
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Publicly Accessible Penn Dissertations

2019

Efficient Precise Dynamic Data Race Detection For Cpu And Gpu Efficient Precise Dynamic Data Race Detection For Cpu And Gpu

Yuanfeng Peng
University of Pennsylvania, yuanfeng.jack.peng@gmail.com

Follow this and additional works at: https://repository.upenn.edu/edissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Peng, Yuanfeng, "Efficient Precise Dynamic Data Race Detection For Cpu And Gpu" (2019). Publicly
Accessible Penn Dissertations. 3641.
https://repository.upenn.edu/edissertations/3641

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3641
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3641&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F3641&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3641?utm_source=repository.upenn.edu%2Fedissertations%2F3641&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3641
mailto:repository@pobox.upenn.edu

Efficient Precise Dynamic Data Race Detection For Cpu And Gpu Efficient Precise Dynamic Data Race Detection For Cpu And Gpu

Abstract Abstract
Data races are notorious bugs. They introduce non-determinism in programs behavior, complicate
programs semantics, making it challenging to debug parallel programs. To make parallel programming
easier, efficient data race detection has been a research topic in the last decades. However, existing data
race detectors either sacrifice precision or incur high overhead, limiting their application to real-world
applications and scenarios. This dissertation proposes approaches to improve the performance of
dynamic data race detection without undermining precision, by identifying and removing metadata
redundancy dynamically. This dissertation also explores ways to make it practical to detect data races
dynamically for GPU programs, which has a disparate programming and execution model from CPU
workloads. Further, this dissertation shows how the structured synchronization model in GPU programs
can simplify the algorithm design of

data race detection for GPU, and how the unique patterns in GPU workloads enable an efficient
implementation of the algorithm, yielding a high-performance dynamic data race detector for GPU
programs.

Degree Type Degree Type
Dissertation

Degree Name Degree Name
Doctor of Philosophy (PhD)

Graduate Group Graduate Group
Computer and Information Science

First Advisor First Advisor
Joseph Devietti

Keywords Keywords
Concurrency, Data Races, Debugging, GPU, Parallel Programming, Software Tools

Subject Categories Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3641

https://repository.upenn.edu/edissertations/3641

EFFICIENT PRECISE DYNAMIC DATA RACE DETECTION FOR CPU AND GPU

Yuanfeng Peng

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2019

Supervisor of Dissertation

Joseph Devietti
Assistant Professor of Computer and Information Science

Graduate Group Chairperson

Rajeev Alur
Zisman Family Professor of Computer and Information Science

Dissertation Committee

Steve Zdancewic, Professor of Computer and Information Science

Rajeev Alur, Zisman Family Professor of Computer and Information Science

Mayur Naik, Associate Professor of Computer and Information Science

Vinod Grover, Director of Engineering, NVIDIA

EFFICIENT PRECISE DYNAMIC DATA RACE DETECTION FOR CPU AND GPU

c© COPYRIGHT

2019

Yuanfeng Peng

This work is licensed under a Creative Commons Attribution 4.0 License.

To view a copy of this license, visit:

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

To my wife Jing, for her love, support, and trust along this journey.

I would never have made it here without you.

iii

ACKNOWLEDGEMENTS

Many people say surviving a Ph.D. program isn’t an easy job. This is true, although I wouldn’t

use the word survive today, when I’m about to graduate. For me, the past 5 years have been

an exciting adventure, made possible by many people I owe a debt of gratitude to.

I’ll start by thanking my advisor Joe Devietti. Joe, thanks for being such an awesome mentor,

collaborator, and friend. I can still remember the interview we had 6 years ago, the theme of

which was on data race detection, a topic that became the research focus of my whole Ph.D.

study. Thanks for admitting me as your first student, which is the start of the awesome journey.

Your patience and trust meant a lot to me, especially in the first few years, when I, as an

international student, was struggling to adapt to the new environment and overcome cultural

and language barriers. I appreciate your optimism and constant encouragements, which are

especially invaluable when things were not looking up. Thanks for being such a great teacher, I

can still recall the 501 classes 5 years ago. Thanks for all the jokes and humor in our meetings

and discussions, which spiced up the workdays and made the long journey more pleasant. Special

thanks are also due to you for your understanding and openness for letting me finish up the

program remotely in the past 3 years, which makes my life much easier. Most importantly, I

want to thank you for your enthusiasm for research and hacking, which is contagious and I’m

glad and proud that I still love research after all these years.

I’m lucky to have collaborated with a number of amazing people. I’d like to thank Ben Wood,

for his insights, hard work, and jokes in our collaborations, and for his unparalleled ability to

come up with creative acronyms. William Mansky is a magician of formal proofs, and I’m

grateful for him teaching me how to do that. I’m grateful for the PL insights and perspectives

from Steve Zdancewic, and for his helpful feedback on writing. I’m amazed at the incredible

coding abilities of Arial Eizenberg, and I appreciate learning so much from his code. I also want

to thank Christian DeLozier, for all the ideas and resources he kindly shared. I appreciate the

energy and insights in research from Brandon Lucia. I owe my special thanks to Prof. Yuebin

Bai, who gave me significant help and support for starting my adventure in research back in

iv

college.

I also got a tremendous amount of help from faculty members at Penn. I appreciate the

constructive feedback from Andreas Haeberlen, and helpful advice from Steve Zdancewic, on

my WPE II writing and presentation. I also want to thank Steve Zdancewic, Rajeev Alur, Mayur

Naik, and Vinod Grover, for kindly agreeing to be my dissertation committee, and for their

feedback on my thesis proposal.

In the summer of 2016, I had the opportunity to work with Vinod Grover at NVIDIA. I’m grateful

for his insights and help in my intern project, and I’m happy that we had the opportunity to

continue our collaboration after the internship. I also want to thank my colleagues at NVIDIA,

especially to Yang Chen, Sean Lee, Mahesh Ravishankar, and Thibaut Lutz, for their help in

hacking the NVCC compiler.

At Penn, my fellow students have made my life more rewarding. I would like to thank all past

and current members of ACG, including Brooke Candelore, Christian DeLozier, Ariel Eizenberg,

Omar Navarro Leija, Luo Liang, Laurel Emurian Mirarchi, Sameer Railkar, Kelly Shiptoski, Nimit

Singhania, Akshitha Sriraman, Abhishek Udupa, for the great atmosphere of the group. I’m also

grateful for making friends with many students in the department, including Yu Wang, Meng

Xu, Xie Long, Sean Welleck, Sepehr Assadi, Yang Li, Teng Zhang, and Jizhou Yan: thank you

all for making my time at Penn more memorable.

Finally, I would like to thank my family. I’m grateful for my parents, for their love to, support

for and faith in me throughout my education. I want to thank my sister, for being a role model

of mine when I was a kid and for taking care of my parents when I was abroad doing my Ph.D.

Last but certainly not the least, a few words to my wife and soul mate, Jing. You have been a

wonderful lover and partner in this journey, and I’m grateful for your patience and faith in me for

all these years, especially during the difficult days, when we had to be physically apart and had

no money. You made my life colorful, bringing smiles and laughs into our daily lives. Thanks

for all the company and consolation, in all these days when we are not wealthy yet happy. I

v

have a lifetime of words for you, but for now let me stop with one more thing: after all the

difficulties you’ve encountered and sacrifices you’ve made, thank you for being such a warrior

for your dream, and for being such a unique YOU that I love and am proud of, for just the way

you are.

vi

ABSTRACT

EFFICIENT PRECISE DYNAMIC DATA RACE DETECTION FOR CPU AND GPU

Yuanfeng Peng

Joseph Devietti

Data races are notorious bugs. They introduce non-determinism in programs behavior, compli-

cate programs semantics, making it challenging to debug parallel programs. To make parallel

programming easier, efficient data race detection has been a research topic in the last decades.

However, existing data race detectors either sacrifice precision or incur high overhead, limiting

their application to real-world applications and scenarios. This dissertation proposes approaches

to improve the performance of dynamic data race detection without undermining precision, by

identifying and removing metadata redundancy dynamically. This dissertation also explores ways

to make it practical to detect data races dynamically for GPU programs, which has a disparate

programming and execution model from CPU workloads. Further, this dissertation shows how

the structured synchronization model in GPU programs can simplify the algorithm design of

data race detection for GPU, and how the unique patterns in GPU workloads enable an efficient

implementation of the algorithm, yielding a high-performance dynamic data race detector for

GPU programs.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT . vii

LIST OF TABLES . x

LIST OF FIGURES . xii

1 Introduction . 1

2 Background . 4

2.1 Data races . 4

2.2 Precise Dynamic Data Race Detection . 5

2.3 Vector Clock Algorithm For Dynamic Race Detection 6

3 Metadata Redundancy Reduction in Dynamic Race Detection 9

3.1 Metadata Redundancy . 9

3.2 The SlimFast System . 11

3.3 Implementation of SlimFast . 18

3.4 Evaluation of SlimFast . 21

3.5 Conclusion . 27

4 Performant Architecture for Race Safety with No Impact on Precision 28

4.1 Metadata Redundancy at the Hardware Level 28

4.2 The Parsnip System . 29

4.3 Optimizations in Parsnip . 41

4.4 Design Evaluation . 44

4.5 Conclusion . 50

viii

5 Practical Dynamic Data Race Detection for GPU 51

5.1 GPU (CUDA) Programming Model . 51

5.2 Challenges For Dynamic Data Race Detection on GPU 53

5.3 Redundancy in GPU Race Detection . 54

5.4 Barracuda Semantics . 55

5.5 Implementation . 67

5.6 Evaluation . 77

5.7 Conclusion . 80

6 More Efficient Data Race Detection for GPU 82

6.1 The Curd System . 82

6.2 Implementation . 94

6.3 Evaluation of Curd . 97

6.4 Conclusion . 104

7 Related Work . 105

7.1 CPU Data Race Detection . 105

7.2 GPU Data Race Detection . 107

8 Conclusions . 109

8.1 Summary of Techniques . 109

8.2 Limitations . 110

8.3 Looking forward . 111

BIBLIOGRAPHY . 111

ix

LIST OF TABLES

3.1 SlimFast characterization data. 25

4.1 Components in access history checks . 31

4.2 Illustrative example trace of Parsnip. 39

4.3 Events per 1K instructions in Parsnip. 49

5.1 The benchmarks used with Barracuda. 78

6.1 Benchmark details with Curd-Lazy . 101

x

LIST OF FIGURES

2.1 Illustrative example of a program with data races. 5

3.1 Example trace showing metadata redundancy 10

3.2 Redundancy ratio of programs . 11

3.3 FastTrack operational semantics . 12

3.4 EpochPair and EpochPlusVC in FastTrack 13

3.5 SlimFast operational semantics . 14

3.6 Invariant metadata for writes . 15

3.7 The EpochPlusVC format in SlimFast. 16

3.8 Metadata sharing via Next map . 16

3.9 EpochPlusVC redundancy . 17

3.10 Invariant in EpochPair . 19

3.11 SlimFast’s metadata update algorithm. 20

3.12 Space reduction over FastTrack . 22

3.13 Speedup of FastTrack-reference and SlimFast 23

3.14 EpochPlusVC ’s redundancy ratio in SlimFast 27

4.1 Redundancy in cache lines . 29

4.2 Parsnip’s key states . 30

4.3 Parsnip’s physical address space layout. 30

4.4 ParsnipLine modes . 33

4.5 ParsnipRef formats . 35

4.6 Parsnip additions to a conventional core . 36

4.7 Slowdown of Parsnip . 46

4.8 Scalability of Parsnip . 47

4.9 Optimizations effectiveness in Parsnip . 47

4.10 Latency breakdown in Parsnip . 48

4.11 Events breakdown in Parsnip . 48

5.1 The CUDA thread and memory hierarchy. 52

5.2 Example of PTVC redundancy . 55

5.3 Modeling PTX as a trace . 56

5.4 Barracuda basic operational semantics . 62

5.5 Semantics for synchronization operations . 65

xi

5.6 Memory fence litmus tests . 66

5.7 Overview of Barracuda system . 67

5.8 Events queue in Barracuda . 70

5.9 PTVC formats in Barracuda . 72

5.10 Barracuda shadow memory format. 75

5.11 Static PTX instructions instrumented . 79

5.12 Performance overhead of Barracuda . 79

6.1 High-level operation of Curd . 84

6.2 Curd’s read and write sets . 84

6.3 Layout of read/write sets . 86

6.4 Steps in intra-block race detection in Curd 87

6.5 Per-thread sets compression . 88

6.6 Compression in lazy and eager schemes . 91

6.7 Curd-Eager inter-block checks . 93

6.8 Slowdown of Curd . 98

6.9 Curd-Lazy’s speedup over Barracuda . 99

6.10 Curd-Lazy’s speedup over CUDA-Racecheck 99

6.11 Overhead breakdown of Curd-Lazy . 102

xii

CHAPTER 1

Introduction

With the proliferation of multicore processors in everything from servers to wearables, paral-

lel programming has become ever more critical to efficiently and effectively utilizing modern

processors. However, how to write correct and efficient multithreaded programs remains a

well-known challenge in parallel computing. In particular, the potential for programs to con-

tain data races is an issue that programmers often have to address. Data races can introduce

non-sequentially-consistent[69] and/or undefined behavior[13] into programs, making programs

hard to understand and reason about. In fact, data races can cause disastrous consequences in

the real world: they are the culprits in the Therac-25 disaster[62], the Northeastern electricity

blackout of 2003[43], and the mismatched NASDAQ Facebook share prices of 2012[56, 10]. Un-

fortunately, even experienced programmers can write code that contains data races, especially

as the complexity of a parallel program grows.

To prevent potential disastrous outcomes, programmers typically need to prevent the presence

of data races in their code, a process that involves extensive testing and debugging efforts. A

useful tool for debugging parallel programs is data race detectors; in fact, identifying general

data races is a key part of several algorithms for checking or enforcing higher-level properties

of multithreaded programs, such as atomicity[37, 42] or determinism[85, 24]. As a result, data

race detection has been an attractive research topic for the past a few decades, and there exists

extensive work on static, dynamic, or hybrid detection schemes[1, 79, 38, 31, 100, 25, 54, 117,

101, 113, 39, 91, 68].

Unfortunately, building data race detectors that are both efficient and precise is a challenging

task[31, 38, 41]. Existing approaches remain limited by missing true data races, reporting false

data races, or incurring prohibitively high run-time overheads. It remains an open question

whether efficient, precise data race detection can be provided in production scenarios.

1

Another important aspect of data race detection research is to support parallel programs that

run on hardware other than CPUs[119, 75, 118, 64] . In particular, with the increasing ubiquity

of GPU hardware and applications, efficient data race detection schemes for GPU programs have

become more and more necessary. However, data race detectors designed for the CPU execution

model typically cannot scale to the large numbers of threads in a GPU program[81], thus cannot

be applied. With more complex GPU applications emerging, the need for an efficient data race

detector for GPU is increasingly pressing.

This work proposes approaches to improve the efficiency of dynamic data race detection without

sacrificing precision for CPU, and algorithms to enable practical data race detection for GPU.

A key insight in improving the efficiency of dynamic data race detectors is that redundancy

abounds in the metadata maintained by the detectors, which promises potential performance

gain if such redundancy can be reduced properly. Full precision can be guaranteed as long as

the redundancy reduction is lossless, i.e., no useful information is lost in the reduction. With

effective metadata redundancy reduction, both the temporal and spatial overheads of dynamic

data race detection can be improved. The improvement is even more significant if the reduction

is done in hardware, making practical a hardware-assisted race detection system that can be

always-on.

Further, the general idea of identifying and reducing redundant metadata can be also useful in

scaling classical data race detection algorithms designed for CPU applications to GPU programs,

enabling the first fully precise dynamic data race detector for GPU. To build an even more

efficient GPU data race detector, the next part of this work is to take into account the structured

synchronization paradigm and common memory access patterns when designing an algorithm

for GPU data race detection. This enables the construction of a new GPU data race detector

that outperforms prior industry-level tools while providing stronger detection capability.

The subsequent chapters of this dissertation are organized as follows. Chapter 2 provides relevant

background knowledge and related work about the data race detection problem. Chapter 3

explains the metadata redundancy in dynamic data race detection and introduces the SlimFast

2

system, a pure-software scheme to reduce such redundancy and improve performance. Chapter 4

next discusses metadata redundancy shown at the hardware level and describes the design

of Parsnip, a hardware-assisted data race detector that manages redundancy reduction in

hardware. Chapter 5 switches focus to data race detection for GPU, by presenting Barracuda,

a data race detector that scales classical CPU-oriented algorithm to GPU. Chapter 6 introduces

a more efficient algorithm design for GPU race detection and describes Curd, an efficient

implementation of the algorithm that provides higher performance and coverage than previous

tools. Chapter 7 discusses related work to this dissertation. Chapter 8 concludes the dissertation.

This dissertation draws on multiple published works. The SlimFast [87] system, described in

Chapter 3, was originally presented at IPDPS 2018. The Parsnip [89] design, described in

Chapter 4, was originally published at MICRO 2017. The Barracuda [29] system, introduced

in Chapter 5, was originally presented at PLDI 2017. The Curd [88] detector was presented at

PLDI 2018, and Chapter 6 explains the design of Curd and includes evaluation results of it.

The remaining content is original work.

3

CHAPTER 2

Background

Data races have been a topical research problem. This chapter provides a brief overview of the

general data race detection problem.

2.1. Data races

A multithreaded program can be modelled as a single trace of operations, with operations from

each thread interleaved. Operations consist of memory reads and writes, lock acquires and

releases, and thread fork and join. The happens-before relation
hb
ÝÑ is a partial order over these

trace events. Given events a and b, we say a happens before b, written a
hb
ÝÑ b, if:

• a and b are from the same thread and a precedes b in program order; or

• a precedes b in synchronization order, e.g., a is a lock release reltpmq and b the subsequent

acquire acqtpmq; or

• pa, bq is in the transitive closure of program order and synchronization order.

If a happens-before b then we can equivalently say that b happens-after a. Two events not

ordered by the happens-before relation are said to be concurrent. Two memory accesses to the

same address form a data race if they are concurrent and at least one access is a write.

The impact of data races on a program’s behaviour can be illustrated using a simple example in

Figure 2.1. The program in this example has two threads, Thread1 and Thread2 , and a shared

variable x. Thread1 writes to x on line 1 and line 2, and Thread2 reads the value of x on line

1. As the writes by Thread1 and the read by Thread2 are not ordered by any synchronization

operation, there are two instances of data races, namely (line 1 by Thread1 , line 1 by Thread2)

and (line 2 by Thread1 , line 1 by Thread2). Because the value of x read by Thread2 can be

either 1 or otherwise, the behavior of Thread2 becomes unpredictable: either foopq or barpq

4

Thread 1 Thread 2

1 x = 0 if x == 1:

2 x = 1 foo()

3 else:

4 bar()

Figure 2.1: Illustrative example of a program with data races.

can be called.

As data races can cause perplexing program behavior, detection of such conditions are often

desirable. Both static and dynamic data race detection approaches exist. While static detectors

can have the potential of detecting data races on all execution paths, due to the inherent

conservatism of static analyses, static detection tends to report a large number of false races,

limiting its application. On the other hand, dynamic detectors only focus on the observed

execution paths of a program but can be fully precise (i.e. no false or missed races) in catching

all data races that actually occurred in the execution. Since the work of this dissertation is

focused on precise dynamic data race detection, discussion about static data race detection is

elided. This chapter will next focus on precise dynamic data race detection.

2.2. Precise Dynamic Data Race Detection

An extensive body of prior work on precise dynamic data race detection exists. These detectors

dynamically monitor or record relevant events in a program’s execution, maintain a conceptual

graph of the happens before relation, and use this graph to decide whether a given pair of

events are concurrent. Typically, an access history is tracked per-location, to record the relevant

memory events that need to be checked for potential races. As an unbounded amount of memory

can be shared across multiple threads, the per-location access histories can incur high overhead.

The main limitation of full-precision dynamic data race detectors is their high overhead. To

mitigate this, research efforts have been made along several different directions. Some detectors

trade precision for performance, e.g. by using sampling to check only a subset of events, or by

5

keeping only a bounded size of access histories, risking missing real data races. There is also

work on optimizing the representation of the access histories and encoding of the happens befor-

erelation, but the slowdown and memory consumption of the detectors can still be prohibitive.

Another approach is to design hardware-assisted race detection systems, but prior work along

this line requires strong assumptions, such as type-safety and extra processor cores, to hold.

These limitations of existing precise dynamic data race detectors motivate the work presented

in this dissertation.

2.3. Vector Clock Algorithm For Dynamic Race Detection

A classic algorithm for precise dynamic race detection is the vector clock algorithm[36, 44], which

lays the foundation of numerous subsequent data race detectors. To facilitate later discussions,

this section provides a brief overview of the vector clock based data race detection algorithm.

Vector clocks are a data structure to represent and track the happens-before relation at runtime.

A vector clock V records a timestamp for each thread t in a system, written as V ptq. The

standard comparison (Ď), join (\) and increment (inct) operations on vector clocks are defined

as follows:

V Ď V 1 iff @t. V ptq ď V 1ptq

V \ V 1 = λt. maxp V ptq, V 1ptq q

inctpV q = λu. if u “ t then V puq ` 1 else V puq

The happens-before relation can be implemented by the comparison (Ď) operation of vector

clocks. In a vector clock race detector, four kinds of state are kept:

• For each thread t , vector clock Ct represents the last event in each thread that happens

before the current logical time of t.

• For each lock m, vector clock Lm represents the last event in each thread that happens

before the last release of m.

• For each address x, vector clock MR
x represents the time of each thread’s last read of x.

6

If thread t has not read x, then MR
x ptq “ 0.

• For each address x , vector clock MW
x represents the time of each thread’s last write of

x. If thread t has not written x, then MR
x ptq “ 0.

The race detection algorithm works as follows. Initially, set all vector clocks Lm, MR
x and MW

x

to v0, where @t, v0ptq “ 0. The initial vector clock for each thread is Ct, where each thread

increments its own entry in its vector clock, i.e., Ctptq “ 1 and @u ‰ t, Ctpuq “ 0. This

represents the fact that threads are initially executing concurrently with respect to one another.

On a lock acquire acqtpmq, set Ct :“ Ct\Lm. By acquiring lock m, thread t has synchronized

with all events that happened before the last release of m, so t increases its logical clock to

be well-ordered with these prior events. On a lock release reltpmq, set Lm :“ Ct, ordering t

with events that happened before this release, then increment the entry for t in its own vector

clock Ct to ensure that subsequent events in t are marked as concurrent with respect to other

threads.

On a read rdtpxq, first check if MW
x Ď Ct. Failure of this check indicates a data race, where

the read of x by t is concurrent with some previous write to x. Otherwise, set the entry for t in

MR
x to the current logical clock of t, i.e., MR

x ptq :“ Ctptq. On a write wrtpxq, check that t is

well-ordered with respect to the previous writes MW
x Ď Ct and with respect to previous reads

MR
x Ď Ct. Failure of either of these checks indicates a data race. If the write by t is race-free,

set entry for t in MW
x to the current logical clock of t i.e., MW

x ptq :“ Ctptq.

Vector clocks provide an effective way to encode the happens-before relation, enabling check-

ing for concurrent events via vector operations. Since its introduction, numerous dynamic race

detectors based on vector clocks have been proposed, such as ThreadSanitizer [103], Fast-

Track [38], etc.. However, these tools incur high overheads. To show the efficiency problem of

vector clocks, a simple calculation is sufficient. Let N,M,X be the number of threads, memory

access events, and shared memory locations, respectively. The temporal complexity for checking

all accesses to all shared memory locations by all threads is OpN ˚Mq, and the spatial overhead

7

for keeping the states (metadata) is OpN ˚X `N2q. As a result, the overheads of vector clock

based race detectors can make them impractical to apply, especially when a program has a large

number of threads or a large amount of shared memory.

8

CHAPTER 3

Metadata Redundancy Reduction in Dynamic

Race Detection

For precise dynamic data race detectors, one significant source of overhead is the huge amount

of metadata that needs to be maintained. For example, as was shown in the previous chapter,

the spatial complexity of vector-clocks based algorithms grows quadratically with respect to the

number of threads, and linearly with respect to the number of shared memory locations.

Fortunately, it is possible to reduce the metadata overhead significantly. A key observation that

enables the work of this dissertation is that redundancy abounds in the metadata maintained

for precise dynamic data race detection. This chapter first describes metadata redundancy that

exists in dynamic race detection, then presents SlimFast, a software-solution to reduce such

redundancy.

3.1. Metadata Redundancy

Race detection algorithms rely on per-location metadata which tracks the most recent reads and

writes to each location. Using this metadata, a race detector can identify conflicting concurrent

accesses that indicate a data race.

Cross-location metadata redundancy arises if multiple memory locations follow the same access

pattern during program execution. Figure 3.1 shows a trace of operations from a single thread

and the metadata state for each variable after each operation in a vector clock based race de-

tector. Initially, the metadata of the three variables, X,Y, Z, has the same value. When X is

accessed, its metadata is updated according to the vector clock algorithm. When the accesses

to Y and Z happen, the logical time of the accessing thread is the same with the time when X

is accessed; therefore, the resulting states of metadata for X,Y, Z are identical. There exists

redundancy in the metadata of X,Y, Z, as it is unnecessary, from a correctness standpoint, to

9

maintain separate copies of metadata for multiple variables whose metadata is identical. Gener-

ally, cross-location metadata redundancy can arise via several access patterns, e.g., whenever X

and Y are written by the same thread without an intervening release synchronization operation,

these two writes occur with the same logical timestamp. Thus, after the second write, the

metadata for X and Y will have the same value.

X

Y

Z

read: ⊥e

write: 1@t0

read: ⊥e

write: 1@t0

read: ⊥e

write: 1@t0

Metadata
(FastTrack)

Thread 0
operation

write Z
write Y
write X

Figure 3.1: Example trace showing metadata redundancy between X, Y, Z. The metadata is in
the format of FastTrack.

To measure the metadata redundancy in real data race detectors, an experiment is conducted.

In this experiment, FastTrack [38], an optimized vector clock based data race detector, is

modified such that a copy of all of its metadata is stored in a global set. If two metadata instances

with the same value are inserted into this unique set, only one copy will be retained. The size of

the unique set thus indicates the number of unique metadata objects that are generated during

the course of a program’s execution. The modified FastTrack implementation is run on a

number of programs, to collect a metric called redundancy ratio. The definition of this metric

10

is as follows:

redundancy ratio “ number of all metadata objects
number of unique metadata objects

Intuitively, higher redundancy ratio suggests more redundancy in the metadata. Figure 3.2

shows the redundancy ratio collected in the execution of each benchmark.
av
ro
ra

ba
tik

bd
b

B
T

C
G

cr
yp
t

fo
p

FT IS

jy
th
on

LU

lu
fa
ct

lu
in
de
x

lu
sr
ch

M
G

m
nt
cr
l

m
ol
dy
n

pm
d

se
ri
es

so
r

S
P

sp
rs
m
at

su
nf
lo
w

to
m
ca
t

xa
la
n

10

100

1,000

10,000

100,000

R
ed
un
da
nc
y
R
at
io

Figure 3.2: Redundancy ratio of programs from benchmark suites including DaCapo 2009, Java
Grande, and NAS Parallel Benchmark 3.0.3.

As shown by the data in Figure 3.2, there typically exist several orders of magnitude of metadata

redundancy in these programs. Removing this redundancy can yield substantial space and time

savings for dynamic race detection without sacrificing precision.

3.2. The SlimFast System

The key idea of the SlimFast system is to share metadata states across multiple memory

locations. This section first gives a brief introduction to the baseline data race detector, Fast-

Track, followed by a description of the core design and implementation of SlimFast.

3.2.1. Baseline system: FastTrack

FastTrack is a vector-clock based dynamic data race detector. Figure 3.3 shows the opera-

tional semantics of FastTrack.

Compared to the classic vector clock race detection algorithm, FastTrack makes an opti-

mization to save space on the per-location access histories. In particular, instead of keeping a

11

ReadSameEpoch
MR

x “ Eptq

pC,L,Mq ñrdpt,xq pC,L,Mq

ReadSharedSameEpoch

Mx P EpochPlusVC
MW

x ĺ Ct

MR
x rts “ Ctptq

pC,L,Mq ñrdpt,xq pC,L,Mq

ReadShared

Mx P EpochPlusVC
MW

x ĺ Ct

M 1 “M rx :“ pMR
x rt :“ Ctptqs,M

W
x qs

pC,L,Mq ñrdpt,xq pC,L,M 1q

ReadInflate

Mx P EpochPair
MW

x ĺ Ct

MR
x “ c@u

V “ KV rt :“ Ctptq, u :“ cs
M 1 “M rx :“ pV,MW

x qs

pC,L,Mq ñrdpt,xq pC,L,M 1q

ReadExclusive

Mx P EpochPair
MR

x ĺ Ct MW
x ĺ Ct

M 1 “M rx :“ pEptq,MW
x qs

pC,L,Mq ñrdpt,xq pC,L,M 1q

WriteSameEpoch
MW

x “ Eptq

pC,L,Mq ñwrpt,xq pC,L,Mq

WriteExclusive

Mx P EpochPair
MR

x ĺ Ct MW
x ĺ Ct

M 1 “M rx :“ pKe, Eptqqs

pC,L,Mq ñwrpt,xq pC,L,M 1q

WriteShared

Mx P EpochPlusVC
MR

x Ď Ct MW
x ĺ Ct

M 1 “M rx :“ pKe, Eptqqs

pC,L,Mq ñwrpt,xq pC,L,M 1q

Fork
C 1 “ Cru :“ Cu \ Ct, t :“ inctpCtqs

pC,L,Mq ñforkpt,uq pC 1, L,Mq

Join
C 1 “ Crt :“ Ct \ Cu, u :“ incupCuqs

pC,L,Mq ñjoinpt,uq pC 1, L,Mq

Acquire
C 1 “ Crt :“ pCt \ Lmqs

pC,L,Mq ñacqpt,mq pC 1, L,Mq

Release

L1 “ Lrm :“ Cts

C 1 “ Crt :“ inctpCtqs

pC,L,Mq ñrelpt,mq pC 1, L1,Mq

Figure 3.3: FastTrack operational semantics. Shading indicates rules with different semantics
in SlimFast.

full vector clock MW
x to store the last writes by all threads, FastTrack uses a scalar value

(called an epoch in FastTrack terminology) to store only the last write by the last thread.

For the history of last reads, a full vector clock is used only when there are concurrent reads

since the last write, otherwise, a scalar epoch is used to read the last read. It can be proved

that this reduction still enables the race detector to precisely detect the first, if any, data race

that occurs in an observed execution. With this modification on the classic vector clock algo-

rithm, the FastTrack detector employs two metadata formats: a smaller format containing

an EpochPair and a larger EpochPlusVC format containing a write epoch and a vector clock.

Figure 3.4 illustrates the information encoded in each of these two formats of metadata.

3.2.2. SlimFast Operational Semantics

As described, metadata maintained by race detectors like FastTrack can be highly redundant

across memory locations. To reduce such redundancy, SlimFast has a different metadata-

management design from FastTrack, which enables the same metadata object to be shared

across different memory locations. In particular, with SlimFast, race detection metadata in

12

class EpochPair {

Epoch lastWrite;

Epoch lastRead;

};

class EpochPlusVC {

Epoch lastWrite;

int[] lastReads;

};

Figure 3.4: Information encoded in EpochPair and EpochPlusVC in FastTrack.

EpochPair format is immutable so that it can be shared safely across threads.

Figure 3.5 shows the operational semantics of SlimFast, with shaded boxes marking rules

that are different from FastTrack. These rules present several optimizations of SlimFast

to reduce metadata redundancy.

Optimizing Writes

The first case SlimFast can reduce redundancy arises when writes happen. Observe that all of

a thread t’s writes within a given epoch update MW
x with an identical value. Figure 3.6 gives

an example where, within each epoch (i.e. logical time of a thread), the two writes to x and y

result in MW
x “MW

y . Maintaining distinct metadata for each location is thus unnecessary.

To eliminate redundant metadata for such writes, SlimFast introduces a new piece of state

W : TidÑ EpochPair to optimize write operations. Each thread t maintains an EpochPair Wt

consisting of pKe, Eptqq, i.e., an empty read epoch and t’s current write epoch. Wt is updated

whenever t’s current epoch is updated, i.e., on a Release (as in Figure 3.6) or Fork operation.

Whenever t performs a write operation on a location x that updates x’s metadata (FastTrack

rules WriteExclusive or WriteShared), x’s metadata can be set directly to Wt. This

eliminates redundancy from write operations in just Op1q time.

13

ReadSharedReuse

Mx P EpochPlusVC
MW

x ĺ Ct

MNext
x ptqRptq “ Ctptq

M 1 “Mrx :“MNext
x ptqs

pC,L,M, S,Q,Wq ñrdpt,xq pC,L,M 1, S,Q,Wq

ReadSharedAlloc

Mx P EpochPlusVC
MW

x ĺ Ct

MNext
x ptqRptq ‰ Ctptq

M 1R
x “MR

x rt :“ Ctptqs

N “MNext
x rt :“ pM 1R

x ,MW
x ,KNext qs

MNext
x :“ N

M 1 “Mrx :“ Nptqs

pC,L,M, S,Q,Wq ñrdpt,xq pC,L,M 1, S,Q,Wq

ReadExclReuse

Mx P EpochPair
MR

x ĺ Ct MW
x ĺ Ct

pEptq,MW
x q P St

M 1 “Mrx :“ StrpEptq,MW
x qss

pC,L,M, S,Q,Wq ñrdpt,xq pC,L,M 1, S,Q,Wq

ReadExclAlloc

Mx P EpochPair
MR

x ĺ Ct MW
x ĺ Ct

pEptq,MW
x q R St

S1 “ Srt :“ St Y tpEptq,MW
x qus

M 1 “Mrx :“ S1
trpEptq,M

W
x qss

pC,L,M, S,Q,Wq ñrdpt,xq pC,L,M 1, S1,Q,Wq

Fork

C1 “ Cru :“ Cu \ Ct, t :“ inctpCtqs

S1 “ Srt :“ Hs Q1 “ Qrt :“ Hs

W1 “Wrt :“ pKe, C1
tptq@tqs

pC,L,M, S,Q,Wq ñforkpt,uq pC1, L,M, S1,Q1,W1q

ReadInflReuse

Mx P EpochPair
MW

x ĺ Ct

MR
x “ c@u

V “ KV rt :“ Ctptq, u :“ cs

pV,MW
x , Nq P Qt

M 1 “Mrx :“ QtrpV,MW
x , Nqss

pC,L,M, S,Q,Wq ñrdpt,xq pC,L,M 1, S,Q,Wq

ReadInflAlloc

Mx P EpochPair
MW

x ĺ Ct

MR
x “ c@u

V “ KV rt :“ Ctptq, u :“ cs

pV,MW
x ,KNext q R Qt

Q1 “ Qrt :“ Qt Y tpV,MW
x ,KNext qus

M 1 “Mrx :“ Q1
trpV,M

W
x ,KNext qss

pC,L,M, S,Q,Wq ñrdpt,xq pC,L,M 1, S,Q1,Wq

WriteExcl

Mx P EpochPair
MR

x ĺ Ct MW
x ĺ Ct

M 1 “Mrx :“Wts

pC,L,M, S,Q,Wq ñwrpt,xq pC,L,M 1, S,Q,Wq

WriteShared

Mx P EpochPlusVC
MR

x Ď Ct MW
x ĺ Ct

M 1 “Mrx :“Wts

pC,L,M, S,Q,Wq ñwrpt,xq pC,L,M 1, S,Q,Wq

Release

L1 “ Lrm :“ Cts

C1 “ Crt :“ inctpCtqs

S1 “ Srt :“ Hs Q1 “ Qrt :“ Hs

W1 “Wrt :“ pKe, C1
tptq@tq s

pC,L,M, S,Q,Wq ñrelpt,mq pC1, L1,M, S1,Q1,W1q

Figure 3.5: SlimFast operational semantics. Shading indicates differences from corresponding
FastTrack rule.

Optimizing Reads Involving EpochPair Metadata

When a read happens and the metadata format is in EpochPair after the read, redundancy can

be potentially removed. The EpochPair format is of constant size and is highly amenable to

compression via SlimFast. To optimize EpochPair reads, a set of EpochPairs for each thread

S : TidÑ tEpochPairu is introduced. This set contains all EpochPair values that were used to

update metadata due to reads. Whenever an update is about to occur, a thread checks its set

St to see if the value already exists there, reusing the existing metadata if possible.

Consider the case of t performing a read that triggers an update of EpochPair metadata (the

FastTrack ReadExclusive rule). In SlimFast, before t performs its metadata update,

it consults St to determine whether the new metadata value already exists and can be reused

(ReadExclReuse) or whether new metadata needs to be allocated (ReadExclAlloc).

14

epoch 1@t1

epoch 2@t1

update Wt

T1
operation

per-location
EpochPair

write Y

[r:$$%$,w:$1@t1]write X

[r:$$%$,w:$2@t1]

acquire L

write Y
release L
write X

[r:$$%$,w:$2@t1]

[r:$$%$,w:$1@t1]

Figure 3.6: The metadata used by a given thread for write operations is invariant within an
epoch (shaded boxes).

Optimizing EpochPair to EpochPlusVC Inflations

Removing redundancy from EpochPlusVC metadata is challenging because of their size: redun-

dancy checks require Opnq time where n is the number of threads. Fortunately, the structure

of EpochPlusVC updates can be exploited to eliminate most redundancy in just Op1q time.

The state Q : Tid Ñ tEpochPlusVCu is used to remove redundancy arising from EpochPair

to EpochPlusVC inflations triggered by concurrent reads (SlimFast’s ReadInfl* rules). Qt

describes a thread t’s set of EpochPlusVC metadata. The Qt set is used similarly to the St set,

except that Qt holds EpochPlusVC s instead of EpochPairs.

Consider a concurrent read by a thread t to a location with EpochPair metadata. With Slim-

Fast, t checks Qt to determine whether existing metadata can be reused (ReadInflReuse)

or needs to be allocated and added to Qt (ReadInflAlloc). The EpochPlusVC metadata in

Qt uphold several invariants. There are only ever two non-empty entries in each EpochPlusVC ’s

vector clock (as can be seen from ReadInflAlloc). One of the non-empty entries is the

remote read from the previous EpochPair metadata. The other non-empty entry represents t’s

read and is equal to t’s current clock because Qt is cleared on every Release and Fork. Thus,

Qt supports O(1) lookups using just the remote read MR
x and the last write MW

x .

15

class EpochPlusVC {

Epoch W; // immutable

int[] R; // immutable

Map <Tid ,EpochPlusVC > Next; // mutable

}

Figure 3.7: The EpochPlusVC format in SlimFast.

X

Y

reads: [1,1]
write: ⊥e

next: [,⊥]

reads: [2,1]
write: ⊥e

next: [⊥,⊥]

read Y

read X

2@T0

1

3
1

3

2

READSHAREDALLOC

READSHAREDREUSE

2

Figure 3.8: The accesses on the left illustrate how the Next map allows metadata sharing across
locations x and y.

Optimizing EpochPlusVC Updates

In SlimFast, EpochPlusVC metadataMx is extended with a mapMNext
x : TidÑ EpochPlusVC

(Figure 3.7). The Next map eliminates most EpochPlusVC redundancy in O(1) time. The

MNext
x map is mutable, unlike other SlimFast metadata. For ease of discussion, the notation

MNext
x ptq is used to extract the EpochPlusVC for thread t, and KNext for the empty map.

The core insight that enables optimizing EpochPlusVC updates is as follows. For a read of

EpochPlusVC metadata that triggers an update (FastTrack’s ReadShared rule), a thread

t only updates its own entry of the vector clock. Figure 3.8 shows how the Next map leverages

this structure. Suppose that locations x and y initially share EpochPlusVC metadata (dashed

arrows) due to previous use of the ReadInfl* rules. When T0 reads x during epoch 2, it

needs to update MR
x from the top EpochPlusVC to the bottom one (Ê). A link between these

EpochPlusVC s is also created (Ë), by updating the (mutable) Next map in the EpochPlusVC

previously used for Mx.

The Next map serves as a fast way to find a new EpochPlusVC that differs from the old

16

X

Y

read: 1@t0
write: ⊥e

read: 1@t1
write: ⊥e

reads: [1,1]
write: ⊥e

next: ⊥Next

reads: [1,1]
write: ⊥e

next: ⊥Next

read Z

read Z

read X

read Y

read Y

read X

T0 T1

1

2

3

4

1
2

3

4

Z
5

6

5

6

Figure 3.9: On the left, a series of accesses by two threads resulting in EpochPlusVC redundancy.
The right shows the metadata for each location just after each access.

EpochPlusVC only in the value of a particular thread’s vector clock entry. When T0 reads

location y (which initially uses the top EpochPlusVC), MNext
y ptq can be checked in O(1) time

to see if the desired metadata already exists. In this case it does, so the bottom EpochPlusVC

can be reused for location y (Ì). In Figure 3.5, we write MNext
x ptqRptq to represent accessing

t’s entry of the EpochPlusVC MNext
x , and then accessing t’s entry of the read vector clock of

that EpochPlusVC to check whether the metadata has the desired value.

The price of O(1)-time redundancy checking is occasional redundancy, as Figure 3.9 shows. The

initial reads of x and y result in EpochPair metadata. Each thread’s second access triggers infla-

tion, but each thread’s Q set is empty, so two pieces of EpochPlusVC metadata are allocated with

identical values (ReadInflAlloc). Detecting such redundancy would require some kind of

global, synchronized map where the costs of access would quickly outweigh the benefits of redun-

dancy elimination. T0’s read of z reuses the EpochPair metadata (ReadExclReuse). T1’s

read of z is able to reuse a previously-allocated EpochPlusVC from QT1 (ReadInflReuse).

At the end of this program, some but not all EpochPlusVC redundancy has been eliminated:

all three locations have identical metadata but only two EpochPlusVC s are needed to represent

this.

17

3.3. Implementation of SlimFast

SlimFast is implemented using the RoadRunner framework [40], on which the baseline

system, FastTrack, is also implemented. The RoadRunner framework provides the shadow-

memory implementation that SlimFast uses to store its metadata.

3.3.1. EpochPair and EpochPlusVC

SlimFast uses the EpochPair and EpochPlusVC classes to store its metadata. In our imple-

mentation, EpochPlusVC extends EpochPair with a vector clock and an array of references to

EpochPlusVC s (Figure 3.7). On each variable access, SlimFast uses dynamic dispatch to call

the correct method to check and update the metadata for that variable. This implementation

wastes some space in EpochPlusVC due to an unnecessary read epoch field that is inherited from

EpochPair . However, this implementation was slightly faster in practice than the alternative,

space-efficient implementation in which EpochPair and EpochPlusVC inherit from a common

base class.

3.3.2. Storing and Retrieving Immutable Metadata

As described in the previous section, SlimFast maintains per-thread sets St of immutable

EpochPairs and Qt of EpochPlusVC s. In practice, as the sizes of these sets are small (typically

less than 10, see Section 3.4.4 for detailed data), implementing them using a fixed-size array

is an efficient design choice. With a fixed-size array, overflow is possible. In such cases, wrap-

around happens and the initial array entries are overwritten. This overwriting does not affect

correctness, but it can lose some opportunity for redundancy reduction, because redundancy

cannot be detected for an overwritten EpochPair . In practice, overflow never occurred in any

of the 25 benchmarks used in the evaluation of SlimFast.

3.3.3. Reducing the Size of St

As described, a St set grows without bound. To counter this, we need to be able to remove

elements. We observe that in the ReadExcl* rules that access St, St lookups only ever use

18

the read epoch equal to t’s current epoch Eptq. Thus, any EpochPair pr, wq P St : r ‰ Eptq

can never be returned by any lookup. Figure 3.10 illustrates this invariant: no metadata with

read epoch 2@t1 will be used for metadata updates once epoch 3@t1 begins. After each read

of a location x during 3@t1, MR
x must instead be set to 3@t1.

We can thus clear St whenever a new epoch begins, i.e., on Release and Fork, which keeps

the size of St small. Note that clearing St does not affect the metadata objects referenced by

the elements of St. Such objects may be used in future checks, though never in future updates.

epoch 1@t1

epoch 2@t1

epoch 3@t1

flush St

flush St

T1
operation

per-location
EpochPair

write X [r:$$$%$,w:$1@t1]

write Y [r:$$$%$,w:$2@t1]
release L

acquire L

[r:$3@t1,w:$2@t1]read Y

[r:$2@t1,w:$1@t1]read X

[r:$3@t1,w:$1@t1]

[r:$2@t1,w:$2@t1]

acquire L

read Y
release L

read X

Figure 3.10: SlimFast exploits the invariant that EpochPair metadata updates only ever involve
the current read epoch to reduce the size of St and make St lookups cheaper.

3.3.4. Optimizing St Lookups

When checking whether a given EpochPair is present in St, we can optimize this lookup by ob-

serving that all the St lookups a thread t performs within a given epoch (the ReadExclReuse

and ReadExclAlloc rules) use the same value for the read epoch, namely Eptq. Combining

this invariant with the fact that St only contains EpochPairs inserted during the current epoch

(Section 3.3.3), St will only ever contain EpochPairs with a read epoch of Eptq. Thus, we can

treat St as a map from write epoch Ñ EpochPair, avoiding comparisons that involve the read

epoch.

Figure 3.10 illustrates these invariants: the shaded boxes show that the read epochs used in

19

metadata updates are constant within an epoch. The first access in Epoch 2 does not have a

shaded read epoch because writes do not access St and instead are set to Wt. Removing the read

epoch from St lookups accelerates the St hash function. For clarity we elide this optimization

in the SlimFast semantics (Figure 3.5) but it is used in the implementation.

3.3.5. Enforcing Rule Atomicity

The semantics presented in Figure 3.5 rely on the fact that each rule executes atomically. The

SlimFast implementation performs updates on local state and then makes them visible via an

atomic operation.

Figure 3.11 shows the pseudocode for the SlimFast metadata update algorithm. We discuss

the correctness of the cases below.

We observe that the mutable elements of MNext
x are thread-private, as MNext

x rts is only ever

accessed by thread t (in the ReadShared* rules). Thus, operations on MNext
x are trivially

atomic.

1 START: Metadata e = M_x

2 if *SameEpoch: // Case 1

3 return

4 else: // Case 2

5 Metadata e’ = updateMetadata(e)

6 if !CAS(&M_x , e => e’): goto START

7 return

Figure 3.11: SlimFast’s metadata update algorithm.

Case 1: No Update The *SameEpoch rules do not need synchronization because metadata

is immutable.

Case 2: Update For the remaining rules, the updateMetadata function encapsulates the logic

of the corresponding rule. After the updated metadata is calculated, the CAS operation on line

12 is used to update the metadata for x via the pointer &M x. The CAS ensures that the rule

executes atomically by verifying that the metadata has not changed during the rule’s execution.

If the CAS operation fails, then there may have been concurrent updates that have changed the

20

metadata state and so the update restarts from line 1.

We must take care to avoid ABA issues [74]. There are two classes of ABA issues to consider:

memory reuse and direct metadata reuse. Memory reuse does not arise in SlimFast as it is

implemented in Java, a garbage-collected language. Direct metadata reuse is subtler, but is

avoided due to the monotonicity of metadata updates.

Monotonicity of Metadata Updates Once a metadatum is modified it never returns to its

original value. We observe that a location’s read or write epoch is updated, then the original

write epoch can never be restored because an epoch c@t will only ever be written by thread t, and

t’s epoch for itself never decreases. Similar reasoning shows that for EpochPlusVC metadata,

MR
x ptq can never decrease.

3.4. Evaluation of SlimFast

The main goal of our evaluation is to measure how well SlimFast achieves its goal of reducing

the space and runtime overheads of dynamic data race detection.

3.4.1. Experimental Setup

We use DaCapo 2009 [12], Java Grande [22, 72], NAS Parallel Benchmark 3.0.3 [45], and

Oracle’s BerkeleyDB (bdb) Java Edition 6.4.25 [86] to evaluate SlimFast. RoadRunner is

incompatible with the h2, eclipse, daytrader, tradebeans in the DaCapo suite so we exclude them

from our evaluation. We use the largest provided inputs for the DaCapo and Grande programs,

and the A inputs for NPB CG, NPB MG, NPB FT, NPB IS, and the W inputs for NPB BT,

NPB LU, NPB SP, from the NAS benchmarks. bdb is a Java library with 330K LoC across 919

classes. We wrote a simple driver program that performs 5,000 sequential reads from a database

of 1,000 integer keys with 64KB values.

We used RoadRunner version v0.3 with the fast-path optimization enabled. We use the lock-

based version of FastTrack from RoadRunner v0.3. While a CAS-based implementation

of FastTrack exists, it supports only 24-bit clock values which suffer from rollover on some

21

av
ro
ra

ba
tik

bd
b

B
T

C
G

cr
yp
t

fo
p

FT IS

jy
th
on

LU

lu
fa
ct

lu
in
de
x

lu
sr
ch

M
G

m
nt
cr
l

m
ol
dy
n

pm
d

se
ri
es

so
r

S
P

sp
rs
m
t

su
nf
lo
w

to
m
ca
t

xa
la
n

1.0x

2.0x
3.0x
4.0x
5.0x

re
du
ct
io
n
w
.r.
t F
T

Figure 3.12: Average space reduction over FastTrack of the entire Java heap. Higher is better.

benchmarks [11]. The CAS-based FastTrack has equivalent performance to the lock-based

version on average on our benchmarks, and is sometimes slower because the lock-based Fast-

Track can avoid CAS operations with the JVM’s biased locking [26]. SlimFast uses 32-bit

clocks to avoid rollover (and 8-bit thread IDs) and we modify FastTrack likewise. The default

size of vector clocks used in both FastTrack and SlimFast is 4.

We found a data race in the FastTrack ReadShared* fast-path code where the read vector

clock is read without holding any locks. To avoid the complicated semantics of races in the Java

Memory Model, and to provide a fair comparison with the SlimFast implementation which we

believe to be race-free, we have fixed this race. We found no meaningful difference in memory

consumption from fixing the FastTrack race, though it does reduce performance. SlimFast

improves performance by just 1.04x on average over the racey version of FastTrack, though

it still offers substantial speedup on some individual benchmarks such as a 2.5x speedup on bdb.

All subsequent performance comparisons use the fixed version of FastTrack.

All experiments were performed on a quad-socket machine consisting of four 2.0 GHz Intel

Xeon E7-4820 (Westmere) chips (8 cores/16 threads each) with 128GB of RAM, running 64-bit

Linux 3.11.10. All code was compiled with JDK 1.7.0 25 and run on HotSpot 64-Bit Server VM

23.25-b01, with a heap size of 64GB and the default Parallel Scavenger collector. Our results

are for running each benchmark with 16 threads, unless specified otherwise or the benchmark

only supports a fixed number of threads as with avrora (7 threads), bdb (6), batik (7), fop (1),

jython (2), luindex (2), pmd (64), and tomcat (80).

22

av
ro

ra

ba
tik

bd
b

cr
yp

t

fo
p

jy
th

on

lu
fa

ct

lu
in

de
x

lu
se

ar
ch

m
ol

dy
n

m
on

te
ca

rlo

N
PB

_B
T

N
PB

_C
G

N
PB

_F
T

N
PB

_I
S

N
PB

_L
U

N
PB

_M
G

N
PB

_S
P

pm
d

se
rie

s

so
r

sp
ar

se
m

at

su
nf

lo
w

to
m

ca
t

xa
la

n

0.0x

1.0x

2.0x

3.0x
sp

ee
du

p
w

.r.
t F

T

8.
8

6.
4

6.
5

6.
3

Figure 3.13: Average speedup of FastTrack-reference (dark bars) and SlimFast (light bars) over
FastTrack. Higher is better.

3.4.2. Memory Savings

We measured the total average memory usage of SlimFast, FastTrack, and RoadRunner

by forcing a garbage collection every 100ms, recording the heap usage after each collection,

and averaging together these measurements. This measures the entire heap, including both

application data and race detector state. Figure 3.12 shows the average space reduction of

SlimFast over FastTrack. Among all 25 benchmarks we ran, SlimFast consumes 1.83x less

memory on average than FastTrack, with up to 4.90x savings on bdb. Overall, SlimFast’s

space reduction is highly correlated with the metadata redundancy ratio of each benchmark

(Figure 3.2).

SlimFast consumes more space than FastTrack for avrora and NPB BT because these

benchmarks have relatively low redundancy ratios: avrora has the lowest among all our bench-

marks. For avrora and NPB BT, SlimFast’s EpochPlusVC space optimizations (principally the

MNext
x array inside each EpochPlusVC object) backfire and increase space usage mildly. When

using a version of SlimFast with mutable EpochPlusVC s, SlimFast has less heap usage than

FastTrack on all benchmarks.

3.4.3. Performance

To compare the performance of SlimFast and FastTrack, we ran each configuration 15

times and recorded the average runtime. We use a 64GB heap to minimize the impact of

garbage collection, excluding the collection that RoadRunner always triggers upon start-up.

23

For ease of discussion, we refer to the original implementation of FastTrack that has the race

as FastTrack-racy, and the version that has the race fixed as FastTrack-fixed.

The light bars in Figure 3.13 illustrate the average speedup of SlimFast over FastTrack-

fixed. For 15 programs, SlimFast outperforms FastTrack-fixed, with speedups of up to 8.8x

(sparsemat); for 4 programs, SlimFast runs slower than FastTrack-fixed, with the overhead

ranging from 1.7% (batik) to 11.5% (xalan); for the rest of the programs, the difference in

runtime is negligible between SlimFast and FastTrack-fixed. Overall, the geometric mean

of speedups of SlimFast over FastTrack-fixed is 1.40x.

The dark bars in Figure 3.13 show the average speedup of FastTrack-racy over FastTrack-

fixed. Fixing the implementation issues has a significant performance impact: FastTrack-racy

is on average 1.24x faster than the baseline FastTrack-fixed. Note that SlimFast is still

1.12x faster than FastTrack-racy.

According to additional experiments we have done, the speedups SlimFast gains can mainly

be attributed to three reasons. First, SlimFast’s space reduction shrinks the working set of

the instrumented programs, bringing better cache behavior. We validated this hypothesis us-

ing the Linux perf tool to see the miss rate of L1 data caches when running the programs with

FastTrack and SlimFast: e.g., the cache miss rate when running sparsemat with SlimFast

is only 47% of that of FastTrack. Second, SlimFast’s immutable EpochPlusVC s reduce

contention over metadata, especially on sunflow and sparsemat which have many EpochPlusVC

accesses. Third, as is the case with bdb, we found that FastTrack’s additional space consump-

tion and the application’s naturally high rate of allocation trigger frequent garbage collections.

SlimFast’s reduction in heap size and lower metadata allocation rate avoid this behavior.

Given that many of our workloads have small heap sizes, we expect SlimFast’s performance

advantage to increase as input sizes grow.

Why SlimFast is sometimes slower than FastTrack is also an interesting question. For

avrora, lusearch, and xalan, the costs of immutable EpochPlusVC s sometimes outweigh their

24

2 3 4 5 6 7 8 9 10 11
EVC EVC max heap mem. w.r.t. FT:SF metadata

program RR/FT/SF slowdown (x) accesses metadata |St| |Qt| EVC reuse EP reuse (MB) RR (x) allocations

avrora 1.4 1.6 1.7 3.80% 22.60% 6.6 - 2.00% 86.50% 82 1.45 0.1
batik 3.8 4.4 4.7 - - 2.7 - - 95.00% 327 1.06 12.2
bdb 12.7 103.3 38.7 - - 6.20 - - 100% 585 1.02 1,108.1
crypt 8.4 53.4 27.7 68.40% 29.40% 1.6 - 94.30% 100% 3,188 1.01 474,684.4
fop 5.3 6.2 5.7 - - 0.9 - - 99.90% 243 1.05 1,130.5
jython 6.2 7.1 6.8 - - 0.5 - - 91.10% 634 1.24 11.3
lufact 2.2 4.8 3.3 33.70% 62.30% 1.6 0.1 99.40% 100% 516 1.11 7.0
luindex 4.6 5.8 6.0 - - 6.2 - - 82.80% 131 1.26 0.4
lusearch 10.1 12.1 14.3 5.90% 22.40% 10.8 - 1.10% 89.80% 3,092 1.02 2.8
moldyn 5.4 9.3 7.0 66.10% 90.50% 3 0.1 99.70% 100% 126 1.08 12.8
montecarlo 2.7 13.3 8.2 0.70% 59.40% 1.9 0.2 43.80% 100% 3,909 1.12 499,458.2
NPB BT 11.7 13.2 13.3 59.60% 51.80% 3.7 - 2.40% 99.80% 121 1.50 0.5
NPB CG 8.1 29.1 20.5 32.70% 99.60% 3.3 1.4 5.90% 100% 553 1.10 0.1
NPB FT 10.4 19.3 16.8 0.50% 85.10% 2.8 - 79.80% 100% 1,265 1.00 972.2
NPB IS 30.1 33.2 22.8 63.20% 59.20% 2.9 0.2 13.90% 100% 871 1.11 975.6
NPB LU 5.3 5.7 5.9 23.70% 43.00% 4.7 0.9 98.70% 99.80% 182 2.24 0.9
NPB MG 22.5 79.1 28.2 48.20% 44.70% 2.4 0.6 100% 100% 3,690 1.02 1,289.5
NPB SP 4.8 5.4 5.5 45.50% 48.90% 3.1 - 3.60% 99.90% 111 1.37 1.0
pmd 5.2 8.1 7.9 19.30% 55.80% 5.1 0.1 50.50% 99.80% 389 1.00 144.4
series 1.3 1.2 1.0 66.70% 46.60% 1.2 - 25.80% 100% 117 1.00 13,514.0
sor 3.5 6.2 6.4 1.50% 59.60% 4.4 0.9 99.80% 100% 233 1.22 112.7
sparsemat 9.7 151.2 17.2 98.80% 100% 1.5 3.4 77.40% 100% 516 1.79 22.8
sunflow 6.4 70.0 10.7 92.80% 99.70% 3 1.4 80.20% 100% 125 1.09 895.0
tomcat 3.3 4.1 3.4 25.40% 58.30% 2.7 0.1 38.20% 95.40% 451 1.08 8.1
xalan 1.4 1.9 2.2 15.50% 38.90% 7.2 - 29.70% 82.90% 628 1.00 0.6

Table 3.1: SlimFast characterization data.

benefits, due to the relatively low redundancy ratios (Figure 3.2) and low percentages of reuse in

EpochPlusVC s objects (Table 3.1) in these benchmarks. For tomcat, because its worker threads

are highly independent of each other with little sharing, SlimFast’s reduction of synchronization

contention and working set size does not translate into speedup.

3.4.4. Additional Characterization

To better understand SlimFast’s performance, we performed a series of characterization exper-

iments; Table 3.1 shows the results. Column 2 shows the slowdown of RoadRunner, Fast-

Track, and SlimFast, normalized to native JVM execution. The slowdown of RoadRunner

ranges from 1.3x to 30.1x, which accounts for a large part of the slowdown of FastTrack and

SlimFast. A more efficient framework for dynamic analysis would likely reduce this overhead

substantially. Columns 3 & 4 show the percentage of accesses to EpochPlusVC s, among all

accesses, and the percentage of EpochPlusVC s allocations, among all metadata allocations.

These two indicators are highly correlated with the speedup of SlimFast over FastTrack:

for instance, fop and jython have no EpochPlusVC s (they’re mostly single-threaded), and the

speedup of SlimFast on them is small. In contrast, most of the metadata objects accessed in

25

sunflow and sparsemat are EpochPlusVC s where SlimFast shows significant speedups.

Columns 5 & 6 show the average occupancy of the St and Qt sets: for all the benchmarks, these

sets have ď 11 elements on average. This motivates our implementation of St and Qt with fixed-

size arrays. Columns 7 & 8 give the percentages of reuse of EpochPlusVC s and EpochPairs

among the total lookups to St and Qt, respectively. Higher percentages mean that fewer

EpochPairs and EpochPlusVC s need to be allocated, saving space. All 25 benchmarks have high

percentages of EpochPair reuse (the lowest, luindex, is 82.8%), showing that EpochPairs are

highly redundant. In contrast, the percentage of EpochPlusVC reuse is low on some benchmarks,

showing that the redundancy among vector clocks is less significant.

Column 9 in Table 3.1 shows the maximum heap usage with SlimFast, in megabytes. Note

that SlimFast both saves space and reduces runtime more effectively on programs with larger

heap sizes. Column 10 in Table 3.1 shows the memory overhead of SlimFast with respect

to RoadRunner: most programs incur less than 51% overhead, except NPB LU (124.03%)

and sparsemat (79.25%). The relatively small spatial overhead of SlimFast may make pre-

cise dynamic data race detection more feasible in memory-constrained systems, such as mobile

devices.

The final column in Table 3.1 shows ratio of the cumulative numbers of metadata allocations

in FastTrack and SlimFast. On 18 out of the 25 programs, SlimFast allocates fewer

metadata objects than FastTrack. For 6 programs, SlimFast has more metadata allocations

than FastTrack, which is largely due to their relatively low redundancy among the metadata

(as shown in Figure 3.2). In fact, Table 3.1 and Figure 3.2 together show a correlation between

SlimFast’s reduction of metadata allocations and the redundancy ratio in FastTrack.

To evaluate how effective SlimFast is in reducing metadata redundancy, we measured the

redundancy ratio on EpochPlusVC s in SlimFast, and the results are shown in Figure 3.14. On

most benchmarks, essentially no redundancy exists on EpochPlusVC s, which means SlimFast

does in fact gain near-optimal space reduction on these programs. On lufact and montecarlo,

26

av
ro
ra

ba
tik

bd
b

B
T

C
G

cr
yp
t

fo
p

FT IS

jy
th
on

LU

lu
fa
ct

lu
in
de
x

lu
sr
ch

M
G

m
nt
cr
l

m
ol
dy
n

pm
d

se
ri
es

so
r

S
P

sp
rs
m
at

su
nf
lo
w

to
m
ca
t

xa
la
n

0
1

2

3

4
R
ed
un
da
nc
y
ra
tio

on
 E
V
C
's

Figure 3.14: Redundancy ratio of EpochPlusVC’s in SlimFast. Lower is better.

about 2
3 of EpochPlusVC s are redundant. This is a relatively low ratio, and EpochPlusVC s

represent only about 60% of the allocated metadata for these workloads, further shrinking

the opportunity for any meaningful additional space reduction. Set against the O(n) cost of

doing optimal redundancy elimination, SlimFast strikes a good balance of finding most of the

redundancy in just O(1) time.

3.5. Conclusion

Existing dynamic race detectors store many redundant copies of metadata. This chapter dis-

cusses such redundancy, then describes the SlimFast race detector that eliminates the vast

majority of this redundancy via shared references to a single, immutable copy of each metadata

value, leveraging novel invariants of dynamic race detection to reduce metadata redundancy,

memory usage and runtime. Evaluation results show that SlimFast is able to both reduce

memory consumption and improve runtime performance of existing dynamic race detectors.

27

CHAPTER 4

Performant Architecture for Race Safety with

No Impact on Precision

As presented in Chapter 3, the SlimFast system improves the efficiency of precise dynamic

data race detection. However, being a software-only solution, the overheads of SlimFast can

still be too high, limiting its application.

One approach to boost the performance of dynamic race detection is to exploit hardware sup-

port. This chapter first describes the metadata redundancy visible at the hardware level, then

presents the Parsnip system, a hardware-assisted data race detector that builds upon the idea

of metadata de-duplication in hardware. An evaluation of the Parsnip design is provided at

the end of this chapter.

4.1. Metadata Redundancy at the Hardware Level

The work of a precise dynamic data race detector comprises two components. The detector must:

update information about cross-thread ordering on each synchronization event; and check and

update per-location access history on each memory access event. Memory accesses typically

occur much more frequently than synchronization, so optimizing the analysis, update, and

representation of per-location access histories is crucial to data race detector performance.

As described in Chapter 3, metadata (more precisely, the per-location access histories) used

in precise dynamic race detectors can be highly redundant across variables. How does the

metadata redundancy manifest at the hardware level? To answer this question, a characterization

experiment is conducted. We wrote a cache simulator and drove the simulator on the PARSEC

3.0[9] workloads via the Intel PIN[66] binary instrumentation framework. The simulator counted

how many unique access histories appear within each cache line. Figure 4.1 shows the distribution

of the number of distinct access histories per 64B cache line.

28

bl
ac
ks
ch
ol
es

bo
dy
tr
ac
k

ca
nn
ea
l

de
du
p

fe
rr
et

flu
id
an
im
at
e

ra
yt
ra
ce

st
re
am
cl
us
te
r

vi
ps

x2
64

0%

50%

100%

73
.1
%

96
.5
%

95
.2
%

99
.9
%

66
.0
%99
.8
%

83
.6
%

80
.8
%

68
.4
%

10
0.
0%

#distinct
AHs
(32,64]
(16,32]
(8,16]
(4,8]
[0,4]

Figure 4.1: Distribution of the number of distinct access histories per 64B cache line.

While the 64B cache lines modeled by the simulator can theoretically require a distinct access

history for each byte, on every program (except fluidanimate and x264) the number of distinct

access histories per line is never more than 16. Even for fluidanimate and x264, fewer than 2% of

lines have more than 16 distinct access histories. This result is unsurprising given that programs

typically access data at multi-byte granularity, and exhibit spatial locality. These properties

make it highly likely that nearby locations will have the same access history.

4.2. The Parsnip System

The guiding principle of the Parsnip system is to handle the common cases of memory access

checks and access history metadata storage in hardware and fall back on a flexible software

layer for uncommon cases that require additional access history to maintain soundness and

completeness. Parsnip leverages the following observations about the empirical behavior of

dynamic race detection. First, access history metadata for adjacent data locations are likely to

be similar or identical, so Parsnip tries to reduce access history metadata redundancy across

memory locations at various levels. Second, most runtime checks need information about only

the most recent access, so Parsnip organizes access history metadata to keep last-access

information in a hardware-managed format on chip or in cache, even when full access history

for a memory location may be available only in a software-managed format in memory.

29

L1D$

data line

primary
ParsnipLine

secondary
ParsnipLine

core ParsnipTable

access history

ParsnipRef

ParsnipRef

access history

Figure 4.2: An overview of Parsnip’s key pieces of state: ParsnipLines, ParsnipRefs and the
per-core ParsnipTable.

lin
e

A

data Primary
ParsnipLine

Secondary
ParsnipLine

lin
e

F

...

PP
L

A

PP
L

F

...

SP
L

A

SP
L

F

... unused

Figure 4.3: Parsnip’s physical address space layout.

4.2.1. Core Design

The first task a race detector faces when needing to check an access to location x is to find the

associated metadata for x . Figure 4.2 gives an overview of Parsnip’s key states. PARSNIP

manages metadata at cache line granularity, so for each cache line of program data, there

is a corresponding ParsnipLine given by this mapping. These ParsnipLines reside in the data

cache hierarchy and compete for space with regular program data (as shown in Figure 4.2;

Primary versus Secondary ParsnipLines are explained later). Parsnip steals 2 bits from the

physical address space to afford a simple data:metadata mapping based on physical addresses

(Figure 4.3), constructed to map x and its metadata to different cache sets to reduce conflict

misses.

30

Access History Read Check Write Check
Type requires: requires:

last access last access last access

RAW last read + last write, last access
or last access

RsAW last read + last write, all reads
or last access

Rs last access all reads

Table 4.1: Components required for different types of access histories and memory access
checks.

While ParsnipLines can record an access history directly, doing so is not space efficient. According

to the characterization data shown in Figure 4.1, access histories for bytes within the same

cache line are highly redundant. To take advantage of the redundancy among access histories,

a ParsnipLine contains a collection of references (called ParsnipRefs) which point to entries

in a per-core ParsnipTable. The ParsnipTable entries themselves contain the access history

information. By adding a level of indirection, Parsnip is able to share ParsnipTable entries

across a large number of program locations. Because only a small number of ParsnipTable

entries are typically needed, each ParsnipRef can itself be small, helping to reduce Parsnip’s

footprint in the data cache.

However, several challenges remain. Access histories are of variable size, and at their largest

can require tracking a clock value for each thread in the program–much larger than can fit into

a fixed-size hardware table. The ParsnipLine encoding must similarly be able to exploit the

common case while supporting precise tracking even when there are 64 unique histories in a

single line.

4.2.2. Access History Organization

To encode access histories of memory locations efficiently, Parsnip exploits the observation

that most data race checks need only a small part of the full access history.

Access histories of memory locations can be classified into the following types: 1) last access,

which contains only the most recent write/read; 2) RAW, which consists of the last write and the

31

last read that happens-after the write; 3) RsAW, which keeps the last write and all concurrent

reads that happen-after the write; and 4) Rs, which tracks all concurrent reads with no prior

write.1

Table 4.1 shows what piece(s) of the access history a runtime read or write check needs. In most

cases a check can be done with only the last access, or both the last read and the last write;

only when a write occurs after some concurrent reads (where the access history is in RsAW/Rs

form) does the check require all concurrent reads since the last write. In fact, such cases are

rare in practice, which implies that an efficient race detector can complete most checks with a

history of at most two accesses, without losing soundness.

Based on this observation, Parsnip organizes the access history in a way such that the last

read and last write information is in hardware in most cases, with the rest of the access history

stored in software. As discussed in Section 4.2.1, each data location x has a corresponding

Primary ParsnipRef that points to its access history in the ParsnipTable. To maintain a fixed

size, each ParsnipTable entry contains a single clock value (and a reference count, explained

later in Section 4.2.5). Thus, tracking the last read and last write for x requires two Parsnip-

Refs: the Primary ParsnipRef and the Secondary ParsnipRef. These primary and secondary

references are stored in Primary and Secondary ParsnipLines, accordingly, and their locations

are computed from the corresponding data address (Figure 4.3).

The Primary ParsnipRef refers to the last access, which is a read for the RAW and RsAW access

history types. A Primary ParsnipRef contains several fields (detailed in Section 4.2.4), including

a hasNext bit indicating whether x has a Secondary ParsnipRef. The Secondary ParsnipRef

contains the last write when the access history is of RAW or RsAW type. The Secondary

ParsnipRef has the same structure as the Primary ParsnipRef, but its hasNext bit indicates

whether additional access history information, i.e., additional concurrent readers, is stored in

software.

1 Well-defined C/C++ programs should precede any read to a memory location by an initializing write, but
some programs (including our benchmarks) read uninitialized data in practice. Another potential source of reads
before writes is the use of facilities such as demand-zeroed pages that initialize memory contents with other
mechanisms.

32

0 1 6362…

64 bytes

data line

1:1 ParsnipLine 0 1 6362…
64x 8-bit Short ParsnipRefs

m:1 ParsnipLine 0 1 6362…
64x 4-bit ParsnipRef indices

0 …1 14 15

16x 12-bit Long ParsnipRefs

m
od

e

unused

Figure 4.4: A ParsnipLine in 1:1 mode (middle) and m:1 mode (bottom)

The access history of a data location x is thus stored across up to 3 parts: Primary ParsnipRef,

Secondary ParsnipRef, and remaining information in software. This organization helps minimize

cache pollution, as most race checks can be discharged with the Primary ParsnipRef alone.

4.2.3. ParsnipLine Format

The results shown in Figure 4.1 indicate an opportunity for Parsnip to have ParsnipRefs that

are larger than a byte while using a single ParsnipLine to track all the ParsnipRefs for a cache

line of data. Specifically, ParsnipLines in Parsnip have two modes: 1:1 mode and m:1 mode.

Figure 4.4 shows the two ParsnipLine formats. In 1:1 mode, a ParsnipLine is filled with 8-bit

ParsnipRefs, each associated in a 1:1 fashion with the bytes in the corresponding data line. In

m:1 mode, each ParsnipRef is 12 bits in size, and we introduce another layer of indirection to

map data line bytes through a 64-entry bitmap to one of the 16 ParsnipRefs. For the ith byte of

a data line, its ParsnipRef can be found by first looking up the bitmap to get an index bitmapris,

then reading the bitmapristh ParsnipRef. The bitmap occupies 32B, and the ParsnipRefs 24B,

with 8B left over. The byte following the ParsnipRefs is used to indicate whether a ParsnipLine

is in m:1 or 1:1 mode by reserving a special bit pattern. (detailed in Section 4.2.4). The other

7B are unused.

33

Having smaller ParsnipRefs in 1:1 mode means that for each byte less information of the access

history can be encoded than the m:1 mode, but in practice even these 8-bit ParsnipRefs are

sufficient for many access checks(see Figure 4.10 in Section 4.4). The number of distinct

ParsnipRefs per ParsnipLine is computed by dedicated hardware (see Figure 4.6). Whenever a

ParsnipRef in m:1 mode needs to switch to 1:1 mode or vice versa, the ParsnipLine logic triggers

a rewrite of the ParsnipLine. In practice, 1:1 mode ParsnipLines are rarely needed and mode

switches are rare.

4.2.4. ParsnipRef Format

As described in Section 4.2.3, Parsnip can have two modes of ParsnipLines. In m:1 Parsnip-

Lines, ParsnipRefs occupy 12 bits, whereas in 1:1 ParsnipLines, ParsnipRefs occupy 8 bits. For

brevity, we refer to the 12-bit ParsnipRefs as Long ParsnipRefs, and the 8-bit ParsnipRefs as

Short ParsnipRefs. Figure 4.5 shows the format of both Long and Short ParsnipRefs. Each

ParsnipRef starts with a 6-bit tid that stores the thread that performed the access, followed by a

R{W bit indicating whether the ParsnipRef points to a read or write access, and a hasNext bit

(introduced in Section 4.2.2) indicating whether additional access history information is available

in a Secondary ParsnipRef or in software.

For brevity, we define the pair ptid, r{wq to be an access capability; therefore, a Short Parsnip-

Ref encodes an access capability. In a Long ParsnipRef, another 4 bits are used to hold an index

into the 16-entry ParsnipTable, whose entries contain clock values. Together, the tid field and

ParsnipTable entry constitute an epoch which can be used to perform race detection checks.

As mentioned in Section 4.2.3, Parsnip reserves a special bit pattern to distinguish m:1 mode

ParsnipLines from 1:1 lines. Specifically, the byte value 0xFF is reserved to mean m:1 mode,

whereas all other values of the mode byte are interpreted as a Short ParsnipRef, indicating that

the current ParsnipLine is in 1:1 mode. One implication is that any Short ParsnipLine must not

have the tid field set to be 0b111111 to avoid collision with the special mode byte pattern.

34

thread id R/W has
Next ParsnipTable index

0 1 2 3 4 5 6 7 8 9 10 11

Short ParsnipRef

Long ParsnipRef

bit:

Figure 4.5: Format of Short and Long ParsnipRefs.

4.2.5. ParsnipTables

ParsnipTables are small per-core tables that hold logical times. Each ParsnipTable entry consists

of a 64-bit clock and a 24-bit reference count to record ParsnipRefs that refer to this entry.

Parsnip recycles an entry once its reference count reaches 0. The value i of the 4-bit index field

in a Long ParsnipRef points to the ith entry in the ParsnipTable of thread t, where t is the value

of the ParsnipRef’s tid field. Parsnip reserves the value 0xF to indicate an “invalid” Parsnip-

Table index, which is used to represent clock values that are not present in the ParsnipTable

(and must be retrieved from software instead). Given the 4-bit indices in a Long ParsnipRef,

each ParsnipTable can hold up to 15 distinct clock values. A 15-entry ParsnipTable occupies

just 165B of space.

Although quite small in size, ParsnipTables allow a large proportion of the runtime checks to

be completed in hardware. Whenever an epoch c@t of an access to a memory location x needs

to be recorded, Parsnip first traverses the ParsnipTable of thread t looking for an entry that

already holds the clock value c. If such an entry is found, the reference count of the entry

is incremented and the index of the entry is written in the corresponding ParsnipRef for x.

Otherwise, a new ParsnipTable entry needs to be allocated to hold c. If there is free space in

the ParsnipTable, then the index of the newly allocated entry is written in the ParsnipRef of x.

Otherwise, the ParsnipTable is full and a ParsnipTable rejection occurs: the invalid index 0xF

is written in the ParsnipRef, and the epoch value is persisted into software.

35

pipeline

L1I$

…

…

…

L2 $

ParsnipTable
comparison logic
thread vector clock
ParsnipLine logic

Epoch buffer
L1D$

Figure 4.6: Parsnip additions (shaded) to a conventional core.

The reference count in a ParsnipTable entry tracks the number of ParsnipRefs in cache that

point to that entry. Therefore, if a ParsnipRef leaves the data cache, the corresponding reference

count is decremented. To implement this, an eviction handler is triggered when a ParsnipLine

is evicted from the last-level data cache; inside this eviction handler, all reference counters

corresponding to the indices of the ParsnipRefs being evicted are decremented.

Parsnip adopts the above ParsnipTable rejection and reference count policy as a simpler al-

ternative to conventional preemptive eviction of least recently used ParsnipTable entries. LRU

eviction of table entries is impractical because it requires changes to all ParsnipRefs referencing

the victim entry, an unbounded set. Section 4.3.3 discusses refinements to the ParsnipTable

management policy to improve utilization.

4.2.6. Parsnip Hardware Support

Figure 4.6 shows an overview of a Parsnip processor core, with shaded blocks showing the

components Parsnip adds to a conventional design. As per-thread vector clocks are necessary

in most runtime checks, Parsnip stores them on-chip. Parsnip also adds simple logic to

compare a component of the per-thread vector clock with an epoch from a location’s access

history, and a small ParsnipTable to remove redundancy among the access histories of different

memory locations (Section 4.2.5). Parsnip also adds custom logic to track the number of

distinct last accesses in a ParsnipLine, to determine whether the line can be encoded in m:1 or

1:1 format (Section 4.2.3). Due to the limited capacity of ParsnipTables, some access histories

may need to be persisted into software. To reduce the latency incurred for these updates,

36

Parsnip adds a hardware structure to buffer these updates (see Section 4.3.1). Parsnip (like

Radish) adds an extra read port to the L1 data cache to read data and metadata in parallel.

4.2.7. Parsnip Access Checks

When a program accesses a location x, Parsnip first looks up x’s Primary ParsnipRef in the

data cache; if the Primary ParsnipLine is not in cache, a software handler will be invoked to

complete the current check, after which the ParsnipLine of x will be updated. If the Primary

ParsnipLine is in cache, the ParsnipLine logic decodes it and gets the Primary ParsnipRef of

x. Depending on the type of the current access and the content of the Primary ParsnipRef,

Parsnip can decide whether all necessary information for the current check has been collected.

If so, the check is complete, after which the Primary ParsnipRef of x is updated. Otherwise,

Parsnip continues to look up the Secondary ParsnipRef of x. If the Secondary ParsnipLine is

not in cache, or the Secondary ParsnipRef still does not provide all necessary information required

by the current check, a software handler will be invoked to handle the check and update the

ParsnipRefs.

4.2.8. System-Level Considerations and ISA

The address of a ParsnipLine is derived from the physical address of the corresponding data.

Because a ParsnipLine is the same size as a data cache line, cache indexing can occur in

parallel with data address translation as with a conventional cache. Once the virtual tag of the

data address has been translated to a physical tag by the TLB, the corresponding tag for the

associated ParsnipLine can be computed directly. Parsnip does not require a separate TLB

access to obtain the tag for the ParsnipLine address.

Because ParsnipLines are physically-addressed, they do not need to be saved and restored on

a context switch. Conventional address space isolation between processes keeps ParsnipLines

isolated as well. Context switches must, however, save and restore ParsnipTable contents and

per-core vector clocks.

Parsnip’s ISA support consists primarily of checked load and store instructions that trigger a

37

race check when executed, similar to LARD [116]. This allows application code to interleave

at fine granularity with code for a runtime system or trusted library, and allows users to easily

opt-in to Parsnip support. Parsnip additionally requires the following work to be done in

software: 1) handling ParsnipLine evictions from cache, 2) doing race checks in software when

the hardware has insufficient information, and 3) updating the per-thread vector clocks on

synchronization operations. User-level interrupts are used to quickly transfer control to software

when these events occur.

An eviction handler is invoked when a ParsnipLine l leaves the cache hierarchy. The software

handler must determine l’s owning process (which may be de-scheduled). This is done with

OS support by looking up l’s corresponding data physical address in the OS “reverse frame

map” which maps from physical pages to virtual pages. For every Long ParsnipRef containing a

valid index idx into thread t’s ParsnipTable, the handler gets the clock value c from thread t’s

ParsnipTable, decrements the entry’s reference counter, and saves the epoch c@t into a software

representation. For Short ParsnipRefs, or Long ParsnipRefs with an invalid ParsnipTable index,

the access history in software is already up-to-date and no further action needs to be taken.

A software check handler is called when the hardware has insufficient information for a runtime

check (e.g., the Primary ParsnipRef is not cached, or a write needs to check against the complete

set of concurrent readers). The software check handler is invoked with the partial access histories

from hardware (if available from the ParsnipTable), which, combined with the information stored

in software, forms the complete access history of the memory location being checked. After

finishing the current check, this handler also updates the Primary ParsnipRef and, if necessary,

the Secondary ParsnipRef, in accordance with the updated access history.

In order for Parsnip to track synchronization events across threads, the synchronization library

must be modified such that Parsnip’s per-thread vector clocks are updated properly during

each synchronization operation.

38

Execution Trace Parsnip Access History for x Synchronization History
Threads ParsnipRefs ParsnipTables (partial) SW Metadata C: Thread VCs L: Lock VCs

Step t1 t2 t3 Primary Secondary t1 t2 t3 Wx Rx t1 t2 t3 l1

0 4 ÞÑ p16, 1q t1@t1u t1@t2u t16@t3u

1 wr x t1,W,F, r0s 0 ÞÑ p1, 1q 4 ÞÑ p16, 1q t1@t1u t1@t2u t16@t3u

2 rd x t1,W,F, r0s 0 ÞÑ p1, 1q 4 ÞÑ p16, 1q t1@t1u t1@t2u t16@t3u

3 rel l1 t1,W,F, r0s 0 ÞÑ p1, 1q 4 ÞÑ p16, 1q t2@t1u t1@t2u t16@t3u t1@t1u

4 rd x t1,R,T, r1s t1,W,F, r0s 0 ÞÑ p1, 1q 4 ÞÑ p16, 1q t2@t1u t1@t2u t16@t3u t1@t1u
1 ÞÑ p2, 1q

5 acq l1 t1,R,T, r1s t1,W,F, r0s 0 ÞÑ p1, 1q 4 ÞÑ p16, 1q t2@t1u t1@t1, 1@t2u t16@t3u t1@t1u
1 ÞÑ p2, 1q

6 rd x t2,R,T, r1s t1,W,T, r0s 0 ÞÑ p1, 1q 1 ÞÑ p1, 1q 4 ÞÑ p16, 1q t2@t1u t2@t1u t1@t1, 1@t2u t16@t3u t1@t1u

7 rel l1 t2,R,T, r1s t1,W,T, r0s 0 ÞÑ p1, 1q 1 ÞÑ p1, 1q t2@t1u t2@t1u t1@t1, 2@t2u t16@t3u t1@t1, 1@t2u

8 acq l1 t2,R,T, r1s t1,W,T, r0s 0 ÞÑ p1, 1q 1 ÞÑ p1, 1q 4 ÞÑ p16, 1q t2@t1u t2@t1u t1@t1, 2@t2u t1@t1, 1@t2, 16@t3u t1@t1, 1@t2u

9 ! wr x t3,W,F, r4s — — — 4 ÞÑ p16, 2q t2@t1u t2@t1u t1@t1, 2@t2u t1@t1, 1@t2, 16@t3u t1@t1, 1@t2u

10 rel l1 t3,W,F, r4s — — — 4 ÞÑ p16, 2q t2@t1u t2@t1u t1@t1, 2@t2u t1@t1, 1@t2, 17@t3u t1@t1, 1@t2, 16@t3u

11 rd x t3,R,T,K t3,W,F, r4s — — 4 ÞÑ p16, 2q t17@t3u t2@t1u t1@t1, 2@t2u t1@t1, 1@t2, 17@t3u t1@t1, 1@t2, 16@t3u

12 rel l2 t3,R,T,K t3,W,F, r4s — — 4 ÞÑ p16, 2q t17@t3u t2@t1u t1@t1, 2@t2u t1@t1, 1@t2, 18@t3u t1@t1, 1@t2, 16@t3u

13 wr x t3,W,F,K — — — 4 ÞÑ p16, 1q 18@t3 — t2@t1u t1@t1, 2@t2u t1@t1, 1@t2, 18@t3u t1@t1, 1@t2, 16@t3u

14 ! rd x ¨ t2@t1u t1@t1, 2@t2u t1@t1, 1@t2, 18@t3u t1@t1, 1@t2, 16@t3u

Table 4.2: An example trace showing how Parsnip checks accesses to a memory location x.

4.2.9. Parsnip Example Trace

Table 4.2 gives an example trace illustrating how Parsnip works for a memory location x. The

first column indexes the trace. The next three columns show operations by three threads. The

symbol “!” marks accesses on which a data race is reported. Remaining columns show status

of analysis metadata after the corresponding operation is completed. Next is the Parsnip

access history, including ParsnipRefs, a partial ParsnipTable, and the access history stored by

the software layer. The final columns show vector clocks tracking synchronization order. Vector

clocks are notated as sets of epochs. We conflate cores with threads. Additional notation is

introduced below.

At step 1, t1 writes x. No primary ParsnipRef exists for x, so Parsnip invokes a software

handler. The software handler finds that there are no prior accesses to x in software access

history, so the check succeeds. Free entry 0 from t1’s ParsnipTable is allocated to store the

clock at which this access occurs (1, as obtained from the thread VC for t1). ParsnipTable

entries take the form index ÞÑ pclock, ref countq. We show only some entries for each Parsnip-

Table in Table 4.2. A ParsnipRef t1,W,F, r0s is initialized for x, showing that the last access

was a write (W) by thread t1. There is no secondary ParsnipRef (F). The ParsnipRef contains

an index [0] into t1’s ParsnipTable, where the local clock of the access is recorded.

Lock operations in steps 3 and 5 induce happens-before ordering. Since the lock release incre-

ments t1’s epoch to 2@t1, the read at step 4 is in an epoch different from the epoch encoded in

39

x’s primary ParsnipRef, so it needs to be recorded as the last access to x. Since this access is

a read, information about the prior write must be retained. The ParsnipRef for the past access

becomes the secondary ParsnipRef and a fresh primary ParsnipRef is recorded, with a freshly

allocated entry [1] in the ParsnipTable, where the current clock (2) is stored.

The next read of x at step 6 is done by thread t2, concurrently with the last read encoded

in the primary ParsnipRef. To check for a potential write-read race, Parsnip also checks the

secondary ParsnipRef. Since there is space for information about only 2 accesses in hardware,

the older read by t1 is saved to software and the read by t2 is recorded as a fresh primary

ParsnipRef, using a newly allocated entry [0] in t2’s ParsnipTable. The target ParsnipTable is

determined by the thread in the ParsnipRef.

Next, thread t2 releases lock l1 (step 7) and t3 acquires it (step 8), establishing happens-before

order. At step 9, the write by thread t3 checks against both ParsnipRefs, but the secondary

ParsnipRef indicates with its hasNext bit (T) that there is additional history in software. A

software check is invoked and finds a data race with the read at 2@t1 (step 4). For illustration

purposes, we assume Parsnip continues past this data race report and records this access as

usual. Since it is a write, all access history about x is obsolete, and it returns to a single

primary ParsnipRef recording the write in epoch 16@t3, using entry [4] in t3’s ParsnipTable,

which currently holds clock 16. Note that the software history retains information about an

older read. Parsnip could preemptively erase this, but there is no need since the new primary

ParsnipRef shows with its hasNext bit (T) that there is neither a secondary ParsnipRef nor

history in software, so future accesses will never inspect that history (even though doing so

would not affect precision).

Thread t3 then releases lock l1 at step 10, incrementing its logical clock to 17. Thread t3 reads

x at step 11 in the same thread as the last access indicated by the primary ParsnipRef, but in

a new epoch. However, the ParsnipTable of t3 is still full (not shown) and a 17 entry is not

available, so the clock value 17 cannot be stored. Parsnip records a fresh primary ParsnipRef

for x, assigned to t3, but with the invalid index (notated K). Parsnip also saves the full epoch

40

value 17@t3 to software. Since the existing primary ParsnipRef indicated that there was neither

a secondary ParsnipRef nor history in software, the software overwrites outdated history.

Lock l2 is released by thread t3 at step 12 (Table 4.2 does not show metadata for l2 in L),

followed by a write to x in t3 at step 13. The check on this write completes after decoding the

primary ParsnipRef alone. Even though the primary ParsnipRef indicates there is a secondary

ParsnipRef, the current write is in the same thread as the last read encoded by the primary

ParsnipRef, so the current write is race-free. Since t3’s ParsnipTable is still full (not shown),

the full epoch value 18@t3 is persisted into software. As this is a write, all software read history

is now stale and is erased. Finally, when t2 reads x at step 14, the primary ParsnipRef lacks

a table index, so Parsnip performs a software check to check the last write epoch, finding a

write-read race.

4.3. Optimizations in Parsnip

This section describes three key optimizations to reduce dependence on the high latency Parsnip

software layer in cases where on-chip resources are insufficient to recover or record necessary

access history. These optimizations avoid unnecessary software interactions by buffering the

transfer of evicted access history metadata to software (Section 4.3.1); prefetching access his-

tory information from software (Section 4.3.2); and varying the policy for eviction of ParsnipLines

from cache (Section 4.3.3).

4.3.1. Buffering Evictions of Access History to Software

Parsnip must persist access history information to software to preserve soundness in two cases

that are neither common nor rare enough to ignore the high latency of the software layer: (1) on

ParsnipTable rejections (Section 4.2.5) and (2) when recording a new read epoch in a RsAW-

mode access history, where Parsnip stores only the last read and last write in hardware and

maintains information about other reads in software (Section 4.2.2).

To reduce the latency of persisting epochs to software, we extend the basic Parsnip design to

add a 32-entry coalescing epoch store buffer to each core (Figure 4.6). Each entry holds the

41

address of the accessed data location, the memory access type (read/write), and the epoch in

which the access occurred. Parsnip buffers an entry when it needs to persist access history

to software. The latency of inserting an entry into the buffer can be hidden by the cost of the

corresponding ParsnipLine update. When the buffer fills, a software handler is invoked to drain

all buffered entries to software.

When insufficient access history is available on-chip in ParsnipLines or ParsnipTables, Parsnip

queries the software layer only if it cannot find the required access history by snooping the

epoch store buffer. The buffer also coalesces entries for the same address and access type. For

example, if the buffer contains an entry for a read to data location x in epoch e1 and a read

to x in newer epoch e2 must be persisted to software, the entries are coalesced, preserving only

the most recent read to x in e2. Upon last-level cache misses on a ParsnipLine, the software

handler also snoops the epoch store buffers to ensure that any pending updates to x’s access

history is visible to later accesses.

4.3.2. Access History Prefetching and Prediction

When an access check by thread t for data location x finds insufficient in-hardware access history,

Parsnip invokes a software handler to resolve the check for location x from the full software-

managed access history. To exploit spatial locality, Parsnip additionally fills the ParsnipLine

for x, setting access capabilities for all other locations that are tracked by the same ParsnipLine.

Rather than simply filling ParsnipRefs for other locations y ‰ x in the same ParsnipLine as x’s

ParsnipRef based on access history, the software handler speculatively checks a future access

to y of the same type (read/write) and by the same thread t as the access that triggered the

software check of y’s neighbor, x. If the speculative check determines that such an access to

y would be data race free according to the current access history, it fills a ParsnipRef for y

with the access capability component set to describe this predicted future access, but leaves the

ParsnipTable index component of the ParsnipRef invalid.

This optimization preserves soundness and completeness if the next access to y is predicted

42

correctly, as the predicted future access check will resolve based on the ParsnipRef access

capability for y and record the up-to-date epoch of this new access, achieving the same result

as if it had dispatched the check to software.

If a speculative check mispredicts the next access to y and a different thread u ‰ t makes the

next access to y, soundness and completeness are still preserved. An access to y by thread u

will find the ParsnipRef access capability assigned to t with an invalid ParsnipTable index, thus

triggering a search through the epoch store buffer (Section 4.3.1) or the software layer to find the

most up-to-date access history for y. Since speculative checks update only the access capability

of a ParsnipRef, no record of the predicted access is found in either the epoch store buffers or

software. Parsnip will thus complete a full access check against the same access history it

would have checked without speculation. In sum, Parsnip remains sound and complete with

this optimization.

4.3.3. ParsnipTable and ParsnipLine Management

To ensure effective use of limited table space, ParsnipTable management must exploit locality

and favor entries that are likely to be reused soon. However, the simple policy of reference counts

and rejections established in Section 4.2.5 has limitations. ParsnipRefs for old, infrequently-used

data that remain in the last-level cache may pin ParsnipTable entries with nonzero reference

counts, leaving no table space for newer, frequently-used epochs, creating high rates of Parsnip-

Table rejections and expensive software checks.

A simple alternative is to invalidate and persist a ParsnipLine to software as it leaves the

L1 cache. ParsnipRefs for memory locations not accessed recently thus tend to be evicted

from L1, decrementing reference counts and freeing more ParsnipTable entries to represent

new epochs. However, even hot data locations in programs with large working sets experience

frequent evictions and refills to the L1 or even L2. The associated ParsnipLines then suffer

frequent round trips to and from to the software layer.

To balance ParsnipTable utilization and software costs, Parsnip adaptively selects an L1 or LLC

43

residence policy for ParsnipLines by tracking the rate of software checks in a window of recent

events. Under policies that allow ParsnipLines to reside in the LLC, the heuristic responds to

software checks due to excessive ParsnipTable rejections when old ParsnipRefs in the last-level

cache pin too many useless ParsnipTable entries. Under L1-only ParsnipLine residence, the

heuristic responds to software checks for repeatedly invalidated and refilled ParsnipLines in L1.

A user may also mandate a cache residence policy based on profiling or experience. Extending

Parsnip to support other heuristics is a promising avenue for future work.

4.4. Design Evaluation

To evaluate Parsnip’s performance, we implemented a simulator using Intel PIN [66] to model

a 16-core system with MESI coherence protocol, with a realistic memory hierarchy common in

commodity processors. Cache lines are 64 bytes. Each core has an 8-way 32KB L1 cache and an

8-way 256KB L2 cache; all cores share a 16-way 32MB L3 cache. Latency of L1, local L2, remote

L2, L3, and main memory accesses are 1, 10, 15, 35, and 120 cycles, respectively. The cache

subsystem of the Parsnip simulator is implemented by extending the cache implementation in

ZSim [99].

Each per-core ParsnipTable has 15 entries (165 bytes total), with each entry consisting of a

64-bit clock and a 24-bit reference count. Each per-core epoch store buffer has 32 entries (544

bytes total), with each entry holding a 64-bit address, a 64-bit clock, and an extra byte encoding

both a tid and a r/w bit. Lookups in the local core’s ParsnipTable cost 1 cycle; requesting an

entry from a remote core’s ParsnipTable takes 10 cycles. Latency of epoch store buffer insertions

is hidden by the cycles of updating the corresponding ParsnipLine. Accesses to locations on the

stack are assumed to be thread-local, and no data race checks are done for stack locations.

Software checks and epoch-buffer drains cost 500 cycles plus the cost of any cache accesses

triggered.

44

4.4.1. Experimental Setup

We evaluate Parsnip with 10 programs from the PARSEC 3.0 benchmark suite [9], including

blackscholes, bodytrack, canneal, dedup, ferret, fluidanimate, raytrace, streamcluser, vips and

x264. We omit the benchmarks facesim, which forks child processes as parallel workers, and

swaptions, which has high variance across runs in our experiments. We report performance as

the mean of 3 runs.

We ran four sets of experiments. (1) We ran performance experiments on the Parsnip simulator

with 16 threads on 16 simulated cores and a corresponding baseline system without Parsnip

extensions. (2) To compare the performance of Parsnip to that of the most closely related

system, Radish [25], we ran performance experiments for Radish and a corresponding baseline

system using the simulator made publicly available by the authors. (3) To evaluate Parsnip’s

scalability across cores, we ran performance experiments for Parsnip and the baseline system

with 2, 4, 8, and 16 threads. (4) We ran additional performance and profiling experiments

with 16 threads on 16 simulated cores to characterize the impact of individual features in the

Parsnip system.

4.4.2. Performance

This section compares the performance of Parsnip with Radish [25], the most related work.

Figure 4.7 shows the CPIs of Parsnip and Radish, normalized to the native executions of the

respective simulator without data race detection extensions. Results shown here were collected

when running with 8 threads and the simsmall input size.2 We exclude raytrace from these

results, since it did not run correctly on the Radish simulator in our experiments. We ran Radish

with its relaxed asynchronous checking and unsafe type-safety optimization disabled [25] for the

most direct comparison to Parsnip, which provides synchronous data race checks and does not

make assumptions about type safety. Additionally, we ran Radish with its type-safety assumption

enabled, represented by the Radish-ts bars in Figure 4.7. This enables better performance but

2Long running times and high memory usage of the Radish simulator made performance experiments for larger
input sizes or thread counts infeasible on the Radish simulator in our experiments.

45

blackscholes bodytrack canneal dedup ferret fluidanimate streamcluster vips x264

0.0x

2.0x

4.0x

6.0x

S
lo

w
do

w
n

ov
er

 n
at

iv
e

10
.5

x

11
.6

x

33
.8

x

10
.0

x

16
.0

x

17
.6

x

17
.4

x

Parsnip

Radish

Radish-ts

Figure 4.7: Slowdown of Parsnip, Radish, and Radish-ts, normalized to a system without data
race detection support.

is unsound and incomplete in the presence of type-safety violations.

On all 9 PARSEC benchmarks on which we compare Parsnip against Radish, Parsnip runs

faster than Radish. On average (geomean), Parsnip slows the baseline CPI by 1.5x, whereas

Radish’s average slowdown is 6.9x. The maximum slowdown caused by Parsnip is 2.6x on

x264. Radish slows ferret by 33.8x. Parsnip is on average 4.6x faster than Radish, and runs

ferret 27.2x faster than Radish. Enabling Radish’s type-safety assumption in Radish-ts yields a

1.3x boost over the safe version of Radish. Nonetheless, the optimized Radish-ts remains 3.4x

slower than Parsnip on average, and runs vips 12.3x slower than Parsnip does.

4.4.3. Scalability

To evaluate Parsnip’s performance scaling over the number of threads of the target program, we

ran Parsnip experiments with 2, 4, 8 and 16 threads on 16 simulated cores with the simmedium

input size. Slowdown of Parsnip’s CPI with respect to CPI of the baseline system is shown in

Figure 4.8. On 4 benchmarks (blackscholes, canneal, fluidanimate, streamcluster), Parsnip’s

overhead decreases with more threads. On 4 additional other benchmarks (bodytrack, dedup,

ferret, x264), Parsnip overhead increases with more threads. Parsnip’s overhead shows no

significant difference on the remaining 2 benchmarks (raytrace and vips). For raytrace, Parsnip

shows no appreciable slowdown at all. Parsnip’s worst slowdown is 2.7x on x264 with 16

threads.

46

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamcluster vips x264

0.0x

1.0x

2.0x
S

lo
w

do
w

n
ov

er
 n

at
iv

e

Threads

2

4

8

16

Figure 4.8: Slowdown of Parsnip with 2, 4, 8 and 16 threads, using the simmedium input.

blackscholes bodytrack canneal dedup ferret fluidanimate raytrace streamclust.. vips x264

0.0x

0.5x

1.0x

1.5x

2.0x

sl
ow

do
w

n
ov

er
 s

td
. P

ar
sn

ip

4.
9x

8.
7x

8.
3x

4.
8x

4.
9x

no epoch buffers

no AH speculation

ParsnipLines in L1

ParsnipLines in LLC

Figure 4.9: Slowdown of Parsnip with different optimizations disabled.

4.4.4. Effectiveness of Optimizations

This subsection presents results of several experiments conducted to evaluate the effectiveness

of each optimization described in Section 4.3. Figure 4.9 shows the slowdown in CPI of several

variants of Parsnip, as normalized to the standard Parsnip configuration. Epoch store buffers

(described in Section 4.3.1) have the largest impact. Parsnip runs on average 3.7x slower with

epoch store buffers disabled (“no epoch buffers”). Parsnip with access history prefetching

and prediction (Section 4.3.2) offers an average 10% performance improvement versus without

(“no AH speculation”). The baseline adaptive selection of the ParsnipLine cache residence

policy (Section 4.3.3) shows comparable average performance with both the fixed L1 and LLC

ParsnipLine residence policies (“ParsnipLines in L1, LLC”). However, the adaptive policy avoids

the larger slowdowns of the L1 policy on bodytrack, and the LLC policy on blackscholes. In

summary, all benchmarks see (often substantial) performance improvement from at least one of

the optimizations described in Section 4.3.

47

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fe
rre

t

flu
id

an
im

at
e

ra
yt

ra
ce

st
re

am
cl

us
te

r

vi
ps

x2
64

0%

25%

50%

75%

100% Access Capability
Local ParsnipTable
Remote ParsnipTable
Software

Figure 4.10: Breakdown of how often each access history source resolves a data race check.

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

de
du

p

fe
rre

t

flu
id

an
im

at
e

ra
yt

ra
ce

st
re

am
cl

us
te

r

vi
ps

x2
64

0%

25%

50%

75%

100% ParsnipLine Access
ParsnipLine Initialization
Local ParsnipTable Access
Remote ParsnipTable Access
Epoch Store Buffer Drain
Software Check

Figure 4.11: Contribution of architectural events to overall Parsnip overhead.

4.4.5. Architectural Characterization

We ran several characterization experiments to better understand the sources of Parsnip’s

overhead.

Figure 4.10 shows the percentage of data race checks that are resolved by each Parsnip

mechanism. ParsnipRefs and the local core’s ParsnipTable suffice to resolve at least 84% of

checks in each benchmark. Access capabilities in ParsnipRefs alone resolve 68-90% of checks

in bodytrack, dedup, and fluidanimate. Remote ParsnipTable lookups resolve a modest number

of checks, up to 12% in blackscholes. With the exception of canneal, which requires software

checks on 8% of accesses, all other benchmarks require software checks on ă1% of accesses,

with most ă0.6%.

Figure 4.11 shows the breakdown of Parsnip’s overhead from 6 different sources: (a) the cost

of accessing ParsnipRefs in cache; (b) the cost of software handling when a ParsnipRef is not in

cache; (c) the cost of runtime checks that complete after comparing with a clock in the local

48

Epoch Parsnip- Parsnip-
buffer Line Table SW

Benchmark drains evictions rejections checks

blackscholes 0.00 0.00 0.00 0.01
bodytrack 0.00 0.00 0.13 0.91

canneal 0.00 0.00 0.03 2.57
dedup 0.01 0.00 0.49 0.57
ferret 0.00 0.00 0.00 0.17

fluidanimate 1.38 0.00 79.15 0.34
raytrace 0.00 0.00 0.00 0.02

streamcluster 0.00 0.00 0.01 0.05
vips 0.00 0.00 0.02 0.45

x264 0.00 0.00 0.00 1.45

Table 4.3: Events per 1K instructions in Parsnip.

ParsnipTable; (d) the cost of runtime checks that finish after comparing with a clock in some

remote ParsnipTable; (e) the cost of software check handlers; (f) the cost of saving the contents

of an epoch buffer to software.

Table 4.3 shows the frequency of the most expensive architectural events in Parsnip. With

32-entry epoch buffers, persisting epoch values to software is rare (column 2). The highest rate

of epoch buffer drains is 1.38/1K instructions, in fluidanimate. ParsnipLines evictions are also

rare (column 3). Column 4 shows that ParsnipTable rejections occur at a rate below 0.5/1K

instructions in all benchmarks except fluidanimate. Despite its high rate of 79.15 ParsnipTable

rejections per 1K instructions, most fluidanimate checks complete in hardware partly due to

epoch buffers and the use of access capabilities (see Figure 4.10). Column 5 shows software

checks per 1K instructions. While canneal and x264 have high software check rates of 2.57/1K

instructions and 1.45/1K instructions, respectively, all other benchmarks execute fewer than 1

software check per 1K instructions.

Overall, Parsnip’s access history organization and optimizations are effective in allowing most

runtime checks to be performed in hardware.

49

4.4.6. Hardware Overheads

We used CACTI 5.3 [109] to model the area and latency overheads of the hardware Parsnip

adds to a conventional processor core. Parsnip’s storage costs are modest: the epoch buffer and

ParsnipTable for each core occupy less than 0.02 mm2 in 32nm technology. For comparison, [112]

states that a 2-wide in-order core at 32nm (excluding caches) occupies 0.1875 mm2. Parsnip

does require an extra L1D$ read port to allow data and metadata to be read in parallel, increasing

access latency by about 20%. In a superscalar design, Parsnip could reuse an existing cache

port but would reduce the number of memory operations that could be scheduled in parallel.

4.5. Conclusion

With the prevalence of parallel programs and systems, efficient data race detection is an increas-

ingly important topic. However, previous software solutions incur high performance overheads,

restricting their usability in real-world scenarios. Fast hardware race detectors either trade pre-

cision for performance, or make overly strict assumptions.

This Chapter discusses Parsnip, a sound and complete data race detector that can track

memory accesses at byte granularity efficiently. Parsnip adds moderate hardware modifications

to a conventional multicore processor, and does not rely on unsound type-safety assumptions.

Parsnip outperforms Radish, the leading hardware race detector, by 4.6x on average. Parsnip

incurs just 1.5x overhead over native execution on average.

50

CHAPTER 5

Practical Dynamic Data Race Detection for

GPU

In recent years, graphics processing units (GPUs) have thoroughly permeated consumer proces-

sor designs. It is now essentially impossible to find a smartphone, tablet or laptop without a

substantial integrated GPU on the processor die. Utilizing these omnipresent GPUs, however,

remains a challenge. Writing correct parallel code, a notoriously difficult task, is exacerbated by

the high degrees of parallelism that GPUs demand to attain high performance. GPU program-

ming models have also grown more expressive over time to support increasingly general-purpose

GPU (GPGPU) programming. This extra expressiveness, unfortunately, allows interesting classes

of data races to arise. Such bugs can introduce complicated consistency model semantics and

even undefined behavior into programs, making debugging difficult. Therefore, it is necessary to

have a precise and efficient way to detect data races in real-world programs that run on GPUs.

This chapter focuses on discussing precise dynamic data race detection for GPU programs.

First, a brief introduction to the GPU programming model is given. After that, we discuss

challenges and opportunities in race detection for GPU. The discussion then continues to describe

Barracuda, a dynamic data race detection system for CUDA programs, followed by the

evaluation results of the system.

5.1. GPU (CUDA) Programming Model

This section provides a brief primer on the CUDA programming model, the most widely used

model in GPU programming. A CUDA program that runs on a GPU is called a kernel. Nvidia’s

CUDA[81] programming model has two core abstractions: one for parallelism and one for the

GPU hardware’s memory hierarchy, as is shown in Figure 5.1. Parallel threads are expressed

in a hierarchical structure known as a grid. A grid is composed of thread blocks, which are in

51

Thread

Thread-Block

…

Grid

…

Per-thread-block
shared memory

Per-thread
private memory

Global memory

Thread Hierarchy Memory Hierarchy

T0 T1 Tn

…

Block 0

…

Block 1

…

Block m

Figure 5.1: The CUDA thread and memory hierarchy.

turn decomposed into individual threads. The arrangement of blocks within the grid, or threads

within a block, can be 1-dimensional, 2-dimensional or 3-dimensional as desired to fit a specific

problem domain. Individual threads within a thread block are also grouped into warps, which

often execute in lockstep on the GPU’s SIMD hardware. Many thread blocks may be scheduled

concurrently onto one streaming multiprocessor (SM), analogous to a CPU core, though a single

thread block is never split across SMs.

CUDA programs are written in a variant of C/C++ and compiled to a high-level assembly

language called PTX (Parallel Thread eXecution). All PTX instructions are SIMD instructions

executed by an entire warp of threads. Scalar or sub-warp execution can be achieved via

branches. If a branch condition does not evaluate the same way for every thread in a warp,

branch divergence arises. Branch divergence is handled via a SIMT stack ([46],Section 5.4.3)

that tracks the active threads within a warp.

CUDA’s abstraction of memory provides a collection of memory spaces to each kernel. At the

52

top level, global memory (also known as device memory) is accessible to all threads within a

kernel. Shared memory is accessible only by threads within the same thread block. Though

each thread block has access to shared memory, threads within thread block b1 see a different

memory space than those within thread block b2. The final memory space is local memory,

which is private to each individual thread. The semantics of these different memory spaces lead

to vastly differing implementations and performance characteristics. Global memory is primarily

backed by the GPU’s off-chip DRAM, though in modern GPUs it can be cached in on-chip L2

caches and, in some cases, L1 caches as well. Shared memory, in contrast, is backed by on-chip

L1 caches that are fast but limited to 48KB per thread block in the current version of CUDA.

Local memory is backed by a combination of cacheable global memory and the GPU’s register

file.

CUDA provides a limited set of synchronization constructs for coordination across threads. The

core construct is a thread-block-wide barrier called syncthreads, which is fully supported by

all current CUDA race detectors. Lower-level synchronization primitives also exist in the form

of atomic instructions and memory fence instructions, although these primitives per se are not

considered reliable synchronization mechanisms in the programming model.

5.2. Challenges For Dynamic Data Race Detection on GPU

As described in Chapter 2, a parallel program can be modeled as a trace of events. The effects

of synchronization operations can be modeled by the happens-before relation, which can be

implemented using data structures like vector clocks. While these implementations can handle

the scale of concurrency and synchronization in conventional CPU programming models, they

struggle with the massive scale of GPU code.

In happens-before race detection, for example, each thread in the program has a vector clock,

with the vector size equal to the number of threads (n2 storage for n threads). GPU programs

can easily reach millions of threads, requiring hundreds of gigabytes of storage for these vector

clocks alone, leaving aside other race detection metadata. Such prohibitively high overhead

53

prevents dynamic data race detection algorithms, such as vector-clock and FastTrack, to be

applied directly to GPU programs.

5.3. Redundancy in GPU Race Detection

As shown in the previous chapters, dynamic data race detection generally requires keeping two

pieces of metadata: 1) the per-location access histories for all shared memory locations, and

2) the per-thread states that encode logical times and synchronization events across threads.

Chapters 3 and 4 have explained the high redundancy of the former for CPU programs, and

have discussed the SlimFast and Parsnip systems that gain performance boost by reducing

such redundancy. When it comes to race detection for the GPU programming model, the largest

difficulty is how to handle the latter, i.e., the per-thread states for millions of threads.

In the classic vector-clock algorithm, the per-thread state to maintain is a vector clock, which is

an OpNq structure with a clock entry for each of the N threads within the program. Figure 5.2

gives an example execution on the left, with the vector clock for thread 1 on the right. The

example kernel has 3 threads per warp, 2 warps per block, and 2 blocks. Shading of the example

execution indicates each thread’s logical time. In the example execution, thread T0 takes one

branch of the if statement, whereas T1 and T2 takes another. In the vector clock of T1

(illustrated in the right half of Figure 5.2) the clock value for T0 is 1, whereas the values for T1

and T2 are 2. For the rest of the threads (external to the warp containing T0, T1, and T2),

their values in the vector clock are all 0. In this case, even though the vector clocks sizes can

be large if the program has a large number of threads, there are only a small number of distinct

values within each per-thread vector clock (PTVC), which is a form of redundancy.

To measure how frequent such redundancy arises, a profiling experiment is conducted on a set

of CUDA programs to count the distinct values within PTVCs. According to the data collected,

roughly 90% of the time PTVCs have the same value for all threads external to a warp and

either 1) the same value for all threads in a warp or 2) two distinct values, e.g., along the two

branches of an if-else statement, as shown in Figure 5.2. This creates an opportunity for space

54

Time 1

Time 2
T2

T1T0

T1’s Full Per-Thread VCExample Execution

1,2,2 0,0,0 0,0,0 0,0,0
if

Figure 5.2: An example execution illustrating the redundancy in per-thread vector clocks.

savings by storing just a few clock values for each warp.

5.4. Barracuda Semantics

The core idea of Barracuda’s design is to exploit the opportunity to cut down the overhead

of PTVCs via a highly-compressed representation, thereby allowing conventional CPU-oriented

dynamic race detection algorithms, such as FastTrack, to be adapted and applied to GPU pro-

grams. This section first describes how to model a CUDA execution as a trace, then introduces

the operational semantics of Barracuda.

5.4.1. Modeling a CUDA Execution as a Trace

A program execution is modeled as a trace: a sequence of operations performed by a set of

threads. Trace operations are an abstraction over the stream of dynamic PTX instructions to

facilitate race detection. Our trace operations are:

• rdpt, xq or wrpt, xq, in which a thread t reads or writes a location x

55

• endipwq, used to model a warp w’s lockstep execution

• if pwq, in which warp w begins executing a branch

• elsepwq, in which w executes the else path of a branch

• fipwq, in which w concludes its execution of a branch

• barpbq, a barrier for all threads in thread block b

• atmpt, xq, in which t performs an atomic read-modify-write operation on a location x

• acqBlkpt, xq, relBlkpt, xq or arBlkpt, xq, in which t acquires, releases (or both) a synchro-

nization location x with a block-level memory fence

• acqGlbpt, xq, relGlbpt, xq and arGlbpt, xq behave like the block-level versions but with a

global fence

ld %r1,[a]

@%p bra label1

st [b],1

bra.uni label2

label1: st [c],1

label2: membar.cta

atom.exch %r2,[d],1

(a) PTX instructions

rdpt0, aq

rdpt1, aq

endipwq

if pwq

wrpt0, bq

endipwq

elsepwq

wrpt1, cq

endipwq

fipwq

relBlkpt0, dq

relBlkpt1, dq

endipwq

(b) trace operations

rdpt0, aq rdpt1, aq

endipwq

if pwq elsepwq

wrpt0, bq

endipwq

wrpt1, cq

endipwq

if pwq

relBlkpt0, dq relBlkpt1, dq

endipwq

(c) synchronization order

Figure 5.3: (a) Sample PTX instructions for a warp w with 2 threads, t0 and t1. (b) Shad-
ing shows the translation from PTX instructions into trace operations. (c) Arrows indicate
synchronization order.

Our trace includes operations like acquires and releases, similar to high-level language consistency

models like the C++ memory model [13]. Inferring trace operations involves heuristics (so that

our traces are fundamentally approximations of the synchronization that actually occurred in an

56

execution) and is complicated by the lack of an official CUDA memory consistency model to

define illegal behavior. We describe below a useful set of rules for translating PTX instructions

into trace operations.

While PTX instructions represent warp-level operations, e.g., an entire warp performing a vector

read from memory, for simplicity we model memory operations (reads, writes, atomics, acquires

and releases) as thread-level operations so that we can consider an access to one memory

location at a time. However, previous work has taken into account the fact that warps execute

in a “lockstep” fashion [119] wherein all operations from warp instruction i complete before

instruction i ` 1 begins. Lockstep warp execution is indirectly acknowledged in the official

CUDA documentation, stating that cores perform scheduling at warp granularity, a warp executes

only one common instruction at a time, and warps are issued in program order [81, §4]. The

treatment of diverging control flow within a warp also gives evidence that warps execute in

lockstep (Section 5.4.3). However, the actual size of a warp can change across architectures, so

portable CUDA code should eschew assumptions about warp size, or validate these assumptions

at runtime. Barracuda’s dynamic analysis checks for races based on the warp size of the

current architecture, though in the future we could simulate the behavior of smaller/larger

warps to find additional latent bugs.

We encode the end of warp w’s instruction explicitly with an endipwq operation. A warp w

performing a read of location x is thus translated into rdpt, xq for each active thread t in w

followed by endipwq (see the top part of Figure 5.3a & 5.3b).

Normally, given a dynamic trace, control flow constructs like loops, function calls, branches and

so forth are only implicitly represented. However, we are the first to recognize that branches

in GPUs have synchronization implications, so we include explicit branch operations in a trace.

Unconditional control flow constructs like loops and function calls do not require such handling

and are implicitly unrolled/inlined in the trace.

Control-flow operations are modeled at warp level as they manipulate the warp-level stack that

57

tracks branches, and would be awkward to model at the level of individual threads. if , else

and fi operations are readily inferred from static PTX code by examining the targets of branch

instructions (see Figure 5.3). All branches are encoded using if , else and fi for simplicity:

simpler constructs like an if statement (without an else) can be encoded via an empty else path.

We infer synchronization trace operations as follows. barpbq represents a block-wide barrier

for thread block b, when every thread in b having executed the bar.sync PTX instruction

(syncthreads in CUDA). Atomic instructions (atom.* in PTX, or atomic* functions in CUDA)

from a thread t to location x not immediately preceded or followed by a memory fence in static

code become standalone atmpt, xq operations (see Section 5.4.3 for more details).

If a store instruction is immediately preceded by a memory fence (membar.cta or membar.gl in

PTX, threadfence block or threadfence in CUDA1) in static code, the store plus the fence

are bundled together into a release operation, with the scope (block or global) determined by the

kind of fence used (see the relBlk operation in Figure 5.3). Acquire operations arise similarly,

from a load followed by a fence. An atomic instruction sandwiched between fences acts as both

an acquire and a release (like arBlk). To identify errors in CUDA lock implementations, we

treat the atom.cas and atom.exch PTX instructions specially. atom.cas performs a compare-and-

swap, commonly used for obtaining a lock, and atom.exch performs a fetch-and-set, commonly

used to free a lock. If atom.cas is followed by a fence, we treat them as an acquire. If atom.exch

is preceded by a fence we treat them as a release.

Our inferences of acquire and release operations from PTX code are necessarily approximate,

as other CUDA code may compile into something that looks to us like an acquire or release

operation. If we infer an acquire/release where none existed in the original code, Barracuda

may consider an execution safe when it actually contains a race. Interestingly, even the CUDA

C/C++ API defines synchronization operations in terms of fences and loads/stores/atomics,

instead of with high-level acquires and releases. Thus, some inference is necessary whether

performing race detection at the PTX or the CUDA C/C++ level. We tuned our inference

1System-level fences are treated as global fences, as we focus on intra-kernel races.

58

of acquire/release operations based on litmus tests, documentation, and sophisticated code

examples like threadFenceReduction from the CUDA SDK, and find that our policy avoids any

incorrect atomic inference for our benchmarks.

We consider only feasible traces: those where (1) a warp-level memory instruction from warp w

is represented in the trace as a consecutive sequence of memory operations, one for each active

thread in w, (2) each of w’s memory instructions is followed by an endipwq operation, and (3)

branches are translated appropriately into if pwq, elsepwq and fipwq operations.

5.4.2. Synchronization Order

While operations appear in a total order in a trace, that order does not imply that the effects

of operations can be linearized. Instead, we derive a partial order called synchronization order

from a trace α, written ăα, such that a ăα b when a must occur before b. Synchronization

order is the transitive closure of the smallest relation such that a ăα b when a occurs before b

in α and either:

• a and b are both performed by thread t (intra-thread program order); or

• one of a or b is endipwq, and the other is by a thread that’s both in w and active at the

time the endi is performed (intra-warp program order); or

• one of a and b is barpkq, and the other is by a thread in k (barrier synchronization); or

• a and b are operations on the same synchronization location x where a is a release

operation and b is an acquire operation, and both operations are either 1) at block scope

within the same thread block or 2) at least one operation is at global scope (inter-thread

synchronization)

Given this definition, a data race occurs when two operations a and b both access the same

location, at least one of them is a write, they are not both atm operations (atomic operations

do not race with each other, but also do not imply synchronization), and neither a ăα b nor

b ăα a holds (so that the operations are seen as concurrent in the trace).

59

5.4.3. The Barracuda Algorithm

Barracuda checks for races by maintaining a tuple of metadata based on vector clocks. As

we have introduced in Chapter 2, a vector clock V records a timestamp for each thread t in

a system, written as V ptq. Recall that the standard comparison (Ď), join (\) and increment

(inct) operations on vector clocks are defined as:

V Ď V 1 iff @t. V ptq ď V 1ptq

V \ V 1 = λt. maxp V ptq, V 1ptq q

inctpV q = λu. if u “ t then V puq ` 1 else V puq

The minimal vector clock has a 0 timestamp for each thread and is written KV .

Just as with the FastTrack race detector [38], to save space epochs are sometimes used in

place of vector clocks; an epoch c@t is a reduced vector clock that holds a timestamp for just

one thread, and is treated as a vector clock that is c for t and 0 for every thread other than t.

Because epochs have a single non-zero entry, an epoch can be compared with a vector clock,

or another epoch, in O(1) time using the ĺ operator. We say c@t ĺ V when c ď V ptq. Ke

denotes a minimal epoch 0@t0.

The Barracuda analysis state is a tuple pK,C, S,R,W q. Kw is the per-warp stack for warp

w that tracks branch divergence. Each stack entry is an active mask (amask for short) which

is the set of threads that are currently active.

Ct is a vector clock for the thread t: Cuptq records the last time at which the thread t syn-

chronized with u. Sx represents the synchronization location x, which is an ordinary memory

location since CUDA programs often use the same location to store data and for coordination.

Sx is a map from thread block ÞÑ vector clock, recording the most recent logical time at which

some thread from each thread block synchronized with x. Rx is the read metadata for a location

x recording the most recent reads of x, which can be encoded either as an epoch or as a vector

clock. Wx is a tuple of (write epoch, atomic-bit) for a location x, recording the time of the

most recent write to x. The atomic-bit records whether the most recent write to x arose from

60

an atomic operation or not. Epoch comparison ĺ with write metadata Wx ignores the atomic

bit. We write Eptq for the epoch Cptq@t, the current epoch for thread t.

Our initial analysis state σ0 is the tuple (λw.rinitActives, λt.inctpKV q, λx, b.KV , λx.Ke,

λx.pKe, falseq). Each warp’s initial active mask takes account of the number of threads re-

quested for the grid, as the last warp of each thread block may be only partially full. Each

thread initially has an empty vector clock with its own entry incremented, all synchronization

locations have empty vector clocks for all blocks, and all memory locations have empty read

epochs and empty write epochs without any previous atomic operations.

Basic Operations

Figure 5.4 gives the operational semantics for Barracuda for non-synchronization memory

accesses and branches. For thread-level memory accesses, if a thread t is not active (due to

a branch), t’s operation is a NOP – no analysis state is updated. To avoid clutter, each rule

implicitly checks that the current thread is active.

Read and write operations are handled essentially as with FastTrack. Totally-ordered reads

can use a compact epoch representation (rule ReadExcl), while concurrent reads require a

vector clock (rule ReadShared). The first concurrent read, which necessitates a transition

from an epoch to a vector clock, is handled by the ReadInflate rule. The WriteExcl

rule handles totally-ordered writes, and WriteShared the first write after concurrent reads.

Because the EndInsn rule increments per-thread logical time after every instruction, the “same

epoch” rules of FastTrack are not needed.

To faithfully model lockstep warp execution, the individual thread memory operations within a

warp instruction run concurrently. This allows us to detect intra-warp races.2 With intra-warp

races, according to Nvidia, “the number of serialized writes that occur to that location varies

depending on the compute capability of the device ... and which thread performs the final write

is undefined” [81, §4.1]. Thus, intra-warp races can result in architecture-specific behavior and

2An intra-warp race is always a write-write race, as all active threads within the warp execute the same
instruction and reads cannot race.

61

Rx P VectorClock Wx ĺ Ct

R1 “ Rx rt :“ Ctptqs

pK ,C ,S ,R,W q ñrdpt,xq pK ,C ,S ,R1,W q
ReadShared

Rx P Epoch
Rx ĺ Ct Wx ĺ Ct

R1 “ Rrx :“ Eptqs

pK ,C ,S ,R,W q ñrdpt,xq pK ,C ,S ,R1,W q
ReadExcl

Rx P Epoch
Wx ĺ Ct Rx “ clock@t 1

vc “ Kvrt :“ Ctptq, t
1 :“ clock s

R1 “ Rrx :“ vcs

pK ,C ,S ,R,W q ñrdpt,xq pK ,C ,S ,R1,W q
ReadInflate

Rx P Epoch
Wx ĺ Ct Rx ĺ Ct

R1 “ Rrx :“ Kes

W 1 “ W rx :“ pEptq, falseqs

pK ,C ,S ,R,W q ñwrpt,xq pK ,C ,S ,R1,W 1q
WriteExcl

Rx P VectorClock
Wx ĺ Ct Rx Ď Ct

R1 “ Rrx :“ Kes

W 1 “ W rx :“ pEptq, falseqs

pK ,C ,S ,R,W q ñwrpt,xq pK ,C ,S ,R1,W 1q
WriteShared

amask “ Kw .peekpq
vc “

Ů

tPamask Ct

@t P amask . C 1
t “ incrtpvcq

@t R amask . C 1
t “ Ct

pK ,C ,S ,R,W q ñendipwq pK ,C 1,S ,R,W q
EndInsn

amask1, amask2 “ splitActivepKw .peekpqq
stack1 “ Kw .pushpamask1q
stack2 “ stack1.pushpamask2q
K 1 “ K rw :“ stack2s
vc “

Ů

tPamask2
Ct

@t P amask2 . C 1
t “ incrtpvcq

@t R amask2 . C 1
t “ Ct

pK ,C ,S ,R,W q ñif pwq pK 1,C 1,S ,R,W q
If

stack “ Kw .poppq
K 1 “ K rw :“ stack s
amask “ stack .peekpq
vc “

Ů

tPamask Ct

@t P amask . C 1
t “ incrtpvcq

@t R amask . C 1
t “ Ct

pK ,C ,S ,R,W q ñelsepwq,fipwq pK 1,C 1,S ,R,W q
ElseEndif

Figure 5.4: Barracuda basic operational semantics

62

nondeterminism. If all active threads within the warp write the same value to a location, we

do not consider this a race as the documentation is clear that the outcome is well-defined. Our

implementation detects and filters such “same-value” intra-warp races.

The endi rule is used to join all active threads together after all thread-level memory operations

complete, and then to fork the active threads again to support detection of future intra-warp

races. Note that endi operates only on active threads within a warp w; inactive threads (e.g.,

those following a different control flow path) are logically concurrent with the active threads, as

we explain next.

Branches on GPUs are handled via a hardware SIMT stack [46]. The top of the stack tracks

which threads are active along the current control-flow path, and deeper entries support nested

control flow. We explain the operation of the SIMT stack along with our semantics. When an

if operation is encountered, the set of currently-active threads is split according to the branch

condition into two sets: those threads active on the then path and those active on the else path.

One of these sets may be empty due to the branch condition. The If rule uses the splitActive

function to capture the actual active masks. The then and else sets are represented as active

masks that are pushed onto the stack Kw for the current warp w. The order in which they

are pushed is arbitrary, but determines the order in which the paths will execute. In our If

rule, the else path is pushed first so the then path executes first. While Nvidia states that “the

different executions paths have to be serialized” [81, §5.4.2] they do not define the order in which

the serialization occurs. These semantics are similar to the way event handlers are treated in

event-based concurrency systems like Android and JavaScript [97, 53, 8]. Our semantics treats

different paths as concurrent so that we can identify branch ordering races between paths,

though our modeling is conservative in that we do not exempt commutative paths. Branch

ordering races are a new class of bugs not identified in previous work, and represent a subtle

way in which a GPU program’s correctness can implicitly rely on a given architecture and its

SIMT stack implementation. Once the then and else active masks are determined, the If rule

joins and forks the then threads, capturing the fact that they are now concurrent with the else

63

threads.

else and fi operations are handled the same in our semantics. First we pop the SIMT stack to

discard the then/else active mask, respectively, and perform a join and fork of the newly-active

threads. For an else operation, this models the beginning of the else path’s execution which is

logically concurrent with the then path. For a fi operation, this models threads from both the

then and else paths restarting lockstep execution after their branching is complete.

Barriers and Atomic Operations

Figure 5.5 presents Barracuda’s operational semantics for synchronization operations. barpbq

is the simplest operation, representing a barrier for all threads within a thread block b. The Bar

rule has an explicit predicate that all threads in b are active, as otherwise the Nvidia documen-

tation states that “the code execution is likely to hang or produce unintended side effects” [81,

§B.6]. Executing a bar operation with inactive threads, known as a barrier divergence bug, is

detected as an error by Barracuda.

The InitAtom* rules handle an atomic operation on location x where the preceding write to

x was non-atomic. These rules check for ordering with previous reads and the previous non-

atomic write, as Nvidia states in the PTX documentation that “atomic operations on shared

memory locations do not guarantee atomicity with respect to normal store instructions to the

same address.” [82, §8.7.12.3]. While the documentation leaves the door open for stronger

semantics for atomics on global memory, recent work [3] recommends that programmers avoid

making both atomic and non-atomic accesses to the same global memory location, as doing

so can exhibit relaxed consistency effects. We adopt a similar approach, and do not consider

atomic and non-atomic accesses to synchronize with one another.

The Atom* rules handle an atomic operation on x when the preceding write to x was another

atomic. These rules check for ordering with preceding reads, but elide checks of the previous

atomic write. Nvidia states that “Atomic functions do not act as memory fences and do not

imply synchronization or ordering constraints for memory operations” [81, §B.12]. We capture

64

@t P b . activeptq
vc “

Ů

tPb Ct

@t P b . C 1
t “ incrtpvcq

@t R b . C 1
t “ Ct

pK ,C ,S ,R,W q ñbarpbq pK ,C 1,S ,R,W q
Bar

Wx “ p´, falseq Rx P Epoch
Wx ĺ Ct Rx ĺ Ct

R1 “ Rrx :“ Kes

W 1 “ W rx :“ pEptq, trueqs

pK ,C ,S ,R,W q ñatmpt,xq pK ,C ,S ,R1,W 1q
InitAtomExcl

Wx “ p´, falseq Rx P VectorClock
Wx ĺ Ct Rx Ď Ct

R1 “ Rrx :“ Kes

W 1 “ W rx :“ pEptq, trueqs

pK ,C ,S ,R,W q ñatmpt,xq pK ,C ,S ,R1,W 1q
InitAtomShrd

Wx “ p´, trueq Rx P Epoch
Rx ĺ Ct

R1 “ Rrx :“ Kes

W 1 “ W rx :“ pEptq, trueqs

pK ,C ,S ,R,W q ñatmpt,xq pK ,C ,S ,R1,W 1q
AtomExcl

Wx “ p´, trueq Rx P VectorClock
Rx Ď Ct

R1 “ Rrx :“ Kes

W 1 “ W rx :“ pEptq, trueqs

pK ,C ,S ,R,W q ñatmpt,xq pK ,C ,S ,R1,W 1q
AtomShared

C 1 “ C rt :“ Ct \ Sx rblockptqss

pK ,C ,S ,R,W q ñacqBlkpt,xq pK ,C 1,S ,R,W q
AcqBlock

S 1 “ Sx rblockptq :“ Ct s

C 1 “ C rt :“ incrtpCtqs

pK ,C ,S ,R,W q ñrelBlkpt,xq pK ,C 1,S 1,R,W q
RelBlock

C 1 “ C rt :“ Ct \ Sx rblockptqss
S 1 “ Sx rblockptq :“ C 1

t s

C 2 “ C 1rt :“ incrtpC
1
tqs

pK ,C ,S ,R,W q ñarBlkpt,xq pK ,C 2,S 1,R,W q
AcqRelBlk

vc “
Ů

bPgrid Sx rbs

C 1 “ C rt :“ Ct \ vcs

pK ,C ,S ,R,W q ñacqGlbpt,xq pK ,C 1,S ,R,W q
AcqGlobal

@b P grid . S 1
x rbs “ Ct

C 1 “ C rt :“ incrtpCtqs

pK ,C ,S ,R,W q ñrelGlbpt,xq pK ,C 1,S 1,R,W q
RelGlobal

Figure 5.5: Semantics for synchronization operations

65

this constraint by avoiding checks between atomic operations and also avoiding additions to

synchronization order. Thus, atomics alone cannot be used to synchronize between threads.

Memory Fence Litmus Tests

To explore the semantics of inter-thread synchronization, we conducted a series of litmus tests

on two Nvidia GPUs: a GRID K520 Kepler GPU, obtained via Amazon AWS, and a GTX Titan

X Maxwell GPU on a local machine. We ran variations of the message-passing (mp) litmus

test from Alglave et al. [3], with different combinations of fences in each thread. The variables

x and y reside in global memory, the default cache operator is .cg (skipping the incoherent L1

cache), and each test thread runs in a distinct thread block. We utilized Alglave et al. and

Sorensen et al. [3, 107]’s memory stress and thread randomization strategies to provoke weak

consistency behavior.

init: x = y = 0 final: r1=1 ^ r2=0
1.1 st.global.cg [x],1 2.1 ld.global.cg r1,[y]
1.2 fence1 2.2 fence2
1.3 st.global.cg [y],1 2.3 ld.global.cg r2,[x]

observations per 1 million runs
fence1 fence2 K520 GTX Titan X

membar.cta membar.cta 7,253 0
membar.cta membar.gl 0 0
membar.gl membar.cta 0 0
membar.gl membar.gl 0 0

Figure 5.6: Memory fence litmus tests

Our results are presented in Figure 5.6, which shows that using a membar.cta in each thread

allows non-sequentially-consistent (non-SC [59]) behavior to arise on the K520 GPU, though not

on the GTX Titan X. Using a membar.gl in either thread resulted in SC behavior across all our

tests on both GPUs. Our results are consistent with Alglave et al. [3], which ran only tests with

the same fence in each thread. Of course, testing cannot prove the absence of weak behavior, but

our results demonstrate that membar.cta is insufficient to implement synchronization between

thread blocks.

66

GPU CPU

event
queues

instrumentation

kernel code

race detector

host code

Figure 5.7: System overview: shading indicates the components of Barracuda.

Inter-thread Synchronization

To realize inter-thread synchronization, release and acquire operations must be used. These

rules update the Sx metadata, a map from thread blocks to vector clocks for a location x,

which is used to propagate synchronization order. The AcqBlock rule is similar to a lock

acquire in a CPU program in that the current thread t joins its vector clock Ct with the vector

clock for the synchronization location, but scoped to the particular thread block in which t

resides. The RelBlock rule accordingly updates Sx only for the current block. A relBlk in

block b1 followed by an acqBlk in block b2 thus does not contribute to synchronization order,

as non-SC behavior is possible in this case (Section 5.4.3).

Our litmus tests show that a global fence in just one message-passing thread results in SC behav-

ior. The AcqGlobal rule thus joins the vector clocks for all blocks in Sx, while RelGlobal

sets the vector clocks for all blocks in the grid. This ensures that a global release/acquire in one

block can synchronize with an acquire/release in any other block, even if the latter operation is

at block scope.

5.5. Implementation

Figure 5.7 shows an overview of the Barracuda system. The Barracuda implementation

takes advantage of the structure of modern heterogeneous systems by offloading much of the

race detection analysis to the host CPU, instead of performing race detection directly on the

GPU device which would substantially worsen the performance of the target kernel. There are

67

two benefits to our hybrid GPU+CPU approach. First, the host is typically underutilized during

kernel execution, as it waits for the results of the kernel. Second, the host is better suited to the

memory-intensive work of race detection as a modern multicore can easily have 1-2 orders of

magnitude more DRAM than a modern GPU does. A kernel running under Barracuda logs

all GPU memory accesses, both global and shared, to queues in GPU memory. These queues

are then consumed by host-side threads which do the actual race-checking.

We describe the implementation of Barracuda in three steps. First, we describe our dynamic

instrumentation framework. Then, we explain the GPU memory access logging mechanism.

Finally, we describe the implementation of the host-side race detector.

5.5.1. Dynamic Instrumentation

Barracuda supports all modern versions of CUDA, including 7.5 and 8. We implemented our

own binary instrumentation framework because existing frameworks, such as GPU Ocelot [33]

and GPU Lynx [34], do not support CUDA SDK versions 5.0 or newer. We also considered the

SASSI machine-level instrumentation framework [84] but opted against it because it is closed-

source and did not support adequate hooks on synchronization instructions.

Barracuda is implemented as a shared library. The library is injected into the target process

using LD PRELOAD. It intercepts the cudaRegisterFatBinary() function call, loads the em-

bedded CUDA fat binary, strips out any architecture-specific binary entries, and extracts and

decompresses the architecture-neutral PTX assembly code contained in the fat binary. This

PTX code is then fed into the instrumentation engine which performs three operations:

• Merging the GPU-side logging framework. The GPU-side logging framework is written

in regular CUDA. This code is compiled into PTX at build time and stored inside the

Barracuda library. At runtime, the logging code is merged with the application’s PTX

code.

• Unique thread id calculation. We add PTX code to the beginning of every kernel to

combine the three-dimensional block id and thread id’s into a globally unique value. For

68

the rest of the paper we will refer to this 64-bit value as the TID. All device functions are

modified to accept this TID as an additional argument so that the TID is always available

for logging calls.

• Memory and synchronization logging. We scan the PTX source code and add logging

calls to all load, store, atomic, fence, and barrier instructions. As described in Sec-

tion 5.4.1, we infer high-level acquire and release operations from the PTX code. Special

care is required for predicated instructions: we transform the predicated instruction into a

branch and a non-predicated instruction, so that the logging call is covered by the branch.

To detect intra-branch races we also add logging calls to all branch convergence points.

To reduce logging overhead we avoid some repeated logging of accesses (within the same

basic block) to the same memory location, as in some CPU race detection schemes [41]

(in particular, we do not log an access to the address in a register if the value of the

register has not been changed since the last logged access).

Once the application PTX code is instrumented, the data structures within the CUDA runtime

are modified to point to the newly-generated fat binary that includes only the instrumented PTX

code. We then relinquish control back to cudaRegisterFatBinary() and our modified PTX is

loaded, JIT-compiled into machine code, and loaded onto the GPU.

The Barracuda shared library is also responsible for initializing the GPU-side memory struc-

tures used by Barracuda. We reserve a configurable percentage (50% by default) of the

GPU’s global memory for the shared GPU-CPU queues, and invoke a kernel to initialize this

region.

Special care has to be given to device resets, as these will free the memory backing Bar-

racuda’s queues. When Barracuda intercepts a cudaDeviceReset call, it delays the reset

until the queues are fully drained. It also raises an internal flag so Barracuda is reinitialized

the next time any CUDA library call is intercepted.

69

read
head

commit
index

write
head

active writes
by GPU

written by GPU,
unread by CPU

read by
CPU

free
records

w
ar

p
id

op
er

at
io

n
addresses

ac
tiv

e
m

as
kqueue

record
format

Figure 5.8: A Barracuda queue, for communicating events from the GPU to the host race
detector.

5.5.2. Device-side Logging

Barracuda’s GPU logging facility has been designed to be minimal and fast. The core of the

GPU-side logging algorithm is a lock-free queue of fixed-size records (Figure 5.8). The queue

contents are tracked via three pointers: a write head, a commit index, and a read head, which

track the next entry available for writing by the GPU logging instrumentation, for transferring

from the GPU to the host, and for reading by the host race detector, respectively. The queue uses

a virtual indexing scheme with monotonically increasing indices, which are mapped to physical

locations by taking their modulus with the queue size. The queue is considered full when the

write head is queue-size entries ahead of the read head. Log records are modeled closely on

the trace operations given in Section 5.4.1, except that, for efficiency, a record contains the

operation for an entire warp. Each record contains fields identifying the warp, the operation, a

32-bit mask of active threads, and 32 entries for the addresses accessed by each thread in the

warp (for memory operations). Records are a fixed 16` 8ˆ 32 “ 272 bytes in size.

To best take advantage of the memory architecture of the GPU we allocate multiple queues,

which can achieve orders of magnitude better throughput than using a single queue. Each

thread block sends events to a single queue, though multiple thread blocks may use the same

queue. We found the optimal organization to be « 1.1´1.5 queues per SM (i.e., GPU core). A

70

significant benefit of mapping each thread block to a single queue is that locking can sometimes

be avoided in the host-side race detector. For example, the host race detector uses one CPU

thread per queue, so operations on shared memory (which are private to a thread block) will

always be processed by the same CPU thread, avoiding the need for locking.

Logging operations on the device are performed cooperatively by all threads within a warp w.

To log an operation, the first active thread within w is selected as the leader tl. tl reserves an

empty slot in the queue, waiting for the CPU to drain queue entries if necessary. Then tl shares

the index of this empty slot with the other threads in w, and all threads record their individual

memory addresses in parallel. tl then fills in the warp ID, operation type, and active mask,

and makes the completed record visible to the CPU by bumping the commit index (Figure 5.8).

Logging operations use CUDA’s system-level fences to ensure proper memory ordering between

the GPU and the CPU.

5.5.3. Host-side Detector

We implement the Barracuda race detection algorithm on the host side. Each GPU queue is

allocated a corresponding host thread and GPU stream. Queue draining is the mirror image of

the logging algorithm, with the read head used instead of the write head. The detector processes

each dequeued event according to the rules given in Section 5.4.3.

Thread VC Compression

One of Barracuda’s key innovations is a more efficient mechanism for tracking the per-thread

vector clocks (PTVCs) used to record when each thread has synchronized with each other

thread in the program (the Ct state from Section 5.4.3). In a race detector for conventional

multithreaded programs, these PTVCs consume O(n2) space, where n is the number of threads

in the program, but n is at most a few tens of threads in practice. With GPU programs, in

contrast, kernels can easily utilize more than one million threads, which entails crippling space

overheads. Fortunately, there is often massive redundancy among the entries in each PTVC.

Accordingly, Barracuda employs an adaptive scheme for compressing PTVCs, mirroring the

71

Time 1

Time 1

Time 2

Time 1

Time 2

Time 3

Time 1

Time 2

Time 1

Time 2

2,2,2 1,1,1 0,0,0 0,0,0

block B0

warp W0

T2
T1T0

Converged
active mask: 0x7

local clock: 1
block clock: 0

1,1,1 0,0,0 0,0,0 0,0,0

T1’s Full Per-Thread VCBarracuda State

Diverged
active mask: 0x6

local clock: 2
warp clock: 1
block clock: 0

Example Execution

T1

T1

T2T0

1,2,2 0,0,0 0,0,0 0,0,0

NestedDiverged
active mask: 0x2

local clock: 3
warp clock: [1,3,2]

block clock: 0

T2T1

T0

if

if

if

1,3,2 0,0,0 0,0,0 0,0,0

SparseVC
active mask: 0x2

local clock: 2
per-thread vc:iiii

1,2,1 0,0,0 0,6,0 0,0,0

T2
T1

T0

if

acq

rel by
T7@6

Converged
active mask: 0x7

local clock: 2
block clock: 1

T1 T2T0

barrier

Figure 5.9: Barracuda’s four per-thread VC formats. The example kernel has 3 threads per warp,
2 warps per block, and 2 blocks. Shading of the example execution indicates each thread’s logical
time. The right side shows the equivalent full per-thread VC that the Barracuda state implicitly
represents.

72

GPU thread hierarchy.

In our analysis of CUDA programs, we discovered that roughly 90% of the time PTVCs have

the same value for all threads external to a warp and either 1) the same value for all threads in a

warp or 2) two distinct values, e.g., along the two branches of an if-else statement. This creates

an opportunity for space savings by storing just a few clock values for each warp. Barracuda’s

PTVC compression is lossless, and always functionally equivalent to a full vector clock.

In Barracuda, PTVCs are managed at warp granularity because it is often the case that

threads in a warp have identical PTVCs. PTVCs can be in one of four formats, as Figure 5.9

illustrates. The simplest case is the Converged format, used when all threads in a warp

are executing in lockstep. Consider the PTVC for thread T1 from warp W0 (top execution of

Figure 5.9). The PTVCs for T0, T1 and T2 are managed collectively at warp granularity. The

active mask of 0x7 indicates that all 3 threads in W0 are active, and the local clock gives the

logical time each thread in W0 has for itself. The block clock indicates that the threads in W0

have never synchronized with the other threads in B0. All other PTVC entries are implicitly 0,

indicating that the threads in W0 have not synchronized with other threads outside their block.

The second execution in Figure 5.9 shows the impact of a block-level barrier. The block clock

for W0 is 1 after the barrier, representing the fact that all threads in W0 synchronized with all

other threads in the block at time 1. The threads in W0 then move on after the barrier to time

2.

The third execution illustrates the Diverged format, which is used to handle the common

case of non-nested control flow. T0 takes one path after the if statement, and threads T1

and T2 the other path. The mask is updated to reflect the active threads (just T1 and T2)

along the current path. We introduce a new warp clock field to track the last time the active

threads in W0 synchronized with the inactive threads in W0, which was at time 1 before the if

statement. Synchronization with threads outside the warp is handled via the block clock as in

the Converged format.

73

The fourth execution illustrates the NestedDiverged format, which is used to handle nested

control flow. Here, the warp clock field is generalized to a vector clock to track the precise

times at which the active threads synchronized with each other thread in W0. Thus, the warp

clock field is a vector clock with the vector size equal to the number of threads in a warp. Due

to the nested if statements, T1 is the only currently active thread, and it last synchronized with

T0 at time 1 and T2 at time 2. Synchronization with threads outside the warp is handled via

the block clock as in the Converged format.

The final execution illustrates the fully-general SparseVC PTVC format, which is simply an

unordered map from threads to clocks. Using a map instead of a vector clock is more efficient

because, typically, the entries for most threads are zero. In this example, T1 is the only thread

that acquires a lock l which was previously released by thread T7 at time 6. T7 is in a completely

different thread block than T1. This point-to-point synchronization between arbitrary, individual

threads requires tracking clock values precisely at thread granularity.

Barracuda’s PTVC management is integrated with a stack that mirrors the GPU’s reconver-

gence stack [46], to reduce redundant tracking of the active mask. Each stack entry is 16 bytes

and contains the fields listed in the “Barracuda State” portion of Figure 5.9. Whenever a

reconvergence operation occurs, we merge the two divergent cases in the stack by joining their

PTVCs (the ElseEndif rule from Figure 5.4). Barracuda checks for opportunities to use a

simpler PTVC format at branches and at reconvergence, as further compression is often possible

in these cases.

Barriers

Block-level barriers are the most common CUDA synchronization operation. When a barrier

operation occurs, we take a block-wide join of all PTVCs (the Bar rule from Figure 5.5). We

optimize this case by continually tracking the highest clock value for each block, so that at a

barrier we can simply broadcast this value to each thread’s PTVC.

74

GPU global
memory

int	writeEpoch;
int	readEpoch;
map*	readers;
bool	atomic;
bool	readShared;
bool	syncLoc;
bool	globalMem;

shadow
memory

1 byte

32 bytes

Figure 5.10: Barracuda shadow memory format. The format is the same for global (shown) and
shared memory locations.

Shadow Memory

The host race-detector maintains a shadow memory containing per-location race detection meta-

data (Figure 5.10). This metadata contains a last-write epoch and a last-read epoch (as in

FastTrack), and, for locations that have been concurrently read, an unordered map from

TIDs to clocks that acts as a sparse vector clock. We do not extensively optimize per-location

VCs (unlike per-thread VCs) as the case of shared readers is extremely rare in all the CUDA code

we examined. Per-location metadata also contains a spinlock and a set of flags for memory lo-

cation attributes: whether the location was last accessed by an atomic operation (the atomic bit

from Section 5.4.3), has been read concurrently by multiple threads, is used as a synchronization

location, and is in global or shared memory. All together, per-location metadata occupies 28

bytes, but 64-bit alignment forces the object to be padded to 32 bytes. Thus, host-side memory

usage is 32x that of the GPU, but CPU memory is usually much more abundant than GPU

memory. Memory consumption could be substantially decreased if all GPU memory accesses are

2- or 4-byte aligned. Although most of the benchmarks we tested access memory exclusively at

4-byte granularity, Barracuda uses 1-byte granularity for generality.

We allocate shadow memory for shared and global memory differently. Shared memory con-

75

sumption is small (16, 32 or 48KB per thread block in current versions of CUDA) and known

at kernel launch, so we preemptively allocate shadow memory for shared memory. A kernel with

512ˆ1024 threads each having 16KB of shared memory requires just 16384ˆ512ˆ32 “ 256MB

of CPU memory).

Global memory consumption, on the other hand, is not known at kernel launch as allocations

can occur concurrently with kernel execution. Thus, for tracking accesses to global memory, we

allocate shadow memory on-demand in response to a kernel’s actual global memory accesses.

We maintain shadow memory for the GPU’s global memory using a page table where each page

holds shadow memory to track 1MB of the GPU’s global memory. When a global memory

location is accessed by the GPU we check if it belongs to an allocated page. If not, we lock the

root of the page table and allocate a new page of shadow memory.

When loads, stores and standalone atomic operations are processed, Barracuda begins by

retrieving the appropriate shadow structures for all the addresses accessed by active threads.

The code implements the Barracuda algorithm as described in Section 5.4.3. If a race is

detected, the offending TIDs are examined to classify the race as a divergence race, an intra-

block race or inter-block race.

A memory location x accessed with acquire and release operations is deemed a synchronization

location and tracked specially. GPU code usually has few such synchronization locations, and

many programs have none, so storing them in shadow memory would be wasteful. Instead they

are stored in their own map (the Sx map from Section 5.4.3). For each synchronization location

x we maintain a collection of VCs, representing the various times at which different thread

blocks synchronized on x. Each of these per-block VCs is compressed via the scheme described

above in Section 5.5.3. For each synchronization location x, the AcqGlobal, RelGlobal,

AcqBlock, RelBlock rules are thus implemented via join operations between the PTVCs

and the per-block VCs of x.

76

5.6. Evaluation

In this section we evaluate Barracuda along two axes: ability to detect races precisely, and

performance overhead.

5.6.1. Experimental Setup

Our experimental machine is a dual-socket system with two Xeon E5-2620v4 processors, each

with 8 cores running at 2.1GHz, and 128GB of RAM. The machine additionally has an Nvidia

GTX Titan X GPU which uses the Maxwell architecture and has 12GB of RAM, and 3072

threads across 24 SMs running at 1GHz. The GPU is connected via PCIe x16. The machine uses

Ubuntu 16.04 (Linux 4.4.0), Nvidia CUDA Toolkits 7.5 and 8, and version 367.48 of the Nvidia

drivers. All benchmarks were built with Nvidia’s nvcc compiler, using the flags -cudart=shared

-arch=sm 35 -O.

Barracuda is evaluated with the following benchmarks: we use bfs, backprop, dwt2d, gaus-

sian, hotspot, hybridsort, kmeans, lavamd, needle, nn, pathfinder and streamcluster from Ro-

dinia version 3.1 [15]; hashtable from GPU-TM [47, 110]; bfs from SHOC [23]; dxtc and

threadFenceReduction from the Nvidia CUDA SDK 7.5 samples; we also use block radix sort,

block reduce, block scan, device partition flagged, device reduce, device scan, device select-

flagged, device select if, device select unique and device sort find non trivial runs from Nvidia’s

CUB SDK 1.4.1 samples. Performance measurements are the average of 10 runs, with a full

GPU reset between each run.

5.6.2. Concurrency Bug Suite

To evaluate the correctness of Barracuda, we constructed a CUDA concurrency bug suite

consisting of 66 small CUDA programs that exhibit subtle data races or race-free behavior via

global memory, shared memory, within and across warps and blocks, and using a variety of atomic

and memory fence instructions to implement locks, whole-grid barriers and flag synchronization.

Barracuda reports races (or the absence of a race) correctly for all 66 of our tests. Nvidia’s

77

CUDA-racecheck [83] reports correctly on only 19 tests, sometimes reporting races where there

are none (with intra-warp synchronization), missing races on global memory, and even hanging

on the tests involving spinlocks.

5.6.3. Standard Benchmarks

2 3 4 5

benchmark
static total global races
insns threads mem MB found

BFS 281 1,000,448 155
Backprop 272 1,048,576 9
DWT2D 35,385 2,304 6,644 3 global
Gaussian 246 1,048,576 124
Hotspot 338 473,344 119
Hybridsort 906 32,768 252 1 shared
Kmeans 384 495,616 252
Lavamd 1,320 128,000 965
Needle 1,006 495,616 64
Nn 234 43,008 188
Pathfinder 285 118,528 155 7 shared
Streamcluster 299 65,536 188
BFS 770 1,024 68 3 global
Hashtable 193 64 103 3 global
dxtc 1,578 1,048,576 17 120 shared
ThreadFenceRed 5,037 16,384 787 12 shared
block radix sort 2,174 128 66
block reduce 2,456 1,024 70
block scan 4,451 128 118
d partition flagged 2,834 128 66
d reduce 2,397 128 66
d scan 1,661 128 65
d select flagged 2,615 128 66
d select if 2,508 128 66
d select unique 2,484 128 66
d sort find non triv 16,479 128 66

Table 5.1: The benchmarks used with Barracuda.

Table 5.1 gives more detail about each benchmark used in our evaluation. Column 2 lists the

number of static PTX instructions in each program. Column 3 lists the total number of threads

used within the largest kernel in each program. Four benchmarks launch more than 1 million

threads to run on the GPU simultaneously, and several launch many hundred thousand. Column

4 lists the total global memory used by each benchmark, which is typically small with the

exception of DWT2D. There is plenty of space in global memory for Barracuda to allocate

its queues without impinging on the application. Finally, column 5 lists the number of races

78

0.0%	
10.0%	
20.0%	
30.0%	
40.0%	
50.0%	

BF
S	

Ba
ckp
rop
	

DW
T2
D	

Ga
us
sia
n	

Ho
tsp
ot	

Hy
bri
ds
ort
	

Km
ea
ns
	

La
va
md
	

Ne
ed
le	 Nn

	

Pa
thfi
nd
er	

Str
ea
mc
lus
ter
	
BF
S	

Ha
sh
tab
le	

dx
tc	

Th
rea
dF
en
ce
Re
d	

blo
ck_
rad
ix_
so
rt	

blo
ck_
red
uc
e	

blo
ck_
sca
n	

d_
pa
rM
Mo
n_
fla
g	

d_
red
uc
e	

d_
sca
n	

d_
sel
ec
t_fl
ag
ge
d	

d_
sel
ec
t_i
f	

d_
sel
ec
t_u
niq
ue
	

d_
so
rt_
fin
d_
ntr
iv	

%
	in
st
ru
m
en

te
d	
lo
ca
0o

ns
	

unopMmized	 opMmized	

Figure 5.11: The percentage of static PTX instructions instrumented by Barracuda before (left
bars) and after instrumentation pruning (right bars).

0.1	
1	

10	
100	

1000	
10000	

BF
S	

Ba
ckp
rop
	

DW
T2
D	

Ga
us
sia
n	

Ho
tsp
ot	

Hy
bri
ds
ort
	

Km
ea
ns
	

La
va
md
	

Ne
ed
le	 Nn

	

Pa
thfi
nd
er	

Str
ea
mc
lus
ter
	
BF
S	

Ha
sh
tab
le	

dx
tc	

Th
rea
dF
en
ce

blo
ck_
rad
ix_
s

blo
ck_
red
uc
e	

blo
ck_
sca
n	

d_
pa
rH
Ho
n_
fl

d_
red
uc
e	

d_
sca
n	

d_
sel
ec
t_fl
ag

d_
sel
ec
t_i
f	

d_
sel
ec
t_u
niq

d_
so
rt_
fin
d_

sl
ow

do
w
n	
ov
er
	n
a,

ve
	(x
)	

Figure 5.12: The performance overhead of Barracuda, normalized to native execution. Note
the log y-axis.

found by Barracuda for each benchmark, and whether the races are in shared memory or

global memory. Previous software-based race detectors for CUDA [118, 119, 83, 75] focus on

shared memory, and so will not be able to detect the 9 races in global memory that Barracuda

finds.

Figure 5.11 shows the fraction of the static instructions in each benchmark that are instru-

mented by Barracuda. Because arithmetic instructions don’t require instrumentation with

Barracuda, and they typically comprise the bulk of the instructions in a GPU kernel, Bar-

racuda never instruments more than half of the instructions among our benchmarks. The blue

bars in Figure 5.11 show how many fewer instructions are instrumented thanks to Barracuda’s

intra-basic-block logging optimizations (Section 5.5.1).

Figure 5.12 shows the performance overhead that Barracuda incurs, normalized to native

execution. Barracuda’s dynamic binary instrumentation approach, which maximizes compat-

ibility with existing CUDA binaries, can incur significant performance overheads. On DWT2D,

79

Barracuda’s slowest benchmark, the overhead is 3700x, though the relative overhead for this

and many other benchmarks is exacerbated by short running times: DWT2D executes natively

in just 90ms. dxtc is Barracuda’s slowest benchmark in absolute time and completes in 20

minutes, which is too slow for interactive use but more than fast enough for usable debugging.

hotspot with Barracuda reliably runs significantly faster than with native execution. We have

traced this issue to differing JIT compilation decisions with and without Barracuda, but have

not yet pinpointed the issue further.

5.6.4. Bugs Discovered

Here we describe some of the bugs we discovered with Barracuda. In the hashtable bench-

mark, each thread stores a value in a random key in the hashtable. Each hashtable bucket is

protected by a fine-grained lock. The program uses an atomicCAS without a fence to synchro-

nize access to each bucket. Barracuda detects two bugs: first, since there is no fence for the

atomicCAS, it can be reordered with other operations that manipulate the hashtable bucket.

Second, releasing the bucket lock occurs via a non-atomic write without a fence. The hashtable

data structures reside in global memory, so the bug is not discoverable by tools that focus only

on shared memory [118, 119, 83, 75].

Another interesting race comes from the bfs SHOC benchmark [23]. The graph data structure

in bfs is stored in global memory. As multiple threads traverse the graph, they track the distance

of each node from the starting node. These updates are performed without atomic operations or

fences, and the writes can occur concurrently from multiple blocks. A flag is also concurrently

set to 1 from multiple threads. While the CUDA documentation states that multiple writes,

from threads within a warp, to the same location are serialized [81, §4.1], no such guarantees

are stated for writes beyond a warp.

5.7. Conclusion

In this chapter, we have demonstrated Barracuda, a precise dynamic data race detector for

CUDA GPU programs. Barracuda maintain the per-thread metadata required by a vector-

80

clock based algorithm using highly compressed data structures, making the algorithm practical

to run on GPU programs, which often have millions of threads.

81

CHAPTER 6

More Efficient Data Race Detection for GPU

In Chapter 5, we have presented the Barracuda system, which allows GPU programs to be

analyzed for data races. However, as shown in the evaluation results, Barracuda can high

incur runtime overhead, limiting its application. Although the loss-less compression scheme of

PTVCs enables Barracuda to apply a CPU-oriented vector clock based algorithm to GPU

programs, this algorithm is unaware of some unique characteristics of the GPU programming

and execution model. In particular, synchronization in GPU programs is much more structured

than general C/C++ programs that run on CPU, which may enable a lighter-weight scheme to

check for conflicting accesses. Also, GPU programs are often optimized for memory efficiency,

which makes some unique memory access patterns common in these programs. Knowledge of

such access patterns can potentially enable a dynamic race detector to maintain its metadata

more efficiently.

This chapter presents Curd, a system that applies the intuitions mentioned above to the design

of a new dynamic race detection algorithm.

6.1. The Curd System

With this work, we seek a CUDA race detector that provides both precision and acceptable

performance. We leverage the open-source Barracuda design as a starting point, but find

that its focus on supporting a wide range of synchronization primitives makes it a poor match for

common-case GPU code, which generally uses just simple barriers to synchronize. We describe

a new race detector, Curd, that is highly optimized for this common case but retains the ability

to fall back to the Barracuda algorithm to preserve precision. We describe a simple static

analysis that can decide, before a kernel runs, which race detection algorithm to use. This

hybrid approach provides a significant performance improvement for many programs without

compromising precision.

82

Curd’s central approach to race detection is to record the read and write sets of synchronization-

free regions (SFRs) of code, and then perform set intersections to detect locations for which

a data race occurred, i.e., the location was accessed by two distinct threads, at least one of

which wrote to the location. While using read/write-set tracking for race detection has been

explored before [78, 57, 119, 118], Curd innovates in several key respects. First, Curd utilizes

an efficient set representation that is attuned to the typical access patterns of GPU kernels,

ensuring that kernels that are well-optimized for the GPU memory hierarchy have very compact

read/write set representations with Curd. Second, Curd aggressively exploits the GPU’s

parallelism in its internal operations. Third, Curd’s hybrid organization allows it to avoid

“overpaying” for race detection on programs that eschew complicated synchronization.

When a programmer decides to instrument a program with Curd to perform race detection, a

simple static analysis runs to examine which race detection algorithm to use. This analysis has

been implemented in LLVM and examines the bytecodes of a GPU kernel, looking for atomic

and fence instructions. If one of these instructions is present, Curd uses the Barracuda

algorithm [30] to preserve precision in the face of low-level synchronization. Otherwise, Curd

uses an alternative algorithm that is optimized for common-case GPU code that synchronizes

only via barriers. In the remainder of this paper, we focus on this alternative algorithm, which

we refer to as Curd for simplicity.

Figure 6.1 shows Curd’s high-level operation. To detect intra-block races, Curd maintains

two sets, TRS(t) and TWS(t), for each thread t to track the locations read and written by t,

respectively. Curd tracks accesses to each memory space (shared or global) separately, so there

are in fact two read sets and two write sets for each thread. For simplicity, we do not distinguish

between these sets in the discussion below except in the special cases (like barriers) where they

are treated differently. To detect inter-block races on global memory, for each block b, BRS(b)

and BWS(b) sets are maintained to save the aggregated sets of reads & writes performed by

the block b.

83

kernel
events

start shared
memory
access

global
memory
access

CURD
operations

log address in
per-thread sets

block-level
barrier

end

detect intra-
block races

compress per-
thread sets into
per-block sets

detect inter-
block races
eager only

checker kernel
lazy only

detect inter-
block races

lazy only

Figure 6.1: High-level operation of Curd in response to various kernel events.

6.1.1. Access Logging

When a thread t reads/writes a memory location in shared or global memory, Curd records the

memory region being accessed in TRS(t)/TWS(t). Each memory region is a pair pa, sq, where

a is an address within a particular memory address space (either shared or global memory),

and s is an unsigned integer. The pair represents a region of memory starting at address a

and extending for the next s contiguous bytes. In addition, Curd can track the source code

location (file and line) for each region’s most recent read/write.

start: 0xA0
size: 4

start: 0xA8
size: 4

load: 0xA4
size: 8

start: 0x08
size: 4

initial
read set

incoming
memory
access

resulting
read set

start: 0xA0
size: 12

start: 0x08
size: 4

memory region

Figure 6.2: Curd’s read and write sets are implemented as an array of disjoint, non-adjacent
memory regions.

Each read or write set is a collection of regions that obey the following invariant: memory regions

stored inside these sets are always disjoint and non-adjacent. This invariant is maintained on

insertion operations.1 If a region being inserted into a set overlaps with, or is adjacent to, an

1We will actually relax this invariant later for efficiency, but it is convenient for expository purposes to uphold

84

existing region, recursive merging occurs to keep the set elements disjoint and non-adjacent.

GPU DRAM and caches provides maximum bandwidth when threads access adjacent data.

Thus, by constantly compressing adjacent memory regions, the space consumption of Curd’s

read/write sets is typically quite small for well-optimized CUDA programs.

A per-thread read or write set is implemented as an array of structs, where each struct represents

a memory region. Memory regions within the array are not ordered, so a region containing a

particular address may lie anywhere within the array. The memory regions in use are densely

packed at the beginning of the array, allowing for simple bump allocation of new regions and

efficient clearing of the array.

Figure 6.2 shows an example of adding a load access into an existing read set. The initial

read set contains three memory regions. The incoming load is adjacent to the first region, and

overlaps with the second. Thus, the first and second regions can be merged into a larger region

in the resulting read set.

Inserting a new memory region r into a set is performed as follows. r is checked against each

memory region in the set to see whether r can be merged with an existing region in the set. If

r is disjoint and non-adjacent to all existing regions, r is appended to the array of regions. If r

can be merged with another region r1 (i.e. r is adjacent to or overlaps with r1), we merge r with

r1 and then recursively explore the remaining regions of the set for further merging opportunities

that may have opened up. After merging regions, source information is updated to reflect

this most recent access. Note that regions in the already-explored prefix of the set cannot be

candidates for further merging. We know that such “prefix regions” were already disjoint and

non-adjacent with respect to both r1 (because of the set’s invariant) and r (because we did not

choose to merge r earlier), so prefix regions must also be disjoint and non-adjacent with respect

to r Y r1.

Note that when two regions merge, the source information of one of the merging regions is over-

written. If a race is detected on a memory region r, Curd reports the source-level information

it for now.

85

of the most recent access to r, which may differ from the actual access involved in the race

(though we found this problem rare in practice, see paragraph 6.2). However, on a race Curd

additionally reports the memory addresses on which the race was detected, and these addresses

are always precisely those involved in a race.

In CUDA programs, to fully exploit the available memory bandwidth, threads within a warp need

to access adjacent memory locations. This motivates a “striped” organization of the per-thread

sets as shown in Figure 6.3. The first elements of each per-thread set, for each thread t within

0 0 0 1 1 1

int	address;
short	size;
char*	filename;
int	lineNumber;

t0 t1 t2

index into
per-thread set

n n n…

Figure 6.3: Curd organizes per-thread read/write sets to maximize global memory coalescing
by interleaving entries from each thread. In the example shown, there are three threads per
block.

a block b, appear first. They are followed by the second elements for each thread, the third

elements for each thread, and so on.

6.1.2. Intra-block Race Detection

When the threads in a block reach a barrier operation, we can perform intra-block race detection

using the TRS(t) and TWS(t) for each thread t in a block B. We write a X b to denote the

intersection of two sets a and b. If two sets have a non-empty intersection, we say that the sets

overlap. For each thread in B, we logically intersect read and write sets to detect read-write

races, and then we intersect write sets with one another to detect write-write races. In a race-

free CUDA program, these intersections should all be empty. Once intra-block race detection

is finished, each thread t can safely discard its read and write sets for shared memory, as no

86

compute
ordering &
continuity

sorted? sort

triangular
WW ∩

no RW intra-
block races

initial per-
thread set

optimistic
RW ∩

no WW intra-
block races

report intra-
block race(s)

no

yes

non
empty

empty

compress

regular
RW ∩

empty

non-empty

insert into
block set

Figure 6.4: The steps involved in intra-block race detection and adding per-thread sets to
per-block sets.

inter-block races are possible in shared memory and any future shared memory accesses from

the block will be well-ordered with t’s current accesses due to the barrier. Global memory

TRS(t)/TWS(t) need to be added to BRS(t)/BWS(t), respectively, and then they, too, are

cleared.

While intra-block race detection and adding to the block sets are logically two separate steps,

their implementation is integrated for efficiency. Figure 6.4 gives an overview. We first discuss

adding to the block sets, then RW intra-block checks, and then WW intra-block checks.

Per-thread Set Compression

Per-thread sets are compressed before being added to the per-block sets to reduce time and

space overheads. TRS(t) and TWS(t) are treated identically, so we refer just to TRS(t) in this

section.

87

parallel scan

start: 0x0
size: 4

start: 0x4
size: 4

start: 0xC
size: 2

input
regions

start: 0xA
size: 2

0 1 0 1mergeability
bitmap

ordering
bitmap1 010

0 0 1 1output
indices

start: 0x0
size: 8

start: 0xA
size: 4

compressed
regions

Figure 6.5: An example of how per-thread sets are compressed in parallel.

Compression produces a compressed read set CRS(b) from the read sets for all threads in the

block b, i.e. CRSpbq “ @t P b Y TRSptq. CRS(b) is a new set, so the original TRS(t) are

preserved, which is important later for intra-block race detection. Compression operates directly

on the striped TRS(t) layout (Figure 6.3), and runs in parallel via the following algorithm (Fig-

ure 6.5). First, an ordering bitmap is computed, identifying whether each region is located in

memory after its left neighbor. Next, a mergeability bitmap is computed, identifying whether

each region is adjacent to or overlaps with its left neighbor. Neighboring regions are often merge-

able because, for well-optimized kernels, adjacent threads (more precisely, threads within the

same warp) often access adjacent memory regions to ensure coalesced global memory accesses.

Next, a parallel scan of the mergeability bitmap computes the indices to use in the output set

CRS(b). Finally, using the output indices and the ordering bitmap, we identify the beginning

and end of each mergeable sequence of input regions, and compress them into a single output

region.

Once CRS(b) is computed, it is inserted into BRS(b). This insertion does not exhaustively search

BRS(b) for potential merges, instead examining just k regions. We found that bounded search

yielded better performance in practice, even though it makes BRS(b) larger. While bounded

search also violates the disjoint and non-adjacent property for region sets, it does not impact

correctness because set intersections still operate on all regions in a set.

88

Checking for Read-Write Intra-Block Races

A sufficient, but not necessary, condition for the absence of intra-block read-write races within a

block b is CRSpbqXCWSpbq “ H. As the compressed sets are small, this check is much faster

than checking for intersections among TRS(t) and TWS(t) for each pair of threads. Moreover,

the ordering bitmap from Section 6.1.2 and bit-twiddling instructions quickly reveal whether

CRS(b) and CWS(b) are sorted, which then permits linear-time set intersection.

If CRSpbq XCWSpbq ‰ H, it may be because of a true intra-block race or because a thread t

both read and wrote some location x. Thus, we must go back and perform intersections among

the individual TRS(t) and TWS(t). To make these intersections faster, we first sort any unsorted

TRS(t) and TWS(t) sets in-place. With n threads in a block, this requires Opn2q intersections,

each of which can run in linear time. However, the optimistic RW check is effective at reducing

the need for this more expensive check.

Checking for Write-Write Intra-Block Races

To check for write-write races in a SPMD fashion, each write set is compared with every

other write set. However, half of these intersections are unnecessary as set intersection is

commutative. Considering a matrix with each row and column representing a write set, the

strict upper triangular matrix represents the necessary intersections. Performing only these

intersections improves performance as both memory traffic and intersections are reduced by half.

This “triangular check” design also minimizes branch divergence [60] in the code, which saps

performance on GPU SIMD hardware. Since the TWS(t) are sorted from read-write checking,

individual set intersections can run in linear time.

6.1.3. Inter-Block Race Detection

For detection of inter-block races, an important design decision is when to do the checks. The

Curd design explores two options: a lazy scheme (Curd-Lazy) which defers inter-block race

detection until the kernel terminates, and an eager scheme (Curd-Eager) which performs inter-

block race detection at each barrier. Note that intra-block race detection always occurs eagerly,

89

at each barrier. Both lazy and eager inter-block race detection are fully precise, in the sense

that no data race on location x will ever be missed, nor will a false race ever be reported.

Both schemes report the precise addresses involved in any data races. The lazy approach has

lower implementation complexity and can be faster in some circumstances, but has less-timely

detection because races are not reported until the end of the kernel when source information

may have been overwritten during previous merges. In contrast, performing inter-block checks

eagerly allows races to be caught earlier, potentially giving users more accurate source-level

information about the race.

We discuss the lazy scheme first, as it is conceptually simpler than the eager detection scheme.

The inter-block detection scheme also affects how the results of per-thread set compression

(Section 6.1.2) are used, as we explain below.

Curd-Lazy

In the lazy scheme, inter-block race checks are not conducted until the target kernel terminates.

As the kernel executes, at each barrier, a block b unions all of its per-thread sets with each

other (Section 6.1.2) and with a single cumulative BRS(b) (or BWS(b)) as shown in the top of

Figure 6.6. BRS(b) and BWS(b) are implemented exactly as the per-thread sets are, maintaining

disjointedness and non-adjacency among all constituent regions. The location A, which is

accessed both before and after a barrier in Figure 6.6, is represented only once in the final

per-block set.

Checks for inter-block races are done in a separate checker kernel launched after the termination

of the target kernel. After the checker kernel terminates, global memory used for block read/write

sets can be freed. Similar to intra-block race checks, in the lazy scheme, inter-block races are

detected in a read-write pass and a write-write pass for each block b in the grid G.

Each inter-block check involves OpB2q intersection operations of block read/write sets in total.

To parallelize these operations, each block is responsible for checking its own read/write set with

the write set of all other blocks, involving OpBq intersections. Within each block, the operations

90

A B A,B

A,C

A C

per-block
read

subsets

CURD-Eager

CURD-Lazy

legend

per-thread
read set

barrier

thread

union

A B
A-C

A C

per-block
read set

Figure 6.6: Curd combines per-thread sets into per-block sets differently in the lazy (top) versus
eager (bottom) schemes. The two threads shown here are part of the same block. Write sets
are elided for simplicity but are handled analogously.

are distributed evenly among N threads, with each thread performing OpB{Nq intersections.

One benefit of the lazy strategy is a simplified implementation. As all block sets are read-only

after the target kernel terminates, no synchronization is necessary inside the inter-block checker

kernel.

Eager Scheme

To detect inter-block races before kernel termination, Curd also offers an eager detection

strategy. In this scheme, checks for inter-block races are performed at the end of each synch-

ronization-free region.

91

The simplest version of the eager scheme would intersect all the per-block sets at each barrier,

exactly as the lazy scheme does. However, this would entail a significant number of redundant

comparisons as the per-block sets change only partially after each barrier. Thus, we adopt

a more sophisticated incremental detection scheme that reduces redundancy by handling the

updates to a per-block set separately.

A key challenge in the design of eager inter-block detection is coordinating concurrent access to

per-block sets across blocks. While all threads in b0 are at a barrier when b0 begins inter-block

detection, another block bi may be actively executing and as a result BRSpbiq and BWSpbiq

may be changing. To avoid the need for complex concurrency control, BRS(b0) is organized as

a list of read subsets BRSpb0qr0s . . . BRSpb0qrns (and BWS(b0) similarly). Within each read

subset, memory regions are disjoint and non-adjacent. However, there are no such guarantees

across subsets. At each barrier, b0 compresses its threads’ read sets into a compressed read

subset (Section 6.1.2) and appends this subset to BRS(b0) as shown in the bottom part of

Figure 6.6. The same memory location A is accessed before and after a barrier so A is stored

twice, within each subset of the per-block set.

Once a read subset is appended to BRS(b0), it becomes immutable. Thus, when a block bi

wants to check against BRS(b0), bi records the current number of subsets in BRS(b0) and

intersects with them. b0 may concurrently append additional subsets, but these will be checked

at bi’s next barrier (or at the end of the kernel). A per-block spinlock is used to protect the

size of each block’s BRS(b) and BWS(b) sets, to ensure that remote threads see a consistent

view of the set during their checks. Performing intersections with a read subset does not require

synchronization, however, as these subsets are immutable.

To avoid redundant intersections, when b0 reaches a barrier we partition BRS(b0) in two: a prefix

BRS(b0)[0 : ´1] of read subsets from before the current SFR began, and a suffix BRS(b0)[´1]

containing just the read subset from the current SFR.2 BWS(b0) can be split similarly. BRS(bi)

2We adopt Python’s array slicing syntax for identifying sub-lists of per-block sets. [a : b] indicates the slice
from index a up to, but not including, index b. The special index -1 indicates the last index of a list. Thus, the
slice [0 : ´1] contains all elements except the last element in the list. A slice may omit the second index, e.g.,
[a :], in which case the slice begins at index a and continues through the end of the list.

92

for a remote block bi can be partitioned at some index k, where BRS(bi)[0 : k] is a prefix of bi’s

read subsets up to but not including subset k, and BRS(bi)[k :] is a suffix of the read subsets

from index k onward through the end of the list. After performing an inter-block check, a block

b0 remembers the prefix BRS(bi)[0 : k] of read subsets that have been checked so as to avoid

redundant intersections with these subsets in the future. We will explain how k is tracked for

each block shortly, but first we illustrate how eager inter-block race checks work assuming k is

already known.

BRS(b0)[0:-1]

BRS(b0)[-1]

BWS(b0)[0:-1]

BWS(b0)[-1]

BWS(bi)[0:k]

BWS(bi)[k:]1

2

3

ol
de

r ➝
 n

ew
er

Figure 6.7: Curd-Eager inter-block race checks involve three set intersections between each
distinct pair of blocks. This example illustrates the checks between blocks b0 and bi.

When b0 reaches a barrier, the race checking required between b0 and some other block bi is

shown in Figure 6.7. The checks proceed in three steps. Step 1: We intersect b0’s current read

subset with all writes from bi. Step 2: We intersect all of b0’s previous read subsets with the

suffix write subsets from bi, eliding BRSpb0qr´1sXBWSpbiqrk :s which was performed in Step

1. Step 3: We intersect b0’s current writes with all writes from bi. Note that BRSpb0qr0 :

´1s X BWSpbiqr0 : ks, and BWSpb0qr0 : ´1s X BWSpbiqr0 : ks, have been performed by b0

during some previous barrier. At b0’s first barrier, BRSpb0qr0 : ´1s and BWSpb0qr0 : ´1s are

empty so no intersection is necessary. The intersection BWSpbiqrk :s XBWSpb0qr0 : ´1s will

be performed by bi at its next barrier. We use multiple threads within a block to accelerate these

set intersections, by having each thread read a different element of, say, BWSpbiq in parallel

and compare it with each other element of BRSpb0qr´1s.

To determine the pivot k which divides subsets we have checked already from those we have not

yet checked, each block maintains an array alreadyChecked with an element for each other block

in the grid. These elements contain the appropriate k value for each other block. Because read

93

subsets are immutable once appended to some BRS(b), the length of BRS(b) is non-decreasing

over time and thus the k values are as well. alreadyChecked can also be thought of as a kind

of vector clock, tracking the time at which a block last coordinated with each other block.

6.2. Implementation

Like many other compiler-based race detectors (e.g., LLVM’s ThreadSanitizer race detector

for CPU programs [103]), Curd consists of two major parts: an instrumentation pass and a

detection library. Curd uses LLVM to instrument memory accesses and barriers in kernel code,

as well as kernel launches in host code. These locations are instrumented with calls into the

Curd runtime library, which is linked together with the application.

Shadow Memory management At present, Curd allocates its shadow memory on the host

side, via cudaMalloc(). The main reason why the allocation was not done dynamically on the

device is that Curd needs a global memory region visible to all blocks, and across kernels. It is

simpler to set this up before the kernel launch to ensure that the memory region is communicated

to all threads and blocks. An additional reason to avoid device-side allocation is that we need a

handle to the shadow memory on the host side, and memory dynamically allocated on the device

is not accessible to host code. Besides the shadow memory allocated in global memory, several

read-only configuration parameters which Curd reads during online race detection (e.g., the

sizes of shared memory per block and total global memory), are copied into constant memory.

It is non-trivial to decide the size of shadow memory to be allocated. To keep things simple, the

current version of Curd allocates each data structure (e.g., BRS(b)/BWS(b), TRS(t)/TWS(t))

with a fixed size, which can be configured at runtime via environment variables. We will

investigate more sophisticated ways of preallocating the shadow memory in future work. After

a kernel terminates, all detected races are reported to the user, after which the shadow memory

allocated is freed.

Source-level information To provide useful information about the location of data races,

Curd stores the source file name and line number with each memory region in the thread and

94

block sets. Since only one piece of the source information can be kept per region, region merges

cause information to be lost about one of the regions involved in the merge. To track whether

such information loss about any source locations has occurred, each memory region structure

maintains a complete bit that indicates whether the stored source level information is complete.

When a memory region is initially constructed, this bit is set. When two regions are merged into

a single region, the bit of the resulting region is set if and only if 1) the bit is set in both merging

regions and 2) the source-level information stored in the two regions is identical. When a race

is detected when comparing two regions, Curd reports to the user whether it has information

about all the source file locations that may be involved in the race, by inspecting the complete

bits.

We verified the races found on the benchmarks in our evaluation of Curd (Section 6.3), and

the source-level information for all reported races are complete. This is intuitive as 1) CUDA

has a SPMD programming model, where many threads execute the same program statement

and 2) mergeable regions are often accessed at the same program statement, as these accesses

are often to adjacent global memory regions to permit coalescing.

Reducing impact on occupancy One potential side effect of instrumenting CUDA programs

is that the instrumented kernel may have reduced achievable occupancy on the GPU, as calls

to functions in Curd may increase the maximum number of registers and amount of shared

memory a thread may use. Reduced occupancy can slow the instrumented program. To minimize

this effect, functions in the Curd library avoid the use of shared memory when possible, and

set a limit for the maximum number of registers when compiling the Curd library.

Pruning instrumentation to local and constant memory In addition to shared and global

memory, CUDA programs also frequently use another two address spaces: local and constant

memory. We found in the development that accesses to local and constant memory can dominate

all accesses on some programs (e.g. heartwall from Rodinia), so we develop a data-flow analysis

pass that tries to statically indentify local and constant memory pointers, to avoid unnecessarily

instrumenting these memory locations.

95

Caching Thread-Set Insertions Recall that when the program accesses a memory region r,

Curd first searches for any mergeable region in the corresponding thread set before inserting r

into the set. Typically, programs exhibit temporal and spatial locality when accessing their data,

so the efficiency of the lookups into the thread sets can be improved if each search starts from the

most recently added/merged region. Therefore, we optimized the thread-set insertion routine

such that 1) when a merging of memory regions occurs, move the merged region to the last

position of the thread-set and 2) each search in a thread set starts from the last element of the

thread-set and moves forwards and 3) only a bounded number of elements are examined in each

search. These modifications make thread-set insertion faster because the newly merged/inserted

region is more likely to be reused in subsequent insertions and the insertion procedure can return

within a bounded number of steps, even if no mergeable region exists in the thread sets.

Note that since insertions into the thread sets now only examine a bounded number of elements,

it is possible for a thread set to have overlapping/adjacent elements. This does not hurt

soundness, but might make the thread sets larger than necessary and potentially introduces more

work during intra-block checks and compression into block sets. We found in our experiments

that the benefit of cached set insertions outweighs the cost of the potential extra work, as the

cached thread-set insertions speed up all benchmarks used in our evaluation.

Metadata Reuse Across Kernel Launches Many GPU programs launch a large number of

kernels, each of which does a relatively small amount of work. The Caffe machine learning

framework is an excellent example of this design as it uses frequent kernel launches (and termi-

nations) as a form of global synchronization in lieu of atomics. Curd incurs non-trivial startup

costs to allocate and initialize its metadata, which would normally be required before every ker-

nel launch. As an optimization, we allow Curd’s metadata (which resides in global memory)

to persist across kernel launches, avoiding constant deallocation and reallocation. This change

improves the performance of Caffe by 7x.

96

6.3. Evaluation of Curd

6.3.1. Experimental Setup

To evaluate how effective and efficient Curd is in terms of detecting global and shared memory

races in GPU programs, we test Curd on a wide range of 53 benchmarks, as shown in Table 6.1.

We include programs from the NVIDIA CUDA SDK version 7.5 samples (indicated by an N after

the benchmark name in Table 6.1), Rodinia 3.1 (R) [15], NVIDIA’s CUB SDK 1.4.1 samples

(C), Parboil 2.5 (P) [108], Gunrock 0.4 (G) [111], and Caffe, a widely-used machine learning

framework, evaluated by running the AlexNet and OverFeat models. Of these benchmarks, only

threadFenceReduction uses low-level atomics and fences for synchronization, necessitating the

use of the Barracuda algorithm to maintain precision. The remaining 52 benchmarks run

with the Curd algorithm described in Section 6.1.

Our experimental machine is a dual-socket system with two Xeon E5-2620v4 processors, each

with 8 cores running at 2.1GHz, and 128GB of RAM. The machine additionally has an Nvidia

GTX Titan X GPU which uses the Maxwell architecture and has 12GB of RAM, and 3072

threads across 24 SMs running at 1GHz. The GPU is connected via PCIe 3.0 x16. The machine

uses Ubuntu 16.04 (Linux 4.4.0), Nvidia CUDA Toolkits 8, and version 367.48 of the Nvidia

drivers. All benchmarks were built with Nvidia’s nvcc compiler included in CUDA 8.0, using the

flags -cudart=shared -arch=sm 50 -O3. During compilation, the NVVM IR generated by nvcc

was intercepted when a special function call is done by the libNVVM library, which enables us

to invoke our instrumentation pass developed based on LLVM 3.4 (which is compatible with the

NVVM IR). After that, the instrumented IR is sent back to the toolchain of nvcc. This way we

can utilize the handy support for separate compilation and linking of CUDA files, which is not

yet supported by LLVM. Performance results shown are the geomean of 5 runs.

6.3.2. Performance

Across all workloads, Curd-Eager incurs an average slowdown of 2.89x, whereas Curd-Lazy

incurs 2.88x slowdown over native execution. Curd-Eager’s overhead ranges from 1.1x (de-

97

b_
ra
di
x_
so
rt

b_
re
du
ce

b_
sc
an

b+
tr
ee

ba
ck
pr
op

bc cc
cu
tc
p

d_
pa
rt
iti
on
_f

d_
pa
rt
iti
on
_i
f

d_
ra
di
x_
so
rt

d_
re
du
ce

d_
sc
an

d_
se
le
ct
_f

d_
se
le
ct
_i
f

d_
se
le
ct
_u
ni
q

d_
so
rt
_f
in
d_

dw
t2
d

dx
tc

eu
le
r3
d

gu
nr
oc
k_
bf
s

he
ar
tw
al
l

hi
ts

ho
ts
po
t

hy
br
id
so
rt

km
ea
ns

la
va
M
D

lb
m

le
uk
oc
yt
e

lu
d_
cu
da

m
ri-
q

m
yo
cy
te

nn nw
pa
rt
ic
le
f_
f

pa
rt
ic
le
f_
n

pa
th
fin
de
r

pr
ro
di
ni
a_
bf
s

sa
d

sc
al
ar
Pr
od

sg
em
m

sp
m
v

sr
ad

ss
sp

st
re
am
cl
us
te
r

th
re
ad
Fe
nc
e

to
pk

1x

10x

100x

S
lo

w
do

w
n

ov
er

 n
at

iv
e

Figure 6.8: Slowdown over native execution (lower is better) for Curd-Lazy (light bars) and
Curd-Eager (dark bars). Note the log scale for the y-axis.

vice scan) to 111x (heartwall), while Curd-Lazy slows the programs by 1.1x (device scan) to

37.9x (heartwall). heartwall is something of an outlier for Curd, as the next slowest benchmark

(leukocyte) incurs just a 23.9x slowdown with Curd-Lazy and 24.8x with Curd-Eager. We

investigate heartwall’s performance in more detail in Section 6.3.3. Of particular note is Curd’s

performance on the Caffe machine learning framework, where Curd incurs an acceptable over-

head of 14x for this important class of workload.

Overall, Curd-Lazy and Curd-Eager perform similarly but Curd-Lazy has a noticeable per-

formance edge on several programs. We envision programmers first running with Curd-Lazy

to quickly discover if a program has any races, and then, if necessary, using Curd-Eager to get

more precise debugging information.

As the Barracuda system is the most related work to Curd, we evaluate Barracuda

and Curd under the same environment. However, Barracuda only succeeds in running 24

programs among all the benchmarks we evaluate; for other benchmarks, it fails either due to

runtime error or insufficient memory. Figure 6.9 shows Curd’s speedup over Barracuda.

Comparing their geomeans, Curd outperforms Barracuda by 17.4x. Curd sees a maximum

speedup of 1435x on DWT2D. On 21 programs, Curd runs faster than Barracuda, with

a minimum 1.8x speedup (nw). Barracuda is 6.4x faster than Curd on hotspot, where

Barracuda consistently outperforms even native execution due to Barracuda’s inadvertent

effects on the PTX JIT compiler.

98

ba
ck
pr
op

b_
re
du
ce

b_
ra
di
x_
so
rt

b_
sc
an

d_
pa
rt
iti
on
_f

d_
re
du
ce

d_
sc
an

d_
se
le
ct
_f

d_
se
le
ct
_i
f

d_
se
le
ct
_u
ni
q

d_
so
rt
_f
in
d_

dw
t2
d

dx
tc

ga
us
si
an

ho
ts
po
t

hy
br
id
so
rt

km
ea
ns

la
va
M
D

nn nw
pa
th
fin
de
r

ro
di
ni
a_
bf
s

st
re
am
cl
us
te
r

th
re
ad
Fe
nc
e

ge
om
ea
n

0x

1x

10x

100x

1,000x
S

pe
ed

up
 o

ve
r B

ar
ra

cu
da

Figure 6.9: Curd-Lazy’s speedup over Barracuda (higher is better). Note the log scale on the
y-axis.

To put Curd’s performance in an appropriate context, we also run Nvidia’s commercial race de-

tector CUDA-Racecheck (from CUDA SDK 8) and measure its performance on our benchmarks.

Figure 6.10 shows Curd’s speedup over CUDA-Racecheck. Since CUDA-Racecheck only checks

for races on shared memory, we exclude programs that do not use shared memory, and com-

pare the performance on the 35 benchmarks that use shared memory. For these benchmarks,

Curd-Lazy is on average 2.1x faster than CUDA-Racecheck, with a maximum 461x speedup on

dxtc. Curd runs slower than CUDA-Racecheck on block reduce, bc, cc, dwt2d, pr, salsa, sssp.

b_
ra
di
x_
so
rt

b_
re
du
ce

b_
sc
an

ba
ck
pr
op

bc cc
d_
pa
rt
iti
on
_f

d_
pa
rt
iti
on
_i
f

d_
ra
di
x_
so
rt

d_
re
du
ce

d_
sc
an

d_
se
le
ct
_f

d_
se
le
ct
_i
f

d_
se
le
ct
_u
n.
.

d_
so
rt
_f
in
d_

dw
t2
d

dx
tc

gu
nr
oc
k_
bf
s

he
ar
tw
al
l

hi
ts

ho
ts
po
t

hy
br
id
so
rt

km
ea
ns

la
va
M
D

le
uk
oc
yt
e

lu
d_
cu
da

nw
pa
th
fin
de
r

pr sa
d

sa
ls
a

sa
m
pl
e

sc
al
ar
Pr
od

sg
em
m

ss
sp

th
re
ad
Fe
nc
e

to
pk

0x

1x

10x

100x

S
pe

ed
up

 o
ve

r R
ac

ec
he

ck

Figure 6.10: Curd-Lazy’s speedup over CUDA-Racecheck (higher is better). Note the log scale
on the y-axis.

99

On these benchmarks, Curd typically spends a significant amount of time in tracking races

on global memory (see Figure 6.11), while CUDA-Racecheck ignores global memory entirely.

Some of CUDA-Racecheck’s overhead is likely due to its use of dynamic binary instrumentation

instead of Curd’s compiler-based approach. However, Curd currently employs essentially no

static analysis and focuses on algorithmic optimizations instead, which are likely quite applicable

to the CUDA-Racecheck implementation as well.

6.3.3. Additional Characterization

In this section, we evaluate some additional aspects of Curd’s performance. First, Figure 6.11

shows the breakdown of Curd’s overhead from four sources: 1) instrumentation; 2) shared

memory checking; 3) intra-block global memory checking; and 4) inter-block global memory

checking. We measure the cost of each component by comparing performance after disabling

each component (except instrumentation, which is always required). We excluded programs

where Curd incurs negligible overhead, as the breakdown of overhead is difficult to measure

using this method on such programs.

Table 6.1 shows detailed characterization data for our benchmarks. Column 2 shows the lines

of CUDA code in each benchmark. Column 3 shows the maximum number of threads for each

program, which occasionally exceeds 1M and is reliably in the hundreds of thousands. Column

4 shows the maximum number of entries ever found in a block set or thread set accordingly;

if only one number is shown, the max block set and thread set sizes are the same. These

sets are typically just tens of regions, and never more than a few thousand. Column 5 shows

the percentage of all per-thread sets that were naturally sorted, of all the sets encountered

across barriers and kernel exits. The vast majority naturally appear in sorted order due to the

predominant GPU memory access patterns. Column 6 shows the “high-water mark” amount of

shadow memory used by Curd, which is typically small but occasionally reaches into the GBs.

The instrumentation overhead measures the cost of instrumenting loads and stores with an empty

callback. On heartwall, Curd’s slowest benchmark, this is 84% of its total overhead. Shared

100

Table 6.1: Details of each benchmark and its behavior with Curd-Lazy.

2 3 4 5 6 7

program Suite CUDA #max max sorted SMem races
LoC threads BS/TS PTS % (MB)

b+tree R 874 2.6M 33 71 832
backprop R 337 1M 52 80 375

bc G 885 98K 117 / 12 50 36 1s
bfs R 349 66K 1 / 11 68 294 6g
bfs G 855 1M 23 / 14 100 427 2s

block radix sort C 327 128 2 / 21 99 1 1s
block reduce C 294 1K 2 / 64 100 2
block scan C 348 1K 29 / 34 100 4 1s

caffe 6856 10K 4110 / 121 98 36
cc G 678 123K 324 / 8 100 30 1s,1g

cutcp P 1280 15K 32 / 241 92 114 2s
dev part flagged C 246 128 34 / 10 77 ¡1

dev part if C 257 128 34 / 10 67 ¡1
dev radix sort C 226 128 2 / 4 99 ¡1

dev reduce C 193 128 1 100 ¡1
dev scan C 199 128 34 / 12 97 ¡1 1s

dev sel flagged C 246 128 34 / 3 90 ¡1
dev sel if C 255 128 34 / 3 88 ¡1

dev sel unique C 234 128 34 / 3 90 ¡1
dev sort fnt runs C 384 128 23 95 ¡1

dwt2d R 2559 37K 544 100 288
dxtc N 820 688K 2 / 16 100 528 1s

gaussian R 470 7K 16 100 6
heartwall R 2171 16K 2605 94 2327 1s,1g

hits G 431 25K 80 / 50 100 38 1s
hotspot R 339 473K 28 99 109

hotspot3D R 324 66K 81 100 1095
huffman R 1185 16K 16 / 8 79 4

hybridsort R 1145 16K 1025 100 1456 2s
kmeans R 518 496K 34 100 423
lavaMD R 541 128K 126 99 63

lbm P 1018 2.2M 20 100 1318
leukocyte R 657 12K 176 100 14 5s

lud R 401 58K 48 98 333
mri-q P 376 66K 3 / 5 99 10

myocyte R 5413 64 6 / 8 54 2 1g
nn R 322 43K 1 99 3
nw R 453 2K 34 99 134

particlef float R 870 1K 622 100 8 2g
particlef naive R 696 1K 6 99 ¡1

pathfinder R 236 119K 439 99 358
pr G 1116 246K 18 / 52 100 390 1s

scalarProd N 271 33K 4 / 32 52 31 1s
sad P 1440 13K 360 / 90 99 35

salsa G 456 131K 189 / 33 100 132
sample G 496 33K 2 50 2
sgemm P 417 1K 1 / 16 100 7232

srad R 566 2.1M 113 99 2209
spmv P 977 12K 3407 / 131 63 48
sssp G 747 49K 69 / 14 99 21 2s

streamcluster R 1518 66K 2631 / 516 50 1032
threadFenceRed N 1021 8K 66 / 128 98 32 1s

topk G 449 33K 2 / 49 100 49

101

memory checking adds an additional 4% overhead for heartwall, intra-block global memory

checks add 1%, and the remaining 11% results from inter-block global memory checks. After

investigating the instrumented bitcode of heartwall, we found that most instrumented accesses

are to local or constant memory, which introduces unnecessary overhead. Curd includes a

dynamic check to ignore local and constant memory accesses, as these cannot be involved in

data races, but the cost of these checks accumulates rapidly. Although the data-flow analysis

we mentioned in Section 6.2 already prunes some of local or constant memory accesses, the

address space of some pointers cannot be statically decided. One direction to improve this is

to do a more aggressive inter-procedural analysis to decide the address space of more pointers

statically. We leave this as a future work.

On 21 programs in all, the main source of Curd’s overhead is instrumentation. These programs

may also benefit from the address space analysis that would help heartwall. Monitoring shared

memory is the most significant source of overhead on eight programs. On eight other programs,

checking intra-block races on global memory contributes the most to the overall overhead, while

the cost of checking inter-block races dominates on just three programs (myocyte, spmv and

streamcluster).

b_
re
du
ce

b_
sc
an

b+
tr
ee

ba
ck
pr
op bc

ca
ffe cc cf
d

cu
tc
p

dw
t2
d

dx
tc

ga
us
si
an

gu
nr
oc
k_
bf
s

he
ar
tw
al
l

hi
ts

ho
ts
po
t

ho
ts
po
t3
D

hu
ffm

an
hy
br
id
so
rt

la
va
M
D

lb
m

le
uk
oc
yt
e

lu
d_
cu
da

m
ri-
q

m
yo
cy
te nw

pa
rt
ic
le
f_
f

pa
th
fin
de
r pr

ro
di
ni
a_
bf
s

sa
ls
a

sg
em
m

sp
m
v

ss
sp

st
re
am
cl
us
te
r

th
re
ad
Fe
nc
e

to
pk

0%

50%

100% Instrumentation

SMem Checks

InterB GM Checks

IntraB GM Checks

Figure 6.11: How much different parts of Curd-Lazy contribute to its performance overhead.

6.3.4. Data Races Detected

Across our benchmark programs, Curd detects 35 races in total (Column 7 in Table 6.1).

Among them are 24 shared memory races, 5 intra-block global memory races, and 6 inter-block

102

global memory races. The shared memory races have been validated with CUDA-Racecheck.

For benchmarks that Barracuda can successfully run, we have also cross-validated the shared

memory and global memory races detected by Curd and Barracuda. Benchmarks are run

with both Curd-Eager and Curd-Lazy, and the two schemes detect the same set of races.

After investigating the races reported by Curd, we group the races into the following categories:

• Shared memory races without any synchronization: Curd finds 15 such shared

memory races in 13 programs. Among these races, three, including one in leukocyte and

two in hybridsort, are write-write conflicts involve multiple threads writing to the same

shared memory location within a barrier-free-region. According to the CUDA language

specification, the order of these writes are undefined, so such conflicts form data races.

The rest of the 12 races are write-read conflicts between threads in different warps within

the same barrier-free-region, such as the 5 races shown in leukocyte. Depending on the

actual execution order of the read and write operations, the read may return different

values.

• Warp-level synchronization: Curd issues warnings for fragile code that relies on intra-

warp synchronization. We found 9 such issues in our benchmarks. In future GPU ar-

chitectures, such code may break if the warp size changes or additional warp scheduling

flexibility is introduced [46, 73]. In fact, with the release of CUDA 9.0 and introduction of

the Volta architecture, threads within a warp are no longer executed in lock-step uncondi-

tionally; as a result, code relying on warp-level synchronization now needs to be modified

in order to behave correctly on the new generations of GPU hardware.

• Intra-block global memory races: One such race is detected in heartwall and one

in cc, while 3 others are found in bfs (from Rodinia). Among these races, The ones in

bfs are particularly interesting in that they involve indirect memory accesses: the index

of a write into an array a is obtained by first reading an element from another array b;

unfortunately, two different threads can read the same value x from elements of array b,

then concurrently write arxs, forming a race condition. These kinds of indirect memory

103

accesses are particularly challenging to reason about, for both humans and static analysis

techniques.

• Inter-block global memory races: In total, Curd finds 6 such races in the benchmarks

we used, including three in bfs, and one each in myocyte, cc and particlefilter float.

These races were easy to verify as these three programs do not have any inter-block

synchronization, so these conflicting global memory accesses are clearly race conditions.

6.4. Conclusion

In this chapter, we have presented the Curd system, a new data race detector for CUDA

programs. Curd has been implemented in LLVM and applied to a wide range of benchmark

kernels. Curd detects data races in both global and shared memory, unlike many previous

race detectors that focus exclusively on shared memory. Simultaneously, Curd provides a

substantial performance boost over previous work such as Nvidia’s CUDA-Racecheck system.

The key to Curd’s performance advantages are its compiler-based instrumentation, an efficient

representation of read/write sets that is compact in the common case of well-tuned GPU code,

and GPU-specific optimizations to maximize memory bandwidth utilization. We believe Curd

is robust enough and fast enough to have a positive impact on how CUDA developers debug

their code.

104

CHAPTER 7

Related Work

Dynamic data race detection has been studied extensively in the past a few decades, and

there exist a large number of published work that are relevant to the systems discussed in

this dissertation. In this chapter, we discuss prior research that is most related to the core topic

of this dissertation, i.e., dynamic data race detection for CPU and GPU programs.

7.1. CPU Data Race Detection

Many dynamic data race detection algorithms have been proposed for general programs that

run on CPUs. Existing dynamic data race detectors can be software-only, hardware-assisted, or

adopt a hybrid design.

In software-only solutions, the most closely related work to SlimFast is the FastTrack [39]

system, with which we have already compared extensively. The SlimState[115] system seeks

to reduce metadata redundancy for dynamic race detection, just as SlimFast does. However,

SlimState removes redundancy only within individual arrays. SlimState also delays race checks

until synchronization operations, improving compression but losing information about where

exactly races occur in the code. In contrast, FastTrack and SlimFast detect races eagerly,

reporting a precise code point involved in each data race, greatly facilitating debugging. The

RedCard[41] system provides static analysis to accelerate dynamic race detection, merging the

metadata for two memory locations that are always accessed together in a release-free span. This

analysis targets metadata space usage, as SlimFast does, but is limited by the conservatism

of static analysis. For the Java Grande benchmarks used in both evaluations, RedCard saves no

space on lufact, montecarlo, series, sor, or sparsematmult while SlimFast reduces the heap by

at least 2x on each. RedCard reduces metadata alone by 1.5x on moldyn and 7x on crypt, while

SlimFast reduces metadata by 300,000x and 12x, respectively.

105

In Song and Lee[106], race detection metadata that is identical across consecutive memory loca-

tions can be coalesced into a single metadata object, though redundancy across non-consecutive

locations can remain. Moreover, coalescing can introduce false races as an access to a loca-

tion x appears as an access to all locations whose metadata is coalesced with x’s. Accordion

clocks[19] reduce metadata space usage by removing vector clock entries for terminated threads.

FastTrack makes the use of vector clocks infrequent and thus dilutes the benefit of accor-

dion clocks, though they remain complementary to SlimFast as we do not reduce the space

consumption of vector clocks.

Several forms of sampling-based dynamic race detection have been proposed. Such schemes

trade off soundness [49, 14, 70, 32, 28] for reduced performance overheads. In contrast, Slim-

Fast reduces the memory and performance overheads of data race detection without sacrificing

precision. Lockset-based race detection [27, 100], an alternative to the happens-before data race

detection algorithm, reports false races on some common programming idioms like privatization

but can also detect with a single execution some races that would require multiple executions

with happens-before. Other work has generalized happens-before race detection to detect more

races from a single execution [105, 102, 16] at the cost of decreased performance.

Several systems exist for detecting data races in structured parallel programs such as fork-join

programs [58, 67, 75], series-parallel Cilk programs [35], async-finish programs [96] or programs

with asynchronous callbacks [90, 98, 53]. None of these algorithms exploit metadata redundancy.

Another type of dynamic data race detectors is hardware assisted detection systems like PARSNIP.

The work most closely related to PARSNIP is the Radish system[25] for hardware-accelerated

sound and complete race detection. We compare extensively to Radish in Chapter 4. The

LARD system [116] showed that naive usage of even sound and complete hardware data race

detection can result in false and missed data races due to interactions with layers of the

system stack like the OS and language runtime. LARD also demonstrates how to convey

sufficient information across these layers to restore precision. Other hardware race detectors

[92, 76, 120, 78, 80, 94, 93, 55]sacrifice soundness and completeness in favor of simpler and

106

faster hardware.

The Vulcan[77] and Volition[95] hardware architectures have been proposed for detecting and re-

covering from sequential-consistency violations, which arise from two or more cyclically-coupled

data races. These schemes provide sequential consistency at the instruction level by detecting

the underlying data races that can violate SC. Both schemes implement precise data race de-

tection, however, it is only needed during a short window within which instruction reordering

can occur, which simplifies the implementation and allows for almost-negligible performance

overheads. Other hardware schemes enforce stronger memory consistency models design to

preserve sequential consistency or related properties[65, 71, 104, 101]. SC violation detectors

ignore data races where at least one access occurs outside of the current detection window.

Sound techniques like PARSNIP can find these additional races, making debugging easier and

supporting a wide range of race-detection clients such as record-and-replay and deterministic

execution. HARD [120] is proposed to provide hardware support for lockset race detection to

reduce its performance overheads.

7.2. GPU Data Race Detection

Several prior schemes have been proposed for detecting data races in GPU programs. Boyer

et al.[75] analyze CUDA programs for data races and inefficient memory accesses. Their race

analysis is restricted to shared memory only, and does not take account of atomics or memory

fences. GRace[67] proposed a dynamic analysis to find intra-warp races and inter-warp races

via shared memory, using static analysis to prune instrumentation when possible. GMrace[118]

detects the same kinds of errors as GRace, but with improved running time. Neither GRace nor

GMrace detect any inter-block concurrency bugs, nor bugs related to global memory, atomics or

memory fences. LDetector [64] can find concurrency bugs via both shared and global memory,

but it uses value-based checking to detect writes so it may miss bugs that involve a thread

overwriting a location with the location’s existing value. LDetector does not handle atomics or

memory fences. HAccRG[50] is a hardware-based data race detector for GPUs. It provides cov-

erage of both shared and global memory and also memory fences. To keep hardware overheads

107

low, however, HAccRG does not track all readers for a given location, which can lead to missed

races.

The structured data parallel nature of many GPU kernels makes them well-suited to static

verification. The GPUVerify system [7, 6, 4, 5, 18, 17, 21] uses SMT solving to find data

races and barrier divergence. GPUVerify is sound (it does not miss real bugs) up to the CUDA

features it supports, though it occasionally reports false races and does not support memory

fences or indirect memory accesses. PUG [32] also uses SMT solving to find races and barrier

divergence bugs, though its abstractions can cause it to be both unsound and incomplete in

some cases. The GKLEE[63] and KLEE-CL[20] systems use dynamic symbolic execution to find

bugs in GPU kernels, and GKLEE has been extended to handle atomic operations[63], but it

is difficult to scale symbolic execution beyond small kernels. Leung et al.[61] check for data

races and determinism of GPU kernels leveraging the insight that most of a kernel’s execution is

independent of its input parameters, leaving only a portion of the kernel that requires dynamic

checking. Their dynamic analysis does not, however, handle kernels with atomics or memory

fences. Though completeness remains a challenge for static analysis techniques, leveraging

verification machinery to filter dynamic instrumentation could be a powerful and complementary

optimization for systems like BARRACUDA.

Several papers have focused on elucidating the memory consistency models of GPU architec-

tures. Work targeting AMD GPUs[51, 48, 114] has culminated in the Heterogeneous System

Architecture (HSA) formal memory consistency model[52] adopted by AMD and other GPU

manufacturers. In comparison, work on formalizing CUDA’s consistency model is still nascent

and driven by 3rd party researchers. Recent work has explored the CUDA memory model via

litmus tests: Alglave et al. [3] present an axiomatic memory consistency model for Nvidia GPUs,

and Sorensen et al. [107] identify fuzz testing strategies to expose concurrency bugs on GPUs.

Our definition of synchronization order is informed by this prior work. In contrast to work on lit-

mus testing, we have pursued a new safety property for CUDA that can be dynamically checked

without the need for fuzzing or program-specific invariants.

108

CHAPTER 8

Conclusions

This dissertation has demonstrated and evaluated a series of work on precise dynamic data

race detection. We started by presenting SlimFast, a scheme to identify and reduce com-

mon metadata redundancy in dynamic race detector for CPU programs(Chapter 3), showing

the performance limitation of software-only data race detectors. We then described PARSNIP

(Chapter 4), a work motivated by SlimFast’s high overhead, that brings the runtime overhead

of dynamic race detectors to less than 1.5x. We believe this is a solid step towards always-

on dynamic race detection, which can enable useful high-level applications such as Data Race

Exceptions[2, 31, 65, 71]. The focus of the dissertation then shifts to data race detection

for GPU programs, by first introducing Barracuda (Chapter 5), a tool that adapts a CPU-

oriented algorithm to run for GPU programs, followed by a presentation of Curd (Chapter 6), a

race-detection system that is optimized for the common synchronization mechanisms and access

patterns.

8.1. Summary of Techniques

One idea that appeared repeatedly in the systems presented in this dissertation, is to identify and

reduce redundancy in dynamic race detection. Specifically, SlimFast identifies and removes

metadata redundancy of access histories on-the-fly, reducing memory overhead and boosting

runtime performance. Parsnip de-duplicates metadata in hardware, utilizing existing cache

system to manage metadata for race detection. Barracuda makes it possible to scale vector-

clock based data race detector design for CPU programs to GPU programs, which can have

millions of threads, by avoiding redundancy in per-thread metadata. In the Curd system,

a number of optimizations aim at avoiding redundant computation. Redundancy often arise

in data race detectors, due to different kinds of locality and correlation, and reducing such

redundancy can often translate into higher efficiency without hurting precision.

109

Another general technique widely used by the systems presented in this dissertation is to exploit

parallelism in hardware whenever possible. For example, the Parsnip design rests on existing

multi-core cache system design, and implements the common operations of dynamic race de-

tection in hardware. The Barracuda implementation take advantage of the often-idle CPU

when a kernel is running on GPU, and utilize the CPU and main memory to do online analysis

for data races. The Curd system, on the other hand, exploits the parallelism on the GPU to

do the computation required by race checking to maximize efficiency.

Finally, a simple yet effective approach that is widely used in all works of this dissertation is

caching. Despite its simplicity, caching proves useful in various scenarios. SlimFast uses

caching to speed up the metadata look-ups; Parsnip exploits extensive caching in its man-

agement of metadata; Barracuda implicitly benefits from the caching effects in its events

logging; Curd uses caching to reduce device memory traffic and to boost look-ups into the

sets.

8.2. Limitations

The ultimate goal of the work in this dissertation is to make precise dynamic race detection

efficient enough to be always-on, for both CPU and GPU applications, thereby making parallel

programming and debugging easier. However, there is still a long way to go to achieve this end

goal. In particular, systems demonstrated in this dissertation are limited by several factors.

Perhaps the most important limiting factor is performance overhead. As shown by the evaluation

results in Chapter 3, 4, 5, 6, although our work improves the performance of data race detection,

a precise software-only race detector can slow down a program by orders of magnitude. Such

high overhead makes a race detector impractical to apply in many production scenarios.

Another limitation is the hardware requirements. In particular, Parsnip requires modifications

on commodity processors, which can take an unpredictably long time to happen. The efficiency

of the Barracuda implementation can also be impacted by the efficiency of hardware interface

(e.g. PCI-E) between GPU and CPU. The Curd detector, being a GPU application itself,

110

needs to have detailed knowledge about the specifics of the target GPU hardware, to maximize

performance.

Finally, a general limitation of almost all pure dynamic race detector, is that only races that

occur in an observed execution can be detected. For some feasible races that only manifest

under some rare scheduling conditions, it may be difficult for dynamic race detectors to catch

them. Also, as the execution of a program is monitored dynamically, the disturbance caused

by the monitoring on the execution, no matter how small, can change a program’s behavior,

making it a challenge to detect ”Heisenbugs”.

8.3. Looking forward

It is our particular hope that the performance of precise data race detectors can continue

to improve and their applicable scope becomes increasingly broad, and always-on data race

detection can ultimately become a reality. Although we are not there yet, we hope the work and

results presented in this dissertation can provide some useful reference for future endeavors.

111

BIBLIOGRAPHY

[1] Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection for
Java. ACM Transactions on Programming Languages and Systems 28(2), 207–255 (Mar
2006), http://doi.acm.org/10.1145/1119479.1119480

[2] Adve, S.: Data races are evil with no exceptions. Communications of the ACM 53(11),
84 (Nov 2010), http://portal.acm.org/citation.cfm?doid=1839676.1839697

[3] Alglave, J., Batty, M., Donaldson, A.F., Gopalakrishnan, G., Ketema, J., Poetzl, D.,
Sorensen, T., Wickerson, J.: Gpu concurrency: Weak behaviours and programming as-
sumptions. In: Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. pp. 577–591. ASPLOS ’15,
ACM, New York, NY, USA (2015), http://doi.acm.org/10.1145/2694344.2694391

[4] Bardsley, E., Betts, A., Chong, N., Collingbourne, P., Deligiannis, P., Donaldson, A.F.,
Ketema, J., Liew, D., Qadeer, S.: Engineering a static verification tool for gpu kernels.
In: Proceedings of the 16th International Conference on Computer Aided Verification -
Volume 8559. pp. 226–242. Springer-Verlag New York, Inc., New York, NY, USA (2014),
http://dx.doi.org/10.1007/978-3-319-08867-9_15

[5] Bardsley, E., Donaldson, A.F.: Warps and atomics: Beyond barrier synchronization in the
verification of gpu kernels. In: Proceedings of the 6th International Symposium on NASA
Formal Methods - Volume 8430. pp. 230–245. Springer-Verlag New York, Inc., New York,
NY, USA (2014), http://dx.doi.org/10.1007/978-3-319-06200-6_18

[6] Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: Gpuverify: A verifier for
gpu kernels. In: Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications. pp. 113–132. OOPSLA ’12, ACM,
New York, NY, USA (2012), http://doi.acm.org/10.1145/2384616.2384625

[7] Betts, A., Chong, N., Donaldson, A.F., Ketema, J., Qadeer, S., Thomson, P., Wickerson,
J.: The design and implementation of a verification technique for gpu kernels. ACM Trans.
Program. Lang. Syst. 37(3), 10:1–10:49 (May 2015), http://doi.acm.org/10.1145/
2743017

[8] Bielik, P., Raychev, V., Vechev, M.: Scalable Race Detection for Android Applications.
In: Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications. OOPSLA (2015)

[9] Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC Benchmark Suite: Characteri-
zation and Architectural Implications. Technical Report TR-811-08, Princeton University
(Jan 2008)

[10] Biswas, S., Cao, M., Zhang, M., Bond, M.D., Wood, B.P.: Lightweight data race detec-
tion for production runs. In: Proceedings of the 26th International Conference on Compiler
Construction. pp. 11–21. ACM (2017)

112

http://doi.acm.org/10.1145/1119479.1119480
http://portal.acm.org/citation.cfm?doid=1839676.1839697
http://doi.acm.org/10.1145/2694344.2694391
http://dx.doi.org/10.1007/978-3-319-08867-9_15
http://dx.doi.org/10.1007/978-3-319-06200-6_18
http://doi.acm.org/10.1145/2384616.2384625
http://doi.acm.org/10.1145/2743017
http://doi.acm.org/10.1145/2743017

[11] Biswas, S., Zhang, M., Bond, M.D., Lucia, B.: Valor: Efficient, software-only region
conflict exceptions. In: Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications. pp. 241–259.
OOPSLA 2015, ACM, New York, NY, USA (2015), http://doi.acm.org/10.1145/

2814270.2814292

[12] Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S., Bentzur, R.,
Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A., Jump, M.,
Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovi, D., VanDrunen, T., von Dincklage,
D., Wiedermann, B.: The DaCapo Benchmarks: Java Benchmarking Development and
Analysis. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications. pp. 169–190. OOPSLA ’06,
ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/1167473.1167488

[13] Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model. In:
Proceedings of the 2008 ACM SIGPLAN conference on Programming language design
and implementation - PLDI ’08. p. 68. Tucson, AZ, USA (2008), http://portal.acm.
org/citation.cfm?doid=1375581.1375591

[14] Bond, M.D., Coons, K.E., McKinley, K.S.: PACER: Proportional Detection of Data Races.
In: Proceedings of the 2010 ACM SIGPLAN conference on Programming language design
and implementation - PLDI ’10. p. 255. Toronto, Ontario, Canada (2010), http://

portal.acm.org/citation.cfm?doid=1806596.1806626

[15] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.: Rodinia:
A benchmark suite for heterogeneous computing. In: Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on. pp. 44–54. IEEE (2009)

[16] Chen, F., Rou, G.: Parametric and Sliced Causality. In: Proceedings of the 19th Interna-
tional Conference on Computer Aided Verification. pp. 240–253. CAV’07, Springer-Verlag,
Berlin, Heidelberg (2007), http://dl.acm.org/citation.cfm?id=1770351.1770387

[17] Chong, N., Donaldson, A.F., Kelly, P.H., Ketema, J., Qadeer, S.: Barrier invariants: A
shared state abstraction for the analysis of data-dependent gpu kernels. In: Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications. pp. 605–622. OOPSLA ’13, ACM, New York,
NY, USA (2013), http://doi.acm.org/10.1145/2509136.2509517

[18] Chong, N., Donaldson, A.F., Ketema, J.: A sound and complete abstraction for reasoning
about parallel prefix sums. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. pp. 397–409. POPL ’14, ACM, New York,
NY, USA (2014), http://doi.acm.org/10.1145/2535838.2535882

[19] Christiaens, M., Bosschere, K.D.: TRaDe: Data Race Detection for Java. In: Proceedings
of the International Conference on Computational Science-Part II. pp. 761–770. ICCS
’01, Springer-Verlag, London, UK, UK (2001), http://dl.acm.org/citation.cfm?

id=645456.654536

113

http://doi.acm.org/10.1145/2814270.2814292
http://doi.acm.org/10.1145/2814270.2814292
http://doi.acm.org/10.1145/1167473.1167488
http://portal.acm.org/citation.cfm?doid=1375581.1375591
http://portal.acm.org/citation.cfm?doid=1375581.1375591
http://portal.acm.org/citation.cfm?doid=1806596.1806626
http://portal.acm.org/citation.cfm?doid=1806596.1806626
http://dl.acm.org/citation.cfm?id=1770351.1770387
http://doi.acm.org/10.1145/2509136.2509517
http://doi.acm.org/10.1145/2535838.2535882
http://dl.acm.org/citation.cfm?id=645456.654536
http://dl.acm.org/citation.cfm?id=645456.654536

[20] Collingbourne, P., Cadar, C., Kelly, P.H.J.: Symbolic testing of opencl code. In: Pro-
ceedings of the 7th International Haifa Verification Conference on Hardware and Soft-
ware: Verification and Testing. pp. 203–218. HVC’11, Springer-Verlag, Berlin, Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-34188-5_18

[21] Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-
step semantics for analysis and verification of gpu kernels. In: Proceedings of the
22Nd European Conference on Programming Languages and Systems. pp. 270–289.
ESOP’13, Springer-Verlag, Berlin, Heidelberg (2013), http://dx.doi.org/10.1007/

978-3-642-37036-6_16

[22] Daly, C., Horgan, J., Power, J., Waldron, J.: Platform independent dynamic Java virtual
machine analysis: the Java Grande Forum Benchmark suite. In: Proceedings of the 2001
joint ACM-ISCOPE conference on Java Grande. pp. 106–115. JGI ’01, New York, NY,
USA (2001), http://doi.acm.org/10.1145/376656.376826

[23] Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K., Tippa-
raju, V., Vetter, J.S.: The scalable heterogeneous computing (shoc) benchmark suite.
In: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units. pp. 63–74. GPGPU-3, ACM, New York, NY, USA (2010), http:

//doi.acm.org/10.1145/1735688.1735702

[24] Devietti, J., Lucia, B., Ceze, L., Oskin, M.: DMP: Deterministic Shared Memory Multi-
processing. In: Proceedings of the 14th international conference on Architectural support
for programming languages and operating systems (ASPLOS ’09). p. 85. Washington,
DC, USA (2009), http://portal.acm.org/citation.cfm?doid=1508244.1508255

[25] Devietti, J., Wood, B.P., Strauss, K., Ceze, L., Grossman, D., Qadeer, S.: RADISH:
always-on sound and complete RAce Detection In Software and Hardware. In: Proceedings
of the 39th Annual International Symposium on Computer Architecture. pp. 201–212.
ISCA ’12, IEEE Computer Society, Washington, DC, USA (2012), http://dl.acm.org/
citation.cfm?id=2337159.2337182

[26] Dice, D.: Biased locking in hotspot. https://blogs.oracle.com/dave/entry/

biased_locking_in_hotspot (Aug 2006)

[27] Dinning, A., Schonberg, E.: Detecting access anomalies in programs with critical sections.
In: Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed debugging.
pp. 85–96. PADD ’91, ACM, New York, NY, USA (1991), http://doi.acm.org/10.
1145/122759.122767

[28] Effinger-Dean, L., Lucia, B., Ceze, L., Grossman, D., Boehm, H.J.: IFRit: interference-
free regions for dynamic data-race detection. In: Proceedings of the ACM international
conference on Object oriented programming systems languages and applications. pp. 467–
484. OOPSLA ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/
2384616.2384650

114

http://dx.doi.org/10.1007/978-3-642-34188-5_18
http://dx.doi.org/10.1007/978-3-642-37036-6_16
http://dx.doi.org/10.1007/978-3-642-37036-6_16
http://doi.acm.org/10.1145/376656.376826
http://doi.acm.org/10.1145/1735688.1735702
http://doi.acm.org/10.1145/1735688.1735702
http://portal.acm.org/citation.cfm?doid=1508244.1508255
http://dl.acm.org/citation.cfm?id=2337159.2337182
http://dl.acm.org/citation.cfm?id=2337159.2337182
https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot
https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot
http://doi.acm.org/10.1145/122759.122767
http://doi.acm.org/10.1145/122759.122767
http://doi.acm.org/10.1145/2384616.2384650
http://doi.acm.org/10.1145/2384616.2384650

[29] Eizenberg, A., Peng, Y., Pigli, T., Mansky, W., Devietti, J.: Barracuda: Binary-level
analysis of runtime races in cuda programs. In: ACM SIGPLAN Notices. vol. 52, pp.
126–140. ACM (2017)

[30] Eizenberg, A., Peng, Y., Pigli, T., Mansky, W., Devietti, J.: Barracuda: Binary-level
analysis of runtime races in cuda programs. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 126–140. PLDI
2017, ACM, New York, NY, USA (2017), http://doi.acm.org/10.1145/3062341.

3062342

[31] Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware java run-
time. In: Proceedings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation. pp. 245–255 (Jun 2007), http://doi.acm.org/10.1145/
1273442.1250762

[32] Erickson, J., Musuvathi, M., Burckhardt, S., Olynyk, K.: Effective data-race detection for
the kernel. In: Proceedings of the 9th USENIX conference on Operating systems design
and implementation. pp. 1–16. OSDI’10, USENIX Association, Berkeley, CA, USA (2010),
http://dl.acm.org/citation.cfm?id=1924943.1924954

[33] Farooqui, N., Kerr, A., Diamos, G., Yalamanchili, S., Schwan, K.: A framework for
dynamically instrumenting gpu compute applications within gpu ocelot. In: Proceedings
of the Fourth Workshop on General Purpose Processing on Graphics Processing Units.
pp. 9:1–9:9. GPGPU-4, ACM, New York, NY, USA (2011), http://doi.acm.org/10.
1145/1964179.1964192

[34] Farooqui, N., Kerr, A., Eisenhauer, G., Schwan, K., Yalamanchili, S.: Lynx: A dynamic
instrumentation system for data-parallel applications on gpgpu architectures. In: Perfor-
mance Analysis of Systems and Software (ISPASS), 2012 IEEE International Symposium
on. pp. 58–67. IEEE (2012)

[35] Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in Cilk programs. In:
Proceedings of the ninth annual ACM symposium on Parallel algorithms and architectures
- SPAA ’97. pp. 1–11. Newport, Rhode Island, United States (1997), http://portal.
acm.org/citation.cfm?doid=258492.258493

[36] Fidge, C.: Logical time in distributed computing systems. IEEE Computer 24(8),
28–33 (Aug 1991), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=84874

[37] Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multithreaded
programs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. pp. 256–267. POPL ’04, New York, NY, USA (2004), http:
//doi.acm.org/10.1145/964001.964023

[38] Flanagan, C., Freund, S.N.: FastTrack: Efficient and Precise Dynamic Race Detection.
In: Proceedings of the 2009 ACM SIGPLAN conference on Programming language design

115

http://doi.acm.org/10.1145/3062341.3062342
http://doi.acm.org/10.1145/3062341.3062342
http://doi.acm.org/10.1145/1273442.1250762
http://doi.acm.org/10.1145/1273442.1250762
http://dl.acm.org/citation.cfm?id=1924943.1924954
http://doi.acm.org/10.1145/1964179.1964192
http://doi.acm.org/10.1145/1964179.1964192
http://portal.acm.org/citation.cfm?doid=258492.258493
http://portal.acm.org/citation.cfm?doid=258492.258493
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=84874
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=84874
http://doi.acm.org/10.1145/964001.964023
http://doi.acm.org/10.1145/964001.964023

and implementation - PLDI ’09. p. 121. Dublin, Ireland (2009), http://portal.acm.
org/citation.cfm?doid=1542476.1542490

[39] Flanagan, C., Freund, S.N.: FastTrack: Efficient and Precise Dynamic Race Detection.
Communications of the ACM 53(11), 93–101 (Nov 2010), http://doi.acm.org/10.

1145/1839676.1839699

[40] Flanagan, C., Freund, S.N.: The RoadRunner Dynamic Analysis Framework for Con-
current Programs. In: Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering. pp. 1–8. PASTE ’10, ACM, New
York, NY, USA (2010), http://doi.acm.org/10.1145/1806672.1806674

[41] Flanagan, C., Freund, S.N.: RedCard: Redundant Check Elimination for Dynamic
Race Detectors. In: Proceedings of the 27th European Conference on Object-Oriented
Programming. pp. 255–280. ECOOP’13, Springer-Verlag, Berlin, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-39038-8_11

[42] Flanagan, C., Freund, S.N., Yi, J.: Velodrome: a sound and complete dynamic atomicity
checker for multithreaded programs. In: Proceedings of the 2008 ACM SIGPLAN confer-
ence on Programming language design and implementation - PLDI ’08. p. 293. Tucson,
AZ, USA (2008), http://portal.acm.org/citation.cfm?doid=1375581.1375618

[43] Force, U.C.: Final report on the august 14th blackout in the united states and canada.
Department of Energy and National Resources Canada (2004)

[44] Friedemann Mattern: Virtual Time and Global States of Distributed Systems. In: Parallel
and Distributed Algorithms (1989)

[45] Frumkin, M.A., Schultz, M., Jin, H., Yan, J.: Implementation of the NAS Parallel Bench-
marks in Java NAS. Tech. Rep. NAS-02-009, NASA Advanced Supercomputing Division
(2002), https://www.nas.nasa.gov/publications/npb.html

[46] Fung, W.W.L., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and schedul-
ing for efficient gpu control flow. In: Proceedings of the 40th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. pp. 407–420. MICRO 40, IEEE Computer Society,
Washington, DC, USA (2007), http://dx.doi.org/10.1109/MICRO.2007.12

[47] Fung, W.W.L., Singh, I., Brownsword, A., Aamodt, T.M.: Hardware transactional mem-
ory for gpu architectures. In: Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture. pp. 296–307. MICRO-44, ACM, New York, NY, USA
(2011), http://doi.acm.org/10.1145/2155620.2155655

[48] Gaster, B.R., Hower, D., Howes, L.: Hrf-relaxed: Adapting hrf to the complexities of
industrial heterogeneous memory models. ACM Trans. Archit. Code Optim. 12(1), 7:1–
7:26 (Apr 2015), http://doi.acm.org/10.1145/2701618

[49] Greathouse, J.L., Ma, Z., Frank, M.I., Peri, R., Austin, T.: Demand-driven Software Race
Detection Using Hardware Performance Counters. In: Proceedings of the 38th Annual

116

http://portal.acm.org/citation.cfm?doid=1542476.1542490
http://portal.acm.org/citation.cfm?doid=1542476.1542490
http://doi.acm.org/10.1145/1839676.1839699
http://doi.acm.org/10.1145/1839676.1839699
http://doi.acm.org/10.1145/1806672.1806674
http://dx.doi.org/10.1007/978-3-642-39038-8_11
http://portal.acm.org/citation.cfm?doid=1375581.1375618
https://www.nas.nasa.gov/publications/npb.html
http://dx.doi.org/10.1109/MICRO.2007.12
http://doi.acm.org/10.1145/2155620.2155655
http://doi.acm.org/10.1145/2701618

International Symposium on Computer Architecture. pp. 165–176. ISCA ’11, ACM, New
York, NY, USA (2011), http://doi.acm.org/10.1145/2000064.2000084

[50] Holey, A., Mekkat, V., Zhai, A.: Haccrg: Hardware-accelerated data race detection in
gpus. In: Proceedings of the 2013 42Nd International Conference on Parallel Processing.
pp. 60–69. ICPP ’13, IEEE Computer Society, Washington, DC, USA (2013), http:

//dx.doi.org/10.1109/ICPP.2013.15

[51] Hower, D.R., Hechtman, B.A., Beckmann, B.M., Gaster, B.R., Hill, M.D., Reinhardt,
S.K., Wood, D.A.: Heterogeneous-race-free memory models. In: Proceedings of the
19th International Conference on Architectural Support for Programming Languages and
Operating Systems. pp. 427–440. ASPLOS ’14, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2541940.2541981

[52] HSA Foundation: HSA Memory Consistency Model, http://www.hsafoundation.

com/html/HSA_Library.htm#SysArch/Topics/03_Memory/_chpStr_HSA_memory_

consistency_model.htm

[53] Hsiao, C.H., Yu, J., Narayanasamy, S., Kong, Z., Pereira, C.L., Pokam, G.A., Chen, P.M.,
Flinn, J.: Race Detection for Event-driven Mobile Applications. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation.
pp. 326–336. PLDI ’14, ACM, New York, NY, USA (2014), http://doi.acm.org/10.
1145/2594291.2594330

[54] Huang, J., Rajagopalan, A.K.: Precise and Maximal Race Detection from Incomplete
Traces. In: Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (2016)

[55] Huang, R., Halberg, E., Ferraiuolo, A., Suh, G.: Low-overhead and high coverage run-time
race detection through selective meta-data management. In: 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). pp. 96–107 (Feb 2014),
raceSMM

[56] Jackson, J.: Nasdaqs facebook glitch came from race conditions (2012)

[57] Ji, W., Lu, L., Scott, M.L.: TARDIS: Task-level Access Race Detection by Intersecting
Sets. In: Proceedings of the 4th Workshop on Determinism and Correctness in Parallel
Programming (WODET ’13) (2013)

[58] John Mellor-Crummey: On-the-fly detection of data races for programs with nested fork-
join parallelism. In: Proceedings of the 1991 ACM/IEEE conference on Supercomputing -
Supercomputing ’91. pp. 24–33. Albuquerque, New Mexico, United States (1991), http:
//portal.acm.org/citation.cfm?doid=125826.125861

[59] Lamport, L.: How to Make a Multiprocessor Computer That Correctly Executes Mul-
tiprocess Programs. IEEE Transactions on Computers C-28(9), 690–691 (Sep 1979),
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1675439

117

http://doi.acm.org/10.1145/2000064.2000084
http://dx.doi.org/10.1109/ICPP.2013.15
http://dx.doi.org/10.1109/ICPP.2013.15
http://doi.acm.org/10.1145/2541940.2541981
http://www.hsafoundation.com/html/HSA_Library.htm#SysArch/Topics/03_Memory/_chpStr_HSA_memory_consistency_model.htm
http://www.hsafoundation.com/html/HSA_Library.htm#SysArch/Topics/03_Memory/_chpStr_HSA_memory_consistency_model.htm
http://www.hsafoundation.com/html/HSA_Library.htm#SysArch/Topics/03_Memory/_chpStr_HSA_memory_consistency_model.htm
http://doi.acm.org/10.1145/2594291.2594330
http://doi.acm.org/10.1145/2594291.2594330
http://portal.acm.org/citation.cfm?doid=125826.125861
http://portal.acm.org/citation.cfm?doid=125826.125861
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1675439

[60] Lee, Y., Grover, V., Krashinsky, R., Stephenson, M., Keckler, S.W., Asanovic, K.: Ex-
ploring the design space of spmd divergence management on data-parallel architectures.
In: 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture. pp.
101–113 (Dec 2014)

[61] Leung, A., Gupta, M., Agarwal, Y., Gupta, R., Jhala, R., Lerner, S.: Verifying gpu
kernels by test amplification. In: Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 383–394. PLDI ’12, ACM, New
York, NY, USA (2012)

[62] Leveson, N.G., Turner, C.S.: An investigation of the therac-25 accidents. Computer 26(7),
18–41 (1993)

[63] Li, G., Li, P., Sawaya, G., Gopalakrishnan, G., Ghosh, I., Rajan, S.P.: Gklee: Concolic
verification and test generation for gpus. In: Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. pp. 215–224. PPoPP ’12,
ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/2145816.2145844

[64] Li, P., Ding, C., Hu, X., Soyata, T.: LDetector: A Low Overhead Race Detector For
GPU Programs. In: Proceedings of the 5th Workshop on Determinism and Correctness in
Parallel Programming (WODET ’14) (2014)

[65] Lucia, B., Ceze, L., Strauss, K., Qadeer, S., Boehm, H.J.: Conflict exceptions: sim-
plifying concurrent language semantics with precise hardware exceptions for data-races.
In: Proceedings of the 37th annual international symposium on Computer architecture
- ISCA ’10. p. 210. Saint-Malo, France (2010), http://portal.acm.org/citation.

cfm?doid=1815961.1815987

[66] Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V.J., Hazelwood, K.: Pin: building customized program analysis tools with dynamic
instrumentation. In: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation. pp. 190–200. PLDI ’05, New York, NY, USA (2005),
http://doi.acm.org/10.1145/1065010.1065034

[67] Mai Zheng, Vignesh T. Ravi, Feng Qin, Gagan Agrawal: GRace: a low-overhead mech-
anism for detecting data races in GPU programs. In: Proceedings of the 16th ACM
symposium on Principles and practice of parallel programming. New York, NY (2011)

[68] Mansky, W., Peng, Y., Zdancewic, S., Devietti, J.: Verifying dynamic race detection. In:
Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs. pp.
151–163. ACM (2017)

[69] Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT sysposium on Principles of programming languages
- POPL ’05. pp. 378–391. Long Beach, California, USA (2005), http://portal.acm.
org/citation.cfm?doid=1040305.1040336

118

http://doi.acm.org/10.1145/2145816.2145844
http://portal.acm.org/citation.cfm?doid=1815961.1815987
http://portal.acm.org/citation.cfm?doid=1815961.1815987
http://doi.acm.org/10.1145/1065010.1065034
http://portal.acm.org/citation.cfm?doid=1040305.1040336
http://portal.acm.org/citation.cfm?doid=1040305.1040336

[70] Marino, D., Musuvathi, M., Narayanasamy, S.: LiteRace: Effective Sampling for
Lightweight Data-Race Detection. In: Proceedings of the 2009 ACM SIGPLAN conference
on Programming language design and implementation - PLDI ’09. p. 134. Dublin, Ireland
(2009), http://portal.acm.org/citation.cfm?doid=1542476.1542491

[71] Marino, D., Singh, A., Millstein, T., Musuvathi, M., Narayanasamy, S.: DRFX: a simple
and efficient memory model for concurrent programming languages. In: Proceedings of
the 2010 ACM SIGPLAN conference on Programming language design and implementa-
tion - PLDI ’10. p. 351. Toronto, Ontario, Canada (2010), http://portal.acm.org/
citation.cfm?doid=1806596.1806636

[72] Mathew, J.A., Coddington, P.D., Hawick, K.A.: Analysis and Development of Java
Grande Benchmarks. In: Proceedings of the ACM 1999 Conference on Java Grande.
pp. 72–80. JAVA ’99, ACM, New York, NY, USA (1999), http://doi.acm.org/10.

1145/304065.304101

[73] Meng, J., Tarjan, D., Skadron, K.: Dynamic warp subdivision for integrated branch and
memory divergence tolerance. In: Proceedings of the 37th Annual International Sym-
posium on Computer Architecture. pp. 235–246. ISCA ’10, ACM, New York, NY, USA
(2010), http://doi.acm.org/10.1145/1815961.1815992

[74] Michael, M.M.: Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE
Trans. Parallel Distrib. Syst. 15(6), 491–504 (Jun 2004), http://dx.doi.org/10.1109/
TPDS.2004.8

[75] Michael Boyer, Kevin Skadron, Westley Weimer: Automated Dynamic Analysis of CUDA
Programs. In: Workshop on Software Tools for MultiCore Systems (2008)

[76] Milos Prvulovic: CORD: Cost-effective (and nearly overhead-free) Order-Recording and
Data race detection. In: Proceedings of the 2006 IEEE 12th International Symposium on
High Performance Computer Architecture (2006)

[77] Muzahid, A., Qi, S., Torrellas, J.: Vulcan: Hardware Support for Detecting Sequential
Consistency Violations Dynamically. In: Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. pp. 363–375. MICRO-45, IEEE Computer
Society, Washington, DC, USA (2012), http://dx.doi.org/10.1109/MICRO.2012.41

[78] Muzahid, A., Surez, D., Qi, S., Torrellas, J.: SigRace: Signature-Based Data Race De-
tection. In: Proceedings of the 36th annual international symposium on Computer archi-
tecture. pp. 337–348. ISCA ’09, ACM, New York, NY, USA (2009), http://doi.acm.
org/10.1145/1555754.1555797

[79] Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: Pro-
ceedings of the 2006 ACM SIGPLAN conference on Programming language design and
implementation. pp. 308–319. PLDI ’06, ACM, New York, NY, USA (2006), http:

//doi.acm.org/10.1145/1133981.1134018

119

http://portal.acm.org/citation.cfm?doid=1542476.1542491
http://portal.acm.org/citation.cfm?doid=1806596.1806636
http://portal.acm.org/citation.cfm?doid=1806596.1806636
http://doi.acm.org/10.1145/304065.304101
http://doi.acm.org/10.1145/304065.304101
http://doi.acm.org/10.1145/1815961.1815992
http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1109/TPDS.2004.8
http://dx.doi.org/10.1109/MICRO.2012.41
http://doi.acm.org/10.1145/1555754.1555797
http://doi.acm.org/10.1145/1555754.1555797
http://doi.acm.org/10.1145/1133981.1134018
http://doi.acm.org/10.1145/1133981.1134018

[80] Nistor, A., Marinov, D., Torrellas, J.: Light64: lightweight hardware support for data race
detection during systematic testing of parallel programs. In: Proceedings of the 42nd An-
nual IEEE/ACM International Symposium on Microarchitecture. pp. 541–552. MICRO 42,
ACM, New York, NY, USA (2009), http://doi.acm.org/10.1145/1669112.1669180

[81] Nvidia: CUDA C Programming Guide v7.5, http://docs.nvidia.com/cuda/

cuda-c-programming-guide/

[82] Nvidia: Parallel Thread Execution ISA Version 4.3, http://docs.nvidia.com/cuda/

parallel-thread-execution/

[83] Nvidia: Racecheck Tool (2016), http://docs.nvidia.com/cuda/cuda-memcheck/

index.html#racecheck-tool

[84] Nvidia: SASSI Instrumentation Tool for NVIDIA GPUs (2016), https://github.com/
NVlabs/SASSI

[85] Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: Efficient Deterministic Multithreading
in Software. In: Proceeding of the 14th international conference on Architectural support
for programming languages and operating systems - ASPLOS ’09. p. 97. Washington, DC,
USA (2009), http://portal.acm.org/citation.cfm?doid=1508244.1508256

[86] Oracle: Oracle berkeley db java edition 6.4.25. http://www.oracle.com/technetwork/
database/database-technologies/berkeleydb/overview/index-093405.html

(12 2015)

[87] Peng, Y., DeLozier, C., Eizenberg, A., Mansky, W., Devietti, J.: Slimfast: Reducing
metadata redundancy in sound and complete dynamic data race detection. In: 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). pp. 835–844. IEEE
(2018)

[88] Peng, Y., Grover, V., Devietti, J.: Curd: a dynamic cuda race detector. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. pp. 390–403. ACM (2018)

[89] Peng, Y., Wood, B.P., Devietti, J.: Parsnip: performant architecture for race safety with
no impact on precision. In: Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. pp. 490–502. ACM (2017)

[90] Petrov, B., Vechev, M., Sridharan, M., Dolby, J.: Race detection for web applications. In:
Proceedings of the 33rd ACM SIGPLAN conference on Programming Language Design
and Implementation. pp. 251–262. PLDI ’12, ACM, New York, NY, USA (2012), http:
//doi.acm.org/10.1145/2254064.2254095

[91] Pozniansky, E., Schuster, A.: Efficient on-the-fly data race detection in multithreaded
C++ programs. In: Proceedings of the ninth ACM SIGPLAN symposium on Principles
and practice of parallel programming. pp. 179–190. PPoPP ’03, ACM, New York, NY,
USA (2003), http://doi.acm.org/10.1145/781498.781529

120

http://doi.acm.org/10.1145/1669112.1669180
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://docs.nvidia.com/cuda/cuda-memcheck/index.html#racecheck-tool
http://docs.nvidia.com/cuda/cuda-memcheck/index.html#racecheck-tool
https://github.com/NVlabs/SASSI
https://github.com/NVlabs/SASSI
http://portal.acm.org/citation.cfm?doid=1508244.1508256
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index-093405.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index-093405.html
http://doi.acm.org/10.1145/2254064.2254095
http://doi.acm.org/10.1145/2254064.2254095
http://doi.acm.org/10.1145/781498.781529

[92] Prvulovic, M., Torrellas, J.: ReEnact: using thread-level speculation mechanisms to de-
bug data races in multithreaded codes. In: Proceedings of the 30th annual international
symposium on Computer architecture. pp. 110–121. ISCA ’03, ACM, New York, NY, USA
(2003), http://doi.acm.org/10.1145/859618.859632

[93] Qi, S., Muzahid, A.A., Ahn, W., Torrellas, J.: Dynamically detecting and tolerating if-
condition data races. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). pp. 120–131 (Feb 2014)

[94] Qi, S., Otsuki, N., Nogueira, L.O., Muzahid, A., Torrellas, J.: Pacman: Tolerating asym-
metric data races with unintrusive hardware. In: Proceedings of the 2012 IEEE 18th
International Symposium on High-Performance Computer Architecture. pp. 1–12. HPCA
’12, IEEE Computer Society, Washington, DC, USA (2012), http://dx.doi.org/10.
1109/HPCA.2012.6169039

[95] Qian, X., Torrellas, J., Sahelices, B., Qian, D.: Volition: Scalable and Precise Se-
quential Consistency Violation Detection. In: Proceedings of the Eighteenth Interna-
tional Conference on Architectural Support for Programming Languages and Operat-
ing Systems. pp. 535–548. ASPLOS ’13, ACM, New York, NY, USA (2013), http:

//doi.acm.org/10.1145/2451116.2451174

[96] Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Scalable and precise dynamic
datarace detection for structured parallelism. In: Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation. pp. 531–542.
PLDI ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/2254064.
2254127

[97] Raychev, V., Vechev, M., Sridharan, M.: Effective Race Detection for Event-driven Pro-
grams. In: Proceedings of the ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages and Applications. OOPSLA (2013)

[98] Raychev, V., Vechev, M., Sridharan, M.: Effective Race Detection for Event-driven Pro-
grams. In: Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications. pp. 151–166. OOPSLA ’13,
ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/2509136.2509538

[99] Sanchez, D., Kozyrakis, C.: Zsim: Fast and accurate microarchitectural simulation of
thousand-core systems. In: Proceedings of the 40th Annual International Symposium
on Computer Architecture. pp. 475–486. ISCA ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2485922.2485963

[100] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic data
race detector for multithreaded programs. ACM Transactions on Computer Systems 15(4),
391–411 (Nov 1997), http://portal.acm.org/citation.cfm?doid=265924.265927

[101] Segulja, C., Abdelrahman, T.S.: Clean: A race detector with cleaner semantics. In: Pro-
ceedings of the 42Nd Annual International Symposium on Computer Architecture. pp.

121

http://doi.acm.org/10.1145/859618.859632
http://dx.doi.org/10.1109/HPCA.2012.6169039
http://dx.doi.org/10.1109/HPCA.2012.6169039
http://doi.acm.org/10.1145/2451116.2451174
http://doi.acm.org/10.1145/2451116.2451174
http://doi.acm.org/10.1145/2254064.2254127
http://doi.acm.org/10.1145/2254064.2254127
http://doi.acm.org/10.1145/2509136.2509538
http://doi.acm.org/10.1145/2485922.2485963
http://portal.acm.org/citation.cfm?doid=265924.265927

401–413. ISCA ’15, ACM, New York, NY, USA (2015), http://doi.acm.org/10.1145/
2749469.2750395

[102] Sen, K., Rou, G., Agha, G.: Detecting Errors in Multithreaded Programs by Generalized
Predictive Analysis of Executions. In: Proceedings of the 7th IFIP WG 6.1 International
Conference on Formal Methods for Open Object-Based Distributed Systems. pp. 211–
226. FMOODS’05, Springer-Verlag, Berlin, Heidelberg (2005), http://dx.doi.org/

10.1007/11494881_14

[103] Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: Data Race Detection in Practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications. pp. 62–
71. WBIA ’09, ACM, New York, NY, USA (2009), http://doi.acm.org/10.1145/

1791194.1791203

[104] Singh, A., Marino, D., Narayanasamy, S., Millstein, T., Musuvathi, M.: Efficient
Processor Support for DRFx, a Memory Model With Exceptions. In: Proceedings of
the sixteenth international conference on Architectural support for programming lan-
guages and operating systems. pp. 53–66. ASPLOS ’11, New York, NY, USA (2011),
http://doi.acm.org/10.1145/1950365.1950375

[105] Smaragdakis, Y., Evans, J., Sadowski, C., Yi, J., Flanagan, C.: Sound predictive race
detection in polynomial time. In: Proceedings of the 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. pp. 387–400. POPL ’12, ACM, New
York, NY, USA (2012), http://doi.acm.org/10.1145/2103656.2103702

[106] Song, Y.W., Lee, Y.H.: Efficient data race detection for c/c++ programs using dynamic
granularity. In: Parallel and Distributed Processing Symposium, 2014 IEEE 28th Interna-
tional. pp. 679–688 (May 2014)

[107] Sorensen, T., Donaldson, A.F.: Exposing errors related to weak memory in gpu applica-
tions. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 100–113. PLDI ’16, ACM, New York, NY, USA (2016),
http://doi.acm.org/10.1145/2908080.2908114

[108] Stratton, J.A., Rodrigues, C., Sung, I.J., Obeid, N., vLi Wen Chang, Anssari, N.,
Liu, G.D., mei W. Hwu, W.: Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing. Tech. Rep. IMPACT-12-01, University of Illinois
at Urbana-Champaign (March 2012), http://impact.crhc.illinois.edu/Shared/

Docs/impact-12-01.parboil.pdf

[109] Thoziyoor, S., Muralimanohar, N., Ahn, J.H., Jouppi, N.P.: CACTI 5.1. Tech. Rep.
HPL-2008-20, Hewlett-Packard Labs, http://www.hpl.hp.com/techreports/2008/

HPL-2008-20.html

[110] W. W. L. Fung et al.: http://www.ece.ubc.ca/ wwlfung/code/kilotm-gpgpu sim.tgz
(2013), http://www.ece.ubc.ca/~wwlfung/code/kilotm-gpgpu_sim.tgz

122

http://doi.acm.org/10.1145/2749469.2750395
http://doi.acm.org/10.1145/2749469.2750395
http://dx.doi.org/10.1007/11494881_14
http://dx.doi.org/10.1007/11494881_14
http://doi.acm.org/10.1145/1791194.1791203
http://doi.acm.org/10.1145/1791194.1791203
http://doi.acm.org/10.1145/1950365.1950375
http://doi.acm.org/10.1145/2103656.2103702
http://doi.acm.org/10.1145/2908080.2908114
http://impact.crhc.illinois.edu/Shared/Docs/impact-12-01.parboil.pdf
http://impact.crhc.illinois.edu/Shared/Docs/impact-12-01.parboil.pdf
http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
http://www.ece.ubc.ca/~wwlfung/code/kilotm-gpgpu_sim.tgz

[111] Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: A high-
performance graph processing library on the gpu. In: Proceedings of the 21st ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. pp. 11:1–
11:12. PPoPP ’16, ACM, New York, NY, USA (2016), http://doi.acm.org/10.1145/
2851141.2851145

[112] Wentzlaff, D., Beckmann, N., Miller, J., Agarwal, A.: Core count vs cache size for
manycore architectures in the cloud. Tech. Rep. MIT-CSAIL-TR-2010-008, MIT (Feb
2010), http://hdl.handle.net/1721.1/51733

[113] Wester, B., Devecsery, D., Chen, P.M., Flinn, J., Narayanasamy, S.: Parallelizing Data
Race Detection. In: Proceedings of the Eighteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (2013)

[114] Wickerson, J., Batty, M., Beckmann, B.M., Donaldson, A.F.: Remote-scope promotion:
Clarified, rectified, and verified. In: Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications. pp.
731–747. OOPSLA 2015, ACM, New York, NY, USA (2015), http://doi.acm.org/10.
1145/2814270.2814283

[115] Wilcox, J., Finch, P., Flanagan, C., Freund, S.N.: Array shadow state compression for
precise dynamic race detection. In: Proceedings of the 30th IEEE/ACM International
Conference on Automated Software Engineering. ASE ’15 (2015)

[116] Wood, B.P., Ceze, L., Grossman, D.: Low-level detection of language-level data races
with lard. In: Proceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems. pp. 671–686. ASPLOS ’14, ACM,
New York, NY, USA (2014), http://doi.acm.org/10.1145/2541940.2541955

[117] Yu, Y., Rodeheffer, T., Chen, W.: RaceTrack: efficient detection of data race conditions
via adaptive tracking. In: Proceedings of the twentieth ACM symposium on Operating
systems principles. pp. 221–234. SOSP ’05, ACM, New York, NY, USA (2005), http:
//doi.acm.org/10.1145/1095810.1095832

[118] Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: Gmrace: Detecting data races in gpu pro-
grams via a low-overhead scheme. IEEE Transactions on Parallel and Distributed Systems
25(1), 104–115 (Jan 2014)

[119] Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: Grace: A low-overhead mechanism for
detecting data races in gpu programs. In: Proceedings of the 16th ACM Symposium on
Principles and Practice of Parallel Programming. pp. 135–146. PPoPP ’11, ACM, New
York, NY, USA (2011), http://doi.acm.org/10.1145/1941553.1941574

[120] Zhou, P., Teodorescu, R., Zhou, Y.: HARD: Hardware-Assisted Lockset-based Race De-
tection. In: Proceedings of the 2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture. pp. 121–132. HPCA ’07, Washington, DC, USA (2007),
http://dx.doi.org/10.1109/HPCA.2007.346191

123

http://doi.acm.org/10.1145/2851141.2851145
http://doi.acm.org/10.1145/2851141.2851145
http://hdl.handle.net/1721.1/51733
http://doi.acm.org/10.1145/2814270.2814283
http://doi.acm.org/10.1145/2814270.2814283
http://doi.acm.org/10.1145/2541940.2541955
http://doi.acm.org/10.1145/1095810.1095832
http://doi.acm.org/10.1145/1095810.1095832
http://doi.acm.org/10.1145/1941553.1941574
http://dx.doi.org/10.1109/HPCA.2007.346191

	Efficient Precise Dynamic Data Race Detection For Cpu And Gpu
	Recommended Citation

	Efficient Precise Dynamic Data Race Detection For Cpu And Gpu
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background
	Data races
	Precise Dynamic Data Race Detection
	Vector Clock Algorithm For Dynamic Race Detection

	Metadata Redundancy Reduction in Dynamic Race Detection
	Metadata Redundancy
	The SlimFast System
	Implementation of SlimFast
	Evaluation of SlimFast
	Conclusion

	Performant Architecture for Race Safety with No Impact on Precision
	Metadata Redundancy at the Hardware Level
	The Parsnip System
	 Optimizations in Parsnip
	Design Evaluation
	Conclusion

	Practical Dynamic Data Race Detection for GPU
	GPU (CUDA) Programming Model
	Challenges For Dynamic Data Race Detection on GPU
	Redundancy in GPU Race Detection
	Barracuda Semantics
	Implementation
	Evaluation
	Conclusion

	More Efficient Data Race Detection for GPU
	The Curd System
	Implementation
	Evaluation of Curd
	Conclusion

	Related Work
	CPU Data Race Detection
	GPU Data Race Detection

	Conclusions
	Summary of Techniques
	Limitations
	Looking forward

	BIBLIOGRAPHY

