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ABSTRACT

DECAY PROPERTIES OF MULTILINEAR OSCILLATORY INTEGRALS

Zhen Zeng

Philip T. Gressman

In this thesis, we study the following multilinear oscillatory integral introduced by 

Christ, Li, Tao and Thiele [7]

Iλ(f1, ...fn) =

∫
Rm

eiλP (x)

n∏
j=1

fj(πj(x))η(x)dx, (0.0.1)

where P : Rm → R is a real-valued measurable function, η is a compactly supported

smooth cutoff function. Each πj is a surjective linear transformation from Rm to

Rkj , where 1 ≤ kj ≤ m− 1. Each fj : Rkj → C is a locally integrable function with

respect to Lebesgue measure on Rkj .

In Chapter 2, we first introduce the nondegeneracy degree along with the non-

degeneracy norm defined in [7] to characterize the nondegeneracy condition of the

phase function. In the same chapter, we will summarize some powerful tools that

can help to simplify the problem and introduce the idea of a special geometric

structure called “separation”.

There are three results in this thesis. The first proves trilinear oscillatory inte-

grals with nondegenerate polynomial phase always have the decay property. The

second one extends the one-dimensional case whose phase function has large non-
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degeneracy degree. The third result deals with the case where every linear mapping

preserves the direct sum decomposition.
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Chapter 1

Introduction

Oscillatory integrals have long been an essential part of harmonic analysis and

have been a powerful tool in many central questions of mathematics. The most

commonly seen oscillatory integral is Fourier transform, which has a wide range

of applications in partial differential equations, physics and signal processing, see

[9], [17], [19]. One of the most fundamental questions about oscillatory integrals

is the asymptotic behavior of them under certain conditions. For example, if f is

an L1 function on Rn, the Riemann-Lebesgue lemma implies the Fourier transform

f̂ is a continuous bounded function on Rn, which vanishes at infinity. However, if

f ∈ L2(Rn), then f̂ can be any function in L2(Rn) and it does not necessarily tend

to 0 at infinity.

Many mathematicians have investigated settings in which oscillatory integrals

may have certain decay, and they have achieved fruitful result. See [14], [16], [20]
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for reference.

1.1 Oscillatory integrals of the first kind

We now introduce oscillatory integrals of the first kind, in the terminology of

Stein[20], which are defined as below and we want to characterize the asymptotic

behavior of these integrals for large positive λ:

I(λ) =

∫
Rn
eiλφ(x)ψ(x)dx, (1.1.1)

where φ is a real-valued smooth function(the phase), and ψ is complex-valued,

smooth, and compactly supported. See [20].

One tool to deal with it is the principle of nonstationary phase, which roughly

speaking asserts that (1.1.1) is rapidly decreasing in λ whenever φ is smooth and

nonstationary (that is, ∇φ does not vanish).

Proposition 4 (Stein[20], pp.341) (principle of nonstationary phase) Let φ

and ψ be smooth functions so that ψ has compact support, and ∇φ 6= 0 for all x on

supp ψ. Then

I(λ) ≤ CN,ψ,φλ
−N

as λ→∞ for all N ≥ 0.

Proof. For a function f ∈ C∞, we define the operator

L(f) =
1

iλ
a
df

dx
(1.1.2)
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and its transpose

LT (f) = − 1

iλ

d

dx
(af),

with

a(x) =
1

φ′(x)
.

So if f, g ∈ C∞ then integration by parts gives∫ ∞
−∞

L(f)g =

∫ ∞
−∞

fLT (g) +
[a(x)g(x)f(x)

iλ

]∞
−∞

=

∫ ∞
−∞

fLT (g) +
[g(x)f(x)

iλφ′(x)

]∞
−∞

.

If in addition g ∈ C∞0 , then we have∫ ∞
−∞

L(f)g =

∫ ∞
−∞

fLT (g).

Also, this operator is useful here because L(eiλφ) = eiλφ and then LN(eiλφ) = eiλφ

for all N ∈ N. Thus

I(λ) =

∫
R
LN(eiλφ(x))ψ(x)dx =

∫
R
eiλφ(x)(LT )N(ψ(x))dx.

Now for each N , (LT )N(ψ(x)) is (− 1
iλ

)N times a function that is continuous and

supported in supp(ψ). This function is then integrable and does not depend on λ.

So we get ∣∣∣I(λ)
∣∣∣ ≤ cNλ

−N ,

where for each N the constant cN depends on the phase and the amplitude but not

on λ. Hence as λ goes to infinity, the decay of the integral is very fast and is in fact

as fast as the decay of the Fourier transform mentioned above.

3



If stationary points do exist, things may become complicated. However, in one

dimension, where n = 1, even if we do not know the information of ∇φ, we may

still obtain an estimate for
∫ b
a
eiλφ(x)dx. Given |d

kφ(x)
xk
| is bounded away from 0 for

some k ≥ 2 by the following van der Corput lemma, which is one of the most

fundamental results in this area. Notice that ∇φ(x) being bounded away from 0 is

not enough to guarantee the decay of the integral in this case, one can refer to [20]

for counterexamples.

Proposition 2 (Stein[20], pp.332) (van der Corput lemma) Let k ∈ N. Let

I ⊂ R be an interval and suppose that φ : I → R satisfies |φ(k)(x)| ≥ 1 for x ∈ I.

Then for λ ∈ R, ∣∣∣ ∫
I

eiλφ(x)dx
∣∣∣ ≤ Ck|λ|−

1
k ,

provided, in addition when k = 1, φ′(x) is monotone on I. The constant Ck is

independent of φ and I.

Proof. We use the same operator 1.1.2 but now when we do the integration by parts

we get

I1(λ) =

∫ b

a

L(eiλφ(x))dx

=

∫ b

a

eiλφ(x)LT (1)dx+
[ eiλφ(x)

iλφ′(x)

]b
a
.

The second term is obviously bounded by 2
λ

and the first term is bounded by

∫ b

a

∣∣∣LT (1)
∣∣∣dx =

1

λ

∫ b

a

∣∣∣ d
dx

(
1

φ′(x)
)
∣∣∣ (1.1.3)
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and since φ′(x) is monotonic and continuous, d
dx

( 1
φ′(x)

) does not change sign. Then

(1.1.3) is

1

λ

∣∣∣ ∫ b

a

d

dx
(

1

φ′(x)
)dx
∣∣∣ =

1

λ

∣∣∣ 1

φ′(b)
− 1

φ′(a)

∣∣∣ ≤ 1

λ

∣∣∣ 1

φ′(b)

∣∣∣,
where the last inequality holds because φ′(a) and φ′(b) have the same sign, and this

is bounded by 1
λ
. Putting the terms together, we get the result.

In higher dimensions, Carbery, Christ and Wright [3] give an analogue of van

der Corput lemma as below.

Lemma 1.1.1. Let β = (β1, ...βn) 6= 0 be a multi-index, and suppose that at least

one of its entries βj is greater than or equal to two. Then there exist ε > 0 and

C < ∞, depending only on β and on n, such that for any integrable u : Q → R

satisfying Dβu ≥ 1 on Q in the sense of distributions, for all λ ∈ R, the oscillatory

integral I(λ) =
∫
Q
eiλu(x)dx satisfies

|I(λ)| ≤ C|λ|−ε.

1.2 Oscillatory integrals of the second kind

Oscillatory integrals of the second kind, which are known as oscillatory integral

operators, are given the following form

Tλf(ξ) =

∫
Rm

eiλφ(x,ξ)f(x)ψ(x, ξ)dx.

Hörmander [12] gives a characterization of such operators when the Hessian of φ is

nonvanishing in the support of the cutoff ψ.
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Theorem 1.1 (Hörmander [12]) Assume η(x, y) is a smooth cut-off function

supported in a neighborhood of 0 and S(x, y) is a real-valued smooth function in

Rm × Rm such that ∣∣∣ det
∂2S

∂x∂y

∣∣∣ ≥ 1 (1.2.1)

for all (x, y) ∈ supp η with λ > 1. For 1 ≤ p ≤ 2, 1/p+ 1/p′ = 1, one has

||T (f)||Lp′ ≤ C|λ|−m/p′||f ||Lp . (1.2.2)

Here

T (f)(x) =

∫
eiλS(x,y)f(y)η(x, y)dy.

Proof. The statement is obvious when p = 1 so in view of the interpolation argu-

ment, it suffices to prove it when p = 2. In the proof we may assume f has small

support. We have to estimate

||T (f)||2 =

∫ ∫
η̃(y, z)f(y)f̄(z)dydz,

where η̃(y, z) =
∫
eiλ(S(x,y)−S(x,z))η(x, y)η(x, z)dx.

When y and z are close to a given point and (x, y) ∈ supp(η) we have

|∂/∂x(S(x, y)− S(x, z))| = |S ′′xy(y − z)|+O(|y − z|2) ≥ c|y − z|.

So if k is any positive integer, k partial integrations give

|η̃(y, z)| ≤ Ck(1 + λ|y − z|)−k.

6



If k = m + 1, it follows that
∫
|η̃(y, z)|dy < Cλ−m,

∫
|η̃(y, z)|dz < Cλ−m. Hence

||Tf ||2L2 ≤ Cλ−m||f ||2L2 and the theorem is proved.

The situation where ∂2S
∂x∂y

vanishes at some point is more tricky. Just like van

der Corput lemma, we may need some extra assumptions on other derivative. If

there exists α ≥ 1, β ≥ 1, but (α, β) 6= (1, 1) and ∂α+βS
∂xα∂yβ

6= 0 on the support of η,

estimates like 1.2.2 still holds. Detailed work can be found in [3]. When S(x, y) is

analytic, we do not need extra assumption. See [15].

When p = q = 2, the inequality (1.2.2) can be written in this form

∣∣∣ ∫ eiλS(x,y)g(x)f(y)η(x, y)dy
∣∣∣ ≤ C|λ|−m/2||f ||L2||g||L2 .

So the above theorem actually obtains an estimate of a bilinear oscillatory inte-

gral. In the next section, we will give a more general formulation of estimating the

asymptotic behavior of multilinear oscillatory integrals.

1.3 Multilinear oscillatory integrals

In [7], Christ, Li, Tao and Thiele initialize the study of a rather general multilinear

functionals of the form

Iλ(f1, ...fn) =

∫
Rm

eiλP (x)

n∏
j=1

fj(πj(x))η(x)dx, (1.3.1)

where P : Rm → R is a real-valued measurable function, η is a compactly supported

smooth cutoff function. Each πj is a surjective linear transformation from Rm to
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Rkj , where 1 ≤ kj ≤ m − 1. Each fj : Rkj → C is a locally integrable function

with respect to Lebesgue measure on Rkj . This integral is well-defined if in addition

all fj belongs to L∞. And the question is, under what conditions this integral has

rapid decay? Here rapid decay means there exists some ε > 0 such that

|Iλ(f1, ...fn)| ≤ C(1 + |λ|)−ε
n∏
j=1

||fj||L∞ (1.3.2)

holds for every λ and every fj lying in L∞(Rkj).

Notice that when n = 0, that is, the number of function is 0, we are dealing

with
∫
eiλP (x)η(x)dx, which is oscillatory integrals of the first kind. Indeed, (1.3.2)

with L∞-bounds on the functions fj is equivalent to |
∫
eiλφ(x)η(x)dx| ≤ C|λ|−ε

uniformly for all phase functions of the form φ = P −
∑

j hj ◦ πj, where the hj

are arbitrary real-valued measurable functions, one can refer to [3]. When n = 2,

for certain exponents, oscillatory integrals of the second kind can be viewed as an

example of the bilinear case of (1.3.1) with R2m = {(x, y)} and π1 : (x, y) → (x),

π2 : (x, y)→ (y). So the two kinds of oscillatory integrals introduced before can be

included into this framework.

In [7], the authors focus on the situation where the phase function is a polynomial

of degree less than or equal to some constant d. They successfully prove that

when kj = m − 1 for all j and when kj = 1 for all j under some restrictions, to

characterize the decay property of the above oscillatory integrals (1.3.1), it suffices

to check certain nondegeneracy conditions of the phase function P as well as some

geometric and dimensional conditions of the linear projections {πj}. Despite the

8



great progresses they make, the general cases have not been thoroughly explored.

After the work of Christ, Li, Tao and Thiele[7], Christ and Silva[8] study a

rather special trilinear integrals of the form

Iλ(f1, f2, f3) =

∫
R2m

eiλP (x,y)f1(x)f2(y)f3(x+ y)η(x, y)dxdy (1.3.3)

where P is a polynomial of degree less or equal to a constant d and R2m = Rm ×

Rm = {(x, y)} and give a characterization of such integrals by the nondegeneracy

conditions of the phase function. But the more general cases are still left to be

investigated.

Other results in this area include the oscillatory integral operator defined by

Phong, Stein, and Sturm [16], which is of the form

I(λ) =

∫
D

eiλφ(x1,...xm)f1(x1)...fm(xm)dx1...dxm,

where the phase function φ(x1, ...xm) is a polynomial. And D is a subset of the unit

ball in Rm. They have obtained some precise results on the exponent in the decay

estimate, which is phrased in terms of the reduced Newton polyhedron.

1.4 Application

The estimate of oscillatory integrals can be used to get the corresponding sublevel

set estimate. To be more precise, if a real-valued measurable function P satisfies

(1.3.2) for all functions fj ∈ L∞(Rkj), then there is an upper bound for the measures

9



of the sublevel sets of the form

|{y ∈ B : |P (y)−
n∑
j=1

gj(πj(y))| < ε}| ≤ Cεδ

uniformly for all measurable functions gj. See [6]. And the sublevel set estimates

of certain real-valued functions turn out to have close connections with some com-

binatorial problems arising in extremal graph theory. See [3] for more details.

Understanding the decay property of various oscillatory integrals can certainly

help us deal with many problems in mathematics. Hörmander discovers Theo-

rem 1.1(Hörmander [12]) in order to simplify the proof of Carleson and Sjölin [4]

that deals with the necessary and sufficient conditions for certain function to be a

multiplier.

Other important application includes the restriction problem in harmonic anal-

ysis. It asks the question that what are the exponents q such that the Fourier

transform of an Lq(Rm) function g can be meaningfully restricted to a given hy-

persurface S, in the sense that the map g → ĝ|S can be continuously defined from

Lq(Rm) to L1(S, dσ) with σ is the surface measure of S. It turns out that the

variable coefficient (Hömander) setting of the problem is exactly dealing with the

oscillatory integral operator

Tλf(x) =

∫
eiφ(x,y)f(y)dx

with some specific analytic phase function and ||f ||L∞ ≤ 1. The problem now

becomes characterizing the range of q such that the bound ||Tλ||q ≤ cλ−
m
q holds.

One can refer to [1] and [2].

10



Another important application is singular integrals. In [18], Ricci and Stein

study the operator T (f)(x) =
∫
Rm e

iP (x,y)K(x − y)f(y)dy where K is a standard

Calderón-Zygmund kernel, that is, K is Lipschitz continuous except at the origin,

K(rγ) = r−mK(γ) for all r > 0 and γ 6= 0, and
∫
S
Kdσ = 0, where σ denotes

surface measure on the unit sphere S. They have shown T is bounded on Lp for

1 < p < ∞. The bilinear and multilinear analogue of it has been studied in [7] by

combining previously known results for nonoscillatory singular integral operators

with estimates for nonsingular oscillatory integrals.

11



Chapter 2

Goals and tools

2.1 Goals and conventions

In this thesis, we study the multilinear oscillatory integral initially introduced by

Christ, Li, Thiele and Tao [7]:

Iλ(f1, ...fn) =

∫
Rm

eiλP (X)

n∏
j=1

fj(πj(X))η(X)dX. (2.1.1)

Here λ ∈ R is a parameter, P : Rm → R is a polynomial of degree less or equal

to some given constant d, m ≥ 2, η ∈ C∞0 (Rm) is a compactly supported smooth

cutoff function. Each πj is a surjective linear transformation from Rm to Rkj , where

1 ≤ kj ≤ m − 1. We assume fj ∈ L∞(Rkj) and each fj has support in a specified

compact set Bj ⊂ Rkj . In this case, the integral is well-defined.

Definition 2.1.1. We say {P, {πj}nj=1} has power decay property in Rm on an open

set U ⊂ Rm, where P is a measurable, real-valued function, each πj is a surjective

12



linear map from Rm to Vj, if for any smooth cutoff function η defined on U , there

exists ε independent of η and a constant C depends on the support and C4 norm of

η such that

|Iλ(f1, ...fn)| ≤ C(1 + |λ|)−ε
n∏
j=1

||fj||L∞ (2.1.2)

for all λ ∈ R and all fj ∈ L∞(Rkj).

In this thesis, we will focus on the case where the phase function is a polynomial.

Though (2.1.2) may also hold for other exponents ||fj||Lpj , we will only assume

all ||fj||L∞ are finite. Since |Iλ(f1, ...fn)| ≤ C||fk||L1

∏
j 6=k ||fj||L∞ uniformly in

λ for any k, if (2.1.2) holds, by the interpolation argument, the decay estimate

for
∏

j ||fj||pj also holds for various pj. So it suffices to consider this extreme

formulation.

Notice that if P =
∑n

j=1 pj ◦ πj for some function pj, then fj = e−iλpj(πj(x)) ∈

L∞(Rkj) gives eiλP (X)
∏n

j=1 fj(πj(X)) = 1 so that (2.1.1) becomes constant and

thus has no decay. So a necessary condition for Iλ having power decay is that P

cannot be decomposed in this way, which leads to the following definition in [7].

Definition 2.1.2. A polynomial P is said to be nondegenerate relative to a collec-

tion of surjective linear mappings {πi} if P cannot be expressed as a sum of pj ◦ πj

where each pj is a polynomial.

The goal of this thesis is to see under what conditions the power decay property is

equivalent to the nondegeneracy of the phase function and what other assumptions

may also lead to the power decay property of (2.1.1).
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The regularity condition η ∈ C4 is rather arbitrary. Here we will use the big O

notation. If f(x) = O(g(x)) for x→∞, it means there exists constants M,x0 such

that |f(x)| ≤ M |g(x)| for x ≥ x0. If η is merely Hölder continuous then for any

s <∞, η may be decomposed as a smooth function whose Cs norm is O(|λ|Cδ) plus

a remainder which is O(|λ|−δ) in supremum norm. If (2.1.2) holds for all η ∈ Cs
0

with a constant C which is O(||η||Cs), then it follows from the decomposition, with

δ = ε/2C, that it continuous to hold for all Hölder continuous η.

If for some 1 ≤ j ≤ n, π1
j , π

2
j are two surjective linear mappings with identi-

cal nullspaces and ranges of equal dimensions, then there is some invertible linear

transformation L such that π2
j = L ◦ π1

j . So for every function f defined on the

range space of (π2
j (x)), there exists a function g = f ◦L defined on the range space

of π1
j such that for every x ∈ Rm, g(π1

j (x)) = f ◦ L(π1
j (x)) = f(π2

j (x)). Therefore,

if (2.1.2) holds for the collection of mappings {π1, ...π
1
j ..., πn}, it also holds for the

collection {π1, ...π
2
j ..., πn}. So we can assume without loss of generality that each πj

has distinct nullspace and we may equivalently speak of nondegeneracy relative to

a collection of subspaces {Vj}nj=1 of Rm where Vj = nullspace(πj). Similarly, we can

also assume that there is no index i and j such that nullspace(πi) ⊂ nullspace(πj).

If so, there exists a surjective linear transformation from the range space of πi to

the range space of πj such that πj = L ◦ πi. So for every function fj defined on the

range space of πj, there exists a function gi = fj ◦ L defined on the range space of

πi such that gi(πi(x)) = fj(πj(x)). In this case, we say fj(πj(x)) is absorbed into

14



gj(πi(x)).

So we may equivalently say {P, {Vj}nj=1} has the power decay property in Rm,

if (2.1.2) holds true for any linear mappings πj with nullspaces equal to Vj. In this

paper, we will just consider the case where the phase function P is a polynomial of

bounded degree d.

2.2 Nondegeneracy

In this section, we want to discuss some ways to characterize nondegeneracy.

In [7], the authors define the nondegeneracy norm which is one way to character-

ize nondegeneracy. Let P(d) be the vector space of all polynomials in Rm of degree

at most d. Given d, fix a norm || · ||Pd on the finite dimensional vector space P(d).

The nondegeneracy norm || · ||nd(πi,1≤i≤n) of P with respect to {πj} is defined to be

inf ||P −
∑

j pj ◦ πj||Pd where the infimum is taken over all real-valued polynomials

of degree no greater than d. If there is no ambiguity, we may write || · ||nd(πi,1≤i≤n) as

|| · ||nd. Since the space of polynomials with degree at most d is finite dimensional,

the infimum defining the relative norm is actually attained by some polynomial pj.

Thus P is either degenerate or the nondegeneracy norm is strictly positive.

We say a family Pα of real-valued polynomials of bounded degrees is uniformly

nondegenerate relative to a collection of surjective linear map {πi} if infα||Pα −∑
j p

α
j ◦ πj||Pd ≥ c > 0 with c a uniform constant.

Similarly, we say a collection of surjective linear map {πj} has the uniform
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power decay property if the power decay property holds with uniform constant C, ε,

for any family of real-valued polynomials of bounded degrees which are uniformly

nondegenerate relative to {πj}.

The following lemma in [7] suggests that nondegeneracy is a property of every

homogeneous part of the phase function.

Lemma 2.2.1. A polynomial P is nondegenerate relative to {πj} if and only if at

least one of its homogeneous summands is nondegenerate.

This inspires the idea of using the highest degree of the nondegenerate homoge-

neous part to characterize nondegeneracy. In this thesis, we introduce the following

definition.

Definition 2.2.2. The nondegeneracy degree of a polynomial P relative to a collec-

tion of {Vj} is defined to be the highest degree of the nondegenerate homogeneous

part of P. If P is degenerate with respect to {Vj}, the nondegeneracy degree of P is

defined to be 0.

Given a homogeneous polynomial, the following lemma in [7] provides a way to

distinguish nondegenerate polynomials from degenerate ones.

Lemma 2.2.3. Let P be a homogeneous polynomial of some degree d. Then P is

nondegenerate relative to a finite collection of surjective linear mappings {πj} on

R, if and only if there exists a constant coefficient partial differential operator L,

homogeneous of degree d, such that L(P ) 6= 0 but L(pj ◦πj) = 0 for every polynomial

pj : Vj → C of degree d, where Vj denote the range space of πj.
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Example: In R2, assume P (x, y) = xy and π1(x, y) = x, π2(x, y) = y. We

pick L = ∂2

∂x∂y
, then ∂2P

∂x∂y
= 1. But for any polynomial p1(π1(x, y)) = p1(x),

p2(π2(x, y)) = p2(y), ∂2p1
∂x∂y

= 0 and ∂2p2
∂x∂y

= 0. So xy is nondegenerate relative to

{π1, π2}.

Notice that in the above example, ∂
∂x

annihilates any polynomial of one vari-

able y and ∂
∂y

annihilates any polynomial of one variable x. So ∂2

∂x∂y
which is the

composition of ∂
∂x

and ∂
∂y

annihilates any degenerate polynomials. This idea can be

extended to the following definition in [7].

Definition 2.2.4. A polynomial P is said to be simply nondegenerate relative to

{πi : 1 ≤ i ≤ n} if there is a differential operator L of the form L =
∏n

i=1(wi · ∇),

with each wi ∈ ker(πi), such that L(P ) does not vanish identically.

Remark: It is not difficult to see that simply nondegeneracy implies nondegen-

eracy. However, the following “light cone” example in [6] shows the converse does

not always hold.

Example 2.2.5. Define P : R3 → R to be P (x1, x2, x3) = x2
3. Fix an arbitrary large

positive integer N . For j ∈ {1, 2...N} choose nonzero unit vectors vi = (v1
j , v

2
j , v

3
j ) ∈

R3, none of which is a scalar multiple of another, all satisfying

(v3
j )

2 = (v1
j )

2 + (v2
j )

2.

Define πj(x) = x1v
1
j + x2v

2
j + x3v

3
j . For any fj ∈ L∞(πj(R3)), the operator L =

∂2

∂x23
− ∂2

∂x21
− ∂2

∂x22
annihilates fj ◦ πj for all j, but does not annihilate P . Therefore P
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is nondegenerate relative to {πj, 1 ≤ j ≤ N}. But it is not simply nondegenerate

since any simply nondegeneracy polynomial should have degree at least N .

The following theorem in [7] shows simple nondegeneracy implies power decay

property.

Theorem 2.2.6. Any simply nondegenerate polynomial has the power decay prop-

erty in every open set. More precisely, let d ∈ N. Let L =
∏n

j=1(wj ·∇), where each

wj ∈ ker(πj) is a unit vector. Then there exist C <∞ and ε > 0 such that for any

real-valued polynomial of degree at most d such that max|x|≤1 |L(P )(x)| ≥ 1,

|Iλ(f1, ...fn)| ≤ C(1 + |λ|)−ε
∏
j

||fj||L∞

for all functions fj ∈ L∞ and all λ ∈ R.

Detailed proof can be found in [7]. The above theorem can also be generalized

to the case where the phase is a smooth function with the simply nondegeneracy is

defined as L(S(x)) does vanish to infinite order. See [11].

From the definition of simple nondegeneracy, one can see that every wi · ∇

annihilate polynomials defined on one subspace. It turns out that by the same proof

in [7], the definition of simple nondegeneracy could be extended to more general

case. That is, if there is a differential operator L of the form L =
∏t

i=1(wi · ∇), for

some t, such that each ws · ∇ annihilates polynomials defined on πj for j ∈ Is, with

∪sIs = {1, 2, ...n} and max|x|≤1 |L(P )(x)| ≥ 1, then

|Iλ(f1, ...fn)| ≤ C(1 + |λ|)−ε
∏
j

||fj||L∞
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holds for all functions fj ∈ L∞ and all λ ∈ R. We will also see in Chapter 4 that

when the subspaces all have one dimensional range space and lie in general position,

we may only need to use nondegeneracy degree to characterize nondenegeneracy.

2.3 First tool: Elimination of codimension one

range space

The codimension one range space in the title refers to the range space of some

surjective linear mapping with dimension m − 1 if it is defined on Rm. In this

section, we will show the result in [7] that to investigate the power decay property

of a collection of surjective linear mappings {πj}, it suffices to consider the collection

without those mappings whose range space is codimension one. This property can

help to reduce the multilinearity of the problem.

Theorem 2.3.1. Let {πj} be any finite collection of surjective linear mappings on

Rm, and let {li} be any finite collection of surjective linear mappings on Rm whose

nullspace is of dimension one. If {πj} has the uniform power decay property, then

so does {πj} ∪ {li}.

Proof. It suffices to prove this in the case where a single linear mapping l is given.

We now assume {πi} has the uniform power decay property and we want to show

{πi, l} also has the uniform power decay property. Choose coordinates of Rm such

that l(x′, xm) = l(x′, 0). Let P be any nondegenerate polynomial relative to the
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augmented collection {πi, l}. It is no loss of generality to assume that ker(l) is not

contained in any ker(πi), for any such linear mappings may be deleted from {πi}

without affecting the nondegeneracy of P .

Iλ(f1, ...fn) =

∫
Rm

eiλP (x)f1(π1(x))...fn−1(πn−1(x))fn(l(x))η(x)dx. (2.3.1)

Let T (f1, ...fn−1)(x′) =
∫
eiλP (x)f1(π1(x))...fn−1(πn−1(x))η(x)dxm.

(2.3.1) =

∫
T (f1, ...fn−1)(x′)fn(l(x′, 0))dx′

≤ ||T (f1, ...fn−1)||L2 ||fn||L2 .

(2.3.2)

Here

||T (f1, ...fn−1)||L2 =

∫
eiλ(P (x)−P (z,xm))

n−1∏
i=1

fi(πi(x))fi(πi(z, xm))

η(x)η(z, xm)dx′dxmdz

=

∫ (
eiλ(P (x)−P (x′+z,xm))

n−1∏
i=1

fi(πi(x))fi(πi(x′ + z, xm))

η(x)η(x′ + z, xm)dx′dxm
)
dz

=

∫
G(z)dz

(2.3.3)

where

G(z) =

∫
eiλ(P (x)−P (x′+z,xm))

n−1∏
i=1

fi(πi(x))fi(πi(x′ + z, xm))

η(x)η(x′ + z, xm)dx′dxm

We want to show P (x)−P (x′+ z, xm) is nondegenerate relative to {πi} for most z.

To do this, we want to show the polynomial ∂P
∂xm

is nondegenerate relative to {πi}.
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If it is true, then there exists z ∈ Rm for which Pz(x) = P (x′, xm) − P (x′, xm + z)

is nondegenerate relative to {πi}. For if not, since ∂P/∂xm can be reconstructed

from {Pzi} for a suitable finite collection of points zi, degeneracy of each Pzi implies

degeneracy of ∂P/∂xm.

Consider the quotient space P of all polynomials of degrees not exceeding the

degree of P modulo the subspace of all such polynomials which are degenerate

relative to {πi}, and equip it with some inner product structure. Then ||Pz||2nd is a

polynomial in z which does not vanish identically. Since

||Pz||2nd

=||P (x′, xm)− P (x′, xm + z)||2nd

=|| − z · ∂P
∂xm

(x′, xm) +
1

2
z2 · ∂

2P (x′, xm)

∂x2
m

...

+
(−1)d

d!
zd · ∂

dP (x′, xm)

∂xdm
||2nd

=
d∑

h=1

d∑
t=1

(−1)(h+t)

h!t!
zh+t〈∂

hP (x)

∂xm
h
,
∂tP (x)

∂xm
t 〉.

Hence there exist C, δ ∈ R+ such that for any ball B of fixed finite radius and

for any ε > 0,

|{z ∈ B : ||Pz||2nd < ε}| ≤ Cεδ. (2.3.4)

Thus

(2.3.3) =

∫
A

G(z)dz +

∫
Ac
G(z)dz. (2.3.5)

Here A = {z ∈ B : ||Pz||2nd ≥ ε}, Ac = {z ∈ B : ||Pz||2nd < ε}, B is some compact set

that z is supported on, which follows that η is compactly supported. For z ∈ A, the
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first term can be deal with by the hypothesis that {πi} has uniform power decay

property. For z ∈ Ac, the second term can be dealt with by (2.3.4). So we have

(2.3.5) ≤ C(|ε1/2λ|−δ + |ε|δ)
n−1∏
i=1

||fi||L∞ . (2.3.6)

Let ε = |λ|−δ′ for some δ′ < 2, then we have (2.3.1) has power decay.

To establish the uniform decay property, fix c ∈ (1,∞) and a degree d. Let

P be any polynomial of degree at most d whose norm, in the quotient space of

polynomials of degree at most d modulo polynomials of degrees at most d that are

degenerate relative to {πi, l}, lies in [c−1, c]. Since this quotient space is a finitely

dimensional vector space, P thus belongs to a compact subset. Together with the

above reasoning, this implies (2.3.4) holds with a constant depending on d and c

but not on P .

So now it is only left to show polynomial ∂P
∂xm

is nondegenerate relative to {πi}.

If not, then there exists a polynomial decomposition ∂P
∂xm

=
∑

i qi ◦ πi. Since ker(l)

is not contained in any ker(πi), there exist nonzero vectors vi in the range space Vi

of πi such that ∂(f ◦ πi)/∂xm = (vi · ∇f) ◦ πi for all functions f : Vi → R. Since

0 6= vi ∈ Vi, there exist polynomials Qi such that vi · ∇Qi = qi. Consequently,

∂(Qi ◦ πi)/∂xm = qi ◦ πi, and hence P̃ =
∑
Qi ◦ πi satisfies ∂(P − P̃ )/∂xm = 0.

Thus P −
∑

iQi ◦ πi is a function of xm alone, contradicting the hypothesized

nondegeneracy of P .

From the above theorem, we can get the following corollary.
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Corollary 2.3.2. Any collection of surjective linear mappings {πj}ni=1 whose range

space has codimension one for each i has the uniform power decay property.

Remark: in R2, the range space of any surjective linear mapping that we are

interested in this problem is of dimension either 0 or 1. If it is 0, it is a constant

map. If it is dimension one, it is also codimesion one so that linear mapping can

be removed from the collection. The problem in R2 will finally be deduced to the

oscillatory integrals of the first type that we have introduced in chapter 1. However,

in higher dimensions, the range space is not necessarily of codimension one so things

may be more complicated.

2.4 Second tool: Elimination of common subspace

Let us recall the example below introduced in [6]. In the bilinear case, if the mapping

x→ (π1(x), π2(x)) of R2 to R1 × R1 is a bijection, Iλ(f1, f2) can be written as

∫
eiλP (x,y)f(x)g(y)η(x, y)dxdy. (2.4.1)

A necessary and sufficient condition for it to have the power decay property is | ∂2P
∂x∂y
|

does not vanish identically, see [7]; equivalently, P is not a sum of one function of

x plus another function of y. Since if P = p1(x) + p2(y), ∂2P
∂x∂y

= ∂2p1
∂x∂y

+ ∂2p2
∂x∂y

= 0.

Now consider the integral
∫
eiλP (x,y,z)f(x, z)g(y, z)η(x, y, z)dxdydz. Again, such an

integral has power decay property if and only if there exists ∂2P (x,y,z)
∂x∂y

does not vanish

identically, see [7]. For any fixed z, the integration becomes (2.4.1), the result of
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the previous case gives a bound

C min(1, |Q(z)|−1|λ|−δ)||f(·, z)||L∞||g(·, z)||L∞

for some δ > 0 and some polynomial Q which does not vanish identically. The

power decay property follows by integration with respect to z.

One can see from this example that under the above assumptions, the problem

can be reduced to a lower dimensional case by fixing the “common” subspaces z.

It turns out that this observation can be extended to the following “separation”

structure.

2.4.1 Separation

One of the most important observations of this thesis is that if {πj} preserving

certain decomposition of Rm, this property may help divide the problem of checking

the the power decay property of oscillatory integrals (2.1.1) into two subproblems

defined on subspaces. The definition is as below.

Definition 2.4.1. {πi}ni=1 is said to preserve the direct sum decomposition of Rm =

T1 ⊕ T2, where T1, T2 are subspace of Rm, if πi(Rm) = πi(T1)⊕ πi(T2) for all i.

In this case, it may look like πj acts on T1 and T2 “separately”. We denote

m1 = dimT1, m2 = dimT2.
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One example is the following integral which appears in [8],

Iλ(f1, f2, f3) =

∫
R4

eiλP (x1,y1,x2,y2)f1(x1, y1)f2(x2, y2)f3(x1 + x2, y1 + y2)

η(x, y)dxdy (2.4.2)

with T1 = {(x1, 0, x2, 0)|x1, x2 ∈ R} and T2 = {(0, y1, 0, y2)|y1, y2 ∈ R}. We can

show this integral has power decay property by the separation structure in Chapter

5.

One application of the separation property is to reduce dimensions.

Lemma 2.4.2. Assume Rm = C ⊕ R and {πi} preserves the direct sum decom-

position, here C and R are subspaces of Rm, C means “common” and R means

“remaining”. If kerπi ∩ C = {0} for 1 ≤ i ≤ n, and {ker(πi) ∩ R} has uniform

power decay property in T2, then {ker(πi)} has uniform power decay property in Rm.

In the example in [6], we have π1 : (x, y, z)→ (x, z) and π2 : (x, y, z)→ (y, z), so

the corresponding kernels are {(0, y, 0)} and {(x, 0, 0)}. Denote R3 = C ⊕R where

C = {(0, 0, z)}, R = {(x, y, 0)}, then ker πi ∩ C = {0} for i = 1, 2. Now ker(π1) ∩

R = {(0, y, 0)}, ker(π2) ∩ R = {(x, 0, 0)}. Denote π′1 : (x, y, 0) → (x, 0, 0) and

π′2 : (x, y, 0)→ (0, y, 0), then the corresponding kernels in R are exactly ker(π1)∩R

and ker(π2)∩R. As suggested by the above lemma, it suffices to check if the integral∫
eiλP (x,y,0)f(x, 0, 0)g(0, y, 0)η(x, y, 0)dxdy has the uniform power decay property.

Denote f ′(x) = f(x, 0, 0), g′(y) = g(0, y, 0), P ′(x, y) = P (x, y, 0) and η′(x, y) =

η(x, y, 0), the problem now becomes (2.4.1).
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2.4.2 Proof of lemma 2.4.2

Proof. Adopt coordinate in Rm such that C = {(x, 0)}, R = {(0, y)}.

Assume {ker(πi) ∩ R} has uniform power decay property in R. Once a norm

|| · || is fixed, without loss of generality, we can assume P (x, y) is a polynomial

nondegenerate relative to {πi} whose nondegeneracy norm is 1. For any fixed ε,∫
Rm

eiλP (x,y)

n∏
i=1

fi(πi(x, y))η(x, y)dxdy

=

∫
A

(∫
eiλP

x(y)

n∏
i=1

fxi (πi(0, y))ηx(y)dy
)
dx

+

∫
Ac

(∫
eiλP

x(y)

n∏
i=1

fxi (πi(0, y))ηx(y)dy
)
dx

where P x(y) = P (x, y), fxi (πi(0, y)) = fi(πi(x, y)), ηx(y) = η(x, y). A = {x ∈ B :

||P x||nd(ker(πi)∩T2,1≤i≤n) ≤ ε}.

By the assumption∫
Ac
|
∫
eiλP

x(y)

n∏
i=1

fxi (πi(0, y))ηx(y)dy|dx

≤c|λε|−δ1
∫
Ac

n∏
i=1

||fxi ||L∞dx

≤c|λε|−δ1
n∏
i=1

||fi||L∞ .

So it suffices to show there exists uniform constants c, δ such that |A| ≤ cεδ,

here P x is viewed as a polynomial of y. B is some given compact set in C, which

may depend on the support of η. The nondegeneracy norm is taken relative to

{ker(πi) ∩ R}, which is defined as inf ||P (y) −
∑

i pi(πi(0, y))||, where each pi is a

polynomial.
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Write P (x, y) =
∑

i≤d
∑

k1+...+km1=i Pk1,...km1
(y1, ...ym2)x

k1
1 ...x

k1
m1

. If, for any fixed

k1, ...km1 , Pk1,...km1
(y1, ...ym2) = q1

k1,...km1
(π1(0, y)) + ... + qnk1,...km1

(πn(0, y)). Since

kerπi ∩ C = {0} for 1 ≤ i ≤ n and πi is surjective, dim(πi(C)) = dim(C). if

(e1, ...em1) is a basis in C, {πi(ej)} will be a basis of πi(), and it differ from the

underly basis of πi(T1) by some invertible linear transformation. For any polynomial

r[x] defined on C, there is a corresponding polynomial ri defined on πi(C) such

that r[x] = ri[πi(x, 0)]. So there exists polynomials rik1,...km1
[πi(x, 0)] such that

xk11 ...x
km1
m1 = rik1,...km1

[πi(x, 0)]. Then

P (x, y) =
∑
i≤d

∑
k1...km1

(q1
k1...km1

(π1(0, y)) + ...+ qnk1...km1
(πn(0, y)))xk11 ...x

k1
m1

=
∑
i≤d

∑
k1+...+km1=i

(q1
k1,...km1

(π1(0, y))R1
k1,...km1

[πi(x, 0)] + ...

+ qnk1,...km1
(πn(0, y))Rn

k1,...km1
[πi(x, 0)]).

Notice for every k, 1 ≤ k ≤ n, πk preserve the direct sum, if we fix any

z ∈ πk(Rm), since πk is surjective, there exists a pair (x, y) such that πk(x, y) = z,

then z = πk(x, 0)⊕πk(0, y) is a unique decomposition. We also notice that qkk1,...km1

is a polynomial defined on πk(R) and Rk
k1,...km1

is a polynomials defined on πk(C), so

q1
k1,...km1

(π1(0, y))r1
k1,...km1

[πi(x, 0)] is a polynomial defined on πk(x, y). This shows

P (x, y) can be represented by a sum of polynomials defined on {πk}1≤k≤n respec-

tively, which contradicts the assumption that P (x, y) is nondegenerate. So there ex-

ists k1, ...km1 such that Pk1,...km1
(y1, ...ym2) is nondegenerate relative to {πk(0, y)}nk=1.

Among all Pk1,...km1
(y1, ...ym2) that are nondegenerate relative to {πk(0, y)}ni=1,
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we can always pick up one, denote it as Pk′1,...k′m1
, such that its nondegeneracy degree

is the highest. This Pk′1,...k′m1
may not be unique, but that’s fine. Once we fix this

Pk′1,...k′m1
, let N be the nondegeneracy degree of it, write Pk′1,...k′m1

=
∑

i≤d P
i
k′1,...k

′
m1

where P i
k′1,...k

′
m1

is its homogeneous part of degree i. Without loss of generality,

we can assume P i
k1,...km1

vanish for all k1, ...km1 when i ≥ N . By the assumption,

PN
k′1,...k

′
m1

is nondegenerate relative to {πk(0, y)}1≤k≤n. So by the lemma 2.2.3, there

exists a constant coefficient differential operator L whose symbol is a y polynomial of

degree N such that L(PN
k′1,...k

′
m1

) 6= 0 but L(qk′1,...k′m1
(πk(0, y))) = 0 for all polynomials

qk′1,...k′m1
and all 1 ≤ k ≤ n. Then

L(P (x, y)) = L(
∑
i

∑
k1+...+km1=i

Pk1,...km1
(y1, ...ym2)x

k1
1 ...x

km1
m1 )

=
∑
i

∑
k1+...+km1=i

L(Pk1,...km1
(y1, ...ym2))x

k1
1 ...x

km1
m1 .

Since N is the highest degree among all Pk1,...km1
and L is a constant coefficient

operator of degree N , L(Pk1,...km1
) is either 0 or a nonzero constant. Let ak1,...km−1 =

L(Pk1,...km1
), then L(P (x, y)) =

∑
i

∑
k1+...+km1=i ak1...km1

xk11 ...x
km1
m1 . And there exists

at least one ak1...km1
which is nonzero. Without loss of generality, for any 1 ≤ k ≤ n

L(qk(πk(x, y))) = L(qk(πk(x, 0) + πk(0, y)))

=L(
∑
i

∑
k1+...km1=i

qk1...km1
(πk(0, y))πk1k (x1, 0...0, 0)...π

km1
k (0, ...0, xm1 , 0))

=
∑
i

∑
k1+...km1=i

Lqk1...km1
(πk(0, y))πk1k (x1, 0...0, 0)...π

km1
k (0, ...0, xm1 , 0)

=0.
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The set A of x such that
∑

i

∑
k1+...+km1=i ak1...km1

xk11 ...x
km1
m1 = 0 is of measure

zero. For any fixed x ∈ B\A, P x is nondegenerate relative to {πk(0, y)}.

Fix c ∈ (1,∞). Let P be a polynomial of bounded degree whose nondegeneracy

norm relative to {πk(x, y)}nk=1 lies in [c−1, c]. Since the quotient space of polynomial

of bounded degree modulo degenerate polynomials is finite dimensional, P belongs

to a compact set. Without loss of generality, we can assume the quotient space is

equipped with some inner product structure. ||P x||2nd(πi(0,y),1≤i≤n) is a polynomial

of x and it is not identically 0. So there exists a constant c(P ) and δ such that

|{x ∈ B : ||P x||nd(πi(0,y),1≤i≤n) ≤ ε}| ≤ c(P )εδ. Then we can pick a uniform constant

c that depends on c and d such that |{x ∈ B : ||P x||nd(πi(0,y),1≤i≤n) ≤ ε}| ≤ cεδ hold

for all P with c−1 ≤ ||P ||nd ≤ c.

2.5 Third tool: Elimination of intersection

of nullspaces

Let’s consider the following example:

Iλ =

∫
R3

eiλP (x,y,z)f(x)g(y)η(x, y, z)dxdydz. (2.5.1)

Here P is a polynomial, and f, g are two functions such that ||f ||∞ <∞, ||g||∞ <∞.

Notice that we have dealt with integrals of the form

Iλ =

∫
R2

eiλP (x,y)f(x)g(y)η(x, y)dxdy, (2.5.2)
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which is the oscillatory integral of the second kind in Chapter 1. If P (x, y, z) is

indeed a polynomial of x, y, then the problem of checking power decay property

of (2.5.1) can be reduced to lower dimensions (2.5.2). We can do so because the

span of (x) and (y) is not R3, that is, the intersection of ker(π1) and ker(π2) is not

0. Inspired by this observation, we might want to think if we can always reduce

the problem to lower dimensions if the intersection of the nullspaces of the linear

mappings are nonzero. First denote l : R3 → R2 as (x, y, z) → (x, y). There are

two cases that we want to consider.

If ||P ||nd(l) is bounded below by some constant, since ker(l) ⊂ ker(π1) and

ker(l) ⊂ ker(π1), if we view f(x)g(y) a function of x, y, then (2.5.1) is reduced

to checking the power decay property of the following integral

Iλ =

∫
R3

eiλP (x,y,z)h(x, y)η(x, y, z)dxdydz, (2.5.3)

which is essentially the oscillatory integral of the second type and we know (2.5.3)

has power decay property.

If ||P ||nd(l) is actually very small, this suggests that P is “almost” a polynomial

of x, y. To be more precise, P can be written as P (x, y, z) = P1(x, y) + r(x, y, z) for

some polynomials P1, r with ||r|| very small. And ||P1(x, y)||nd ≥ ||P (x, y, z)||nd −

||r(x, y, z)||, so ||P1||nd is bounded from below.We will give detailed proof later but

essentially, ||rz|| is also small for most fixed z in the support of η and the problem
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is reduced to check the power decay property of the following integral

Iλ =

∫
R3

eiλP (x,y,z)f(x)g(y)η(x, y, z)dxdydz

=

∫
(

∫
eiλ(P1(x,y)+rz(x,y))f(x)g(y)η(x, y, z)dxdy)dz.

(2.5.4)

The result of the oscillatory integrals of the second kind gives a bound of (2.5.4):

C min(1, ||P1(x, y) + rz(x, y)||−δnd(π1,π2)|λ|
−δ)||f ||L∞||g||L∞

for some δ > 0. And ||P1(x, y) + rz(x, y)||nd(π1,π2) is bounded from below since rz is

essentially very small.

The above example can be extended to the following lemma.

Lemma 2.5.1. If ∩ni=1 ker(πi) = N , where dim(N) > 0 and let Rm = N ⊕ R,

here N denote the intersection of the nullspaces, and R means “remaining”. Then

{ker(πi)∩R} has the uniform power decay property implies {ker(πi)} has the uniform

power decay property.

Remark: here we need to assume there is no i such that ker(πi) ∩ R is 0. But

since in this thesis, we assume there is no k 6= j such that ker(πk) ⊂ ker(πj). If

ker(πi) ∩ R is 0, that means ker(πi) ⊂ ker(πj) for j 6= i, which contradicting our

assumption.

2.5.1 Proof of lemma 2.5.1

Proof. Without loss of generality, we can assume ||P ||nd({πi}nj=1) = 1. Choose coor-

dinate of Rm such that Rm = {(x, y)} where N = {(x, 0)} and R = {(0, y)}. Then
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fi(πi(x, y)) = fi(πi(0, y)). Let l : Rm → R be the projection from Rm to R. Notice

ker(l) ⊂ ker(πi), the function
∏n

i=1 fi(πi(0, y)) can be viewed as a function defined

on R. There are two cases.

The first case is ||P ||nd(l) > c1 for some constant c1 that will be picked later, the

problem becomes the case of oscillatory integrals of the second kind

∫
Rm

eiλP (x,y)h(y)η(x, y)dxdy. (2.5.5)

We know in this case, (2.5.5) has the power decay estimate:

(2.5.5) ≤ (1 + |λc1|)−δ||h||L∞ . (2.5.6)

Denote h =
∏n

i=1 fi, one can check ||
∏n

i=1 fi||L∞ ≤
∏n

i=1 ||fi||L∞ , so we can get the

power decay property of the original integral.

The second case is ||P ||nd(l) ≤ c1. Then P (x, y) = P1(y) + r(x, y) with ||r|| ≤ c1.

The integral becomes

Iλ =

∫
Rm

eiλP (x,y)

n∏
i=1

fi(πi(x, y))η(x, y)dxdy

=

∫
(

∫
eiλ(P1(y)+rx(y))

n∏
i=1

fi(πi(0, y))η(x, y)dy)dx.

(2.5.7)

We now want to show ||rx|| ≤ c2||r(x, y)|| for some constant c2 for any x in a

compact set depending on the support of η.

Consider the space T of all polynomials of degree less than or equal to d equipped

with the norm || · || on it. It is a finite dimensional space, so the set of polynomials

in this space such that the norm of it is less than or equal to c1 is compact. For any
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fixed x, define a operator Lx on this space such that Lx(r(x, y)) = rx(y). Lx is a

continuous operator for each x (since every norm is equivalent in finite dimensional

space, if we take the l2 norm of the polynomial space, we can check that Lx is

a continuous operator for each x). Especially, the norm of this operator can be

viewed as a continuous function on the compact set that x is defined. So there is

a uniform constant c2 such that ||rx|| ≤ c2||r(x, y)|| ≤ c1c2 for every x in the given

compact set. Since ||P ||nd = 1, if ||r|| ≤ c1, then ||P1||nd ≥ 1 − c1. So when fix x,

||P1(y) − rx(y)||nd ≥ 1 − c1 − c1c2. By the hypothesis, {ker(πi) ∩ R} has uniform

power decay property. The result of the oscillatory integrals of the second kind

gives a bound of (2.5.7):

C min(1, ||P1(x, y) + rz(x, y)||−δnd(πi)
|λ|−δ)

n∏
i=1

||fi||L∞

≤ C min(1, ||1− c1c2||−δnd(πi)
|λ|−δ)

n∏
i=1

||fi||L∞ .
(2.5.8)

Combine the two cases (2.5.6) and (2.5.8), we can conclude the result.

2.6 Fourth tool: λ-uniformity

In [7] and [13], a powerful tool called λ-uniformity is introduced to deal with the

estimation of oscillatory integrals. This concept is inspired by a notion of uniformity

employed by Gowers [10]. Fix a bounded ball B ⊂ Rk. Let τ be a small quantity

to be chosen later, let |λ| ≥ 1 and consider any function f ∈ L2(Rk) supported in
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B.

Definition 2.6.1. A function f ∈ L2(B) is λ-nonuniform if there exists a polyno-

mial q(t), t ∈ Rk, of degree bounded by d and a scalar c such that

||f − ceiq(t)||L2(B) ≤ (1− |λ|−τ )||f ||L2(B). (2.6.1)

Otherwise, f is said to be λ-uniform.

This notion depends on the parameters d, τ . Once they are fixed, f is λ-uniform

is equivalent to |
∫
f(t)e−iq(t)dt| ≤ |λ|−τ/2||f ||L2(B). Since if f1 is λ-nonuniform, there

exists a polynomial q of degree at most d such that |
∫
f(t)e−iq(t)dt| > |λ|−τ/2||f ||L2(B)

Let c = 〈f, eiq〉.

||f − 〈f, eiq〉eiq||2L2 =||f ||2L2 − ||〈f, eiq〉||2L2 (2.6.2)

=(1− |〈f, e
iq〉|2

||f ||2L2

)||f ||2L2 (2.6.3)

<(1− |λ|−τ )||f ||2L2 (2.6.4)

From the above argument, we can also see that once ||f ||L2 is bounded by some

constant, c = 〈f, eiq〉 is majorized by a uniform constant independent of q.

In [7], the authors use the λ-uniformity tool to prove that when every πi has one-

dimension range space and the number of functions is not too large, nondegeneracy

of the phase function can imply the corresponding oscillatory integral has power

decay.

In the setting of [7], each πj is an orthogonal projection from Rm to a linear

subspace Vj in Rm which is of same dimension k. They introduce the concept of
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the general position condition is to be any subcollection of {Vj}nj=1 of cardinality

t ≥ 1 spans a subspace of dimension min(kt,m).

In this thesis, we might want to extend the concept to linear spaces that are not

necessarily a subspace of Rm and may not have the same dimension. To achieve

this, we use ker(πj) instead. We say a collection of distinct linear subspaces {Ai}i∈I

of Rm lie in general position if

dim(∩j∈I0Aj) = max{0,
∑
j∈I0

dim(Aj)− (|I0| − 1)m}

for any subset I0 of the index set I.

A collection of surjective linear map {πi} is said to satisfy the general position

condition if {ker(πi)} satisfies the general position defined as above.

Given the inner product structure in Rm, denote Ui to be the orthogonal com-

plement of ker(πi). In the case where πj is indeed an orthogonal projection from Rm

to Uj ⊂ Rm, these two definitions coincide. Since span(Uj1 , ...Ujt)
⊥ = U⊥j1 ∩ ...∩U

⊥
jt .

dim(span(Uj1 , ...Ujt)) = m − dim(span(Uj1 , ...Ujt)
⊥) = m − dim(∩1≤i≤t ker(πji)) =

min{m, tm−
∑

1≤i≤t dim(ker(πji))} = min{m,
∑

1≤i≤t dim(Uji)} for any subset

{j1, ...jt} ⊂ {1, 2...n}. In [5], the author also define the general position condition

that be more abstract. But when the range space of every linear mapping has

dimension one, these definitions are all compatible.

Theorem 2.6.2. Suppose that n < 2m. Then any family {πj, 1 ≤ j ≤ n} of linear

surjective maps whose range spaces are one-dimensional lying in general position
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has the uniform power decay property. Moreover, under these hypotheses,

|Iλ(f1, ...fn)| ≤ C(1 + |λ|)−ε
∏
j

||fj||L2

holds for all polynomials P of bounded degree which are uniformly nondegenerate

with respect to {πj}, for all functions fj ∈ L2(πj(Rm)), with uniform constants

C, ε ∈ R+.

Proof. Given the cutoff function η, we can assume without loss of generality that

each fj is supported in some Bj ⊂ R. We assume ||fj||L2 ≤ 1 for all j and |λ|

exceed some sufficiently large constant.

The proof divides into two parts depends on whether fi is λ-uniform. Define

A(λ) to be the best constant such that

|Iλ(f1, ..., fn)| ≤ A(λ)
∏
j

||fj||L2 .

If f1 is λ-nonuniform, let c, q satisfy (2.6.1). Then

|Iλ(f1 − ceiq, ..., fn)| ≤ A(λ)(1− |λ|−τ ).

Where |c| is majorized by an absolute constant. Notice {πi}ni=2 still satisfies the

general position condition, so by the induction on the number of functions, we have

|Iλ(ceiq, f2...fn)| ≤ C|Iλ(eiq, f2, ...fn)| ≤ C|λ|−σ,

for certain C, σ ∈ (0,∞). Combine the two terms, we have

|Iλ(f1...fn)| ≤ A(λ)(1− |λ|−τ ) + |λ|−σ.

36



Since A(λ) is the best constant, we should have A(λ) ≤ A(λ)(1 − |λ|−τ ) + |λ|−σ.

This implies A(λ) ≤ |λ|τ−σ. Once we pick τ < σ, we then have A(λ) ≤ |λ|−ε for

some ε > 0.

Now consider the case where f1 is λ-uniform. We may assume that n is strictly

larger than m since the theorem is already known in a more precise form for the

case n = m. See [16], [14]. Consider W1 =
⋂m
i=2 ker(πi), W2 =

⋂
i>m ker(πi). By

the general position condition,

dim(
m⋂
i=2

ker(πi)) = max{0,
m∑
i=2

dim(ker(πi))− (m− 2)m} = 1

dim(
⋂
i>m

ker(πi)) = max{0,
∑
i>m

dim(ker(πj))− (n−m− 1)m} = 2m− n > 0

What’s more, by the general position condition, the intersection of
⋂m
i=2 ker(πi)

and
⋂
i>m ker(πi) is {0}. We can adopt coordinates (t1, t2, y) ∈ R1 × R1 × Rm−2

such that {(t1, 0, 0)} =
⋂m
i=2 ker(πi), {(0, t2, 0)} ⊂

⋂
i>m ker(πi). Denote t = (t1, t2).

Since
∏m

j=2 fj ◦ πj(t1, t2, y) =
∏m

j=2 fj ◦ πj(t1, 0, 0) +
∏m

j=2 fj ◦ πj(0, t2, y) =∏m
j=2 fj ◦ πj(0, t2, y), we can denote F y

1 (t2) =
∏m

j=2 fj ◦ πj(t, y). By the same ar-

gument, F y
2 (t1) =

∏m
j=m+1 fj ◦ πj(t, y) and let l be the linear mapping such that

Gy(l(t)) = f1 ◦ π1(t, y), ηy(t) = η(t, y). We have∫
||F y

1 ||2L2 ||Gy||2L2dy = C
m∏
j=2

||fj||2L2

∫
||F y

2 ||2L2dy = C
∏
j>m

||fj||2L2

and consequently,∫
||F y

1 ||L2||Gy||L2||F y
2 ||L2dy ≤ C(|λ|1−ρ)−ρ̃

∏
j

||fj||L2
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For each y, consider

Iyλ =

∫
R2

eiλP
y(t)F y

1 (t2)F y
2 (t1)Gy(l(t))ηy(t)dt.

There are two kinds of y.

1. The “bad” parameters y such that P y can be decomposed in the form P y(t) =

Q1(t1)+Q2(t2)+Q3(l(t))+R(t) where Qj are real-valued polynomials of degree

at most d on R and ||R|| ≤ |λ|−ρ, ρ will be specified later.

2. The “good” parameters y such that ||R|| > |λ|−ρ under the above decompo-

sition.

For the good parameters, |λ|ρP y is at least a fixed positive distance from the

span of all polynomials Q1(t1) + Q2(t2) + Q3(l(t)), so we can apply theorem 2.3.1

and it suffices to show {π1} ∪ {πi}i>m has uniform decay property, which is proved

by the induction hypothesis. Now the nondegeneracy norm of the phase function

λP y is at least |λ · λ−ρ| = |λ|1−ρ and by the induction hypothesis, there exists some

constant ρ̃ such that

|Iyλ| ≤ C(|λ|1−ρ)−ρ̃||F y
1 ||L2||F y

2 ||L2||Gy||L2

So ∫
|Iyλ|dy ≤ C(|λ|1−ρ)−ρ̃

∏
j

||fj||L2

For those bad parameter y, let F̃ y
1 (t2) = F y

1 (t2)eiλQ2(t2), F̃ y
2 (t1) = F y

2 (t1)eiλQ1(t1),

G̃(s) = Gy(s)eiλQ3(s), η̃y(t) = ηy(t)eiλR(t). By the equality
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η̃y(t1, t2) =

∫
e2π(t1·ξ1+t2·ξ2) ˆ̃

ηy(ξ1, ξ2)dξ1dξ2,

G̃y(l(t)) =

∫
e2πl(t)·ξ0 ˆ̃

Gy(ξ0)dξ0,

If we denote l : (t1, t2)→ c1t1 +c2t2 for some constant c1, c2, and let ξ′1 = −c2ξ0−ξ2,

ξ′2 = −c1ξ0 − ξ1, then

F̃ y
1 (t2) =

∫
e2πξ′1·t2 ˆ̃

F y
1 (ξ′1)dξ′1,

F̃ y
2 (t1) =

∫
e2πξ′2·t1 ˆ̃

F y
2 (ξ′2)dξ′2,

So we have

|Iyλ| =
∣∣∣ ∫

R2

F̃ y
1 (t2)F̃ y

2 (t1)G̃y(l(t))η̃y(t)dt
∣∣∣

=
∣∣∣ ∫

R3

ˆ̃
F y

1 (−c2ξ0 − ξ2)
ˆ̃
F y

2 (−c1ξ0 − ξ1)
ˆ̃
Gy(ξ0)

ˆ̃
ηy(ξ1, ξ2)dξ0dξ1dξ2

∣∣∣. (2.6.5)

Notice λR is a polynomial of degree at most d and is O(|λ|1−ρ) on the support

of ξ ∈ R2. By the principle of non-stationary phase, we have

| ˆ̃ηy(ξ)| ≤ CN |λ|(1−ρ)N(1 + |ξ|)−N

for ξ = (ξ1, ξ2) and any N ∈ N. Here CN depends N and the CN norm of η̃y, which

is majorized by some constants times CN norm of η if supp(η) is fixed. Without

loss of generality, we can assume N = 4, then (2.6.5) ≤ C|| ˆ̃
F y

1 ||L∞ ||
ˆ̃
F y

2 ||L1|| ˆ̃Gy||L∞ .

By the same argument, we also have |Iyλ| ≤ C|| ˆ̃
F y

1 ||L1|| ˆ̃
F y

2 ||L∞ ||
ˆ̃Gy||L∞ . Making

use of a simply interpolation argument and Plancherel’s theorem, we get |Iyλ| ≤

C|| ˆ̃
F y

1 ||L2|| ˆ̃
F y

2 ||L2|| ˆ̃Gy||L∞ ≤ C|λ|4(1−ρ)−τ ||F̃ y
1 ||L2||F̃ y

2 ||L2 ≤ C|λ|4(1−ρ)−τ ∏n
j=2 ||fj||L2 .

So we can just pick ρ ∈ (0, 1) close enough to 1 such that 4(1− ρ)− τ = −ε < 0.
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Combine, we get

A(λ) ≤ max(|λ|−ε, |λ|−(1−ρ)ρ̃, A(λ)(1− |λ|−τ ) + |λ|−σ).

So we can pick τ and the corresponding ρ such that A(λ) ≤ |λ|−ε′ for some ε′ > 0.

Remark: This result partially solves the “light cone” problem when the number

of function is ≤ 5. We should notice that when the dimension of the range space is

≥ 2, 2.3.1 can no longer been used. However,the “splitting” argument in the next

section will help to solve this problem.

2.6.1 Splitting

In this thesis, we will first generalize λ-uniformity to the following lemma.

Lemma 2.6.3. Assume f, g1...gn are functions : V → C, where V is a vector

space with an inner product structure 〈, 〉 where η : V → C is a smooth function

with compact support. If 〈f, η
∏n

i=1 gi〉 = c||f ||L2

∏n
i=1 ||gi||L∞, with ||η

∏n
i=1 gi||L2 ≤∏n

i=1 ||gi||L∞ ≤ 1. Then ||f − aη
∏n

i=1 gi||L2 ≤ (1− 1
2
|c|2
∏n

i=1 ||gi||L∞)||f ||L2, where

a = c||f ||L2.
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Proof.

〈f − aη
n∏
i=1

gi, f − aη
n∏
i=1

gi〉

= 〈f, f〉 − 〈f, aη
n∏
i=1

gi〉 − 〈aη
n∏
i=1

gi, f〉+ 〈aη
n∏
i=1

gi, aη

n∏
i=1

gi〉

= ||f ||2L2 − ā〈f, η
n∏
i=1

gi〉 − a〈η
n∏
i=1

gi, f〉+ |a|2||η
n∏
i=1

gi||2L2

(2.6.6)

Plug in a = c||f ||L2 and 〈f, η
∏n

i=1 gi〉 = c||f ||L2

∏n
i=1 ||gi||L∞ , we get ā〈f, η

∏n
i=1 gi〉 =

a〈η
∏n

i=1 gi, f〉 = |c|2||f ||2L2

∏n
i=1 ||gi||L∞ . We should also notice that ||η

∏n
i=1 gi||2L2 ≤

||
∏n

i=1 gi||2L∞ ≤ ||
∏n

i=1 gi||L∞ since ||
∏n

i=1 gi||L∞ ≤ 1.

(2.6.6) ≤ ||f ||2L2 − 2|c|2||f ||2L2

n∏
i=1

||gi||L∞ + |c|2||f ||2L2

n∏
i=1

||gi||L∞

= (1− |c|2
n∏
i=1

||gi||L∞)||f ||2L2

≤ (1− |c|2
n∏
i=1

||gi||L∞ +
1

4
|c|4

n∏
i=1

||gi||2L∞)||f ||2L2

= (1− 1

2
|c|2

n∏
i=1

||gi||L∞)2||f ||2L2 .

This gives ||f − aη
∏n

i=1 gi||L2 ≤ (1− 1
2
|c|2
∏n

i=1 ||gi||L∞)||f ||L2 .

From the above lemma, given η and c′ > 0, if 〈f, η
∏n

i=1 gi〉 = c||f ||L2

∏n
i=1 ||gi||L∞

with |c| > |c′|, we say f splits into aη
∏n

i=1 gi, since in this case ||f−aη
∏n

i=1 gi||L2 ≤

(1− 1
2
|c′|2

∏n
i=1 ||gi||L∞)||f ||L2 .

M. Christ develops the idea of “splitting” in [5] to reduce dimensions. He also

defines the general position condition in an implicit way and may be different from

the previous definition. However, if the kernel of each linear map is of codimension

1, these definitions are compatible.
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Let Vα = ker(πα). The main result of [5] is the following

Theorem 2.6.4. If a finite family of subspaces {Vα} of Rm of codimensions kα ∈

[1,m− 1] is in general position and satisfies

2 max
β

kβ +
∑
α

kα ≤ 2m. (2.6.7)

then {Vα} has the uniform power decay property.

The coefficient of 2 in 2.6.7 is unnatural and the proof still applies in many cases

with a smaller quantity. For example, when kα = 1, the hypothesis 2.6.7 reduces to

n ≤ 2m− 1.

The following lemma in [8] could be proved by the above idea. It is also proved

by an alternate method, see [8].

Lemma 2.6.5. Let {πj : 1 ≤ j ≤ 3} be a collection of three surjective linear

mappings from R2m → Rm which lie in general position. Then

|Λ(λ)(f1, f2, f3)| ≤ (|λ||P ||nd)−ε
3∏
j=1

||fj||L2

holds for all polynomials P: R2m → Rm of degree ≤ d and for all functions fj ∈

L2(Rm), with constants C, ε depend only on m, d, η. It is no loss of generality to

restrict attention to the case where R2m is identified with Rm
x ×Rm

y , and π1(x, y) = x,

π2(x, y) = y, π3(x, y) = x+ y.
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Chapter 3

First result: Trilinear case

We already discuss about some results of the case where the number of functions

does not exceed 2, see [7], [14]. The general case of higher multilinearity has not

been thoroughly investigated. In this thesis, we will deal with the very general

trilinear case. Especially, we do not require the linear mappings to satisfy the

general position condition. Here is the result.

Theorem 3.0.1. Let {πi}3
i=1 be a collection of three surjective linear mappings from

Rm to Vi where 1 ≤ dim(Vi) ≤ m− 1. Then

|Iλ(f1, f2, f3)| ≤ C(1 + |λ|||P ||nd)−ε
3∏
j=1

||fj||L∞ (3.0.1)

holds for all fj ∈ L∞(πj(Rm)) with uniform constant C, ε.

Remark: though we do not require any geometric property of linear mappings,

we may still assume there are no i, j in {1, 2, 3} and i 6= j such that ker(πi) ⊂
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ker(πj). Since if so, up to a linear transformation, we may view fj as a function

defined on the range space of πi. This will reduce the trilinear case to bilinear case,

which has been discussed in Chapter 1.

3.1 First reduction: Get rid of the common space

By theorem 2.4.2, it suffices to assume

span(ker(π1), ker(π2), ker(π3)) = Rm.

If not, denote span(ker(π1), ker(π2), ker(π3)) as R. And let C be the subspace of

Rm such that Rm = C ⊕ R. Then ker(πi) ∩ C = 0 by the definition of direct sum

decomposition. By applying theorem 2.4.2, it reduces to check if {ker(πi) ∩R} has

the power decay property. In this case, by the definition of R, ker(πi)∩R = ker(πi),

i = 1, 2, 3, so span(ker(π1) ∩ R, ker(π2) ∩ R, ker(π3) ∩ R) = R. We assume there is

no i 6= j such that ker(πi) ⊂ ker(πj), so for every 1 ≤ i ≤ 3, 0 ( ker(πi) ∩R ( R.

3.2 Second reduction: Get rid of the common in-

tersection of nullspaces

By theorem 2.5.1, it suffices to consider the case where ker(π1)∩ker(π2)∩ker(π3) = 0.
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3.3 Third reduction: Get rid of the intersection

of any two nullspaces

We claim it suffices to prove the case where ker(πi) ∩ ker(πj) = 0 when i 6= j.

If W1 = ker(π1) ∩ ker(π2) with dim(W1) > 0. From the previous section, we

can assume W1 ∩ ker(π3) = 0. By choosing coordinate properly, we can assume

Rm = {(x, y, z)} and W1 = {(x, 0, 0)}, ker(π3) = {(0, y, 0)}. Here {(0, 0, z)} is the

complement of span(W1, ker(π3)). It is possible that this complement is {0}. If it is

indeed {0}, we can identify π3 as (x, y) → (x), πi(x, y) = πi(0, y), i = 1, 2. (3.0.1)

can be written as

∫
Rm

eiλP (x,y)f1(π1(0, y))f2(π2(0, y))f3(x)η(x, y)dxdy (3.3.1)

=

∫
(

∫
eiλP

y(x)f3(x)ηy(x)dx)f1(π1(0, y))f2(π2(0, y))dy. (3.3.2)

By the splitting lemma, we can replace f3(x) by eip(x) for some polynomial p(x),

and replace η(x) with η′(x) for some smooth function η′(x) of compact support.

Then the problem is reduced to the bilinear case.

If the complement has dimension greater than 0, we can identify π3 with the

projection (x, y, z)→ (x, z). πi(x, y, z) = πi(0, y, z), i = 1, 2. (3.0.1) can be written

as

∫
Rm

eiλP (x,y,z)f1(π1(0, y, z))f2(π2(0, y, z))f3(x, z)η(x, y, z)dxdydz (3.3.3)

=

∫
(

∫
eiλP

y(x,z)f y1 (π1(0, 0, z))f y2 (π2(0, 0, z))f3(x, z)η(x, y, z)dxdz)dy (3.3.4)
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where P y(x, z) = P (x, y, z), f yi (πi(0, 0, z)) = fi(πi(0, y, z)) for i = 1, 2. For fixed

y, by the splitting lemma, one can replace f3(x, z) with f ′3(z), and η with some η′.

The phase function λP (x, y, z)−Q(x, z) for any polynomial Q is still nondegenerate

relative to {keri}, i = 1, 2, 3, with the same nondegeneracy norm. Now π3 is replaced

by the projection (x, y, z)→ (z).

Notice now ker(π1)∩ker(π2)∩ker(π3) = W1, by the same method of last section,

the problem is reduced to check whether {ker(πi)∩R}, i = 1, 2, 3, has uniform power

decay property in the ambient space R = {(0, y, z)}. Notice in R, (ker(π1) ∩ R) ∩

(ker(π2) ∩ R) = 0. We should also check that ker(πi) ∩ R 6= 0. Actually, if there is

any i 6= j such that ker(πi) ⊂ ker(πj), the problem can be reduced to the bilinear

case so we can just assume there is no i 6= j such that ker(πi) ⊂ ker(πj). From this,

we have W1 ( ker(πi), i = 1, 2. So ker(πi) ∩ R has dimension greater than 0 for

i = 1, 2, 3.

By this argument, we can assume without loss of generality that ker(π1) ∩

ker(π2) = 0. Repeating the same argument, one can then assume ker(πi)∩ker(πj) =

0 when i 6= j.
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3.4 Fourth reduction: Any two nullspaces span

the ambient space

In this section, we will show it suffices to consider the case that

span(ker(πi), ker(πj)) = Rm.

when i 6= j. If not, without loss of generality, we can assume

span(ker(π1), ker(π2)) ( Rm.

By the previous section, we can conclude

span(ker(π1), ker(π2)) = ker(π1)⊕ ker(π2).

Let ker(π1) is spanned by a set of vectors {y}, ker(π2) is spanned by a set of vectors

{z}. If span(ker(π1), ker(π2)) ( Rm, since

span(ker(π1), ker(π2), ker(π3)) = Rm,

there exists a set of vectors {x} linearly independent of {y, z} such that {x} ⊂

ker(π3) and Rm is spanned by {x, y, z}. Without loss of generality, by choosing

coordinate properly, one can identify π1 as the projection (x, y, z) → (x, z), π2 as

the projection (x, y, z) → (x, y), π3(x, y, z) = π3(0, y, z). The integral (3.0.1) can

be written as∫
Rm

eiλP (x,y,z)f1(x, z)f2(x, y)f3(π3(0, y, z))η(x, y, z)dxdydz (3.4.1)

=

∫
(

∫
eiλP

y(x,z)f1(x, z)f y2 (x)f y3 (π3(0, 0, z))η(x, y, z)dxdz)dy (3.4.2)
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where

P y(x, z) = P (x, y, z), f y2 (z) = f2(y, z), f y3 (π3(0, 0, z)) = f3(π3(0, y, z)).

By splitting lemma, f1(x, z) can be replaced by f ′1(z)g1(x) for some f ′1, g1,

while we can denote f ′2(x, y) = g1(x)f2(x, y). η is replaced by a corresponding η′.

P ′(x, y, z) = P (x, y, z)−Q1(x, z) for some polynomial Q1. The integral becomes

∫
Rm

eiλP
′(x,y,z)f ′1(z)f ′2(x, y)f3(π3(0, y, z))η′(x, y, z)dxdydz

By the same argument, f ′2(x, y) can be replaced by f ′′2 (y). The integral becomes

∫
Rm

eiλP
′′(x,y,z)f ′1(z)f ′′2 (y)f3(π3(0, y, z))η′′(x, y, z)dxdydz

Here π1 is replace by the projection L1 : (x, y, z)→ (z), π2 is replace by the projec-

tion L2 : (x, y, z) → (y). Here the phase function P ′′(x, y, z) is still nondegenerate

relative to {L1, L2, π3} with nondegeneracy norm no less than 1.

Now we should notice that ker(π1)∩ker(π2)∩ker(π3) = {(x, 0, 0)}. By the same

technique applied before, if we denote R ∼= {(0, y, z)}, the problem is reduced to

show the corresponding linear mappings {ker(π3)∩R, ker(L1)∩R, ker(L2)∩R} have

power decay property. In this case,

span(ker(L1) ∩R, ker(L2) ∩R) = R.

One should also check that (ker(L1)∩R)∩(ker(L2)∩R) = 0. And (ker(L1)∩R)∩

(ker(π3)∩R) = 0. Since ker(π1) = {(x, y, 0)} and by the assumption of the previous

section, ker(π1)∩ker(π3) = {(x, 0, 0)}. We also have (ker(L2)∩R)∩(ker(π3)∩R) = 0
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by the same reasoning. That means after this reduction, the linear mappings we

are dealing with still satisfy the assumption of the previous section.

Without loss of generality, we still use {ker(πi)}3
i=1 to denote the kernel of the

linear mappings. Now we check the previous assumption still holds, that is, ker(πi)∩

ker(πj) = 0 for i 6= j and what’s more, span(ker(π1), ker(π2))=Rm.

Let span(ker(π2), ker(π3)) = W2. By exactly the same argument, we can set

ker(π2) = {(0, y, 0)}, ker(π3) = {(0, 0, z)} and {(x, 0, 0)} ⊂ ker(π1) while Rm =

{(x, y, z)}. If we identify π2 with (x, y, z) → (x, z), π3 with (x, y, z) → (x, y),

and let π1(x, y, z) = π1(0, y, z), by the splitting lemma, it suffices to replace π2

with the linear mapping L2 : (x, y, z) → (z), and replace π3 with L3 : (x, y, z) →

(y). Now ker(π1) ∩ ker(L2) ∩ ker(L3) = {(x, 0, 0)}. Let R = {(0, y, z)}. The

problem is reduced to check {ker(πi) ∩ R}3
i=1 has the power decay property. One

can check {ker(π1) ∩ R, ker(L2) ∩ R, ker(L3) ∩ R} still satisfy the condition that

(ker(π1) ∩ R) ∩ (ker(Lj) ∩ R) = 0, i = 2, 3 and (ker(L2) ∩ R) ∩ (ker(L3) ∩ R) = 0.

What’s more, one also need to check that span(ker(π1)∩R, ker(L2)∩R) = R. Here

R = {(0, y, z)}, so ker(L2) ∩ R = {(0, y, 0)}. Since Rm = {(x, 0, 0)} ⊕ {(0, y, z)},

there exists a subspace U of the space {(0, y, z)} such that ker(π1) = {(x, 0, 0)}⊕U .

And ker(π1) ∩ R = U . We already know span(ker(π1), ker(π2)) = Rm, this implies

span(U, {(0, y, 0)}) = {(0, y, z)}. And this shows span(ker(π1)∩R, ker(L2)∩R) = R.

So we can repeat the above argument till ker(πi) and ker(πj) span the ambient space

for any pair of i 6= j.
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3.5 End of Proof

By the previous assumption, we can assume

span(ker(πi), ker(πj)) = Rm

for i 6= j and ker(πi) ∩ ker(πj) = 0. That is,

dim(ker(π1)) + dim(ker(π2)) = m

dim(ker(π2)) + dim(ker(π3)) = m

dim(ker(π1)) + dim(ker(π3)) = m

So we must have every πi is a surjective linear mapping from Rm to Rk where

m = 2k, i = 1, 2, 3. If one can check, {ker(πi)}3
i=1 actually satisfy the general

position condition in [7] and [8]. By the result below in [8], we can conclude {πi},

i = 1, 2, 3 has uniform power decay property.

Lemma 3.5.1. Let {πj : 1 ≤ j ≤ 3} be a collection of three surjective linear

mappings from R2m → Rm which lie in general position. Then

|I(λ)(f1, f2, f3)| ≤ (|λ|||P ||nd)−ε
3∏
j=1

||fj||L2

holds for all polynomials P: R2m → Rm of degree ≤ d and for all functions fj ∈

L2(Rm), with constants C, ε depend only on m, d, η.
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3.6 Transverse splitting condition

Theorem 3.0.1 can be used to deal with some multiliear cases. Besides the general

position condition, we want to introduce another kind of special structure of the

surjective linear mappings that also has been discussed in the work of Christ [5]

though his notation might be more abstract.

Definition 3.6.1. A set of linear mappings {πi}i∈I : Rm → Rki with nullspace Vi

is said to satisfy the transverse splitting condition if they satisfies general position

condition and, without loss of generality, if assuming dim(V1) = mini∈I dim(Vi),

I\{1} can be divided into two disjoint groups I1, I2 such that:

(m− dim(V1)) +
∑
j∈I1

(m− dim(Vj)) ≤ m,

(m− dim(V1)) +
∑
j∈I2

(m− dim(Vj)) ≤ m.

Remark: one example of the above definition is the one dimensional range space

case where the number of functions does not exceed 2m− 1 and those linear map-

pings lie in general position. Actually, theorem 2.6.2 can be extended to the follow-

ing corollary.

Corollary 3.6.2. Any collection of surjective linear mappings {πi} defined on Rm

that satisfies the transverse splitting condition has the uniform power decay property.

Proof. Let Vi = ker(πi), 1 ≤ i ≤ n. Without loss of generality, assuming dim(V1) ≤

dim(V2)... ≤ dim(Vn), such that I\{1} can be divided into two disjoint groups I1,I2
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such that:

(m− dim(V1)) +
∑
j∈I1

(m− dim(Vj)) ≤ m,

(m− dim(V1)) +
∑
j∈I2

(m− dim(Vj)) ≤ m.

Let Σ1,Σ2 be the linear mapping such that ker(Σ1) = ∩i∈I1 ker(πi) and ker(Σ2) =

∩i∈I2 ker(πi). Notice by the general position condition,

dim(span(ker(π1), ker(Σ1)))

= dim(ker(π1)) + dim(ker(Σ1))− dim(ker(π1) ∩ ker(Σ1))

= dim(ker(π1)) + dim(ker(Σ1))−max{0, dim(ker(π1))

+ dim(ker(Σ1))−m}

= dim(ker(π1)) + max{0,
∑
j∈I1

dim(ker(πj))− (|I1| − 1)m}

=m.

The same argument shows dim(span(ker(π1), ker(Σ2))) = m.

If f1 is λ-uniform,

Iλ(f1, ...fn) =

∫
Rm

eiλP (x)

n∏
j=1

fj(πj(x))η(x)dx

=

∫
Rm

eiλP (x)f1(π1(x))G1(Σ1(x))G2(Σ2(x))η(x)dx.

(3.6.1)

Here G1(Σ1(x)) =
∏

i∈I1 fi(πi), G2(Σ2(x)) =
∏

i∈I2 fi(πi).

There are two cases:

1. P is nondegenerate relative to {π1,Σ1,Σ2}. And the nondegeneracy norm is

≥ |λ|−ε. This case is proved by theorem 3.0.1.
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2. P’s nondegeneracy norm relative to {π1,Σ1,Σ2} is ≤ |λ|−ε.

In case 2, let π∗i , Σ∗i be the adjoint of πi, Σi. That is, 〈πi(x), y〉 = 〈x, π∗i (y)〉

for any x ∈ Rm and any y ∈ Vi. Define l1 : V1 × V2 → Rm : (ξ1, ξ2) → π∗1(ξ1) +

Σ∗1(ξ2). We want l1 to be linear and injective. Linearity is trivial. We just need to

show injectivity. That is π∗1(ξ1) + Σ∗1(ξ2) = 0 implies ξ1 = ξ2 = 0. We will show

span(ker(π1), ker(Σ1)) = Rm can guarantee this. Notice ker(πi) = im(π∗i )
⊥ for 1 ≤

i ≤ n. So span(ker(π1), ker(Σ1)) = Rm implies span(im(π∗1)⊥, im(Σ∗1)⊥) = Rm. For

span(im(π∗1)⊥, im(Σ∗1)⊥) = span(im(π∗1)∩im(Σ∗1))⊥, which gives im(π∗1)∩im(Σ∗1) = 0,

so π∗1(ξ1) + Σ∗1(ξ2) = 0 implies π∗1(ξ1) = Σ∗1(ξ2) = 0. Since πi is surjective, we

have π∗1, Σ∗1 is injective , which gives ξ1 = ξ2 = 0. The same argument shows

l2 : V1 × V3 → Rm : (ξ1, ξ3)→ π∗1(ξ1) + Σ∗2(ξ3) is also injective.

P (x) = P1(π1(x)) + Q1(Σ1(x)) + Q2(Σ2(x)) + R(x) where ||R||nd ≤ |λ|−ε. Let

f̃1 = f1 · eiλP1(π1(x)), G̃i = Gi · eiλQi(π1(x)), 1 ≤ i ≤ 2, η̃ = η · eiλR(x),

(3.6.1) =
∫ ˆ̃f1(ξ1) ˆ̃G1(ξ2) ˆ̃G2(ξ3)ˇ̃η(π∗1(ξ1) + Σ∗1(ξ2) + Σ∗2(ξ3))dξ1dξ2dξ3.

It suffices to show supξ3
∫ ∫
|ˇ̃η(π∗1(ξ1)+Σ∗1(ξ2)+Σ∗2(ξ3))|dξ1dξ2 < C|λ|1−ρ, which

is guaranteed by the injectivity of l : V1 × V2 → Rm : (ξ1, ξ2)→ π∗1(ξ1) + Σ∗1(ξ2).

If f1 is λ-nonuniform, the problem is reduced to Iλ(f2, ...fn). By the induction

hypothesis, {πi}ni=2 still satisfies the transverse splitting condition. Keep repeating

the above argument till the number of function is ≤ 3, by theorem 3.0.1, we know

the integral has the uniform power decay property.
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Chapter 4

Second result: Generalization of

one dimensional case

In this chapter, we will discuss a generalization of the one dimensional range space

case. In [7], the authors already discuss about the case where n ≤ 2m−1. However,

higher multilinearity case has not been studied yet. Essentially, if a phase function

is “very” nondegenerate, like it is simply nondegenerate or has very high nonde-

generacy degree, then the corresponding oscillatory integral has the power decay

property no matter what the structure of the linear mappings might be. Or, if

the linear mappings satisfy the transverse splitting condition for instance, then the

phase function being nondegenerate is sufficient to ensure the power decay property

of the oscillatory integral. The second result in the thesis, which is listed below,

provides a good trade off between the nondegeneracy degree of the phase function
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and the structure of the linear mappings.

Theorem 4.0.1. {πi}ni=1 is a collection of surjective linear mappings defined on Rm

whose range space is one-dimensional for each i. Assume {πi} satisfies the general

position condition. If there is an integer k ≤ d− 1 such that n ≤ k(m− 1) + 2 and

P is a polynomial with nondegeneracy degree ≥ k + 1 relative to {πi}ni=1. Then we

have

|Iλ(f1, ...fn)| ≤ C(1 + ||λ
∑
i≥k+1

Pi||nd)−ε
n∏
j=1

||fj||L∞ (4.0.1)

for all fj ∈ L∞(πj(Rm)) with uniform constant C, ε.

Sketch of the proof :

The proof of the theorem is by induction and divided into several steps. First

we introduce some helper mappings. For a fixed 1 ≤ s ≤ m− 2, we define a linear

surjective mapping Σs on Rm such that ker(Σs) = ker(π1(x)) ∩ ... ∩ ker(πs(x)). For

each s, there are two cases:

1. P has small nondegenerate norm relative to {πi,Σs}.

2. P has large nondegenerate norm relative to {πi,Σs}.

The question is, how we define “small” and “large” as above? Actually, the thresh-

old of “small” and “large” is different for each s. By choosing proper threshold for

each s, we can guarantee either the second case happens or if the first case happens,

we can keep going to s+ 1 or we can prove the oscillatory integral has power decay

property. We call Σs the helper mapping.
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For s = 1, the helper mapping has the same kernel of π1. So it is just {πi}ni=1

and the second case holds. We then assume for cases k less than or equal to s, the

second case hold, and we now consider case s+ 1.

If the first case holds, P is essentially a polynomial defined on the comple-

ment of ker(Σs+1). By choosing coordinate properly, we can assume πi(x1, ...xm) =

πi(0, ...0, xi, 0..0) for 1 ≤ i ≤ m. And
∏s+1

i=1 fi(πi(x)) can be viewed as function de-

fined on the complement of ker(Σs+1). By the TT ∗ method, essentially the integral

becomes

Iλ =

∫
eiλP (x)f1(π1(x1))f2(π2(x2))...fm(πm(xm))...fn(πn(x))η(x)dx

=

∫
G(x1, ..xs, xs+2..xm)f1(π1(x1))...fs(πs(xs))fs+2(πs+2(xs+2))...

fm(πm(xm))dx1...dxsdxs+2...dxm.

Here

G(x1, ..., xs, xs+2, ..., xm)

=

∫
eiλP (x)fs+1(πs+1(xs+1))fm(πm(xm))...fn(πn(x))η(x)dxs+1.

We will show the new phase function P (x1, ...xm) − P (x1, ...xs + ys, ...xm) is

nondegenerate relative to {πs+1, πm+1, ...πn}. We will choose a proper linear differ-

ential operator that vanishes on all degenerate polynomials but not the new phase

function that we are dealing with. Basically, this differential operator is a product

of the normal vector, similarly defined as the one in simple nondegeneracy 2.2.6.

To prove the new phase function is nonvanishing under this differential operator,

we need the nondegeneracy degree of P to satisfy the assumption in the theorem.
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If it is the second case, we keep going to consider s + 2 and repeat the above

process. Finally we will reach the case where s = m−1. Notice the helper mapping’s

range space has codimension one and it turns out that it can be solved by the same

codimension one argument as in 2.3.1.

4.1 First step: Induction settings

We prove theorem 4.0.1 by induction on k.

By theorem 2.3.1, we can assume m ≥ 3. Without loss of generality, we also

assume ||
∑

i≥k+2 Pi||nd(πi,1≤i≤n) = 1.

When k = 1 and n ≤ m+ 1, it is concluded by theorem 2.1 in [7] that

|Iλ(f1, ...fn)| ≤ C(1 + ||λP ||nd)−ε
n∏
j=1

||fj||L∞ (4.1.1)

Since the space of all polynomials of degree at most d is a finite dimensional space,

every norm defined on it is equivalent. So we have

||P ||nd(πi,1≤i≤n) ≥ c||
∑
i≥k+2

Pi||nd(πi,1≤i≤n)

with c an absolute constant depends only on the choice of norm. So

(4.1.1) ≤ C ′(1 + ||λ
∑
i≥2

Pi||nd)−ε
n∏
j=1

||fj||L∞

for some constant C ′.

Assume the theorem holds for any 1 ≤ t ≤ k. We now deal with the case

t = k + 1. Now fix P . By the assumption, the highest-degree nondegenerate
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homogeneous part Pi of P has degree i ≥ k + 2. If n ≤ k(m − 1) + 2, by the

same argument, we have ||
∑

i≥k+1 Pi||nd(πi,1≤i≤n) ≥ c||
∑

i≥k+2 Pi||nd(πi,1≤i≤n) with

c an absolute constant depends only on the choice of norm. By the induction

hypothesis, (4.0.1) holds true. So we can write n = k(m− 1) + 2 + i, 1 ≤ i ≤ m− 1.

Let Ws = ker(π1(x))∩...∩ker(πs(x)) and denote Σs be any projection defined on

Rm with nullspace Ws, 1 ≤ s ≤ m−1. For any given fixed P and fixed 1 ≤ s ≤ m−1,

we will show one of these cases must be true:

1. ||
∑

i≥k+2 Pi||nd(πi,Σs) < εs. Here the nondegeneracy norm is taken relative to

{πi,Σs}, 1 ≤ i ≤ n. Then (4.0.1) holds true.

2. ||
∑

i≥k+2 Pi||nd(πi,Σs) ≥ εs.

Let ε1 = 1. We will continue to pick up εs, 2 ≤ s ≤ m− 1. The way of picking up

εs will be specified later but now we can assume εi > εi+1, 1 ≤ i ≤ m− 2.

When s = 1, Ws = ker(π1(x)). {π1, ...πn,Σs, P} is the same as {π1, ...πn, P}, So

||
∑

i≥k+2 Pi||nd(πi,1≤i≤n,Σ1) ≥ ε1 holds true.

Assume we know for 1 ≤ u ≤ s ≤ m− 2, case (2) holds true. We now consider

u = s+ 1.
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4.2 Second step: Phase function has small non-

degeneracy norm relative to helper mappings

If ||
∑

i≥k+2 Pi||nd(πi,Σs+1) < εs+1 is the case, that is, the phase function has small

nondegeneracy norm relative to helper mappings.

We write P =
∑d

i=0 Pi, where Pi is the homogeneous part of degree i, then we

have

Pi = Qi(Σs+1(x)) +Ri(x) +
n∑
j=1

pij(πj(x)), (4.2.1)

for i ≥ k + 2, with ||
∑

i≥k+2Ri(x)|| < εs+1.

By the induction hypothesis of s, there exists some Qi with i ≥ k + 2 such

that Qi is nondegenerate relative to {π1, ...πn,Σs} since εs > εs+1. Let Qr has

the highest degree among those homogeneous part Qi that is nondegenerate with

respect to {π1, ...πn,Σs}. Then r ≥ k + 2. Without loss of generality, we can

also write Qi = Qi(Σs(x)) +
∑n

j=1 pij(πj(x)) for i > r. Without loss of generality,∑n
j=1 pij(πj(x)) could be assigned to fj. To summarize it, we write

P (x) =
∑
i<k+2

Pi(x) +
∑
i>r

Qi(Σs(x)) +
∑

k+2≤i≤r

Qi(Σs+1(x)) +
∑
k+2≤i

Ri(x).

Notice ||
∑

i≥k+2Qi(Σs+1(x)) +
∑

i≥k+2Ri(x)||nd(πi,1≤i≤n,Σs) ≥ εs and

||
∑

i≥k+2Ri(x)|| < εs+1, which implies

||
∑

k+2≤i≤r

Qi(Σs+1(x))||nd(πi,1≤i≤n,Σs) ≥ εs − εs+1. (4.2.2)
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By the general position condition, denote I be any subset of {1, 2...n} with cardi-

nality m, dim(∩i∈I ker(πi)) = 0, dim(∩i∈I\k ker(πi)) = 1 for any k ∈ I. Without

loss of generality, let I = {1, 2...m}. Pick any nonzero vector ek ∈ ∩i∈I\k ker(πi),

since it is one-dimensional, the vector we pick is unique up to a scale. We claim

these m vectors are linearly independent. If not, without loss of generality, sup-

pose e1 ∈ span{e2, ...em}. By definition, ei ∈ ker(π1(x)) for any i ∈ {2, ...m}. So

span{e2, ...em} ∈ ker(π1(x)). Thus e1 ∈ ker(π1(x)), which implies e1 ∈ ∩i∈I ker(πi).

But ∩i∈I ker(πi) = 0, contradicting the assumption that e1 is a nonzero vector.

So these m vectors is a basis of Rm and we can have the corresponding coordi-

nate. Notice for any fixed k with 1 ≤ k ≤ m, ej ∈ ker(πk) for j 6= k and

1 ≤ j ≤ m. Let x = (x1, ...xm) ∈ Rm, we have πk(x) = πk(0, .., 0, xk, 0, ..0) +

πk(x1, ..., xk−1, 0, xk+1...xm) = πk(0, .., 0, xk, 0, ..0). To make the notation easier

to read, we will write πk(xk) as πk(0, .., 0, xk, 0, ..0) for 1 ≤ k ≤ m. Actually,

spani∈I\k{ei} ∈ ker(πk) and has dimension m − 1. So spani∈I\k{ei} = ker(πk).

Ws = ker(π1(x)) ∩ ... ∩ ker(πs(x))), so Σs(x) = Σs(x1, ...xs, 0..0). We will also

denote Σs(x1, ...xs) = Σs(x1, ...xs, 0..0). Then

Iλ =

∫
eiλP (x)f1(π1(x1))f2(π2(x2))...fm(πm(xm))...fn(πn(x))η(x)dx

=

∫
G(x)eiλ

∑
i>r Qi(Σs(x))f1(π1(x1))...fs(πs(xs))fs+2(πs+2(xs+2))...

fm(πm(xm))dx1...dxsdxs+2...dxm.
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Here

G(x1, ..., xs, xs+2, ..., xm)

=

∫
eiλ(

∑
i<k+2 Pi+

∑
k+2≤i≤r Qi+

∑
i≥k+2Ri)fs+1(πs+1(xs+1))

fm(πm(xm))...fn(πn(x))η(x)dxs+1.

By Cauchy-Schwartz inequality,

Iλ ≤ (

∫
|G(x1, ..., xs, xs+2, ..., xm)|2dx1...dxsdxs+2...dxm)

1
2

∏
i 6=s+1

||fi||L2 .

We want to show for some ε > 0,∫
|G(x1, ..., xs, xs+2, ..., xm)|2dx1...dxsdxs+2...dxm)

1
2

≤C(1 + |λ|)−ε
∏

i∈{s+1,m+1,...n}

||fi||L∞ .

We write J(x) =
∑

k+2≤i≤rQi(Σs+1(x)) +
∑

k+2≤iRi(x) +
∑

i≤k+1 Pi(x).∫
|
∫
eiλJ(x)fs+1(πs+1(xs+1))fm+1(πm+1(x))...fn(πn(x))η(x)dxs+1|2

dx1...dxsdxs+2...dxm)
1
2

=(

∫ (∫
eiλ(J(x1,...xm)−J(x1,...xs+1+ys+1,...xm))Fs+1

ys+1(πs+1(xs+1))

F
ys+1

m+1(πm+1(x))...F ys+1
n (πn(x))ηys+1(x)dx1...dxsdxs+1...dxm

)
dys+1)

1
2

≤(

∫
|Iys+1|dys+1)

1
2 .

Here

F
ys+1

k (πk(x)) = fk(πk(x))f̄k(πk(x1, ...xs, xs+1 + ys+1, xs+2, ...xm)

for k = s+ 1,m+ 1, ...n.

ηys+1(x) = η(x)η̄(x1, ...xs, xs+1 + ys+1, xs+2, ...xm).
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Iys+1 =

∫
eiλ(J(x1,...xm)−J(x1,...xs+1+ys+1,...xm))Fs+1

ys+1(πs+1(xs+1))

F
ys+1

m+1(πm+1(x))...F ys+1
n (πn(x))ηys+1(x)dx1...dxsdxs+1...dxm.

The phase function becomes

J(x1, ...xm)− J(x1, ...xs+1 + ys+1, ...xm)

=
∑

k+2≤i≤r

(Qi(Σs+1(x))−Qi(Σs+1(x1, ...xs+1 + ys+1, ...xm)))

+
∑
i≥k+2

(Ri(x)−Ri(x1, ...xs+1 + ys+1, ...xm))

+
∑
i≤k+1

(Pi(x)− Pi(x1, ...xs+1 + ys+1, ...xm)).

Define Hzs+1(x) = J
zs+1

i≥k+2(x) = Ji≥k+2(x1, ...xm)−Ji≥k+2(x1, ...xs+1+zs+1, ...xm).

We consider the quotient space of all polynomials of degree ≤ d − 1 modulo sum

of the subspace of all degenerate polynomials relative to {πs+1, πm+1, ...πn} and

the space of polynomial of degree ≤ k + 1. If this quotient space has an inner

product structure and the norm is induced by the inner product structure then
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||Hzs+1

i≥k+1||2nd(πs+1,πm+1,...πn) is a polynomial of zs+1 since

||Hzs+1

i≥k+1||
2
nd(πs+1,πm+1,...πn)

=||
∑
j≥k+1

(Ji≥k+2(x1, ...xm)

− Ji≥k+2(x1, ...xs+1 + zs+1, ...xm))j||2nd(πs+1,πm+1,...πn)

=||
∑
j≥k+1

−zs+1(
∂Ji≥k+2

∂xs+1

(x1, ...xm))j +
1

2

∑
j≥k+1

z2
s+1(

∂2Ji≥k+2

∂xs+1
2 )j...

+
(−1)d

d!

∑
j≥k+1

zds+1(
∂dJi≥k+2

∂xs+1
d

)j||2nd(πs+1,πm+1,...πn)

=
d∑

h=1

d∑
t=1

(−1)(h+t)

h!t!
zh+t
s+1〈

∑
j≥k+1

(
∂hJi≥k+2

∂xs+1
h

)j,
∑
j≥k+1

(
∂tJi≥k+2

∂xs+1
t )j〉.

Now we will show for proper εs, ||
∑

i≥k+1( ∂J
∂xs+1

)i||nd(πi,i=s+1,m+1...n) could be greater

than a constant c > 0.

Consider the vector space T consisting of polynomials of the form
∑n

i=1 pi(πi(x))+

p0(Σs+1(x)) whose degree is ≤ d. Let L1 be the space of polynomials of the form∑n
i=1 pi(πi(x))+p0(Σs+1(x)) whose degree is ≤ k+1 and L2 be the space consisting

of polynomials of the form
∑n

i=1 pi(πi(x)) + p0(Σs(x)) whose degree is ≤ d. Let L

denote the quotient space of T modulo L1 + L2. Then L is a finite dimensional

space with a norm ||
∑

i≥k+2 Pi||nd(πi,1≤i≤n,Σs) for any polynomial P defined on it.

Let H be the space consisting of all polynomials of degree ≤ d modulo the sum

of polynomials of the form
∑n

i=m+1 pi(πi(x)) + ps+1(πs+1(x)) and polynomials of

degree ≤ k. H is also finite dimensional with the norm ||
∑

i≥k+1 Pi||nd(πi,1≤i≤n).

We now define an operator h : L → H by h(l) = ∂l
∂xs+1

. This is well-defined.

Since if t1, t2 ∈ T with t̃1 = t̃2 in L, then t1 − t2 =
∑n

i=1 qi(πi(x)) + q0(Σs(x)) +
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p(Σs+1(x)) for some polynomials p, qi, 0 ≤ i ≤ n with degree of p is ≤ k + 1. So

∂(t1−t2)
∂xs+1

=
∑n

i=m+1 q
′
i(πi(x)) + q′s+1(πi(x)) + ∂p(Σs+1(x))

∂xs+1
, for some polynomials q′i, and

the degree of ∂p(Σs+1(x))
∂xs+1

is ≤ k, which is 0 in the quotient space H. Also, h is

linear and continuous. If we define the function h0 on L by h0(l) = ||h(l)||H =

||
∑

i≥k+1( ∂l
∂xs+1

)i||nd(πi,i=s+1,m+1...n). Then h0 is continuous.

Let A be the compact set {l : c ≤ ||
∑

i≥k+2 li||nd(πi,1≤i≤n,Σs) ≤ C} on L,

where C is an absolute constant ≥ 2, c will be chosen later and c ≤ 1. h0 is

a continuous function on L, So it attains minimum in A. What’s more, since

h0(al) = |a|h0(l) where a ∈ R is a scalar, if h0(lc) = infl∈Ah0(l), we must have

||
∑

i≥k+2 l
c
i ||nd(πi,1≤i≤n,Σs) = infl∈A||

∑
i≥k+2 li||nd(πi,1≤i≤n,Σs) = c. If we let c =

εs−εs+1, then for any P ∈ A, there exists a constant C1 independent of P such that

h0(P ) ≥ C1(εs− εs+1). Notice ||
∑

k+2≤i≤rQi(Σs+1(x))||nd(πi,1≤i≤n,Σs) ≥ εs− εs+1, so

we have h0(
∑

k+2≤i≤rQi(Σs+1(x))) ≥ C1(εs − εs+1).

It is left to show this constant C1 is nonzero. To make the proof easier to read,

we will postpone it to last step.

Consider the space consisting of polynomials of degree ≤ d modulo degenerate

polynomials relative to {πi, 1 ≤ i ≤ n,Σs}. It is also a finite dimensional space.

Notice ||
∑

i≥k+2Ri|| ≤ εs+1, so

||
∑
i≥k+2

Ri||nd(πi,1≤i≤n,Σs) ≤ εs+1.

By the same argument, we see ||
∑

i≥k+1( ∂R
∂xs+1

)i||nd(πi,i=s+1,m+1...n) ≤ C2εs+1 for some

constant C2 independent of R.
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So now we can pick εs+1, 1 ≤ s ≤ m−3, such that C1(εs−εs+1) ≥ 2C2εs+1. Then

||
∑

i≥k+1( ∂J
∂xs+1

)i||nd(πi,i=s+1,m+1...n) ≥ C2εs+1 > 0 relative to {πi, i = s+1,m+1...n}.

From the above argument, we see ||Hzs+1

i≥k+1||2nd(πs+1,πm+1,...πn) is not identically 0

and it is of bounded degree as a polynomial of zs+1. So there exists C, δ such that

for any compact set B in R of bounded radius, for any ε > 0,

|A| = |{zs+1 ∈ B : ||Hzs+1

i≥k+1||
2
nd(πs+1,πm+1,...πn) < ε}| ≤ C(J)εδ(J). (4.2.3)

Since ||Hzs+1

i≥k+1||2nd(πs+1,πm+1,...πn) is a polynomial of bounded degree, δ(J) could be a

uniform constant independent of J . We now want to prove the constant C(J) is

uniform.

Consider the quotient space T1 of polynomials of degree bounded by d modulo

the sum of degenerate polynomials relative to {πi, 1 ≤ i ≤ n,Σs} and polynomials of

degree ≤ k+1. The set of polynomials in T1 such that c1 ≥ ||Pi≥k+2||nd(πi,1≤i≤n,Σs) ≥

c2 is compact, for any constants c2 ≤ c1.

Define a function l on T1 by l(P ) = ||Pi≥k+2||nd(πi,1≤i≤n,Σs+1), then l is a well-

defined and continuous function on T1 since if l(P1) = l(P2) then
∑

i≥k+2(P1−P2)i is

degenerate relative to {πi,Σs} which is also 0 under the norm ||·||nd(πi,1≤i≤n,Σs+1) and

|||
∑

j≥k+2(P1)j||nd(πi,1≤i≤n,Σs+1) − ||
∑

j≥k+2(P2)j||nd(πi,1≤i≤n,Σs+1)| ≤ ||
∑

j≥k+2(P1 −

P2)j||nd(πi,1≤i≤n,Σs+1) ≤ ||
∑

j≥k+2(P1 − P2)j||nd(πi,1≤i≤n,Σs). So the set of P in T1

such that l(P ) ≤ c3 is closed for any c3. Thus the subset A1 in T1 with A1 = {P :

c2 ≤ ||Pi≥k+2||nd(πi,1≤i≤n,Σs) ≤ c1, ||Pi≥k+2||nd(πi,1≤i≤n,Σs+1) ≤ c3} is compact in T1.

The polynomial J lies in A1. Once we define an inner product structure on the
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space V of polynomials of degree bounded by d, for any subspace W of it, we can

identify V/W with W⊥. Thus 〈
∑

j≥k+1(
∂hJi≥k+2

∂xs+1
h )j,

∑
j≥k+1(

∂tJi≥k+2

∂xs+1
t )j〉 should vary

continuously with respect to J for every h, t. So the constant C(J) defined on 2.1.1

is continuous with respect to J . Thus there is a uniform constant C such that

|{zs+1 ∈ B : ||Hzs+1

i≥k+1||2nd(πs+1,πm+1,...πn) < ε}| ≤ Cεδ.

This means for any ε > 0 except for a set of measure . εδ, the nondegeneracy

norm of H
zs+1

i≥k+1 > ε with respect to {πs+1, πm+1, ...πn} for nonzero zs+1. By the

induction hypotheses, the number of function is n−m+ 1 ≤ k(m− 1) + 2.

|Izs+1(Fs+1, Fm+1...Fn)| ≤ C(1 + |λε|)−δ′ ||F zs+1

s+1 ||L∞
n∏

j=m+1

||F zs+1

j ||L∞

≤ C(1 + |λε|)−δ′ ||fs+1||2L∞
n∏

j=m+1

||fj||2L∞ ,

for some δ′ > 0. Since η(x) is compactly supported in some bounded set B. zs+1 is

also bounded by some compact set Bs+1. If ε ∼ |λ|−τ for some τ < 1, this gives

LHS ≤ (

∫
A∩Bs+1

|Iys+1|dys+1)
1
2 + (

∫
Ac∩Bs+1

|Iys+1 |dys+1)
1
2

≤ C(1 + |λ|)−ε′/2
∏

i∈{s+1,m+1,...n}

||fi||L∞

for some ε′.

4.3 Third step: Nonzero lower bound

In this section we will prove C1 is nonzero. That is, for any nonzero polynomial Q

in L, we want to prove ∂Q
∂xs+1

is nonzero in H. If we write Q =
∑

k+2≤i≤rQi, where
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Qr is nonzero in L, r ≤ d, then it suffices to show ∂Qr
∂xs+1

is nonzero in H since Qr is

Q′s highest degree term. Without loss of generality, we write Qr = Qr(Σs+1).

If not, ∂Qr◦Σs+1

∂xs+1
can be written as ps+1(πs+1(xs+1))+pm+1(πm+1(x))+...pn(πn(x))

for some polynomials ps+1, pm+1, ...pn. Given the inner product structure and the

coordinate we already choose, for every m+1 ≤ i ≤ n, since Vi = ker(πi) is of dimen-

sion m−1, we can always find its orthogonal complement Ui which is spanned by one

nonzero vector ui. This ui is unique up to a scale. πi(Rm) = πi(Vi)+πi(Ui) = πi(Ui).

Notice by the general position condition, πi(0, ...0, xs+1, 0, ...0) is not identically zero

for m + 1 ≤ i ≤ n. Since {(0, ...0, xs+1, 0, ...0)|xs+1 ∈ R} = ∩t∈{1,2...s,s+2,...m} ker(πt)

and ∩t∈{1,2...s,s+2,...m,i} ker(πt) = 0. This means if we write ui = ai1e1 + ...aimem,

then ais+1 6= 0 for m + 1 ≤ i ≤ n. So there exists some polynomials qs+1,

qm+1,...qn, q such that Qr ◦ Σs+1(x1, ...xs+1) = qs+1(πs+1(xs+1)) + qm+1(πm+1(x)) +

...qn(πn(x)) + q(x1, x2, ...xs, xs+2, ...xm). For qm+1, ...qn, there are n − m = (k −

1)(m − 1) + i + 1 many polynomials, 1 ≤ i ≤ m − 1. For every fixed 1 ≤ j ≤

k−1, dim(∩j(m−1)+2≤i≤j(m−1)+m ker(πi)) = 1. Notice ∩j(m−1)+2≤i≤j(m−1)+m ker(πi) =

(spanj(m−1)+2≤i≤j(m−1)+m(ui))
⊥, so spanj(m−1)+2≤i≤j(m−1)+m(ui) is a m − 1 dimen-

sional subspace. So there exists lj which is a normal vector to this subspace.

Let Lj = lj ◦ ∇. Then Lj(ui) = 0 for j(m − 1) + 2 ≤ i ≤ j(m − 1) + m. Thus

Ljqj(m−1)+t(πj(m−1)+t(x)) = Ljqj(m−1)+t(πj(m−1)+t(xj(m−1)+t)) = 0 for 2 ≤ t ≤ m,

here xj(m−1)+t is the orthogonal projection of x to Uj(m−1)+t. Since Qr = Qr ◦

Σs+1(x1, ...xs+1), qs+1 = qs+1(πs+1(xs+1)) and 1 ≤ s ≤ m−2, we have ∂
∂xm

Qr◦Σs+1 =
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0, ∂
∂xm

qs+1(πs+1(xs+1)) = 0 and ∂
∂xs+1

q(x1, ...xs, xs+2, ...xn) = 0.

For the rest polynomials, notice n = k(m− 1) + 2 + i, 1 ≤ i ≤ m− 1, there are

n − (k − 1)(m − 1) − m = 1 + i many of them. spank(m−1)+2≤t≤k(m−1)+1+i(ut)

has dimension i. We can always find a normal vector lk of this subspace but

lk is not orthogonal to un. Since if un is orthogonal to every normal vector of

spank(m−1)+2≤t≤k(m−1)+1+i(ut), we have un ∈ spank(m−1)+2≤t≤k(m−1)+1+i(ut). But

this contradicts the general position condition. Similarly, we have Lk = lk ◦ ∇.

Lkqk(m−1)+t(πk(m−1)+t(x)) = 0, 2 ≤ t ≤ 1 + i ≤ m, but

Lkqk(m−1)+i+2(πk(m−1)+i+2(x)) 6= 0

for any qk(m−1)+i+1(πk(m−1)+i+1(x) of degree ≥ 1.

Consider L = ∂
∂xm

∂
∂xs+1

∏k
j=1 Lj, then Lqn(πn(x)) must be 0. By the general

position condition, un is not orthogonal to any lj, 1 ≤ j ≤ k or es+1, em, which

means degree of qn is ≤ k+1. Same argument shows deg(qj) ≤ k+1, m+1 ≤ j ≤ n.

Since Qr ◦ Σs+1 is a homogeneous polynomial with degree r ≥ k + 2, if we just see

the highest degree part, we get

Qr(Σs+1(x1, ...xs+1)) = ps+1(πs+1(xs+1)) + q(x1, ...xs, xs+2, ...xm),

let xi = 0 for s+ 2 ≤ i ≤ m, we see

Qr(Σs+1(x1, ...xs+1)) = ps+1(πs+1(xs+1)) + q(x1, ...xs, 0, ..0),

q(x1, ...xs, 0, ..0) is a polynomial defined on Ks = {(x1, ...xs, 0...0)|xi ∈ R, 1 ≤ i ≤

s}.
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If we denote π′s to be the orthogonal projection from Rm to Ks, then the

nullspace of it is Ws. So there exists a polynomial q′ such that q′(Σs(x)) =

q(x1, ...xs, 0, ..0), which contradicts the assumption that Qr ◦ Σs+1 is nondegen-

erate relative to {π1, ...πn,Σs}. So ∂Qr
∂xs+1

must be nondegenerate with respect to

{πs+1, πm+1, ...πn}. If ||
∑

i≥k+2 Pi||nd(πi,Σs+1) < εs+1, this gives C1 is nonzero and

finish the proof.

4.4 Third step: Phase function has large nonde-

generate norm relative to helper mappings

If ||
∑

i≥k+2 Pi||nd(πi,Σs+1) ≥ εs+1, that is, P has relative large nondegenerate norm

relative to {πi,Σs+1}, we keep repeating the above argument until s + 1 = m − 1.

Now the problem becomes dealing with the following integral

Iλ =

∫
eiλP (x)F1(Σm−1(x))fm(πm(xm))...fn(πn(x))η(x)dx (4.4.1)

with ||
∑

i≥k+2 Pi||nd(πi,m≤i≤n,Σm−1) ≥ εm−1.

Let Hzm = P (x1, ...xm) − P (x1, ...xm−1, xm + zm). Let r be the highest degree

of P such that Pr is nondegenerate relative to {πi,m ≤ i ≤ n,Σm−1}. As previous,

it suffices to show ∂Pr
∂xm

is nondegenerate relative to {πi,m ≤ i ≤ n}. If not, ∂Pr
∂xm

=∑n
i=m qi(πi(x)) for some polynomials qi,m ≤ i ≤ n. So

Pr(x) =
n∑

i=m

pi(πi(x)) + p0(x1, ...xm−1)
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for some polynomials p0, pi,m ≤ i ≤ n, contradicting the assumption that Pr is

nondegenerate relative to {πi,m ≤ i ≤ n,Σm−1}. By the same argument as above,

we know (4.4.1) has power decay property.
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Chapter 5

Third result: Separation structure

In chapter 2, we introduce the concept of separation structure, that is, there exists

subspaces T1, T2 ⊂ Rm such that Rm = T1 ⊕ T2 and {πi}ni=1 preserves the direct

sum decomposition, namely, πi(Rm) = πi(T1)⊕ πi(T2). Denote m1 = dimT1, m2 =

dimT2.

Under this condition, we say a polynomial P (x, y) is of bidegree (i, j) if it has

degree i when viewed as a polynomial of x and has degree j when viewed as a

polynomial of y. We can write P =
∑

i

∑
j Pij(x1, ...xm1 , y1, ...ym2), where every Pij

is of bidegree (i, j). we call every Pij as a homogeneous part of P with bidegree

(i, j). In this case, we have a similar result as Lemma 2.2.1.

Lemma 5.0.1. Assume {πk}nk=1 preserve the direct sum decomposition. A poly-

nomial P is nondegenerate relative to {πk}nk=1 if and only if at least one of its

homogeneous part is nondegenerate. That is, a homogeneous polynomial of bidegree
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(i,j) is degenerate if and only if it may be expressed as
∑

k pk ◦ πk where each pk is

a homogeneous polynomial of the same bidegree.

Proof of lemma 5.0.1. If Pij =
∑

k pijk ◦ πk for every i, j, then P is obviously de-

generate.

If there is a (i, j) such that Pij 6=
∑

k pijk ◦ πk, for any polynomial pijk defined

on Vk, we want to show P cannot be expressed as a sum of Pk ◦ πk, 1 ≤ k ≤ n, for

any polynomial Pk.

Consider the pairing of the vector space consisting of all polynomials of bidegree

(i, j) and the constant coefficient differential operator of bidegree (i, j), that is, its

symbol is a polynomial of bidegree (i, j). This pairing is nondegenerate. Thus the

dual space of polynomials of bidegree (i, j) can be canonically identified with the

vector spaces of all such differential operators.

Consider the space consisting of all degenerate polynomials of bidegree (i, j).

It is a subspace of the space consisting of all polynomials of bidegree (i, j). So

there exists a constant coefficient differential operator Lij of bidegree (i, j) such

that Lij(pijk(πk)) = 0 for all 1 ≤ k ≤ n and all polynomials pijk defined on Vk with

bidegree (i, j) but Lij(Pij) 6= 0. Define a linear functional L as L(p) = Lij(p)(0)

for any polynomial p of degree ≤ d. Then L(pk(πk)) = 0, 1 ≤ k ≤ n, for any

polynomial pk. Since L(pk(πk)) =
∑

t

∑
s L(ptsk(πk)) for homogeneous polynomial

ptsk of bidegree (t, s). If (t, s) 6= (i, j), Lij(ptsk(πk))(0) = 0 for any polynomial ptsk.

If (t, s) = (i, j), by the definition of Lij, Lij(pijk(πk))(0) = 0. But L(P ) 6= 0, since
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Lij(Pij) 6= 0, which means P is nondegenerate relative to {πk}.

One example of oscillatory integrals that has the separation structure is the

following:

∫
R4

eiλP (x1,x2,y1,y2)f1(x1, y1)f2(x2, y2)f3(x1 + x2, y1 + y2)f4(x1, y1 + y2)

f5(x2, y1 + y2)η(x, y)dxdy, (5.0.1)

which can be viewed as a generalization of the example treated in [8]. Indeed, if we

see the slice of x and y separately, we can find that these two integrals consist of

the same “component” in each slice.

To be more precise, when restricted to x, we only have three linear mappings

(x1, x2) → (x1), (x1, x2) → (x2) and (x1, x2) → (x1 + x2). When restricted to y,

we also only have three linear mappings, (y1, y2)→ (y1), (y1, y2)→ (y2), (y1, y2)→

(y1 + y2). This observation leads to the question that if there is a general approach

to deal with the oscillatory integrals consisting of the same components when they

are equipped with the separation structure. The following third result in this thesis

is trying to answer the above question.

Theorem 5.0.2. If {πi, P} satisfies the conditions below:

1. There exists T1, T2 such that Rm = T1 ⊕ T2 and {πi} preserve the direct sum

decomposition.

2. {ker(πi) ∩ T1} satisfies the transverse splitting condition in T1.
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3. {ker(πi) ∩ T2} has uniform power decay property in T2.

4. P is nondegenerate relative to {πi} with some nondegeneracy bidegree (k1, k2),

k1 ≥ 2.

Then {πi, P} has power decay property.

Remark: in (5.0.1), if we define T1 = {(x, 0)}, T2 = {(0, y)}, then {ker(πi) ∩

T1} is {(x1, 0, 0), (0, x2, 0), (x1,−x1, 0)} and {ker(πi) ∩ T2} is {(0, y1, 0), (0, 0, y2),

(0, y1,−y1)}. Actually one can check they both satisfy the transverse splitting

condition thus have the uniform power decay property, see 3.6.2. We just need to

require P has nondegeneracy bidegree (i, j) where either i or j is greater than 1.

If we already P is nondegenerate, this requirement actually only excludes the case

that i = j = 1.

5.1 Proof of Theorem 5.0.2

Let {e1, ...em1} be a basis of T1 and {E1, ...Em2} be a basis of T2. Any point z ∈ Rm

can be represented by (x1, ...xm1 , y1, ...ym2) where x denotes the coefficient of e

and y denotes the coefficient of E. Since we have a basis of Rm, we then have a

corresponding coordinate. And πi(x, y) = πi(x, 0)⊕ πi(0, y).
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Without loss of generality, we can reset the index as

Iλ =

∫
eiλP (x,y)f11(π11(x, y))...f1k1(π1k1(x, y))...

ft1(πt1(x, y))...ftkt(πtkt(x, y))η(x, y)dxdy (5.1.1)

with
∑t

j=1 kj = n, 1 ≤ t. Here ker πij ∩ T1 are identical for 1 ≤ j ≤ ki.

Denote Ai = ker πij ∩ T1. Let Σi be any linear map with nullspace Ai ⊕ {0}.

There are two cases.

(a) P is nondegenerate relative to {πij,Σs}, 1 ≤ i, s ≤ t, 1 ≤ j ≤ ki.

(b) P is degenerate relative to {πij,Σs}, 1 ≤ i, s ≤ t, 1 ≤ j ≤ ki.

5.1.1 First step: Reduction to lower dimensions

For case (a), notice ker(Σi) ⊂ ker(πij). Denote

Fi(Σi(x, y)) =

ki∏
j=1

fij(πij(x, y))

for 1 ≤ i ≤ t. We just need to show {Σs, P} has power decay property, that is,

|
∫
eiλP (x,y)F1(Σ1(x, y))...Ft(Σt(x, y))η(x, y)dxdy| ≤ C|λ|−ε

t∏
j=1

||Fj||L∞ (5.1.2)

holds for all Fj ∈ L∞(Σj(Rm)). Since

t∏
j=1

||Fj||L∞ ≤ C

t∏
i=1

ki∏
j=1

||fij||L∞

for some constant C only depends on the support of η, if we can show (5.1.2) holds,

then we have Iλ has the power decay property.
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Notice ker(Σi) ∩ T2 = {0}, 1 ≤ i ≤ t, by lemma 2.4.2, it suffices to show

{ker(Σi) ∩ T1} has uniform power decay property in T1. By the definition of Σi,

ker(Σi) ∩ T1 = ker(πij) ∩ T1, 1 ≤ j ≤ ki. By corollary 3.6.2 and condition (2), we

know {ker(Σi) ∩ T1} has uniform power decay property in T1, thus (5.1.1) holds.

5.1.2 Second step: Transverse splitting case

For case (b), since ker(Σi) ⊂ ker(πij), 1 ≤ i ≤ t, 1 ≤ j ≤ ki, without loss of

generality, we can write P = P1(Σ1(x, y)) + ...Pt(Σt(x, y)), where Pi, 0 ≤ i ≤ t are

polynomials.

At least one of Pi ◦ Σi is nondegenerate relative to {πij}, 1 ≤ j ≤ ki with some

nondegeneracy bidegree (k1, k2), k1 ≥ 2. Otherwise P will be degenerate to {πij},

or with only nondegeneracy bidegree (k1, k2), k1 ≤ 1. Without loss of generality,

we can assume P1 ◦ Σ1 is nondegenerate relative to {π1j}, 1 ≤ j ≤ k1, with some

nondegeneracy bidegree (k1, k2), k1 ≥ 2. Notice η is compactly supported, so any

slice of the support set is also compact. We can pick ηi(Σi(x, y)) to be the bump

function which equals 1 on the slice of the support of η and vanishes outside of a

neighborhood of that slice. Then η(x, y) can be written as
∏t

i=1 ηi(Σi(x, y))η(x, y),

where ηi(Σi(x, y)) is a smooth function with compact support whose L∞ norm is

bounded by an absolute constant. The integral (5.1.1) becomes∫
F̃1(Σ1(x, y))...F̃t(Σt(x, y))η(x, y)dxdy

=

∫
(

∫
F̃1

y
(Σ1(x, 0))...F̃t

y
(Σt(x, 0))ηy(x)dx)dy,

(5.1.3)
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where

F̃i
y
(Σi(x, 0)) = F̃i(Σi(x, y)) = eiPi(Σi(x,y))

ki∏
j=1

fij(πij(x, y))ηi(Σi(x, y))

for 1 ≤ i ≤ t.

By condition (2), {ker(Σi)∩T1} has the transverse splitting condition in T1. That

is, if we denote I = {1, 2, ...t} and dim(ker(Σa) ∩ T1) = mini∈I dim(ker(Σi) ∩ T1),

then there is a partition I1, I2 of I\{a} such that

(m1 − dim(Va)) +
∑
j∈I1

(m1 − dim(Vj)) ≤ m1,

(m1 − dim(Va)) +
∑
j∈I2

(m1 − dim(Vj)) ≤ m1.

Here Vj = ker(Σj) ∩ T1.

If a 6= 1, we can assume 1 ∈ I1. Since dim(ker(Σa)∩ T1) = mini∈I dim(ker(Σi)∩

T1), if I ′1 = {a} ∪ I1\{1}, then I ′1, I2 is a partition of I\{1} such that

(m1 − dim(V1)) +
∑
j∈I′1

(m1 − dim(Vj)) ≤ m1,

(m1 − dim(V1)) +
∑
j∈I2

(m1 − dim(Vj)) ≤ m1

still holds. Without loss of generality, we denote I ′1 = {2, ...s}, I2 = {s+ 1, ...t}.

Let U1 = ker Σ2 ∩ ... ∩ ker Σs and U2 = ker Σs+1 ∩ ... ∩ ker Σt. Let l1 be any

linear map defined on Rm1 with nullspace U1 and l2 be any linear map in Rm1 with

nullspace U2. LetG1(l1(x, y)) =
∏s

i=2 F̃i(Σi(x, y)), G2(l2(x, y)) =
∏t

i=s+1 F̃i(Σi(x, y)).

Using the same argument as in lemma 3.6.2, denote F̃1
y
(Σ1(x, 0)) = F̃1(Σ1(x, y)),
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G1
y(l1(x, 0)) = G1(l1(x, y)), Gy

2(l2(x, 0)) = G2(l2(x, y)). Then we have

(5.1.3) =

∫
(

∫
F̃1

y
(Σ1(x, 0))G1

y(l1(x, 0))G2
y(l2(x, 0))ηy(x)dx)dy

≤ C

∫
|| ˆ̃
F y

1 ||L∞||Ĝ
y
1||L2||Ĝy

2||L2dy

(5.1.4)

for some constant C only depends on η. We should notice that since η is compactly

supported, we can always assume Gi is compactly supported for for i = 1, 2. For

any fixed y,

||Ĝy
1||L2 =||Gy

1||L2

=

∫
|G1(l(x, y))|2dx

≤C
s∏
i=2

||F̃i(Σi(x, y))||L∞ ≤ C
s∏
i=2

ki∏
j=1

||fij||L∞ .

Apply the same argument to G2, we have

(5.1.4) ≤ C

∫
|| ˆ̃
F y

1 ||L∞dy ·
t∏
i=2

ki∏
j=1

||fij||L∞ .

In the next section, we will show
∫
|| ˆ̃
F y

1 ||L∞dy ≤ c|λ|−δ
∏k1

j=1 ||f1j||L∞ for some

δ > 0.

5.1.3 Third step: Phase function with a special form

For any ε > 0, by the definition of L∞, we can pick a θ(λ, y, ε) such that

∫
|| ˆ̃
F y

1 ||L∞dy ≤
∫
|
∫
eiP1(Σ1(x,y))

k1∏
j=1

f1j(π1j(x, y))eiΣ1(x,0)·θ(λ,y,ε)

η1(Σ1(x, y))dΣ1(x, 0)|dy + Cε. (5.1.5)
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Notice the oscillatory integral on the right hand side has a phase function with a

special form. Though we do not have any information of θ, when fixed y, the phase

function is still a polynomial of x.

Denote m1 − dim(ker(Σ1) ∩ T1) = s. Without loss of generality, we can assume

ker(Σ1) ∩ T1 = {(0, ..0, xs+1, ...xm1 , 0..0)|xi ∈ R, s + 1 ≤ i ≤ m1}. Since ker(Σ1) ∩

T1 = ker π1j ∩ T1 for 1 ≤ j ≤ k1, up to a linear transformation, we can identify

Σ1(x, y) with the projection (x1, ...xm1 , y) → (x1, ...xs, y), π1j(x, 0) = (x1, ...xs, 0)

for 1 ≤ j ≤ k1. So we deal with

(5.1.5) =

∫
|
∫
eiλP1(x1,...xs,y)f11(π11(x, y))...f1k1(π1k1(x, y))η1(x, y)

ei
∑

1≤j≤s xj ·θj(λ,y,ε)dx1...dxs|dy

=

∫
eiλP1(x1,...xs,y)f11(π11(x, y))...f1k1(π1k1(x, y))η1(x, y)

ei
∑

1≤j≤s xj ·θj(λ,y,ε)g(y)dx1...dxsdy. (5.1.6)

Here ||g||L∞ = 1. Since η1 is compactly supported, we can assume g is compactly

supported. Denote P1,k1k2 as the homogeneous part of P1 with bidegree (k1, k2). No-

tice eiλ
∑
k2

∑
k1≤1 P1,k1k2

(x,y) can be decomposed into ei
∑s
j=1 xj ·θj(λ,y,ε)g(y). So without

loss of generality, we can assume P1 =
∑

k2

∑
k1≥2 P1,k1k2 .

We now consider the case where s ≥ 2. If s = 1, one can jump to the fourth

step. Let Lr be the projection from (xr, ...xs, y) to (xr+1, ...xs, y), 1 ≤ r ≤ s − 1.

Every time we’ll check if P1 is nondegenerate relative to {Lr, π1j}, 1 ≤ j ≤ k1. We’ll

show r = 1 as an example. There are two cases:
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(I)
∑

k2

∑
k1≥2 P1(x1, ...xs, y) is nondegenerate with respect to

{L1, π1j}, 1 ≤ j ≤ k1.

(II)
∑

k2

∑
k1≥2 P1(x1, ...xs, y) is degenerate with respect to {L1, π1j}, 1 ≤ j ≤ k1.

For case (I), we just need to show

|Iλ| =|
∫
eiλP1(x1,...xs,y)f11(π11(x, y))...f1k1(π1k1(x, y))η1(x, y)eix1·θ1(λ,y,ε)

G(x2...xs, y)dx1...dxsdy|

≤C|λ|−ε
k1∏
i=1

||f1i||L∞ ||G||L∞

holds true for any function f1i, G such that ||f1j||L∞ ≤ 1 and ||G||L∞ ≤ 1. Notice

|Iλ| ≤
(∫
|
∫
eiλP1(x1,...xs,y)f11(π11(x, y))...f1k1(π1k1(x, y))η1(x, y)

eix1·θ1(λ,y,ε)dx1|2dx2...dxsdy
) 1

2 · ||G||L2 .

We just need to deal with the following∫
|
∫
eiλP1(x1,...xs,y)f11(π11(x, y))...f1k1(π1k1(x, y))η1(x, y)

eix1·θ1(λ,y,ε)dx1|2dx2...dxsdy

=

∫ (∫
eiλP

z
1 (x,y)

k1∏
j=1

f z1j(π1j(x, y))ηz1(x, y)rz(y)dxdy
)
dz.

where P z
1 (x, y) = P1(x, y)− P1(x1 + z, x2, ...xs, y),

f z1j(π1j(x, y)) = f1j(π1j(x, y))f̄1j(π1j(x1 + z, x2, ...xs, y)), for 1 ≤ j ≤ k1, ηz1(x, y) =

η1(x, y)η̄1(x1 + z, x2, ...xs, y), rz(y) = e−iλz·θ1(λ,y,ε).
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We will use the notation Λ2 as the projection from Rs+m2 → Rm2 : (x1, ...xs, y)→

(y). We want to show ||P z
1 (x, y)||nd(π1j ,Λ2,1≤j≤k1) ≥ C|λ|−ρ′ as a function of z except

for a set of measure C|λ|−ρ′′ . By the same argument as in theorem 2.3.1 and

the assumption that P is nondegenerate relative to {x2, ...xs, y}, it suffices to show

∂P1(x,y)
∂x1

is nondegenerate relative to {π1j,Λ2}, 1 ≤ j ≤ k1. To prove this, assume it is

degenerate, then there exists polynomials qi, 0 ≤ i ≤ k1 such that ∂P1(x,y)
∂x1

= q0(y) +∑k1
i=1 qi(π1i(x, y)). Then P1(x, y) = Q0(x2...xs, y) + x1 · q0(y) +

∑k1
i=1 Qi(π1i(x, y)),

for some polynomials Qi, 0 ≤ i ≤ k1, which contradicts the assumption that P1 is

nondegenerate relative to {π1j, L1}, 1 ≤ j ≤ k1 with some nondegneracy bidegree

(k1, k2), k1 ≥ 2.

So now it suffices to show {π1j,Λ2}, 1 ≤ j ≤ k1 has uniform power decay. For

fixed z, there are two cases.

1. rz(y) splits into eiR(y)
∏k1

j=1 π1j(0, y) given |λ|−σ.

2. rz(y) does not split into eiR(y)
∏k1

j=1 π1j(0, y) given |λ|−σ.

For case 1, since ker(π1j) ⊂ ker(π1j ◦ Λ2), any polynomial defined on π1j ◦ Λ2(Rm)

can be “absorbed” into some polynomial defined on π1j(Rm). By the definition of

nondegeneracy norm, we have

||P z
1 (x, y)−R(y)||nd(π1j ,1≤j≤k1) ≥ ||P z

1 (x, y)||nd(Λ2,π1j ,1≤j≤k1).

Thus the problem is reduced to show {π1j}k1j=1 has uniform power decay, which is

given by condition 3.
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If it is case 2, we have

|
∫
eiλP

z
1 (x,y)

k1∏
j=1

f z1j(π1j(x, y))ηz1(x, y)rz(y)dxdy|

≤
∫
|
∫
eiλP

x,z
1 (y)

k1∏
j=1

fx,z1j (π1j(0, y))ηx,z1 (y)rz(y)dy|dx

≤C|λ|−σ
k1∏
i=1

||f1i||L∞ .

The last inequality is proved by the assumption that rz(y) does not split into

eiR(y)
∏k1

j=1 π1j(0, y) given |λ|−σ.

So whether rz(y) splits, {π1j,Λ2}, 1 ≤ j ≤ k1 always has uniform power decay

property.

5.1.4 Fourth step: Reduction to the codimension one case

We now consider case (II), that is,
∑

k2

∑
k1≥2 P1(x1, ...xs, y) is degenerate with

respect to {L1, π1j}, 1 ≤ j ≤ k1. Without loss of generality, we can assume

∑
k2

∑
k1≥2

P1(x1, ...xs, y) =
∑
k2

∑
k1≥2

P1(x2, ...xs, y)

(5.1.6) =

∫ (∫
eiλ

∑
k2

∑
k1≥2 P1(x2,...xs,y)

k1∏
i=1

fx11i ((x2, ...xs, 0) + π1i(0, y))

ηx11 (x2...xs, y)ei
∑

2≤j≤s xj ·θj(λ,y,ε)gx1(y)dx2...dxsdy
)
dx1,

where fx11i (x2, ...xs, y) = f1i(π1i(x, 0) + π1i(0, y)) = f1i((x1, ...xs, 0) + π1i(0, y)), 1 ≤

i ≤ k1, gx1(y) = g(y)eix1·θ1(λ,y,ε), ηx11 (x2...xs, y) = η1(x, y).
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We will prove
∑

k2

∑
k1≥2 P1,k1k2(x2, ...xs, y) must be nondegenerate relative to

{L1 ◦ π1j}, 1 ≤ j ≤ k1, with some nondegeneracy bidegree (k1, k2), k1 ≥ 2. Since

ker(L1 ◦ π1j) ∩ T1 = {(x1, 0..0, xs+1, ...xm1 , 0..0)|xi ∈ R, s+ 1 ≤ i ≤ m1},

ker(π1j) ∩ T2 = ker(L1 ◦ π1j) ∩ T2,

we have ker(π1j) ⊂ ker(L1 ◦ π1j), so any polynomial in L1 ◦ π1j can also be viewed

as a polynomial in π1j. So if
∑

k2

∑
k1≥2 P1,k1k2(x2, ...xs, y) is degenerate relative to

{L1 ◦ π1j}, 1 ≤ j ≤ k1, then P1 must be degenerate relative to {π1j}, 1 ≤ j ≤ k1 or

nondegenerate relative to {π1j} but with nondedegeneracy bidegree (k1, k2), k1 ≤

1, contradicting the assumption of P1. So
∑

k2

∑
k1≥2 P1,k1k2(x2, ...xs, y) must be

nondegenerate relative to {L1 ◦π1j}, 1 ≤ j ≤ k1, with some nondegeneracy bidegree

(k1, k2), k1 ≥ 2.

If we can show the following

|Iλ| =|
∫
eiλ

∑
k2

∑
k1≥2 P1,k1k2

(x2...xs,y)
k1∏
i=1

fx11i ((0, x2, ...xs, 0) + π1i(0, y))

ηx11 (x2...xs, y)ei
∑

2≤j≤s xj ·θj(λ,y,ε)gx1(y)dx2...dxsdy|

≤C|λ|−δ′
k1∏
i=1

||fx11i ||L∞||gx1||L∞

holds for some uniform δ′ > 0 for any fixed x1 with the constant independent of x1,

then (5.1.6) has power decay property.

Keep repeating the above argument, that is, checking the following conditions

for every 1 ≤ r ≤ s− 1. Here Lr : (xr, ...xs, y)→ (xr+1, ...xs, y).
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(I)
∑

k2

∑
k1≥2 P1(xr, ...xs, y) is nondegenerate with respect to

{Lr, π1j}, 1 ≤ j ≤ k1.

(II)
∑

k2

∑
k1≥2 P1(xr, ...xs, y) is degenerate with respect to {Lr, π1j}, 1 ≤ j ≤ k1.

If it is case (I), we repeat the argument in the second and third step. If it is case

(II), the problem is reduced to checking if {Lr ◦ πij} has uniform power decay

property in the ambient space Rs−r+m2 .

We end up with showing

|
∫ ∫

eiλ
∑
k2

∑
k1≥2 P1,k1k2

(xs,y)
k1∏
i=1

f x̃1i((0, ...0, xs, 0) + π1i(0, y))

ηx̃1 (xs, y)eixs·θs(λ,y,ε)gx̃(y)dxsdy|

≤C|λ|−δ
k1∏
i=1

||f1i||L∞ · ||gx̃||L∞

(5.1.7)

Here x̃ = (x1, ...xs−1), ηx̃1 = η1(x1, ...xs−1, xs, y),

f x̃1i = f1i(π1i(x1, ...xs−1, xs, y)),

gx̃(y) = g(y)ei
∑s−1
j=1 xj ·θj(λ,y,ε)

with fixed x1, ...xs−1.

If we denote

hx̃(y) =

∫
eiλP1(xs,y)

k1∏
i=1

f x̃1i((0, ...0, xs, 0) + π1i(0, y))exs·θsηs1(x, y)dxs,

by the same argument, we have

(5.1.7) ≤ C

∫
(

∫
eiλP

z
1 (xs,y)

k1∏
j=1

f x̃,z1j (π1j(xs, y))ηx̃,z1 (xs, y)rz(y)dxsdy)dz,
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where P z
1 (xs, y) = P1(xs, y)− P1(xs + z, y),

f x̃,z1j (π1j(xs, y)) = f x̃1j(π1j(xs, y)) · f̄ x̃1j(π1j(xs + z, y)),

for 1 ≤ j ≤ k1, ηx̃,z1 (xs, y) = ηx̃1 (xs, y)η̄x̃1 (xs + z, y), rz(y) = e−iλz·θs(λ,y,ε).

Notice now the ambient space is Rm2+1 = {(xs, y)|xs ∈ R, y ∈ Rm2}. We will

still use the notation Λ2 as the projection from Rm2+1 → Rm2 : (xs, y) → (y). By

the same argument, to prove P z
1 has nondegeneracy norm greater than or equal to

|λ|δ′ for some δ′ > 0, except some possible subset of z with small measure, we only

need to show ∂P1(xs,y)
∂xs

is nondegenerate relative to {π1j,Λ2}, 1 ≤ j ≤ k1. If it is

degenerate, we can check P1 is nondegenerate relative to {π1j}, 1 ≤ j ≤ k1 with

only nondegneracy bidegree (k1, k2), k1 ≤ 1.

Now it is only left to show {Λ2, Ls−1◦π1j} has the uniform power decay property.

Notice the range space of Λ2 is a codimension 1 subspace of the ambient space. By

lemma 2.3.1 and 2.4.2, {ker(π1j)∩T2} has uniform power decay property can imply

∫ ∫
eiλP

z
1 (xs,y)

k1∏
j=1

f x̃,z1j (π1j(xs, y))ηx̃,z1 (xs, y)rz(y)dxsdy

has uniform power decay for every fixed z, which is proved by condition (3).
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