acetaminophen is the primary etiology for drug-induced 

liver injury in the US and the UK, whereas herbal and alternative medicine are the leading causes 

in the East [37]. The exact mechanisms of liver injury vary by the drug consumed or the toxin 

ingested, but generally involves oxidative stress accumulation, mitochondrial dysfunction, 

hepatocyte necrosis and apoptosis, immune response stimulation, and nonparenchymal cell 

activation [67]. 

 

Viral hepatitis 

Viral hepatitis refers to liver inflammation induced by viral infections, routinely caused by 

five hepatotropic viruses, hepatitis viruses A, B, C, D, and E. While viral hepatitis affects individuals 

from all geographic locations, middle and low-income areas are disproportionately affected [37]. 

An estimated 1.34 million annual deaths are associated with hepatitis-related mortality [68]. 

Hepatitis A and E typically result in acute, self-contained illnesses, whereas hepatitis B and C lead 

to immune-mediated chronic liver disease. There is an increased risk of developing HCC and 

cholangiocarcinoma (CAA) among patients with hepatitis B and C, although the rate of cirrhosis 

progression and tumorigenesis display individual heterogeneity [69]. The pathogenesis of hepatitis 
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B and C virus includes complex crosstalk between the host and virus that involves immune 

activation of CD4+ helper T cells, CD8+ effector T cells, and natural killer cells [69,70].  

 

B. Consequences of liver disease 

Acute liver failure 

Acute liver failure, also known as fulminant hepatic failure, is defined as the clinical 

presentation of severe liver injury and hepatic encephalopathy within 8 weeks of the first symptoms 

without preexisting liver disease [71]. Other than the liver and the brain, acute liver failure also 

affects organs including the heart, lungs, pancreas, and kidney [72]. Hepatitis A, B, and E infections 

are the predominant causes of acute liver failure worldwide [72]. In the US, drug-induced injury 

contributes to approximately 50% of acute liver failure cases [73].  

 

Cirrhosis 

Cirrhosis is the end-stage of all chronic liver disease that develops from an asymptomatic 

phase termed ‘compensated’ cirrhosis to a progressive ‘decompensated’ phase marked by 

complications of ascites, jaundice, encephalopathy, and variceal bleeding [74]. Features of 

cirrhosis include regenerative and nodular parenchyma, widespread deposition of fibrotic tissues, 

and hepatocyte necrosis [75]. Patients with cirrhosis have a 5-10-fold increased risk of mortality 

[76]; death occurs due to a variety of complications including infections, kidney failure, and 

gastrointestinal bleeding [77]. Common causes of cirrhosis include alcohol abuse (60-70%), 

chronic hepatitis B or C (10%), and NAFLD (10%) [78]. 

 

Liver cancer 

Considering the late-stage at diagnosis in most cases, HCC exhibits a 5-year survival rate 

of 18.4% with an annual rise of mortality by 2.4% [79]. Currently, 40% of HCC results from hepatitis 

B, 40% from hepatitis C, 11% from alcohol use, and 9% from other causes [37]; however, the 

etiology varies significantly for different countries. Non-viral factors contribute to a larger pool of 
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HCC in regions with a low incidence of viral hepatitis. In the US, 25% of HCC patients present with 

alcoholic-liver disease and 20-30% could display metabolic syndrome or NAFLD [80]. In contrast, 

viral hepatitis contributes to approximately 90% of HCC cases in Vietnam [81]. The etiology is 

expected to change drastically due to the increasing prevalence of NAFLD and NASH [82].  

 

 

 



 

12 
 

LIVER REGENERATION 

I. Historical overview 

Regeneration, defined as cell regrowth or repair, is widely represented in metazoa [83]. In 

lower organisms, whole body or tissue regeneration is easily achieved. Invertebrates such as 

planarians are capable of whole-body regeneration from as little as 1/279th of the original body [84] 

and lower vertebrates including amphibians are capable of regenerating complete appendages. In 

mammals, the regenerative ability is restricted to select tissues including the skin, cartilage, digits, 

muscle, intestinal epithelium, and liver [85]. The evolutionary importance of the liver in maintaining 

a regenerative ability likely stems from it being the largest metabolic organ in the mammalian 

system, as nutrient and xenobiotic metabolism subject the liver to frequent, unpredictable 

environmental insults. It is presumed that the regenerative ability has been retained in animals in 

order to recover from massive liver injuries following exposure to food toxins [86]. Human’s ability 

to regenerate the liver has long been known, even codified in Greek mythology by the story of 

Prometheus. After stealing fire and giving it to humanity, Prometheus is chained on Mount Atlas 

and punished to eternal torment by Zeus. An eagle would feed on his liver daily, only for it to grow 

back overnight just to be eaten again the next day [87].  

Fewer than 0.1% of hepatocytes are in mitosis under physiological conditions [88] with the 

typical life span of 200-400 days [32]. The liver can regenerate upon loss of the parenchyma via 

toxin-induced liver injury or surgical tissue removal. Generally, mature hepatocytes replicate to 

repopulate the liver under normal conditions but hepatocyte progenitor cells (HPCs) can arise when 

hepatocyte DNA synthesis is severely impaired [89]. In fact, hepatocytes have an almost unlimited 

replicative capacity as serial partial hepatectomy (PHx) has demonstrated the rat liver to be able to 

regenerate after 18 surgeries [90], and serial transplantation of mouse hepatocytes showed their 

ability to replicate at least 69 times without loss of function [91]. Given a stimulus, hepatocytes can 

rapidly re-enter the cell cycle to restore liver mass and function. Furthermore, the process of cell 

proliferation is terminated as soon as the liver mass is restored to its original liver-to-body weight-

ratio [88,92]. In the event when over 90% loss of the parenchyma occurs, the liver can fail to 
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regenerate [93]. With the increasing global burden of liver disease, understanding the regulation of 

liver regeneration promises to identify potential therapeutic targets to promote tissue repair and 

regrowth after liver injury.  

 

II. Rodent models of liver regeneration 

Various rodent models have been developed to study the regenerative response and can 

be categorized by the stimulus to induce hepatocyte proliferation into surgical-, chemical-, or 

genetically-induced liver injury paradigms. 

 

A. Surgical-induced liver regeneration 

Partial hepatectomy 

PHx is the most widely-used technique to study liver regeneration in rodents, in which two-

thirds of the liver is surgically removed to induce cell growth and proliferation of the remnant lobes 

to restore liver mass and function within 10-14 days [94]. Due to the clean removal of the liver 

lobes, the majority (~95%) of the remaining mature hepatocytes enter the cell cycle in a 

synchronous fashion that is also species-specific [95]. In both rats and mice, hepatocytes enter G1 

4 h post-PHx [96]; DNA synthesis initiates at 12-18 h [97] and proliferation peaks at 24 h in rats 

[98], while a 20 h lag is observed in mice due to a longer G1 [96]. At 36 h after PHx, approximately 

40% of hepatocytes are in S phase [99]. The well-defined time periods for various cell cycle entry 

points provide the opportunity to study the regulatory mechanisms of adult hepatocyte transitioning 

from G0 to G1, and from G1 to S in vivo [100]. While PHx reflects what is seen in living-donor liver 

transplantation, which occurs in less than 5% of transplant cases in the US annually [101], this 

model does not recapitulate what is seen in human liver diseases that involve inflammatory 

responses and necrotic cell death [102]. Nonetheless, the high accuracy and reproducibility of the 

PHx model have allowed understanding of the signaling pathways and transcriptional control that 

take place during hepatocyte replication. It is worth noting that even though injury responses are 



 

14 
 

not seen in PHx, the majority of signaling networks underlying the regenerative process are similar 

within most liver repopulation models [95]. 

 

Ischemia/reperfusion (I/R) injury 

I/R injury occurs due to prolonged low oxygen tension in tissues followed by normalized 

oxygen perfusion, leading to significant inflammatory responses that cause organ damage and 

dysfunction, as often seen during liver transplantation or organ hemorrhage [103]. In rodents, I/R 

injury is modeled via an artery clamp in rats [104] and a lobular clamp in mice [105] to temporarily 

block the blood supply to the liver. Recovery from I/R injury varies depending on the duration of 

ischemia, which generally lasts for 30-90 min. A significant injury is frequently observed 12 h later, 

followed by a peak proliferative response at 48 h, with complete recovery by 96 h [106].  

The process of I/R injury can be separated into two phases. In the initial phase, 

complement triggers Kupffer cell activation followed by the release of ROS that induces oxidative 

damage to hepatocytes [104]. The hepatic architecture is unchanged in the initial phase, but injured 

and dying hepatocytes release signals to exacerbate inflammation that feedforward to complement 

and Kupffer cell activation, leading to the production of tumor necrosis factor α (TNFα) [107] and 

cytokines such as interleukin 12 (IL12) [108]. In the late phase, the combination of adhesion 

molecule expression on sinusoidal endothelial cells and secretion of CXC chemokines from 

nonparenchymal cells result in the recruitment of neutrophils to the liver followed by the release of 

oxidants and proteases to induce widespread destruction of the parenchyma [109,110]. The late 

phase of I/R injury thus induces significant changes in the hepatic architecture mainly through 

necrotic cell death [103].  

 

Bile duct ligation 

In bile duct ligation, the common bile duct, which drains bile produced in the liver to the 

small intestine, is irreversibly ligated, resulting in inflammatory responses, obstructive cholestasis, 

and fibrosis within the first 2 weeks followed by cirrhosis at 4 weeks [111]. Contrary to PHx, 
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cholangiocytes are the main cell type to regenerate after bile duct ligation as an extensive 

proliferation of bile duct cells are observed; DNA synthesis begins at 24 h and peaks at 48 h after 

the surgery [112]. However, when the proliferative capacity of cholangiocytes is impaired, as in the 

case of treatment with the biliary toxin methylene diamiline, mature hepatocytes are able to 

transdifferentiate into cholangiocytes to rescue the biliary epithelium [113]. 

 

B. Chemical-induced liver regeneration  

D-galactosamine (GalN) 

Intraperitoneal injection of GalN contributes to hepatocyte death through three sources, (1) 

uridine 5'-diphospho (UDP)-galactosamine derivatives that inhibit RNA and protein synthesis [114], 

(2) endotoxin accumulation that leads to complement activation and necrotic cell death [115], and 

(3) mast cell degranulation that causes extensive inflammation [115]. Necrosis is scattered but 

more prevalent around the pericentral region [116]. Peak plasma alanine transferase (ALT) and 

aspartate aminotransferase (AST), as well as maximal necrosis, occur at 24 h followed by DNA 

synthesis that peaks at 48 h after GalN administration [117]. Hepatocyte proliferation, ensuing as 

early as 24 h post-GalN, is the main source of regeneration, but a contribution of oval cells 48-96 

h after drug treatment is observed at higher GalN doses [116]. 

 

Carbon tetrachloride (CCl4) 

The main contributors of hepatotoxicity after CCl4 administration are the zone 3 CYP450 

enzymes [118]. CYP2B1, 2B2, and 2E1 [119,120] form reactive metabolites of CCl4 including 

trichloromethyl (CCl3*) and trichloromethyl peroxyl (CCl3OO*) radicals that modify proteins, lipids, 

and DNA in hepatocytes, leading to necrotic cell death [121]. Parenchymal necrosis is most 

prominent in pericentral hepatocytes due to the high expression of CYP450 proteins [118]. The 

peak of cell death occurs at 24 h, followed by DNA synthesis highest at 36 h [122], and repopulation 

to replace lost liver mass that is completed within 7-10 days [106]. In addition, long-term CCl4 

exposure promotes fibrosis and even cirrhosis due to stellate cell activation that deposits collagen 
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and matrix proteins [123,124]. Thus, repeated CCl4 treatment is often used as a model for chronic 

liver injury. 

 

Thioacetamide (TA) 

TA was initially introduced as a fungicide but quickly realized to be hepatotoxic and 

carcinogenic [125]. A single-dose administration leads to acute injury [126], subchronic exposure 

induces fibrosis [127], and chronic use results in liver cancer [125]. Similar to CCl4, TA toxicity 

stems from bioactivation through CYP450 enzymes, especially CYP2E1 [128,129] that metabolizes 

TA to TA-sulfoxide and TA-sulfone, active intermediates that cause necrotic cell death [130]. In 

addition, toxic TA metabolites induce oxidative stress and lipoperoxidation, leading to the 

destruction of cell membranes [131,132]. However, the exact mechanisms of TA-sulfone-induced 

cell death and replication response are not clear, since TA has not been widely used as a 

hepatotoxin for liver regeneration studies. Hepatic necrosis peaks at 24 h [133] with maximal DNA 

synthesis at 36-48 h after TA administration [134]. 

 

Acetaminophen (APAP) 

APAP is a common analgesic and antipyretic drug due to its safety and efficacy. In the US, 

APAP overdose is the most common cause of acute liver failure, accounting for 46% of cases [135]. 

APAP is normally eliminated by phase II conjugation reactions including glucuronidation and 

sulfation followed by excretion through the kidneys [136]. However, at toxic doses, the phase II 

enzymes are saturated and excess APAP is metabolized instead by CYP2E1 to the reactive 

metabolite N-acetyl-p-benzoquinone imine (NAPQI) [137] followed by depletion of GSH, the cell’s 

primary defense against oxidative damage. Subsequently, excess NAPQI forms covalent bonds 

with proteins to induce reactive oxygen and nitrogen species such as peroxynitrite [138]. 

Translocation of JNK [139] and the cell death protein BCL2-associated X protein (BAX) [140] to the 

mitochondrial outer membrane further induces membrane permeabilization and the release of 

mitochondrial proteins, eventually leading to severe centrilobular hepatic necrosis [141,142]. 
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Necrosis begins 12 h after APAP overdose, peaks at 36 h [143], and subsides gradually over 60 h 

[144], whereas hepatocyte proliferation begins at 12 h and peaks at 24-36 h post-APAP 

administration [144].  

 

C. Genetically-induced liver regeneration 

Fumarylacetoacetate hydrolase (FAH) deficiency 

The Fah-/- mouse is a model of hereditary tyrosinemia type I (HTI), an autosomal recessive 

disease [145,146]. HTI patients are deficient in the enzyme FAH, the last enzyme in the tyrosine 

catabolic pathway [147], resulting in accumulation of the toxic metabolites succinylacetone (SA), 

succinylacetoacetate (SAA), fumarylacetoacetate (FAA), and maleylacetoacetate (MAA) that form 

DNA adducts [147]. In addition, FAA depletes intracellular GSH stores [148] and triggers cell cycle 

arrest in G2/M followed by induction of apoptosis [149]. FAA also activates cyclin-dependent kinase 

1 (CDK1) and caspase-1 (CASP-1) to induce cell cycle arrest and subsequent expression of CASP-

3, resulting in mitochondrial dysfunction as demonstrated by cytochrome c release [149]. FAH is 

primarily expressed in the liver and kidney [150], and at a lower level in endocrine glands and the 

gastrointestinal tract [151].  

The incidence of tyrosinemia is around 1 in 100,000 to 1 in 120,000 worldwide and is 

considered a rare disease [152] except for Scandinavia and the province of Quebec, where the 

overall incidence is 1 in 16,000 [152]. In particular, the Saguenay-Lac-St-Jean area in Quebec has 

a prevalence of 1/1,846 [153,154] due to a founder effect [155]. To date, more than 35 mutations 

in FAH have been described [152], including missense mutations leading to 16 amino acid 

replacements, splice site mutations, and nonsense mutations [156]. Interestingly the 

pathophysiological phenotype differs between humans and mice, and disease severity also varies 

greatly between individuals [152]. 

While an oversimplification, liver phenotypes in HTI patients can be categorized into acute 

or chronic phases [157]. In the acute phase, morphological alterations can vary greatly and include 

an enlarged or shrunken liver, fibrosis with ductular proliferation in the surrounding region, and 
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different degrees of hepatocyte steatosis [158]. The most detrimental phenotype in the acute phase 

is liver crises, repeated episodes of liver insufficiencies due to liver decompensation, and generally 

manifests as hepatomegaly and coagulopathy [159]. Liver crises are typically present in early 

infancy before 2 years of age and historically speaking, around 80% of patients died before the age 

of 2 due to acute liver failure [159,160]. In the chronic phase, cirrhosis is often observed in HTI 

patients due to the prolonged hepatic injury [161]. There is also an increased risk of developing 

HCC in patients beyond 2 years of age, ranging from 15% [162] to 37% [163]. In addition, increased 

frequency of dysplasia, aneuploidy, and variable gene expression are observed in tyrosinemic 

livers [164]. The exact mechanism of elevated cancer risk is not completely understood but likely 

stems from the mutagenic environment in the liver due to the accumulation of reactive metabolites 

FAA, MAA, SA, and SAA, cultivating a milieu in which aberrant growth factors lead to altered gene 

and protein expression [164]. HTI patients also exhibit other organ dysfunctions including 

nephromegaly and renal failure [165], painful paresthesias and motor paralysis [166], and 

occasionally islet hypertrophy and hypoglycemia [167]. Orthotopic liver transplantation was 

considered the only curative treatment of HTI in the 1980s with an over 90% survival rate [168,169]. 

The development of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) [170] 

gained widespread popularity as early treatment for HTI prevents HCC and circumvents the need 

for transplantation [171,172]. NTBC is a potent inhibitor of 4-hydroxyphenylpyruvate dioxygenase 

(HPPD) [173], the second enzyme in the tyrosine catabolic pathway, and thus prevents the 

production of the toxic intermediates SAA, SA, MAA, and FAA.  

The mouse model of HTI was developed via targeted deletion of the FAH gene [145,146]. 

Fah-/- mice recapitulate the major biochemical and phenotypic alterations observed in HTI patients 

such as hypertyrosinemia, accumulation of SA, liver failure, renal tubular damage, and occasional 

tumorigenesis [174]. Interestingly, the Fah-/- mouse exhibits a much more severe liver phenotype 

than HTI patients as mice die within 12 h after birth from fulminant liver failure and hypoglycemia 

[145], likely attributed to higher levels of toxic metabolites, lower GSH concentrations, and 

increased sensitivity to FAA, MAA, and SAA in neonatal mice compared to humans [145,175]. Fah-
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/- mice require early treatment with NTBC to survive beyond birth and a portion of FAH-deficient 

livers still develop tumors despite long-term NTBC administration, possibly resulting from 

suboptimal NTBC doses or other metabolic pathways that produce FAA and MAA found only in 

mice [145].  

Fah-/- mice undergo liver repopulation by viral- or nonviral-mediated gene therapy to restore 

FAH function, transplantation with FAH-positive hepatocytes, or genome editing to correct Fah 

mutations. Liver injury is induced upon NTBC withdrawal, and FAH-negative hepatocytes 

experience inflammation, necrosis, or apoptosis [145,174]. Only hepatocytes with FAH expression 

are selected in vivo to proliferate and repopulate the injured liver parenchyma [176]. 

Transplantation with wild type hepatocytes revealed the competitive growth advantage of FAH-

positive cells to repopulate the mutant liver, as injection of as few as 1,000 hepatocytes successfully 

rescued the phenotype of FAH deletion, requiring on average an estimated 16 cell doublings to 

restore liver mass [176]. Liver repopulation can also be carried out through retroviral induction of 

FAH expression ex vivo in Fah-/- hepatocytes followed by transplantation of the transduced cells 

[177]. Gene transfer via retrovirus [176], adenovirus [178], and AAV2 or 8 [179] also results in 

significant colonization of FAH-expressing hepatocytes. However, 9 out of 13 mice treated with 

adenovirus developed HCC after 9 months of liver repopulation from untransduced cells that 

constitute less than 10% of the liver [178]. Additionally, DNA-mediated transposition with the 

Sleeping Beauty (SB) transposable element is able to achieve permanent transgene expression 

through genomic integration from the plasmid containing FAH complementary DNA (cDNA) 

following hydrodynamic tail-vein injection [180]. Less than 0.1% of hepatocytes display integration 

and repopulate the liver to reverse the lethal phenotype after NTBC removal [180]. More recently, 

the clustered regularly interspaced short palindromic repeats (CRISPR) system has been utilized 

in Fah-/- mice that harbor a point mutation [181]. Expression of single guide RNAs (sgRNA) and a 

repair template was successful in directing the CRISPR-associated protein 9 (CAS9) nuclease to 

produce a targeted, double-stranded DNA break followed by homologous recombination to repair 

the Fah gene defect [181]. 
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Since only FAH-positive hepatocytes undergo clonal expansion to repopulate the injured 

liver, the Fah-/- mouse also provides a remarkable tool to lineage-trace regenerating hepatocytes 

by tracking FAH-expressing cells. Coexpression of markers such as luciferase [182] and GFP [183] 

can be utilized to specifically trace and isolate repopulating hepatocytes for phenotypic studies. 

Furthermore, gene-activating or -silencing molecules can be tethered to FAH expression to 

functionally identify the significance of multiple genes during liver regeneration, including the use 

of small hairpin RNA (shRNA) [184], cDNA [185], gRNA [186], and tough decoy (TuD) microRNA 

(miRNA) inhibitors [187]. Fah-/- immunodeficient mice are also used to grow billions of human 

hepatocytes (Azuma et al. 2007). 

 

Urokinase plasminogen activator (uPA) overexpression 

uPA is a fibrinolytic enzyme that transforms plasminogen into plasmin to remove fibrin clots 

[188]. Hepatocyte-specific uPA overexpression regulated under the albumin enhancer and 

promoter leads to increased plasma uPA levels, fibrinogen depletion, followed by neonatal death 

within 3 days postpartum due to bleeding of the abdominal cavity and intestinal tract [189]. 

Hepatocytes that silenced uPA expression, mediated mainly by intrachromosomal recombination, 

are able to achieve complete regeneration of uPA transgenic mice [190]. Similar to the case in the 

Fah-/- model, loss of transgene expression in individual hepatocytes confers a selective advantage 

so that clonal expansion of the uPA-normal cells reconstitute the liver parenchyma [190]. The uPA 

transgenic mice can also be corrected with transplantation of wild-type hepatocytes that undergo 

an estimation of 12-18 rounds of replication [191]. Furthermore, xenogenic cell transplantation from 

rat [192] or human [193] hepatocytes can be performed in immunodeficient mice carrying the uPA 

transgene to generate chimeric livers. The uPA transgenic model, therefore, serves as an excellent 

paradigm to study liver regeneration after cell transplantation [190,191], drug metabolism in the 

chimeric human livers [194], and liver diseases including HBV [195] and HCV [193]. 
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D. Models to study HPCs 

As introduced above, liver regeneration is carried out by the proliferation of preexisting 

mature hepatocytes under normal physiological conditions [97]. Only when the replicative ability of 

resident liver cells is severely hindered, in the case of drug treatment or chronic liver injury, will 

HPCs be called into action to regenerate the injured parenchyma [89]. One source of HPC is the 

‘oval cells’, small cells with oval nuclei that emerge during chemical hepatocarcinogenesis [89] or 

hepatotoxin-induced injury in rodents [196]. Since oval cells display intermediary phenotypes and 

histology between hepatocytes and cholangiocytes, their activation is also referred to as ‘ductular 

reaction’ [197]. The origin and contribution of oval cells have long been contested due to the lack 

of genetic lineage-tracing evidence; thus, the progenitor/descendant relationship was mostly 

inferred from their spatial proximity to hepatocytes or cholangiocytes [198,199]. Mature hepatic 

cells are other sources of HPC as hepatocytes and cholangiocytes are able to assume the role of 

facultative stem cells for one another and transdifferentiate into the other parenchymal cell type. 

 

2-acetylaminofluorene (2-AAF) + PHx 

2-AAF is a carcinogen that causes DNA damage and prevents DNA synthesis in 

hepatocytes, leading to the development of liver cancer [200]. Treatment of dietary 2-AAF for 2 

weeks followed by PHx has been used as a model to induce ductular reactions in rats, as 

hepatocytes are unable to undergo cell replication [201]. Activation of 2-AAF is mediated by N-

sulfotransferase to generate the active N-OH 2-AAF radical that translocates into the nucleus to 

induce DNA damage [202]. However, N-sulfotransferase is not expressed in mice, thus limiting the 

use of 2-AAF as an inhibitor of DNA synthesis in this species [202]. Interestingly, isotope labeling 

to track DNA synthesis observed labeled ovals cells but few hepatocytes, indicating that oval cells 

do not become hepatocytes after AAF-induced liver injury [201]. Another later experiment, however, 

identified labeled ovals cells and subsequently hepatocytes, establishing a precursor-product 

relationship between the two cell types during liver regeneration [203]. 2-AAF is also used in 
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combination with CCl4 or allyl alcohol in rats to cause centrilobular or periportal damages that 

induce oval cell activation [204]. 

 

3,5-dietoxycarbonyl-1,4-dihydro-collidine (DDC) diet 

DDC prevents heme biosynthesis and causes the accumulation of protoporphyrin, leading 

to severe porphyria and liver injury [205]. Treatment with 0.01% DDC for 2-4 weeks activates a 

ductular reaction and prolonged treatment results in liver cancer in mice [206]. Currently, there is 

no consensus on HPC markers in the DDC model but induction of HPC markers including A6 [207], 

CK19 [208], epithelial cell adhesion molecule (EpCAM) [209], and FOXL1 [210,211] have been 

reported. 

 

The choline-deficient, ethionine-supplemented (CDE) diet 

Another model to induce a ductular reaction is the CDE diet, in which a choline-deficient 

diet supplemented with 0.05-0.15% (w/v) ethionine mixture in the drinking water is provided to rats 

[212] or mice [213] for up to 4 weeks. Choline is a lipotropic factor important for the secretion of 

very-low-density lipoprotein (VLDL) [214]; a deficiency in choline causes intracellular lipid 

accumulation and hepatocyte membrane rupture, ultimately leading to steatosis followed by 

cirrhosis [215,216]. When combined with the potent hepatocarcinogen ethionine, activation of oval 

cells can occur followed by induction of liver cancer [212]. 

 

III. Mechanisms of liver regeneration 

The majority of mature hepatocytes reside in the reversible, nonreplicative G0 phase under 

homeostasis [28]. Upon injury, liver cells re-enter the cell cycle and progress through G1, S (DNA 

synthesis), G2, and M (mitosis) phases. The cell cycle is tightly-controlled by cyclin proteins, in 

which the levels rise and fall to activate downstream target CDKs that control progression through 

various cell cycle checkpoints (Figure 1.2) [217,218]. The cyclin D-CDK4/CDK6 complex is the first 

to be detected followed by cyclin E-CDK2 formation to promote G1/S transition [219–221]. Next, 
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cyclin A-CDK1/CDK2 is activated to regulate S phase along with cyclin B-CDK1 assembly to 

modulate G2/M entry [222,223]. Regenerating hepatocytes are highly synchronous in the PHx 

model [224], whereas in other paradigms, hepatocytes traverse the cell cycle in a non-synchronous 

order [95]. While most studies regarding the mechanisms underlying liver regeneration are 

conducted in the PHx model due to its popularity, numerous signaling pathways have been shown 

to be important for other models as well. Regardless of the source of injury, liver regeneration is 

composed of three distinct phases, the initial ‘priming’ phase where hepatocytes acquire an 

enhanced ability to replicate [225], the second ‘progression’ phase that allows hepatocytes to 

proceed through the cell cycle to recreate an adequate cell number and mass [226–228], and the 

final ‘termination’ phase where liver cell proliferation is stopped once liver mass has returned to 

normal [86,228,229].  

 

A. Priming 

The priming phase is the initiating event in which terminally-differentiated hepatocytes 

acquire enhanced replicative ability that allows for the transition from a quiescent state (G0) to a 

competent state (G1) [225,226]. Cytokines released from non-parenchymal cells in the liver act as 

paracrine factors to promote signaling pathways in hepatocytes [228]; TNFα [230,231] and IL6 

[232] are essential cytokines secreted by Kupffer cells in the early signaling phase. Pretreatment 

with TNFα increases the proliferative response to growth factors in rats [233], while administration 

of TNFα antibodies [231] as well as deletion of type I TNFα receptor (TNFR1) [234] inhibits DNA 

replication and impairs liver regeneration. TNFα activates nuclear factor kappa B (NF-κB) both in 

Kupffer cells to increase IL6 transcription [234] and in hepatocytes to activate cell proliferation [235].  

IL6 is a proinflammatory cytokine that mediates the acute-phase response [236]. During 

the initial phase of liver injury and repopulation, IL6 is secreted from Kupffer cells due to stimulation 

by TNFα [231,234]. IL6 binds to its receptor glycoprotein 130 (gp130) [237] to activate transcription 

factors, usually within the first hour of PHx, including NF-κB, activator protein 1 (AP-1), signal 

transducers and activators of transcription 3 (STAT3), and CCAAT enhancer-binding protein β 
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(C/EBPβ), ultimately leading to the expression of immediate-early genes such as Jun, Fos, and 

Myc [238,239]. Later studies identified induction of as many as 73 immediate-early genes during 

the priming phase [240] and another study reported that almost 40% of immediate-early genes are 

induced via IL6 [241]. Deletion of IL6 leads to a decrease of immediate-early gene expression 

followed by a 70% reduction of DNA synthesis [232].  

The importance of TNFα and IL6 as priming factors can be replicated in other regeneration 

paradigms including I/R injury [242], CCl4 [243,244], and APAP hepatotoxicity [245,246], in which 

downstream activation of pathways including NF-κB and STAT3 induces expression of immediate-

early genes to promote cell cycle entry. Nonetheless, controversies regarding the role of cytokines 

during the priming phase arise when conflicting results were found. TNFα-deficient mice do not 

exhibit reduced DNA synthesis or delayed regeneration after PHx [247,248]. Similarly, studies 

utilizing IL6- or gp130-deleted mice have demonstrated that IL6 does not mediate cell cycle entry 

but activates adaptive responses and apoptosis to fine-tune the regenerative process 

[237,249,250].  

 

B. Progression 

Hepatocytes acquire proliferative competence after priming and transition from G1 to S 

phase [226–228]. Commitment to progress through the cell cycle is mediated through early G1 

exposure to growth factors including epidermal growth factor (EGF) [251], TGFα [252,253], and 

HGF [254]. These factors are also known as ‘direct mitogens’ due to their ability to independently 

induce cell growth in cultured hepatocytes. Furthermore, infusion or overexpression of EGF [255], 

HGF [256], or TGFα [257] triggers hepatocyte proliferation and liver enlargement in normal rats. 

Both HGF and EGF stimulate liver regeneration as paracrine factors [258,259], while TGFα 

promotes hepatocyte replication in an autocrine fashion [253].  

HGF is produced primarily by stellate cells [260], activated by urokinase [261], and 

released from the extracellular matrix during liver regeneration [259]. Plasma levels of HGF are 

increased by 20-fold as early as 1 h after PHx in rats [262]. HGF binds to the receptor tyrosine 
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kinase HGF receptor (MET) [263] to induce TGFα synthesis in hepatocytes [264], as well as to 

stimulate proliferation and survival pathways such as mitogen-activated protein kinase (MAPK) and 

phosphoinositide 3-kinase (PI3K) signaling directly, leading to the activation of transcription factors 

ETS domain-containing protein (ELK1), MYC, and C/EBPβ [265,266]. Inhibition of HGF activation, 

including deletion of urokinase [267], administration of an anti-HGF antibody [268], and conditional 

disruption of Met [269,270] causes an impaired regenerative response after PHx and hepatotoxin-

induced liver injury. 

EGF is produced by the Brunner's gland in the duodenum [271] and continuously supplied 

to the liver through the portal circulation [258]. Interestingly, no significant change in plasma EGF 

concentration was detected after PHx [258], with another study suggesting activation of the 

sympathetic system could increase EGF production via norepinephrine [272]. Alternatively, the 

removal of two-thirds of the liver mass has been suggested to increase the load of EGF per 

hepatocyte by 3-fold [86,229].  

TGFα is released from the hepatocyte plasma membrane by the TNFα-converting enzyme 

(TACE) that is activated through secreted TNFα during the priming phase [273]. The transcript level 

of TGFα increases after 2-3 h, peaks at 12-24 h, and persists for 48 h post-PHx [253]. Both EGF 

and TGFα activate the receptor tyrosine kinase EGF receptor (EGFR) [274] to induce proliferation 

and prevent apoptosis via activation of MAPK, PI3K, and STAT pathways [265,266,275]. Treatment 

with antisense oligonucleotides and antibodies against TGFα reduces the number of replicating 

hepatocytes [264,276]. However, the redundancy of EGFR ligands has made it difficult to 

definitively demonstrate the requirement of EGF and TGFα for regeneration. Tgfa-/- mice do not 

show a significant decrease in DNA synthesis or a delay in regeneration after PHx [277], possibly 

due to EGF compensation. However, mice with targeted EGFR deletion display a delayed G1 to S 

phase transition and a decreased expression of cyclin D1 after PHx [278], documenting the 

importance of EGFR signaling during the progression phase. 
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C. Termination 

After cell growth and proliferation to restore the loss parenchyma are complete, liver 

regeneration stops through the activation of termination signals. Most research has focused on the 

mechanisms that induce hepatocyte replication and less is understood about the termination 

process. Additionally, the connections between the termination of liver regeneration and the 

pathogenesis of liver cancer have equally attracted attention.  

TGFβ is the most well-known factor to repress hepatocyte proliferation. Produced by 

stellate cells [279], TGFβ is normally sequestered in the extracellular matrix [280]. Many 

mechanisms are implicated to release TGFβ during liver regeneration, but no direct evidence has 

been provided [281], suggesting multiple factors could be at play to exert the tight regulation of 

TGFβ localization. TGFβ mRNA is increased within 3-4 h and peaks at 48-72 h after PHx in rats 

[282]. Contrarily, all three TGFβ receptor subtypes are downregulated at the transcript and protein 

levels following PHx and only recover at 120 h [283], causing a decreased TGFβ sensitivity in 

regenerating hepatocytes isolated after 24-72 h post-PHx [284]. Resistance towards TGFβ via 

norepinephrine modulation could explain the observation that hepatocytes are able to continue 

DNA synthesis until 72 h post-PHx despite increased TGFβ levels [285]. Cascades of the ‘small 

mothers against decapentaplegic’ (SMAD) proteins are activated upon TGFβ receptor 

phosphorylation [286,287] to increase expression of CDK inhibitor p15 [288] and prevent assembly 

of cyclins and CDK complexes, including cyclin E-CDK2 [289,290] and cyclin D-CDK4 [290], 

leading to reversible cell cycle arrest at G1 [289]. TGFβ is a potent inhibitor of EGF-induced DNA 

synthesis in cultured rat hepatocytes [291], and infusion of TGFβ reversibly prevents hepatocyte 

replication by over 60% at 24 h that returns to normal by 72 h after PHx in rats [292]. Conflicting 

studies, however, have questioned the significance of TGFβ as a termination factor. 

Overexpression of TGFβ1 under control by the albumin promoter causes hepatic fibrosis due to 

collagen deposition but does not affect liver regeneration [293]. Similarly, conditional removal of 

the TGFβ type II receptor increases cyclin D and E expression, allowing accelerated S phase entry 

to enhance hepatocyte proliferation, but no effect on the termination of regeneration was observed 
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[294]. Activin, another member of the TGFβ family, is also implicated in the termination phase as 

an autocrine agent that inhibits DNA replication, as its pharmacological inhibition with follistatin 

promotes DNA synthesis and leads to hepatomegaly following PHx in rats [295,296]. 

C/EBPα is a hepatocyte-enriched transcription factor that regulates the expression of 

multiple liver-specific genes [297,298]. C/EBPα is transcriptionally regulated during liver 

regeneration with a decrease in gene expression by 60-80% 1-3 h [299] and remains repressed 

until 24 h after PHx [300]. The drop of Cebpa transcripts during hepatocyte replication echoes 

previous observations of its antiproliferative quality in terminally-differentiated adipocytes [301]. 

C/EBPα induces cell-cycle arrest through various pathways including stabilization of the CDK 

inhibitor p21 to disrupt formation of cyclin-CDK complexes [302,303], modulation of growth-

inhibiting E2F-RB complexes [304,305], direct inhibition of CDK2 and CDK4 [306], induction of 

proteasome-dependent degradation of CDK4 [307], and others [308]. Cebpa-/- hepatocytes exhibit 

increased DNA synthesis in culture and rapidly form proliferative nodules when inoculated into mice 

[309]. Similarly, Cebpa-/- mice display elevated transcript levels of Jun and Myc, as well as an 

increased hepatocyte proliferation [310]. 

Another important regulator of liver mass is the Hippo pathway, named after the Drosophila 

hippo gene, which encodes a kinase that regulates organ growth, cell proliferation, and 

developmental apoptosis [311,312]. The mammalian orthologs ‘mammalian sterile 20-like 1’ 

(MST1) and 2 kinases [311] activate the large tumor suppressor 1 (LATS1) and 2 proteins to 

phosphorylate and inhibit the activity of the transcriptional coactivator yes-associated protein 

(YAP), leading to its nuclear export and protein degradation [313,314]. The Hippo signaling 

pathway is altered after PHx, with increased nuclear localization of YAP by 4 h [315] and decreased 

kinase activity of MST1 and MST2 1-3 days post-PHx [316]. Upon activation, YAP increases the 

expression of genes involved in hepatocyte proliferation such as Ki67, Myc, and H19 [313]. 

Conditional YAP activation induces liver overgrowth by over 50% after 1 week, and persistent YAP 

elevation causes tumorigenesis [313,317]. Similarly, deletion of MST1 and MST2 in mouse livers 

leads to loss of YAP phosphorylation and nuclear retention, followed by hepatomegaly and HCC 
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[318]. The mechanism of YAP inactivation at the end of liver regeneration is not fully understood 

but is hypothesized to include regulation by components of the extracellular matrix such as integrin-

linked kinase (ILK) [319,320] and glypican-3 [321,322] to prevent nuclear localization of YAP in 

both PHx and toxin-induced liver injury.  

 

D. Other factors to consider 

Liver regeneration depends on a complex regulatory network that includes multiple 

additional soluble mediators, signaling pathways, and transcription factors not discussed above. 

(1) Growth factors including vascular endothelial growth factor (VEGF) [323,324], platelet-derived 

growth factor (PDGF) [325,326], FGF [327,328], and heparin-binding EGF-like growth factor (HB-

EGF) [329]. (2) Extracellular signals such as bile acids [330], serotonin [331], insulin [332,333], 

norepinephrine [334,335], complement [336], and CXC chemokines [337,338]. (3) Pathways such 

as Wnt/β-catenin [339,340] and Notch/Jagged [341] signaling. (4) Growth-promoting nuclear 

receptors including [342] retinoid X receptor (RXR) [343], PPARα [344,345], farnesoid X receptor 

(FXR) [330], and pregnane X receptor (PXR) [346]. (5) Growth-inhibiting nuclear receptors [342] 

such as PPARγ [347,348] and HNF4α [349]. (6) Other factors such as microRNAs [350].  

These signaling pathways have been implicated in multiple liver regeneration models and 

manipulation of the pathways generally shows consistent outcomes across various paradigms with 

some exceptions. For instance, CXC chemokines promote regeneration after PHx [337] but inhibit 

hepatocyte proliferation during I/R [351]. This could be due to the difference in CXC concentration 

— 10 times higher following I/R — suggesting that a moderate increase of CXC chemokines 

promotes but higher expression inhibits hepatocyte proliferation [352]. Another example is TNFα 

signaling, in which TNFR1 deletion prevents DNA synthesis and delays liver regeneration after PHx 

[353], but an overexpression cDNA screen identified TNFR1 to be a potent repressor of liver 

repopulation in the Fah-/- mouse [185]. The difference in TNFR1 expression levels, TNFα signaling 

activation, injury duration, or the inflammatory context could explain the divergent findings [185]. 

Finally, it is also worth noting that no single gene deletion results in complete abrogation of the 
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regenerative process, but at most causes a reduction of replicating hepatocytes and a delay of cell 

cycle progression, suggesting substantial redundancy of the diverse signaling pathways 

modulating liver regrowth [354]. 

 

IV. Source of regenerating hepatocytes 

Regenerating hepatocytes can arise from three main sources in a context-dependent 

manner: expansion of preexisting hepatocytes, differentiation of oval cells, or transdifferentiation 

from cholangiocytes. As discussed above, resident hepatocytes are the first responders to 

replenish the hepatocyte pool but oval cells and cholangiocytes have been suggested more than 

sixty years ago as contributors of liver regeneration when DNA synthesis is severely impaired in 

hepatocytes. During the past decade, several lineage-tracing studies in mice have attempted to 

qualify the contribution of various proposed progenitor cells to hepatocyte regeneration. Using the 

Sox9CreERT2 system to trace all cholangiocytes, 1-2% of regenerating hepatocytes were lineage-

labeled after CCl4, APAP, and DDC administration, indicating that only a small percentage of BECs 

contribute to liver regeneration under these settings [30,34]. A similar conclusion was drawn when 

oval cells are labeled with osteopontin (OPN) after CDE diet but not with CCl4 or DDC treatment 

[355]. Other studies have suggested that FOXL1-expressing HPCs give rise to hepatocytes after a 

DDC-supplemented diet [211], or that LGR5-positive organoids can repopulate Fah-/- mouse livers 

after transplantation [356]. Interestingly, using a Krt19CreERT2 system in conjunction with DDC or 

CDE treatment, no label-bearing hepatocytes arise after regeneration, suggesting that all new 

hepatocytes come from preexisting liver cells [357]. This was likely due to limited injury which did 

not completely block hepatocyte proliferation, thus deviating the need for replacement from 

cholangiocytes acting as facultative progenitors. However, when hepatocyte regeneration is 

completely abrogated by severe liver injury, inhibition of hepatocyte replication, or induction of 

hepatocyte senescence, a large contribution of cholangiocyte-derived hepatocytes to the 

regenerating liver has been documented [358–360]. As it turns out, mouse hepatocytes are more 

resilient than those from rats in terms of retaining proliferative potential in the face of liver injury, 
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possibly explaining some of the discrepancies in the literature regarding the importance of 

cholangiocytes and oval cells as facultative hepatocyte. 

 

V. Clinical implications 

To date, the only curative treatment for end-stage liver disease is liver transplant. While it 

is the second most common solid organ transplantation after kidney transplant, less than 10% of 

global liver transplantation needs are met at current rates [37]. Multiple strategies under active 

research for the treatment of liver disease [361,362] include (1) transplantation of primary 

hepatocytes or induced pluripotent stem cells (iPSCs), (2) induction of endogenous hepatocyte 

replication via pharmacological agents, cytokines, or growth factors, (3) bioartificial livers that 

incorporate hepatocytes into a dialysis-based artificial system to carry out the main metabolic 

functions of the liver, and (4) organ bioengineering that utilizes a xenogenic scaffold infused with 

mature hepatocytes to produce a functional liver graft. With the rising healthcare burden of chronic 

liver disease, a deeper understanding of the mechanisms underlying liver repair and regrowth will 

enable a broader utilization of regenerative medicine. 

 

 

 



 

31 
 

LIVER TRANSCRIPTIONAL CONTROL 

I. Overview 

Gene regulation is fundamental for all organisms; in particular, the complexity of eukaryotic 

transcriptional control allows intricate regulation of expression patterns to adapt to environmental 

queues. Transcriptional regulation occurs on several levels. (1) Cis-regulatory modules provide 

essential information for transcription factor binding and serve as a platform for the assembly of 

regulatory complexes. (2) Chromatin architecture including nucleosome patterning, histone 

modification, and DNA methylation impacts the accessibility of the transcriptional machinery. (3) 

Intra- and interchromosomal interactions establish topological hotspots for long-range regulation of 

gene expression [363].  

 

A. Transcription factors 

Transcription factors are trans-acting proteins that bind to cis-regulatory modules at the 

promoter or enhancer to activate or repress transcription [364]. Regulation of gene expression is 

achieved through various mechanisms including stabilization or blockade of RNA polymerase II 

[365], direct or indirect modification of chromatin structure [366], and recruitment of coactivator or 

corepressor proteins to the protein-DNA complex [367]. Recruitment of transcription factors to 

target sites is established mainly through the structure and sequence of the DNA-binding domains 

[363]. Evolutionarily-related transcription factors often share similar DNA recognition motifs and 

demonstrate binding redundancy. The specificity of transcription factors is determined by (1) 

cooperative or competitive binding with other regulatory proteins [368,369], (2) flexibility of the 

DNA-binding domain to recognize noncanonical motifs with mechanisms not yet clear [370], and 

(3) posttranslational modifications to affect subcellular localization, protein-protein interactions, and 

DNA binding activity of the transcription factors [371]. These mechanisms allow spatiotemporal 

binding of transcription factors to fine-tune eukaryotic gene transcription and establish distinct gene 

expression patterns. 
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B. Chromatin architecture 

DNA is compacted into chromatin in the eukaryotic genome. The basic unit of chromatin is 

the nucleosome, which consists of 147 base pairs (bp) of DNA tightly wrapped around a histone 

octamer with two copies of core histones H2A, H2B, H3, and H4 each [372]. Chromatin is 

historically categorized into one of two states based on its accessibility to the transcriptional 

machinery. Heterochromatin is highly condensed, transcriptionally inactive, and associates with 

repressive histone modifications, whereas euchromatin is relatively accessible to transcriptional 

complexes, marked with active histone modifications, and contains actively-transcribed genes 

[373,374]. Diverse mechanisms contribute to the modification of chromatin structure and 

subsequent changes to DNA accessibility, including nucleosome positioning and occupancy via 

ATP-dependent chromatin remodelers [375,376], DNA methylation through DNA 

methyltransferases (DNMT) and demethylation via ten-eleven translocation (TET) proteins [377], 

and epigenetic modifications of the core histones such as methylation, acetylation, 

phosphorylation, and ubiquitination [378]. 

 

C. Three-dimensional structure 

The three-dimensional structure of chromatin provides an additional layer of transcriptional 

control through the regulation of nuclear organization and chromosomal interactions.  

(1) Nuclear organization. The nucleus is divided into functional domains in which 

chromosomes occupancy at different regions is associated with divergent transcriptional activity 

[379]. The non-uniform compartment of the nuclear interior enables highly-organized structures to 

establish chromatin territories based on gene activity and density; gene-rich regions are typically 

located in the nuclear center and gene-poor chromatin in the periphery [380].  

(2) Chromosomal interactions. The identification of cis-regulatory modules located far from 

the promoters they regulate has led to the discovery of looping as the predominant mechanism for 

enhancer-promoter interactions [381]. Long-range chromatin communication includes interactions 

between regulatory sequences of a single locus [382], among elements within a gene complex 
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[383], and between chromosomes [384]. Technological advances utilizing proximity-ligation 

followed by deep-sequencing [385] and high-resolution microscopy [386] methods will further allow 

the elucidation of inter- and intrachromosomal interactions to establish cell type-specific 

transcriptional regulation. 

 

II. Discovery of liver transcriptional control 

A. Liver-specific gene expression 

Studies on transcriptional control were pioneered by the laboratory of James Darnell 

starting in the early 1980s [387]. Rat liver nuclei became one of the first mammalian systems used 

to investigate gene expression regulation due to the large number of available cells and the 

relatively pure cell types, where hepatocytes constitute approximately 80% of the liver mass [388] 

and 60% of liver cell number [389]. Liver-specific gene sequences were isolated via the extraction 

of polyadenylated (poly(A)) RNA, reverse transcription into cDNA, and recombination with 

antibiotic-resistant E. coli plasmids [390]. DNA from individual colonies was used as a template to 

hybridize with nascent, radiolabeled mRNA isolated from rat liver nuclei [390]. The hybridization 

signals from liver nuclear RNA is at least 10 times stronger than those from non-liver cells, 

suggesting a differential abundance of tissue-specific mRNA [390]. Further analysis to compare 

the transcription rate of liver-enriched mRNA in liver and brain nuclei revealed that transcriptional 

regulation plays a primary role in establishing differential gene expression in various terminally-

differentiated cell types [390].  

 

B. Liver-specific regulatory regions 

Analysis of liver-enriched genes in human and rodent ensued, unveiling tissue-specific 

regulatory regions including proximal promoters and distal enhancers that control the expression 

of cell type-specific genes. For instance, the 5’ flanking sequences of rat Alb drives efficient 

expression of a reporter gene, chloramphenicol acetyltransferase, preferentially in ALB-expressing 

hepatoma cells [391]. The promoter-proximal region of human SERPINA1 that encodes the α1-
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antitrypsin (AAT) enzyme is sufficient for the transcription in Hep3B, a human hepatoma cell line, 

but not in HeLa cells [392]. Similarly, expression of distal enhancers of the mouse Ttr, encoding 

transthyretin (TTR), activates β-globulin transcription specifically in human hepatoma cells HepG2 

but not in HeLa cells [393]. These observations suggest a combination of cis-regulatory sequences 

and trans-acting factors in particular cell types establishes tissue-specific expression regulation. 

In addition, two hypotheses concerning cell type-specific transcriptional control through 

trans-acting proteins emerged [392,394]. It was proposed that activating factors expressed only in 

particular tissues govern gene expression. However, some liver-enriched genes are also 

expressed in other cell types, such as Serpina1 in macrophages [395], certain apolipoproteins in 

the gut [396], and Ttr in the choroid plexus [397]. This implicates that the activating mechanism in 

addition to the distribution of the activating factors exhibits liver specificity [394]. Furthermore, it 

was later shown that most, if not all, so-called ‘liver-specific’ transcription factors are also expressed 

in other cell types [398–401]. Another line of hypothesis suggested the presence of inhibiting factors 

to prevent gene expression in specific tissues [392,394]. This implies that a repressor is required 

for each gene to be not expressed in a certain cell type, suggesting a requirement for a large 

number of negative factors to restrict transcription in non-expressing tissues. Thus, a more 

plausible explanation of tissue-specific transcriptional control is that a unique combination of 

several liver-enriched positive and negative trans-acting factors modulate expression in a cell type-

specific manner [402]. Various liver-enriched, but not necessarily liver-specific, activators induce 

expression [402,403] and repressors inhibit transcription to establish a liver-specific gene 

expression profile [404].  

 

C. Liver-specific transcription factors 

From the late 1980s to 1990s, the use of DNA sequence affinity chromatography with rat 

liver nuclear extracts enabled identification of several transcription factors highly expressed in the 

liver, collectively referred to as hepatocyte nuclear factors [398,403,405,406]. DNA sequences of 

liver-enriched genes suspected to encompass transcription factor binding sites were used as bait 
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to isolate protein-DNA complexes followed by high-performance liquid chromatography (HPLC) to 

purify the protein of interest. The partial amino acid sequences of the protein peptides were 

determined and used to design primers for PCR amplification from hepatoma cell lines. The 

amplified products were then used to screen rat cDNA libraries to obtain clones that encode the 

gene sequence of each liver-enriched transcription factor.  

 

III. Hepatocyte nuclear factors 

A. HNF1 

HNF1 was identified as a nuclear protein that binds to the promoters of fibrinogen α and β 

chains, as well as AAT in hepatocytes [405]. The HNF1 subfamily contains two isoforms, HNF1α 

and HNF1β. Analysis of the ALB promoter established the requirement of the albumin proximal 

factor (APF), later found to be HNF1α, for Alb transcription [407]. HNF1α was initially only detected 

in differentiated rat hepatoma cells whereas HNF1β, originally identified as modified APF (vAPF), 

was observed in two dedifferentiated rat hepatoma cell lines [407]. Later studies confirmed 

expression of HNF1α and HNF1β in the liver, pancreas, intestine, and kidney [399,408], with 

HNF1α detected at much higher levels and HNF1β lower except for in the kidney [409,410]. HNF1β 

could exhibit broader physiological implications as it is also observed in the lung, testis, and ovary 

[401,411]. 

HNF1 is a member of the POU homeobox gene family [412]. The N-terminal contains the 

dimerization domain that allows the homeoproteins to dimerize [409], the DNA-binding domain 

consists of a bipartite POU homeodomain [412], and the C-terminal includes different 

transactivation domains less conserved within the subfamily, in which HNF1α demonstrates a 

higher transactivation potency than that of HNF1β [413]. Analysis of the promoters of various liver-

enriched genes from rat, mouse, and human predicted the HNF1 consensus binding sequence as 

GTTAATNATTAAC [414]; both isoforms share the same DNA-binding motif with different 

transcriptional activity [415]. The homeoproteins form homo- and heterodimers within the subfamily 

[409,410], where HNF1α is able to dimerize without binding to the DNA recognition sequence. 
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Additionally, a dimerization cofactor of HNF1α, DCoH, selectively stabilizes the homodimers and 

assembles a tetrameric complex to enhance the trans-activating ability of HNF1α [416].  

Sequence homology analysis determined additional HNF1α target genes including Alb 

[407], Ttr [414], Afp [414,417], Apoa2 that produces apolipoprotein A-II (ApoA-II) [418], and Apob, 

encoding the protein ApoB-100 [419]. Genome-wide analysis of HNF1α footprinting with chromatin 

immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) further identified 

HNF1α targets crucial for liver synthetic functions, such as carbohydrates, cholesterol, 

apolipoproteins, CYP450, and serum proteins [420]. Similar to HNF1α, HNF1β occupies the Alb 

proximal promoter to activate transcription [409]. Additional HNF1β targets determined through loss 

of HNF1β include Slco1a1 that encodes the member 1a1 of the solute carrier organic anion 

transporter family (OATP-1) for bile acid reabsorption, and Acadvl, the very long-chain-acyl-

Coenzyme A dehydrogenase (VCLAD) required for fatty acid oxidation [421]. 

During development, HNF1β is first detected on E4.5 in the endoderm of the foregut, while 

HNF1α expression is activated later on E8.5 in the yolk sac [422]. HNF1α and HNF1β are also 

present on E10.5 after the initiation of hepatocyte lineage in the liver primordia and continue to be 

expressed throughout embryonic development [423]. These observations suggest that HNF1β 

participates in the initial transcriptional activation of genes in the visceral endoderm, and the later 

activation of HNF1α could be required to maintain target gene expression for liver function [422]. 

Hnf1a transcript levels gradually decrease at the late period of embryonic liver development while 

Hnf1b increases [424].  

Hnf1a-/- mice die around weaning due to hepatic dysfunction, phenylketonuria, and renal 

Fanconi syndrome [425]. HNF1α-deficient livers are enlarged with decreased Alb expression but a 

compensatory increase of HNF1β partially rescues the expression of ALB, AAT, and fibrinogen 

[425]. Since HNF1α deletion is not embryonically lethal, it is likely not required for specification of 

the hepatocyte cell lineage but important for the expression of differentiated liver function genes.  

HNF1β-deficient mice die by E7.5 due to the lack of extraembryonic endoderm 

development [426]. Hnf1b-/- tetraploid complementation established that HNF1β activity is required 
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for visceral endoderm differentiation to direct the expression of HNF4 and other endoderm marker 

genes [408]. Further tetraploid embryo complement analysis showed that Hnf1b-/- mice do not form 

the hepatic bud and lack expression of liver-enriched genes [427]. Conditional HNF1β ablation 

using the Hnf1bF/F;AlfpCre mouse causes abnormal gallbladder and intrahepatic bile duct formation, 

resulting in severe growth retardation and jaundice; liver metabolism was also affected, with 

downregulation of genes involved in bile acid sensing and fatty acid oxidation [421]. These studies 

implicate that HNF1β is required for endoderm commitment, hepatic specification, and bile duct 

morphogenesis during liver organogenesis.  

Altogether, HNF1 proteins are important in establishing mature hepatic functions and 

appropriate bile duct differentiation. Interestingly, heterozygous human HNF1 mutations do not 

cause abnormalities in the liver but rather dysfunctions of the pancreatic islets; HNF1α mutations 

lead to autosomal dominant maturity-onset diabetes of the young type 3 (MODY3) [428] and HNF1β 

mutations result in MODY5 [429].  

 

B. HNF3/FOXA3 

HNF3 proteins were described due to their ability to occupy TTR and AAT promoters at 

sites distinct from HNF1 and C/EBP [403]. Ttr contains two recognition sequences for HNF3 within 

150 bp upstream of the transcriptional start site. Mutation of the most 3’ HNF3 binding site results 

in decreased Ttr expression, despite all other enhancer and promoter sequences being intact, 

indicating the importance of HNF3 for Ttr transcriptional activation [403]. The HNF3 family consists 

of three members identified from the purification of distinct protein-DNA complexes that bind to the 

mouse Ttr promoter, HNF3α, 3β, and 3γ [430–432]. The DNA-binding domains of all three 

members are highly conserved and share 90% amino acid similarity that matches the sequences 

of the Drosophila Fox nuclear protein [433]. Therefore, HNF3 proteins were renamed according to 

the nomenclature of all forkhead transcription factors to ‘FOXA’ [434]. The FOXA proteins are 

functionally redundant in the liver [435], of which FOXA3 exhibits the highest expression in adult 

hepatocytes [436].  
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FOXA proteins are members of the FOX family [430] and belong to the FOXA subfamily 

[434]. The forkhead box DNA binding domain is comprised of three α-helices flanked by two 

winged-like loops, thus the DNA recognition sequence is also referred to as the winged-helix 

domain [437]. All FOXA proteins share up to 95% sequence similarity in the DNA binding domain 

flanked by the nuclear localization sequence [438]. Outside of the FOX domain, the N and C termini 

also demonstrate high sequence conservation, and functional analysis of FOXA2 revealed their 

activity as transcriptional activators [432,438]. Within these domains, regions II, III, and IV 

contribute to transactivation, where the activity of region IV is dependent on the other two [432]. 

Analysis of FOXA binding sites in Ttr and Serpina1 regulatory regions indicated the consensus 

sequence as TATTAGAYTTWG, where Y is C/T and W is A/T [403]. FOXA proteins bind to DNA 

as monomers [439]. 

Other hepatocyte-specific genes regulated by FOXA proteins include the Alb enhancer 

[404] and promoter [440], the Afp distal enhancer [441], the Apob promoter [442], and the Pfkfb1 

proximal promoter that controls the expression of 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase 1 (PFK/FBPase 1) [443]. Furthermore, the structure of the winged-helix domain is 

similar to that of linker histones H1 and H5, proteins that induce DNA compaction with the 

nucleosome core to repress gene expression [437]. FOXA proteins are able to bind DNA on the 

nucleosome core to displace linker histones and increase chromatin accessibility, leading to 

transcriptional activation [444]; hence, FOXA proteins are also known as ‘pioneer factors’.  

FOXA2 is expressed on E6.5 in the node at the anterior primitive streak and is the first 

member of the FOXA subfamily to be expressed [445]. Its expression persists throughout the 

development of endoderm-derived tissues such as the liver, pancreas, and the intestine, and 

continues into adulthood [445]. FOXA1 displays a similar expression pattern as that of FOXA2 but 

is detected later on E7.0 in the primitive endoderm, whereas FOXA3 is expressed starting on E8.5 

during hindgut differentiation [445].  

Foxa1-/- embryos develop to term but have severe postnatal growth retardation and die 

between postnatal day 2 (P2) to P12 [446]. FOXA1-deficient mice experience hypoglycemia and 
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changes in islet glucagon gene expression, but no liver phenotype is observed prior to death [446], 

suggesting that FOXA1 is not required for early mouse development but is central to the regulation 

of glucose homeostasis.  

FOXA2 deletion is embryonically lethal by E11 due to the lack of node and notochord 

formation, causing death prior to the formation of liver bud [447,448]. Conditional FOXA2 ablation 

with the Foxa2F/F;AlbCre mouse does not induce any significant disruption of the liver phenotype or 

cause apparent changes in gene expression, indicating that FOXA2 is dispensable in maintaining 

hepatocytes at a differentiated state [435]. However, Foxa2F/F;AlfpCre livers fail to integrate 

transcriptional response during prolonged fasting since expression of gluconeogenic enzymes 

typically activated during fasting is not induced, as seen in the cases of Pck1 that encodes the 

cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), Tat that produces tyrosine 

aminotransferase (TAT), and Igfbp1, encoding insulin-like growth factor-binding protein 1 (IGFBP-

1) [449]. Whole-body FOXA1 deletion and endoderm-specific ablation of FOXA2 with the Foxa1-/-

;Foxa2F/F;Foxa3Cre mouse showed a lack of liver bud formation and loss of hepatoblast marker Afp, 

indicating that FOXA1 and 2 are required for hepatognesis during embryonic development [22]. 

Furthermore, combinatorial deletion of FOXA1 and 2 in the liver through Foxa1F/F;Foxa2F/F;AlfpCre 

mice causes bile duct expansion and proliferation, leading to biliary tree hyperplasia while liver 

differentiation is unaffected [450]. In short, these studies indicate that FOXA2 is required for early 

embryonic development prior to liver differentiation as well as bile duct maintenance, and FOXA1 

and 2 are essential for liver bud specification.  

FOXA3 ablation results in a 50-70% decrease in the expression of several hepatocyte-

specific genes, including Pck1, Tat, and Tf (Trf) that encodes transferrin along with a compensatory 

increase of FOXA1 and 2 [451]. Additionally, Foxa3-/- mice exhibit hypoglycemia after prolonged 

fasting that associates with a decreased liver expression of Slc2a2 (Glut2), encoding the type 2 

glucose transporter (GLUT-2) [452]. While FOXA3 deletion is not sufficient to cause severe liver 

function defects, it is required for mediating fasting glucose homeostasis.  
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During the acute phase after PHx, Foxa1 expression is dramatically decreased followed 

by the downregulation of its target gene Ttr, whereas Foxa3 level fluctuates minimally, suggesting 

that FOXA1, but not 3, is regulated by proliferative signals during liver regeneration [453]. On the 

other hand, both Foxa2 and Foxa3 expression are significantly reduced in CCl4-induced liver injury 

[454,455]. Furthermore, injection of AAV8-TBG-Cre into Foxa2F/F mice exacerbates CCl4-induced 

liver fibrosis while FOXA2 overexpression alleviates collagen deposition and reduces ER stress, 

indicating the hepatoprotective potential of FOXA2 during liver injury [455].  

 

C. HNF4 

HNF4 was identified as a nuclear protein with distinct recognition properties from C/EBP, 

HNF1, and FOXA in its binding to the promoters of TTR and AAT [403]. HNF4 proteins include 

three isoforms, HNF4α, 4β, and 4γ, but HNF4β is not detected in human or mouse [456]. HNF4α 

is expressed in the liver, kidney, pancreas, small intestine, colon, and testis [400], while HNF4γ is 

observed in all tissues mentioned above except for the liver [400]. HNF4α is transcriptionally 

regulated through two developmentally-controlled promoters P1 and P2 that are separated by more 

than 45 kilobases (kb) [457]. Differential promoter usage combined with alternative splicing 

produces six P1 isoforms, HNF4α1 to α6, and three P2 isoforms, HNFα7 to α12 [400,457,458]. 

However, the impact of HNF4α isoforms on the transcriptional control of downstream targets 

remains largely unknown.  

HNF4 belongs to the nuclear hormone receptor superfamily that includes receptors for 

steroids, retinoids, thyroid hormones, and vitamin D [459,460]. Originally classified as an orphan 

member of the superfamily due to the lack of defined ligands, it was later observed that fatty acyl-

CoA thioesters modulate HNF4 activity [461] and linoleic acid acts as the endogenous HNF4α 

ligand [462]. HNF4α displays the conventional modular structure of nuclear receptors that 

encompasses six functional regions A-F [460]. The N terminal contains the less conserved A/B 

region with the activation function 1 (AF-1) domain that acts as a constitutive autonomous 

transactivator [463]. Region C encodes the highly-conserved DNA-binding domain with two zinc 
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fingers [459] and is responsible for dimerization on the DNA [464]. Region D refers to a hinge that 

connects regions C and E [460], in which region E represents a conserved ligand-binding domain 

that contributes to protein dimerization in the absence of DNA binding [464]. The ligand-binding 

domain also prevents heterodimerization with RXRα and potentially other nuclear receptors that 

share similar DNA recognition sequences [465]. Additionally, region E consists of a second 

activation domain AF-2 with ligand-dependent transcriptional activity, providing an additional layer 

of HNF4α regulation [463]. Region F is located at the C-terminus and contains a unique repressive 

feature of the nuclear receptor superfamily to inhibit AF-2 [463]. Together, AF-1 and AF-2 activate 

transcription in a cell type-independent manner [463]. All HNF4α isoforms share the same DNA-

binding domain and 90% of protein structure homology. The main difference between P1 and P2 

classes is the lack of AF-1 at the N-terminus in P2 isoforms [466]. Finally, the zinc finger motifs 

bind to the hormone response elements located in promoters exclusively as homodimers to 

modulate transcription of HNF4α target genes [464,467].  

Initial analysis of the HNF4 binding sites at regulatory regions of Ttr, Serpina1, and Apoc3, 

which encodes Apoc-III, suggested the consensus sequence as KGCWARGKYCAY, where K is 

G/T, W is A/T, R is A/G, and Y is C/T [459]. Later analyses demonstrated that HNF4 recognizes 

repeats of half-site motifs AGGTCA separated by one or two nucleotides [465], as well as a 

sequence of NNNNCAAAGTCCA [468]. HNF4α regulates gene expression involved in glucose, 

cholesterol, and fatty acid metabolism through binding to promoters of apolipoproteins Apoa1 [469], 

Apob [470], and Apoc3 [470,471], as well as Hnf1a [459], Tf [472], and F7 that produces the human 

coagulation factor VII [473]. 

HNF4α mRNA is detected as early as E4.5 in the primitive endoderm of the blastocyte 

[474]; expression persists throughout liver development until adulthood to maintain hepatocytes at 

a differentiated state [466]. HNF4α ablation is embryonically lethal due to the lack of extraembryonic 

tissue development past E5.0 [475]. Tetraploid rescue of Hnf4a-/- embryos displays liver 

specification without full differentiation that lacks expression of a number of liver marker genes such 

as Alb, Afp, Tf, apolipoproteins Apoa1, Apoa4, Apob, Apoc2, and Apoc3, Nr1i2 (Pxr), Pah that 
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produces phenylalanine-4-hydroxylase (PAH), and liver-type fatty acid-binding protein (L-FABP) 

encoded by Fabp1 [476]. Hnf4aF/F;AlfpCre mice fail to undergo fetal liver epithelial transformation 

due to the lack of expression involved in cell adhesion and cell junction assembly [477]. On E18.5, 

HNF4α-deficient embryonic hepatocytes also demonstrate decreased gene expression related to 

glucose homeostasis including Pck1, Gys2 that encodes the liver glycogen synthase, and G6pc 

that produces glucose-6-phosphatase (G6Pase) [478]. Conditional HNF4α deletion with 

Hnf4aF/F;AlbCre results in lipid accumulation with reduced serum cholesterol and triglyceride, while 

serum bile acid level is increased, coinciding with the reduction of Apob, Fabp1, Slco1a1, and 

Slc10a1 (Ntcp) that encodes the sodium/bile acid cotransporter [479]. Furthermore, 

Hnf4aF/F;AlbCreERT2 mice treated with tamoxifen to remove HNF4α from mature hepatocytes exhibit 

elevated hepatocyte proliferation with increased expression of cell cycle genes [349]. Together, 

these studies utilizing transgenic mice suggest the requirement of HNF4α from early liver 

development for the establishment of epithelial morphology to maintenance of the mature 

hepatocyte phenotype including lipid, bile acid, cholesterol, and glucose homeostasis through 

gluconeogenesis and glycogen synthesis. Similar to that observed for HNF1, heterozygous HNF4α 

mutation affects the pancreas and causes autosomal dominant MODY1 in humans, with no obvious 

phenotypic deficiencies observed in the liver [480].  

HNF4α activity is modulated through post-translational modifications. Phosphorylation of 

tyrosine residues is necessary for proper nuclear compartment localization, as well as the 

maintenance of DNA-binding activity and transactivation ability [481]. Additionally, cyclic AMP 

(cAMP) response element-binding protein (CBP) acetylation of lysine residues within the nuclear 

localization sequence is required for nuclear retention, DNA sequence binding, and target gene 

activation [482]. 

 

D. HNF6 

HNF6 was identified via the protein-DNA complex formed with Pfkfb1 [483], which encodes 

a bifunctional enzyme that synthesizes and degrades the key regulator of glycolysis, fructose 2,6-
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bisphosphate [484]. Analysis of the Pfkfb1 promoter identified two cis-acting sequences that 

account for approximately 50% of the transcriptional activity [406]. DNA-affinity labeling from rat 

liver nuclear proteins with the sequence from site IV of the Pfkfb1 promoter was utilized to extract 

and purify a liver-specific factor originally identified as LP4 and later renamed HNF6 [483]. The 

HNF6 subfamily includes two isoforms HNF6α and HNF6β that differ by the linker sequence 

between the cut domain and the homeodomain [483]. Both isoforms display transactivating abilities, 

but the DNA-binding affinity depends on the target gene sequence [485].  

HNF6 belongs to the ONECUT homeodomain family that includes HNF6 (OC1), OC2, and 

OC3 [483]. CUT homeodomain proteins were initially described in the Drosophila cut gene [486] 

and the mammalian homologs mclox gene [487], both consisting of three CUT domains. 

Interestingly, HNF6 only exhibits a single CUT domain, hence the nomenclature as ‘ONECUT’ 

homeodomain [485]. The N terminus contains the STP box, a serine/threonine/proline-enriched 

region, that functions as a transcriptional activator [483]; the C terminus encompasses the bipartite 

DNA-binding domain formed by the CUT domain (CD) and the homeodomain (HD) [485]. Both 

HNF6 isoforms bind DNA as monomers and do not form heterodimers [485]. 

Comparison of HNF6 binding sites of liver-enriched genes including Afp, Hnf3b, Pck1, and 

Ttr determined the consensus sequence as DWRTCMATND, where D is not C, W is A/T, R is A/G, 

M is A/C [485]. In addition to controlling Foxa2 [488] and Hnf4a [489] expression, HNF6 activates 

the promoters of various liver function genes including Ttr [490], Afp [485], and Gck that encodes 

glucokinase (GCK) [491].  

HNF6 is expressed at early developmental stages in the liver, pancreas, and neurons, 

suggesting its importance in regulating various differentiation programs [489]. HNF6 is detected on 

E9 prior to liver differentiation and continues to be expressed in the liver and the extrahepatic biliary 

system throughout development [489]. Hnf6-/- embryos lack the gallbladder primordium, resulting 

in abnormal morphology of extrahepatic bile ducts and perturbed development of intrahepatic bile 

ducts [492]. HNF6-deficient mice exhibit abnormal bile duct morphogenesis with increased 

mortality between P1-10 likely due to increased cholestasis that results in liver necrosis [492]. Hnf6-
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/- mice also display reduced HNF1β expression in the biliary epithelial cells during development 

[492]. Hnf6F/F;AlbCre mice demonstrate normal intrahepatic bile duct morphology with no indication 

of liver injury as measured by serum AST, ALT, and total bilirubin levels [493]. Nonetheless, a later 

study examining conditional Hnf6 ablation in the adult mouse liver through AAV8-TBG-Cre injection 

into Hnf6F/F mice showed severe hepatosteatosis with the induction of genes involved in oxidation-

reduction and lipid metabolism [494]. Furthermore, ectopic HNF6 overexpression via adenovirus 

prior to PHx leads to an increased number of replicating hepatocytes entering S phase as well as 

upregulation of the mitogen TGFα, cell cycle regulator cyclin D1, and the transcription factor 

FOXM1 [495]. These observations implicate a crucial role of HNF6 during liver development and 

cholangiocyte differentiation, as well as its importance in transcriptional repression of lipid 

metabolic genes and the stimulation of hepatocyte proliferation during liver regeneration. 

HNF6 expression can be elevated by growth hormone [496] through increased STAT5 and 

HNF4α occupancy [497] in conjunction with the displacement of C/EBPα at the HNF6 promoter 

[498]. 

 

E. C/EBP 

C/EBP was discovered as a heat-stable nuclear protein to selectively bind to the CCAAT 

motif of several viral promoters [499] and viral enhancer core elements [500] in the rat liver nuclei 

[501]. The C/EBP subfamily consists of several isoforms including C/EBPα, C/EBPβ, C/EBPγ, 

C/EBPδ, C/EBPε, and C/EBPζ, but only the first three are enriched in the liver [502], with C/EBPα 

the most predominant isoform expressed in adult hepatocytes [503].  

C/EBPα, originally named C/EBP, was identified through analysis of Alb, Ttr, and Serpina1 

promoters and the simian virus 40 (SV40) core C enhancer element [297,298]. C/EBPβ was 

described as a nuclear factor to activate IL6 transcription after IL1 induction, hence its original 

nomenclature, NF-IL6 [504]. C/EBPβ also binds to regulatory regions of several acute-phase genes 

including TNF and IL8, indicating its importance to regulate acute inflammatory responses [504]. 

C/EBPγ was purified as a protein to bind the B cell-specific enhancer and promoter regions of the 
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immunoglobulin heavy chain (IgH) [505]. Subsequent structural analysis of C/EBPγ demonstrated 

the lack of transactivating domain observed in C/EBPα and β, suggesting the unlikelihood of 

C/EBPγ as a direct transcriptional activator or repressor [506]. Rather, C/EBPγ functions as a 

transdominant negative inhibitor and heterodimerizes with C/EBPα or β to repress their 

transcriptional activity [506].  

C/EBP proteins belong to a larger structural category of the basic leucine zipper (bZIP) 

family of transcription factors [507], one of the most conserved groups of eukaryotic transcription 

factors that include JUN, FOS, and cAMP-responsive element-binding (CREB) proteins [502]. The 

C/EBP subfamily exhibits modular structures that contain an N-terminal transactivating region 

[508], a basic DNA-binding domain, and a C-terminal leucine zipper [508]; all C/EBP isoforms share 

over 90% of sequence homology at the bZIP domain [501,507,509]. C/EBP binds to the DNA as 

homo- or heterodimers and forms intrafamilial heterodimers to recognize the same consensus 

sequence, with the exception of C/EBPζ [505,507,510]. 

The consensus motif for C/EBP proteins is RTTGCGYAAY, where R is A/G and Y is C/T 

[511]. Other than Alb and Ttr, C/EBPα also regulates the expression of liver-specific or -enriched 

genes including Pck1 [512], Tf [472], Slc2a2 [513], Igf1 that produces the insulin-like growth factor 

I (IGF-1) [514], F9 that encodes the coagulation factor IX [515], and several CYP450 genes [442]. 

C/EBPβ controls metabolic gene production such as Cyp2d5 [516], Pck1 [517], Aldh1a1 that 

encodes the cytosolic aldehyde dehydrogenase (RALDH 1) [518], Ca3 (Car3) that produces 

carbonic anhydrase 3 (CA-III) [518], and several other genes encoding acute-phase proteins during 

inflammation such as serum amyloid A (SAA) [519] and C-reactive protein (CRP) [520].  

C/EBP transcription factors are pivotal for a variety of functions including cell proliferation, 

differentiation, metabolism, inflammation, tumorigenesis, and apoptosis, particularly in 

hepatocytes, adipocytes, and hematopoietic cells [521]. C/EBPα expression is detected on E9.5 in 

the mouse endoderm in the liver primordium, while C/EBPβ expression is detected between E13.5 

and E14.5 in the liver [522]. Cebpa-/- mice fail to store hepatic glycogen and die within 8 hours after 

birth due to hypoglycemia associated with reduced or delayed gene expression of Gys2 and two 
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gluconeogenic enzymes, PEPCK and G6Pase [523]. Injection of AAV-Cre into CebpaF/F mice to 

remove up to 90% of C/EBPα expression in the adult liver demonstrated decreased expression of 

bilirubin UDP-glucuronosyltransferase (UGT), an enzyme required for bilirubin conjugation and 

detoxification [524], leading to adult-onset jaundice [525]. Expression of Pck1, Gys2, and F9 was 

also decreased in the adult mouse liver with conditional C/EBPα ablation [525]. These experiments 

demonstrate the importance of C/EBPα as a central role for gluconeogenesis, glycogen synthesis, 

and bilirubin homeostasis in the liver. 

The role of C/EBPβ in metabolic regulation is complex. Half of Cebpb-/- mice exhibit 

steadystate glucose homeostasis but demonstrate fasting hypoglycemia and impaired hepatic 

glucose production. The other half die at birth due to hypoglycemia attributed to the absence of 

PEPCK expression followed by the inability to mobilize glycogen stores [517]. In mice injected with 

concanavalin A to induce immune-mediated liver injury, C/EBPβ nuclear expression is increased 

as early as 1 h and mRNA levels increased 4 h after liver injury, but returns to normal before 

entering S phase [526]. C/EBPβ-deficient mice display decreased DNA synthesis and suppression 

of immediate-early growth response genes, Mkp1 and Egr1, 1 h post-PHx [239]. Furthermore, 

Cebpb-/- livers also show sustained hypoglycemia in conjunction with dysregulation of genes 

important for hepatic gluconeogenesis after PHx [239], suggesting the significance of C/EBPβ for 

glucose homeostasis after profound metabolic stress such as PHx.  

 

IV. Regulatory circuits of liver-enriched transcription factors 

The liver-enriched transcription factors form a cooperative network to establish 

transcriptional control and to synergistically interact with one another to maintain a hepatocyte-

specific gene expression profile [527,528]. Of all transcription factors highly-expressed in 

hepatocytes, HNF1α and HNF4α deficiency correlate with the lack of liver-specific gene expression 

in dedifferentiated hepatomas and hepatocyte-fibroblast hybrids [527]. Furthermore, HNF1α and 

HNF4α reexpression correspond to the transcription of hepatocyte-specific genes in hybrid cells 
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[529]. These observations led to the hypothesis that HNF1α and HNF4α are the primary 

transcriptional regulators to maintain the differentiated hepatic phenotype.  

In particular, several independent observations suggest that HNF4α could function as the 

master regulator that sits atop the transcriptional cascade during hepatocyte differentiation 

[459,474]. (1) HNF4α mRNA is detected as early as E4.5 in the primitive endoderm of the blastocyte 

[474], preceding the expression of HNF1α on E8.5 [422]. (2) HNF4α is able to overcome the 

repression in dedifferentiated hepatoma cells to induce expression of epithelial marker genes 

[530,531]. (3) HNF4α transcriptionally activates HNF1α [459]. (4) Hnfa-/- mice are embryonically 

lethal due to the lack of extraembryonic tissue development [475] while Hnf1a-/- mice are viable at 

birth and die around weaning due to hepatic dysfunction [425]. (5) HNF4α occupies around 12% of 

the hepatocyte genome as determined with human DNA microarray, while HNF1α targets 1.6% 

and HNF6 1.4%, implying that HNF4α contributes to the regulation of a large portion of liver gene 

expression [420].  

Later studies revealed the complex regulation between liver-enriched transcription factors 

and proposed that the interplay of hepatocyte nuclear factors presumably resembles a regulatory 

circuitry, rather than a linear hierarchy [527], in a context-dependent manner [420] summarized in 

Figure 1.3.  
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SPECIFIC AIMS 

In summary, liver regeneration encompasses crosstalk from different cell types, 

interactions of various signaling pathways, and modulation of the chromatin architecture to initiate 

complex networks of transcriptional regulation. While the regenerative response is well described 

in PHx, it is less evident in injury models. Hence, the goal of this thesis is to utilize unbiased 

transcriptome- and epigenome-wide techniques to identify regulators of liver regeneration following 

acute injury. I hypothesize that investigating the modifications of gene expression and chromatin 

accessibility via cell type-specific analyses of regenerating hepatocytes in the Fah-/- model will 

enable the identification of essential factors of liver repopulation. 

In Specific Aim 1, I propose to perform transcriptomic profiling of regenerating hepatocytes 

to identify drivers of liver proliferation. With the combination of the translating ribosome affinity 

purification (TRAP) system [532] and the Fah-/- model, regenerating hepatocytes will be explicitly 

isolated followed by high-throughput RNA-sequencing (TRAP-seq) to interrogate gene expression 

alterations during liver repopulation. Overexpression and inhibition studies will be carried out to 

investigate the functional significance of genes of interest as promoters of hepatocyte replication 

following acute liver injury. 

In Specific Aim 2, I will assess the assotiation of chromatin accessibility modification and 

gene expression regulation during the repopulation process. With the implementation of the ' 

isolation of nuclei tagged in specific cell types' (INTACT) method [533] in the Fah-/- mouse, 

regenerating hepatocyte nuclei will be labeled and sorted followed by the 'assay for transposase 

accessible chromatin with high-throughput sequencing' (ATAC-seq) [534] to elucidate changes in 

the chromatin landscape. I propose to integrate multiomic datasets to identify crucial transcription 

factors and regulatory networks that underlie the regenerative process.  

This thesis combines a mouse model reflective of human diseases, systematic in vivo 

analyses, and functional validation of genes and transcription factors during liver regeneration. By 

addressing these aims, I expect to identify novel therapeutic targets and critical regulators to 

enhance liver regeneration following acute injury. 
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FIGURES 

Figure 0.1. Schematic representation of a liver lobule. 

 

The liver consists of various cell types including hepatocytes, cholangiocytes, stellate cells, Kupffer 

cells, and sinusoidal endothelial cells. The portal triad is located in zone one and contains the bile 

duct, hepatic artery, and portal vein, whereas the central vein resides in zone three. Together, the 

portal vein and the hepatic artery move through the sinusoid toward the central vein to provide 

blood supply to the liver. On the contrary, bile acids move from zone three to zone one in the bile 

duct.  
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Figure 0.2. Regulation of the cell cycle by cyclin proteins and cyclin-dependent kinases (CDK). 

 

The cell cycle is tightly controlled by the rise and fall of cyclin proteins that lead to the activation of 

CDKs to promote progression through cell cycle checkpoints. 
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Figure 0.3. Liver-enriched transcription factors form a complex regulatory network. 

 

HNF4α activates HNF1α expression [459,535]. HNF1α negatively autoregulates its own expression 

[536] and inhibits HNF4α via suppression of the AF2- domain [537]. HNF1α also binds to a 3’ 

enhancer site to activate FOXA3 transcription [538]. HNF6 activates FOXA2 [488] and HNF4α 

[489], while FOXA2 is required for FOXA1 expression [539]. Additionally, FOXA1 and 2 compete 

for FOXA motifs on HNF1α and HNF4α, in which FOXA1 represses while FOXA2 induces HNF1α 

and HNF4α transcription [539]. Finally, C/EBPα binds to the FOXA2 promoter for transcriptional 

activation [540]. 
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CHAPTER 2  

TRAP-SEQ IDENTIFIES CYSTINE/GLUTAMATE ANTIPORTER AS A DRIVER OF 

RECOVERY FROM LIVER INJURY 
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ABSTRACT 

Understanding the molecular basis of the regenerative response following hepatic injury 

holds promise for improved treatment of liver diseases. Here, we report an innovative method to 

profile gene expression specifically in the hepatocytes that regenerate the liver following toxic 

injury. We used the Fah-/- mouse, a model of hereditary tyrosinemia, which conditionally undergoes 

severe liver injury unless fumarylacetoacetate hydrolase (FAH) expression is reconstituted 

ectopically. We used translating ribosome affinity purification followed by high-throughput RNA 

sequencing (TRAP-seq) to isolate mRNAs specific to repopulating hepatocytes. We uncovered 

upstream regulators and important signaling pathways that are highly enriched in genes changed 

in regenerating hepatocytes. Specifically, we found that glutathione metabolism, particularly the 

gene Slc7a11 encoding the cystine/glutamate antiporter (xCT), is massively upregulated during 

liver regeneration. Furthermore, we show that Slc7a11 overexpression in hepatocytes enhances, 

and its suppression inhibits, repopulation following toxic injury. TRAP-seq allows cell type-specific 

expression profiling in repopulating hepatocytes and identified xCT, a factor that supports 

antioxidant responses during liver regeneration. xCT has potential as a therapeutic target for 

enhancing liver regeneration in response to liver injury. 
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INTRODUCTION 

The liver is the main metabolic organ in the body; it is the nexus for homeostasis of 

carbohydrates, proteins, and lipids, and it eliminates waste products by oxidation and reduction, 

conjugation, and excretion into the bile. As such, the liver is exposed to environmental toxins that 

can severely damage hepatocytes and cause acute liver failure [1]. Animals have conserved the 

ability to regenerate the liver parenchyma upon damage [2] and to restore full mass and function 

even with the loss of up to 75% of hepatocytes [3].  

Liver cells in adult animals are normally quiescent and divide infrequently. With acute tissue 

damage, however, mature hepatocytes and cholangiocytes enter the cell cycle and divide [4]. In 

addition, hepatocyte proliferation occurs after partial hepatectomy (PHx), a noninflammatory liver 

regeneration model in which up to two-thirds of the liver is removed [5]. In rodents, this leads to cell 

division in most hepatocytes within hours and expansion of the remnant organ over the course of 

1 to 2 weeks, until the entire mass of the liver is restored. Because PHx is relatively easily carried 

out in rodents, it has been used to study liver regeneration in mice for decades [5,6]. In fact, many 

studies have profiled changes in gene expression during regeneration, and a number of important 

genes and pathways have been identified [7–9]. The common theme from these studies is that cell-

cycle genes are upregulated and metabolic genes are downregulated as hepatocytes divide to 

recover from PHx. 

Other paradigms to study liver regeneration utilize injury models involving treatment of 

animals with hepatotoxins to examine the expression changes of injured liver tissue taken en bloc 

[10–12]. However, until now there has been no methodology to distinguish the responses of the 

healthy, repopulating liver cells from those of damaged hepatocytes and inflammatory cells. In 

clinically relevant hepatic injury, a minority of cells may be protected from the initial insult and thus 

poised to drive repopulation [13,14]. It is therefore important to establish which genes in the 

repopulating hepatocyte drive regeneration in the setting of widespread injury.  

The mouse model of hereditary tyrosinemia, an inborn error of tyrosine metabolism caused 

by a deficiency of fumarylacetoacetate hydrolase (FAH) enzyme [14], is useful for studying the 
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mechanisms of liver regeneration, since repopulating hepatocytes can be labeled as they divide to 

restore liver function after injury. Homozygous null (Fah-/-) mice die at birth with hepatic dysfunction 

from toxic metabolites but can be maintained in a healthy state by the drug 2-(2-nitro-4-

trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) [14]. Alternatively, gene therapy that 

restores FAH expression can normalize tyrosine catabolism within hepatocytes and allow liver 

repopulation by the corrected cells upon NTBC removal [15]. Our previous work also demonstrated 

that transgenes can be coexpressed with FAH and can be used to genetically trace repopulating 

hepatocytes over time [15,16].  

Here, we use translating ribosome affinity purification (TRAP) [17] followed by high-

throughput RNA sequencing (TRAP-seq) to profile the gene expression pattern specific to 

repopulating hepatocytes. Slc7a11, encoding the cystine/glutamate antiporter (xCT), was 

massively activated in regenerating hepatocytes. xCT imports cystine as a precursor for glutathione 

(GSH) synthesis [18,19]. We show that ectopic expression of xCT promotes liver repopulation, 

whereas CRISPR/Cas9-mediated mutation of Slc7a11 causes a decrease in replicating 

hepatocytes. These findings indicate the functional significance of xCT and suggest that activation 

of Slc7a11 could be used clinically to support therapeutic liver regeneration in the setting of acute 

liver injury. 
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RESULTS 

TRAP enables lineage-tracing of repopulating hepatocytes 

With the goal of specifically isolating repopulating hepatocytes from the injured liver to 

perform RNA-seq, we initially set out to lineage trace repopulating hepatocytes with GFP and 

isolate tagged cells by FACS for expression analysis. However, we encountered several problems. 

First, the fragility of hepatocytes undergoing repopulation led to poor recovery following liver 

perfusion. Second, the large size of the repopulating hepatocytes hampered the yield and purity of 

isolated cells by sorting. Finally, the process from organ harvest to cell isolation took more than 2 

h, which may have altered the expression profile. 

Next, we turned to TRAP-seq (Figure 2.1A), which enables the immunoprecipitation of 

ribosome-bound, translating mRNA from cells that express a fusion protein of the ribosomal protein 

L10a and GFP (GFP-L10a) [17]. The fusion protein was subcloned into the coexpression vector 

pKT2/Fah-mCa//SB [15] to construct pKT2/Fah-Gfp-L10a//SB (TRAP vector), which expresses 

FAH together with GFP-L10a. The TRAP vector utilizes the Sleeping Beauty transposon system 

for stable plasmid integration into the hepatocyte genome [15]. The TRAP vector was 

hydrodynamically injected into Fah-/- mice, and NTBC was withdrawn to induce liver injury and 

create pressure for the selection of hepatocytes that stably express FAH to repopulate the liver. An 

estimated 0.1% to 1% of hepatocytes integrated the plasmid stably into their genomes [20]. Tissue 

was harvested 1 or 4 weeks after injection, and GFP-tagged polysomes were extracted to isolate 

translating mRNAs specifically from repopulating hepatocytes (Figure 2.1B). No RNA was 

recovered from mice that were not injected with the TRAP vector, indicating the specificity of TRAP 

isolation. Three mice in the four-week regeneration group had a greater degree of weight loss 

(Figure 2.2), which was suggestive of more severe injury. Indeed, livers from these mice had large 

areas lacking GFP staining, indicating a reduced level of initial plasmid uptake (Figure 2.1C). 

Hence, we grouped these mice into a separate category termed “4-week regeneration after severe 

injury.” Immunofluorescence (IF) analysis of liver sections confirmed that the majority of 

proliferating hepatocytes also expressed GFP (Figure 2.1C). Thus, TRAP allows for mRNA 
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isolation selectively from hepatocytes repopulating the injured liver, without contamination from 

dying hepatocytes or inflammatory cells. 

 

TRAP allows hepatocyte-specific RNA isolation from the quiescent liver 

To obtain mRNA from quiescent hepatocytes as a reference for TRAP-seq, we used the 

RosaLSL-GFP-L10a mouse, in which expression of GFP-L10a can be activated following Cre expression 

[21]. We injected RosaLSL-GFP-L10a mice with hepatocyte-specific AAV8-TBG-Cre [22,23] and 

performed TRAP to isolate hepatocyte mRNA 1 week later (Figure 2.1A). IHC of liver tissue from 

these mice confirmed that GFP expression was only found in hepatocytes following AAV8-TBG-

Cre injection (Figure 2.1C). GFP and Ki67 colabeling revealed very few actively dividing 

hepatocytes (Figure 2.1C), consistent with the quiescent liver state. 

High-throughput sequencing of cDNA libraries derived from 16 samples of TRAP-isolated 

mRNA obtained, on average, 5.8 million uniquely mapped reads (Supplementary Digital Table 2.1). 

As expected in pure hepatic mRNA, the 10 most abundant transcripts in the quiescent animals 

were specific to hepatocytes (Table 2.1) [24–26]. Hepatocyte-specific genes such as Alb and Ttr 

were highly abundant in hepatocytes from all samples, whereas the biliary epithelium markers 

CK19, CK7, CFTR, and PKD2, as well as transcripts from other cell types in the liver, were nearly 

undetectable (Table 2.2) [27,28], demonstrating the exquisite specificity of the TRAP method. 

TRAP-seq detects differentially expressed genes in repopulating hepatocytes 

Differential gene expression analysis identified 6,745 genes that change in expression in 

repopulating compared with quiescent hepatocytes (Supplementary Digital Table 2.2); 3,418 were 

significantly upregulated and 3,380 downregulated (FDR ≤ 5%) (Figure 2.3A). Hierarchical 

clustering of the differentially expressed genes showed a distinct separation between quiescent 

and repopulating hepatocytes (Figure 2.3B). Notably, the 4-week regeneration group clustered 

closer to the 1-week regeneration group, demonstrating that TRAP-seq allows identification of 

different levels of liver regeneration. To establish whether the differentially expressed genes fall 

into defined regulatory networks, we used pathway analysis and focused on the highly validated 
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Kyoto Encyclopedia of Genes and Genomes (KEGG) network collection [29,30] (Figure 2.3C). 

Pathways controlling replication and growth were overrepresented among the upregulated genes, 

including those regulating the cell cycle and DNA replication, indicating that genes involved in cell 

replication were activated during liver repopulation, as expected. Strikingly, the GSH metabolic 

pathway was strongly activated in regenerating hepatocytes, aligning with previous studies 

showing that control of oxidative stress plays a crucial role in the regenerative response following 

toxic liver injury [31]. Interestingly, metabolic pathways were enriched in both activated and 

inhibited genes, reflecting the important metabolic regulation of hepatocytes, although the genes 

at play were different in the 2 groups (Supplementary Digital Table 2.3). Upregulated metabolic 

genes included redox processes, whereas repressed genes regulate lipid biosynthesis, 

corroborating previous findings that hepatocytes limit the activity of metabolic networks to conserve 

energy for rapid cell replication and DNA synthesis during regeneration [6]. 

The key regulatory nodes enriched in differentially expressed genes were analyzed with 

Ingenuity Pathway Analysis, which takes into account the degree of change of each gene to 

generate putative regulatory networks and predict activation or inhibition of the pathways. We 

identified 227 upstream regulators, of which 24 met the following additional filters: (a) significant Z-

scores (≥2 for predicted activation and ≤2 for predicted inhibition); (b) at least a 2-fold change in 

expression; and (c) congruence between the observed fold change and predicted state categories 

(Table 2.3). MYC, the most enriched regulator, is a proto-oncogene activated as early as 1 h after 

PHx [32] and is also upregulated in liver regeneration induced by carbon tetrachloride and 

galactosamine [33]. Previous work had identified MYC as the strongest driver of liver repopulation 

in Fah-/- mice in a cDNA overexpression screen of more than 40 genes [16], and its overexpression 

also induces spontaneous hepatocellular carcinoma (HCC) development in the Fah-/- mouse model 

within 8 weeks [34]. A second upstream regulator of the proliferative response is the transcription 

factor FOXM1, which was previously shown to enhance liver repopulation [35]. These results 

indicate that we were indeed able to profile the translating mRNA signature specifically in 
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repopulating hepatocytes and demonstrate that TRAP-seq is a robust methodology for identifying 

enriched pathways and upstream regulators. 

 

Fah-/- and PHx regeneration models share common genetic pathways 

Next, we set out to compare the transcriptional changes of regenerating hepatocytes in 

Fah-/- mice recovering from toxic injury with those occurring following PHx, a paradigm of noninjury 

regeneration. First, we reanalyzed previous RNA-seq data from whole-liver homogenates after PHx 

[36] and identified 2,321 differentially expressed genes, 1,449 of which were activated and 872 

inhibited (Figure 2.3D). Hierarchical clustering showed a distinct separation of gene regulation at 

various time points after PHx (Figure 2.3E). Interestingly, gene expression at 1 h clustered closer 

with quiescent hepatocytes, indicating that at this very early time point only a few early-response 

genes were transcriptionally regulated. Pathway analysis [29,30] showed enrichment of genes 

regulating cell-cycle and DNA synthesis pathways among the upregulated genes and those 

regulating immune and metabolic pathways among the downregulated genes (Figure 2.3F). 

We compared the gene expression changes between the Fah-/- and PHx models, defining 

congruent genes as those regulated in the same direction in both models for at least 1 time point. 

We identified a total of 1,236 congruent genes, 790 of which were activated and 446 repressed 

(Figure 2.4A). Gene expression changes that occurred at all time points in the Fah-/- repopulation 

mice were most similar to the changes observed in the PHx model at later time points (36 or 48 h 

after PHx), as shown by the high percentage of congruence. Additionally, we found that the 

percentage of congruence was higher among the upregulated genes, indicating a more similar 

gene activation pattern in the 2 regeneration models. We discovered that the top upregulated 

congruent genes — ranked by mean fold change in Fah-/- mice and subsequently retrieved from 

the PHx data set — were associated with GSH metabolism, including the genes Slc7a11 and Gsta1 

(Supplementary Digital Table 2.4) [18]. This was confirmed by pathway analysis, in which GSH 

metabolism was highly enriched in the congruently upregulated genes, along with cell-cycle, DNA 

replication, and DNA repair pathways (Figure 2.4C). Immune response and metabolic pathways 
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were enriched among the congruently downregulated genes (Figure 2.4D). Interestingly, the 

majority of the congruent genes did not show a significant change 1 h after PHx (Supplementary 

Digital Table 2.4), as at this stage, hepatocytes still resembled quiescent hepatocytes, with 

activation of only a few immediate early genes [2]. 

Of note, 2 of the top congruently upregulated genes, Ly6d and Pbk, are not typically 

expressed in hepatocytes. The average fragments per kilobase of transcript per million mapped 

(FPKM) reads for these genes in the quiescent hepatocytes were 2.7 and 0.01, but increased to 

504.4 and 6.6 in regenerating hepatocytes, respectively (Supplementary Digital Table 2.2). Ly6d 

expression has been shown to be associated with HCC and liver regeneration after injury [37,38], 

while Pbk has been detected in HCC and cholangiocarcinoma [39,40]. This further demonstrates 

the sensitivity and specificity of TRAP-seq in detecting expression changes in a unique 

subpopulation of the liver — that of the regenerating hepatocytes. 

Additionally, we identified genes that were only changed in 1 model but not the other 

(unique genes), of which 5,510 were unique to Fah-/- mice, and 1,033 were unique to the PHx model 

(Figure 2.4B). Of note, in both models, the percentage of unique genes compared with the total 

number of differentially expressed genes was approximately 81%. However, in the Fah-/- mice, up- 

and downregulated genes each constituted 50% of the unique genes, whereas in the PHx model, 

the upregulated and downregulated genes made up 64% and 36% of the unique genes, 

respectively. To further identify the biological pathways specific to each model, pathway enrichment 

analysis was performed on the unique genes [29,30], and overrepresented networks were identified 

(Figure 2.4, C and D). In Fah-/- mice, liver injury response categories such as alcoholism and viral 

carcinogenesis were uniquely activated, while immune response and metabolic pathways were 

uniquely inhibited. On the other hand, no significant pathway activation was unique to the PHx 

model, whereas the pancreatic secretion and protein and fat digestion/absorption pathways were 

uniquely inhibited. The striking difference in enriched pathways demonstrates the gene expression 

signatures that differentiate the 2 regeneration paradigms, in which injury response and immune 

modulation are unique to Fah-/- mice and nutrient redistribution is integral to the PHx model. 
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Recently, single-molecule RNA-FISH combined with single-cell RNA-seq (scRNA-seq) has 

been applied to reconstruct the spatial heterogeneity and identify novel zonal signature genes 

within the quiescent liver [41]. While TRAP-seq utilizes bulk RNA-seq and therefore cannot inform 

a spatial resolution of transcriptional changes during regeneration, we compared the expression 

profiles of quiescent hepatocytes from TRAP-seq with the scRNA-seq data. We reasoned that since 

all hepatocytes express GFP-L10a in the quiescent liver (Figure 2.1C), the isolated transcripts from 

TRAPseq should have an equal representation of the genes identified from the 9 different 

subpopulations by scRNA-seq. As expected, we found significant overlap between TRAP-seq and 

all 9 layers of scRNA-seq, with an average of 10,405 common genes, constituting 90.7% of the 

genes detected by TRAP-seq (Figure 2.5). Thus, TRAP-seq enables unbiased RNA isolation from 

all layers of hepatocytes. 

 

Slc7a11 is massively upregulated in regenerating hepatocytes 

The comparison of the Fah-/- and PHx models revealed Slc7a11 as the most significantly 

activated gene in both paradigms, with a remarkable increase of 900-fold in the former and 200-

fold in the latter (Supplementary Digital Table 2.4). Slc7a11 encodes xCT, a sodium-independent 

transporter for cystine import and glutamate export [19]. After entering the cell, cystine is rapidly 

reduced to cysteine, a precursor for GSH synthesis necessary for cellular defense against oxidative 

stress [18]. Previous studies indicated that deficiency of glutamate-cysteine ligase, the rate-limiting 

enzyme in GSH synthesis, leads to decreased hepatocyte proliferation in vitro and delayed 

regeneration after PHx [42,43]. However, the role of xCT in liver regeneration has not been studied. 

We hypothesized that xCT upregulation supports actively repopulating hepatocytes to defend 

against increased oxidative stress during injury and regeneration (Figure 2.6A). 

To evaluate the role of xCT in liver regeneration, we first validated our observations from 

RNA-seq with quantitative real-time reverse transcription PCR (qRT-PCR) on TRAP-purified mRNA 

and confirmed a significant upregulation of Slc7a11 and Gsta1 transcripts in repopulating 

hepatocytes (Figure 2.7A). Western blot analysis showed an increase in xCT protein in repopulating 
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livers (Figure 2.7B). Of note, there was low xCT expression in the quiescent liver, albeit no mRNA 

transcripts were present in hepatocytes. One possibility is that whole-liver homogenate was used 

for the protein analysis, and thus xCT protein from other cell types such as macrophages was 

detected [19]. Alternatively, the protein stability of Slc7a11 could exceed its RNA turnover rate. 

Regardless, the expression of Slc7a11 was significantly activated in the regenerating liver. 

We next sought to investigate whether oxidative stress is increased in Fah-/- livers during 

regeneration. We used immunohistochemical methods to detect markers of lipid peroxidation 

(malondialdehyde and 4-hydroxynonenal) and protein nitration (nitrotyrosine). We observed an 

accumulation of redox metabolites in the injured livers compared with healthy, quiescent livers 

(Figure 2.7C). These results indicate that Slc7a11 mRNA expression and xCT protein levels are 

highly enriched in repopulating hepatocytes in the presence of increased reactive oxygen and 

nitrogen species, suggesting a functional role of Slc7a11 in the regulation of liver regeneration. 

 

Ectopic Slc7a11 expression promotes liver regeneration 

To examine the functional importance of xCT activation in regenerating hepatocytes, we 

constructed plasmids coexpressing Fah and overexpressing Slc7a11 (Fah-Slc7a11) or Gfp (Fah-

Gfp). We performed a competition assay, in which equimolar amounts of Fah-Gfp and Fah-Slc7a11 

were injected into Fah-/- mice, followed by NTBC withdrawal (Figure 2.6B). After 4 weeks of 

repopulation, we observed a 2.5-fold enrichment of Fah-Slc7a11 plasmid relative to the Fah-Gfp 

control plasmid by qPCR of extracted liver genomic DNA (Figure 2.6C) as well as 

overrepresentation of HA-tagged, xCT-expressing hepatocytes compared with GFP-expressing 

cells (Figure 2.6D). These results demonstrate a positive selection for hepatocytes overexpressing 

xCT, even above the already striking activation of endogenous Slc7a11. 

To test whether Slc7a11 is required for liver regeneration, we used CRISPR/Cas9 to 

inactivate Slc7a11 specifically in the repopulating hepatocytes. We coexpressed FAH with either 

10 single-guide RNAs (sgRNAs) targeting Slc7a11 exons (Fah-sgSlc7a11) or 10 control sgRNAs 

targeting luciferase (Fah-gCtl) and performed hydrodynamic tail-vein injection of these sgRNAs, 
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together with adeno-associated virus 8 (AAV8) expressing Staphylococcus aureus Cas9 (SaCas9) 

to allow for hepatocyte-specific expression of the SaCas9 nuclease [44], which efficiently 

introduces indels comparable to those of Cas9 from S. pyogenes [45] (Figure 2.6E). Liver 

repopulation was then carried out for 4 weeks. To quantify and characterize the mutations induced 

by CRISPR/Cas9, we extracted genomic DNA from the repopulating livers, PCR amplified exon 1 

for Sanger sequencing, and performed tracking of indels by decomposition (TIDE) analysis [46]. 

We found that the 2 sgRNAs targeting the first exon of Slc7a11 exhibited different mutation 

efficiency: 29.5% and 51.6%, respectively (Figure 2.8, A and B). Furthermore, the main mutation 

introduced by SaCas9 in either sgRNA was a 5-nucleotide deletion, with an efficacy of 27.9% and 

51.6%, respectively. The difference in mutation rate could be due to the slight difference in the 

protospacer-associated motif (PAM) sequence (NNGRRT) of the 2 sgRNAs, CTGAGT and 

AAGGGT [44]. Nonetheless, TIDE analysis demonstrated that Slc7a11 was mutated through the 

expression of SaCas9 in the hepatocytes. 

We measured weight changes over the 4-week period of liver repopulation and found no 

significant weight differences in mice treated with Slc7a11 sgRNAs compared with those treated 

with control sgRNAs (Figure 2.8C). Likewise, we detected no significant difference in the liver 

weight to body weight ratio by the end of the 4-week period (Figure 2.8D). However, sgSlc7a11-

treated mice had smaller FAH repopulation nodules and fewer Ki67/FAH double-positive 

hepatocytes compared with sgCtl-treated mice (Figure 2.6F), indicating that Slc7a11 mutation 

inhibits replication of FAH-expressing cells during liver injury. It should be noted that these results 

are probably an underrepresentation of the true effect of Slc7a11 mutation, as only hepatocytes 

homozygous, not those that are heterozygous, for inactivation of Slc7a11 are expected to be at a 

growth disadvantage. Furthermore, redundant pathways could compensate for the loss of Slc7a11 

[47]. Together, these studies demonstrate the functional importance of xCT during liver 

repopulation and show that Slc7a11 overexpression is sufficient to accelerate repopulation, 

whereas Slc7a11 inactivation, while not completely abrogating regeneration, hinders hepatocyte 

replication. 
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Slc7a11 is transcriptionally activated by ATF4 

Finally, we investigated the mechanism of xCT activation during liver repopulation. Several 

transcription factors have been shown to regulate Slc7a11 expression in different contexts: nuclear 

factor E2-related factor 2 (NRF2) activates xCT during redox stress [48], activating transcription 

factor 4 (ATF4) upregulates xCT under ER stress, octamer-binding transcription factor (OCT1) 

disinhibits Slc7a11 following ethanol exposure [49], and p53 inhibits xCT under normal tumor 

suppression conditions [50]. Additionally, ATF4 is suggested to regulate the basal levels of Slc7a11 

expression [51]. 

We first performed unbiased chromatin accessibility profiling to identify regulatory elements 

at the Slc7a11 locus in hepatocytes in the basal and repopulating state. We used the isolation of 

nuclei-tagged in specific cell types (INTACT) system to label the nuclei of regenerating hepatocytes 

[52]. Specifically, the nuclear envelope protein SUN1 was tagged with GFP [53], and the resulting 

fragment was subcloned into the FAH coexpression construct (Fah-Sun1-Gfp). One week after the 

Fah-/- mice were repopulated with Fah-Sun1-Gfp, livers were harvested and sorted for GFP-positive 

nuclei (Figure 2.9A). As a quiescent control, we injected RosaLSL-Sun1-GFP mice with AAV8-TBG-Cre 

and sorted hepatocytes after 1 week (Figure 2.9A). We used the assay for transposase accessible 

chromatin using sequencing (ATAC-seq) [54,55] to profile the chromatin landscape changes after 

1 week of regeneration. Remarkably, the Slc7a11 promoter is highly accessible in the regenerating 

hepatocytes, as indicated by the strong peak present 1 week after regeneration (Figure 2.9B). In 

comparison, we observed no peak at the promoter in the quiescent liver, demonstrating a 

heterochromatic state in healthy liver cells. This observation coincides with our TRAP-seq analysis, 

in which no Slc7a11 transcripts were detected in quiescent hepatocytes, but became highly 

abundant in regenerating hepatocytes (Figure 2.7A). 

Next, to determine how Slc7a11 is activated, we performed a motif search at the open 

chromatin region of the activated promoter and identified a potential NRF2-binding site 39 bases 

and 2 potential ATF4-binding sites 39 and 66 bases upstream of the transcriptional start site (Figure 

2.9C). To assess whether ATF4 or NRF2 binds to the Slc7a11 promoter during liver repopulation, 
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we carried out ChIP-qPCR in quiescent and 4-week regenerating livers. We detected a significant 

4-fold enrichment of bound ATF4 at the Slc7a11 promoter in regenerating hepatocytes relative to 

that seen in quiescent controls. In contrast, NRF2 binding was undetected in either condition 

(Figure 2.9D), suggesting that ATF4, but not NRF2, activates Slc7a11 transcription during liver 

repopulation. 
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TABLES 

Table 2.1. Top ten abundant transcripts identified in quiescent livers. 

Gene Quiescent 1-week 
regeneration 

4-week 
regeneration 

4-week regeneration 
after severe injury 

Apoc3 22258.99 8284.08 16707.52 10378.8 
Apoa2 18465.14 8906.01 8600.62 10388.86 
Fabp1 14824 15222.48 10529.91 1586.67 
Apoc1 12632.39 14177.49 6945.49 15360.81 
Apoe 12418.85 6753.43 5936.13 10505.54 
Apoc1 11083.99 12446.11 6094.25 13496.84 
Alb 10481.08 5141.19 2962.66 9602.19 
Trf 6906.36 1267.84 1930.87 3292.12 
Gpx1 6150.21 4540.07 5258.64 5562.72 
Apoc4 5028.13 4193.01 4623.31 2596.7 

 
Numbers represent the average fragments per kilobase of transcript per million (FPKM) reads in 

each regeneration group. 
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Table 2.2. FPKM of cell type-specific transcripts detected by TRAP-seq. 

Gene Quiescent 1-week 
regeneration 

4-week 
regeneration 

4-week regeneration 
after severe injury Cell type 

Alb  10481.08 5141.19 2962.66 9602.19 Hepatocyte 
Ttr  2639.6 3072.59 1212.62 5454.57 Hepatocyte 
Cyp2e1  2424.01 588.72 1418.17 380.48 Hepatocyte 
Asgr1  1190.04 865.69 1375.35 654.07 Hepatocyte 

Krt19  0.18 0.16 0.15 1.97 Biliary 
epithelium 

Pkd2  1.28 0.71 0.79 1.56 Biliary 
epithelium 

Krt7  0.22 0 0.22 0.89 Biliary 
epithelium 

Cftr  0 0 0.02 0 Biliary 
epithelium 

Des  1.09 0.33 0.43 0.86 Stellate cell 
Acta2  0.41 0.35 0.27 0.34 Stellate cell 
Col1a1  0.04 0.42 0.26 1.22 Stellate cell 
Cd68  0.92 0.71 0.36 5.9 Kupffer cell 
Emr1  0.67 0.28 0.27 0.84 Kupffer cell 
Cd163l1  0 0 0 0 Kupffer cell 
Clec5a  0 0 0.02 0.05 Kupffer cell 
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Table 2.3. Upstream regulators predicted by Ingenuity Pathway Analysis. 

Upstream 
regulator 

Fold 
change Molecule type Predicted state Z-score P value 

MYC 3.08 Transcription regulator Activated 4.73 1.15E-24 
SREBF1 0.26 Transcription regulator Inhibited -3.97 3.32E-16 
THRB 0.50 Nuclear receptor Inhibited -2.28 4.26E-10 
E2F1 2.53 Transcription regulator Activated 2.59 2.06E-09 
FOXM1 15.67 Transcription regulator Activated 3.23 4.79E-09 
EGR1 0.33 Transcription regulator Inhibited -2.09 4.33E-08 
HBB-B1 0.11 Transporter Inhibited -2.07 7.41E-08 
SPARC 0.30 Other Inhibited -3.62 1.43E-07 
CSF1 0.48 Cytokine Inhibited -2.95 2.63E-07 
HBB-B2 0.11 Other Inhibited -2.68 5.31E-07 
ERF2 4.85 Transcription regulator Activated 2.75 9.10E-07 
USF2 0.35 Transcription regulator Inhibited -2.49 2.40E-06 
AGTR1 0.40 GPCR Inhibited -2.70 6.04E-06 
LMNB1 6.69 Other Activated 2.56 6.26E-06 
CCNE1 3.7 Transcription regulator Activated 2.07 2.14E-05 
MLXIPL 0.40 Transcription regulator Inhibited -3.70 3.19E-05 
TFEB 0.35 Transcription regulator Inhibited -2.05 3.33E-04 
S100A6 2.92 Transporter Activated 2.85 1.20E-03 
CTGF 0.44 Growth factor Inhibited -2.04 1.26E-03 
TAS1R3 0.42 GPCR Inhibited -2.14 2.02E-03 
IL15 0.37 Cytokine Inhibited -2.70 3.28E-03 
FASN 0.14 Enzyme Inhibited -2.11 1.77E-02 
TNK1 0.46 Kinase Inhibited -2.83 2.03E-02 
MLYCD 0.50 Enzyme Inhibited -2.00 2.06E-02 
 
Filter criteria: (a) significant Z-scores (≥2 for predicted activation and ≤2 for predicted inhibition); 

(b) at least 2-fold change in expression; and (c) congruence between the observed fold change 

and predicted state categories.   
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FIGURES 

Figure 2.1. Translating ribosome affinity purification (TRAP) enables cell type-specific isolation of 

RNA from quiescent and repopulating hepatocytes. 

 

(A) The approach for isolating repopulating hepatocyte RNA with the Fah-/- model involves use of 

the FAH expression construct to mediate liver repopulation and the GFP-tagged ribosomal protein 

L10a (GFP-L10a) to specifically isolate translating mRNAs with TRAP. Injection of the RosaLSL-

GFP-L10a mouse with the AAV8-TBG-Cre virus, which has a tropism for hepatocytes and has a 

hepatocyte-specific promoter driving Cre expression in nearly all hepatocytes, allows for 

immunoprecipitation of translating mRNA from quiescent hepatocytes. (B) Bioanalyzer tracings of 

affinity-purified RNA from mice treated with or without the TRAP vector. FU, fluorescence units. (C) 

Representative (n = 3) IHC images of GFP show progressive repopulation over time in Fah-/- mice 

as well as complete labeling of quiescent hepatocytes in RosaLSL-GFP-L10a mice 1 week after injection 
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of AAV8-TBG-Cre. No GFP expression was observed in livers from the uninjected mice. IF of Ki67 

and GFP confirmed successful liver repopulation in Fah-/-mice injected with the TRAP vector, as all 

Ki67-positive hepatocytes express GFP. IF costaining also showed global GFP-expressing and 

rare Ki67-positive hepatocytes, indicating that the control tissue was truly quiescent. Note that a 

subset of mice showed only partial repopulation at 4 weeks (4-week regeneration after severe 

injury). Scale bars: 1 mm (top) and 100 μm (bottom). 
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Figure 2.2. Mice in the 4-week regeneration after severe injury group exhibit significant weight loss. 

 

The proportion of weight loss was normalized to the initial weight prior to plasmid injection and 

NTBC removal. Bodyweight was monitored three times per week after induction of liver injury and 

regeneration. After four weeks of injury and regeneration, three mice lost ~30% of the starting 

weight (blue), significantly different from mice in the 4-week regeneration group that underwent 

initial weight loss but restored body weight after four weeks (red). A two-sided, two-tailed Student’s 

t-test was used to compare the proportion of body weight in the 4-week regeneration (n=6) and 4-

week regeneration after severe injury (n=3) groups. 
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Figure 2.3. TRAP-seq identifies differentially expressed genes specific to repopulating hepatocytes 

in the Fah-/- model. 

 

(A and D) Differential expression analysis identified 6,745 (3,418 upregulated and 3,380 

downregulated) and 2,321 (1,449 upregulated and 872 downregulated) genes as being significantly 

altered in repopulating hepatocytes in the Fah-/- (A) and PHx (D) models (36), respectively, 

compared with quiescent controls. Red, 1-week Fah-/- regeneration and 1 h after PHx; blue, 4-week 

Fah-/- regeneration and 36 h after PHx; green, 4-week Fah-/- regeneration after severe injury and 

48 h after PHx. (B and E) Hierarchical clustering of differentially expressed genes of quiescent and 

repopulating hepatocytes at different time points. (C and F) KEGG pathways significantly enriched 

for the sets of activated and repressed genes, respectively, in the Fah-/- (C) and PHx (F) data sets. 
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Figure 2.4. Comparison of the Fah-/- TRAP-seq data with RNA-seq data from the PHx model 

identifies common and unique characteristics of liver repopulation paradigms. 

 

(A) A total of 1,236 genes were significantly altered in the same direction in both models [36] for at 

least 1 time point (congruent genes). Of these genes, 790 were activated and 446 inhibited. Labels 

indicate the number of congruent genes at each time point. (B) A total of 5,510 and 1,033 genes 

were uniquely changed in the Fah-/- and PHx models, respectively. (C and D) Comparison of the 

KEGG pathways enriched for genes upregulated (C) and downregulated (D) in the congruent 

(Cong) and unique gene sets. 
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Figure 2.5. Comparison of identified transcripts from single-cell RNA-seq (scRNA-seq) [41] shows 

significant overlap between TRAP-seq and all nine layers of scRNA-seq. 

 

Genes identified in the quiescent samples from TRAP-seq was compared to that from scRNA-seq. 

Bar height indicates the number of overlapping genes identified in two techniques. Line and data 

points indicate the percentage overlap from each scRNA-seq layer compared to TRAP-seq. A 

hypergeometric test was used to calculate the significance of overlapping genes from the two 

sequencing methods. 
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Figure 2.6. Slc7a11 enhances hepatocyte repopulation. 

 

(A) The Slc7a11 gene product (xCT) imports cystine, which is used for GSH synthesis to alleviate 

oxidative stress. Several GSH metabolic enzymes were significantly (FDR ≤ 5%) upregulated (red) 

in repopulating hepatocytes from Fah-/- mice. GSSG, glutathione disulfide; GCL, glutamate-

cysteine ligase; GSS, glutathione synthetase; GST, glutathione S-transferase; GSR, glutathione 

reductase; GPX, glutathione peroxidase. (B) Schematic of the competition assay to determine the 

effects of Slc7a11 overexpression on repopulation. (C) The Fah-Slc7a11 plasmid was significantly 

enriched after 4 weeks of repopulation. A 1-sample, 2-tailed Student’s t-test was used to compare 

the ratio of 2 plasmids before and after repopulation (n = 8). (D) Representative IF staining and 

quantification showing a significant increase in xCT-positive hepatocytes. A paired, 2-tailed 

Student’s t-test was used to compare HA- and GFP-expressing hepatocytes (n = 5). Scale bar: 100 

μm. (E) Schematic of the CRISPR/Cas9 system used to inactivate Slc7a11 in Fah-/- mice. sgCtl, 

sgRNAs targeting firefly luciferase. (F) Representative IHC and IF images and quantification 

showing a significant reduction in repopulation nodules and replicating hepatocytes in mice treated 
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with sgRNAs targeting Slc7a11 (sgSlc7a11) compared with control mice treated with sgCtl. A 2-

sample, 2-tailed Student’s t-test was used to compare groups (n = 4 each). Scale bars: 300 μm 

(top) and 100 μm (bottom). 
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Figure 2.7. Slc7a11 is activated at the transcript and protein levels under increased oxidative stress 

during liver regeneration. 

 

(A) Real-time reverse transcription PCR (qRT-PCR) analysis showed continuous upregulation of 

Slc7a11 and Gsta1, both involved in GSH metabolism, in repopulating hepatocytes. A two-sample, 

two-tailed Student’s t-test was used to compare repopulating and quiescent hepatocytes. * p<0.05, 

*** p<0.001 (n=4, quiescent and 1-week regeneration; n=3, 4-week regeneration and 4-week 

regeneration after severe injury). (B) Western blot analysis confirmed the activation of xCT in the 

regenerating liver. (C) IHC staining of lipid peroxidation markers (malondialdehyde and 4-

hydroxynonenal) and protein nitration (nitrotyrosine) showed accumulation of redox metabolites in 

the injured, repopulating liver compared to healthy, quiescent livers. Scale bar: 100µm.  
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Figure 2.8. No significant differences in the weight of mice with Slc7a11 inhibition compared to 

control after 4 weeks of repopulation. 

 

(A and B) Mutation analysis of Slc7a11 exon one identified differential indel rates introduced by 

two single guide RNAs (sgRNA), sgSlc7a11-1 (A) and sgSlc7a11-2 (B). The x-axis indicates the 

number of nucleotides that were inserted or deleted and the y-axis indicates the percentage of 

mutation. (C) No weight differences during and after 4 weeks of repopulation and no changes in 

liver weight to body weight ratio (D) in mice treated with sgRNA against Slc7a11 (n=4) compared 

to control mice (n=4). A two-sample, two-tailed Student’s t-test was used to compare mice treated 

with Slc7a11 and control sgRNAs. 
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Figure 2.9. Slc7a11 is activated by ATF4 during liver repopulation. 

 

(A) Schematic of our approach utilizing the GFP-labeled nuclear envelope protein SUN1 to isolate 

hepatocyte nuclei [53], followed by ATAC-seq [54,55] analysis. (B) ATAC-seq identified an open 

chromatin state at the promoter region of Slc7a11 specifically in regenerating hepatocytes (n = 2, 

quiescent; n = 4, 1-week regeneration). (C) The open chromatin region of the Slc7a11 promoter 

contains binding motifs for NRF2 and ATF4. (D) ChIP-qPCR showed a 4-fold enrichment of ATF4 

binding to the Slc7a11 promoter after 4 weeks of liver regeneration, while no enrichment in NRF2 

binding was observed. The Wilcoxon rank-sum test was used to compare the differential binding in 

regenerating and quiescent livers (n = 3, quiescent; n = 6, 4-week regeneration).  
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DISCUSSION 

Here, we performed what we believe to be the first expression profile specific to 

repopulating hepatocytes by integrating the TRAP assay with the Fah-/- mouse model. We identified 

important signaling networks and regulators, including upregulation of the cell-cycle and GSH 

metabolic pathways, and several activated transcription factors such as MYC and FOXM1. 

Bioinformatics analysis comparing the gene expression of Fah-/- and PHx regeneration models 

identified pathways common to both models, i.e., cell cycle and GSH metabolism pathway genes 

among the congruently activated genes, and immune response pathway genes among the 

congruently inhibited genes. We also observed that liver damage pathways are uniquely 

upregulated in Fah-/- mice, while altered biosynthetic activity is a main theme in the PHx model. 

A recent study utilizing single-cell technology to reconstruct the spatial heterogeneity of the 

liver had identified 9 distinct layers of gene expression profiles in quiescent hepatocytes [41]. We 

showed that transcripts identified from TRAP-seq significantly overlapped with those found in 

scRNA-seq, regardless of the layer, demonstrating the sensitivity and specificity of TRAP-seq in 

isolating transcripts from pure hepatocytes. Nonetheless, there are several differences between 

the 2 techniques. First, TRAP-seq utilizes bulk RNA-seq and therefore could not capture the zonal 

information by scRNA-seq. Second, TRAP-seq isolates mRNA bound to the ribosomal subunit 

L10a and hence only captures the actively translating mRNA. Third, TRAP-seq does not require 

cell sorting and therefore bypasses the time-consuming sample preprocessing required for scRNA-

seq. Previous efforts to isolate intact regenerating hepatocytes after hydrodynamic injection has 

been unsuccessful, rendering TRAP-seq a valuable alternative. Future work could apply cell layer-

specific expression of GFP-L10a to shed light on the zonal responses to liver injury and 

regeneration. 

Previous work has demonstrated the importance of controlling oxidative stress during liver 

regeneration to allow hepatocyte replication, as an elevation of ROS induces a compensatory 

upregulation of GSH to inhibit irreversible cell damage and promote hepatic replication [56]. In 

support of the central role of GSH in liver regeneration, inhibition or deficiency of glutamate-cysteine 
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ligase, the rate-limiting enzyme in GSH synthesis, leads to downregulation of cyclin expression, 

decreased hepatocyte proliferation in vitro, and delayed regeneration after PHx [42,43]. 

Furthermore, GSH is depleted in acetaminophen-induced liver injury by the toxic metabolite NAPQI 

[57], pointing to the importance of GSH detoxification and ROS homeostasis in various regenerative 

paradigms. 

Importantly, our results indicate that Slc7a11 becomes dramatically activated in 

repopulating hepatocytes, and we further show that ectopic expression of xCT concomitantly with 

the onset of liver injury promotes regeneration, probably by shielding repopulating hepatocytes 

from oxidative stress. These results highlight the therapeutic potential of activating Slc7a11 as a 

treatment for acute liver injury. We did not observe any health complications in mice overexpressing 

Slc7a11 during the 4-week period of repopulation in the Fah-/- mouse. However, determining 

whether this approach is beneficial in managing chronic liver injury and whether long term xCT 

activation is safe will require further examination. 

Recent studies have found Slc7a11 to be highly expressed in HCC, breast cancer cells, 

and gastrointestinal tumors [58–60] and have shown that pharmacological xCT inhibition induces 

growth arrest in cancer cells and decreases tumor size in mouse models [59,60]. Therefore, it is 

possible that regenerating hepatocytes experience metabolic requirements similar to those seen in 

cancer cells to increase GSH availability. This raises the question of the safety of using xCT 

antagonists in patients with HCC, as both the growth of cancer cells and regenerating hepatocytes 

would be inhibited. Interestingly, in our gene inactivation studies, while a decrease in replicating 

hepatocytes during regeneration was observed, Slc7a11 inhibition did not completely abrogate liver 

repopulation, and the mice treated with sgRNAs against Slc7a11 were still able to restore full body 

weight after 4 weeks of regeneration. This observation is consistent with recent findings that xCT 

deficiency alone is not sufficient to induce liver injury but exacerbates injury when combined with 

secondary stress such as a high-iron diet [61] or inhibition of the transsulfuration pathway [62]. In 

addition, as discussed above, Slc7a11 was probably not inactivated for both alleles in all 

regenerating hepatocyte clones. Furthermore, genetic redundancy has been proposed to underlie 
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liver regeneration, as loss of any single gene rarely leads to complete inhibition of the regenerative 

process [3]. 

In conclusion, this study demonstrates the feasibility of TRAP-seq for cell type-specific 

mRNA isolation of hepatocytes and identifies Slc7a11 as a driver that promotes recovery after 

acute liver injury. Likewise, TRAP could be used to label other cell types in the liver to study their 

roles in acute liver injury. For instance, by combining the RosaLSL-GFP-L10a mouse with a biliary-

specific Cre or stellate cell-specific Cre transgene, it will be possible to profile the cell type-specific 

gene expression for these cells during injury and regeneration. 
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MATERIALS AND METHODS 

All primer sequences are listed in Supplementary Digital Table 2.5. 

Plasmid construction 

The plasmid C2-EGFP-L10a was provided by Nathaniel Heintz (The Rockefeller University, 

New York, NY, USA). The GFP-L10a coding sequence was amplified by PCR using the primers 

L10a-R-BsiWI and MfeI-EGFP-F and subcloned into the vector pKT2/Fah-mCa//SB [15] at the 

EcoRI and BsiWI restriction sites. The vector utilizes the Sleeping Beauty (SB) transposon system 

to enable the integration of transgene sequences into the genome. The Slc7a11 cDNA was 

purchased (MG225346, OriGene) and amplified by PCR with the primers Slc7a11_clone_F1 and 

Slc7a11_psmd_bcd-R or Slc7a11-HA_bcd-R to include the HA tag. For the CRISPR/Cas9 studies, 

the vector pKT2/Fah-SpCas9//SB [34] was used to replace the SpCas9 with the SaCas9 sgRNA 

scaffold and introduce the subcloning site for further sgRNA subcloning using the oligonucleotides 

SaCas-9Ins-F and -R and the restriction enzymes SapI and EcoRI to generate the vector 

pKT2/Fah-SaCas9//SB. Next, 10 sgRNAs targeting the exon regions of Slc7a11 were designed 

with the online CRISPR RGEN Tools [63] and DESKGEN Cloud [64]. Ten sgRNAs against 

luciferase were designated as the control, and the oligonucleotides were subcloned into the 

pKT2/Fah-SaCas9//SB vector at the SapI restriction sites. For the ATAC-seq study, SUN1-GFP 

fragments with EcoRI and BsiWI restriction sites were amplified from the SUN1-GFP plasmid (a 

gift of Jeremy Nathans, Johns Hopkins University, Baltimore, MD, USA) with the primers MfeI-

Sun1-F and BsiW1-Sun1-R and subcloned into the vector pKT2/Fah-mCa//SB to generate 

pKT2/Fah-Sun1-Gfp//SB. Endotoxin-free Maxi-scale DNA extraction and purification were 

performed with the GenElute HP Plasmid Maxiprep Kit (MilliporeSigma). 

 

Mouse experiments 

Fah-/- mice were maintained on NTBC (Swedish Orphan Biovitrum) in the drinking water 

(7.5 mg/l) until hydrodynamic tail-vein injection [15] of 10 μg plasmid, as specified below. For the 

TRAP-seq study, pKT2/Fah-Gfp-L10a//SB was injected, and the mice were euthanized 1 week (n 
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= 3) or 4 weeks (n = 9) after injection. Likewise, for the overexpression assay, mice were injected 

with equimolar amounts of the plasmids pKT2/Fah-Gfp//SB and pKT2/Fah-Slc7a11//SB (n = 3) or 

pKT2/Fah-Slc7a11-HA//SB (n = 5) and euthanized 4 weeks after injection. For the CRISPR/Cas9 

studies, Mice were injected with either a mixture of 10 pKT2/Fah-sgSlc7a11//SB (n = 4) or 

pKT2/Fah-sgCtl//SB (n = 4) in conjunction with 11012 genome copies of AAV8.SaCas9 (Penn 

Vector Core [65]) for 4 weeks of repopulation. For the ATAC-seq assay, mice were injected with 

pKT2/Fah-Sun1-Gfp//SB (n = 4). One week after plasmid injection, the livers were harvested, and 

GFP-positive nuclei were isolated by FACS. Mouse weights were measured 3 times per week over 

the course of the repopulation period to ensure successful liver regeneration. RosaLSL-GFP-L10a mice 

were purchased from The Jackson Laboratory and used as a healthy control (n = 4) in the TRAP-

seq study, and the RosaLSL-GFP-L10a mice were provided by Mitchell Lazar (University of 

Pennsylvania, Philadelphia, PA, USA) as a quiescent control in the ATAC-seq (n = 2) experiments. 

AAV8.TBG.PI.Cre.rBG (Penn Vector Core [65]) was injected into the tail vein of mice at 11011 virus 

particles per mouse. Mice were euthanized after 1 week of injection, and the livers were harvested. 

All animal studies were performed in 8- to 12-week-old female mice. 

 

Translating RNA isolation 

RNA specific for repopulating hepatocytes was isolated by TRAP [17]. Briefly, 200 mg liver 

tissue was taken en bloc from mice injected with the TRAP construct and from RosaLSL-GFP-L10a 

mice, homogenized with lysis buffer, and incubated with magnetic beads that were conjugated with 

anti-GFP antibodies (clones Htz-GFP-19F7 and Htz-GFP-19C8, Memorial Sloan-Kettering 

Monoclonal Antibody Facility, New York, New York, USA) to affinity purify RNA that was bound by 

the GFP-L10a fusion protein. 

 

IHC and IF 

Liver lobes were dissected from mice and fixed with 4% paraformaldehyde, embedded in 

paraffin, and sectioned. For IHC, slides were rehydrated and subjected to antigen retrieval in 
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sodium citrate (pH 6.0). H2O2 (30%) was used for quenching endogenous peroxidases, and avidin 

D and biotin (Vector Laboratories) were used for blocking before incubation with primary antibodies 

overnight at 4 °C. The slides were then incubated with biotin-conjugated secondary antibody at 37 

°C for 30 min. The avidin-peroxidase complex was incubated at 37 °C for 30 min (VECTASTAIN 

Elite Kit, Vector Laboratories). A DAB Substrate Kit for Peroxidase (Vector Laboratories) was used 

for development and hematoxylin for counterstaining. For IF, slides were prepared as described 

above. Incubation with primary antibodies was done overnight at 4 °C in a humid chamber, followed 

by secondary antibody incubation for 2 h at room temperature. 

 

Antibodies 

GFP was detected with goat anti-GFP antibody (ab6673, 1:100, Abcam) for IHC and 

chicken anti-GFP antibody (GFP-1020, 1:300, Aves Labs) for IF staining. We used rabbit anti-

mouse Ki67 antibody (SP6, 1:300, Thermo Fisher Scientific) and anti-mouse Ki67 antibody 

(550609, 1:200, BD Biosciences) to detect proliferating cells, rabbit anti-HA antibody (sc-805, 

1:100, Santa Cruz Biotechnology) for Slc7a11-HA-positive hepatocytes, rabbit anti-mouse FAH 

antibody (ab81087, 1:500 for IHC and 1:200 for IF, Abcam), and DAPI for nuclear staining. 

 

RNA-seq 

RNA integrity was measured using an Agilent RNA 6000 Bioanalyzer (Agilent 

Technologies). cDNA libraries were made from isolated RNA with a NEBNext Ultra RNA Library 

Prep Kit for Illumina (New England BioLabs) according to the manufacturer’s instructions. Library 

quality was measured with an Agilent High Sensitivity DNA Bioanalyzer, and cDNA libraries were 

purified and qPCR quantified (Kapa Biosystems). Twenty samples of equimolar libraries were 

pooled and sequenced with an Illumina HiSeq 2500. 
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RNA-seq data analysis 

Fastq files of RNA-seq were processed using the RUM algorithm [66], with support from 

the University of Pennsylvania’s Next Generation Sequencing Core [67]. Differential gene 

expression analysis was performed using the package edgeR [68] in R software. Differentially 

expressed genes were identified with a cutoff of greater than 2-fold change and an FDR of less 

than 5%. Congruent genes in Fah-/- and PHx models were defined as genes regulated in the same 

direction for at least 1 time point in both models. Quantile-normalized reads were used for 

generating the heatmaps with the R package aheatmap, and Venn diagrams were created using 

Vennerable. Gene ontology was performed using the Database for Annotation, Visualization, and 

Integrated Discovery (DAVID) [29,30]. The top 3,000 upregulated and downregulated genes were 

uploaded to DAVID and analyzed using the functional annotation tool. A list of enriched KEGG 

pathways was obtained from the functional annotation chart report. The top-10 most significantly 

enriched KEGG pathways were selected and sorted according to the Bonferroni-corrected p-value. 

In addition, all differentially expressed genes, along with their corresponding fold change, were 

uploaded into the Ingenuity Pathway Analysis tool, and functional analysis was performed using 

the Core Analysis function. The upstream regulators predicted by Ingenuity Pathway Analysis were 

further filtered by (a) genes that were also changed in the RNA-seq analysis by at least 2-fold, (b) 

a significant Z-score (≥2 for predicted activation and ≤2 for predicted inhibition), and (c) congruence 

between the observed fold change and the predicted activation or inhibition. 

 

Quantitative reverse-transcription with polymerase chain reaction (qRT-PCR) 

Extracted RNAs were reverse transcribed to cDNA with SuperScript II Reverse 

Transcriptase (Invitrogen, Thermo Fisher Scientific), and qRT-PCR was performed with Slc7a11 

primers (Slc7a11-qRTPCR-F and -R), Gsta1 primers (Gsta1-qRTPCR-F and -R), and Tbp primers 

(Tbp-qRTPCR-F and -R). Relative expression levels were normalized to Tbp. 
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Quantitative PCR (qPCR) 

Genomic DNA was extracted from mice injected with equimolar amounts of pKT2/Fah-

Gfp//SB (Fah-Gfp) and pKT2/Fah-Slc7a11-HA//SB (Fah-Slc7a11-HA) over a 4-week period with a 

DNeasy Blood and Tissue Kit (QIAGEN), followed by ethanol precipitation. qPCR was performed 

with PrimeTime primer sets (IDT DNA) Slc7a11 (Slc7a11-qPCR-F, -R, and -P) and Gfp (Gfp-qPCR-

F, -R, and -P). Standard curves were generated by performing a serial dilution of the input plasmid 

with equimolar amounts of Fah-Gfp and Fah-Slc7a11-HA. 

 

Western blotting 

Proteins were extracted from whole-liver homogenate with lysis buffer containing 50 mM 

Tris, pH 7.5, 0.5 mM EDTA, 150 mM NaCl, 10% glycerol, 1% NP-40, and 1% SDS, supplemented 

with 1:100 Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific). The lysates were sonicated 

at 30-second intervals for 5 min and electrophoresed on 4% to 12% NuPAGE Precast Gels (Life 

Technologies, Thermo Fisher Scientific). A nitrocellulose membrane was used for transfer, and 5% 

milk in TBST (TBS plus 0.1% Tween-20) was used to block the membrane at room temperature for 

1 h. The anti-mouse xCT antibody (sc-79360, 1:200, Santa Cruz Biotechnology) was diluted in 5% 

BSA in TBST and incubated overnight at 4 °C. The membrane was washed with TBST 3 times for 

10 min, followed by an HRP-conjugated secondary antibody in 5% milk in TBST for 1 h, and then 

exposed to film. 

 

Hepatocyte nuclei isolation and sorting 

Livers were harvested and nuclei isolation was performed as previously described [69]. 

Briefly, liver was dounced in a pestle tissue grinder in 10 ml hypotonic buffer (10 mM Tris-HCl, 

pH7.5, 2 mM MgCl2, 3 mM CaCl2) on ice. The homogenate was passed through a 100-μm filter 

and sedimented at 400 g at 4 °C for 10 min. The pellet was resuspended in 10 ml hypotonic buffer 

with 10% glycerol, and 10 ml lysis buffer (hypotonic buffer, 10% glycerol, 1% IGEPAL CA-630) was 
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added dropwise. After 5 min of incubation, the solution was centrifuged at 600 g for 5 min at 4 °C. 

The isolated nuclei were washed again in lysis buffer, and nuclei were counted in a hemocytometer. 

Isolated hepatocyte nuclei were labeled with an Alexa Fluor 647 anti-GFP antibody 

(338006, clone FM264G, 1:25, BioLegend). Immediately before cell sorting, the nuclei suspension 

was stained with 2 μg/ml DAPI. GFP– and AF647–double-positive nuclei were sorted using a BD 

FACSAria II, after gating for DAPI-positive nuclei. Because of the polyploidy state of the 

hepatocytes, only 4n nuclei were collected. 

 

ATAC-seq 

Sorted hepatocyte nuclei were tagmented and PCR amplified according to a previously 

published ATAC-seq protocol [54,55]. Briefly, 25,000 nuclei were aliquoted, and transposition was 

performed at 37 °C for 30 min. The transposition reaction was stopped by Buffer ERC (QIAGEN), 

and DNA was purified using the QIAGEN MinElute Reaction Cleanup Kit. Genomic fragments were 

preamplified for 5 cycles, and the final amplification cycle was determined by qPCR. The libraries 

were size selected with Agencourt AMPure XP beads (Beckman Coulter) and sequenced with an 

Illumina HiSeq 4000. ATAC-seq data analysis. Fastq files from ATAC-seq were analyzed with the 

pipeline developed by Anshul Kundaje (Stanford University, Stanford, CA, USA) [70]. Briefly, for 

each sample, adapters were trimmed and aligned to the genome mm9 with Bowtie. The aligned 

bam files of biological replicates were then merged and subjected to peak calling of open chromatin 

regions. The parameters for the analysis were -auto_detect_adapter -enable_idr -filt_bam-sample1 

-filt_bam-sample2 … -filt_bam-sampleN. 

 

ChIP-qPCR 

The Slc7a11 promoter was analyzed, and potential NRF2- and ATF4-binding motifs were 

identified with JASPAR [71]. Liver chromatin was prepared as previously described [72]. Briefly, 

100 mg liver was fixed and sonicated with a Bioruptor (Diagenode) for 2 rounds of 7.5 min each. 

Sheared DNA (10 μg) was then incubated with anti-ATF4 antibody (D4B8, 1:200, Cell Signaling 
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Technology) and NRF2 antibodies (D1Z9C, 1:100, Cell Signaling Technology). Immunoprecipitated 

DNA was then isolated with phenol:chloroform extraction and subjected to qPCR analysis with the 

primers Slc7a11-Nrf2/Atf4-ChIP-qPCR-2F and -2R. Fold enrichment was calculated by 

normalization to the average Ct value of Ins (Ins-ChIP-qPCR-F and -R) and Arbp (Arbp-ChIP-

qPCR-F and -R) compared with input DNA. Sequencing data download. TRAP-seq and ATAC-seq 

data have been deposited according to MINSEQE standards in the NCBI’s Gene Expression 

Omnibus database (GEO GSE109466) [73]. RNA-seq data from PHx are available in the 

ArrayExpress database (accession no.E-MTAB-1612).  

 

Statistics 

Unless otherwise indicated, a 2-tailed, 2-sample Student’s t-test was used to analyze the 

experimental and control groups in all assays performed in this study. A 2-tailed, 1-sample 

Student’s t-test was used to compare the ratio of Fah-Slc7a11 to Fah-Gfp plasmids after liver 

repopulation with the injected plasmid mix. A hypergeometric test was used to analyze the 

overlapping genes in the scRNA-seq and TRAP-seq experiments. The Wilcoxon rank-sum test was 

used to compare the differential binding of NRF2 and ATF4 in the repopulating and quiescent livers. 

A P value or FDR of less than 0.05 was considered significant. Individual data are presented as 

dot plots, with the mean shown as a horizontal line. Study approval. All animal studies were 

reviewed and approved by the IACUC of the Penn Office of Animal Welfare (University of 

Pennsylvania). 
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CHAPTER 3   

CELL TYPE-SPECIFIC EXPRESSION PROFILING IN THE MOUSE LIVER 
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ABSTRACT 

Liver repopulation after injury is a crucial feature of mammals which prevents immediate 

organ failure and death after exposure to environmental toxins. A deeper understanding of the 

changes in gene expression that occur during the regenerative process could help identify 

therapeutic targets to promote the restoration of liver function in the setting of injuries. Nonetheless, 

methods to isolate specifically the repopulating hepatocytes are inhibited by a lack of cell markers, 

limited cell numbers, and the fragility of these cells. The development of the translating ribosome 

affinity purification (TRAP) method in conjunction with the Fah-/- mouse model to recapitulate 

repopulation in the setting of liver injury allows gene expression profiling of the repopulating 

hepatocytes. With TRAP, cell type-specific translating mRNA is rapidly and efficiently isolated. We 

developed a method that utilizes TRAP with affinity-based isolation of translating mRNA from 

hepatocytes that selectively express the green fluorescent protein (GFP)-tagged ribosomal protein 

(RP) L10A, GFP:RPL10A. TRAP circumvents the long time period required for fluorescence-

activated cell sorting (FACS) that could change the gene expression profile. Furthermore, since 

only the repopulating hepatocytes express the GFP:RPL10A fusion protein, the isolated mRNA is 

devoid of contamination from the surrounding injured hepatocytes and other cell types in the liver. 

The affinity-purified mRNA is of high quality and enables downstream PCR- or high-throughput 

sequencing-based analysis of gene expression.  
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INTRODUCTION 

As the main metabolic organ in vertebrates, the liver is responsible for glucose 

homeostasis, serum protein synthesis, bile acid secretion, and xenobiotic metabolism and 

detoxification. The liver possesses an extraordinary capacity to regenerate the injured parenchyma 

upon exposure to toxins to prevent immediate liver dysfunction [1]. However, failure of regeneration 

can occur in the setting of acetaminophen or alcohol overconsumption, which can lead to acute 

liver failure [2]. Furthermore, chronic liver injury caused by viral hepatitis infection, fatty liver 

disease, and steatohepatitis frequently result in liver fibrosis, cirrhosis, and hepatocellular 

carcinoma [3]. The only available curative treatment for end-stage liver disease is transplantation 

but is currently limited by organ shortage, preventing efficient treatment for all patients [4]. A better 

understanding of the recovery process after toxic liver injury is therefore crucial for the development 

of treatments to stimulate regeneration sufficient to rescue function in the diseased organ.  

The most broadly-applied model system for the study of liver regeneration is partial 

hepatectomy in rodents, in which a large proportion of the liver is resected to stimulate rapid 

hepatocyte expansion [5]. However, partial hepatectomy does not recapitulate hepatocyte 

expansion following toxic liver injury due to the lack of immune cell infiltration and hepatocyte cell 

necrosis often observed in the setting of acute liver injury in humans [6]. A more suitable system to 

model this form of organ renewal is the Fah-/- mouse, which lacks functional fumarylacetoacetate 

hydrolase (FAH) required for proper tyrosine catabolism, and develops severe liver damage leading 

to death [7]. These mice can be maintained in a healthy state indefinitely by treatment with the drug 

nitisinone in the drinking water. Alternatively, FAH expression can be restored by transgene 

delivery to a subset of hepatocytes, which will expand to repopulate the liver upon nitisinone 

removal [8]. 

To profile the gene expression changes of repopulating hepatocytes, a tool to specifically 

isolate these cells in the Fah-/- mouse without contamination from the neighboring injured 

hepatocytes and other cell types is required. Unfortunately, fluorescence-assisted cell sorting 

(FACS) of hepatocytes is difficult since (1) the fragility of repopulating cells leads to poor recovery 
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after liver perfusion, (2) replicating hepatocytes are highly variable in size, making isolation of a 

pure population by FACS difficult, and (3) the procedure time from liver perfusion to RNA isolation 

is greater than 2 h, hence gene expression profiles may undergo substantial artificial changes prior 

to sample acquisition [9].  

Alternatively, the expression of epitope-tagged ribosomes specifically in repopulating 

hepatocytes enables the rapid isolation of actively translating mRNA bound by ribosomes using 

affinity purification immediately after organ harvest with bulk liver tissue lysates. Here, we describe 

a protocol to perform translating-ribosome affinity purification (TRAP) [10] followed by high-

throughput RNA-sequencing (TRAP-seq) to specifically isolate and profile mRNA in repopulating 

hepatocytes in the Fah-/- mouse [9]. Coexpression of green fluorescent protein (GFP)-tagged 

ribosomal protein (RP) L10A (GFP:RPL10A) with FAH allows affinity purification of translating 

mRNA bound by polysomes containing GFP:RPL10A. This method avoids any cell dissociation 

steps, such as liver perfusion to isolate fragile repopulating hepatocytes. Instead, TRAP utilizes 

whole organ tissue lysis and antibodies to rapidly extract the RNA specifically from target cells. 

Finally, isolation of abundant, high-quality mRNA via TRAP-seq enables downstream applications 

such as sequencing analysis to profile the dynamic change of gene expression during the 

repopulation process. 

  



 

124 
 

PROTOCOL 

All methods that involve the use of mice are consistent with the guidelines provided by the 

Institutional Animal Care and Use Committee (IACUC) of the Penn Office of Animal Welfare at 

the University of Pennsylvania.  

 

1. Reagent preparation 

1.1. Cycloheximide. To make 500 μl of 0.1 g/ml cycloheximide, suspend 50 mg of 

cycloheximide in 500 μl of methanol. Cycloheximide can be stored at 4 °C for up to 1 day.  

NOTE: Cycloheximide inhibits translation.  

CAUTION: cycloheximide is extremely toxic to the environment and can cause congenital 

malformation. All wastes and buffers containing cycloheximide should be collected for 

proper disposal.  

1.2. DTT. To make 1 ml of 1M DTT, suspend 0.15 g of DTT powder in RNase-free water. DTT 

can be stored at -20 °C. It is recommended to store 1M DTT in single-use aliquots of 50 μl.  

NOTE: DTT is a detergent.  

CAUTION: DTT can cause irritation to the skin, eye, and respiratory tract.  

1.3. Deoxycholate (DOC). To make 10% DOC, suspend 1 g of DOC in a 50 ml conical tube and 

add RNase-free water up to 10 ml. Shake vigorously until the powder is dissolved. The 

10% DOC solution is slightly yellow and can be stored at RT for up to 1 year.  

NOTE: DOC is used for nuclear lysis. 

1.4. GFP antibodies. Aliquot GFP antibodies when using for the first time. Snap freeze the 

aliquots and store at -80 °C. It is recommended to store 50 μg of GFP antibodies in single-

use aliquots. 

1.5. Biotinylated protein L. Resuspend biotinylated protein L in 1X PBS to make the final 

concentration 1 μg/μl. The resuspended solution can be stored at -20 °C for up to 6 months.  
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2. Buffer preparation 

2.1. BSA buffer. To make 50 ml of 3% BSA buffer, add 1.5 g of IgG- and protease-free BSA 

powder into 40 ml of PBS followed by a quick vortex. After the BSA is dissolved, add PBS 

to a final volume of 50 ml. The BSA buffer can be stored at 4 °C for up to 6 months. 

2.2. Dissection buffer. To make 50 ml of dissection buffer stock, combine 5 ml of 10X HBSS, 

125 μl of 1M HEPES, 1750 μl of 1M glucose, and 200 μl of 1M NaHCO3. Add RNase-free 

water to a final volume of 50 ml. The dissection buffer stock can be stored at 4 °C for up to 

6 months. Immediately prior to use, add 100 μg/ml of 0.1 g/ml cycloheximide and keep on 

ice.  

2.3. High-salt buffer. To make 50 ml of high-salt buffer stock, add 1 ml of 1M HEPES, 8.75 ml 

2M KCl, 500 μl 1M MgCl2, and 500 μl 100% branched octylphenoxy 

poly(ethyleneoxy)ethanol (IGEPAL) to RNase-free water. The high-salt buffer stock can be 

stored at 4 °C for up to 6 months. Immediately prior to use, add 0.5 μl/ml of 1M DTT and 1 

μl/ml of 0.1 g/ml cycloheximide. Keep the fresh high-salt buffer on ice. 

2.4. Low-salt buffer. To make 50 ml of low-salt buffer stock, add 1 ml of 1M 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES), 3.75 ml of 2M KCl, 500 μl of 1M MgCl2, and 500 

μl of 100% IGEPAL to 44.25 ml RNase-free water. The low-salt buffer stock can be stored 

at 4 °C up to 6 months. Add 0.5 μl/ml of 1M DTT and 1 μl/ml of 0.1 g/ml cycloheximide prior 

to use. Keep the fresh low-salt buffer on ice. 

2.5. Tissue lysis buffer. To make 50 ml of tissue lysis buffer stock, combine 1 ml of 1M HEPES, 

3.75 ml of 2M KCl, and 500 μl of 1M MgCl2. Add RNase-free water to a final of 50 ml. The 

dissection buffer stock can be stored at 4 °C up to 6 months. Add 1 tab/ml of EDTA-free 

protease inhibitor, 1 μl/ml of 0.1 g/ml cycloheximide, 10 μl/ml of RNase inhibitors each 

immediately prior to use. Keep the fresh tissue lysis buffer on ice. 

 

 

 



 

126 
 

3. Conjugation of antibodies to magnetic beads 

3.1. Antibodies 

3.1.1. Calculate the amount of GFP antibodies required for all samples and prepare for one extra 

sample. For each sample, 50 μg of each GFP antibody is required.  

3.1.2. Thaw GFP antibodies on ice and spin at maximum speed (> 13,000 x g) for 10 min at 4 °C 

and transfer supernatants to a new Eppendorf.  

NOTE: The antibody preparation step can be performed prior to bead preparation and the 

thawed antibodies can be kept on ice. Alternatively, this step can be performed during 

incubation of magnetic beads with biotinylated protein L.  

3.2. Resuspend magnetic beads 

3.2.1. Resuspend magnetic beads by gentle pipetting. For each sample, 150 μl of magnetic bead 

is used. Calculate the volume of magnetic bead required for all samples and prepare one 

extra.  

3.2.2. Transfer the resuspended magnetic beads to a 1.5 or 2 ml Eppendorf. If more than 1 ml is 

required for an experiment, split the total amount into equal volumes.  

3.2.3. Collect beads on a magnetic stand for > 1 min and remove the supernatant. Remove 

Eppendorf from the magnetic stand and add 1 ml PBS followed by pipetting up and down 

to wash the beads. Collect beads on a magnetic stand for > 1 min and remove PBS.  

3.3. Preparation of protein L-coated beads 

3.3.1. Take the amount of biotinylated protein L required for all samples and prepare one extra. 

For each sample, 60 μl of biotinylated protein L is used. If protein L is previously 

resuspended and stored at -20 °C, thaw on ice.  

3.3.2. Add the calculated volume of biotinylated protein L to the resuspended and washed 

magnetic beads. Add 1X PBS to make the final volume 1 ml if using a 1.5 ml Eppendorf, 

or 1.5 ml if using a 2 ml Eppendorf. Incubate magnetic beads with biotinylated protein L for 

35 min at RT on a tube rotator.  

NOTE: Antibodies can be prepared at this step during bead incubation with protein L. 
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3.3.3. Collect protein L-coated beads on a magnetic stand for > 1 min and remove the 

supernatant. Remove the Eppendorf tube from the magnetic stand and add 1 ml of 3% 

BSA buffer followed by gentle pipetting for 5 times to wash the protein L-coated beads.  

3.3.4. Collect coated beads on a magnetic stand for > 1 min and remove the supernatant. Repeat 

the washing steps with 3% BSA for another 4 times (a total of 5 times).  

3.4. Antibody binding 

3.4.1. Add the calculated amount of GFP antibodies into the protein L-coated beads and incubate 

for 1 h at 4 °C on a tube rotator.  

NOTE: After antibody incubation, take special care to not vortex or vigorously shake the 

affinity matrix as it could disrupt the binding of biotinylated protein L to the magnetic beads.  

3.4.2. During incubation, prepare low-salt buffer by calculating the total volume required for all 

samples and add 0.5 μl/ml of 1M DTT and 1 μl/ml of 0.1 g/ml cycloheximide to low-salt 

buffer stock prior to use. 3 ml of low-salt buffer for washing each tube of GFP-conjugated 

beads and 200 μl/sample for resuspension of the GFP-conjugated beads are required. 

Fresh low-salt buffer can be kept on ice for a couple of hours.  

3.4.3. Collect the affinity matrix on a magnetic stand for > 1 min and remove the supernatant. 

Add 1 ml of low-salt buffer and gently pipette up and down to wash the affinity matrix.  

3.4.4. Collect the affinity matrix on a magnetic stand for > 1 min and remove low-salt buffer. 

Repeat the washing steps with low-salt buffer for another 2 times (a total of 3 times).  

3.4.5. Resuspend the beads in low-salt buffer so that each sample has 200 μl of affinity matrix. 

3.4.6. The affinity matrix can be stored in 0.02% NaN3 at 4 °C for up to 2 weeks. The affinity 

matrix should be quickly washed in low-salt buffer 3 times and resuspended gently on a 

tube rotator at 4 °C for at least 10 min if the affinity matrix is prepared within 1 week or 

overnight if the affinity matrix is stored for over 1 week.  

CAUTION: Sodium azide is extremely toxic to the environment. Contact with acids 

produces toxic gas. All wastes should be collected for proper disposal.  

NOTE: The protocol can be paused after this step. 
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4. Liver tissue lysis 

4.1. Buffer preparation and equipment setup 

4.1.1. Calculate the number of Eppendorf tubes required, label and chill on ice. Usually, 7 1.5 ml 

Eppendorf tubes are required for each sample. 1 for the remaining dissected liver, 4 for 4 

ml of homogenized liver lysate, and 2 for transferring supernatants.  

4.1.2. Prepare fresh dissection buffer by calculating the total volume required for all samples and 

add 1 μl/ml of 0.1 g/ml cycloheximide. Place the fresh dissection buffer on ice to keep cold 

throughout the experiment. For each sample, 10 ml of dissection buffer is required.  

4.1.3. Prepare fresh lysis buffer by calculating the total volume required for all samples and add 

1 tab/10 ml of EDTA-free protease inhibitor, 1 μl/ml of 0.1 g/ml cycloheximide, and 10 μl/ml 

of RNase inhibitors each. Keep the lysis buffer on ice throughout the experiment. For each 

sample, 4 ml of lysis buffer is required.  

4.1.4. Setup the homogenizer apparatus so that the Teflon-glass tubes can be placed on ice 

during homogenization of liver pieces. Put 4 ml of cold lysis buffer in the Teflon-glass tubes. 

4.2. Repopulating liver homogenization 

4.2.1. Euthanize 8-12-week-old Fah-/- mice injected with the TRAP vector and repopulated for 

one to four weeks with anesthesia and cervical dislocation according to approved animal 

experimental guidelines.  

4.2.2. Place mice on a dissection board and spray the abdomen with 70% ethanol. Tent the skin 

and peritoneum using forceps and use scissors to make a transverse incision low in the 

abdomen and continue to cut with the scissors to make a wide U-shaped peritoneal flap, 

with care to not cut the viscera. Flip the peritoneal flap over the sternum to expose the liver. 

4.2.3. Carefully remove the liver with scissors and forceps and quickly place the tissue in cold 

dissection buffer to rinse. To homogenize frozen tissues, quickly move the desired amount 

of liver tissue into Teflon-glass tubes with cold lysis buffer without the tissue thawing.  

NOTE: The dissected tissue can be flash-frozen and stored at -80 °C after it is washed with 

dissection buffer. The protocol can be paused after this step. 
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4.2.4. Weigh the liver on a Petri dish, Isolate 200-500 mg of liver, and transfer to the Teflon-glass 

tubes. Place the remaining tissue into a pre-chilled microcentrifuge tube and flash freeze.  

NOTE: The amount of tissue used is based on the abundance of the cell type of interest.  

4.2.5. Homogenize the tissue in a motor-driven homogenizer starting at 300 rpm to dissociate 

hepatocytes from the liver structure for at least 5 strokes. Lower the glass tube each time 

but take care to not let the pestle rise above the solution to prevent aeration that could 

cause protein denaturation. 

4.2.6. Raise the speed to 900 rpm to fully homogenize the liver tissues for at least 12 full strokes.  

4.2.7. Transfer the lysate into labeled and pre-chilled Eppendorf tubes, with no more than 1 ml of 

lysate per 1.5 ml tube. If 4 ml of lysis buffer is used, keep 1 tube and flash freeze the 

remaining 3 tubes.  

NOTE: The lysates can be kept on ice for up to 1 h while dissecting the next animal and 

preparing fresh lysates. The homogenized liver can be flash-frozen after the lysis step and 

stored at -80 °C. There could be a 50% decrease in isolated RNA if frozen lysates are 

used. The protocol can be paused after this step. 

4.3. Nuclear lysis 

4.3.1. Centrifuge the liver lysate at 2,000 x g at 4 °C for 10 min and transfer the supernatant to a 

new, prechilled Eppendorf on ice.  

4.3.2. Add 1/9 of the supernatant volume of 10% IGEPAL to make a final concentration of 1% 

and mix by gently inverting the Eppendorf tubes.  

4.3.3. Quickly spin down the Eppendorf tubes and add 1/9 of the sample volume of 10% DOC to 

make a final concentration of 1% and mix by gently inverting the Eppendorf tubes. Quickly 

spin down the Eppendorf tubes and incubate on ice for 5 min.  

4.3.4. Centrifuge the nuclear lysate at 20,000 x g at 4 °C for 10 min and transfer the supernatant 

to a new, prechilled Eppendorf on ice.  

NOTE: The mitochondria-depleted supernatant can be placed on ice for a couple of hours 

while the remaining samples are being collected. 
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5. Immunoprecipitation 

5.1. For each sample, take out 1% of the total volume of the mitochondria-depleted 

supernantant as a pre-immunoprecipitation control to compare target enrichment after 

incubation with the affinity matrix. Place the pre-immunoprecipitation controls on a tube 

rotator at 4 °C overnight, the same way as the immunoprecipitated samples are processed. 

5.2. Add 200 μl of affinity matrix to each sample. Take extra care to resuspend the beads by 

gentle pipetting prior to adding the affinity matrix to each sample. Incubate the lysates with 

affinity matrix at 4 °C overnight with gentle mixing on a tube rotator.  

NOTE: The protocol can be paused for up to a day after this step. 

 

6. RNA isolation 

6.1. Removal of unbound background noise 

6.1.1. Place the magnetic rack at 4 °C for at least 30 min to pre-chill and keep the rack on ice 

throughout the experiment. 

6.1.2. Calculate the number of Eppendorf tubes required and pre-chill on ice or at 4 °C. Usually, 

each sample requires 1 Eppendorf tube for the final purified RNA. 

6.1.3. Quickly spin down the supernant incubated with the affinity matrix and collect the beads by 

placing on the magnetic rack for at least 1 min. Collect or discard the supernatant that 

contains the unbound fraction in additional Eppendorf tubes.  

NOTE: The collected supernatant can be flash-frozen and stored at -80 °C to compare with 

the bound fraction for transcript enrichment after purification.  

6.1.4. Prepare high-salt buffer by adding 0.5 μl/ml of 1M DTT and 1 μl/ml of 0.1 g/ml 

cycloheximide to high-salt buffer stock. 5 ml of high-salt buffer is required for each sample. 

6.1.5. Add 1 ml of fresh high-salt buffer to each tube followed by gentle pipetting for at least 5 

times without introducing bubbles.  

NOTE: Insufficient washing could introduce backgrounds of unbound transcripts while the 

introduction of bubbles could accelerate RNA degradation. 
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6.1.6. Collect beads on a magnetic stand for > 1 min and remove the supernatant. Repeat the 

washing steps with high-salt buffer for another 4 times (a total of 5 times).  

6.1.7. Remove remaining high-salt buffer and remove Eppendorf tubes from the magnetic stand 

and place at RT for 5 min to warm up.  

6.2. RNA isolation with column-based kits 

6.2.1. Resuspend the beads in 100 μl of lysis buffer with β-mercaptoethanol, both provided in the 

RNA isolation kit.  

NOTE: Any RNA isolation and purification kit that contains the denaturant guanidine 

thiocyanate in the lysis buffer can be used to release bound RNA from the affinity matrix. 

RNA extraction should be processed at room temperature since guanidine thiocyanate can 

crystallize at low temperatures.  

6.2.2. Vortex the beads and buffer for at least 5 sec at the highest speed, quickly spin down to 

collect the buffer on the side of the Eppendorf and incubate the beads at RT for 10 min to 

release the bead-bound RNA into the lysis buffer. 

6.2.3. Collect beads on a magnetic stand for > 1 min and collect the supernatant to proceed 

immediately to RNA cleanup according to the RNA purification protocol as specified in the 

kit.  

NOTE: The supernatant containing the eluted RNA in lysis buffer can also be stored at -80 

°C for up to 1 month prior to cleanup. To proceed after storage, warm up the tubes to RT 

upon thawing.  

6.2.4. To achieve maximum quality of the isolated RNA, perform all optional steps including 

DNase digestion and all RNA elution steps. Heat up the elution buffer provided by the RNA 

isolation kit or RNase-free water to 60 °C for maximum RNA recovery.  

NOTE: The isolated RNA can be stored at -20 °C for up to 1 month or -80 °C for several 

years. The protocol can be paused after this step. 
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7. Optional RNA quality analysis (recommended) 

7.1. Assess RNA quality using a Bioanalyzer and quantity with a Nanodrop to determine if 

repeating the immunoprecipitation process is required to obtain ample and high-quality 

RNA.  

NOTE: The optimal RNA quality for high-throughput sequencing should follow protocols 

specified by individual library preparation kits and sequencing platforms. 

 

8. Downstream applications  

NOTE: Total RNA isolated by the TRAP protocol can be used in a number of standard 

downstream applications, including RNA-seq (TRAP-seq) and reverse transcription and 

quantitative PCR (RT-qPCR).  

8.1. RNA-seq. Prepare cDNA sequencing libraries using commercial RNA-seq kits with oligo 

d(T)-based enrichment of polyadenylated (poly(A)) transcripts. Alternatively, if the total 

RNA quality is lower than recommended for poly(A) enrichment, use rRNA depletion 

modules. However, expect to see more rRNA alignment after sequencing. 

8.2. RT-qPCR. Standard reverse transcription and quantitative PCR protocols can be used 

following TRAP. 
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REPRESENTATIVE RESULTS 

To profile gene expression in repopulating hepatocytes of the Fah-/- mouse, Gfp:Rpl10a 

fusion and Fah transgenes are co-delivered within a transposon-containing plasmid [8] (TRAP 

vector) to livers by hydrodynamic injection (Figure 3.1A). The removal of nitisinone induces a toxic 

liver injury that creates a selection pressure for hepatocytes stably expressing FAH to repopulate 

the injured parenchyma [9]. Immunofluorescence staining confirms the co-expression of FAH and 

the GFP:RPL10A fusion protein in repopulating hepatocytes after two weeks of liver repopulation 

(Figure 3.1B). 

In the following representative experiment, TRAP-seq was performed using quiescent and 

repopulating mouse hepatocytes. First, to obtain GFP-tagged ribosomes from quiescent 

hepatocytes, transgenic RosaLSL-GFP-L10A mice were injected with AAV8-TBG-Cre 7 days prior to 

sacrifice to induce GFP:RPL10A expression in all hepatocytes [11]. We also processed a liver 

sample collected from a wild type mouse as a negative control to ensure isolation of translating 

mRNA was specific, meaning RNA could only be extracted from mice expressing GFP:RPL10A. 

The concentration of isolated RNA correlated with the number of cells expressing the fusion protein; 

the quiescent sample displays the highest yield since all hepatocytes express GFP:RPL10A after 

AAV8-TBG-Cre injection (Figure 3.2A). Conversely, barely any RNA was detectable in wild type 

controls that did not possess the GFP:RPL10A transgene, indicating the TRAP procedure is highly 

specific and has a low background. When TRAP was used on liver tissues undergoing repopulation 

with GFP:RPL10A-transduced hepatocytes, abundant, high-quality RNA was obtained while no 

RNA trace was detected via Bioanalyzer for the negative control sample (Figure 3.2B). 

Downstream gene expression analysis can be carried out via RT-qPCR or RNA-seq on 

TRAP-isolated RNA. Gsta1 encodes glutathione S-transferase that plays an important role in the 

metabolism of glutathione, the main detoxifying peptide to protect cellular oxidative stress damage 

[12]. Gsta1 expression is induced by over 10-fold in repopulating hepatocytes as compared to 

quiescent hepatocytes, while no CT cycle was detected with TRAP-isolated RNA from the wild type 

mouse due to the lack of input RNA (Figure 3.3A). Note that RNA quality can greatly impact gene 
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expression analysis. In the case of RNA-seq experiments, assessment of RNA quality should be 

performed according to the recommendations of the library preparation kit and the sequencing 

platform (Figure 3.3B). A Bioanalyzer is often used to determine the RNA integrity number (RIN), 

with a high RIN correlating with a higher rate of mRNA alignments to the genome (Figure 3.3B, 

left), whereas a lower RIN leading to a higher rate of ribosomal reads, indicating mRNA degradation 

(Figure 3.3B, right). Figures 3.3C and D demonstrate that TRAP-seq can identify differential gene 

expression in quiescent and repopulating hepatocytes. For instance, Alb expression is inhibited 

and Afp expression is activated during liver repopulation, reflecting that the regenerating 

hepatocytes assume a less differentiated state to inhibit liver metabolic functions during 

repopulation [9,13].  
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TABLES 

Table 3.1. Materials for the TRAP-seq protocol. 

Name of Material/ Equipment Company Catalog Number 

10 ml Tissue Grinder, Potter-Elv, Coated DWK Life Sciences 
(Wheaton) 358007 

Absolutely RNA Miniprep Kit Agilent 400800 

Anti-GFP antibodies 
Memorial Sloan-

Kettering Antibody & 
Bioresource Core 

GFP Ab #19C8 
and GFP Ab 

#19F7 
Bovine Serum Albumin, IgG-Free, Protease-
Free 

Jackson 
ImmunoResearch 001-000-162 

cOmplete, Mini, EDTA-free Protease Inhibitor 
Cocktail Roche 11836170001 

Cycloheximide Millipore Sigma C7698 
D-Glucose, Dextrose Fisher Scientific D16 
Deoxycholic acid, DOC Millipore Sigma D2510 
DL-Dithiothreitol Millipore Sigma D9779 
Dynabeads MyOne Streptavidin T1 Thermo Fisher Scientific 65602 
Fisherbrand Petri Dishes with Clear Lid Fisher Scientific FB0875712 
HBSS (10X), calcium, magnesium, no phenol 
red Thermo Fisher Scientific 14065-056 

HEPES, 1M Solution, pH 7.3, Molecular Biology 
Grade, Ultrapure, Thermo Scientific Thermo Fisher Scientific AAJ16924AE 

IGEPAL CA-630 (Octylphenoxy 
poly(ethyleneoxy)ethanol, branched) Millipore Sigma I8896 

Magnesium chloride, MgCl2  Millipore Sigma M8266 
Methanol Fisher Scientific A452 
NanoDrop 2000/2000c Spectrophotometer Thermo Fisher Scientific VV-83061-00 
NEBNext Poly(A) mRNA Magnetic Isolation 
Module New England BioLabs E7490S 

NEBNext Ultra RNA Library Prep Kit for Illumina New England BioLabs E7530S 
Nuclease-Free Water, not DEPC-Treated Ambion AM9932 

Overhead Stirrer DWK Life Sciences 
(Wheaton) 903475 

PBS Buffer (10X), pH 7.4 Ambion AM9625 
Pierce Recombinant Protein L, Biotinylated Thermo Fisher Scientific 29997 
Potassium chloride, KCl Millipore Sigma P4504 
RNaseZap RNase Decontamination Solution Invitrogen AM9780 
RNasin Ribonuclease Inhibitors Promega N2515 
RNA 6000 Pico Kit & Reagents Agilent 5067-1513 
Sodium azide, NaN3 Millipore Sigma S2002 
Sodium bicarbonate, NaHCO3 Millipore Sigma S6297 
SUPERase·In RNase Inhibitor Invitrogen AM2694 



 

136 
 

FIGURES 

Figure 3.1. Implementation of translating ribosome affinity purification (TRAP) with Fah-/- to profile 

gene expression change of repopulating hepatocytes. 

 

(A) Schematic of expressing the green fluorescent protein (GFP)-tagged ribosome protein (RP) 

subunit L10A (GFP:RPL10A) with FAH in the Sleeping Beauty transposon system followed by 

injection into the Fah-/- mouse. Green hexagons indicate repopulating hepatocytes with stable 

expression of FAH and GFP:RPL10A, whereas black hexagons represent injured, dying 

hepatocytes. (B) Representative immunofluorescence staining demonstrates coexpression of FAH 

(red) and GFP-tagged ribosomal protein L10A (green) in the repopulating hepatocytes. Scale bar, 

50 μm.  
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Figure 3.2. TRAP enables cell type-specific isolation of high-quality RNA. 

 

(A) The yield of RNA is positively correlated with the number of hepatocytes expressing 

GFP:RPL10A. The low yield of RNA from a wild type mouse demonstrates the specificity of TRAP 

from sources without the expression of GFP:RPL10A. (B) Bioanalyzer traces of total RNA isolated 

from repopulating livers expressing GFP:RPL10A and from wild type livers demonstrate the 

specificity of TRAP. Total RNA isolated from wild type liver tissue devoid of the GFP:RPL10A 

transgene shows that minimal RNA has been collected, whereas transgene-expressing tissues 

provide ample high-quality RNA. Note that ribosomal RNA peaks are present following successful 

TRAP [10]. FU, Fluorescence unit. RIN, RNA integrity number. 
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Figure 3.3. TRAP-isolated RNA can be used for downstream gene expression analysis. 

 

(A) Representative reverse transcription and quantitative PCR (RT-qPCR) results of Gsta1 in 

quiescent and repopulating hepatocytes. No Ct value was detected with RNA isolated from wild 

type animals. (B) Alignment analysis of isolated RNA after high-throughput sequencing, 

demonstrating the importance of determining RNA integrity after isolation. High-quality RNA results 

in a higher percentage of mRNA reads (green), while low-quality RNA leads to a much higher 

percentage of ribosome reads (red), as most mRNA is degraded. RIN, RNA integrity number. (C) 

and (D) IGV tracks of RNA-sequencing reads of mRNA affinity-purified from quiescent and 

repopulating hepatocytes at the (C) Alb and (D) Afp loci. Note the 3’ read bias is typical of a 

polyadenylated (poly(A)) selection pipeline. 
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DISCUSSION 

TRAP-seq is a technique for cell type-specific isolation of translating mRNA via epitope-

tagged ribosomes and presents an alternative to FACS approaches, as it circumvents limitations 

such as time requirements of FACS [9]. Instead, TRAP allows rapid and efficient isolation of RNA 

directly from bulk tissues, helping to avoid any alterations in gene expression. TRAP-seq is 

especially well-suited for use in the repopulating Fah-/- mouse liver, as hepatocyte expansion 

following removal of nitisinone is cell-autonomous and enables gene expression profiling of the 

subset of hepatocytes with integrated transgenes. The TRAP vector can also be coexpressed with 

gene-activating or -silencing molecules [14], including cDNA, short-hairpin RNA, and guide RNA, 

to study the effects on global gene expression of activation or inhibition of a specific gene. 

Alternatively, the RosaLSL-GFP-L10A transgenic mouse provides the ability to profile gene expression 

in any cell with Cre recombinase activity. Since GFP:RPL10A can be specifically expressed in any 

cells that express Cre, the role of other cell types in the liver during liver injury and repopulation 

could be studied. For instance, crossing the CK19-Cre mouse with the TRAP transgenic mouse 

could be used to express GFP:RPL10A in cholangiocytes followed by TRAP-seq to study the 

change of gene expression in the biliary epithelium during the repopulation process.  

To ensure accurate profiling of gene expression, it is critical to prepare all buffers and the 

affinity matrix prior to tissue dissection. All steps should be performed on ice with cold buffers unless 

otherwise specified to ensure polysome stabilization [10] and prevent RNA degradation. All buffers 

should be prepared with RNase-free reagents and the TRAP-seq protocol should be carried out in 

an RNase-free environment to prevent RNA degradation and low yield of immunoprecipitated RNA. 

The affinity matrix can be prepared up to 2 weeks prior to use with gentle resuspension on a tube 

rotator overnight. Special care should be taken to not vigorously shake the matrix to prevent 

disruption of the antibody-conjugated, protein L-coated magnetic beads. The methods to prepare 

the affinity matrix includes conjugation of magnetic beads to biotinylated protein L followed by 

incubation with anti-GFP antibodies. However, commercially available protein A/G magnetic beads 

can be substituted; if used, skip the initial conjugation step and proceed directly to antibody binding. 
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Furthermore, alternative epitope tags are presumably feasible with the above protocol with 

appropriate modification.  

There are various points in which the RNA isolation and purification step can be paused 

(see protocol above). However, once liver samples have been harvested, continuing to the 

immunoprecipitation is recommended, as the yield of isolated RNA could drop by ~50% with 

freezing at this step [10]. Tissues should be quickly rinsed with dissection buffer that contains 

cycloheximide to inhibit mRNA translation. Insufficient tissue lysis could also contribute to low RNA 

yield. It is critical to homogenize tissues on ice until no tissue chunks are visible with the motor 

homogenizer while ensuring minimal aeration [10]. Additionally, sufficient washing with high-salt 

buffer is crucial to ensure removal of nonspecific binding of ribosomal proteins to the affinity matrix. 

Including a wild type mouse as a negative control helps to assess the specificity of the 

immunoprecipitation and the efficiency of the wash steps. Additionally, using a commercial RNA 

purification kit that includes RNase-free DNase treatment will increase RNA purity. 

Moreover, it is recommended to verify the expression and abundance of the GFP:RPL10A 

fusion protein and assess the amount of tissue required to obtain ample RNA for downstream 

analysis. Tissue sections or lysates could be used for immuno-based detection methods to validate 

the expression of GFP:RPL10A. The amount of RNA isolated can vary by: (1) the number of cells 

expressing GFP:RPL10A, (2) the expression level of the transgene, and (3) the size and ploidy of 

the cells expressing the transgene. A pilot experiment using half and double the amount of the 

recommended amount of tissue could be useful in determining the optimal input lysate for TRAP-

seq. In our hands, we could obtain ~150 ng of RNA with as little as 1-2% of hepatocytes expressing 

GFP:RPL10A from 200 mg of the repopulating Fah-/- liver, representing ~2x105 polyploid 

hepatocytes with transgene expression [9].  

The TRAP-seq methodology isolates ribosome-bound mRNA to profile a cell’s translating 

mRNA pool. The resulting sequencing reads, therefore, correspond to the ‘translatome’ rather than 

the transcriptome. Note that translating ribosome footprints will not be collected, as TRAP is 

performed on native rather than cross-linked complexes. If footprinting analyses are desired, the 
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above protocol should be modified with relevant cross-linking followed by immunoprecipitation 

(CLIP) methodologies [15]. Another limitation of TRAP is the requirement of a sufficient amount of 

cells expressing the GFP:RPL10A fusion protein. For experiments in which the cell type of interest 

is small, combining multiple biological samples may be required to isolate sufficient RNA to enable 

RNA-seq [16]. Furthermore, TRAP-seq requires the presence of GFP:RPL10A in the cell type of 

interest. This could pose a challenge if there is no specific delivery system to the cells or if a cell-

type specific promoter to drive Cre expression is not available. 

The recent development of single-cell RNA-seq (scRNA-seq) technology has allowed 

direct sequencing followed by in silico identification of various cell types, enabling sequencing 

without sorting for specific cell types of interests [17–19]. However, scRNA-seq still requires 

dissociation of cells from the organ. In the case of the Fah-/- repopulation model, liver perfusion and 

hepatocyte isolation are extremely difficult and inefficient due to the fragility of both the injured and 

replicating hepatocytes. In fact, we have not yet been able to isolate sufficient hepatocytes from 

Fah-/- mice undergoing repopulation after hydrodynamic injection of FAH plasmids. Additionally, in 

the time it takes to process tissues, gene expression levels could change. Protocols for liver 

perfusion take up to 30 minutes of warm ischemia time. Future methodologies to optimize liver 

perfusion to decrease the processing time and increase isolation efficiency could allow scRNA-seq 

integration to the Fah-/- mouse model system and possibly to other injury and repopulation models. 

This would also support the study of all liver cell types. 

In conclusion, the integration of TRAP-seq with the Fah-/- mouse enables specific isolation 

and gene expression profiling of regenerating hepatocytes to identify therapeutic targets that could 

promote liver repopulation. This method can be implemented to study other cell types in the liver 

and other organ systems for disease-specific identification of gene expression changes to identify 

potential drug targets or biomarkers. An analogous technique can be used to collect nuclei from 

repopulating hepatocytes using affinity purification, followed by epigenetic analysis of these specific 

cells [13]. 
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CHAPTER 4  

THE DYNAMIC CHROMATIN ARCHITECTURE OF THE REGENERATING LIVER 
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ABSTRACT 

The adult liver is the main detoxification organ and is routinely exposed to environmental 

insults but retains the ability to restore its mass and function upon tissue damage. However, 

extensive injury can lead to liver failure, and chronic injury causes fibrosis, cirrhosis, and 

hepatocellular carcinoma (HCC). Currently, the transcriptional regulation of organ repair in the adult 

liver is incompletely understood. We isolated nuclei from quiescent as well as repopulating 

hepatocytes in a mouse model of hereditary tyrosinemia, which recapitulates the injury and 

repopulation seen in toxic liver injury in humans. We then performed the ‘assay for transposase 

accessible chromatin with high-throughput sequencing’ (ATAC-seq) specifically in repopulating 

hepatocytes to identify differentially accessible chromatin regions and nucleosome positioning. 

Additionally, we employed motif analysis to predict differential transcription factor occupancy and 

validated the in silico results with chromatin immunoprecipitation followed by sequencing (ChIP-

seq) for hepatocyte nuclear factor 4α (HNF4α) and CCCTC-binding factor (CTCF). Chromatin 

accessibility in repopulating hepatocytes was increased in the regulatory regions of genes 

promoting proliferation and decreased in the regulatory regions of genes involved in metabolism. 

The epigenetic changes at promoters and liver enhancers correspond with the regulation of gene 

expression, with enhancers of many liver function genes displaying a less accessible state during 

the regenerative process. Our analysis of hepatocyte-specific epigenomic changes during liver 

repopulation identified CTCF and HNF4α as key regulators of hepatocyte proliferation and 

regulation of metabolic programs. Moreover, increased CTCF occupancy at promoters and 

decreased HNF4α binding at enhancers implicate these factors as key drivers of the transcriptomic 

changes in replicating hepatocytes that enable liver repopulation. Thus, liver repopulation in the 

setting of toxic injury makes use of both general transcription factors (CTCF) for promoter 

activation, and reduced binding by a hepatocyte-enriched factor (HNF4α) to temporarily limit 

enhancer activity.  
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INTRODUCTION 

As the central metabolic organ in vertebrates, the liver regulates carbohydrate, protein, and 

lipid homeostasis, metabolizes nutrients, wastes, and xenobiotics, and synthesizes bile, amino 

acids, coagulation factors, and serum proteins [1]. To prevent acute liver failure upon exposure of 

harmful toxins, the liver has maintained an extraordinary ability to effectively restore its mass and 

function, in which the normally quiescent mature hepatocytes rapidly re-enter the cell cycle and 

divide [2]. Nonetheless, failure of regeneration can occur after exposure to harmful metabolites and 

environmental toxins, as often seen with the overconsumption of acetaminophen and alcohol [3]. 

Hence, understanding the genetic networks regulating the regenerative process can have an 

immense impact on the development of novel therapeutic strategies to treat acute liver failure.  

The Fah null mouse model of human hereditary tyrosinemia type I provides a unique 

system to study the hepatocyte replication process after acute liver injury. Lack of the 

fumarylacetoacetate hydrolase (FAH) enzyme, essential for normal tyrosine catabolism, results in 

the accumulation of toxic intermediates followed by hepatocyte cell death [4,5]. Fah-/- mice can be 

maintained in a healthy state by supplementation with the drug 2-(2-nitro-4-trifluoromethylbenzoyl)-

1,3-cyclohexanedione (NTBC) which inhibits an upstream enzymatic step that prevents toxin 

production [4]. Alternatively, gene therapy that utilizes hydrodynamic tail-vein injection and the 

Sleeping Beauty transposon system to restore Fah expression in hepatocytes can rescue these 

mice [6,7]. When a small fraction (0.1-1%) of hepatocytes express FAH following removal of NTBC, 

these hepatocytes competitively repopulate the liver in the context of injury through clonal 

expansion. Furthermore, this method allows lineage-tracing of repopulating hepatocytes since only 

those with stable FAH expression can expand and repopulate the injured parenchyma [7,8].  

Eukaryotic DNA is highly organized and structured into compact chromatin to allow tight 

transcriptional control. Transcriptional regulation can be broadly categorized into two integrated 

layers: (1) transcription factors and the transcriptional machinery, and (2) chromatin structure and 

its regulatory proteins [9]. Expression of genes targeted by transcription factors depends on their 

binding affinity to specific target DNA recognition sequences, combinatorial assembly with other 
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cofactors, the concentration of the transcription factor, and post-translational modifications that 

affect protein localization [10]. The chromatin landscape is governed by DNA methylation, 

nucleosome properties, histone modifications, and intra- and interchromosomal interactions [10]. 

Establishing the relationship of chromatin structure, transcriptional regulators, and the effects on 

gene expression is therefore vital in elucidating the transcriptional control governing the 

regenerative process. To date, most studies have relied on transcriptomic studies to document 

gene expression changes in the regenerating liver [11–15] while two others focused on histone 

modifications [16,17]. However, these processes are downstream of chromatin reorganization and 

therefore do not capture the dynamic crosstalk of chromatin accessibility and transcriptional 

regulation. To identify transcriptomic changes specific to repopulating hepatocytes, we previously 

employed the translating ribosome affinity purification (TRAP) [18] to isolate translating mRNAs 

only from repopulating hepatocytes [15]. To discern the dynamic chromatin patterns that underlie 

liver repopulation, we now implement the ‘isolation of nuclei tagged in specific cell types’ (INTACT) 

[19] approach to isolate nuclei only from repopulating hepatocytes. This is achieved by expressing 

the GFP-tagged nuclear envelope protein SUN1-GFP together with FAH in Fah-/- mice, followed by 

the sorting of GFP-positive nuclei from repopulating hepatocytes and ATAC-seq [20]. We identify 

promoter accessibility changes corresponding to upregulation of cell cycle genes and 

downregulation of metabolic pathways, consistent with previous gene expression studies [12,15]. 

Integrative expression level and chromatin accessibility analysis suggests that gene activation is 

primarily associated with increased promoter accessibility, while inactivation is correlated with the 

closure of select promoters and enhancers. We propose a model in which a more accessible 

promoter allows increased transcription factor binding and gene activation, whereas decreased 

enhancer accessibility prevents binding of hepatocyte-enriched DNA binding proteins followed by 

inhibition of liver function genes so that the repopulating liver assumes a less differentiated state to 

promote cell growth and proliferation. 
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RESULTS 

Adaptation of INTACT in the Fah-/- model allows for isolation of repopulating hepatocyte 

nuclei 

Liver cells in humans and mice rarely undergo division in homeostatic conditions [2]. 

However, with injury and repopulation, hepatocytes become facultative stem cells and divide to 

replenish liver mass and restore liver function [2]. We hypothesized that this change from 

quiescence to replication is accompanied by substantial and specific changes to chromatin 

accessibility. To analyze the chromatin specific to repopulating hepatocytes, we adapted the 

INTACT [19] method to the Fah-/- model to label hepatocytes with the GFP-tagged nuclear envelope 

protein, SUN1-GFP, and performed fluorescence-activated cell sorting (FACS) to isolate nuclei 

from whole liver at selected time points (Figure 1). The SUN1-GFP fragment was subcloned into a 

FAH expression plasmid [7] so that all repopulating hepatocytes express GFP on the nuclear 

envelope. Following hydrodynamic injection of the FAH-SUN1-GFP plasmid into Fah-/- mice, NTBC 

was removed and liver repopulation was allowed to proceed for one or four weeks (Figure 1A). As 

a control for healthy, quiescent hepatocytes, RosaLSL-SUN1-GFP transgenic mice [19] were injected 

with AAV8-TBG-Cre [21] to label all hepatocytes. Nuclei were isolated from repopulating 

hepatocytes exclusively at the selected time points by FACS-sorting with an anti-GFP antibody 

(Figure 1B). ATAC-seq [20] was then performed on the sorted nuclei to profile the changes in the 

chromatin regulatory landscape that occur during liver repopulation.  

Immunofluorescence labeling demonstrated expression of GFP-tagged nuclear envelopes 

in FAH-positive cells (Figure 1C), illustrating the specificity of using SUN1-GFP+ nuclei as a marker 

to identify repopulating hepatocytes. Interestingly, FAH and GFP signals were not homogeneous 

across all replicating cells, possibly due to the different copy numbers of plasmids taken in after 

hydrodynamic tail-vein injection of the SUN1-GFP construct [22]. In addition, since the Sleeping 

Beauty transposon system displays little insertion site preference [23], the loci in which the DNA 

fragments are integrated can affect expression levels of FAH and SUN1-GFP [24].  
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ATAC-seq detects differentially accessible chromatin regions 

All ATAC-seq libraries were sequenced to ~100 million reads to ensure ample coverage 

across the genome followed by quality assessment to verify the robustness of the data (Table 4.1). 

We observed consistent ATAC-seq signals across various loci such as the Alb gene, which showed 

a progressive decrease in accessibility at the enhancer region during repopulation (Figure 4.1A). 

To identify differentially accessible chromatin regions, fragments below 150 bp, termed 

‘nucleosome-free reads’, were used for peak calling. We identified 16,043 differentially accessible 

regions between quiescent and repopulating hepatocytes (Figure 4.1B, Supplementary Digital 

Table 4.1), of which 5,359 displayed increased accessibility in 1-week and 5,102 in 4-week 

repopulating hepatocytes, while 3,580 regions showed decreased accessibility in week 1 and 5,304 

in week 4. Hierarchical clustering of the differentially accessible sites showed a clear separation of 

repopulating and quiescent hepatocytes (Figure 4.2C), corroborating previous transcriptome 

studies that 1-week and 4-week repopulating hepatocytes have a similar expression profile distinct 

from quiescent hepatocytes [15]. Replicates also clustered within the same condition, illustrating 

the reproducibility between biological replicates. Comparing accessibility regulated in the same 

direction in both time points (‘congruent’), 1,241 peaks were congruently increased and 2,033 

congruently decreased (Figure 4.2B). Of note, only 28 regions exhibit accessibility changes in 

opposite directions in week 1 and week 4 (‘incongruent’), reflecting the similarity in the chromatin 

profile between the two repopulation time points.  

Next, we focused on differentially accessible promoter elements. Differential ATAC-seq 

regions within 1 kb up- and downstream of the transcription start sites (TSS) were determined and 

KEGG pathway [25] analysis was performed (Figure 4.2D). As expected, pathways involved in cell 

growth and proliferation were enriched among the genes with increased accessibility in the 

promoter regions during repopulation, including MAPK signaling [26] and cancer pathways. 

Interestingly, purine and pyrimidine metabolism were only enriched in genes with increased 

promoter accessibility at week 1 but not at week 4, suggesting early activation of DNA synthesis 

immediately after liver injury in early stages of repopulation. This observation is consistent with 
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previous comparison of the Fah-/- and partial hepatectomy (PHx) models showing that the 

transcriptome of 1-week repopulating hepatocytes in the Fah-/- mouse is closest to that of 36 and 

48 h post-PHx [15], at which the highest rate of DNA synthesis occurs in this model [27]. On the 

other hand, genes involved in hepatocyte functions such as complement and coagulation and 

metabolic pathways displayed significantly decreased promoter accessibility at both regeneration 

time points. Our pathway enrichment analysis substantiates prior studies of gene expression 

profiles and extends the findings to chromatin accessibility in that proliferation pathways are 

activated while liver functions are inhibited during repopulation [12,15]. 

 

Integration of chromatin accessibility and gene activity infers regulatory mechanisms 

To evaluate the association of chromatin landscape and gene expression, we utilized our 

prior TRAP-seq study [15] as a dataset of transcriptomic changes in repopulating hepatocytes. 

Genes with ATAC-seq signals and TRAP-seq reads that changed in the same direction at the same 

time point were identified as ‘concordant genes’ (Figure 4.3A, Supplementary Digital Table 4.2). 

We observed significant overlap of the concordant genes with ATAC-seq and TRAP-seq (p<1E-16 

for all 1-week concordant genes and 4-week concordantly activated genes. p=0.03 for 4-week 

concordantly inhibited genes), while there was no significant overlap of genes with increased 

expression in 1 week and decreased chromatin accessibility at 4 weeks (p=0.39). KEGG pathway 

[25] analysis suggested enrichment of cell growth and replication in the week 1 concordantly 

activated genes, and overrepresentation of biosynthesis and metabolism in both week 1 and week 

4 concordantly inhibited genes (Figures 3B, C). In addition, pathway enrichment supported previous 

observations that activation of the glutathione metabolic network is essential for reactive oxygen 

species removal after PHx or recovery following toxic liver injury [15,28,29]. We conclude that 

changes to the chromatin structure underlie the upregulation of genes involved in cell proliferation 

and downregulation of genes associated with metabolic processes. 

Next, we sought to investigate co-regulatory networks in repopulating hepatocytes. All 

ATAC-seq peaks identified were first separated into increased, decreased, or unchanged 
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accessibility, with a cutoff of absolute fold change ≥1.5 and false discovery rate (FDR) ≤0.05, 

followed by subdivision into regulatory regions of promoters, liver-specific enhancers, or 

cerebellum-specific enhancers as a negative control [30]. Promoter peaks were annotated to the 

nearest genes and the corresponding transcript levels at the same time point were extracted from 

TRAP-seq data [15]. We then compared the gene expression levels in the differentially accessible 

promoters to those in the unchanged promoters (Figures 4.3D, E). The normalized log2 fold change 

was positive (p=7.47E-03 in week 1 and 3.81E-02 in week 4) with increased and negative 

(p=1.06E-06 in week 1 and 1.38E-03 in week 4) with decreased promoter accessibility at both time 

points, demonstrating a significant association of promoter openness and transcriptional activity. 

Differentially accessible liver enhancer peaks were similarly categorized, putative enhancer-

regulated genes extrapolated [30], corresponding target gene expression extracted [15], and the 

transcript level changes compared to those of genes with unchanged enhancer accessibility. 

Interestingly, decreased liver enhancer accessibility was highly correlated with decreased gene 

activity (p=1.89E-20 in week 1 and 1.19E-07 in week 4), while no significant expression changes 

(p=0.22 in week 1 and 0.88 in week 4) were associated with increased enhancer openness. While 

the exact mechanism explaining this lack of correlation requires further evaluation, we posit that 

target genes regulated by enhancers in the quiescent liver are already highly expressed in mature, 

differentiated hepatocytes [12,15]. An increase in liver enhancer accessibility hence does not 

further elevate the expression of these genes significantly. Another likely explanation for the lack 

of significant association between increased liver enhancer accessibility and activation of target 

genes could be the recruitment of repressors instead of activators to the regulatory elements to 

decrease expression [31–33]. Finally, refinement of the computationally predicted enhancer-

promoter pairs with experimental approaches could result in a more accurate correlation of 

enhancer accessibility and transcriptional activity. Importantly, cerebellum enhancers exhibited no 

significant correlation with the changes in transcript levels and chromatin accessibility in the 

repopulating liver, as expected (Figures 4.3D, E, right). Our integrated ATAC-seq and TRAP-seq 

analysis reveal that gene activation is regulated by increased promoter accessibility, presumably 
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allowing recruitment of transcriptional activators and RNA polymerase II to the TSS, whereas gene 

inhibition may be governed by both decreased promoter and enhancer openness, preventing long-

range enhancer-promoter interactions [34]. 

 

Differential chromatin accessibility predicts transcription factors involved in liver 

repopulation 

Dynamic coordination of chromatin structure and transcription factors is required to fine-

tune gene expression. Chromatin organization influences access of the transcriptional apparatus 

by regulating binding sequence accessibility [35] and transcription factor binding stability [36]; 

conversely, transcription factors affect access of remodelers to the chromatin [35] and histones 

[37]. To identify DNA binding transcription factors that connect differential chromatin accessibility 

and gene expression, we carried out de novo motif profiling at differentially accessible promoters 

and liver enhancers [30].  

We found enrichment of the ETS transcription factor ELK1 motif in promoters with 

increased accessibility in both 1-week (FDR=1E-76) and 4-week (FDR=1E-41) repopulating 

hepatocytes (Figure 4.4A, B, Supplemental Digital Table 4.3). ELK1 binds to the serum response 

element upon MAPK phosphorylation [38] to activate immediate early genes such as Fos and 

components of the basal transcriptional machinery [39]. Furthermore, ELK1 supports cell cycle 

entry during liver regeneration as Elk1-/- mice show reduced hepatocyte proliferation after PHx [40]. 

We postulate that promoters became more accessible after acute liver injury to permit increased 

ELK1 occupancy, enabling hepatocyte repopulation. 

Among the regions with increased accessibility during liver repopulation, surprisingly, the 

CTCF motif was highly enriched (FDR=1E-78 in week 1 and 1E-49 in week 4) (Figures 4.4C, D). 

CTCF plays numerous roles in transcriptional regulation to function as a transcriptional activator 

[41] or repressor [42], insulator to block enhancer-promoter interactions [43], chromatin structure 

organizer to form topologically-associated domains [44] modulator of long-range chromatin looping 

[45], and even mediator of local RNA polymerase II pausing to regulate alternative exon usage [46]. 
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CTCF is recruited to the Axin1 promoter as a transcriptional repressor by the ‘long noncoding RNA 

associated with liver regeneration’ (lncRNA-LALR1) after PHx, leading to activation of Wnt/β-

catenin signaling to promote hepatocyte proliferation [47]. However, the function of CTCF in liver 

regeneration is not fully understood.  

In addition, we found the HNF4α binding motif to be significantly associated with liver 

enhancers with decreased accessibility during liver regeneration (FDR=1E-146 in week 1 and 1E-

186 in week 4) (Figures 4.4E, F). HNF4α is a master regulator atop the transcriptional cascade of 

hepatocyte differentiation [48,49] and a crucial factor that maintains hepatocytes in the 

differentiated state [50]. Importantly, HNF4α suppresses liver proliferation, as mice with conditional 

deletion of Hnf4a demonstrate increased hepatocyte BrdU incorporation and Ki67 expression [51]. 

HNF4α also directly inhibits cell growth and replication pathways, as illustrated by the upregulation 

of cell cycle and proliferation genes upon acute HNF4α loss [51,52]. Moreover, motifs of other liver-

enriched transcription factors were also overrepresented at enhancers that became less accessible 

in repopulating hepatocytes, including hepatocyte nuclear factor 1β (HNF1β) and hepatocyte 

nuclear factor 6 (HNF6) [53] (Figures 4.4E, F). We examined the locations for CTCF and HNF4α 

motifs within regions of dynamic chromatin accessibility and found that they are present in the 

center of these regions with CTCF at those with increased (p=2.70E-04 in week 1 and 1.97E-13 in 

week 4), and HNF4α at those with decreased accessibility (p=0.59 in week 1 and 2.48E-03 in week 

4) (Figure 4.4G, H). 

In summary, de novo motif analysis of differentially accessible ATAC-seq regions suggests 

increased occupancy of ELK1 and CTCF at chromatin regions that become more accessible, and 

decreased binding of liver-enriched transcription factors at liver enhancers that become less 

accessible during repopulation.  

 

HNF4α occupancy is decreased in liver-specific enhancers during repopulation 

We postulated that decreased HNF4α binding allows repopulating hepatocytes to assume 

a less differentiated and pro-proliferative state and carried out ChIP-seq on quiescent and 4-week 
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repopulating livers to examine genome-wide HNF4α occupancy during the repopulation process. 

We observed 508 peaks with decreased and only 14 peaks with increased occupancy in 

repopulating livers (Figure 4.5A, Supplemental Digital Table 4.4). Remarkably, 42% (214) of lost 

HNF4α occupancy occurred within previously-defined liver enhancers [30], while 23% (119) fell into 

distal intergenic regions, and 10% (52) were within 1 kb up- and downstream of the TSS (‘promoter’) 

(Figure 4.5B). These data corroborate the differentially accessible chromatin analysis of 

transcription factor motifs that had identified enrichment of the HNF4α consensus sequence at 

enhancers with decreased accessibility in repopulating hepatocytes (Figure 4.4H).  

Next, we integrated ATAC-seq, ChIP-seq, and TRAP-seq datasets [15], and identified 

hepatocyte-enriched genes crucial for establishing liver functions including complement and 

coagulation (Cfb, F2), biosynthesis (Itih1, Acsl1, Pgrmc1), and metabolism (Ugt1a5, Mthfs, Rdh10) 

[54] as correlated with decreased HNF4α enhancer occupancy during regeneration (Figure 4.5C, 

E). To explore the mechanism responsible for decreased HNF4α occupancy during liver 

repopulation, we next turned to the TRAP-seq dataset [15] to inspect Hnf4a expression levels in 

quiescent and replicating hepatocytes. Remarkably, we found a 50% reduction of Hnf4a transcripts 

in 4-week repopulating hepatocytes (FDR=4.16E-3) compared to the quiescent liver (Figure 4.5D, 

Table 4.2). Taken together, these results implicate decreased chromatin accessibility and reduced 

Hnf4a expression as contributors to the suppression of hepatocyte-specific genes and 

downregulation of liver biosynthetic functions during repopulation.  

 

CTCF promoter occupancy is increased in the repopulating liver 

In order to extend the computational finding of enriched CTCF motif at promoters with 

increased accessibility, we performed ChIP-seq in quiescent and 4-week repopulating livers. CTCF 

occupancy was increased at 1,382 sites in the repopulating liver, while only 2 peaks showed 

decreased binding (Figure 4.6A, Supplemental Digital Table 4.5). To characterize the role of 

increased CTCF occupancy during liver repopulation, we first evaluated its potential insulator 

function by calculating an ‘insulator strength score’ [55] at all gained binding sites. Genomic regions 
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with increased CTCF occupancy with divergent flanking promoters within 50 kb were identified and 

the normalized expression levels corresponding to the genes were extracted from our TRAP-seq 

data (Figure 4.6B) [15]. Surprisingly, gene pairs with increased CTCF binding were not significantly 

more enriched for differential gene expression than random gene pairs (p=0.9) (Figure 4.6C), 

suggesting that CTCF is unlikely to act as an insulator during liver repopulation.  

Remarkably, the vast majority (1,026, 74%) of the gained CTCF peaks fell within 1 kb up- 

and downstream of the TSS (‘promoter’) (Figure 4.6D). To examine the targets of increased CTCF 

occupancy, all differentially bound peaks were annotated to the nearest genes and their 

corresponding expression changes were obtained from our TRAP-seq dataset [15,25,56]. We 

found 545 (39%) peaks associated with chromatin modification, transcription regulation, and cancer 

(Figure 4.6E), while 656 (47%) sites with increased CTCF binding were associated with inhibition 

of genes in cell death regulation, stress response, and morphogenesis. Together, our network 

analysis suggests a diverse role for CTCF in transcriptional regulation in which increased CTCF 

occupancy supports hepatocyte replication and prevents cell death during liver repopulation, 

possibly by enabling binding of both activating and repressing cofactors.  

CTCF is known to exhibit divergent roles in activating and repressing transcription by 

recruiting various protein partners in a context-dependent manner [57]. To identify these cofactors, 

we performed motif analysis for the regions differentially bound by CTCF (Figure 4.6F). As 

expected, the CTCF motif was highly enriched (FDR=1E-26) at all differential binding sites, 

confirming the specificity of the anti-CTCF antibody for immunoprecipitation. At sites where CTCF 

binding corresponded to gene activation, we observed significant enrichment for the ‘zinc finger 

and BTB domain-containing protein 3’ (ZBTB3) (FDR=1E-10) and nuclear transcription factor Y 

(NF-Y) (FDR=1E-10) binding motifs (Figure 4.6F). ZBTB3 is considered a likely factor binding 5’ of 

CTCF due to its frequent enrichment ~10 bp upstream of CTCF motifs in the human genome [58]. 

Furthermore, expression of ZBTB3 is induced by the accumulation of reactive oxygen species to 

promote cancer cell growth and prevent apoptosis via the activation of antioxidant gene expression 

in cell lines [59]. Whether CTCF directly interacts with or indirectly recruits ZBTB3 is yet unclear, 
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but the proteins are likely to interact based on their close proximity at promoters. NF-Y binds to the 

CCAAT box present at ~30% of the promoters [60] and is required for cell cycle progression, DNA 

synthesis, and proliferation in mouse embryonic fibroblasts [61]. Additionally, reconstituted in vitro 

transcription reactions demonstrated that binding of NF-Y disrupts nucleosome structure at 

promoters containing the NF-Y recognition sequence [62]. Recruitment of NF-Y could hence induce 

local nucleosome repositioning to allow increased accessibility of the transcriptional apparatus to 

activate gene expression.  

On the other hand, the Yin Yang 1 (YY1) binding motif was enriched (FDR=1E-13) at sites 

where increased CTCF occupancy corresponded with decreased gene expression (Figure 4.6F). 

YY1 regulates embryogenesis, cell differentiation, and tumorigenesis [63,64], as well as enhancer-

promoter interactions analogous to long-range chromatin looping mediated by CTCF [65]. YY1 

functions as a transcriptional repressor via recruitment of the polycomb repressor complex, 

resulting in trimethylation of histone H3 lysine 27 [66,67]. It is also a cofactor of CTCF in regulating 

X chromosome inactivation, although the exact mechanism remains unclear [68]. Given these 

observations, it is likely that direct or indirect co-binding of CTCF and YY1 at promoters induces 

transcriptional repression or disrupts enhancer to promoter interactions to downregulate target 

genes. 

When examining gene expression, we found the levels of ZBTB3 and YY1 not significantly 

changed in repopulating hepatocytes (Table 4.2). Three NF-Y proteins exhibited varying changes 

in transcript levels, with unchanged NF-YA, downregulated NF-YB in 1-week, and downregulated 

NF-YC in 4-week repopulating hepatocytes, albeit all with modest changes of less than 2-fold. 

These observations do not rule out the possibility of post-translational modifications that might alter 

the abundance or localization of transcription factors.  

To analyze if transcription factors colocalize to CTCF-occupied promoters with differential 

gene expression during liver regeneration, we performed ZBTB3 and YY1 ChIP-qPCR on quiescent 

and 4-week repopulating livers. We observed a significant increase of ZBTB3 occupancy at Ctnna2 

(p=0.023) and Smad3 (p=0.025) promoters, two genes with increased promoter accessibility, 
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elevated CTCF binding, and upregulated expression during liver regeneration (Figure 4.6G, H). 

Regarding YY1 occupancy, there was a significant increase at the Bcl2l11 (p=0.029) promoter, a 

gene with increased promoter accessibility, enhanced CTCF occupancy, and decreased transcript 

levels (Figure 4.6I). With the limited loci tested, we conclude that ZBTB3 is recruited to open 

chromatin regions occupied by CTCF to activate gene expression during liver regeneration. On the 

other hand, increased YY1 binding to select promoters with elevated CTCF binding could regulate 

transcriptional repression in repopulating hepatocytes. These results suggest that increased 

chromatin accessibility correlates with enhanced CTCF occupancy that recruits coactivators or 

corepressors to fine-tune target gene expression to induce replication and prevent apoptosis during 

liver repopulation (Figure 4.6J). Future experiments that utilize co-immunoprecipitation and high-

throughput sequencing technologies to analyze interactions between CTCF and cofactors as well 

as genome-wide binding patterns of the coregulators will aid in the understanding of mechanisms 

underlying CTCF modulation.  

 

Liver regeneration is accompanied by nucleosome remodeling 

Most eukaryotic DNA is packaged around histone protein octamers into nucleosomes to 

regulate chromatin organization and transcriptional control. Nucleosome properties such as 

positioning and turn-over rates can affect the binding of transcription factors and access of the 

transcriptional machinery [69]. The nucleosome landscape adjacent to the TSS is of particular 

interest, as nucleosomes adopt a specific phasing pattern immediately up- and downstream [70]. 

Hence, nucleosome organization could act as an additional layer of transcriptional regulation in 

repopulating hepatocytes.  

We inferred nucleosome positioning from nucleosome-containing sequences by extracting 

ATAC-seq reads longer than 150 bp (Figure 4.7A). Nucleosomes surrounding the TSS were 

defined as ‘-1 nucleosomes’ within 350 bp upstream and ‘+1 nucleosomes’ within 250 bp 

downstream, and the distance between the +1 to -1 nucleosomes was defined as the ‘nucleosome-

free region’. When compared to quiescent hepatocytes, there was a median downstream shift of 9 
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bp in 1-week (p=2.60E-13) and an upstream shift of 19 bp in 4-week (p<1E-15) repopulating 

hepatocytes for the -1 nucleosomes, while there was no significant shift in +1 nucleosome 

positioning (Figure 4.7B, Supplemental Digital Table 4.6). As a result, there was a global increase 

of promoter openness in 4-week repopulating hepatocytes as the distance between +1 to -1 

nucleosomes increased, while the nucleosome-free region was shorter in 1-week regenerating liver 

compared to the quiescent state. The difference in genome-wide promoter openness in 

repopulating hepatocytes at various time points suggests that accessibility of divergent functional 

regions could be differentially regulated during liver regeneration. Indeed, the nucleosome-free 

region constitutes only 17.5% of regions with increased accessibility in week 1 but 45.6% in week 

4 (Figure 4.7C), whereas 39.0% of week 1 and only 26.9% of week 4 regions that became more 

open fall into distal intergenic regions (Figure 4.7D). On the other hand, chromatin regions with 

decreased accessibility show a similar distribution between the nucleosome-free region and distal 

intergenic regions. These observations indicate that the increase of chromatin accessibility occurs 

mainly at distal genomic areas in 1-week and around the TSS in 4-week repopulating hepatocytes.  

To evaluate the association of TSS accessibility and gene expression, we extracted the 

top 500 up- and downregulated genes in repopulation [15] and calculated the change in the length 

of the nucleosome-free region between quiescent and regenerating hepatocytes as a surrogate for 

differential TSS accessibility. We only observed a significant increase (p=1.15E-2) of +1 to -1 

nucleosome distance in genes activated in week 4 when compared to quiescent hepatocytes, while 

no significant change in the nucleosome-free region was present in genes upregulated in week 1 

or genes downregulated in week 1 and week 4 (Figure 4.7E, F). It is likely that eviction or 

repositioning of the -1 nucleosomes could expose transcription factor binding sequences and allow 

access of the transcriptional machinery to the TATA box for gene activation in regenerating 

hepatocytes [71]. Altogether, analysis of the nucleosome structure implies nucleosome 

reorganization could affect gene activation but not inhibition during liver repopulation.   
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TABLES 

Table 4.1. ATAC-seq library sequencing summary. 

Sample ID Condition Index Cumulate reads 
SUN1-GFP-1 Quiescent CGAGGCTG 119,120,180 
SUN1-GFP-2 Quiescent AAGAGGCA 111,970,248 
#3603 1-week repopulation AATTCGTT 97,320,484 
#3604 1-week repopulation GGCGTCGA 135,005,202 
#2383 4-week repopulation GTAGAGGA 186,365,116 
#2385 4-week repopulation TGCTGGGT 236,418,952 
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Table 4.2. Gene expression of enriched transcription factor motifs. 

Gene Transcript W1 log2 fold 
change W1 FDR W4 log2 fold 

change W4 FDR 

Elk1 NM_007922 0.23 0.83 0.05 0.96 
Ctcf NM_181322 -0.36 0.47 0.23 0.66 
Hnf4a NM_008261 -0.17 0.74 -1.12 0.00 
Hnf1b NM_009330 -0.15 0.85 -0.22 0.67 
Hnf6 NM_008262 0.54 0.49 0.11 0.92 
Zbtb3 NM_001098237 1.26 0.33 -0.64 0.73 
Nfya NM_001110832 0.23 0.85 0.03 1.00 
Nfyb NM_010914 -0.74 0.02 -0.20 0.64 
Nfyc NM_001048168 -0.67 0.10 -0.82 0.02 
Yy1 NM_009537 -0.35 0.42 -0.12 0.79 
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Table 4.3. Primer sequences used in this study. 

Primer name Sequence Use 
MfeI-Sun1-F GACTCAATTGGCGGCCGCACTACTGGCC Plasmid construction 

BsiW1-Sun1-R GCTACGTACGTTAACCGCTACTATTAAGATC
CTCCTCGGATATTAACTTCTGC Plasmid construction 

ZBTB3-ChIP-
Ctnna2-qPCR-F1 TTTGTTCGATCACAGTGCCG ZBTB3 ChIP-qPCR 

ZBTB3-ChIP-
Ctnna2-qPCR-R1 TGGGAGCAACAGTGGATGAA ZBTB3 ChIP-qPCR 

ZBTB3-ChIP-
Smad3-qPCR-F2 AGACCTCCGTGCCTTTTCTA ZBTB3 ChIP-qPCR 

ZBTB3-ChIP-
Smad3-qPCR-R2 GGCGGTTGAGTTTCACAGAG ZBTB3 ChIP-qPCR 

YY1-ChIP-Bcl2l11-
qPCR-F1 CTCTTGTAGCGATCACCCCT YY1 ChIP-qPCR 

YY1-ChIP-Bcl2l11-
qPCR-R1 CTGCCGTCCCAATCAATGTT YY1 ChIP-qPCR 

40S-F2 AGCGAGCTGTGCTGAAGTTT ChIP-qPCR control 
40S-R2 AGGCTGCTTGGATCTGGTTA ChIP-qPCR control 
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FIGURES 

Figure 4.1. Implementation of the ‘isolation of nuclei tagged in specific cell types’ (INTACT) [19] 

method with the Fah-/- mouse model allows isolation of repopulating hepatocyte nuclei. 

 

(A) Schematic of coexpression of the GFP-tagged nuclear envelope protein SUN1 (SUN1-GFP) 

with FAH to label repopulating hepatocytes for fluorescence-activated cell sorting (FACS) followed 

by the ‘assay for transposase accessible chromatin with high-throughput sequencing’ (ATAC-seq). 

(B) Representative images (n=2) of repopulating hepatocyte nuclei show specific isolation with anti-

GFP antibody labeling. Gray boxes denote the sorting strategy to collect GFP+ nuclei. (C) 

Representative images (n=2) of immunofluorescent staining of GFP and FAH show coexpression 

of SUN1-GFP and FAH in repopulating hepatocytes of the Fah-/- mouse after 1 week (left) and 4 

weeks (middle), and global expression of SUN1-GFP and FAH in all hepatocytes of the RosaLSL-

SUN1-GFP mouse 1 week after AAV8-TBG-Cre injection. FACS: fluorescence-activated cell sorting. 
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Figure 4.2. Chromatin accessibility changes during liver repopulation are related to cell growth 

activation and metabolic inhibition. 

 

(A) ATAC-seq shows reproducible signals across biological replicates and a decrease of peak 

intensity in the proximal regulatory region [105] of the Alb locus. (B) 16,043 significantly differential 

accessible regions were identified in repopulating and quiescent hepatocytes (absolute fold change 

≥1.5 and FDR ≤0.05). Comparison of differential accessible regions identified at different time 
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points during repopulation shows 3,273 that changed in the same direction (‘congruent’ peaks), of 

which 1,241 were congruently increased (red dots) and 2,033 congruently decreased (blue dots). 

(C) Hierarchical clustering of all differentially accessible regions shows that biological replicates 

have similar chromatin landscape. (D) KEGG pathway analysis of differentially accessible 

promoters with increased (left) and decreased (right) accessibility in repopulating hepatocytes. 

FDR: false discovery rate. 
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Figure 4.3. Association of expression levels and chromatin accessibility implicates divergent 

regulatory mechanisms for gene activation and inhibition. 

 

(A) Differential gene expression data were obtained from a previous study that implemented 

translating ribosome affinity purification followed by RNA-sequencing (TRAP-seq) [15]. ‘Upset’ plot 
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demonstrates overlap of ATAC-seq regions and TRAP-seq genes that are significantly changed in 

the same direction at the same time points (‘concordant’ genes) in repopulating hepatocytes. 

Fisher’s exact test was performed to calculate the significance of overlapping targets. The 

horizontal black lines in the green bars of the top panel indicate the number of overlaps expected 

by chance. (B and C) KEGG pathway analysis of concordantly activated and repressed genes in 

(B) 1-week and (C) 4-week repopulating hepatocytes. Dashed lines denote FDR=0.05. (D and E) 

Association of changes in chromatin accessibility and gene expression in (D) 1-week and (E) 4-

week repopulating hepatocytes indicates that promoter accessibility changes are related to both 

gene activation and inhibition, while only decreased liver enhancer accessibility is significantly 

correlated with decreased expression of putative target genes [30]. Cerebellum enhancers and 

their putative targets do not display any significant relationship to chromatin accessibility and gene 

expression changes in the liver. One-sample t-tests were carried out to identify the differences in 

normalized log2 fold change in differentially accessible and unchanged chromatin regions. Vertical 

lines denote the 95% confidence interval of normalized log2 fold change in peaks with increased 

and decreased accessibility. 
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Figure 4.4. Enrichment analysis identifies transcription factor motifs overrepresented at differential 

accessible promoters and enhancers [30].  

 

(A and B) The ELK1 motif is enriched in promoter regions that became more open in repopulating 

hepatocytes. (C and D) The CTCF motif is overrepresented in liver enhancers with increased 

accessibility in both (C) 1-week and (D) 4-week repopulating hepatocytes, respectively. (E and F) 

Motifs of liver-enriched transcription factors HNF4α, HNF1β, and HNF6 are enriched in enhancers 

with decreased accessibility during (E) 1-week and (F) 4-week liver repopulation. (G and H) Motif 

frequency of the differential accessible peaks for (G) CTCF and (H) HNF4α display enrichment of 

the transcription factor motifs at the enhancer peak center in repopulating hepatocytes. Numbers 

presented in (A-F) denote FDR. 
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Figure 4.5. HNF4α binding is decreased in the repopulating liver. 

 

(A) 508 genomic regions display decreased and only 14 display increased HNF4α occupancy in 

the regenerating liver (B) 40% of peaks with decreased HNF4α binding overlap with liver-enriched 

enhancers (‘liver enhancer’) [30], and 25% fall in distal intergenic regions that contain ubiquitous 

enhancers (‘distal intergenic’). (C) Integrative analysis of chromatin accessibility (ATAC-seq), 

HNF4α binding (ChIP-seq), and gene expression (TRAP-seq) [15] changes suggests the 

suppression of liver functions including complement, biosynthesis, and metabolic pathways during 

liver regeneration is associated with reduced HNF4α occupancy. (D) HNF4α expression is 

downregulated in repopulating hepatocytes (n=4 for quiescent and n=6 for repopulating 
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hepatocytes) [15]. (E) Representative tracks (n=2 for ATAC-seq and ChIP-seq, n=4 for TRAP-seq) 

of chromatin accessibility, HNF4α occupancy, and transcript levels at Itih1, the locus with the 

strongest decrease of HNF4α occupancy. RPKM: reads per kilobase of transcript, per million 

mapped. 
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Figure 4.6. CTCF binding is increased at promoters in the repopulating liver. 

 

(A) 1,306 peaks show increased, while only 2 peaks show decreased CTCF occupancy during 

repopulation. (B) Schematic to test the insulator function of increased CTCF binding to differentially 

regulate expression of the flanking genes [55]. (C) Promoters flanking sites of increased CTCF 
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occupancy are not more enriched for differentially expressed genes compared to random gene 

pairs in the genome. A Fisher’s exact test was used to examine the differentially expressed gene 

ratios from the two groups of gene pairs. (D) 75% of the genomic regions with increased CTCF 

binding are within 1 kb up- and downstream of the TSS (‘promoter’), and only 13 peaks overlap 

with liver enhancers [30]. (E) Enriched pathways of increased chromatin accessibility, CTCF 

occupancy, and increased (red) or decreased (blue) gene expression during liver repopulation. (F) 

Motif enrichment analysis identifies an overrepresentation of CTCF motif in differentially-bound 

regions, the ‘zinc finger and BTB domain-containing protein 3’ (ZBTB3) and nuclear transcription 

factor Y (NF-Y) motifs at sites with increased CTCF occupancy associated with gene activation, 

and the Yin Yang 1 (YY1) motif at sites with increased CTCF occupancy associated with gene 

inhibition. Numbers denote FDR. (G and H) ZBTB3 occupancy is increased in the repopulating liver 

at the (G) Smad3 and (H) Ctnna2 promoters, two genes with increased CTCF occupancy and 

expression during regeneration. (H) YY1 occupancy is increased in the repopulating liver at the 

Bcl2l11 promoter, a gene with elevated CTCF binding and decreased expression during 

regeneration. (I) Representative tracks (n=2 for ATAC-seq and ChIP-seq, n=4 for TRAP-seq) of 

chromatin accessibility, CTCF occupancy, and transcript levels at Hells, the locus with the strongest 

increase in CTCF binding. 
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Figure 4.7. Decreased nucleosome density is associated with increased gene expression [15] in 

repopulating hepatocytes. 

 

(A) Schematic for identifying nucleosome positioning information with NucleoATAC [104]. (B) 

Globally, -1 nucleosomes have an upstream shift away from the TSS in 4-week repopulating 

hepatocytes, while +1 nucleosomes positioning is constant during liver repopulation. (C and D) 

Distribution of regions with differential accessibility in (C) the nucleosome-free region that is within 

350 bp upstream and 250 bp downstream of the TSS and (D) distal intergenic regions in 1- and 4-

week repopulating hepatocytes. (E) The top 500 upregulated genes exhibit an increased +1 to -1 

nucleosome distance in 4-week but not 1-week repopulating hepatocytes when compared to 

quiescent hepatocytes. (F) The top 500 downregulated genes are not significantly associated with 

changes in +1 to -1 nucleosome distance in repopulating compared to quiescent hepatocytes. 
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Permutation tests with 10,000 iterations were used to compare the nucleosome distance in 

repopulating and quiescent hepatocytes. NFR: nucleosome-free reads. NR: nucleosomal reads. 
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Figure 4.8. Model of transcriptional regulation in repopulating hepatocytes. 

 

(A) Access to enhancers allows liver-enriched transcription factors to maintain quiescent 

hepatocytes in the differentiated state (top). In contrast, chromatin-dense enhancers and promoters 

prevent transcription factor binding to inhibit gene expression of cell cycle genes (bottom). (B) 

During liver repopulation, decreased accessibility of liver enhancers [30] in conjunction with more 

closed promoters prevents binding of transcription factor and assembly of the transcriptional 

machinery at hepatocyte-specific liver function genes, resulting in a less differentiated 

transcriptomic and epigenomic profile in the repopulating cells (top). Conversely, the promoter 

regions of cell cycle genes become more open, with increased +1 to -1 distance and increased 

CTCF occupancy at the promoter, allowing elevated expression of genes involved in the cell cycle 

and DNA synthesis pathways (bottom).  
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DISCUSSION 

Gene regulation is tightly controlled by a complex network integrating transcription factor 

binding and transcriptional apparatus assembly, chromatin structure, epigenetic modifications, and 

even intra- and interchromosomal interactions [9,10]. In this study, we investigated the association 

of chromatin accessibility, nucleosome properties, transcription factor occupancy, and gene 

expression [15] to delineate the multidimensional framework of transcriptional regulation in the 

repopulating liver. By implementing the INTACT method [19] to express SUN1-GFP in the Fah-/- 

model, we successfully performed cell type-specific isolation of only repopulating hepatocyte nuclei 

followed by ATAC-seq to identify changes of the chromatin landscape (Figures 4.1, 4.2). Integration 

of TRAP-seq [15] with ATAC-seq determined that gene activation corresponds with increased 

promoter openness, while gene inhibition is linked to a decreased promoter and enhancer 

accessibility (Figure 4.3C). We also corroborated previous findings that cell cycle, DNA synthesis, 

proliferation, and glutathione metabolism are activated whereas complement and coagulation, 

biosynthesis, and metabolic pathways are inhibited during liver repopulation (Figures 4.2D and 

4.3B, C) [12,15]. In addition, de novo motif analysis identified enrichment of CTCF and HNF4α 

binding sequences in regions with increased and decreased accessibility in repopulating 

hepatocytes, respectively (Figure 4.4). We further validated the differential occupancy of both 

factors in the repopulating liver with ChIP-seq and observed decreased HNF4α binding at liver 

enhancers [30] (Figure 4.5) and increased CTCF binding at promoters (Figure 4.6). Integrated 

ATAC-seq, ChIP-seq, and TRAP-seq analysis suggests that CTCF recruits cofactors to activate 

genes involved in chromatin organization and replication and inhibit genes in the regulation of cell 

death (Figure 4.6E-J). On the other hand, loss of HNF4α occupancy at liver enhancers decreases 

the expression of hepatocyte-enriched genes crucial in establishing liver homeostasis and function 

(Figure 4.5C-E).  

In general, 40% of CTCF binding sites occur in intergenic regions distant to the TSS, while 

35% of CTCF sites are found in promoters [30,44]. Interestingly, the vast majority (75%) of sites 

with increased CTCF occupancy are located within promoters in the repopulating liver (Figure 
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4.6D). In fact, CTCF can function as a direct transcriptional repressor at the Myc promoter [72] and 

as an activator of the amyloid precursor protein promoter [73], strengthening the notion that CTCF 

plays a more localized role as a transcriptional regulator in the repopulating liver via recruitment of 

cofactors. Upregulation of CTCF in liver cancer is associated with poor survival, likely through the 

activation of forkhead box M1 (FOXM1) to stimulate cell growth and tumor metastasis [74]. The 

CTCF-FOXM1 axis could be triggered during liver regeneration to promote hepatocyte proliferation 

[75]. Increased CTCF activity at the Myc promoter [76] or decreased CTCF repression at the Myc 

enhancer [77] have both been observed in cancer cells that lead to increased MYC expression. 

The high tumor mutational burden of CTCF results in abnormal occupancy [78,79], and thus the 

cofactors and targets of CTCF could be different in the regenerating liver and liver cancer. The 

multitude of CTCF functions warrants further investigation to understand its contribution to 

mediating chromatin structure and organization in the context of liver repopulation. Specifically, 

CTCF also acts as an insulator to block enhancer-promoter interactions [43], a factor that promotes 

long-range chromatin looping [45], and a TAD boundary protein that defines expression domains 

for tight transcriptional control [44]. Future experiments to detect changes in chromatin interactions 

via chromosome conformation capture [80] would be valuable in determining whether differential 

CTCF occupancy affects three-dimensional chromatin organization during liver repopulation. 

The mechanisms of increased CTCF and decreased HNF4α binding in the repopulating 

liver are also not fully understood. In the current study, we infer that a more open chromatin state 

at specific promoters correlates with the accessibility of CTCF to its binding sites; however, we 

have not assessed causality. Previous work found that enrichment of thymidine (T) at the 18th 

position in the CTCF motif reduces its affinity, where low-affinity sites are more sensitive to loss of 

CTCF binding during mouse embryonic stem cell differentiation [55]. Additionally, it is likely that 

changes in DNA methylation influence differential CTCF occupancy, as methylated CpGs in the 

CTCF recognition site can prevent its binding [81,82]. Demethylation at specific promoter regions 

could, therefore, increase CTCF occupancy during liver repopulation. In the case of reduced 

HNF4α occupancy at liver-specific enhancers in the regenerating liver, part of this effect can be 
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explained by reduced expression of HNF4α itself. Furthermore, HNF4α could be regulated post-

transcriptionally via phosphorylation by kinases such as protein kinase A and C, as well as AMP-

activated protein kinase to decrease its DNA binding activity or nuclear localization [83]. Activation 

of the MAPK signaling pathway is also shown to inhibit Hnf4a expression via activation of the 

transcription factor JUN [83,84]. The fact that enrichment of DNA synthesis pathways is only 

observed in 1-week repopulating livers and that Hnf4a transcript level is unchanged in week 1 but 

reduced in week 4 hepatocytes strengthens the notion that activation of cell growth and proliferation 

occur early after the initiation of liver repopulation, followed by a later reduction of Hnf4a 

transcription. Future studies using, for instance, targeted degradation of CTCF [85] or HNF4α could 

be implemented to identify potential promoters and inhibitors of liver repopulation. Technologies 

such as cDNA [8] or clustered regularly interspaced short palindromic repeats (CRISPR) [86,87] 

screens could also be utilized to evaluate the effectors downstream of CTCF activation and HNF4α 

inhibition. 

In summary, we propose the following model to explain the transcriptional adaptations that 

accompany liver repopulation (Figure 4.8): during hepatocyte replication, the promoters of selected 

genes become more open due to an increased distance between histones at +1 to -1, increasing 

accessibility for CTCF, transcription factor recruitment, and transcriptional machinery assembly to 

activate genes that regulate cell cycle, DNA synthesis, and proliferation pathways. On the other 

hand, decreased enhancer accessibility in conjunction with suppression of Hnf4a expression evicts 

or prevents HNF4α binding, and possibly that of other hepatocyte nuclear factors, to liver 

enhancers, resulting in repression of hepatocyte metabolic and biosynthetic function genes. 
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MATERIALS AND METHODS 

All primer sequences are listed in Table 4.3. 

Plasmid construction 

The generation of the pKT2/Fah-Sun1-Gfp//SB plasmid was described previously [15]. The 

nuclear envelope SUN1-tagged GFP (SUN1-GFP) plasmid was a generous gift from Dr. Jeremy 

Nathans (Johns Hopkins University, Baltimore, MD, USA). We amplified the SUN1-GFP insert by 

PCR amplification with the primers MfeI-Sun1-F and BsiW1-Sun1-R and subcloned it into the vector 

pKT2/Fah-mCa//SB [7] to construct pKT2/Fah-Sun1-Gfp//SB. This construct utilizes the Sleeping 

Beauty (SB) transposase for stable transgene integration into the genome. The plasmid was 

prepared with the GenElute HP Plasmid Maxiprep Kit (NA0310-1KT, MilliporeSigma) for endotoxin-

free maxi-scale DNA extraction and purification. 

 

Mouse studies 

Fah-/- mice were maintained on 7.5 mg/l 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-

cyclohexanedione (NTBC) (Swedish Orphan Biovitrum) in the drinking water. Hydrodynamic tail-

vein injection [86] of 10 μg of pKT2/Fah-Sun1-Gfp//SB was performed followed by NTBC withdrawal 

for 1 week (n=2) or 4 weeks (n=2) to induce liver repopulation [15]. The RosaLSL-Sun1-GFP mice [19,88] 

were kindly provided by Dr. Jeremy Nathans (Johns Hopkins University, Baltimore, MD, USA) and 

were tail-vein injected with AAV8.TBG.PI.Cre.rBG (Penn Vector Core [89]) at 1 x 1011 virus particles 

per mouse to ablate the loxP-stop-loxP cassette only in hepatocytes. Livers from these mice were 

harvested 1 week after viral injection and served as quiescent controls. All studies were performed 

in 8 to 12-week-old mice.  

 

Immunofluorescence staining 

Liver lobes were isolated, fixed in 4% paraformaldehyde overnight at 4 °C, embedded in 

paraffin, and sectioned. Tissue sections were deparaffinized with xylene and rehydrated with serial 

incubation of 100%, 95%, 80%, and 75% ethanol followed by PBS. Antigen retrieval was carried 
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out in Tris/EDTA buffer (10mM Trix, 1mM EDTA, pH 9.2) in a pressure cooker (2100 Antigen 

Retriever, Aptum Biologics Ltd.) and cooled to room temperature. Slides were then blocked with 

blocking buffer (PBS, 1% BSA) for 1 h followed by overnight incubation of antibodies in the blocking 

buffer at 4 °C in a humidified chamber. Three washes of PBS were carried out the next day followed 

by incubation with secondary antibodies at room temperature for 2 h. Goat anti-GFP antibody 

(ab6673, 1:300, Abcam) and rabbit anti-FAH antibody (ab81087, 1:600, Abcam) were used to label 

repopulating hepatocytes from Fah-/- mice after one and four weeks of repopulation and all 

hepatocytes from RosaLSL-GFP-L10a mice injected with AAV8-TBG-Cre. DAPI (B1098, 1:10,000, 

BioVision) was used to label nuclei.  

 

Hepatocyte nuclei isolation 

Liver was homogenized in 10 ml hypotonic buffer (10 mM Tris-HCL, pH 7.5, 2 mM MgCl2, 

3 mM CaCl2) on ice. The homogenate was filtered with a 100 μm filter and sedimented at 400 g for 

10 min at 4 °C. 10 ml of hypotonic buffer with 10% glycerol was used to resuspend the pellet 

followed by dropwise addition of 10 ml cell lysis buffer (hypotonic buffer, 10% glycerol, 1% IGEPAL 

CA-630). The homogenate was incubated for 5 min on ice and sedimented at 600 g for 5 min at 4 

°C. Nuclei were washed with lysis buffer again and quantified in a hemocytometer. Isolated nuclei 

were labeled with an Alexa Fluor 647 anti-GFP antibody (338006, clone FM264G, 1:25, BioLegend, 

San Diego, CA) for 30 min and 2 μg/ml DAPI immediately prior to sorting. After gating for the DAPI-

positive signal, nuclei double-positive for GFP and AF647 were sorted with a BD FACSAria II, and 

only tetraploid hepatocyte nuclei were collected for further experiments.  

 

ATAC-seq library generation 

ATAC-seq libraries were generated as previously described [20]. Briefly, transposition was 

performed on 25,000 sorted tetraploid nuclei at 37 °C for 30 min followed by DNA purification with 

the MinElute Reaction Cleanup Kit (28206, QIAGEN). DNA fragments were PCR preamplified for 

5 cycles initially, and 1/10 of the volume (5 μl) was removed for qPCR amplification for 20 cycles. 
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A ‘R vs Cycle Number’ plot was generated and the number of cycles required to reach ⅓ of the 

maximum R determined for each sample. The preamplified ATAC-seq libraries were then amplified 

for the calculated additional cycles. Agencourt AMPure XP beads (A63881, Beckman Coulter) were 

used for size selection to generate the final libraries [90]. Library quality was assessed with an 

Agilent High Sensitivity DNA Bioanalyzer (5067-4626, Agilent Technologies), and quantity 

measured with KAPA Library Quantification Kits (KK4835, KAPA Biosystems). 

 

ATAC-seq peak calling 

ATAC-seq libraries were paired-end sequenced on an Illumina HiSeq 4000 (Illumina, San 

Diego, CA, USA) with 50, 75, or 100 reads. Reads were then trimmed to 50 bp with Cutadapt [91] 

and peaks called with the ATAC-Seq/DNase-Seq pipeline [92]. Briefly, the trimmed fastq files were 

aligned to the mouse genome (mm10) with Bowtie2 [93] followed by removal of PCR duplicates 

and mitochondrial reads. Bam files of the same biological sample from various technical replicates 

were then merged with Samtools [94] and duplicated reads removed. The filtered reads were 

shifted 5 bp for + strands and 4 bp for - strands to adjust for the transposase binding sites [20]. 

Nucleosome-free reads were identified with the R package ATACseqQC using a random forest 

classifier [95] followed by peak calling with MACS2 [96]. Artifact signals were then removed 

according to the mm10 empirical blacklist regions [97]. The irreproducible discovery rate (IDR) 

framework was used to compare all pairs of biological replicates to identify reproducible peaks that 

passed a threshold of 10% for all pairwise analyses. The conservative peak set for each sample 

was identified by selecting the longest peak list from all pairs that passed the 10% IDR cutoff.  

 

ATAC-seq peak quality assessment 

To ensure the ATAC-seq peaks generated from the sorted nuclei are of high quality, The 

R package ATACseqQC [95] was employed for assessment. We first visualized the insert size 

distribution to confirm the presence of distinct periodicity of ~175 bp associated with nucleosome 

patterning in all samples, indicating the DNA fragments are protected by integer multiples of 



 

180 
 

nucleosomes [20]. The signal intensity of nucleosome-free reads and nucleosomal reads was also 

averaged across all TSS to examine evidence that no over-fragmentation was introduced during 

hepatocyte nuclei isolation, sorting, or ATAC-seq library preparation.  

  

ATAC-seq differential peak analysis 

The R package ATACseqQC [95] was used to split the aligned bam files into nucleosome-

free reads and nucleosomal reads. The R package DiffBind [98] was used to identify differential 

accessible peaks from the nucleosome-free reads. The overlapping regions from the ATAC-seq 

peak sets for each sample were identified and merged into non-overlapping regions. Read counts 

for each region were quantified with dba.count (score=DBA_SCORE_TMM_READS_FULL, 

fragmentSize=0, bScaleControl=F, filter=0, bRemoveDuplicates=F, bUseSummarizeOverlaps=T). 

Peaks identified in both biological replicates in the same conditions were used for differential 

analysis with dba.analyze (method=DBA_EDGER, bSubControl=F, bTagwise=T) in conjunction 

with edgeR [99]. Peaks with an absolute fold change ≥1.5 and FDR ≤0.05 were identified as 

significant differentially accessible regions.  

 

Integrative analysis of TRAP-seq and ATAC-seq data 

To identify chromatin accessibility and gene expression that changed in the same direction 

at the same time point (‘concordant genes’), the differentially accessible peaks were first annotated 

to the nearest TSS with the R package ChIPseeker [100]. Genes with differential expression during 

liver repopulation were obtained from a previous study that utilized translating-ribosome affinity 

purification followed by RNA-sequencing (TRAP-seq) [15]. The concordant ATAC-seq peaks and 

TRAP-seq genes were identified and the expected overlap and significance was calculated with a 

hypergeometric test. To evaluate the association of chromatin accessibility and gene expression 

changes, all chromatin regions were stratified into regions with increased, decreased, or 

unchanged accessibility, with the cutoff of an absolute fold change ≥1.5 and FDR ≤0.05. For 

promoter accessibility and gene activity association analysis, regions within 1 kb up- and 
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downstream of the TSS were identified and annotated to the nearest genes with the R package 

ChIPseeker [100]. The corresponding expression change at the same time point was extracted 

from TRAP-seq [15] and normalized by subtracting the mean log2 fold change of the unchanged 

from the increased and decreased chromatin accessibility groups. The normalized expression fold 

change of the nearest genes in the differentially accessible promoters was compared to that in the 

unchanged accessibility promoters with a one-sample t-test. For enhancer accessibility and gene 

expression association studies, liver- and cerebellum-specific enhancers and their putative targets 

were obtained from a previous study [30]. Briefly, regions with the presence of H3K4me1 but the 

absence of H3K4me3 ChIP-seq peaks were identified as putative enhancers and refined with a 

chromatin-signature based enhancer predictor. Enhancer-promoter units were identified by 

calculating the correlation of H3K4me1 and RNA polymerase II ChIP-seq peak strength along each 

chromosome. All possible promoter and enhancer pairs with a >0.23 Spearman correlation 

coefficient were identified as linked enhancer-promoter units. Gene expression fold changes were 

normalized as described above, and the normalized gene expression fold-change of the enhancer 

target genes in the differentially accessible enhancers was compared to that in the unchanged 

accessibility enhancers with a one-sample t-test. 

 

Transcription factor motif enrichment analysis 

ATAC-seq peaks are separated into promoter and liver enhancer [30] regions and Homer 

[101] is used to identify enrichment of de novo motifs with the function findMotifsGenome.pl (mm10 

-size given). Motifs with a p-value of lower than 1E-12 are considered significant to reduce the 

number of false positives. FDR is also calculated with each significant motif. To ensure the 

identified motifs are enriched in ATAC-seq peaks with different accessibility, motif frequency 

surrounding 500 up- and downstream of the peak center from all identified IDR peaks in quiescent 

hepatocytes and differentially accessible regions in repopulating cells is extracted. The difference 

in motif frequency distribution of regenerating and quiescent samples was then calculated with a 

Kolmogorov-Smirnov test. 
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ChIP-seq library generation 

100 mg of quiescent (n=2) and repopulating (n=2) liver tissue was finely chopped with a 

razor blade and cross-linked in 1% formaldehyde for 10 min followed by addition of 2.5 M glycine 

and incubation for 5 min at room temperature. Tissues were sedimented, washed with cold PBS, 

and Dounce-homogenized in cold ChIP cell lysis buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 3 

mM MgCl2, 0.5% IGEPAL CA-630, protease inhibitor) on ice. After incubation at 4 °C for 5 min, 

nuclei were pelleted and resuspended in nuclear lysis buffer (50 mM Tris-HCl pH 8.1, 1% SDS, 5 

mM EDTA, protease inhibitor). Nuclei were sonicated with a Bioruptor (Diagenode) for 2 rounds of 

7.5 min each. 10 μg of sheared DNA was incubated with anti-CTCF (2 μg, 07-729, Millipore) or 

anti-HNF4α (2 μg, ab181604, Abcam) antibodies in dilution buffer (16.7 mM Tris-HCl pH 8.1, 167 

mM NaCl, 0.01% SDS, 1.1% Triton-X 100, protease inhibitor) at 4 °C overnight. Protein-A agarose 

beads were also washed with cold dilution buffer three times and incubated with blocking buffer 

(10 mg/ml BSA, ChIP dilution buffer, protease inhibitor) at 4 °C overnight. Sheared DNA incubated 

with antibody and blocked protein-A agarose were incubated at 4 °C for 1 h the next day and 

washed at room temperature with buffers TSEI (20 mM Tris-HCl pH 8.1, 150 mM NaCl, 2 mM 

EDTA, 0.1% SDS, 1% Triton X-100), TSE II (20 mM Tris-HCl pH 8.1, 500 mM NaCl, 2 mM EDTA, 

0.1% SDS, 1% Triton X-100), ChIP buffer III (10 mM Tris-HCl pH 8.1, 0.25M LiCl, 1 mM EDTA, 1% 

NP-40, 1% deoxycholate), and TE (10 mM Tris-HCl pH 8.1, 1 mM EDTA). Chromatin was eluted 

with elution buffer (1% SDS, 0.1 M NaHCO3) twice and incubated with 0.2 M NaCl at 65 °C 

overnight to reverse the cross-links. Digestion was carried out with 10 mg/ml proteinase K in 40 

mM Tris-HCl pH 7.5 and 10 mM EDTA to purify CTCF- or HNF4α-bound and input DNA. ChIP-seq 

libraries were prepared with the NEBNext Ultra II DNA Library Prep Kit for Illumina (E7645S, New 

England BioLabs) and Agencourt AMPure XP beads were used for size selection to generate the 

final libraries. Library quality was assessed with an Agilent High Sensitivity DNA Bioanalyzer (5067-

4626, Agilent Technologies), and quantity measured with KAPA Library Quantification Kits 

(KK4835, KAPA Biosystems). 
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ChIP-seq data analysis 

ChIP-seq libraries were sequenced on an Illumina HiSeq 4000 (Illumina) with 100 single-

end reads and aligned to the mm10 genome with STAR [102]. Bam files from various technical 

replicates of the same biological sample were merged with Samtools [94]. Peak calling was 

performed with Homer [101] and differential occupancy analysis was carried out with the R package 

DiffBind [98]. Read counts for each peak were quantified with dba.count 

(score=DBA_SCORE_TMM_MINUS_FULL, bUseSummarizeOverlaps=TRUE) and differential 

analysis were identified with dba.analyze (method=DBA_EDGER, bSubControl=T, bTagwise=F) in 

conjunction with edgeR [99]. 

 

ChIP-qPCR 

ChIP was performed with 5 μg of anti-ZBTB3 (ab106536, Abcam) and 2 μg of YY1 

(ab109237, Abcam) antibodies with 10 μg of sheared DNA from quiescent and 4-week repopulating 

livers as described above. Input and immunoprecipitated DNA were purified with phenol-chloroform 

extraction followed by qPCR with primer sets ZBTB3-ChIP-Ctnna2-qPCR-F1 and -R1, ZBTB3-

ChIP-Smad3-qPCR-F1 and -R1, YY1-ChIP-Bcl2l11-qPCR-F1 and -R1, YY1-ChIP-Igf2r-qPCR-F1 

and -R1, and 40S-F2 and -R2. 

 

CTCF differential expression insulator analysis 

Increased CTCF occupancy during liver repopulation could prevent distal regulatory 

regions to activate only one of the flanking promoters surrounding a CTCF binding site, and 

therefore leading to a larger difference in gene expression levels. We define this ‘differential 

expression insulator’ function, in which a gene pair is either highly or lowly expressed without the 

presence of CTCF, but only one flanking gene exhibits a decrease in gene expression after binding 

of CTCF. An insulator strength score was calculated for all significantly gained (fold change ≥1.5, 

FDR ≤0.05) CTCF peaks in the repopulating liver as previously described [55]. Briefly, CTCF sites 

with divergent flanking promoters within 50 kb were identified and the corresponding gene 
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expression levels from quiescent and 4-week repopulating hepatocytes were extracted from 

published TRAP-seq [15].  

Low-expressors, in which RPKM-normalized read counts are 0 across all samples, were 

filtered followed by calculation of a rank percentile based on RPKM for each gene. Let 𝑥"and 𝑦"be 

the expression percentile in the quiescent hepatocytes; 𝑥$and 𝑦$be the expression percentile in 

the 4-week repopulating hepatocytes. The insulator strength score is calculated by taking the 

maximum value of 𝑥" × 𝑦" × 𝑥$ × (1 − 𝑦$) and 𝑥" × 𝑦" × (1 − 𝑥$) × 𝑦$. A differential expression 

insulator function will have one of the following effects: (1) Increased 𝑥$and decreased 𝑦$: in this 

case, 𝑥" × 𝑦" × 𝑥$ × (1 − 𝑦$) will be the largest. (2) Decreased 𝑥$and increased 𝑦$: in this case, 

𝑥" × 𝑦" × (1 − 𝑥$) × 𝑦$ will be the largest. Gained CTCF sites with the top 25% insulator strength 

scores were categorized as strong insulators. Random gene pairs not flanked by CTCF within 50 

kb were used as controls and a differential expression insulator score for each gene pair was 

calculated as described above. The number of significant (FDR≤0.05) and non-significant 

(FDR>0.05) differential expression of the flanking genes were identified for all strong insulators 

from increased CTCF binding and random genomic regions. Finally, we used Fisher’s exact test to 

examine the likelihood of gained CTCF sites to contain more significantly changed genes when 

compared to that of control regions. 

 

Nucleosome location analysis with ATAC-seq 

MAC2 (callpeak --keep-dup all, -B --SPMR, -q 0.05, --broad) [96] was used to identify broad 

peaks from all aligned bam files including nucleosome-free reads and nucleosome-containing 

reads from ATAC-seq. Broad peaks were then processed with BEDtools [103] to extend the peaks 

(bedtools slop -b 200), sorted by genomic positions (sort -k1,1 -k2,2n), and overlapping reads were 

merged (bedtools merge). Nucleosome position was identified with NucleoATAC [104] from the 

aligned bam and broad peak files. The closest nucleosomes with respect to TSS were identified, 

and those within 350 bp upstream and 250 bp downstream of the TSS were identified as the -1 and 

+1 nucleosomes, respectively. 
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Nucleosome positioning analysis 

The distance of +1 to -1 nucleosomes was calculated for each transcript. We used the 

Kolmogorov-Smirnov test to compare the +1 and -1 nucleosome distribution differences between 

quiescent and repopulating hepatocytes, respectively. To analyze the association between gene 

activity and nucleosome positioning, transcriptomic changes in repopulating hepatocytes [15] were 

first stratified into three categories: top 500 upregulated (fold change ≥1.5, FDR ≤0.05), top 500 

downregulated (fold change ≥1.5, FDR ≤0.05), and unchanged (absolute fold change <1.5 or FDR 

>0.05) genes. The distances between the +1 to -1 nucleosomes were calculated for each gene and 

differential positioning was carried out by comparing the distance in quiescent to regenerating 

hepatocytes in the upregulated, downregulated, and unchanged gene expression groups, 

respectively, with a permutation test (n=10,000). 

 

Statistical analysis 

EdgeR [99] was used for all high-throughput sequencing data analysis. For the integrative 

TRAP-seq and ATAC-seq analysis, a hypergeometric test was used for identifying the significance 

of overlapping gene sets, and a one-sample t-test was used to compare the difference between 

normalized gene expression fold change in differentially accessible promoter and enhancer 

regions, respectively. A Kolmogorov-Smirnov test was performed for global distribution change of 

+1 and -1 nucleosome positioning and a permutation test (n=10,000) was carried out to test the 

change in +1 to -1 nucleosome distance of genes with differential expression. 

 

Study approval 

The animal experiments carried out in this study were reviewed and approved by the 

IACUC of the Penn Office of Animal Welfare at the University of Pennsylvania. 
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SUMMARY 

This thesis work is the first to implement novel cell type-specific labeling technologies to 

mark repopulating hepatocytes in vivo to achieve unbiased profiling of transcriptomic and 

epigenomic alterations that occur during the regenerative process. With the utilization of innovative 

methodologies to exclusively track regenerating hepatocytes combined with extensive integrative 

multiomic analyses, I identified several factors and pathways with important biological implications 

followed by examining their functional significance in the regulation of liver regeneration. 

Additionally, the gene expression and chromatin accessibility datasets provide comprehensive 

information on the transcriptional regulation of repopulating hepatocytes.  

By adopting translating ribosome affinity purification with high-throughput RNA-sequencing 

(TRAP-seq) for the isolation of mRNA from repopulating hepatocytes, I identified Slc7a11, encoding 

the cystine/glutamate antiporter, xCT, as a promoter of liver regeneration in the setting of acute 

liver injury. Slc7a11 is upregulated for over 600- and 250-fold in repopulating hepatocytes after 1 

week and 4 weeks of liver injury and regeneration. Nonetheless, activation of Slc7a11 via ectopic 

expression at the time of injury still allowed hepatocytes with increased xCT expression to 

repopulate the injured liver more efficiently.  

The implementation of hepatocyte nuclear isolation followed by the ‘assay for transposase-

accessible chromatin using sequencing’ (ATAC-seq) allowed identification of the alterations in the 

chromatin landscape and investigation of the epigenomic regulation that occurs during liver 

repopulation. Multiomic data integration has enabled the detection of increased promoter 

accessibility that corresponds to enhanced CCCTC-binding factor (CTCF) occupancy followed by 

activation of proliferative genes. On the other hand, decreased liver-specific enhancer accessibility 

correlates with decreased hepatocyte nuclear factor 4α (HNF4α) binding and inhibition of liver 

function genes. These observations provide new insights into how mature hepatocytes assume a 

less differentiated state to enable cell growth and replication during acute injury followed by 

repopulation.  
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LIMITATIONS 

Considerations of the quiescent and regeneration mouse models 

In the studies aimed at understanding the genome-wide changes that occur during liver 

regeneration, I utilized two different transgenic mouse lines, i.e. RosaLSL-GFP-L10a and RosaLSL-SUN1-

GFP, as sources for quiescent hepatocytes, whereas Fah-/- mice were used to induce liver injury and 

isolate repopulating liver cells. While no phenotypic deficiencies have been observed between the 

RosaLSL-GFP-L10a [1] and RosaLSL-SUN1-GFP [2] mice, studies have yet to demonstrate that hepatocytes 

isolated from these transgenic lines after injection of AAV8-TBG-Cre exhibit similar transcriptomic 

and epigenomic profiles compared to hepatocytes isolated from wild type mice. A small portion of 

differentially expressed genes and divergent accessible regions identified in the current 

investigations could result from the expression of GFP-tagged proteins.  

In addition, the Fah-/- repopulation mouse could be perceived as an artificial model. In 

patients with hereditary tyrosinemia type I (HTI), all hepatocytes are exposed to toxic metabolites 

and subject to an injurious environment during tyrosine catabolism. However, cells that receive the 

Fah transgene in the Fah-/- model are technically not injured. Moreover, mechanisms of injury 

specific to tyrosine metabolism could limit the interpretation and findings to expand upon other 

injury-induced liver repopulation conditions, further restricting the utility of potential therapeutic 

targets identified in the current work. Analysis of injured hepatocytes could elucidate the 

transcriptomic and epigenomic discrepancies between the liver cells in HTI patients and 

repopulating hepatocytes in Fah-/- mice. This comparison may also answer whether similar 

alterations in redox pathways are present in injured cells, similar to that observed in repopulating 

cells. Finally, investigation of injured hepatocytes could add to the knowledge on signaling from 

injured to repopulating hepatocytes to better understand the induction of liver regeneration. 

 

TRAP-seq profiles the ‘translatome’  

It is worth noting that TRAP isolates translating mRNA bound to the ribosomal protein L10a. 

Therefore, the sequencing reads represent the ‘translatome’ rather than the ‘transcriptome’ of 
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repopulating hepatocytes. Future methods to enable the isolation of nascent mRNAs particularly 

from repopulating hepatocytes is likely to generate divergent datasets and will allow the comparison 

of transcriptome and translatome, as well as the calculation of translation efficiency [3] during liver 

regeneration. 

 

Isolation of repopulating hepatocyte nuclei is time-consuming  

While affinity-purification was successful in isolating mRNA from repopulating hepatocytes, 

no enrichment was detected with immunoprecipitation of repopulating hepatocyte nuclei expressing 

the SUN1-GFP fusion protein. This was attempted several times with various anti-GFP antibodies 

according to methods described previously [2,4]. The exact mechanism of failure to 

immunoprecipitate SUN1-GFP-labeled nuclei is unclear but we postulate that a combination of the 

fragility of repopulating hepatocyte nuclei and the small amount of repopulating cells hinder the 

affinity-purification of SUN1-GFP expressing hepatocytes. To address the technical difficulty of lack 

of enrichment of target nuclei with the ‘isolation of nuclei-tagged in specific cell types’ (INTACT) 

method [2], we turned to fluorescence-activated cell sorting (FACS) to isolate repopulating 

hepatocyte nuclei. However, FACS is a time-consuming process and depending on the percentage 

of regenerating cells, took up to over 4 hours. The lengthy process could introduce cellular stress 

and cause chromatin fragmentation. In my hands, samples that required sorting for over 4 hours 

exhibited low-quality ATAC-seq reads that significantly reduced the signal to noise ratio, hindering 

peak calling in downstream analysis to identify open chromatin regions. 

 

Limitations of the ATAC-seq technology and bioinformatics analysis pipelines 

ATAC-seq makes use of the Tn5 transposase that accesses the relatively ‘open’ chromatin 

to fragment and tag accessible chromatin regions, a process referred to as ‘tagmentation’ [5]. 

However, the Tn5 transposase displays sequence-specific binding preferences that induce bias 

during tagmentation [6]. Computational methods to model and correct for the transposition bias 
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have been proposed [7,8], but these have not been widely-adopted or experimentally validated to 

date.  

Furthermore, ATAC-seq is limited to only examining euchromatic areas and thus generates 

mainly short fragments under 200 bp constituted of nucleosome-free or mono-nucleosomal reads. 

This limits our ability to investigate the regulation of heterochromatic regions during liver 

repopulation. Other methods that utilize sonication-resistant heterochromatin followed by a gradient 

separation to discriminate subtypes of histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 

lysine 27 trimethylation (H3K27me3) [9] could be implemented to elucidate transcriptional silencing 

and domain repression during liver regeneration.  

The development of ATAC-seq to examine open chromatin regions is a relatively new 

technology [5] and hence no pipelines have been proposed as the gold standard for data analysis. 

The analysis utilized in this thesis includes a combination of the ATAC-seq pipeline for ENCODE 

data developed by Anshul Kundaje and the ENCODE Data Analysis Center [10], as well as in-

house scripts developed specifically for the analysis of the present study. The use of alternative 

bioinformatics programs could, therefore, generate distinct results. Nevertheless, I presume that 

the highly significant regions with differential accessibility should remain the same or at least similar 

across various analysis platforms. 

Finally, chromatin regions with differential accessibility identified by ATAC-seq only refer 

to the state of openness but do not infer the activity of the gene. A chromatin region could become 

more accessible to allow the binding of transcriptional repressors, leading to suppression of its 

target genes. Hence, ATAC-seq only provides a broad overview of the modifications in the 

chromatin landscape rather than specific directional changes of gene activity. Integration of 

additional genome-wide experiments such as ChIP-seq, promoter-enhancer interaction mapping 

by chromatin capture methods, or other functional manipulation is necessary to guide the 

understanding of the effects of altered chromatin accessibility. For instance, the integration of 

TRAP-seq to inform transcriptomic modifications in this thesis provides additional information to 

assess the consequences of chromatin accessibility changes. 
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Whole repopulating livers are used for chromatin immunoprecipitation (ChIP) 

In both studies to profile the transcriptomic and epigenomic changes that occur during liver 

regeneration, ChIP experiments were carried out on whole quiescent and repopulating livers to 

elucidate the mechanism of Slc7a11 activation as well as the occupancy of CTCF and HNF4α. Due 

to the large cell number required for typical ChIP assays (1-10 million) [11], the lack of sufficient 

repopulating hepatocytes isolated from the regenerating liver has prevented cell type-specific ChIP-

seq. Thus, it is possible that the signals of increased activating transcription factor 4 (ATF4) binding 

at the Slc7a11 promoter are detected from hepatocytes undergoing injury and repopulation, as well 

as other cell types in the liver. The lack of significantly increased occupancy of nuclear factor 

erythroid 2-related factor 2 (NRF2) at the Slc7a11 locus could also be the result of chromatin 

dilution by injured hepatocytes in the regenerating liver. Similarly, CTCF and HNF4α ChIP-seq 

experiments were performed in whole-livers that underwent 4 weeks of repopulation in a non-cell 

type-specific manner. The changes in CTCF and HNF4α occupancy detected are therefore likely a 

mixture of signals from injured and regenerating hepatocytes. Changes in binding patterns specific 

to repopulating cells could also be diluted by other cell types and the surrounding dying 

hepatocytes.  

Development of novel methods to utilize micrococcal nuclease-based native ChIP without 

cross-linking — including ‘Occupied Regions of Genomes from Affinity-purified Naturally Isolated 

Chromatin (ORGANIC)’ [12], ‘Ultra-Low-Input micrococcal nuclease-based Native ChIP (ULI-

NChIP)’ [13], and ‘Cleavage Under Targets & Release Using Nuclease (CUNT&RUN)’ [14] — 

allows ChIP-seq from as few as 1,000 cells, depending on the abundance of the transcription factor 

of interest. Further optimization of these methods for hepatocyte nuclei will be useful in obtaining 

cell type-specific cistromes in repopulating hepatocytes. 
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FUTURE DIRECTIONS 

The downstream effectors of Slc7a11 in regenerating hepatocytes 

Slc7a11 overexpression promotes liver regeneration after acute injury, however, the 

effects of xCT activation in chronic injury has not been studied. Upregulation of Slc7a11 is observed 

in human gastrointestinal tumors [15], breast cancer cells [16], and hepatocellular carcinoma [17] 

to increase glutathione (GSH) synthesis for the defense of reactive oxygen species (ROS) and 

promote cell growth [15,16]. It is plausible that xCT activation in the setting of chronic liver injury 

plays a similar role in reducing oxidative stress to confer an advantage for hepatocyte survival or 

replication.  

While Slc7a11 is not an oncogene, the safety of long-term xCT activation should be 

rigorously examined, especially in the inflammatory microenvironment often observed in chronic 

liver injury that could ultimately lead to tumorigenesis [18]. On the other hand, transient xCT 

induction could be considered as a treatment for acute and chronic liver injury. In APAP-induced 

liver failure, N-acetylcysteine is often used to restore intracellular GSH levels and prevent hepatic 

necrosis [19]. The efficacy of short-term upregulation of xCT via viral delivery of Slc7a11 or drug 

treatment can be assessed in the settings of liver injury to determine the extent of prevention of 

ROS-mediated cell death and promotion of hepatocyte survival. 

To identify the mechanisms of Slc7a11 activation to enhance liver regeneration following 

acute injury, coexpression of Fah and Slc7a11 cDNA in conjunction with the GFP-L10a fusion 

protein in the Fah-/- mouse would allow for specific isolation and expression profiling of repopulating 

hepatocytes with Slc7a11 induction. TRAP-seq of these cells could determine the effects of 

Slc7a11 overexpression on gene expression. Similarly, implementation of the clustered regularly 

interspaced short palindromic repeats (CRISPR) system to mutate Slc7a11 with the expression of 

FAH and GFP-L10a could establish downstream targets necessary to promote liver regeneration 

that are dependent on Slc7a11 activation. In particular, I hypothesize that genes involved in GSH 

metabolism, including Gsta and Gstm isoforms, as well as redox-sensitive transcription factors, 

such as NRF2 and AP1, will be activated following the upregulation of Slc7a11 and inhibited after 



 

199 
 

Slc7a11 mutation to support the induction of redox pathways [20]. Gain- and loss-of-function 

experiments of the top effectors of Slc7a11 activation could be carried out to further assess their 

functional significance during liver regeneration.  

 

Regulation of oxidative response during liver regeneration 

Expression profiling of regenerating hepatocytes identified massive induction of multiple 

redox pathway genes. Genes involved in the oxidation/reduction network have been implicated in 

liver injury and regeneration [21–23], and depletion of GSH availability or inhibition of GSH 

synthesis delays regeneration and exacerbates toxic hepatic injury [24,25]. What remains to be 

shown is the spatiotemporal regulation of redox balance in replicating hepatocytes during liver 

regeneration.  

Recently, a method was established to determine the redox status of zebrafish cells in situ 

[26]. The effects of a biliary toxin were measured and determined to show that the toxin induces a 

more oxidized state in extrahepatic biliary cells [26]. The assay utilizes the redox-sensitive GFP 

biosensor, termed roGFP, that contains an engineered dithiol/disulfide switch sensitive to cytosolic 

redox states [27]. Different redox levels alter the state of cysteine amino acid residues, resulting in 

a shift in emission at two excitation wavelengths (405 and 488 nm). The coupling of roGFP to 

glutaredoxin (GRX1), an endogenous enzyme that catalyzes the GSH/GSSG equilibrium, allows 

for the specific determination of the cytoplasmic GSH redox potential by roGFP [27]. A high 405/488 

signal indicates an oxidized sensor and conversely, a low signal reflects a reduced state.  

The GRX1-roGFP biosensor could be adapted to the Fah-/- model to assess the 

intracellular redox potential of repopulating hepatocytes. Mapping of the spatial and temporal redox 

status in repopulating hepatocytes will enable the elucidation of the oxidative stress response 

during the regenerative process. Furthermore, the expression of GRX1-roGFP could be coupled 

with overexpression and inhibition of Slc7a11 to determine the effects of varying xCT levels on the 

redox environment of repopulating hepatocytes. 
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Regulation of HNF4α occupancy during liver regeneration 

HNF4α is a crucial factor that maintains mature hepatocytes in a differentiated state [28] 

by suppressing cell cycle gene expression and inhibiting hepatocyte proliferation [29,30]. Increased 

hepatocyte BrdU incorporation and Ki67 staining were observed in mice with conditional Hnf4a 

deletion, demonstrating the requirement of HNF4α to inhibit quiescent hepatocytes from reentering 

the cell cycle. 

In the current study, I observed a loss of HNF4α binding to liver enhancers during 

repopulation, but have not investigated the mechanisms that led to its decrease in occupancy. 

Several possibilities include a loss of liver enhancer accessibility that results in HNF4α eviction 

[31], downregulation of Hnf4a expression [20,32] or protein abundance [33], and decreased HNF4α 

nuclear localization [34] that prevents its binding to liver enhancers. In fact, TRAP-seq identified a 

50% decrease of Hnf4a transcripts in 4-week repopulating hepatocytes [20]. Whether other 

mechanisms contribute to the alteration of HNF4α occupancy is currently not known. 

Elucidating the functional significance of altered HNF4α binding in the regenerating liver 

could also inform the utility of inhibiting HNF4α as a strategy to promote repopulation. It is plausible 

that HNF4α occupancy is required to maintain a euchromatic conformation at enhancers regulating 

liver functions [35], and a loss of binding could cause nucleosomes to become less accessible 

during liver regeneration. Targeted HNF4α deletion in repopulating hepatocytes in conjunction with 

the expression of GFP-L10a and SUN1-GFP proteins would enable the understanding of the direct 

effects of modified HNF4α occupancy on gene expression and chromatin accessibility.  

 

The functional significance of CTCF in repopulating hepatocytes 

CTCF plays numerous roles in genome regulation as an activator [36] or repressor [37] to 

modulate transcriptional activities, as an insulator to prevent enhancer-promoter interactions [38], 

as an organizer of chromatin structures to form topologically-associated domains [39], and as a 

modulator of long-range chromatin interactions to mediate looping [40], to name a few.  



 

201 
 

Understanding the functional importance of CTCF during liver repopulation will shed light 

on its utility as a therapeutic target and enable identification of additional regulators of the 

regenerative process. Incorporation of targeted degradation of CTCF mediated by the auxin-

inducible degron system [41] with the Fah-/- mouse and cell type-specific isolation technologies 

would provide a model to study the effects of CTCF deficiency in repopulating hepatocytes. 

Genomic strategies to analyze changes in chromatin conformation [42,43] after the induction of 

CTCF degredation including chromosome conformation capture (3C) [44], chromosome 

conformation capture-on-chip (4C) [45], circular chromosome conformation capture (4C) [46], 

chromosome conformation capture carbon copy (5C) [47], Hi-C [48], and chromatin interaction 

analysis by paired-end tag sequencing (ChIA-PET) [49] could provide insight to the functional role 

of CTCF in nuclear organization and genome topology during liver regeneration. 

The ability of CTCF to interact with distinct proteins in a context-dependent manner enables 

its diverse functions for transcriptional regulation [50,51]. Transcriptional cofactors are recruited by 

CTCF to specific loci for transcriptional activation and repression include Y-box DNA/RNA-binding 

factor (YB1) that enhances Myc repression [52], YY1 for X chromosome inactivation [53], class II 

transactivator (CIITA) to induce expression of major histocompatibility complex class II (MHC-II) 

genes [54], and general transcription factor II-I (TFII-I) to promote metabolic gene transcription [55].  

Chromatin proteins also cooperate with CTCF to mediate insulation, looping, and 

transcription. The cohesin complex coordinates transcriptional insulation [56,57], H2A and H2A.Z 

induce localization to the nucleolus for insulation [58], and Suz12 recruits the polycomb repressive 

complex 2 to suppress the maternal Igf2 promoter [59]. Other proteins demonstrated to interact 

with CTCF include Poly(ADP-ribose) polymerase 1 (PARP1) for post-translational modification of 

CTCF to modulate chromatin insulation properties [60], the nucleolar protein nucleophosmin to 

localize β globulin insulator sites to the nuclear periphery for insulation [58], and RNA polymerase 

II that induces pausing to regulate alternative exon usage [61]. 

In the current study, I identified increased CTCF occupancy at promoters with elevated 

accessibility during liver regeneration. Stratification of changes in transcript levels revealed several 
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likely protein partners that cooperate with CTCF to differentially-mediate gene activation or 

repression. The transcriptional activator ZBTB3 is colocalized with CTCF at upregulated genes 

involved in cell growth and proliferation, whereas the transcriptional repressor YY1 co-occupies 

CTCF-bound downregulated promoters related to cell death regulation in repopulating hepatocytes. 

Assays to coimmunoprecipitate CTCF and ZBTB3 or YY1 should be performed to evaluate the 

direct or indirect interactions between CTCF and its cofactors. Experiments that implement 

genome-wide methods to examine ZBTB3 and YY1 binding sites could also be utilized to identify 

additional loci of colocalization. Finally, studies to manipulate levels of ZBTB3 and YY1 in 

repopulating hepatocytes could inform the functional significance of these transcription factors in 

liver regeneration. 
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CONCLUSIONS 

With the development of cell type-specific technologies to profile transcriptomic and 

epigenomic changes that occur specifically in the repopulating hepatocytes, I identified Slc7a11 as 

a potential therapeutic target to promote liver regeneration after acute injury. Future work to assess 

the utility of Slc7a11 in the setting of chronic liver injury, the safety of viral-mediated or drug-induced 

transient or long-term xCT activation, and the mechanism of Slc7a11 to support hepatocyte 

replication will allow a more extensive understanding of the regulation of the oxidative/reduction 

network during liver repopulation. 

Furthermore, my work provides insights on the combinatorial modulation of increased 

promoter accessibility and decreased liver-enriched enhancer accessibility underlying liver 

repopulation. These chromatin changes enable the activation of cell growth pathways and 

repression of liver metabolic functions. The mechanism of decreased HNF4α occupancy in liver-

enriched enhancers and its effects on the liver metabolic gene program will enable the evaluation 

of whether HNF4α inhibition could be used as a strategy to induce hepatocyte replication during 

liver repopulation. The effects of CTCF on chromatin modification, the regulation of differential 

CTCF occupancy, and the mediation of transcriptional activity with additional CTCF cofactors are 

intriguing questions that may reveal the importance of nuclear organization and genome topology 

to fine-tune gene expression during the regenerative process. 
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