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ABSTRACT 

 

NEUROBIOLOGICAL FOUNDATIONS OF STABILITY AND FLEXIBLITY 

Nathan Tardiff 

Sharon L. Thompson-Schill 

In order to adapt to changing and uncertain environments, humans and other organisms 

must balance stability and flexibility in learning and behavior. Stability is necessary to 

learn environmental regularities and support ongoing behavior, while flexibility is 

necessary when beliefs need to be revised or behavioral strategies need to be changed. 

Adjusting the balance between stability and flexibility must often be based on 

endogenously generated decisions that are informed by information from the environment 

but not dictated explicitly. This dissertation examines the neurobiological bases of such 

endogenous flexibility, focusing in particular on the role of prefrontally-mediated 

cognitive control processes and the neuromodulatory actions of dopaminergic and 

noradrenergic systems. In the first study (Chapter 2), we examined the role of 

frontostriatal circuits in instructed reinforcement learning. In this paradigm, inaccurate 

instructions are given prior to trial-and-error learning, leading to bias in learning and 

choice. Abandoning the instructions thus necessitates flexibility. We utilized transcranial 

direct current stimulation over dorsolateral prefrontal cortex to try to establish a causal 

role for this area in this bias. We also assayed two genes, the COMT Val158Met genetic 

polymorphism and the DAT1/SLC6A3 variable number tandem repeat, which affect 

prefrontal and striatal dopamine, respectively. The results support the role of prefrontal 

cortex in biasing learning, and provide further evidence that individual differences in the 
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balance between prefrontal and striatal dopamine may be particularly important in the 

tradeoff between stability and flexibility. In the second study (Chapter 3), we assess the 

neurobiological mechanisms of stability and flexibility in the context of exploration, 

utilizing fMRI to examine dynamic changes in functional brain networks associated with 

exploratory choices. We then relate those changes to changes in norepinephrine activity, 

as measured indirectly via pupil diameter. We find tentative support for the hypothesis 

that increased norepinephrine activity around exploration facilitates the reorganization of 

functional brain networks, potentially providing a substrate for flexible exploratory states. 

Together, this work provides further support for the framework that stability and 

flexibility entail both costs and benefits, and that optimizing the balance between the two 

involves interactions of learning and cognitive control systems under the influence of 

catecholamines.  
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I. INTRODUCTION 

Behavioral flexibility is crucial to survival in changing and uncertain environments. At 

any given time, an organism must decide whether to continue pursuing the current 

behavioral policy, thereby maintaining stability, or flexibly abandon that policy in favor 

of alternative and potentially more beneficial goals and courses of action. A squirrel 

foraging for acorns must decide when to abandon the current tree in favor of other trees 

with more abundant acorns. If a tree dies or the acorn yield is particularly poor, the 

squirrel must stop relying on that resource and find and remember other sources of food, 

such as human refuse. In humans, such flexibility extends beyond basic survival 

decisions and extends across timescales. In cities, we must be flexible navigators, 

adapting to continual change brought about by traffic, potholes, and construction. We 

demonstrate flexibility in our preferences, as a young child who enjoys a superhero show 

one month only to switch to a different show the next month. We must be flexible at 

work and in our careers, deciding when to abandon one project or job in favor of a better 

path. At the same time, humans display remarkable stability. For example, we can focus 

on long-term goals like obtaining a degree, at the expense of short-term payoffs.  

As these examples demonstrate, flexibility broadly construed involves the coordination of 

learning and decision-making capacities; it often depends on balancing reliance on prior 

knowledge with learning new knowledge that may override prior beliefs, as well as 

balancing exploiting a resource with exploring to find other, potentially better resources. 

Both stability and flexibility entail costs and benefits (Blackwell, Chatham, Wiseheart, & 

Munakata, 2014; Cools & D’Esposito, 2009; Friedman & Miyake, 2017; Gopnik, 
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Griffiths, & Lucas, 2015; Herd et al., 2014; Nassar, Wilson, Heasly, & Gold, 2010). 

Knowledge or behavior that is too stable results in rigidity and inflexibility, as 

exemplified by over-trained animals who continue to level press for food, wasting time 

and energy that could be better spent elsewhere (Niv, 2009). Conversely, too much 

flexibility is characterized by learning that is too influenced by recent experience, leading 

the organism to miss important environmental regularities, or by behavior that is not 

strongly organized by internal goals, leading to distraction and disinhibition (Cools & 

D’Esposito, 2009; Nassar et al., 2010).  

The motivating questions addressed by this thesis concern the neurobiological substrates 

of stability and flexibility, focusing on mechanisms by which the balance between these 

capacities are adjusted, including dynamic adjustment within individuals as well as 

differences across individuals. Below, we briefly review work that has begun to elucidate 

some of the computational and neurobiological mechanisms of flexibility and adaptive 

behavior, which will be shown to rely on prefrontally-mediated cognitive control and 

learning processes, both of which are powerfully influenced by the neuromodulatory 

actions of dopaminergic and noradrenergic systems. We will then describe how the work 

in this thesis extends these findings, focusing on neural substrates dictating the balance 

between stability and flexibility.  

Within human cognitive neuroscience and neuropsychology, the study of flexibility in 

thought and action has uncovered a set of mechanisms known as executive function or 

cognitive control. The primary components of executive function most often cited are 

working memory, shifting, and inhibition (Diamond, 2013; Friedman & Miyake, 2017). 
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The exertion of various combinations of these faculties allows people to plan and execute 

actions extended over time, flexibly switch between different tasks or rules, and override 

prepotent or overlearned responses, all in accordance with internal goals. These 

capabilities are dependent on the integrity of the prefrontal cortex (Diamond, 2013). In 

particular, the prefrontal cortex (PFC) is thought to provide top-down signals that bias 

processing in other brain areas, thereby facilitating processing that is aligned with current 

goals while suppressing processing that conflicts with these goals (Miller & Cohen, 

2001).  

While these abilities are no doubt necessary for flexible behavior, as is evident in the 

perseverative behavior of young children, in whom the prefrontal cortex is still 

developing (Munakata, Snyder, & Chatham, 2012; Zelazo et al., 2003), the tasks 

measuring these abilities in human subjects generally involve following explicitly 

provided rules in deterministic environments with restricted opportunities for learning. 

Even in switching tasks meant to tap cognitive flexibility, the need to switch is usually 

explicitly cued. Though such exogenously cued switching no doubt taps important 

aspects of cognitive flexibility, it fails to capture the endogenous flexibility people must 

deploy in everyday environments that do not contain explicit cues on when to switch and 

which rules to switch to.  

Of course, most organisms do not have the option to follow explicit instructions. Within 

neuroscience and computer science, reinforcement learning (RL) has been a dominant 

computational framework for understanding how organisms can learn to adapt their 

behavior in order to optimize reward (Dolan & Dayan, 2013; Niv, 2009; Sutton & Barto, 
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2018). A key insight from this literature is that by computing a reward prediction error 

(RPE)—the difference between the reward expected and the reward earned—organisms 

can learn to incrementally update their behavioral policies to ultimately maximize their 

reward (Schultz, Dayan, & Montague, 1997). However, despite this ability to learn to 

optimize behavior without explicit instructions, standard models of RL assume stationary 

environments and are inflexible in the face of change, needing to slowly learn new 

associations in order to alter behavior (Pearson, Heilbronner, Barack, Hayden, & Platt, 

2011).  

In sum, we argue that cognitive control and RL are both individually necessary but not 

sufficient for explaining the full range of adaptive behavior. In particular, they do not 

capture the capacity for endogenous flexibility, the ability to adapt cognition and behavior 

in a self-directed manner in order to meet the demands of uncertain and/or changing 

environments. This type of flexibility is distinct from the mere ability to switch behavior 

(avoid perseverating) in that it must be enacted without explicit environmental cues such 

as learned stimulus-response associations or explicit verbal instructions.  

More recent efforts have begun to characterize the computational and neural 

underpinnings of learning and control in dynamic, uncertain, or novel environments. This 

work has begun to point toward a synthesis of learning and cognitive control, 

demonstrating that they are interdependent in promoting endogenously flexibility (e.g., 

Cohen, McClure, & Yu, 2007; Collins & Koechlin, 2012; Pearson et al., 2011; Shenhav, 

Botvinick, & Cohen, 2013). For example, it appears that people can learn the statistics of 

a volatile environment through adaptive RL or Bayesian learning in order to adjust the 
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level of control they bring to a task (Jiang, Beck, Heller, & Egner, 2015). Similarly, 

research in reinforcement learning has demonstrated how flexible, model-based 

reinforcement learning, which utilizes goal-directed planning to overcome the limitations 

of standard RL, appears to rely on neural and cognitive processes that overlap with those 

of cognitive control (Doll, Bath, Daw, & Frank, 2016; Otto, Gershman, Markman, & 

Daw, 2013a; Otto, Raio, Chiang, Phelps, & Daw, 2013b; Otto, Skatova, Madlon-Kay, & 

Daw, 2015; Smittenaar, FitzGerald, Romei, Wright, & Dolan, 2013).  

Of particular importance to the present work, the neuromodulatory actions of dopamine 

(DA) and norepinephrine (NE) are thought to play a key role in the cognitive control and 

adaptive learning processes necessary for adjusting the balance between stability and 

flexibility. Phasic responses of midbrain dopamine neurons have been shown to signal 

reward prediction error (Schultz et al., 1997), which is important for updating the 

expected value of both overt actions and the internal action of updating working memory 

in corticostriatal circuits (Niv & Schoenbaum, 2008; O’Reilly & Frank, 2006; Schultz et 

al., 1997). Surprise signals derived from unsigned RPE can be conveyed to brain areas 

such as the anterior cingulate cortex to drive adjustments in behavior, including 

exploration (Hayden, Heilbronner, Pearson, & Platt, 2011). NE—a key modulator of 

physiological arousal that is released by neurons in the locus coeruleus (LC)—has been 

ascribed a number of computational roles, including signaling uncertainty and the 

probability of an environmental change, quantities that can be used to dynamically adjust 

learning rates (Nassar et al., 2012), effectively changing the balance between bottom-up 

and top-down information (Yu & Dayan, 2005). NE has also been suggested to mediate 
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the balance between exploration and exploitation (Aston-Jones & Cohen, 2005) or to 

reorganize functional brain networks for different behavioral demands (Bouret & Sara, 

2005).  

Both DA and NE strongly affect prefrontal circuits, with optimal prefrontal functioning 

occurring at moderate levels of each (Arnsten, 2011). For example, prefrontal DA levels 

related to both genotypic variation and pharmacological manipulations have been 

associated with differences in the stability of representations in prefrontal working 

memory (Cools & D’Esposito, 2009). The Met allele of the Val158Met COMT genetic 

polymorphism is associated with higher baseline levels of prefrontal DA and better 

maintenance of information in working memory, while the Val allele is associated with 

lower prefrontal DA and worse maintenance of information in working memory, but 

more flexible updating of working memory (Cools & D’Esposito, 2009). This advantage 

in flexibility for the Val allele has also been shown to extend to reinforcement learning 

paradigms, in which Val homozygotes more flexibly adapt to reversals (Krugel, Biele, 

Mohr, Li, & Heekeren, 2009). Computational models of working memory suggest that 

this COMT-mediated stability-flexibility tradeoff is a necessary consequence of a 

working memory system that must be both robust to interference and able to be rapidly 

updated as the situation demands (Durstewitz & Seamans, 2008; O’Reilly & Frank, 

2006). DA-mediated changes in the balance between stability and flexibly are explained 

by changes in the attractor dynamics of prefrontal networks, which do not allow for the 

simultaneous coexistence of flexibility and stability in one state (Durstewitz & Seamans, 

2008), or alternatively by striatal mechanisms that gate access to PFC (O’Reilly & Frank, 
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2006). 

This thesis extends the study of the modulation of stability and flexibility in situations 

requiring endogenously initiated changes in control state. Chapter 2 addresses the 

computational and neurobiological substrates of endogenous flexibility in the context of 

instructed reinforcement learning, a class of paradigms in which verbal instructions given 

prior to learning influence learning and choice. Both neuroimaging and neuogenetics 

have suggested a role for frontostriatal circuits in biasing instructed RL (Doll, Hutchison, 

& Frank, 2011; Fouragnan et al., 2013; Li, Delgado, & Phelps, 2011). In particular, the 

COMT Val158Met genetic polymorphism discussed above is associated with the degree 

of instructional bias (Doll et al., 2011). Chapter 2 addressed three main goals. First, we 

sought to replicate the effect of COMT on instructed RL, providing further evidence for 

the role of PFC-mediated top-down control in biasing RL. Second, we aimed to expand 

the understanding of the impact of dopaminergic genes on instructed RL by examining 

the effect of the DAT1/SLC6A3 variable number tandem repeat (VNTR), which affects 

striatal DA reuptake (Faraone, Spencer, Madras, Zhang-James, & Biederman, 2014). 

Striatal DA levels have previously been linked to cognitive flexibility (Cools & 

D’Esposito, 2009), making DAT1 a plausible but as yet unassessed modulator of 

instructed RL. Finally, we hoped to establish a causal link between PFC and instructional 

bias by directly modulating PFC via transcranial direct current stimulation (tDCS). In 

particular, we hypothesized that anodal stimulation would increase bias and that cathodal 

stimulation would decrease it, though this latter hypothesis was more tentative given the 

unreliability of cathodal stimulation in cognitive tasks (Jacobson, Koslowsky, & Lavidor, 
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2012). Together, this chapter aims to provide further evidence for the role of 

frontostriatally-mediated cognitive control processes in biasing RL, highlighting 

individual differences in dopaminergic function associated with differences in the ability 

to flexibly adapt behavior. The results are interpreted within a framework that argues that 

top-down control can incur both costs and benefits, depending on its fit to the task 

(Chrysikou, Weber, & Thompson-Schill, 2014).  

While DA is more associated with regulating stability and flexibility in frontostriatal 

circuits, NE is thought to have widespread effects throughout the cortex (Berridge & 

Waterhouse, 2003b), making it well-situated to exert global influences on stability and 

flexibility. As noted above, theories of locus coeruleus-norepinephrine (LC-NE) function 

have ascribed it a key role in adjusting this balance, potentially by facilitating the 

reconfiguration of brain networks (Bouret & Sara, 2005). In the human neuroimaging 

literature, a number of recent studies utilizing pupil diameter as an indirect marker of LC 

activity or using pharmacological manipulation of NE have found evidence in favor of 

NE’s role in reshaping functional brain networks (e.g., Eldar, Cohen, & Niv, 2013; Shine 

et al., 2016; van den Brink et al., 2016). Notably, some of these studies suggest that NE 

levels can alter the balance of functional coupling, or integration, between different brain 

networks.  

Utilizing network neuroscience methods and pupillometry, Chapter 3 probes the 

relationship between brain network dynamics and LC-NE system activity in the context 

of switching between exploration (flexibility) and exploitation (stability). This study 

aimed to address multiple shortcomings of the prior literature. First, to date the 
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relationship between NE and functional connectivity has not been assessed within the 

context of a task with an established relationship between NE-associated arousal and 

behavior, with prior studies relying on incidental variations in arousal or pharmacological 

manipulation. Second, most prior work has relied on static brain networks constructed 

over long periods of time, making it difficult to establish whether connectivity changes 

dynamically track changes in NE. In accomplishing this goal, we sought to make 

methodological advances by demonstrating the ability to detect changes in brain network 

integration at a much finer temporal scale than is generally examined. In sum, by more 

tightly linking brain network dynamics, LC-NE associated activity, and exploratory 

choice, this chapter is intended to further our understanding of NE’s role in mediating 

between stability and flexibility.  

Chapter 4 synthesizes the findings of Chapters 2 and 3 and suggests possible directions 

for future work. 
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II. THE ROLE OF FRONTOSTRIATAL SYSTEMS IN INSTRUCTED 

REINFORCEMENT LEARING: EVIDENCE FROM GENETIC AND 

EXPERIMENTALLY-INDUCED VARIATION 

1. Introduction 

Successful learning and decision-making require a balance between exploiting prior 

information and learning from new experiences that may contradict it. One pervasive 

source of prior information in humans is instruction from others. Such instruction has 

clear benefits on both ontogenetic and historical timescales, allowing children to rapidly 

learn about the world and allowing culture and technology to develop and evolve 

(Tomasello, 1999). On an individual level, advice and information received from friends, 

professionals, and the media shape our view of the world and our choices.  

The alternative to learning from advice and instruction is learning from direct experience 

of the world. One well-characterized method of learning from experience is 

reinforcement learning (RL), in which actions are selected so as to maximize reward (see 

Dolan & Dayan, 2013 and Niv, 2009 for reviews). Recent work exploring the effects of 

instruction on RL has found that accurate advice can significantly improve performance 

(Biele, Rieskamp, & Gonzalez, 2009; Doll et al., 2011). Yet such instruction is often 

detrimental when it is inaccurate. A potential consequence of inaccurate instruction and, 

more generally, inaccurate prior information, is confirmation bias, whereby data that are 

consistent with a prior hypothesis are sought, attended to, or valued over disconfirming 

data, which are neglected, filtered, or devalued (Nickerson, 1998). Confirmation bias is 
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thought to be pervasive in human reasoning, affecting children and adults’ scientific 

reasoning as well as that of professional scientists (Hergovich, Schott, & Burger, 2010; 

Kuhn, 1989; MacCoun, 1998; Mahoney, 1977).  

Biases have been induced in both social and nonsocial RL tasks utilizing various methods 

of information delivery. Information indicative of the moral character of computerized 

partners in a repeated trust game biases share decisions to “good” and “bad” partners 

despite identical behavior by the computer (Delgado, Frank, & Phelps, 2005; Fareri, 

Chang, & Delgado, 2012). Poor advice provided by fellow subjects impairs performance 

on the Iowa Gambling Task (Biele et al., 2009; Biele, Rieskamp, Krugel, & Heekeren, 

2011). Finally, in an RL task in which subjects learn to discriminate among pairs of 

probabilistically rewarded symbols, subjects instructed that a particular symbol is 

desirable persist in choosing that symbol more than would be expected given negative 

feedback, selecting it more frequently than symbols rewarded at an equal rate (Doll et al., 

2011; Doll, Jacobs, Sanfey, & Frank, 2009; Doll et al., 2014; Staudinger & Büchel, 

2013). In sum, instructional biases appear to be persistent, and they are only partially 

ameliorated by feedback.  

The neural substrates of instructed learning are still emerging, though as in uninstructed 

RL, frontostriatal areas are commonly implicated (Doll et al., 2009; Wolfensteller & 

Ruge, 2012). Neuroimaging has supported a role for prefrontal cortex (PFC) in 

representing instructions or prior information (Fouragnan et al., 2013; Li et al., 2011), 

with activity in instructed conditions found in dorsolateral PFC (DLPFC) and medial 

PFC. Connectivity analyses further support a role for PFC, reporting increased functional 
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connectivity between frontal and striatal regions during instructed/prior knowledge 

conditions, consistent with top-down influence on striatal reward prediction errors 

(Fouragnan et al., 2013; Li et al., 2011).  

Evidence of PFC altering striatal learning comports well with accounts of PFC-mediated 

cognitive control biasing or filtering information in other brain regions. Such top-down 

modulation focuses information processing on task-relevant information while 

suppressing irrelevant information (Chrysikou et al., 2014; Miller & Cohen, 2001; 

Shimamura, 2000). Performance should be optimal when the level of filtering is suitable 

to the demands of the task (Chrysikou et al., 2014). Consequently, increased top-down 

control can incur both costs and benefits. This is the case in instructed RL, where 

instruction-induced bias has been shown to vary according to individual differences in 

PFC dopaminergic tone caused by the catechol-O-methyltransferase (COMT) Val158Met 

genetic polymorphism (Doll et al., 2011). In particular, the Met allele, which has been 

shown to confer benefits in tests of working memory and cognitive control as compared 

to the Val allele (Durstewitz & Seamans, 2008; Witte & Flöel, 2012), is associated with a 

cost in the form of increased adherence to inaccurate instructions. 

The goal of the present study was threefold. First, we sought to replicate the effect of 

COMT on instructed reinforcement learning, providing further evidence for the role of 

PFC-mediated top-down control in biasing RL.  

Second, we aimed to expand the understanding of the impact of striatal dopaminergic 

genes on instructed RL. While Doll et al. (2011) examined the effects of genetic 
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polymorphisms specific to approach or avoidance learning in the striatum, we examined 

the effect of the DAT1/SLC6A3 variable number tandem repeat (VNTR), which affects 

striatal dopamine (DA) reuptake by altering expression of the dopamine transporter 

(DAT; Faraone et al., 2014; Vandenbergh et al., 1992). Though there are conflicting 

reports on the exact effects of the DAT1/SLC6A3 VNTR, a recent meta-analysis suggests 

that in healthy individuals the 9-repeat allele is associated with increased DAT expression 

in human striatum, and thus potentially more efficient reuptake of DA as compared to the 

10-repeat variant (Faraone et al., 2014; cf. Costa et al., 2011). Striatal DA levels have 

previously been linked to cognitive flexibility (Beeler, Daw, Frazier, & Zhuang, 2010; 

Cools & D’Esposito, 2009; Garcia-Garcia, Barceló, Clemente, & Escera, 2010), making 

DAT1 a plausible modulator of instructed RL. 

Finally, while genetic and neuroimaging evidence is compelling, it falls short of 

establishing a causal role for PFC in biasing RL. We therefore hoped to establish this 

causal link by directly modulating PFC via transcranial direct current stimulation (tDCS). 

In keeping with a costs/benefits framework, we predicted that anodal stimulation—which 

has been successfully applied to PFC in order to improve cognitive control (Cattaneo, 

Pisoni, & Papagno, 2011; Fregni et al., 2005; Karuza et al., 2016; Nozari & Thompson-

Schill, 2013; Zaehle, Sandmann, Thorne, Jäncke, & Herrmann, 2011)—would lead to 

increased bias due to increased top-down regulation. Cathodal stimulation over PFC has 

produced inconsistent results in cognitive domains (Jacobson et al., 2012; Nozari, 

Woodard, & Thompson-Schill, 2014). However, supporting the costs/benefits 

framework, it has been linked to decreased working memory (Zaehle et al., 2011) and 
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selective attention (Nozari et al., 2014; Zmigrod, Zmigrod, & Hommel, 2016), but 

improved dual task performance (Filmer, Mattingley, & Dux, 2013) and cognitive 

flexibility (Chrysikou et al., 2013). Therefore we tentatively predicted that cathodal 

stimulation would lead to decreased bias due to decreased top-down control of RL. 

2. Methods 

2.1. Subjects 

One-hundred twenty-six right-handed subjects (42 per condition, 80 female, Mage = 22.20 

years) participated in the study, receiving $20 in compensation, regardless of 

performance. Informed consent was obtained from each subject in accordance with the 

University of Pennsylvania IRB. Subjects were randomly assigned to stimulation 

condition. We excluded a total of 23 subjects from the analyses for failure to meet the 

performance criteria described in section 2.3 (9 anodal, 6 cathodal, 8 sham), for a final 

sample of 103 (65 female, Mage = 21.84 years). Of these subjects, genotyping failed for 

one subject. For the Val158Met single-nucleotide polymorphism (SNP) of the COMT 

gene (rs4680), frequencies per allele in the final sample were 34:53:15 

(Val/Val:Val/Met:Met/Met). For the DAT1/SLC6A3 VNTR in the 3′ untranslated region, 

frequencies per allele were 65:26:6:2:1:1:1 (10/10:9/10:9/9:10/11:8/9:8/8:6/10). Subjects 

were placed in a 10/10 group if they had two repeats of 10+; otherwise they were placed 

in a 9-repeat carrier group (67 10/10, 35 9c). Neither gene differed from Hardy-Weinberg 

equilibrium either across the whole sample (all ps > .14) or within racial/ethnic subgroups 

(all ps > .15; see Supplementary Tables 3–6 in Appendix A for sample demographic 

breakdown). There was no association between COMT and DAT genotypes (p > .35, 
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Fisher’s Exact Test), nor were there any associations between the two genes and 

stimulation condition (all ps > .3). For the dopamine genotype composite, the distribution 

of subjects was: 25:43:27:7 (0:1:2:3). The composite was also not significantly associated 

with stimulation condition (p = .09). 

2.2. Materials and procedure 

 

Table 2.1. Stimuli (reward probabilities) for the instructed probabilistic selection task. 

Subjects are instructed that D is the best symbol. 

Subjects completed an instructed probabilistic selection task (iPST), presented on a 13″ 

laptop computer via PsychoPy (Peirce, 2009). This task required subjects to learn the 

value of symbols initially presented in 3 pairs (AB, CD, EF; Table 2.1). Within each pair, 

one symbol had a higher probability of reward. Symbols were rendered as Japanese 

Hiragana characters, and the assignment of Japanese character to underlying stimulus was 

randomized across subjects. During the instructions, each symbol was presented 

individually for 5 seconds to familiarize subjects with the stimuli. Crucially, when 

カ ポ 

A (0.8) B (0.2) 

ゴ セ 

C (0.6) D (0.4) 

ネ バ 

E (0.6) F (0.4) 
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symbol D was presented the screen also displayed the following false advice: “This 

symbol has the best chance of being correct.”  

During the training phase, subjects had to learn the value of each symbol via probabilistic 

feedback, which was delivered according to the symbol’s underlying P(reward). 

Importantly, subjects were expected to learn to select the more highly rewarded symbol 

within each pair. Subjects completed 4 training blocks. Each block contained 20 

repetitions of each pair, for a total of 60 trials per block and 240 total training trials. Trial 

order and feedback were randomized within each block. During the test phase, all 

possible symbol pairings were presented (e.g., AB, AC, AD, AE, AF, …) without 

feedback. Each pair was presented 6 times, for a total of 90 trials. Order was randomized 

across subjects. See section 1.1 of Appendix A for further details regarding task design 

and presentation. 

2.3. Performance criteria 

Subjects had to meet the following performance criteria for the uninstructed symbols in 

order to be included in the analyses: ≥ 60% accuracy on the AB pair and ≥ 50% accuracy 

on the EF pair in at least one training block after the first block, with both criteria met in 

the same block. These criteria are similar to training phase learning criteria used in 

previous reports (Doll et al., 2011, 2009, 2014; Frank, Moustafa, Haughey, Curran, & 

Hutchison, 2007), but were relaxed slightly for AB to allow for additional variability in 

learning performance, given a previous report of tDCS effects on this pair (Turi et al., 

2015). Subjects were also excluded if they failed to respond on > 10% of training trials.  
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In addition to excluding subjects who failed to pay attention or learn, these criteria helped 

ensure that subjects with arbitrary biases for one of the uninstructed symbols were 

excluded from the analyses. However, to further protect against arbitrary affinities 

introducing bias into the between-group analyses, we further tested for the presence of 

genotype or stimulation differences in the first 10 training trials of the uninstructed 

training pairs. There were no significant effects (all ps > .10), indicating that none of our 

genotype or stimulation groups entered the training phase with arbitrary stimulus 

preferences. 

2.4. Genotyping 

DNA samples were collected via Oragene saliva kits (DNA Genotek) and genotyped at 

the Penn Molecular Profiling Facility using standard procedures (see section 1.2 of 

Appendix A). 

2.5. Transcranial direct current stimulation 

We delivered direct current via saline-soaked sponge electrodes with a 25 cm2 surface 

area. Current was generated by a continuous current stimulator (Magstim Eldith 1 

Channel DC Stimulator Plus, Magstim Company Ltd., Whitland, Wales). In all 

conditions, 1.0 mA direct current was applied after a 30 second ramp-up period and was 

followed by a 30 second ramp-down. In the verum conditions, current was applied for 20 

minutes. Stimulation was applied for only 30 seconds during sham. In the anodal 

condition, the anode was placed over F7, in accordance with the 10–20 international 
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system, and the cathode was placed over the right supraorbital. This placement was 

reversed in the cathodal condition.  

Phase tDCS Duration 

Instructions No Variable 

Fixation Yes 3 min 

Training Yes 17 min 

Test Instructions No Variable 

Test No 6 min 

Table 2.2. Stimulation procedure and duration for verum stimulation (sham was identical 

except stimulation only lasted for 30 seconds, at the onset of the fixation period). 

The F7-RSO montage was chosen because current modeling (HDExplore Software, v2.3, 

SOTERIX) suggested it would maximize current through DLPFC sites found to be active 

during instructed reinforcement learning conditions (Fouragnan et al., 2013; Li et al., 

2011). Stimulation at F7 has been shown to modulate prefrontally-mediated cognitive 

control across a range of tasks (Chrysikou et al., 2013; Lupyan, Mirman, Hamilton, & 

Thompson-Schill, 2012; Nozari et al., 2014). The procedure for each subject is outlined 

in Table 2.2. Stimulation began 180 seconds prior to the start of the first trial while 

subjects were presented with a fixation cross. Stimulation has not been shown to produce 

after-effects at 1.0 mA unless applied for at least 3 minutes, and thus this period gives 

stimulation time to take full effect (Nitsche & Paulus, 2000). Additionally, though 

stimulation ended after the training phase, after-effects have been reported up to an hour 

after stimulation lasting 9–13 minutes, so it is possible tDCS could directly affect 
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performance at test in addition to its indirect effect through modifying performance 

during training (Nitsche et al., 2003; Nitsche & Paulus, 2001). 

2.6. Data analysis 

Statistical analyses were conducted in R (R Core Team, 2018) using logistic mixed 

models implemented in the lme4 package (Bates, Mächler, Bolker, & Walker, 2015b). By 

modeling both fixed and random effects, these models controlled for the 

nonindependence inherent in within-subjects data. All models included random intercepts 

for subjects and random slopes for within-subjects variables and their interactions (Barr, 

Levy, Scheepers, & Tily, 2013; Schielzeth & Forstmeier, 2009). When making between 

group comparisons of factors with more than two levels without planned comparisons, 

the significance of main effects and interactions were computed using the car package 

(Fox & Weisberg, 2011). Post-hoc comparisons were computed using the lsmeans 

package (Lenth, 2016). Significance levels for post-hoc comparisons were corrected 

using the Bonferroni-Holm method (Holm, 1979). Permutation tests were conducted via 

Monte Carlo sampling (1.0e6 − 1 permutations) using the perm package (Fay & Shaw, 

2010). 

2.7. Computational modeling 

Reinforcement learning models were fit to each subject’s data in order to evaluate 

hypotheses regarding the mechanisms of instructional bias. Models were fit by 

maximizing the log likelihood of the data using MATLAB’s fmincon (Mathworks, MA, 

USA). To avoid local minima, each model fit was repeated 25 times from different 
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random starting points, using RMSEARCH. All models were fit to both training and test 

phase data. For the training phase, fits were optimized to account for subjects’ trial-wise 

choices; for the test phase, they were optimized to result in learned Q-values after 

training that best account for choices during test (Frank et al., 2007). 

Standard model. This model implements a standard Q-learning model with separate 

learning rates for gains and losses (Frank et al., 2007). The value of each stimulus is 

updated according to the following learning rule:  

 Qt+1(s) = Qt(s) + [αg × δt]
+

+ [αl × δt]- 

 δt = rt-Qt(s) 

where Qt(s) is the action value of stimulus s at trial t, 𝑟𝑡 is the reward (0 for losses, 1 for 

gains), and δt is the reward prediction error. The learning rate 𝛼g applies only to gain 

trials, while the learning rate 𝛼l applies only to loss trials. 

Choice in the standard model and subsequently described models was implemented via a 

softmax function: 

 𝑃𝑡(𝑠1) =  
exp(

𝑄𝑡(𝑠1)

𝛽
) 

exp(
𝑄𝑡(𝑠1)

𝛽
) + exp(

𝑄𝑡(𝑠2)

𝛽
)
 

where 𝑃𝑡(𝑠1) is the probability of choosing symbol 𝑠1 over symbol 𝑠2, and 𝛽 is a 

temperature parameter determining the extent to which choice is deterministic versus 

random.  

For this model and subsequent models, we placed the following bounds on the 

parameters: 𝛼 ∈ [0.002, 1];  𝛽 ∈ [0.06, 20]. The temperature parameter was additionally 
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constrained by an empirical prior (Gershman, 2016): 
1

𝛽
 ~ Gamma(5.09, 0.83). Q-values 

for all stimuli were initialized at 0.5. 

Learning bias model (Doll et al., 2011). The learning bias model is identical to the 

standard model in all respects except that when symbol D is chosen, the baseline learning 

rate is distorted as follows: 

 Qt+1(D) =  Qt(D) + [αg × αbg × δt]
+

+ [
αl

αbl
× δt]

-
 

where αbg increases the learning rate for instruction-consistent feedback (gains), αbl 

diminishes the learning rate for instruction-inconsistent feedback (losses), and αb∙ ∈

[1, 10]1. 

Bayesian hypothesis testing model (Doll et al., 2011). This model accounts for the 

possibility that the bias lies not in learning the value of the instructed stimulus D but in 

the decision to choose D. In this case, the choice bias requires that learners achieve a 

certain level of confidence that D is rewarded below chance before they abandon it. This 

model implements a Bayesian Q-learner with Qt(s) ~ Beta[αt(s),  βt(s)]. After reward 

feedback, posterior Q-value distributions are updated as: 

 Qt+1(s) ~ Beta[αt(s) + rt,  βt(s) + (1-rt)] 

which increments α by 1 after gains and 𝛽 by 1 after losses. Additionally, after every trial 

the α and 𝛽 counts decay toward uniform, controlled by free parameters 𝛾𝛼 and 𝛾𝛽; 𝛾∙ ∈

 
1 In order to prevent learning rates exceeding 1.0, the learning bias parameters were also constrained such 

that 𝛼b∙ ≤ 𝛼.
−1 (Doll et al., 2009). 
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[0, 1] (0 is full decay and 1 is no decay). Choice is implemented by submitting the mean 

of each symbol’s beta distribution to the softmax function above. Crucially, when the 

instructed stimulus is encountered, a decision bias is implemented as follows:  

 Pt(salt) =
exp(

0.5

β
) 

exp(
0.5

β
) + exp(

μt(D) + ϕσt(D)

β
)
 

with ϕ ∈ [0, 20] and Pt(D) = 1-Pt(salt). This decision rule dictates that the mean value 

of D must be greater than ϕ standard deviations of D below chance before it is more 

probable that the alternative symbol, 𝑠alt, is chosen. Thus the more certain the learner is 

of the value of D, the lower the bias.  

Decision bias model. Though the Bayesian hypothesis testing model has provided a 

reasonable fit to some subjects’ training data and has been shown to be sensitive to 

individual differences, it has not overall outperformed the standard model in explaining 

training phase performance (Doll et al., 2011, 2009). It also compares the value of D to 

chance instead of to the value of the alternative stimulus, making it less effective as a 

possible model of test phase performance. Furthermore, interpretation of this model in 

comparison to the standard uninstructed model is complicated by the fact they are not 

nested models. Therefore, we also implemented a novel decision bias model. This model 

uses the standard Q-learner described above, but the softmax decision rule is modified for 

choices involving the instructed stimulus in a manner similar to the hypothesis testing 

model: 

 Pt(salt) =
exp(

Qt(salt)

β
) 

exp(
Qt(salt)

β
) + exp(

Qt(D) + ρ

β
)
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with ρ ∈ [0, 1]. The free parameter 𝜌 determines how much greater the value of the 

alternative symbol must be before it is more probable that it is chosen over D. Therefore, 

unlike the Bayesian model, this model: a) assumes a fixed bias; b) compares the value of 

D to the alternative symbol, making it more appropriate as a model of test phase choice; 

and c) contains the standard model as a special case (ρ = 0), ensuring differences in fit 

will be attributable to the presence of the bias and not to differences in the learner. 

2.7.1. Model comparison 

Goodness of fit was assessed using Akaike information criteria (AIC). We additionally 

submitted the AIC values to a Bayesian random effects analysis, which assumes there is a 

distribution of models in the population and attempts to identify which model is most 

prevalent. The quantity resulting from this analysis is a protected exceedance probability 

(PEP), which is the probability that a given model is the most frequent in the population, 

above and beyond chance (Rigoux, Stephan, Friston, & Daunizeau, 2014). PEPs were 

computed using the VBA toolbox (Daunizeau, Adam, & Rigoux, 2014). Model 

comparison was then made on the basis of both AIC and PEPs.  

3. Results 

We begin by reviewing general performance across the sample. We then examine 

genotypic differences in instructional bias. To this end, we first attempt to replicate the 

effect of COMT genotype. We then extend the investigation of the influence of 

dopaminergic genes on instructional bias to the DAT1 gene. In brief, we partially 

replicated the effect of COMT and found effects of DAT1 on instructional bias as well. 
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Motivated by these findings, we next ask whether a dopamine composite variable 

constructed from the COMT and DAT variables captures additional aspects of 

performance. These analyses demonstrated an overall graded effect of the dopamine 

composite on performance, and also uncovered a small group of subjects who 

demonstrated more extreme bias. We then ask if we can causally manipulate instructional 

bias with tDCS, finding that anodal stimulation had a small but significant effect on 

performance during training. Finally, we fit computational models to test potential 

mechanisms underlying instructional bias, finding evidence in favor of a model 

incorporating a bias on the decision to choose the instructed stimulus, rather than a bias 

on the learned value of the instructed stimulus. 

3.1. General performance: Training phase 

3.1.1. Instructed learning 

We first conducted analyses of choice behavior during training. In all analyses, accuracy 

was binary coded (incorrect: 0, correct: 1), where correct is defined as choosing the 

stimulus with the higher probability of reward, regardless of whether it was rewarded on 

that trial. Trial Type was treatment coded (CD: 0, EF: 1). This coding allows direct 

assessment of how much instruction biased learning. Block was reverse Helmert coded in 

order to capture learning-related changes in the mean level of responding across training 

(i.e., Block 2 was compared to Block 1, Block 3 was compared to the mean of Blocks 1 

and 2, and Block 4 was compared to the mean of all prior blocks). We assessed the 

effects of genotype and stimulation both by examining performance on the CD trials 
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alone, and by contrasting performance on CD with the equally rewarded but uninstructed 

EF pair. Given our between-subjects design, this latter contrast serves to account for 

additional variance in learning unrelated to instructional control. Therefore, instructed 

training models included all two-way and three-way interactions of genotype or tDCS 

condition, Trial Type, and Block.  

Subjects were below chance on the CD pair (β = −0.27, z = −2.86, p = .004). Performance 

was significantly better on the EF pair (β = 0.93, z = 6.96, p < .0001), validating the 

success of the instructional manipulation. Despite poor overall performance on the CD 

pair, subjects continued to learn away from the instructions throughout training, as 

demonstrated by the significance of all three Block regressors (Block 2 vs. 1: β = 0.32, z 

= 2.81, p = .005; Block 3 vs. (1,2): β = 0.24, z = 2.34, p = .02; Block 4 vs. (1,2,3): β = 

0.31, z = 3.13, p = .002). 

3.1.2. Uninstructed learning 

Variable coding in uninstructed training models was the same as above, except Trial 

Type was effect coded (AB: 1, EF: −1). The three-way interactions were not included in 

these models as there were no hypotheses relevant to these contrasts.  

Subjects performed significantly above chance on uninstructed trials (β = 1.12, z = 14.67, 

p < .0001). There was an effect of Trial Type (β = 0.46, z = 10.55, p < .0001), indicating 

that subjects performed significantly better on the AB pair over the EF pair, in line with 

the relative difficulty of the two discriminations. Subjects continued to learn throughout 

training, though the magnitude of this effect was numerically smaller in later blocks 
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(Block 2 vs. 1: β = 0.40, z = 4.79, p < .0001; Block 3 vs. (1,2): β = 0.22, z = 2.74, p = 

.006; Block 4 vs. (1,2,3): β = 0.18, z = 2.17, p = .03). There was additionally a Trial Type 

x Block 2 vs. 1 interaction (β = 0.31, z = 3.97, p < .0001), indicating a steeper learning 

trajectory for AB over EF during the initial blocks of the task, which again is 

unsurprising given the relative ease of the AB discrimination. 

3.2. General performance: Test phase 

The training and test phases are purported to represent different processes subserved by 

different neural systems (Frank et al., 2007). While the training phase is supposed to 

reflect hippocampally- and frontally-mediated memory and hypothesis-testing processes, 

the test phase is designed to give a “purer” measure of striatally-learned reinforcement 

values. The standard approach to assessing performance at test is to examine performance 

on trials in which a stimulus of interest is included in novel pairings, giving an estimate 

of how well underlying reward values were learned during training. 

Two measures from the literature were used to assess the effect of instruction on test 

phase performance (Doll et al., 2014). The first analysis compared performance on 

Avoid-D (AD, DE) vs. performance on Avoid-F (AF, CF). For both measures, the target 

stimulus should not be chosen, as it has been paired with stimuli that had a higher 

probability of reward during training. Given that D and F had identical reward 

probabilities during training, subjects should perform equally well on both measures. 

However, if instruction biased the ultimate reward values subjects learned, or if subjects’ 
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choices continue to be biased at test, they should avoid D at a lower rate than they avoid 

F.  

Choice Type was entered as an effect-coded factor (Avoid-D: 1, Avoid-F: −1) in a 

logistic mixed effects model of choice performance. The intercept was significant (β = 

0.73, z = 5.53, p < .0001), indicating that subjects’ overall avoidance of D and F was 

above chance. There was also a main effect of Choice Type (β = −0.61, z = −5.43, p < 

.0001). As expected, subjects showed a confirmation bias effect, avoiding D significantly 

less than they avoided the equally rewarded symbol F. 

The second analysis of instructed learning examined performance on DF trials in order to 

directly compare the relative subjective value of the two stimuli. A greater effect of 

instruction on learning, and thus a greater bias, should be associated with an increased 

tendency to choose D over F.  

In this model, choice on DF trials was the dependent variable (D: 1, F: 0). The intercept 

was significant (β = 1.58, z = 5.86, p < .0001). Subjects demonstrated a strong bias—they 

were almost five times more likely to choose D, as indicated by an odds ratio (OR) of 

4.86. In sum, our training and test results replicate previous investigations (Doll et al., 

2011, 2009, 2014) and confirm that the instructional manipulation was successful. 
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Figure 2.1. Training phase performance by trial type (AB, CD, EF) and genotype. 

Accuracy is defined as the proportion of time the symbol with the higher reward 

probability was chosen, regardless of whether it was rewarded or not. Error bars are 

standard errors of the mean. A COMT, B DAT, C Dopamine composite (DAC). 

3.3. COMT: Training phase 

3.3.1. Instructed learning 

We next sought to replicate the effect of the COMT Met allele on adherence to the 

instructions during training (Doll et al., 2011). COMT genotype was effect coded. All 

other variables were coded as above.  

A B 

C 
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There was a significant COMT x Trial Type interaction (𝜒2(2) = 13.94, p = .0009). Met 

homozygotes were significantly worse overall on the instructed pair (Figure 2.1A, 

Supplementary Table 7), as compared to both heterozygotes (β = −0.98, z = −3.70, 

pcorrected = .001) and Val homozygotes (β = −0.92, z = −3.26, pcorrected = .006). Met 

homozygotes also demonstrated better performance at a trend level on the uninstructed 

EF pair compared to Val/Met subjects, but this did not survive correction for multiple 

comparisons (β = 0.41, z = 1.87, p = .06, pcorrected = .25). Notably, no other comparisons 

reached significance, including the comparison of instructed performance between 

Val/Met and Val/Val subjects (all ps > .2), indicating impaired performance was specific 

to Met homozygotes. 

Because our Met/Met group was somewhat small (N = 15) due to the low frequency of 

this genotype in the general population (Auton et al., 2015), we took a number of 

additional steps to ensure these results were not spurious. First, we reran our analyses 

comparing Val homozygotes to Met carriers (Metc), which was also the analysis 

performed by Doll and colleagues (2011). In this case, we failed to replicate the effect of 

Met-carrier status on instructed learning. The Metc x Trial Type interaction was not 

significant (𝜒2(1) = 0.16, p = .69), nor were there any other significant effects of Met 

carrier status (all ps > .42). We then asked whether the full COMT model or the Metc 

model provided a better fit to the data, finding that the COMT model was a modestly 

better fit, despite including additional parameters (AICCOMT = 19966, AICMetc = 19969). 

Finally, we conducted permutation tests on CD trials, averaged across all blocks, to 

further guard against the possibility that our Met homozygote results could have arisen 
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under the null. Confirming our results, Met homozygotes’ performance was reliably 

below the mean on CD trials (p = .004), and this group performed worse than both Val 

homozygotes (pcorrected = .006) and heterozygotes (pcorrected = .001). We therefore utilize 

the full breakdown of COMT genotype for the remainder of the results. 

3.3.2. Uninstructed learning 

In contrast to instructed learning, we found no effects of COMT genotype on uninstructed 

learning (all ps > .2; Figure 2.1A, Supplementary Table 8). 

 

Figure 2.2. Test phase performance by genotype. Top Accuracy avoiding D (instructed) 

and F (uninstructed) when paired with stimuli at test that had a higher reward probability 

A        B             C 

D        E             F 
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during training for A COMT, B DAT, C DAC. Bottom Proportion by which D was 

chosen over F at test for D COMT, E DAT, F DAC. 

3.4. COMT: Test phase 

Instructed test phase performance demonstrated evidence of a gene-dose effect (Figure 

2.2A,D). COMT status significantly predicted performance on DF trials (𝜒2(2) = 9.06, p 

= .01). Val homozygotes were less likely to choose D on DF trials compared to 

heterozygotes (β = −1.11, z = −2.09, pcorrected = .07) and to Met homozygotes (β = −2.28, 

z = −2.82, pcorrected = .01). There was no significant difference between Val/Met and 

Met/Met groups, but Met/Met subjects were numerically more likely to choose D (β = 

1.18, z = 1.53, pcorrected = .13). Supporting this pattern, an exploratory gene-dose analysis 

demonstrated a significant linear effect of the number of Met alleles on choosing D over 

F (β = 1.60, z = 3.01, p = .003).  

There were no significant effects of COMT genotype on the Avoid-D/Avoid-F measure, 

(all ps > .17), but quantitatively, differences were indicative of a similar gene-dose 

relationship on Avoid-D. An exploratory gene-dose analysis demonstrated a trend-level 

Met x Trial Type interaction (β = −0.44, z = −1.86, p = .06). While increasing Met 

alleles negatively predicted performance on Avoid-D (β = −0.90, z = −2.09, pcorrected = 

.07), there was no relationship with uninstructed Avoid-F (β = −0.02, z = −0.05, pcorrected 

= .96). 

The above results refine, but only partially replicate, the effect of COMT genotype on 

instructed RL. While Doll and colleagues (2011) found that Met carriers demonstrate 

greater instructional bias relative to Val homozygotes during training, we found increased 
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bias exclusively for Met homozygotes. Our COMT test phase results provide novel 

evidence for a gene-dose effect, though differences on the Avoid-instructed measure were 

not as robust as reported previously. The prior report included a somewhat greater 

percentage of Met homozygotes out of all Met carriers (28.3%) than the present study 

(22.1%), which could have impacted the results given that instructional bias appears to be 

strongest in the former group. Additionally, a number of methodological differences 

could have contributed to these discrepancies. These differences aside, as COMT is 

thought to be particularly and differentially important to the regulation of prefrontal 

dopamine levels (Durstewitz & Seamans, 2008; Tunbridge, 2010), the present findings 

further implicate prefrontal cortex in biasing responding to instructed stimuli at both 

training and test. 

3.5. DAT: Training phase 

Expanding the investigation of the effect of dopaminergic genes on instructional bias, we 

next examined the effect of DAT1 genotype. In our regression models, DAT was simple 

coded with 10/10 homozygotes as the reference (9c: 0.5, 10/10: −0.5).  

As compared to 10-repeat homozygotes, 9-repeat carriers were significantly worse on the 

instructed pair (β = −0.43, z = −2.17, p = .03; Figure 2.1B, Supplementary Table 9). 

There was also a trend-level DAT x Trial Type interaction (β = 0.53, z = 1.91, p = .056). 

While 9-repeat carriers were worse on the CD pair, there was no difference between 

genotypes on the EF pair (p > .5). There were no interactions between DAT and Block, 

indicating similar learning trajectories in both groups (all ps > .4). Nor were there any 
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effects of DAT on uninstructed learning (all ps > .4; Figure 2.1B, Supplementary Table 

10). 

3.6. DAT: Test phase 

There was no effect of DAT on DF trials (p = .74; Figure 2.2E). There was a main effect 

of DAT on Avoid-D/Avoid-F (β = −0.66, z = −2.40, p = .02; Figure 2.2B) in the absence 

of a significant interaction (p > .17), suggesting that 9-repeat carriers were significantly 

worse overall on these measures. However, the effect seems to be driven primarily by 

worse performance on Avoid-D (Avoid-D: β = −0.49, z = −2.30, pcorrected = .04; Avoid-F: 

β = −0.17, z = −1.18, p = .24).  

Remarkably, though DAT plays little role in cortical DA clearance (Sulzer, Cragg, & 

Rice, 2016), it appears to be equally if not more predictive of training than test phase 

performance, the former of which is putatively more reliant on prefrontal function (Frank 

et al., 2007). This result is surprising, given that investigations assessing other striatal 

genes have found that striatal genotypic effects in both instructed and uninstructed 

learning are confined to the test phase only (Doll et al., 2011; Frank et al., 2007). 

Previous work has indicated that there is a reciprocal relationship between prefrontal and 

striatal DA, with more prefrontal DA leading to more cognitive stability, while more 

striatal DA leads to more cognitive flexibility (Cools & D’Esposito, 2009). Motivated by 

this and by prior studies in which composites of multiple DA genes have shown better 

predictive power than single genes (Kohno et al., 2016; Nikolova, Ferrell, Manuck, & 
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Hariri, 2011), we next asked whether a composite DA variable would better predict 

instructional bias. 

3.7. DA composite: Training phase 

To produce the DA composite (DAC), we recoded the COMT and DAT variables 

according to putative prefrontal-striatal DA balance (COMT: Val/Val = 0, Val/Met = 1, 

Met/Met = 2; DAT: 10/10 = 0, 9c = 1), and then summed the two variables. The resulting 

composite ranged between 0 (low frontal DA, high striatal DA) and 3 (high frontal DA, 

low striatal DA).  

Reexamining training phase performance (Figure 2.1C, Supplementary Table 11), we 

found a significant effect of DAC (𝜒2(3) = 11.02, p = .01), superseded by a significant 

DAC x Trial Type interaction (𝜒2(3) = 29.56, p < .0001). Post-hoc comparisons revealed 

that the DAC3 group was significantly and uniquely impaired in learning away from the 

instructions compared to the other three groups (DAC3 vs. DAC 0: β = −2.03, z = −5.52, 

pcorrected < .0001; DAC3 vs. DAC 1: β = −1.96, z = −5.56, pcorrected < .0001; DAC3 vs. 

DAC 2: β = −1.99, z = −5.46, pcorrected < .0001). In contrast, DAC3 subjects demonstrated 

better performance on EF, though this did not survive correction for multiple 

comparisons: (DAC3 vs. DAC 0: β = 0.62, z = 1.94, p = .053, pcorrected = .42; DAC3 vs. 

DAC 1: β = 0.58, z = 1.92, p = .056, pcorrected = .42; DAC3 vs. DAC 2: β = 0.68, z = 2.14, 

p = .03, pcorrected = .29). No other comparisons between DAC groups were significant (all 

ps > .6). The DAC x Trial Type interaction was already present in the first block of 

training, suggesting it was not the result of extensive learning (𝜒2(3) = 15.89, p = .001). 
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Nor was it ameliorated by additional training, as the DAC3 group was the only group to 

show no evidence of learning away on CD from the first block to the last (DAC 0: β = 

0.53, z = 2.00, pcorrected = .09; DAC 1: β = 0.57, z = 2.83, pcorrected = .01; DAC 2: β = 0.80, 

z = 3.11, pcorrected = .008; DAC 3: β = −0.59, z = −1.03, pcorrected = .30).  

There were no significant differences between DAC groups in the analysis of 

uninstructed learning (all ps > .3), though as with EF, the DAC3 group’s performance 

was quantitatively better on AB (Figure 2.1C, Supplementary Table 12). These 

differences in uninstructed learning are intriguing given that they are in the opposite 

direction of the instructed effect, but given the small sample size of the DAC3 group (N = 

7) due to the lower prevalence of both the COMT Met allele (Auton et al., 2015) and the 

DAT 9-repeat variant (Doucette-Stamm, Blakely, Tian, Mockus, & Mao, 1995; 

Vandenbergh et al., 1992) in the general population, this study may not have had the 

statistical power to determine whether such small effects are reliable.  

As with the COMT Met/Met results, because of the small sample size of the DAC3 

group, we again took efforts to ensure these results did not arise by chance. First, we 

repeated the analysis with a modified DA composite created by summing the Metc and 

DAT variables (Metc: Val/Val = 0, Met carrier = 1; DAT: 10/10 = 0, 9c = 1), producing 

three DACmetc groups Ns = 25:51:26 (0:1:2). Repeating our analysis of instructed 

learning, we failed to find any effects of DACmetc (all ps > .21). However, the full DAC 

model provided a much better fit to the data, despite including additional parameters 

(AICDAC = 19958, AICDACmetc = 19974), and also provided a better fit than both the 

COMT and DAT instructed learning models (AICCOMT = 19966, AICDAT = 19961). 
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Permutation tests on the average performance on CD trials across training also support 

the results of the regression analysis. DAC3 subjects were reliably below the mean on 

CD trials (p < .0001), and this group performed worse than all other DAC groups (DAC3 

vs. DAC0: pcorrected = .0001, DAC3 vs. DAC1: pcorrected < .0001, DAC3 vs. DAC2: 

pcorrected = .0001). Given that it is highly unlikely that seven randomly chosen subjects 

would have performance at the level of the DAC3 group, we utilize the full DAC 

composite for the remainder of the results. 

3.8. DA composite: Test phase 

While there was only a marginal main effect of DAC on Avoid-D/Avoid-F (𝜒2(3) = 6.62, 

p = .085), a gene-dose analysis revealed a significant linear effect of DAC (β = −0.86, z = 

−2.56, p = .01) qualified by a DAC x Choice Type interaction (β = −0.62, z = −2.16, p = 

.03). DAC status was negatively associated with avoiding D; it showed no relationship to 

avoiding F (Avoid-D: β = −1.47, z = −2.88, pcorrected = .008; Avoid-F: β = −0.24, z = 

−0.68, pcorrected = .50; Figure 2.2C). DF trials revealed a similar pattern; though there was 

no main effect of DAC (𝜒2(3) = 1.12, p = .77), there was a significant gene-dose effect, 

with increasing choice of the instructed stimulus with increasing DAC status (β = 1.72, z 

= 2.53, p = .01). This effect appears to be driven primarily by the DAC3 group, all seven 

of whom remarkably chose D over F 100% of the time (Figure 2.2F). 

In sum, there was graded effect of DAC on test phase performance, with increasing 

frontal (decreasing striatal) DA predicting greater adherence to the instructions. This 
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graded relationship was punctuated by the performance of the DAC3 group, who, as 

during training, demonstrated substantially greater instructional bias.  

Taken together, the genotyping results implicate prefrontal cortex, and in particular the 

balance between prefrontal and striatal dopamine, in modulating instructed RL. This 

pattern motivates asking our next question: Does experimentally manipulating prefrontal 

function via tDCS alter the magnitude of instructional bias? 

3.9. tDCS: Training phase 

3.9.1. Instructed learning 

To examine the main hypotheses of the study—that anodal stimulation will increase 

confirmation bias, while cathodal stimulation may decrease it—our focal analyses 

concerned the contrasts of Anodal vs. Sham stimulation and Cathodal vs. Sham 

stimulation. These contrasts include Condition, or the overall effect of stimulation 

compared to Sham on instructed choice, and Condition x Trial Type, which allows for the 

same assessment while controlling for performance on EF. For a more fine-grained 

investigation of the time course of learning, we additionally examined the Condition x 

Block interactions, which indicate whether stimulation altered the extent to which 

subjects learned away from the instructions across training blocks, and the Condition x 

Trial Type x Block interactions, which allow for the same assessment while controlling 

for performance on EF. Condition was simple coded with sham as the reference (Anodal: 

2/3 −1/3, Cathodal: −1/3 2/3, Sham: −1/3 −1/3). 
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We first examined the contrasts between anodal and sham stimulation. Supporting our 

hypothesis, there was a significant Anodal vs. Sham x Trial Type x Block 2 vs. 1 

interaction (β = 0.76, z = 2.22, p = .03). When controlling for performance on EF, the 

sham group demonstrated significant learning away from the instructions from Block 1 to 

Block 2 on CD, while the anodal group did not (Sham: β = 0.63, z = 2.60, pcorrected = .046; 

Anodal: β = −0.13, z = −0.53, pcorrected = 1.00). The sham group nearly doubled their 

performance (OR = 1.88), but the anodal group demonstrated essentially no learning (OR 

= 0.88; Figure 2.3A,B and Table 2.3). Examining performance on CD without adjusting 

for EF, the Anodal vs. Sham x Block 2 vs. 1 interaction was at trend (β = −0.45, z = 

−1.59, p = .11). As above, the sham group showed significant learning from Block 1 to 

Block 2, while the anodal group did not (Sham: β = 0.53, z = 2.68, pcorrected = .04; Anodal: 

β = 0.08, z = 0.42, pcorrected = 1.00). In contrast, neither group demonstrated significant 

learning from Block 1 to Block 2 on EF (Sham: β = −0.10, z = −0.64, pcorrected = 1.00; 

Anodal: β = 0.21, z = 1.33, pcorrected = .74).  

Predictor β ORa z p 

Intercept −0.27 0.76 −2.86 .004 

Anodal vs. Sham −0.01 0.99 −0.04 .97 

Cathodal vs. Sham 0.09 1.10 0.40 .69 

Trial Type 0.93 2.53 6.96 < .0001 

Block 2 vs. 1 0.32 1.38 2.81 .005 

Block 3 vs. (1,2) 0.24 1.27 2.35 .02 

Block 4 vs. (1,2,3) 0.31 1.36 3.13 .002 

Anodal vs. Sham x Trial Type −0.05 0.95 −0.15 .88 
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Cathodal vs. Sham x Trial Type  −0.17 0.84 −0.54 .59 

Anodal vs. Sham x Block 2 vs. 1 −0.45 0.64 −1.59 .11 

Anodal vs. Sham x Block 3 vs. (1,2) 0.18 1.20 0.73 .47 

Anodal vs. Sham x Block 4 vs. (1,2,3) 0.08 1.07 0.31 .75 

Cathodal vs. Sham x Block 2 vs. 1 −0.19 0.83 −0.69 .49 

Cathodal vs. Sham x Block 3 vs. (1,2) −0.10 0.91 −0.41 .68 

Cathodal vs. Sham x Block 4 vs. (1,2,3) −0.17 0.85 −0.70 .48 

Trial Type x Block 2 vs. 1 −0.22 0.80 −1.58 .11 

Trial Type x Block 3 vs. (1,2) −0.03 0.97 −0.22 .82 

Trial Type x Block 4 vs. (1,2,3) −0.16 0.85 −1.11 .27 

Anodal vs. Sham x Trial Type x Block 2 vs. 1 0.76 2.15 2.22 .03 

Anodal vs. Sham x Trial Type x Block 3 vs. (1,2) −0.25 0.78 −0.75 .46 

Anodal vs. Sham x Trial Type x Block 4 vs. (1,2,3) 0.06 1.06 0.17 .86 

Cathodal vs. Sham x Trial Type x Block 2 vs. 1 0.47 1.60 1.41 .16 

Cathodal vs. Sham x Trial Type x Block 3 vs. (1,2) −0.12 0.89 −0.37 .71 

Cathodal vs. Sham x Trial Type x Block 4 vs. 

(1,2,3) 
0.50 1.65 1.46 .14 

Note. Boldfaced text indicates p < .05. aOR: Odds Ratio 

Table 2.3. Mixed effects logistic regression model of the effect of instruction (CD vs. EF) 

and tDCS on training phase performance. 

We also sought to ensure that the effect of anodal stimulation early in learning was not 

driven by the presence of DAC3 subjects. Controlling for DAC, the Anodal vs. Sham x 

Trial Type x Block 2 vs. 1 interaction remained significant (β = 0.86, z = 2.45, p = .01) 

and the Anodal vs. Sham x Block 2 vs 1 interaction for CD remained at trend (β = −0.49, 

z = −1.74, p = .08), confirming that the effect was not driven by genotypic differences 

between stimulation conditions.  
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Taken together, these results indicate that anodal stimulation significantly impeded 

learning away from the instructions during the initial blocks. No other Anodal vs. Sham 

contrasts were significant (Table 2.3), including the overall effect of anodal stimulation 

(p = .97) and the Anodal vs. Sham x Trial Type interaction (p = .88), suggesting that 

anodal stimulation only weakly and transiently affected performance. In contrast to the 

anodal condition, there were no significant effects of cathodal stimulation (all ps > .14). 
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Figure 2.3. Performance at training (top) and test (bottom) by tDCS stimulation 

condition. A Training phase performance by trial type. B The effect anodal stimulation 

on instructed reinforcement learning. Points are predicted odds ratios for the CD/EF 

contrast by block and condition. This contrast reflects performance on CD controlling for 

performance on EF, giving a purer measure of the effect of instructions on choice. Lines 

represent the two-way Trial Type x Block interactions within each condition. Error bars 

are standard errors of the parameter estimates. While the sham group demonstrated 

significant learning away from the instructions from Block 1 to Block 2, the anodal group 
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did not, and this interaction was significant (see section 3.9.1). C Avoid-D/Avoid-F. D 

DF trials. 

3.9.2. Uninstructed learning 

We also explored the effect of stimulation on accuracy during training for the 

uninstructed symbol pairs (AB, EF). Quantifying the effect of stimulation on uninstructed 

learning is important in order to show that effects on instruction are not in some way due 

to generally altered learning, especially given a prior report of altered performance on the 

AB pair under anodal stimulation (Turi et al., 2015).  

Though there were no significant effects of stimulation condition at the p < .05 level, 

there was a trend-level Anodal vs. Sham x Trial Type interaction (β = 0.16, z = 1.66, p = 

.097; Figure 2.3A, Supplementary Table 13), reflecting somewhat better average 

performance on the AB pair by the anodal group. This difference is intriguing given 

increasing evidence that working memory processes contribute to RL performance 

(Collins, Ciullo, Frank, & Badre, 2017; Collins & Frank, 2012), and anodal stimulation 

has been shown to improve working memory (Fregni et al., 2005; Nozari & Thompson-

Schill, 2013; Zaehle et al., 2011). However, in light of the marginal nature of this 

unhypothesized effect, we do not interpret it further. As with instructed learning, there 

were no significant effects of cathodal stimulation (all ps > .12). 

3.10. tDCS: Test phase 

In contrast to the training phase, there were no significant effects of stimulation on either 

Avoid-D/Avoid-F or DF trials at test (all ps > .19; Figure 2.3C,D). This suggests that 
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unlike COMT genotype, to the extent that tDCS modulated instructed learning, it biased 

choice during training without impacting the learned value of the instructed stimulus. 

3.11. Computational modeling 

While the behavioral analyses above confirm the existence of instructional bias, they are 

only weakly informative with respect to the underlying mechanisms. Two classes of 

models have been suggested to account for instructional bias on the PST: models in 

which instructions bias striatal reward learning (learning bias models), and those in which 

instructions affect choice rather than learning (choice bias models) (Doll et al., 2009). 

Prior work has provided weak evidence for a choice bias operating during training, while 

test phase performance has been best explained by a learning bias mechanism (Doll et al., 

2011, 2009). Two results from the present study bear on this question. First, the early-

developing, persistent bias of the DAC3 group during training, coupled with their 

exclusive choice of D over F at test, would seem to be more consistent with a choice bias 

during both phases. However, these effects could also plausibly arise from a very strong 

learning bias, making this interpretation far from definitive. Second, the unaltered 

performance by the anodal group at test also appears more consistent with tDCS 

influencing a choice bias early in training, though caution is warranted in interpreting a 

null result.  

We therefore fit computational models to subjects’ data—one learning bias model and 

two choice bias models—each of which encapsulates a different hypothesis about the 

nature of instructional control (see section 2.7). Briefly, the learning bias model (Doll et 
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al., 2009) assumes instructional bias arises from an increase in learning rate for gains and 

a decrease in learning rate for losses when the instructed symbol D is selected. The 

Bayesian hypothesis testing model (Doll et al., 2009) assumes that subjects veridically 

learn the reward value of D in a Bayesian fashion, but must have a certain level of 

confidence that the value of D is below chance before they reliably stop choosing it. We 

additionally implemented a novel choice bias model, the decision bias model, which 

assumes a standard RL learner with a fixed bias added to the value of D during choice. 

Finally, we fit a standard RL model, which tests the null hypothesis of no bias.  

Contrary to prior work, both the training and test phase were best explained by the 

decision bias model (Table 2.4). However, while AIC strongly supported this model at 

both training and test, the protected exceedance probabilities and estimated model 

frequencies did not provide strong evidence that this model was more frequent in the 

population for the training phase than the Bayesian hypothesis testing model. We 

therefore examined the correlation between each model’s bias parameter and 

performance on CD trials across training, in order to ascertain whether one or the other 

model better accounted for behavior on instructed learning trials. The 𝜙 parameter of the 

Bayesian hypothesis testing model was significantly correlated with performance on CD 

trials (r(101) = −.23, p = .02). However, the correlation between the 𝜌 parameter of the 

decision bias model and CD performance was much stronger (r(101) = -.66, p < .0001), 

and the difference between the correlations was significant (Steiger’s Z =−3.82, p = 

.0001). In accordance with our tentative hypothesis based on the behavioral results, we 
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conclude that both training and test phase performance can be parsimoniously accounted 

for by a single choice bias mechanism. 

Model FP −LL AIC PEP EF 

Training      

standard 3 13543.8 27705.7 0.007 0.239 

learning bias 5 13298.2 27626.4 5.081e-05 0.003 

Bayes HT 4 13402.9 27629.8 0.339 0.362 

decision bias 4 13284.2 27392.4 0.654 0.397 

Test      

standard 3 4755.4 10128.8 3.816e-16 0.164 

learning bias 5 4362.8 9755.7 3.816e-16 0.002 

Bayes HT 4 4748.4 10320.8 3.816e-16 0.015 

decision bias 4 4304.6 9433.3 1.000 0.818 

Table 2.4. Model comparison of reinforcement learning model fits to subject data. FP: 

number of free parameters; −LL: negative log-likelihood; AIC: Akaike information 

criteria; PEP: protected exceedance probability, the probability that a given model is the 

most frequent in the population, above and beyond chance; EF: estimated model 

frequency, the frequency of the model in the population as estimated by the Bayesian 

random-effects analysis. 

We also reexamined genotypic and stimulation group differences with respect to the 𝜌 

parameter of the decision bias model. These results are reported fully in section 2 of 

Appendix A and average parameter estimates are reported in Supplementary Tables 1 and 

2. Briefly, we found effects of COMT and DAC on 𝜌 at both training and test, in the 

same direction as the behavioral results. For DAT, 9-repeat carriers were fit with a higher 

𝜌 parameter during training, but test phase differences were best explained by the 9-

repeat carrier group being fit with a lower learning rate for losses as compared to 10/10 

group. We were, however, unable to confirm the anodal tDCS behavioral effect in the 
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parameters of the decision bias model. While this does not invalidate the effect, it does 

warrant additional caution in interpreting the result. 

4. Discussion 

There is mounting evidence that reward learning is far more complex and dynamic than 

can be accounted for by simple model-free theories of reinforcement. This complexity 

has been explored with respect to goal-directed planning processes (i.e., model-based RL) 

(Dolan & Dayan, 2013) and instructional control (Wolfensteller & Ruge, 2012), among 

others. Both model-based RL and instructional control have been associated with 

cognitive control and frontostriatal function (Daw, Niv, & Dayan, 2005; Doll et al., 2011, 

2009, 2014; Fouragnan et al., 2013; Li et al., 2011; Otto et al., 2015; Smittenaar et al., 

2013; Wolfensteller & Ruge, 2012). While the importance of cognitive control to healthy 

cognitive functioning is indisputable, top-down control can be detrimental to learning and 

cognitive flexibility (Chrysikou et al., 2014; Gopnik et al., 2015). 

In the case of instructed reinforcement learning, increased top-down control can be 

detrimental in that it leads to greater instructional bias toward inaccurate instructions. 

This study expands on the finding that instructional bias is associated with dopaminergic 

genes affecting PFC and striatal function (Doll et al., 2011), suggesting that the balance 

between PFC DA (COMT) and striatal DA (DAT1) modulates instructed learning. We 

further establish a causal link between PFC and biases found in instructed RL. In accord 

with our hypothesis, anodal subjects demonstrated more protracted learning away from 

the instructions during the early blocks of training, complementing the genetic evidence 
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that individual differences associated with PFC function are linked to individual 

differences in instructional control of RL. 

4.1. A dopamine genetic composite is associated with instructed learning 

While both COMT Met/Met genotype and DAT1 9-repeat carrier genotype were 

individually significant predictors of greater instructional control during training, the DA 

composite revealed that this effect was selective to Met/Met:9-repeat carriers (DAC3). 

This greater bias emerged early in training and persisted throughout the training phase, 

unaffected by feedback. During test, a gene-dose effect, confirmed both within each gene 

and with the composite, demonstrated greater bias with increasing Met alleles and 

decreasing DAT1 repeats. These results are consistent with the known reciprocal 

relationship between PFC and striatal DA (King, Zigmond, & Finlay, 1997; Kolachana, 

Saunders, & Weinberger, 1995; Meyer-Lindenberg et al., 2005). It has been hypothesized 

that the balance between cognitive stability and cognitive flexibility is mediated via 

corticostriatal interactions and the differential modulation of prefrontal and striatal 

circuits by DA. While increases in prefrontal relative to striatal DA have been linked to 

cognitive stability, increases in striatal relative to prefrontal DA have been linked to 

cognitive flexibility (Cools & D’Esposito, 2009). We propose that increasing PFC DA, 

indexed by increasing Met alleles, coupled with decreasing tonic striatal DA, indexed by 

decreasing DAT1 repeats, shifts the balance away from bottom-up striatal learning based 

on reward prediction errors and toward PFC-mediated top-down control of RL.  
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While extracellular DA is primarily recycled via reuptake by DAT in striatal regions, 

there is little DAT expression in PFC, where levels of DA are controlled by reuptake via 

the norepinephrine transporter (NET) and enzymatic breakdown via COMT (Seamans & 

Yang, 2004; Sulzer et al., 2016). With regard to COMT, PFC DA plays a critical role in 

stabilizing working memory representations (Durstewitz & Seamans, 2008), which are 

thought to facilitate top-down control (Miller & Cohen, 2001). Notably, carriers of the 

Met allele of the Val158Met genetic polymorphism have diminished COMT enzyme 

activity and concomitantly higher levels of prefrontal dopamine (see Tunbridge, 2010 for 

review). Elevated DA in PFC may then cause increased D1 receptor stimulation, which 

further drives activity in PFC afferents such as the striatum (Bilder, Volavka, Lachman, 

& Grace, 2004). Indeed, frontostriatal functional connectivity varies with COMT 

genotype (Krugel et al., 2009; Tan et al., 2007; Tunbridge, Farrell, Harrison, & Mackay, 

2013). Behaviorally, the Met allele has been associated with enhanced working memory 

and cognitive control (see Witte & Flöel, 2012 for review). Carriers of the Val allele have 

more rapid breakdown of prefrontal dopamine and thus somewhat weaker working 

memory, but potentially greater cognitive flexibility (Krugel et al., 2009; Witte & Flöel, 

2012). Replicating previous findings (Doll et al., 2011), the Met allele in our study was 

associated with greater instructional bias and therefore indicative of greater top-down 

control.  

In the case of the DAT1/SLC6A3 VNTR, our behavioral results are consistent with 

increased DAT expression with the 9-repeat allele (Faraone et al., 2014) leading to 

reductions in tonic DA concentrations in the striatum. Reduced tonic DA in striatum has 
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been shown to facilitate PFC input (Goto & Grace, 2005), which would in turn allow for 

greater biasing of RL. Furthermore, human imaging studies have demonstrated that 

DAT1 and COMT affect activity in prefrontal and striatal regions during reward 

anticipation. While the results of these studies are not entirely consistent, anticipatory 

activity in striatum is generally greater for DAT1 9-repeat carriers and is modulated by 

COMT genotype (Aarts et al., 2010; Dreher, Kohn, Kolachana, Weinberger, & Berman, 

2009; cf. Yacubian et al., 2007), with one study finding the highest activity in both lateral 

PFC and ventral striatum for Met/Met:9-repeat carriers (Dreher et al., 2009).  

However, this interpretation must be qualified by the considerable uncertainty 

surrounding the effect of the DAT1/SLC6A3 VNTR on dopaminergic function. Both in 

vivo and in vitro studies have produced conflicting results, with some supporting greater 

DAT expression for the 9-repeat allele compared to the 10-repeat allele, while others 

report the opposite, or no relationship (Costa et al., 2011; Faraone et al., 2014). A recent 

meta-analysis of human imaging studies supports the first possibility when restricting the 

analysis to normal controls (Faraone et al., 2014). Disease status, development, and 

ancestry may all play a role in the functional consequences of DAT1 (Faraone et al., 

2014; Franke et al., 2010; Shumay, Chen, Fowler, & Volkow, 2011). Even in the absence 

of changes in overall DAT expression, heterogeneities in DAT density and variations in 

neuronal morphology can substantially affect dopamine reuptake, which could contribute 

to the diversity of findings (Kaya et al., 2018).  

It is also unclear the extent to which variation in DAT expression should be expected to 

influence tonic versus phasic DA. Phasic DA bursts are associated with salient stimuli 
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and have been shown to be associated with learning via reward prediction errors (Schultz, 

Dayan, & Montague, 1997; cf. Berridge, 2012). Various roles have been ascribed to tonic 

DA, including modulation of response vigor (Niv, Daw, Joel, & Dayan, 2007), 

exploration (Beeler et al., 2010), and the relative weighting of effort costs (Salamone, 

Correa, Farrar, & Mingote, 2007). DAT has a clear role in maintaining tonic DA 

concentrations (Efimova, Gainetdinov, Budygin, & Sotnikova, 2016; Sulzer et al., 2016). 

Accordingly, DAT has been attributed a major role in synaptic DA clearance after phasic 

release (Bilder et al., 2004), and pharmacological blockade of DAT alters DA transients 

and leads to long lasting increases in tonic DA (Floresco, West, Ash, Moore, & Grace, 

2003; Ford, Gantz, Phillips, & Williams, 2010). However, detailed biophysical modeling 

suggests that diffusion is responsible for synaptic clearance of DA, with DAT having a 

(potentially limited) role in shaping the radius and duration at which DA bursts could 

activate receptors via volume transmission (Arbuthnott & Wickens, 2007; Cragg & Rice, 

2004; Rice & Cragg, 2008). Notably, increasing burst firing of DA neurons in the ventral 

tegmental area does not cause tonic increases in extracellular DA in the nucleus 

accumbens without DAT blockade (Floresco et al., 2003). Tonic DA may also indirectly 

influence phasic activity, though the direction of this influence is complicated to 

determine; elevated tonic DA due to increased tonic DA neuron firing may augment the 

peak and duration of DA bursts (Dreyer, Herrik, Berg, & Hounsgaard, 2010), but tonic 

concentrations may also inhibit phasic DA via autoreceptor feedback mechanisms (Bilder 

et al., 2004).  
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The performance of patients with schizophrenia provides an interesting counterpoint to 

the combined effect of COMT and DAT. Opposite to the Met/Met:9-repeat carrier 

genotype, the pathology of schizophrenia includes hyperdopaminergic tone in striatum 

and hypodopaminergic tone in PFC (Brisch et al., 2014; da Silva Alves, Figee, van 

Amelsvoort, Veltman, & de Haan, 2008; Grace & Gomes, 2018; Slifstein et al., 2015; 

Weinberger, Berman, & Daniel, 1992). Notably, patients with schizophrenia demonstrate 

reduced instructional bias on the PST (Doll et al., 2014). They also seem to rely less on 

putatively PFC-mediated processes in uninstructed learning, including reduced use of 

win-stay, lose-shift strategies and poorer performance on the easiest AB pair, potentially 

indicative of a reduced tendency to maximize or otherwise use rule-based strategies (Doll 

et al., 2014; Waltz, Frank, Robinson, & Gold, 2007; Waltz, Frank, Wiecki, & Gold, 

2011). Though the elevated performance on AB in the Met/Met:9-repeat carrier group in 

the present study was not significant, it provides further evidence of opposite behavioral 

effects of opposite dopaminergic profiles.  

Our findings of reduced flexibility with increasing ratio of PFC to striatal DA are also in 

accord with the effects of COMT and DAT1 on reversal learning. Compared to Met 

homozygotes, Val homozygotes show greater learning-rate adaptation around reversals, 

leading to improved performance (Krugel et al., 2009). Notably, Val homozygotes have 

more differentiated prediction error signals in striatal regions and greater learning-rate-

dependent modulation of frontostriatal connectivity, suggestive of more adaptive 

prefrontal modulation of striatal RL (Krugel et al., 2009). On the other hand, the DAT1 

9-repeat allele is associated with greater perseveration after a reversal (den Ouden et al., 
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2013). It is interesting to note that this perseveration effect was explained by the 9-repeat 

allele conferring a more rapidly decreasing learning rate with increasing experience, 

which may be related to the decreased learning-rate modulation of COMT Met 

homozygotes. Direct comparison is difficult, however, as different computational models 

were used in the two studies. Importantly, while den Ouden and colleagues attributed 

their findings to more robust striatal learning of the previous reward contingencies, in the 

case of Met/Met:9-repeat carriers in the present study, their performance in the training 

phase cannot be due to greater ingraining of previous experience; the bias in the present 

case was due to instruction, not experience, was robustly evident in the first training 

block, and persisted throughout training. 

4.2. Stimulation weakly increased instructional bias 

In contrast to the genetic effects, the effect of tDCS on performance was far more limited. 

In accord with our hypothesis, anodal subjects demonstrated modestly more protracted 

learning away from the instructions during the early blocks of training. However, there 

was no effect of cathodal stimulation, and no effect of either stimulation condition during 

the test phase.  

While the isolation of the effect to the training phase makes sense in light of the 

postulated division between frontal and striatal systems during training and test (Frank et 

al., 2007), it is at odds with the finding of increased bias at test associated with the 

COMT Met allele. It may be the case that genotypic effects on frontostriatal DA balance 
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or frontostriatal connectivity (discussed above) allow for greater biasing of striatum by 

PFC than is possible with single-session tDCS. 

4.3. Mechanisms of instructional bias 

The mechanisms underlying instructional bias are under debate. Proposals include 

models in which instructions bias striatal reward learning (learning bias models) (Biele et 

al., 2009; Doll et al., 2009) or those in which instructions affect choice rather than 

learning (choice bias models) (Doll et al., 2009). Evidence in favor of each of these 

classes of models has been mixed. Past computational modeling has tended to support 

learning bias models (Biele et al., 2009, 2011; Doll et al., 2011, 2009) but does not 

unequivocally rule out choice bias models (Doll et al., 2011, 2009). A number of 

neuroimaging studies have favored neither class of models, finding blunted activation in 

basal ganglia structures during instructed/prior knowledge conditions, suggesting a 

suppression of RL (Biele et al., 2011; Delgado et al., 2005; Fouragnan et al., 2013; Li et 

al., 2011). However, one study found overall decreased activity in reward structures but 

activity consistent with a learning bias in the form of an “outcome bonus” for choosing 

the instructed stimulus (Biele et al., 2011).  

Adding to this debate, we find that our training phase results can be explained by a novel 

choice bias model—the decision bias model—containing a fixed bias for choosing the 

instructed symbol. This is in contrast to past work, which has found that a standard RL 

model without instructional bias best fits training phase performance, despite clear 

behavioral effects of instruction during training (Doll et al., 2011, 2009). Our model also 
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better predicted behavioral performance on CD trials compared to the Bayesian 

hypothesis testing model, a choice bias model previously shown to provide a reasonable 

fit to some subjects’ training data and to be sensitive to effects of COMT (Doll et al., 

2011, 2009). These results thus provide stronger evidence for the existence of a choice 

bias mechanism during training.  

The decision bias and Bayesian hypothesis testing models differ in a number of regards 

(see section 2.7), with the most prominent differences being in the type of learner 

(standard Q-learning versus Bayesian Q-learning) and in the nature of the bias (fixed 

versus variable). We cannot say with certainty which of these factors most contributes to 

the superior performance of the decision bias model, though comparing our pattern of 

results to past work suggests that the Bayesian learner detracted from the performance of 

the model; all else equal, a variable bias should presumably better capture the behavior of 

a putative fixed bias agent than no bias. That said, an important direction for future work 

is to introduce a variable bias into the standard Q-learning framework and compare this to 

a fixed bias. This poses a challenge, since the uncertainty information used to implement 

adaptivity in the Bayesian framework is not present in the standard framework.  

Again contrary to prior results, the decision bias model also best explained performance 

at test. While model comparison and striatal dopaminergic genetic effects have been 

previously taken as evidence of a learning bias mechanism at test (Doll et al., 2011, 

2009), the supposition that the test phase primarily measures learning free of choice 

effects has recently come into question (Shiner et al., 2012; Smittenaar et al., 2012), in 

keeping with a broader role of DA in modulating motivation and learned value 



55 
 

representations (Berridge, 2012; Cagniard et al., 2006; Medic et al., 2014). Further 

supporting our finding, a recent reevaluation of test phase performance using an 

alternative model redescribed the learning bias for one striatal genotype as a choice bias 

(Collins & Frank, 2014). These discrepancies highlight the fact that model comparison 

results are dependent on the models tested. Additionally, in light of the evidence from 

other studies, there is no reason to think choice bias and learning bias mechanisms are 

mutually exclusive. However, the complexity of a model implementing both forms of 

bias would likely pose identifiability issues. We suggest that along with continued 

refinements to computational models, novel experimental designs capable of teasing 

apart these different possibilities will be necessary to advance our understanding of the 

mechanisms of instructional control. 

4.4. Specificity of the effects and limitations 

While there is good evidence that the expression of COMT and DAT1 are regionally 

specific, caution must be taken in interpreting the results of stimulation, as the lack of 

focality of tDCS prevents strong claims about effects on specific brain regions. 

Stimulation could have altered the function of other brain areas involved in RL, including 

orbitofrontal cortex (O’Doherty, 2004). Neuroimaging and current modeling have even 

shown tDCS effects in subcortical structures, including the basal ganglia (Sadleir, 

Vannorsdall, Schretlen, & Gordon, 2010; Weber, Messing, Rao, Detre, & Thompson-

Schill, 2014). However, the lack of stimulation effects on uninstructed learning and test 

phase performance somewhat militates against these possibilities. 
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Importantly, while our sample size was large for a tDCS study (Minarik et al., 2016) and 

was larger than the original report of the effects of COMT on instructed RL (Doll et al., 

2011), these results should be replicated, particularly in light of the weakness of the tDCS 

effects and the small sample size of some genotypes. In the latter case, the low 

frequencies of the COMT Met and DAT1 9-repeat alleles in the population make 

collecting adequate samples of these groups challenging (Auton et al., 2015; Doucette-

Stamm et al., 1995; Vandenbergh et al., 1992). Because access to such samples is 

difficult outside of large cohort studies, we took statistical steps within our sample to 

ensure the robustness of our genetic results. Given the known interaction of COMT and 

task on the effects of prefrontal stimulation (Nieratschker, Kiefer, Giel, Krüger, & 

Plewnia, 2015; Plewnia et al., 2013), larger samples would also permit an examination of 

genotype x stimulation interactions. Though a between-subjects design was necessary in 

this study due to the use of deception, future examinations of this topic could also be 

improved by the development of within-subjects designs. Finally, it is conceivable that 

there is more opportunity to decrease bias than increase it, given the overwhelming 

feedback subjects receive in contradiction to the instructions. Unfortunately, cathodal 

tDCS, which could in principle be used to test this hypothesis, failed to elicit an effect in 

the present case and is demonstrably unreliable (Jacobson et al., 2012; Nozari et al., 

2014). Future studies using theta-burst transcranial magnetic stimulation may be an 

appropriate alternative. 

4.5. Conclusion 
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In sum, the present study provides further evidence for the role of PFC in biasing 

instructed RL, and additionally highlights the importance of frontostriatal DA balance in 

modulating top-down inputs. Such top-down regulation of learning by PFC is consistent 

with increased cognitive control leading to both costs and benefits (Chrysikou et al., 

2014). Understanding the interplay of cognitive control and learning is thus key to 

establishing what level of control is most adaptive in a given situation. This endeavor will 

ultimately require delineating the relationship between computational and neurocognitive 

factors in learning and choice. 
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III. THE MODULATION OF BRAIN NETWORK INTEGRATION AND AROUSAL 

DURING EXPLORATION 

1. Introduction 

The brain has a remarkable capacity to adaptively shift processing to support a diverse 

array of behavioral goals, contextual demands, and environmental changes. This fact 

raises two fundamental questions: What neural mechanisms allow the brain to rapidly 

shift between states that form the substrates of different cognitive processes and 

behaviors, and how does the brain maintain a balance between the stability necessary to 

support ongoing behavior while maintaining the flexibility necessary to adapt to new 

exigencies? A number of theoretical proposals have pointed to a role for catecholamines 

in answering these questions, and in particular the neuromodulatory actions of 

norepinephrine (NE), a key component of physiological arousal (Arnsten, Paspalas, 

Gamo, Yang, & Wang, 2010; Aston-Jones & Cohen, 2005; Bouret & Sara, 2005; Yu & 

Dayan, 2005). The primary source of NE in the brain is the locus coeruleus (LC), a 

pontine nucleus that projects widely throughout the cortex (Berridge & Waterhouse, 

2003a). NE has complex effects at single neuron level, but a common finding is that it 

increases the signal-to-noise ratio of neural responses, effectively modulating the gain of 

the neural response function (Berridge & Waterhouse, 2003a; Hasselmo, Linster, Patil, 

Ma, & Cekic, 1997; Hurley, Devilbiss, & Waterhouse, 2004), which simulations suggest 

can collectively lead to changes in functional connectivity and network topology (Eldar et 

al., 2013; Shine, Aburn, Breakspear, & Poldrack, 2018a). These features make the LC-

NE system well situated to effect large-scale changes in brain networks and cognitive 
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function. Several prominent theories have ascribed this system just such a role, 

suggesting the LC-NE system resets functional brain networks in support of specific 

behaviors/cognitive states as dictated by environmental demands (Bouret & Sara, 2005), 

shifts the balance of information processing from top-down to bottom-up depending on 

the uncertainty of internal world models (Yu & Dayan, 2005), or shifts the brain between 

states of exploration and exploitation based on ongoing estimates of task utility (Aston-

Jones & Cohen, 2005).  

Recent studies have begun to explore the association between LC-NE activity and 

functional brain networks using human neuroimaging. Utilizing the fact that LC activity 

leads to increases in pupil diameter (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010; 

Joshi, Li, Kalwani, & Gold, 2016; Rajkowski, Kubiak, & Aston-Jones, 1993; Reimer et 

al., 2016; Varazzani, San-Galli, Gilardeau, & Bouret, 2015), studies have found that 

elevated pupil diameter is associated with stronger overall functional connectivity and 

greater clustering of functional connections (Eldar et al., 2013; van den Brink et al., 

2016b; Warren et al., 2016), as well as an increase in the diversity of connectivity 

between functional communities, potentially indicating greater integration among brain 

networks (Shine et al., 2016). NE-linked changes in functional connectivity have also 

demonstrated spatial patterning consonant with specific catecholamine receptor 

distributions in humans (van den Brink, Nieuwenhuis, & Donner, 2018) and mice (Zerbi 

et al., 2019). Pharmacological manipulation of NE with Atomoxetine, a norepinephrine 

transporter (NET) blocker, has produced conflicting results, with resting-state studies 

finding decreased connectivity between networks (van den Brink et al., 2016b; see Guedj 
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et al., 2016 for a similar result in macaques), but increased connectivity between 

networks in a task-based study (Shine, van den Brink, Hernaus, Nieuwenhuis, & 

Poldrack, 2018b).  

The heterogenous results across studies likely stem from a number of factors, including 

differences in the methods used to construct and analyze brain networks, as well as 

differences in neural response between endogenous fluctuations of LC-NE activity and 

manipulation with Atomoxetine, which influences LC firing in addition to increasing 

cortical NE levels (Bari & Aston-Jones, 2013). Importantly, the divergence between task 

and rest effects may stem from the known inverted-U and state-dependent properties of 

the actions of catecholamines (Aston-Jones & Cohen, 2005; Berridge & Waterhouse, 

2003a; McGinley et al., 2015; Robbins & Arnsten, 2009). Given that the actions of NE 

depend on the underlying state of the system, it is critical to ask what the relationship 

between brain network organization, LC-NE activity, and task performance is for 

particular classes of behaviors. To date, however, the relationship between NE and 

functional connectivity has not yet been assessed within the context of a task with an 

established relationship between NE-associated arousal and behavior.  

The role of the LC-NE system in mediating between exploration and exploitation 

provides a strong place to begin to form these links. It has been proposed that increases in 

tonic LC-NE activity promote disengagement from the current task (exploitation) in order 

to seek alternatives (exploration) (Aston-Jones & Cohen, 2005). Direct LC stimulation 

promotes patch leaving and general disengagement during foraging (Kane et al., 2017), 

and pupil diameter has been found to increase with exploratory choice (Jepma & 
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Nieuwenhuis, 2011) and with decreases in task utility signaling the need to disengage 

from the current course of action (Gilzenrat et al., 2010). More broadly, elevated tonic 

LC activity and pupil diameter have been linked to distractibility (Aston-Jones & Cohen, 

2005; Bouret & Sara, 2005; Ebitz & Platt, 2015; Unsworth & Robison, 2016; van den 

Brink, Murphy, & Nieuwenhuis, 2016a). Notably, a number of studies have suggested 

that task performance in cognitively demanding tasks is supported by increased 

integration among functional brain networks, with poorer performance predicted by 

decreased integration (Braun et al., 2015; Ekman, Derrfuss, Tittgemeyer, & Fiebach, 

2012; Giessing, Thiel, Alexander-Bloch, Patel, & Bullmore, 2013; Shine et al., 2016; 

Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015). This suggests a 

potential parallel between elevated LC-NE activity and brain network integration—

namely, that elevated LC-NE activity may lead to decreased functional integration, which 

may in turn provide a substrate for exploration.  

We test this hypothesis in the present study. Subjects completed a two-armed bandit task 

while undergoing continuous fMRI and pupillometry. In order to meet the goal of linking 

arousal, functional connectivity, and behavior, we examined dynamic functional 

connectivity (Bassett et al., 2011, 2013; Fedorenko & Thompson-Schill, 2014), going 

beyond the static connectivity measures used in most prior studies in this domain to more 

tightly link arousal and connectivity changes, in the context of exploration. We also 

introduced a volatility manipulation between blocks to engender block-level differences 

in the rate of exploration. In keeping with our hypothesis, we predicted that exploration 

would be associated with increases in pupil diameter and decreases in brain network 
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integration. At the block level, we predicted that compared to low volatility blocks, high 

volatility blocks would be associated with greater exploration, greater pupil diameter, and 

lower integration. 

2. Methods 

2.1. Subjects 

Forty-three subjects (24 female, Mage = 23.28 years) completed the study. Informed 

consent was obtained from each subject in accordance with the University of 

Pennsylvania IRB. All subjects in the final sample (1) were right-handed; (2) were 

between 18 and 35 years old; (3) had normal or corrected-to-normal vision; (4) had no 

known learning impairments or history of neurological or psychological disorders; and 

(5) were not currently taking any psychiatric medications or medications that are known 

to affect the autonomic nervous system. Three subjects were excluded due to technical 

difficulties at the scanner, and two subjects were excluded because it was later 

determined they did not meet the above inclusion criteria. Four additional subjects were 

excluded from the analyses for excessive head movement during scanning (average 

framewise displacement across runs > 0.2 mm), for a final sample of 34 (20 female, Mage 

= 22.82 years).  

2.2. Materials and procedure 
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Figure 3.4. Stimuli and trial timing for the Leapfrog task. Each trial was followed by a 

one-second ITI during which a light gray rectangle was present in the center of the 

display to maintain luminance. Note that stimuli have been made higher contrast than 

they were during the experiment. 

Subjects completed the Leapfrog bandit task (Knox, Otto, Stone, & Love, 2012). In this 

highly constrained two-armed bandit task (Figure 3.1), the options are always 10 points 

apart in value and when selected deliver payoffs deterministically. After every trial, with 

probability P(flip) the currently lesser-valued option may jump in value by 20 points to 

become the superior option. Which option is better thus alternates throughout the task, 

and subjects must balancing choosing the option that based on their current knowledge is 

the best (exploiting) with sampling the other option to find out if it has improved 

(exploring). The constrained nature of this task is advantageous among other reasons for 

the fact that trials can be classified as exploratory or exploitative solely on the basis of 

behavior, without recourse to model-based analyses necessitated by drifting bandits 

(Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Ebitz, Albarran, & Moore, 2018).  
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Subjects completed four blocks of the task, with 80 trials per block (320 trials total). To 

minimize luminance-mediated changes in pupil diameter, task stimuli were luminance-

matched grayscale images and were only modestly brighter than the background 

intensity. P(flip) was fixed within blocks but alternated across blocks [low volatility: 

P(flip) = 0.05; high volatility: P(flip) = 0.20], with the order of alternation 

counterbalanced across subjects. At the start of block 1, the left and right options were set 

to a value of 100 and 110, respectively. In a separate behavioral session prior to the scan 

session, subjects were instructed about the structure of the task (including the initial 

option values), performed 8 practice trials to familiarize themselves with the controls and 

the task display, and then performed an identical version of the task to the scanner 

version, excepting that the stimuli were not luminance controlled. While subjects 

received information about the volatility levels by completing the behavioral session, 

they were not told about the volatility manipulation. To minimize eye movements, 

subjects were instructed to fixate on the center of the task display at all times, except 

during the ITI, when they were told to keep their gaze within a 189x179 pixel light gray 

rectangle in the center of the display. Subjects made their responses with the index and 

middle finger of their right hand. Because the increase in payoffs throughout the task 

could distort choice behavior, subjects were incentivized to choose the currently best 

option on all trials rather than maximize their payoffs (Otto, Knox, Markman, & Love, 

2014). Subjects were paid $10/hr for the behavioral session (length 1 hr) and $20/hr for 

the scan session (length 1.5–2 hrs) plus a bonus determined by 𝑝 ×
𝑏𝑚𝑎𝑥

𝑛𝑡𝑟𝑖𝑎𝑙𝑠
, rounded to the 

nearest dollar, where p is the number of choices of the currently best option, bmax is the 
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maximum possible bonus ($10 behavioral, $15 scan), and ntrials is the total number of 

trials.  

The fMRI session began with eye tracker calibration, after which scans were run in the 

following order: resting state 1, Leapfrog block 1, B0, Leapfrog block 2, Leapfrog block 

3, T1, Leapfrog block 4, resting state 2. Subjects were reminded of the current option 

values at the start of blocks 1, 2 and 4.  

2.3. MRI data acquisition 

Magnetic resonance images were collected using a Siemens Prisma 3T scanner (Siemens 

Medical Systems, Erlangen, Germany) with a 64-channel head coil. T1-weighted 

anatomical images were acquired (MPRAGE; repetition time [TR] = 1810 ms; echo time 

[TE]=3.45 ms; flip angle [FA]=9˚; field of view [FOV]=240 mm; matrix = 256 X 256; 

voxel size = 0.9 X 0.9 X 1.0 mm2; 160 slices). During task runs, T2*-weighted functional 

volumes were collected using multiband echo planar imaging (EPI; TR = 1000 ms; TE = 

30 ms; FA = 60˚; FOV = 208 mm; matrix =104 X 104; voxel size = 2.0 X 2.0 X 2.0 mm2; 

72 slices; multi-band acceleration factor = 6). We additionally collected resting state 

scans (not reported here; TR = 500 ms; TE = 25 ms; FA = 30˚; FOV = 192 mm; matrix 

=64 X 64; voxel size = 3.0 X 3.0 X 3.0 mm2; 48 slices; multi-band acceleration factor = 

6) A field map was also acquired for distortion correction of the EPI images (TR = 580 

ms; TE 1 = 4.12 ms; TE 2 = 6.58 ms; flip angle = 45°; voxel size = 3.0 mm x 3.0 mm x 

3.0 mm; FoV = 240 mm).  

2.4. MRI preprocessing 
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Preprocessing was performed using FSL (Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012) and FreeSurfer (Fischl, 2012). Cortical reconstruction and volumetric 

segmentation of the anatomical data was performed with FreeSurfer. Functional data 

were despiked by replacing values greater than 7 RMSE from a 1-degree polynomial fit 

to the time course of each voxel with the average value of the adjacent TRs. Motion 

correction parameters were computed by registering each volume of each run to the 

middle volume using a robust registration algorithm (mri_robust_register; Reuter, Rosas, 

& Fischl, 2010) and voxel shift maps for EPI distortion correction that were calculated 

using PRELUDE and FUGUE (Jenkinson, 2003, 2004); the resulting transformations 

were combined and simultaneously applied to the functional images. Boundary-based 

registration between structural and functional images was performed with bbregister 

(Greve & Fischl, 2009). To account for motion and physiological noise, the following 

nuisance time series were regressed from the functional data: (a) 24 motion regressors 

(Friston, Williams, Howard, Frackowiak, & Turner, 1996); (b) the five first principal 

components of non-neural sources of noise (i.e., white matter, CSF), obtained with 

FreeSurfer segmentation tools (aCompCor; Behzadi, Restom, Liau, & Liu, 2007); (c) 

cardiac and respiratory rhythms derived from pulse oximetry data collected during each 

scan (Verstynen & Deshpande, 2011); and (d) local noise, estimated as the average white 

matter signal within a 15 mm radius of each gray matter voxel (ANATICOR; Jo, Saad, 

Simmons, Milbury, & Cox, 2010). The data were then high-pass filtered with a cutoff 

frequency of 0.009 Hz. 

2.5. Network construction 
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The cortex was parcellated into 200 regions based on the Schaeffer 200 parcel atlas 

(Schaefer et al., 2018). To this we added 15 subcortical regions segmented by FreeSurfer 

(Fischl et al., 2002). The average BOLD time series was extracted from each region, and 

functional connectivity between all pairs of regions was estimated via continuous wavelet 

coherence in the range of 0.08–0.125 Hz (Grinsted, Moore, & Jevrejeva, 2004). This 

frequency range has been previously shown to be sensitive to dynamic changes in task-

based functional connectivity (Bassett et al., 2011; Braun et al., 2015; Gerraty et al., 

2018; Sun, Miller, & D’Esposito, 2004). The continuous wavelet transform (CWT) was 

chosen over the more common discrete wavelet transform in order to provide additional 

sensitivity to time-varying changes around exploration. This procedure produces a 

connectivity value for each TR, sampled across the frequency range. Note that no 

windowing of the time series was performed prior to transformation, as the CWT is itself 

a sliding window method (i.e., a convolution), and additional windowing would produce 

unwanted edge effects (Grinsted et al., 2004). We then averaged across frequency to 

produce a single time-varying connectivity measure between each region. Finally, given 

that the resultant signal was heavily oversampled, the connectivity time series were then 

downsampled by a factor of 2 (final sampling rate of 0.5 Hz), yielding one 215 x 215 x 

240 weighted adjacency matrix per task run. 

2.6. Multislice Community Detection 

In order to identify changes in network architecture over time, the connectivity matrices 

were submitted to a Louvain-like community detection algorithm (Mucha, Richardson, 

Macon, Porter, & Onnela, 2010) implemented in Matlab (Jeub, Bazzi, Jutla, & Mucha, 
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2011). This method, which has been used extensively to estimate time-varying 

community structure in functional brain networks, optimizes a multilayer quality function 

given by:  

𝑄𝑚𝑢𝑙𝑡𝑖𝑠𝑙𝑖𝑐𝑒 =
1

2𝜇
∑ [(𝐴𝑖𝑗𝑠 − 𝛾𝑠

𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠
𝛿𝑠𝑟) + 𝛿𝑖𝑗𝜔𝑗𝑠𝑟] 𝛿(𝑔𝑖𝑠, 𝑔𝑗𝑟)

𝑖𝑗𝑠𝑟

(1) 

where the adjacency matrix of layer s has components Aijs, gis gives the community 

assignment of node i in layer s, gjr gives the community assignment of node j in layer r, 

kjs is the intralayer strength of node j in layer s, 𝑐𝑗𝑠 = ∑ 𝜔𝑗𝑠𝑟𝑟  is the interlayer strength of 

node j in layer s, 𝜅𝑗𝑠 = 𝑘𝑗𝑠 + 𝑐𝑗𝑠 is the strength of node j in layer s, and total edge weight 

of the network is given by 𝜇 =
1

2
𝜅𝑗𝑟. The quantity 

𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠
 corresponds to the Newman-

Girvan null model, where 𝑚𝑠 =
1

2
∑ 𝐴𝑖𝑗𝑠𝑖𝑗  is the total edge weight in layer s. The 

structural resolution parameter γs of layer s and the interlayer coupling parameter ωjsr 

from node j in layer s to node j in layer r tune the size of the communities within each 

layer and the number of modules across layers (i.e., time), respectively. In this case, the 

structural resolution parameters were assumed to be constant across layers (γs = γ); the 

interlayer coupling parameters were set to a constant value ω where s and r were 

immediately adjacent layer and were set to 0 everywhere else, producing an ordered 

multilayer network. 

The choice of γ and ω is not entirely straightforward. Often they are left at a default value 

of 1. In other instances, they are selected to optimize some quantity, such as Qmultislice or 

other network measures of interest (Weir, Emmons, Gibson, Taylor, & Mucha, 2017). 
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Then, given the near degeneracy of the modularity landscape (Good, De Montjoye, & 

Clauset, 2010), the modularity maximization algorithm is run a number of times (e.g., 

100) at the selected parameter values. To avoid dependence of our results on a particular 

point in parameter space and to increase sensitivity to fluctuations in integration 

regardless of scale, here we repeated the modularity maximization procedure a single 

time across a across a range of parameter values (𝛾 ∈ [1.14, 1.19] discretized by a step 

size of 0.01; 𝜔 ∈  [0.05, 0.85] discretized by a step size of 0.05) rather than multiple 

times at a single set of parameter values (see Vaiana, Goldberg, & Muldoon, 2019 for a 

related approach). The range of γ was chosen such that on average the number of non-

singleton communities in a layer approximated the number of non-singleton cognitive 

systems in our resting-state reference partition (see below); the range of ω gamma was 

chosen to optimize network flexibility, which quantifies how often nodes switch 

communities across layers (Bassett et al., 2011).  

Maximizing multilayer modularity is known to face a number of computational issues, 

particularly at lower values of ω. To mitigate these issues and improve the quality of the 

multilayer partitions, during each step of the Louvain algorithm, instead of choosing 

moves in an entirely greedy manner, moves were chosen probabilistically in proportion to 

their increase in the multilayer quality function (Bazzi et al., 2016; Jeub et al., 2011). 

Additionally, we used an iterated algorithm for maximizing modularity. After each run of 

the Louvain algorithm, community assignments were revised to maximize the persistence 

of communities across time without altering the intralayer community structure (Bazzi et 

al., 2016; Jeub et al., 2011). The resultant partition was then used as the starting point for 



70 
 

an additional run of the Louvain algorithm, and this procedure was repeated until the 

output partition converged (Jeub et al., 2011). These steps were repeated across the 

parameter grid, yielding 102 time-varying networks per run. 

2.7. Integration 

At each time point, a module allegiance matrix Pt was constructed, with entries: 

𝑃𝑖𝑗
𝑡 =

1

𝑂
∑ 𝑎𝑖𝑗

𝑜𝑡

𝑂

𝑜=1

(2) 

where O is the number of final output partitions (102) and the allegiance value 𝑎𝑖𝑗
𝑜𝑡 for 

nodes i and j is 1 if the nodes were placed in the same community at time t of partition o 

and 0 otherwise. Intuitively, 𝑃𝑖𝑗
𝑡  is the probability that two nodes were placed in the same 

community at a given time point, across the parameter space (see Braun et al., 2015 for a 

similar approach to computing network measures per time window).  

In order to then use the modular allegiance matrices to assess the interaction between 

brain regions across time, we assigned each network node to a resting-state cognitive 

system. All cortical nodes were previously assigned to one of seven resting-state systems 

identified from large-scale resting-state data (Schaefer et al., 2018; Yeo et al., 2011). All 

subcortical nodes were assigned to an eighth Subcortical system with the following 

exceptions: bilateral amygdala and hippocampus were placed in the Limbic system, while 

the brainstem was assigned to its own singleton system. 
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The integration of a brain region i in cognitive system s at time t can then be computed 

as: 

𝐼𝑖
𝑡𝑠 =

1

𝑁 − 𝑛𝑠
∑ 𝑃𝑖𝑗

𝑡

𝑗∉𝑠

(3) 

where N is the total number of nodes (brain regions) and ns is the number of nodes in 

system s (Mattar, Cole, Thompson-Schill, & Bassett, 2015). Integration thus quantifies 

the probability at a given time that a node from a given cognitive system is placed into 

the same community as nodes from other cognitive systems. Averaging integration across 

nodes then provides a measure of the global level of integration in the brain at each time. 

Integration can also be computed at the system and between-system levels. The 

integration of a system s with the rest of the brain (i.e., all systems not s) is: 

𝐼𝑆
𝑡 =

1

𝑛𝑠(𝑁 − 𝑛𝑠)
∑ ∑ 𝑃𝑖𝑗

𝑡

𝑗∉𝑠𝑖∈𝑆

(4) 

indicating the tendency for nodes from system s to be placed into communities with 

nodes from other systems at time t. Similarly, the integration between two systems k and l 

is given by:  

𝐼𝑘𝑙
𝑡 =

1

𝑛𝑘𝑛𝑙
∑ ∑ 𝑃𝑖𝑗

𝑡

𝑗∈𝑙𝑖∈𝑘

(5) 

where nk is the number of nodes in system k and nl is the number of nodes in system l. 

High integration between two systems at a given time indicates a departure from resting-

state network structure and is suggestive of strong functional interactions between 
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cognitive systems. All of these integration measures can be further averaged across time 

to provide block-wise measures of global, system, and between-system integration. 

2.7.1. Peri-explore integration analysis 

Statistical analysis of change in the integration time course around exploration presents a 

number of methodological challenges. The time series is strongly autocorrelated, which 

increases the risk of type I error due to violation of the independence assumption of linear 

regression. The response to exploration is of an unknown functional form and potentially 

non-monotonic, making standard linear regression—even using polynomial terms—a 

potentially poor fit. Finally, unlike in the pupil analyses, there is no clear contrast or 

baseline, so tests of H0 = 0 at each time point are not necessarily appropriate either.  

To address all of these issues, we utilized generalized additive mixed models (GAMMs) 

in the peri-explore integration analyses. GAMMs are an extension of the regression 

framework that allow for the fitting of arbitrary (e.g., nonlinear, nonmonotonic) 

functions, including both linear and nonlinear random effects terms (Wood, 2017). These 

nonlinear functions, or smooths, are fit using maximum likelihood estimation using a 

weighted sum of basis functions. The basis functions are selected from families of 

penalized splines, where overfitting is mitigated and therefore smoothness is enforced by 

a “wiggliness” penalty on basis function coefficients. The appropriate smoothness for a 

given data set is controlled via smoothing parameters that are estimated as part of the 

fitting procedure (See Baayen, Vasishth, Kliegl, & Bates, 2017; Pedersen, Miller, 
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Simpson, & Ross, 2019; and van Rij, Hendriks, van Rijn, Baayen, & Wood, 2019 for 

tutorials, and Wood, 2017 for additional technical and mathematical details).  

Prior to model fitting, peri-explore integrations time courses were extracted and 

processed as follows. After identifying the time points in the integration time course that 

contained each exploratory choice, we extracted the time series immediately preceding 

(following) the choice window, up to the previous (next) exploratory choice. In order to 

isolate the effect of a single exploratory choice given the sluggishness of the integration 

time course, we restricted the analysis to explore choices preceded by a minimum of 2 

exploit trials and followed by a minimum of 4 exploit trials. We additionally excluded the 

first and last peri-explore periods of every block. We also did not count as exploration 

trials in which subjects explored immediately following a missed flip (i.e., subjects 

exploited and saw a change). The final analysis window was then restricted to encompass 

the 12 s prior to the explore window extending to 18 s post-explore. We then 

downsampled the time series to 0.25 Hz as a first step in mitigating autocorrelation.  

All GAMMs included a smooth for Time and by subject random smooths for Time. 

Models also included by time course linear random intercepts and slopes in order to 

account for additional variance due to drifts in integration over time, which helps to 

further alleviate autocorrelation in the residuals (van Rij et al., 2019). Because model 

residuals were still autocorrelated, we also introduced an AR1 model to each GAMM. 

For analyses of global integration, the AR1 parameter that minimized AIC in a grid 

search (𝜌 ∈  [0.00, 0.99] in steps of 0.01) was selected for the final model (Wood, 2017). 

For by system integration, residual autocorrelation was very similar in each system, and 
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so we selected the ρ that minimized AIC for the model with the median AR1 value. The 

same approach was used for between system integration.  

To confirm the results of the global integration GAMM, a permutation analysis was 

conducted. Within each block, the assignment of exploration time points to the 

integration time course was permuted 500 times, with the constraint that the distribution 

of inter-explore intervals remain constant across permutations. Peri-explore time courses 

were then extracted and analyzed as above, resulting in a GAMM fit for each 

permutation. The significance of the true data was then assessed relative to this 

distribution. Note that we took the somewhat unusual step of constructing our 

permutation distribution from the p-values of the smooths rather than the F values due to 

the fact that unlike in a standard parametric linear analysis, the number of degrees of 

freedom differs between models due primarily to differences in the wiggliness of the fit, 

and also due to slight differences in the amount of data in each permutation as a result of 

preprocessing exclusions. Using F values can thus produce conservative results, as 

smooths with fewer effective degrees of freedom may benefit from larger F values. 

Because the p-value computation takes degrees of freedom into account (Wood, 2013), it 

is thus a more appropriate measure in this case. 

2.8. Additional network measures 

To better characterize the network dynamics surrounding exploration, we computed a 

number of additional network measures, using the Brain Connectivity Toolbox (Rubinov 

& Sporns, 2010). 
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The average strength, s, of node i at time t was computed as:  

𝑠𝑖
𝑡 =

1

𝑁 − 1
∑ 𝐴𝑖𝑗

𝑡

𝑗

(6) 

By averaging node strength separately for within and between system connections across 

the whole brain, system segregation (Chan, Park, Savalia, Petersen, & Wig, 2014) was 

computed as: 

𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =
𝑠̅𝑤 − 𝑠̅𝑏

𝑠̅𝑤

(7) 

Unless otherwise noted, we computed system segregation relative to the Yeo cognitive 

systems, to match our procedure for integration, rather than to the module assignments at 

each time point. 

The single-layer modularity Q (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) was 

computed at each time t using as input the module assignments derived from each run o 

of multilayer modularity (equation 1). Specifically 

𝑄𝑜
𝑡 =

1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
] 𝛿(𝑐𝑖, 𝑐𝑗)

𝑖𝑗

(8) 

where 𝑘𝑖 = ∑ 𝐴𝑖𝑗𝑗  and 𝑚 =
1

2
∑ 𝐴𝑖𝑗𝑖𝑗  and o and t super/subscripts are omitted for clarity. 

Q values were then averaged over o to produce a single Qt  at each time point. Finally, the 

number of modules was defined as the average number of modules present at each time 

point, averaged over runs of GenLouvain.  
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As with integration, significance of peri-explore modulation was assessed in the GAMM 

framework. Because of heavy skew in the data, the number of modules model was fit 

with an inverse gaussian regression (log link). A single AR1 parameter ρ was used for all 

strength-based measures (strength, system segregation) and all modularity-based 

measures (Q, number of modules).  

2.9. Pupillometry 

Eye position and pupil diameter of the right eye were recorded during scanning at a 

sampling rate of 250 Hz with an EyeLink 1000 Plus (SR Research) equipped with the 

Long Range Mount. Period of missing data due to blinks or other artifacts were linearly 

interpolated after removing an additional 25 samples (100 ms) surrounding the blink on 

either side. Additional artifacts were identified by computing the difference between 

consecutive samples of the pupil time course. High velocity periods, defined as samples 

differing in diameter by more than 50 in absolute value (a.u.) from the preceding sample 

were removed, and for runs of high velocity > 4 samples we additionally removed 25 

samples on either side of the run, identical to the procedure described for blinks. These 

censored periods were then linearly interpolated. The pupil time course was then lowpass 

filtered with a 4 Hz cutoff. The data were then normalized by z-scoring within-subject 

across data from all functional runs. Gaze position data for time points missing or 

removed from the pupil time course were also interpolated. Blocks in which > 50% of the 

pupil data were missing or censored were not included in the analysis (two blocks from 

one subject).  
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2.9.1. Pupil analysis 

Baseline pupil diameter was calculated as the average diameter in the last 500 ms of the 

fixation period at trial start. Pupil dilation was quantified as the maximal dilation in the 

2.5 s between the beginning of the choice window and the presentation of the outcome. 

For trial-level analyses, data were downsampled to 50 Hz, and all models included gaze 

position as covariates. Analyses of the choice period also controlled for baseline pupil 

diameter at the start of the trial. Analyses for the outcome period instead controlled for 

average pupil diameter in the last 250 ms of the gap between the end of the choice 

window and the onset of the outcome stimulus.  

For the post-explore pupil analysis, pupil diameter was downsampled to 2 Hz, since the 

focus was on slower changes in diameter over a longer time scale. We used the same 

restrictions on the data submitted to this analysis as described above for integration, 

except we relaxed the minimum number of exploit trials post-explore to 2. For analyses 

of the post-explore peak/minimum, we identified peaks as the maximum dilation in the 

period from 0–12 s post-explore. The post-peak minimum was then identified in the 

period from the peak to 18 s post-explore.  

2.10. Pupil–network relationships 

To characterize the relationship between pupil-linked arousal and integration, we first 

downsampled pupil diameter to the sampling rate of the TR and then applied a low-pass 

filter by convolving it with a gaussian with a standard deviation equal to the median 

wavelet scale used to compute wavelet coherence for the network analysis (9.80 s). 
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Finally, we downsampled the filtered time course to sampling rate of the integration time 

course (0.5 Hz). We then computed the cross-correlation between the pupil diameter and 

each network measure over the peri-explore period, using the same peri-explore criteria 

described above for peri-explore integration. To plot the cross-correlation and compute 

within- and across-subject averages, we first Fisher z-transformed the correlations. 

Because the presence of autocorrelation biases the variance of sample correlations, we 

first corrected the z-transformed correlations for this bias, using the method of Pyper and 

Peterman (1998), producing Z-scores (Afyouni, Smith, & Nichols, 2019). This procedure 

effectively weights each z value in proportion to its effective degrees of freedom. We 

then averaged the Z-scores within subject and assessed the significance of the correlation 

at the peak lag using a one-sample t-test against 0. 

2.11. Data analysis 

Statistical analyses were performed in R (R Core Team, 2019). Linear and logistic mixed 

effects models were implemented in the lme4 package (Bates et al., 2015b), except when 

an AR1 model was fit for the residuals, in which case nlme was used (Pinheiro, Bates, 

DebRoy, Sarkar, & R Core Team, 2019). Where possible, models included random 

intercepts for subjects and random slopes for all within-subjects variables (i.e., the 

maximal model; Barr, Levy, Scheepers, & Tily, 2013). In cases where the maximal 

model failed to converge or produced singular fits, we iteratively reduced the random 

effects structure until convergence, following steps outlined by Bates and colleagues 

(Bates, Kliegl, Vasishth, & Baayen, 2015a). Post-hoc comparisons were computed using 

the emmeans package (Lenth, 2016). GAMMs for the analysis of peri-explore integration 
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time courses were implemented in the mgcv package (Wood, 2017). Where noted, 

significance levels were corrected for multiple comparisons using the Bonferroni-Holm 

method. All block-level analyses and all analyses comparing volatility conditions 

discarded the first 10 trials of every block, in order to give subjects some time to adjust to 

the current volatility level. 

3. Results 

We first characterize the pupil response to exploration. We then examine the dynamic 

modulation of integration around exploration and relate changes in pupil diameter to 

changes in integration. Finally, we examine effects of the volatility manipulation on 

arousal and integration. 
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3.1. Exploration modulates pupil diameter 

 

Figure 3.5. Pupil diameter is reliably modulated by choice type. A Average pupil 

response to explore choices and exploit choices across subjects. Pupil diameter is z-

scored within subject, and the evoked response is calculated relative to a pre-trial baseline 

taken from the average in the 500 ms prior to the choice period. Here and throughout, 

error bars accompanying averaged data reflect the standard error of the mean (SEM). B 

The contrast of explore > exploit from a mixed-effects regression model for every time 

point. Pupil diameter was downsampled from 250 to 50 Hz. The regression model 

controls for baseline pupil diameter and gaze position.  

Confirming out hypothesis, pupil diameter was reliably higher throughout the entirety of 

the choice period when subjects made explore choices compared to exploit choices 

(Figure 3.2; all pscorrected < .011). This difference was present at least 40 ms prior to the 

button press. Prior reports have found elevated baseline pupil diameter prior to 

exploration, distraction, and disengagement (Ebitz & Platt, 2015; Gilzenrat et al., 2010; 

Jepma & Nieuwenhuis, 2011). Given this, we also examined the pre-explore period 

(Figure 3.4A). Baseline pupil diameter varied significantly among the three trials just 

A                 B 
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prior to and including the explore trial (F(2, 5032) = 6.56, p = .014). This was driven 

primarily by a decrease in pupil diameter from the second to the first trial pre-explore (𝛽 

= −0.06, t(5032) = −3.62, pcorrected = .009), potentially reflecting at least in part the 

diminishing influence of the previous exploratory choice. Though pupil diameter rose on 

the explore trial relative to the immediately preceding trial, this was not significant (𝛽 = 

0.03, t(5032) = 1.80, pcorrected = .14), and the baseline diameter on the explore trial was 

still numerically smaller than that of two trials previous (𝛽 = −0.03, t(5032) = −1.81, 

pcorrected = .14). This suggests that in this task, the elevated pupil diameter post-explore 

was driven by the explore choice itself and not by prior ramping of arousal. 
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Figure 3.6. The effect of outcomes on pupil diameter. A Average pupil response to 

outcomes, separate by whether the choice was explore or exploit. The evoked response is 

calculated relative to the average pupil diameter in the 250 ms prior to presentation of the 

payoff. Note that exploit-change trials are not shown, as they were rare outcomes and 

were thus not analyzed. B The contrast of explore–change > explore–no change trials 

from a mixed effects model of the outcome period. Changes induce a reliable increase in 

pupil diameter at the end of the outcome period. C The contrast of explore > exploit–no 

change from the same model. This is the effect of exploration over and above the effect 

A 

B         C 
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during the choice period, as this model controls for average pupil diameter in the 250 ms 

prior to outcome presentation. The model also controls for gaze position.  

Because pupil diameter is also modulated by outcomes, particularly if they are surprising 

(Alamia, VanRullen, Pasqualotto, Mouraux, & Zenon, 2019; Friedman, Hakerem, Sutton, 

& Fleiss, 1973; Lavín, San Martín, & Rosales Jubal, 2014; Nassar et al., 2012; 

Preuschoff, ’t Hart, & Einhäuser, 2011), we also examined pupil dilation in response to 

changes in payoffs. In the Leapfrog task, because payoffs are deterministic excepting the 

stochastic jumps, outcomes will either be the same as when the option was last checked, 

or they will have jumped in value. Therefore, we divided trials into three classes, based 

on whether subjects explored and the payoff increased (explore–change), explored and 

the payoff was unchanged (explore–no change), or exploited and the payoff was 

unchanged (exploit–no change). Trials in which subjects exploited and the payoff 

increased (exploit–change) were excluded from the analysis as there were very few per 

subject. Given this, we contrasted the response to change within explore trials only.  

Pupil diameter was slightly elevated in response to a change in outcome (Figure 3.3A,B). 

This separation began to emerge in the averaged data around 500 ms post outcome 

presentation but was only reliable in the last 100 ms of the outcome period (all pscorrected < 

.047). This effect was much smaller in magnitude than the continued effect of exploration 

on the pupil response (contrast of explore trials with exploit–no change trials), which was 

reliable throughout the outcome period (Figure 3.3A,C; all pscorrected < 0.0001). Note that 

this effect is not simply due to carryover from the choice period, as these analyses 



84 
 

controlled for pre-outcome pupil diameter; rather, this appears to reflect an extended 

influence of exploration on post-choice arousal.  

 

Figure 3.7. Modulation of pupil diameter pre- and post- explore. A Pre-explore baseline 

pupil diameter on the trials preceding exploration. Only the decrease from the second to 

the first trial pre-explore was significant. B The post-explore pupil time course, aligned to 

the explore choice. Dashed vertical lines indicate the approximate start times of 

subsequent trials. The small upward modulations in the time course shortly after each 

trial start are due to subsequent exploit choices. C The post-explore pupil diameter 
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latency to peak and latency from peak to the post-peak minimum (max 18s post-explore) 

across all data (top); the median latency to peak and post-peak minimum for each subject 

(bottom). D Regression model of the post-explore time course. Pupil diameter is 

significantly elevated above the explore trial baseline for 7.5 s post-choice. 

We next sought to characterize the duration of the arousal response (Figure 3.4B–D). 

Pupil diameter was significantly elevated above the explore-trial baseline for 7.5 s post-

choice, approximately the start of the outcome period of the subsequent trial (all pscorrected 

< .015). This result held when controlling for gaze position (all pscorrected < 0.039) and 

when additionally constraining the analysis to those epochs with minimal eye movements 

(< 50 pixels root mean squared; all pscorrected < .028). The sustained duration of the effect 

also does not appear to be primarily attributable to an artifact of averaging over subjects 

with variable exploration responses (Figure 3.4C). The median peak exploration response 

(median of within-subject medians) from 0–12 s post-explore occurred 4.0 s post-choice, 

which is very similar timing to the peak at 3.5 s in the time-averaged data (Figure 3.4B). 

Furthermore, the majority of individual subjects’ median peaks were not significantly 

different from the group median (31/34 subjects, sign test [corrected]). Similarly, the 

median minimum pupil dilation in the window from the post-explore peak to 18 s post-

explore was 14.5 s, identical to the time-averaged minimum (Figure 3.4C). This was 

consistent with the minimum in all subjects (34/34 subjects, sign test [corrected]). Nor 

was this time course significantly modulated by outcome type, though there was a small 

modulation that was significant at an uncorrected p < .05 level from 4–5.5 s post-choice, 

consistent with the effect seen at the trial level at the end of the outcome period and 

extending into the ITI and the start of the subsequent trial (Figure S1). The smearing out 
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of the outcome effect by time-locking on choice, as well as the trial restrictions imposed 

on this analysis, may have made it more difficult to detect the small modulation by 

outcome found in the trial-level data.  

The elevation of pupil diameter with exploratory choice thus seems best explained as a 

transient increase in tonic arousal driven purely by the choice to shift from exploitation to 

exploration, rather than an artifact or a response to the outcome. Nor does increased 

arousal appear to be the cause of the exploratory choice, rather than its effect. However, 

one additional possibility is that pupil diameter is elevated in response to exploration due 

to the greater uncertainty in the outcome on explore trials as compared to exploit trials. 

Indeed, the probability of observing a change in option value on explore trials is fairly 

uncertain (P(change | explore) = 0.41), while it is very unlikely on exploit trials 

(P(change | exploit) = 0.13). If this were the case, it might be expected that the pupillary 

response to exploration would differ between volatility conditions, as P(change | explore) 

was higher in the high volatility blocks (P(change | explore,high) = 0.57; P(change | 

explore,low) = 0.24). This was not the case. There was no effect of volatility condition, 

nor any volatility x choice type interaction during the choice period (Figure S2; all 

pscorrected = 1). Similarly, there was no effect of volatility condition on the post-explore 

time course; though the high volatility condition demonstrated a slightly lower pupillary 

response in the first second post-choice, this did not survive correction for multiple 

comparisons (Figure S2; all pscorrected > .62). Given subjects’ overall weak sensitivity to 

the volatility conditions, these results do not completely rule out a role for uncertainty in 
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driving choice effects, but they raise the possibility that exploratory choice itself, isolated 

from effects of uncertainty or surprise, can drive shifts in arousal. 

3.2. Exploration transiently modulates peri-explore integration  

 

Figure 3.8. A The peri-explore integration time course is significantly modulated around 

exploration. All peri-explore time courses both here and below were mean-centered prior 

to averaging for display purposes. Uncentered time courses were used in the statistical 

analyses, and trial-to-trial variability was captured using by trial random effects. B The 

peri-explore pupil time course, downsampled to the sampling rate of the integration time 

course and low-pass filtered.  

Integration was also significantly modulated around exploration (Figure 3.5A.; F(3.32, 

4551.90) = 4.03, p = .002). Integration appears to increase leading up to exploration, peak 

around the explore choice, and fall thereafter. To rule out the possibility that this result 

was reflective of some more general oscillation in the data, we refit the GAMM on data 

in which the location of explore trials was permuted within each block (500 

permutations). This analysis strongly suggested that the modulation was unique to 

exploration (p = .008).  
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To understand the factors driving this change in integration, it is important to answer two 

questions: 1) Which cognitive systems and their interactions contribute most to these 

dynamics? and 2) How do changes in integration relate to other global network 

properties? 

3.3. Integration is modulated differentially across cognitive systems  
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Figure 3.9. The modulation of peri-explore integration varies by cognitive system. A The 

integration of each cognitive system with all other systems (i.e., the rest of the brain). B 

Pairwise interactions between cognitive systems that demonstrated a significant 

modulation around exploration. * p < .05; ** p < .01;  

*** p < .001. 

To answer the first question, we computed system-level integration, the integration of 

each cognitive system with all other systems (i.e., with the rest of the brain; see 

Methods). While qualitatively there was some evidence of the global modulation when 

examining each cognitive system individually, this was only significant for the dorsal 

attention, default, frontoparietal, and limbic systems (Figure 3.6A.; dorsal attention: 

F(3.19, 4522.75) = 3.97, pcorrected = .02; limbic: F(3.34, 4650.21) = 3.50, pcorrected = .037; 

frontoparietal: F(3.32, 4576.66) = 3.36, pcorrected = .038; default: F(4.08, 4570.32) = 5.27, 

pcorrected = .0006). 

We then asked whether any interactions between cognitive systems differentially 

contributed to the system-level changes by computing between-system integration, the 

integration of two cognitive systems with each other. Significant modulation of between 

system integration was found only for dorsal attention–limbic, dorsal attention–default, 

and frontoparietal–default interactions (Figure 3.6B; dorsal attention–limbic: F(3.36, 

4466.03) = 5.36, pcorrected = .006; dorsal attention–default: F(3.57, 4428.86) = 5.11, 

pcorrected = .007; frontoparietal–default: F(4.03, 4368.86) = 5.19, pcorrected = .003; see 

Figure S3 for all between-system integration time courses). Therefore it is not the case 

that integration was modulated uniformly throughout the brain, as might be expected 

under some theories of LC function (Eldar et al., 2013). Rather, changes in integration 
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demonstrated specificity, perhaps reflective of interactions between these systems 

underlying decisions to explore, or of changes in interactions between these systems 

providing the substrate for exploratory states. 

3.4. Exploration induces complex changes in connectivity and topology 

 

Figure 3.10. Average node strength, system segregation, modularity, and number of 

modules all show significant modulations in the peri-explore period. 

Regarding the second question above, changes in integration between cognitive systems 

could be driven by multiple facets of the underlying connectivity and topology. For 

example, though integration is based on network topology and not directly on 
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connectivity, intuitively increases in integration might reflect a shift toward increased 

functional connectivity strength. Contrary to this expectation, average node strength 

demonstrated an opposing profile to integration, reaching a minimum and plateauing 

close to the time of choice (Figure 3.7A; F(3.80, 4297.55) = 7.64, p < .0001). To assess 

whether strength changed differentially within and between cognitive systems, potentially 

contributing to the change in integration, we computed a strength-based measure of 

system segregation—the difference in within versus between system connectivity, as a 

percentage of within system connectivity (see Methods). Thus, increases in this quantity 

reflect an increase in the relative strength of within-system connectivity. While both 

within and between system connectivity demonstrated a qualitatively similar peri-explore 

profile (Figure S4), system segregation demonstrated a positive modulation in favor of 

within system connectivity (Figure 3.7B.; F(3.18, 4337.78) = 4.79, p = .0007). This result 

was not driven by a mismatch between the assignment of nodes to cognitive systems 

relative to the dynamic modular structure of the network, as a similar pattern obtained 

when computing system segregation relative to the module assignment at every time 

point (Figure S4; F(3.38, 4449.78) = 5.24, p = .0002).  

This increase in system segregation, usually inferred to reflect a decrease in the 

integration of network communities, suggests that the positive modulation of integration 

may rather reflect a transient topological shift toward fewer modules. This was indeed the 

case (Figure 3.7D; F(4.38, 4268.60) = 5.27, p < .0001). Finally, we asked how these 

changes in connectivity and topology related to the (single-layer) modularity of the 

network (see Methods), which is also often considered a measure of segregation 
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(Rubinov & Sporns, 2010). Because modularity is a measure of the extent to which intra-

module strength is greater than expected, it might be expected to be positively associated 

with system segregation. Alternatively, it could be expected to track with the number of 

modules, as fewer modules often indicates a less modular structure. Here, we found that 

modularity demonstrated a positive fluctuation during the peri-explore period, in line 

with the increase in system segregation (Figure 3.7C; F(3.68, 4522.20) = 6.10, p < 

.0001). 

In sum, around exploration, there is a temporary shift toward a smaller collection of more 

loosely connected modules that include nodes from a greater diversity of cognitive 

systems. This counterintuitively leads to an increase in measures normally taken to 

measure segregation (modularity, system segregation), while at the same time increasing 

our measure of integration. While these results are consistent with our hypothesis that 

integration would be modulated around exploration, they are not entirely in line with the 

directionality of the hypothesis—that exploration would decrease integration. This 

inconsistency is due both to the heterogeneity across measures and to the fact that the 

integration results could be consistent with either a localized peak concomitant with 

exploration, or with an increase during exploitation followed by a decrease following 

exploration. Unfortunately, the temporal resolution of this analysis is not sufficient to 

fully disentangle these possibilities. Notably, using wavelet analysis, the minimum size of 

an effect produced by a transient will be approximately the size of the wavelet’s “cone of 

influence (COI),” the central segment of the wavelet in which changes in the underlying 

signal have the greatest impact on wavelet power (Torrence & Compo, 1998; see Figure 
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S5 for visualization of the COIs in this study). Qualitatively, the integration and 

modularity time courses might be consistent with a transient, while the shifts in strength 

and the number of modules appear longer-lasting and potentially indicative of more 

enduring changes to the network as a result of exploration. We return to these issues in 

the discussion. 

3.5. The relationship between pupil-linked arousal and network integration and 

segregation 
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Figure 3.11. The cross-correlation between each network measure and the downsampled 

and low-pass-filtered pupil time course during the peri-explore period. Average cross-
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correlations and SEMs were computed by first Fisher z-transforming the correlations at 

each lag, and then back-transforming for display. 

Both pupil diameter and measures of network integration and segregation were 

modulated around exploration, raising the possibility that LC-NE activity influences 

integration during exploration, as hypothesized. To more formally assess this possibility, 

we computed the cross-correlation between pupil diameter and our network measures 

(see Methods). All measures demonstrated a peak at lag 0 (Figure 3.8), so we therefore 

assessed the significance of the zero-lag correlation across subjects. This relationship was 

weak overall, with the only significant correlation occurring for pupil–strength (rave = 

.157, t(33) = 2.57, p = .015). However, it was at trend for all other measures but 

integration (integration: rave = −.035, t(33) = −0.88, p = .38; system segregation: rave = 

−.098, t(33) = −1.77, p = .085 ; modularity: rave = −.079, t(33) = −1.90, p = .066; number 

of modules: rave = .086, t(33) = 2.01, p = .052). This finding replicates prior work 

demonstrating a positive association between pupil diameter and overall strength of 

functional connectivity at the block level (Eldar et al., 2013; Warren et al., 2016). Given 

that the other measures are all ultimately derived from connectivity strength, it may be 

that further noise introduced by those calculations—particularly those involving the 

computation of modularity, may have served to partially obscure these relationships. It 

may also be the case the effect of LC-NE activity during exploration is best characterized 

as influencing overall connectivity strength, though the other measures indicate that this 

effect is somewhat heterogenous. Yet taken together, these results suggest a role for LC-

NE activity in the complex changes in network connectivity and topology around 

exploration.  
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3.6. Pupil diameter is not modulated by volatility condition  

 

Figure 3.12. Effects of the block-level volatility manipulation. A proportion exploratory 

choice. B baseline pupil diameter. C integration. Integration was z-scored within subject 

for visualization, but analyses were performed on untransformed values.  ** p < .01; *** 

p < .001. 

We next assessed whether manipulating the volatility across blocks produced changes in 

subjects’ exploratory behavior, pupil-linked arousal, and brain network integration. As 

predicted, subjects explored significantly more in high volatility blocks (Figure 3.9A; β = 

0.23, z = 4.74, p < .0001). The magnitude of this effect, however, was smaller than 

expected, (Mdiff = 0.04, or approximately 3 trials), despite the markedly differing rates of 

change per block. It may be that because the volatility changes were unsignaled, subjects 

were not certain or aware enough of the block-level differences to strongly alter their 

behavior. Prior work also suggests that when subjects are not explicitly made aware of 

the full task structure, they are not always able to discover it (Payzan-LeNestour & 

Bossaerts, 2011).  

Contrary to expectations, block-level baseline pupil diameter was not modulated by 

volatility condition (Figure 3.9B; t(33) = 0.50, p = .62). This was not a result of noise due 
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to gaze position or slow drifts in the pupil signal across blocks, as there was no difference 

when controlling for gaze and a 4th-degree polynomial over trials (β = −0.01, t(33.12) = 

−0.09, p = .93). Prior work has suggested using pupil dilation responses as a less noisy 

surrogate for tonic (baseline) pupil diameter, given the inverse relationship between tonic 

and phasic pupil dilation/LC responses (Eldar et al., 2013; Eldar, Niv, & Cohen, 2016). 

Indeed, these two measures were negatively associated in our sample (β = −1.23, t(30.85) 

= −19.02, p < .0001). However, dilation responses also showed no modulation by 

volatility, either alone (t(33) = 1.30, p = .20) or controlling for gaze position and slow 

drifts (β = −0.02, t(33.01) = 1.03, p = .31). Nor did dilation response predict the overall 

level of exploration across subjects (r(32) = .157, p = .38).  

3.7. Volatility decreases block-level integration 

Despite the absence of effects of volatility condition on arousal responses, volatility 

condition did significantly impact brain network integration in the predicted direction—

integration was lower in high volatility blocks than low volatility blocks (Figure 3.9C; 

t(33) = 2.82, p = 0.008). We therefore also asked whether this effect was driven by 

particular cognitive systems or whether it was better characterized as a global 

phenomenon. The effect was qualitatively present across cognitive systems and was 

significant in all but the ventral attention system (all ps < .05), but only the dorsal 

attention and subcortical systems survived correction for multiple comparisons (Figure 

S6.; both pscorrected = .045). In contrast, none of the between-system interactions were 

significant at a corrected level (all pscorrected  > .18). This suggests that the effect was 

widespread but somewhat heterogenous in the size of the effect among cognitive systems. 
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Because choice behavior varied to such a small degree at the group level between 

volatility conditions, it is unclear whether this difference could have been the driver of 

differences in integration; alternatively, the experienced volatility itself may have 

modulated brain network integration. Indeed, when entered together into the same model, 

the mean rate of exploration at each volatility condition was not a significant predictor of 

integration across subjects (β = −0.002, t(64.75) = −0.10, p = .92), while the mean rate of 

experienced changes was (β = −0.02, t(46.49) = −2.17, p = .036). This strongly suggests 

that the experience of a more changeable and uncertain environment drove the brain into 

a less integrated state. 

To further rule out the possibility that exploratory choice and not volatility drove this 

difference, we revisited the peri-explore integration analysis, asking whether the volatility 

level may have blunted the response to exploration in the high volatility block, potentially 

contributing to reduced integration. Corroborating the block-level analysis, integration 

was significantly lower in the high volatility blocks on average during the peri-explore 

period (β = −0.004, t(4550.65) = −2.49, p = .013). However, there was not a significant 

difference in the peri-explore modulation between volatility conditions (F(1.71, 4550.65) 

= 0.65, p = .57), suggesting that this did not drive the block-level effect. 
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Figure 3.13. The effect of block-level volatility on average node strength, system 

segregation, modularity, and the number of modules. ~ p < .10; * p < .05. 

Finally, to better characterize the volatility-driven change in integration, we examined 

changes in other measures of connectivity and topology (Figure 3.10). We found that 

overall node strength increased marginally (t(33) = 1.91, p = .065). System segregation 

was lower in the high volatility blocks, though this was significant relative only to the 

modules at each time point (Yeo cognitive systems: p = .19; modules: Figure S7, t(33) = 

−2.23, p = .03), indicating a slight shift toward more tightly connected communities. This 

was accompanied by a decrease in modularity (t(33) = −2.63, p = .01), as well as a 

marginally significant increase in the number of modules (t(33) = 1.99, p = .055). 
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Overall, then, increased volatility was associated with a slightly larger collection of 

modules that were more tightly integrated with respect to their connectivity but were 

more segregated relative to the cognitive systems present in each community. This result 

is in all respects a mirror image of the effect produced by exploration—albeit weaker—

further emphasizing the distinct effects produced by volatility and exploration as well as 

the tight interrelationships among these measures in this task.  

3.8. Assessing the relationship between block-level integration and arousal 

Though pupil diameter was not modulated by volatility condition, it could still be the 

case that arousal levels moderated the effect of volatility on integration. This was not the 

case. There was no interaction between volatility condition and baseline pupil (β = 

−0.001, t(54.93) = −0.21, p = .83), nor was there a main effect of baseline pupil (β = 

−0.001, t(33.68) = −0.32, p = .75). Average baseline pupil diameter across the task was 

also not associated with average integration (r(32) = −.093, p = .60). Thus, in contrast to 

prior studies (Eldar et al., 2013; Warren et al., 2016), we do not find a relationship 

between pupil-linked arousal and network organization at the block level.  

4. Discussion 

Here we assessed the relationship between LC-NE-linked changes in pupil diameter, 

brain network integration, and behavior in the context of exploratory choice. Consonant 

with our predictions and corroborating previous findings (Jepma & Nieuwenhuis, 2011), 

we found that exploration induced a reliable increase in pupil diameter. This is in line 

with the adaptive gain theory of LC-NE function, which states that changes in tonic LC 
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firing mediate between states of exploration and exploitation (Aston-Jones & Cohen, 

2005). We also examined changes in brain network integration around exploration. While 

our hypothesis that integration would be modulated around exploration was confirmed, 

the simple directionality of the hypothesis was not. Rather than finding strictly reduced 

integration, exploration-linked alterations in functional network architecture across a 

range of measures were consistent with a shift toward fewer, more weakly connected 

modules that were both more segregated in terms of connectivity and topology but also 

more integrated with respect to the diversity of cognitive systems represented in each 

module. Importantly, overall functional connectivity strength decreased, and changes in 

connectivity were associated with changes in pupil diameter, in line with the hypothesis 

that changes in LC-NE activity contribute to the dynamic reorganization of brain 

networks. These findings are the first to tightly link NE-associated arousal, brain network 

dynamics, and behavior in human subjects, going beyond prior studies, which relied on 

incidental variations in arousal or pharmacological manipulation assayed over longer 

periods of time. In so doing, this study has pushed the temporal grain at which sliding-

window network analyses have been applied, indicating the possibility of using these 

methods to uncover finer-timescale changes when carefully coupled to behaviors of 

interest. 

We also assayed whether block-level differences in environmental volatility would 

induce coupled changes in exploratory behavior, brain network integration, and pupil 

diameter. This manipulation was ultimately unsuccessful, as it elicited only weak 

differences in exploratory choice between volatility conditions and no differences in 
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pupil diameter. We did, however, find an unexpected association between functional 

brain network architecture and volatility condition—high volatility blocks were 

characterized by brain networks that were less integrated with respect to the diversity of 

cognitive systems present in each community but more integrated with respect to their 

connectivity and modularity. While we failed to confirm our predictions, this effect 

appeared separable from the effect of exploration and highlights the need to continue 

examining multiple contextual and neurobiological determinates of brain network 

dynamics, not just endogenous fluctuations during resting state (Medaglia, Lynall, & 

Bassett, 2015).  

4.1. Complex peri-explore network dynamics 

One factor that may be particularly important in driving the present results is the overall 

decrease in connectivity strength. Closely mirroring our findings, in a model of coupled 

oscillators, global decreases in coupling strength can lead to decreases in synchronization 

both within and between communities, as well as increases in modularity (Zhao, Zhou, 

Chen, Hu, & Wang, 2010). Changes in coupling strength have also been a target of 

modeling the effect of LC-NE activity on brain networks, which can lead to nonlinear 

changes in the degree of integration in the network (Shine et al., 2018a). 

However, the complex changes in functional network architecture during the peri-explore 

period stand in contrast to some prior findings in the literature. For example, performing 

the cognitively demanding n-back task has been found to increase brain network 

integration as measured in the present study (Braun et al., 2015), as measured by the 
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diversity of intermodular connections (participation coefficient; Shine et al., 2016), and 

as measured by the average path length between nodes (global efficiency; Cohen & 

D’Esposito, 2016). It has also been found to decrease modularity (Cohen & D’Esposito, 

2016; Vatansever et al., 2015) and system segregation (Cohen & D’Esposito, 2016)—

both taken as measures of segregation—and decrease the number of modules (Vatansever 

et al., 2015). In the case of the n-back at least, all measures converge on a depiction of 

brain networks that have become more integrated (less segregated) in their connectivity 

and topology. Indeed, while integration and segregation can be measured separately 

(Deco, Tononi, Boly, & Kringelbach, 2015; Rubinov & Sporns, 2010), such measures 

display anticorrelations in both computational models (Deco et al., 2015) and empirical 

data (Cruzat et al., 2018), as is also implied by the findings from the n-back data across 

studies.  

The divergence between these findings and the conflicting changes in integration and 

segregation found during exploration highlight the need to assess putative changes in 

integration across a range of tasks and measures. For example, a neural network model 

trained on multiple measures of segregation and integration was better able to predict 

performance across a range of tasks than the individual measures alone, suggesting that 

each contributes unique information (Bertolero, Yeo, Bassett, & D’Esposito, 2018). 

Moreover, as implied by our initial hypotheses, more integration—however defined—

may not always be better. For example, performance in motor tasks has been shown to 

benefit from increased segregation of brain networks (Bassett, Yang, Wymbs, & Grafton, 

2015; Cohen & D’Esposito, 2016). Indeed, it has been suggested that more modular brain 
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networks are of benefit in simple tasks that rely on segregation of processing and 

relatively isolated cognitive systems, while less modular networks are better in more 

complex tasks that require integrated processing (Yue et al., 2017). 

All of this raises the question of what is the benefit of modulating integration in the 

context of exploration, which is not well-captured by the distinction between simplicity 

and complexity. Indeed, these changes in state occur in the context of the exact same 

task. Modeling suggests that networks constrained to be sparser and more modular in 

some cases are better at converging to the solution in a given task (Bernatskiy & 

Bongard, 2015) and better adapt to task changes (Clune, Mouret, & Lipson, 2013). 

Importantly, structural brain networks are not only modular, but also small-world, 

characterized by high clustering and short path lengths (Bassett & Bullmore, 2006). 

While small-world networks need not be modular, this property of the brain has been 

proposed to balance the segregated processing afforded by modularity with integrative 

processing afforded by more global connectivity (Bassett & Bullmore, 2006; Gallos, 

Makse, & Sigman, 2012). Interestingly, small-world topology has been shown to impact 

exploration and exploitation in the context of problem-solving networks. In such 

networks, agents attempt to find the best solution to a problem in parallel (e.g., guessing 

the number that yields the highest payoff), where individuals connected to each other in 

the network have access to one another’s answers. Networks of human subjects as well as 

simulated agents display more exploration of the problem space in less connected 

networks due to greater segregation of information (Lazer & Friedman, 2007; Mason, 

Jones, & Goldstone, 2008). While fully connected networks excel in unimodal problem 
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spaces, small-world networks excel in multimodal problem spaces (Mason et al., 2008). 

Notably, some of the same benefits of structural connectivity can be obtained by 

changing the dynamics, such that agents can only occasionally view the solutions of their 

network neighbors (Bernstein, Shore, & Lazer, 2018; Lazer & Friedman, 2007). As may 

be expected, these results are highly dependent on the type of problem to be solved 

(Mason & Watts, 2012; Shore, Bernstein, & Lazer, 2015), and they come from networks 

at a far remove from brain networks. However, they suggest the intriguing possibility that 

dynamically increasing segregation in the brain during exploration may increase its 

ability to flexibly adapt when exploring new problem spaces or environments. On the 

other hand, the fact that the overall number of modules decreased, contributing to an 

increase in integration of different cognitive systems, may serve to balance this 

segregation by increasing the diversity of processing within each module. While these 

ideas are speculative by way of analogy to other networks, they suggest important areas 

for future research utilizing neural network models. 

4.2. Specificity of network effects 

While some studies have suggesting that LC-NE-linked modulation of network 

connectivity is relatively global, in keeping with the diffuse projections of LC (Eldar et 

al., 2013), others have uncovered heterogeneity in these effects and linked them to 

catecholamine receptor distributions (van den Brink et al., 2018, 2016b; Zerbi et al., 

2019). Furthermore, recent work in rodents indicates that LC neuron projections and the 

interactions among LC ensembles are far more regionally specific with respect to their 

cortical targets than previously appreciated (Totah, Logothetis, & Eschenko, 2019).  
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We also found evidence for specificity—modulation of integration around exploration 

was most prominent in the default, dorsal attention, limbic, and frontoparietal systems 

and their interactions. While the default mode network was initially defined based on its 

decreased activity during task (Raichle, 2015), an increasing body of work suggests its 

relevance for task processing. In particular, it has been implicated in working memory 

(Vatansever et al., 2015), task switching (Crittenden et al., 2015), attentional shifting 

(Arsenault, Caspari, Vandenberghe, & Vanduffel, 2017), and creative cognition (Beaty, 

Benedek, Silvia, & Schacter, 2016). Of particular relevance to the present study, neurons 

in posterior cingulate—a key DMN node—have been implicated in performance 

monitoring (Heilbronner & Platt, 2013) and exploration (Pearson, Hayden, Raghavachari, 

& Platt, 2009). There is also prior evidence of dynamic interactions between default, 

frontoparietal, and dorsal attention systems, with the frontoparietal network potentially 

regulating activity in the other two networks in order to adjust the balance between 

internally-generated (default) and externally-directed (dorsal attention) processing (Beaty 

et al., 2016; Dixon et al., 2017, 2018; Smallwood, Brown, Baird, & Schooler, 2012). 

Furthermore, interactions among the limbic, attentional, and LC-NE systems appear to 

modulate attention, learning, and memory for salient or motivationally relevant events 

(Clewett & Murty, 2019; Gallagher & Holland, 1994; Mohanty, Gitelman, Small, & 

Mesulam, 2008). The Leapfrog task itself has been associated with both prefrontal 

function and arousal (Blanco et al., 2015; Otto et al., 2014). While we can only speculate 

about the role of these networks and their interactions in the present study, they may 

reflect the coordination of monitoring, decision-making, and attentional processes in 

service of flexibly shifting between exploitation and exploration based on ongoing 
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estimates of the relative value of exploring. Regardless, the specificity of these effects 

provides further motivation for examining the role of LC-NE activity in modulating brain 

network connectivity within specific contexts. 

4.3. Pupillary response to exploratory state 

While it was not a primary goal of the study, our results also bear strongly on the role of 

LC-NE-linked arousal in mediating between exploration and exploitation. Despite the 

long-standing hypothesis that tonic LC activity mediates between these states (Aston-

Jones & Cohen, 2005), relatively few studies have examined this relationship, though 

most have found support for such a relationship (Gilzenrat, Nieuwenhuis, Jepma, & 

Cohen, 2010; Hayes & Petrov, 2016; Jepma & Nieuwenhuis, 2011; Kane et al., 2017; cf. 

Jepma, Te Beek, Wagenmakers, van Gerven, & Nieuwenhuis, 2010; Warren et al., 2017). 

Pupil diameter is sensitive to several non-luminance-mediated factors, including 

uncertainty and surprise (Alamia et al., 2019; Friedman et al., 1973; Jepma & 

Nieuwenhuis, 2011; Lavín et al., 2014; Nassar et al., 2012; Preuschoff et al., 2011; 

Qiyuan, Richer, Wagoner, & Beatty, 1985; Urai, Braun, & Donner, 2017), as well as 

mental load or task difficulty (Alnaes et al., 2014; Hess & Polt, 1964; Kahneman & 

Beatty, 1966; Wahn et al., 2016). Notably, past task designs used to test the relationship 

between LC-NE activity and exploratory state do not clearly differentiate states of 

exploration from these other factors. For example, in drifting bandits, exploratory choice 

tracks with the entropy of the option values (Jepma & Nieuwenhuis, 2011), and a 

canonical study of exploration, operationalized as task disengagement, utilized increases 

in task difficulty to promote disengagement (Gilzenrat et al., 2010). It could thus be the 
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case that pupil diameter in these studies is more related to other variables than to 

exploration per se—indeed, in both cases pupil diameter was argued to closely track 

expected utility, a putative signal of when to initiate exploration (Aston-Jones & Cohen, 

2005). While it is an empirical question whether states of exploration reduce to states of 

uncertainty or low utility, the information gained by exploration has utility in and of 

itself, despite the opportunity costs associated with potentially lower payoffs (e.g., 

directed exploration; Gershman, 2018; Kaelbling, Littman, & Moore, 1996; Knox et al., 

2012; Wilson, Geana, White, Ludvig, & Cohen, 2014). Furthermore, mice demonstrate 

elevated pupil diameter during exploratory behaviors that are not associated with 

immediate payoffs (McGinley et al., 2015). Exploratory states would thus seem to be at 

least somewhat separable from these other factors, and potentially heterogenous in 

nature. 

The simplified nature of the Leapfrog task mitigates these concerns; the option values 

change in a highly constrained way, meaning the only uncertainty/difficulty lies in the 

decision of when to explore, given the rate of change in the environment (Knox et al., 

2012). Crucially, we found no anticipatory increase in pupil diameter on the trials leading 

up to the explore trial. Instead, pupil diameter appeared to be elevated in response to the 

decision to explore itself. The canonical pupillary response function has an approximately 

one second lag to peak and returns to baseline after about two seconds (Hoeks & Levelt, 

1993). Choice on exploit trials closely followed this pattern (Figure 3.2), suggestive of 

phasic LC-NE activity, while choice on explore trials remained elevated for several 

seconds following the explore choice, suggestive of a tonic (though brief) elevation in 
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LC-NE activity. Importantly, response to a change in outcome did not drive this effect, 

ruling out a role for surprise, and the explore response was not sensitive to volatility 

condition, suggesting it also was not due to greater uncertainty in the outcome of explore 

choices. This conclusion must be qualified, however, by the relatively weak sensitivity of 

our subjects to the volatility manipulation. Given that the pupillary response has been 

shown to be modulated by probabilities and at least qualitatively demonstrates more 

extended responses to low probability events (Alamia et al., 2019; Qiyuan et al., 1985), 

we cannot completely rule out this possibility, but we tentatively propose that the 

pupillary response to exploration in this case reflects the shift into an exploratory state 

itself, apart from decision variables contributing to the decision to explore. Furthermore, 

this suggests that increased arousal in this case was a consequence of the decision to 

explore, rather than its cause. In keeping with this, we failed to replicate a prior finding 

that average tonic pupil diameter is associated with rates of exploration across subjects in 

a drifting bandit task (Jepma & Nieuwenhuis, 2011). It may be the case that individual 

differences in tonic arousal are more associated with random exploration of the sort 

elicited in drifting bandits (Daw et al., 2006; Wilson et al., 2014), but that directed 

exploratory decisions of the sort elicited by the Leapfrog task can lead to intentional 

shifts into high-arousal exploratory states.  

4.4. Limitations and future directions 

While this study identified exploration-induced modulation of brain network connectivity 

on a fairly fine temporal scale, there are a number of caveats that bear consideration. 

First, the low-frequency nature of the continuous wavelet coherence analysis makes it 
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difficult to infer the exact nature of the underlying neural activity. Indeed, filtering, 

including the use of wavelets, can distort the timing of the underlying signals (de 

Cheveigné & Nelken, 2019; Yael, Vecht, & Bar-Gad, 2018). This is particularly evident 

when examining the post-explore pupil time course after low-pass filtering, which 

displays a different character than prior to filtering (Figures 3.4B, 3.5B). Thus, while our 

analyses provide evidence of an exploration and LC-NE-linked modulation, the exact 

nature of the modulation—its timing and directionality—may be quite different than that 

uncovered here. On the other hand, wavelet analysis has benefits over correlation-based 

methods in robustness to noise and temporal autocorrelation (Zhang, Telesford, Giusti, 

Lim, & Bassett, 2016).  

Relatedly, we took substantial steps to address temporal autocorrelation in our analyses, 

including the use of GAMMs, AR1 error models, and corrected correlation Z-scores. 

Although the impact of temporal autocorrelation—particularly in nonstationary time 

series—has long been recognized in fields such as economics and statistics (Granger & 

Newbold, 1974; Johansen, 2012; Phillips, 1986; Yule, 1926), and univariate analyses of 

fMRI data correct for non-independence in the residuals of fMRI GLM analyses due to 

autocorrelation (Monti, 2011), autocorrelation has not always been taken into account in 

psychological and neuroscientific analyses, including in analyses of pupil–network 

relationships. This potentially threatens not only statistical inference (i.e., inflated Type I 

error rate), but also in some cases the validity of the parameter estimates themselves (i.e., 

spurious correlation). That said, there has been disagreement as to the severity of the 

autocorrelation problem, likely owing to differences in the underlying signals, the length 
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of the time series, and the assumptions made about the autoregressive processes (Afyouni 

et al., 2019; Arbabshirani et al., 2014; Baayen et al., 2017; Dean & Dunsmuir, 2016; 

Elber-Dorozko & Loewenstein, 2018; Honari, Choe, Pekar, & Lindquist, 2019; Leonardi 

& Van De Ville, 2015). We have chosen to take this problem seriously, though other 

solutions, such as prewhitening or the use of ARIMA models could have been used, as is 

recommended by some of these authors. We did not use these methods here because we 

did not want to eliminate low-frequency signal components (Afyouni et al., 2019; Pyper 

& Peterman, 1998), but future work should assess the impact of various mitigation 

strategies not only on functional connectivity itself, but its relation to other signals of 

interest such as pupil diameter. It may also be worth investigating the use of clustering 

(Khambhati, Mattar, Wymbs, Grafton, & Bassett, 2018; Liu, Zhang, Chang, & Duyn, 

2018; Medaglia et al., 2018) or deconvolution (Karahanoǧlu, Caballero-Gaudes, 

Lazeyras, & Van De Ville, 2013; Wierda, van Rijn, Taatgen, & Martens, 2012) 

techniques to aid in addressing both issues of temporal precision and autocorrelation. 

While we have attributed the peri-explore modulation to a result of exploration under the 

putative influence of NE, both of these assumptions must be examined in more detail in 

future studies. Given our task design and limits on the amount of explore trials per 

subject, we cannot completely disentangle effects of exploration from effects of change, 

uncertainty, and overall volatility, though we made several attempts to do so. 

Furthermore, in the Leapfrog paradigm bouts of exploratory choice are usually on the 

order of a single trial. Designs that provoke more extended exploratory states may help to 

overcome issues related to temporally isolating the effects of exploration. Additionally, 
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we cannot separate effects of exploration from more general effects of attentional 

shifting. While LC-NE-linked effects on attentional processes are well-known and in 

some sense are partly constitutive of its influence on exploratory state (Aston-Jones & 

Cohen, 2005; Corbetta, Patel, & Shulman, 2008; McGinley et al., 2015; Sara & Bouret, 

2012), exploration has been isolated from switching at the single-neuron level (Pearson et 

al., 2009), so it will be important to better delineate the boundaries of these different 

processes/states in the future.  

Other neuromodulators such as dopamine and acetylcholine have also been implicated in 

coordinating brain network dynamics (Birn et al., 2019; Roffman et al., 2016; Shafiei et 

al., 2019; Turchi et al., 2018; Záborszky et al., 2018) and have been implicated in 

uncertainty and exploration (Beeler et al., 2010; Fiorillo, Tobler, & Schultz, 2003; Yu & 

Dayan, 2005). Acetylcholine in particular also influences pupil diameter (Reimer et al., 

2016), meaning that we cannot rule out its impact in the present results, as is the case in 

all studies utilizing pupil diameter as a proxy for LC-NE activity. Finally, other 

mechanisms, such as thalamic regulation, have been linked to the control of cortical 

connectivity (Halassa & Kastner, 2017). Given that we could not link the network effects 

of volatility to pupil diameter, this highlights the need look beyond neuromodulators for 

other mechanisms of brain network reconfiguration.  

In sum, we have demonstrated a relationship between exploration, pupil-linked arousal, 

and brain network dynamics. We argue that forming linkages between functional 

connectivity, behavior, and physiological markers such as pupil diameter represents a 
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promising path forward for understanding the effects of neuromodulatory actions on 

brain network dynamics and their impact on cognitive processing. 
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IV: GENERAL DISCUSSION 

This thesis presented two case studies of the neurobiological substrates of endogenous 

flexibility, the ability to adapt behavior without explicit cues to do so. In particular, we 

focused on the neural substrates that influence the balance between stability and 

flexibility, including the roles of the prefrontal cortex and the neuromodulators dopamine 

and norepinephrine. The results of these studies contribute to an expanding literature that 

is illuminating the interconnectedness of learning and control processes in supporting 

adaptive behavior. Control is implemented most effectively when deployed based on 

learned estimates of environmental variables (Botvinick, Braver, Barch, Carter, & Cohen, 

2001; Collins & Koechlin, 2012; Jiang et al., 2015; Jiang, Heller, & Egner, 2014; 

Shenhav et al., 2013; Yu & Cohen, 2009). Similarly, learning is most effective when it 

integrates top-down control signals that serve to stabilize behavior in line with current 

goals with bottom-up information that may contain signals that the environment has 

changed, potentially necessitating changes in the current control state, current goals, 

and/or current estimates of environmental variables (Cohen et al., 2007; Daw et al., 2005; 

Nassar et al., 2010; Pearson et al., 2011; Yu & Dayan, 2005). When there is a mismatch 

between the environment or task at hand and the current control state, this can produce 

behavior that is either too stable or too flexible, hindering performance. Importantly, the 

balance between stability and flexibility is powerfully influenced by the actions of 

neuromodulators such as dopamine and norepinephrine (Aston-Jones & Cohen, 2005; 

Cools & D’Esposito, 2009; Nassar et al., 2012; Yu & Dayan, 2005). 
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In Chapter 2, we examined the role of frontostriatal circuits—and their modulation by 

DA—in instructed reinforcement learning. When instructions are inaccurate, a conflict is 

generated between the top-down information provided by the instructions and bottom-up 

reward information provided through experience. This conflict provides a window on the 

balance between stability and flexibility via the extent to which instructions bias learning. 

Consistent with increased top-down regulation of reinforcement learning, subjects who 

received anodal stimulation over PFC demonstrated greater bias relative to sham, though 

this effect was present only early in training. This provides the first causal evidence of a 

role for PFC in instructed RL, indicating that too much PFC-mediated stability in 

following the instructions is detrimental to learning. We also replicated the finding that 

the COMT Met allele is associated with increased instructional bias (Doll et al., 2011) 

and further demonstrated that variation in DAT1 has similar effects to variation in 

COMT, with 9-repeat carriers demonstrating increased bias relative to 10-repeat 

homozygotes. Intriguingly, COMT Met homozygotes who were also DAT 9-repeat 

carriers demonstrated markedly higher bias than all other genotypic groups. These results 

support the idea that the balance between PFC and striatal DA, rather than the 

functioning of the PFC alone, determines the balance between stability and flexibility 

(Cools & D’Esposito, 2009). Finally, we fit computational models to subjects’ data to 

better characterize the mechanisms underlying instruction bias. A novel choice bias 

model, in which instructions influence decision-making rather than learning, was found 

to best account for subjects’ behavior. Together, these data add to the growing literature 

documenting both costs and benefits of cognitive control (Chrysikou et al., 2014), and 
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indicate that neurobiological differences in the stability-flexibility balance can lead to 

mismatches with the task at hand, in this case producing behavior that is overly stable. 

Chapter 3 viewed the balance between stability and flexibility through a different 

behavioral and neuromodulatory lens, assaying the relationship between choice behavior, 

brain network dynamics, and LC-NE activity in the context of exploration and 

exploitation. The balance between exploration and exploitation is perhaps the 

paradigmatic example of the tradeoff between stability and flexibility (Aston-Jones & 

Cohen, 2005; Mehlhorn et al., 2015). In the case of the Leapfrog task, stably exploiting 

for too long means likely missing out on higher payoffs from the unchosen option, while 

exploring too often entails missed opportunities to exploit the better option. Consistent 

with the view that higher tonic LC-NE activity promotes exploration (Aston-Jones & 

Cohen, 2005) and in line with prior work (Jepma & Nieuwenhuis, 2011), subjects 

demonstrated increased pupil diameter after exploratory choices. We also found 

modulations of brain network dynamics around exploration across several measures. 

These changes were associated—albeit weakly—with changes in pupil diameter, with the 

most reliable effect occurring for overall connectivity strength. These results tentatively 

support our hypothesis that modulation of brain network integration by LC-NE activity is 

a mechanism by which NE shuttles the brain between states of exploration and 

exploitation. However, while we predicted that integration would strictly decrease with 

exploration, we instead found a complicated pattern of effects; around exploration, 

network measures indicated a move toward lower overall connectivity and fewer, more 

weakly connected modules that were both more segregated when measuring connectivity 
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and topology but more integrated when measuring the diversity of cognitive systems 

within each module. These results perhaps augment, rather than clarify, an already 

conflicting literature on the role of LC-NE-linked modulations of functional connectivity 

(e.g., Shine, van den Brink, Hernaus, Nieuwenhuis, & Poldrack, 2018) and suggest 

important considerations for future work, to which we now turn. 

1.1. Future directions  

There is still much to be discovered with regard to the neural mechanisms of stability and 

flexibility. Within instructed reinforcement learning, it remains an open question how 

best to characterize the nature of the instructional bias. While we found evidence for a 

choice bias rather than a learning bias, as reviewed in Chapter 2 there is considerable 

variability across studies in whether the bias is attributed to learning or choice. One 

approach to this question that should be taken is to ask how recoverable and separable 

learning and choice bias parameters are in simulated data. It may be the case that current 

paradigms and models cannot actually adjudicate between these possibilities, which 

would necessitate new approaches. For example, a learning bias might suggest that 

memory systems other than striatally-mediated RL would be affected, such as episodic 

encoding of reward information, which has been recently demonstrated to influence 

choice (Bornstein, Khaw, Shohamy, & Daw, 2017). Therefore, paradigms that triangulate 

the bias by manipulating or assessing different aspects of learning and choice (e.g., 

memory for episodic information related to the instructed stimulus) might prove more 

fruitful than modeling alone. 
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More generally, given the putative role of prefrontally-mediated working memory 

processes in implementing the bias, it is of interest to ask whether individual differences, 

such as those dictated by COMT genotype, are stable across tasks. In particular, while the 

COMT Met allele has been negatively associated with flexibility in instructed RL and 

reversal learning (Doll et al., 2011; Krugel et al., 2009), it has been positively associated 

with other types of flexibility, including the use of model-based reinforcement learning 

and directed exploration (Doll et al., 2016; Frank, Doll, Oas-Terpstra, & Moreno, 2009). 

That is, stability and flexibility themselves are multiply determined. Directly comparing 

performance across tasks may thus help identify the specific mechanisms that benefit 

(hinder) performance in specific contexts. Stronger or more developed cognitive control 

is thought to benefit tasks requiring more filtering, higher levels of abstraction, and/or 

more proactive use of control (Chrysikou et al., 2014; Munakata et al., 2012). One 

possibility is therefore that types of flexibility that are more driven by bottom-up input, 

such discarding false instructions or completing reversals, will benefit from less top-

down control, while those that require planning, maintaining and computing over many 

task variables, or inhibiting prepotent responding, will benefit from more top-down 

control. Finally, the performance of COMT Met/Met:DAT 9-repeat carriers suggests that 

certain subpopulations may be much more rigid in their stability or flexibility than others. 

Further study of such individuals in larger cohorts might thus have implications for the 

study of psychiatric conditions that feature inflexible thoughts or behavior, such as 

depression and obsessive-compulsive disorder (Gruner & Pittenger, 2017; Levin et al., 

2013; Remijnse et al., 2013). 
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Regarding the role of LC-NE activity in adaptively modulating brain network 

connectivity, the disparate results across studies suggest an urgent need for additional 

computational modeling and matched experimental investigations. While relatively 

simple neural network models of the effect of LC-NE-associated gain modulation have 

had success in predicting behavioral performance (Eldar et al., 2013, 2016), predictions 

regarding connectivity changes have been inconsistent across studies, perhaps owing to 

very different modeling paradigms (Eldar et al., 2013; Shine et al., 2018a). If connectivity 

is to provide any insight into cognitive function, models that combine some level of 

biological plausibility with some level of topological similarity to the human brain, in the 

context of specific tasks, will likely be necessary. Additionally, functional connectivity 

and its derivatives are relatively nonspecific measure for indexing changes in cognitive 

processing. For example, it is difficult to know what to conclude from a gain-mediated 

increase in functional integration in a task-free model of coupled oscillators (Shine et al., 

2018a). One possible future direction would be to utilize measures such as informational 

connectivity (Anzellotti & Coutanche, 2018; Coutanche & Thompson-Schill, 2013), 

which could be used to ask how changes in task-associated multivoxel patterns covary in 

simulated and actual brain networks in concert with changes in LC-NE activity and 

measured behaviors. In the case of exploration, this requires assaying not only 

exploratory choice, but using paradigms that allow for the assessment of the 

consequences of exploratory states on information processing and behavior. For example, 

exploration has been shown to induce a greater reliance on bottom-up stimulus salience 

in macaques (Ebitz & Moore, 2016). Finally, modeling might be a good place to gain 

some insight into the effect of pharmacological manipulations, which have produced 
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some results that conflict with inferences made based on pupil diameter (Jepma et al., 

2010; Warren et al., 2017b), potentially due in the case of Atomoxetine to influences on 

both tonic and phasic NE (Bari & Aston-Jones, 2013).  

Relatedly, it will also be critical to make progress in better understanding the inverted-U-

shaped effects of NE (Arnsten, 2011; Aston-Jones & Cohen, 2005; McGinley et al., 

2015), which may be another reason for disparate results across studies. For example, 

studies of attention suggest that optimal performance is attained at moderate levels of 

pupil-linked arousal (e.g., van den Brink et al., 2016a). Therefore, in any given study one 

might find a negative relationship, a positive relationship, or no relationship between 

performance and arousal, depending on the distribution of where study participants fall 

on the inverted-U. One possibility will be to use converging measures, such as salivary 

alpha amylase, to better characterize basal levels of NE (Warren, van den Brink, 

Nieuwenhuis, & Bosch, 2017a). Characterizing both sides of the U is also critical for 

understanding the balance between stability and flexibility. For example, high LC-NE 

activity has been proposed to focus processing on salient features, while low activity has 

been proposed to facilitate more integrative processing (Eldar et al., 2016), in much the 

same way that variations in cognitive control have been proposed to adjust the level of 

top-down filtering of information (Chrysikou et al., 2014; Shimamura, 2000). Mirroring 

the discussion of the role of prefrontal function and its modulation by DA, it is thus worth 

asking what types of flexibility and stability benefit from being located at different points 

on the U. Finally, like DA, NE also has inverted-U shaped effects on prefrontal function 

(Arnsten, 2011). Therefore, one final question is whether variation in prefrontal DA 
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levels interact with variation in NE-linked arousal to produce different optima in different 

subjects.  

1.2. Conclusion 

In The Time Machine, H.G Wells (1895) wrote:  

“It is a law of nature we overlook, that intellectual versatility is the compensation 

for change, danger, and trouble. An animal perfectly in harmony with its 

environment is a perfect mechanism. Nature never appeals to intelligence until 

habit and instinct are useless. There is no intelligence where there is no change 

and no need of change. Only those animals partake of intelligence that have to 

meet a huge variety of needs and dangers” (ch. XIII, para. 3). 

While intelligence may be debated, the need to balance stability and flexibility is 

undeniable. Even the simple nematode C. elegans must adjudicate between exploration 

and exploitation, and intriguingly this process is influenced by catecholamines 

(Bendesky, Tsunozaki, Rockman, Kruglyak, & Bargmann, 2011). The role of 

catecholamines in behavioral and neural flexibility may thus be nearly as evolutionarily 

ancient as animals’ need for flexibility itself. It is perhaps one of the greatest clichés of 

our time that the need for adaptability is greater than ever in response to ever-increasing 

societal and technological change. Understanding the neurobiological and computational 

bases of stability and flexibility may thus provide a window into the past as well as a 

blueprint for optimizing flexibility in the future. 
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APPENDIX A: Supplementary Material for Chapter 2 

1. Supplementary Methods 

1.1 Task Procedure 

Subjects completed an instructed probabilistic selection task (iPST), presented on a 13” 

laptop computer via PsychoPy (Peirce, 2009). This task required subjects to learn the 

value of symbols initially presented in 3 pairs (AB, CD, EF; see Table 1, main text). 

Within each pair, one symbol had a higher probability of reward, and subjects were 

expected to learn to select the more highly rewarded symbols via feedback learning. 

Symbols were rendered as Japanese Hiragana characters and the assignment of Japanese 

character to underlying stimulus was randomized across subjects.  

While seated in front of the computer, subjects first read the following instructions: 

Thank you for participating! Two black symbols will appear simultaneously on 

the computer screen. One symbol will be “correct” and the other will be 

“incorrect”, but at first you won’t know which is which. There is no ABSOLUTE 

right answer, but some symbols have a higher chance of being correct than others. 

Try to pick the symbol that you find to have the highest chance of being correct. 

You’ll have to figure out which symbols to select by testing them out. Note: the 

side of the screen on which a symbol appears does not affect its chances of being 

correct. Now you will be introduced to  

the symbols.  
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Each symbol was then presented individually for 5 sec each. When symbol D was 

presented the screen also displayed the following false advice: “This symbol has the best 

chance of being correct.”  

Subjects were then tested on how many stimuli appear on every trial and how to choose 

the stimulus on the left or the right. Each symbol was then presented again for 5 sec and 

subjects were directed to press a key when the instructed symbol D was presented. The 

instructions restarted from the beginning until all questions were answered correctly.  

During the training phase, subjects had to learn the value of each symbol via probabilistic 

feedback. On a given trial, subjects saw one of the three symbol pairs, side 

counterbalanced. Trials began with a fixation cross, followed by the stimulus display. 

Once a response was made, the selected symbol was highlighted via a square border, 

colored green for positive feedback and red for negative feedback. Additionally, 

symbolic feedback in the form of a green checkmark for positive feedback and a red 

cross-out mark for negative feedback was displayed centrally below the two symbols. 

Feedback was only provided for the selected option. In order to ensure consistency across 

subjects in the duration of the task relative to stimulation, all trials were fixed in length 

and proceeded as follows: 300 ms fixation, 2000 ms response window, 200 ms highlight 

time, 900 ms feedback time. This was followed by a variable ITI (minimum 800 ms) 

calculated to bring the total duration of trial + ITI to 4200 ms. If subjects failed to make a 

response during the response window, a blue question mark was displayed in lieu of 

feedback for the remainder of the trial.  



124 
 

Subjects completed 4 training blocks. Each block contained 20 repetitions of each pair, 

for a total of 60 trials per block and 240 total training trials. Trial order and feedback 

were randomized within each block. Feedback was randomized such that within a block, 

each symbol was assigned reward at a rate equal to its underlying probability of reward 

(i.e., if the subject always chose symbol A, it would result in positive feedback on 16 of 

the 20 trials, for a p(reward) = 0.8). Feedback was also assigned in a complementary 

fashion within symbol pairs, such that in trials on which one symbol was assigned 

positive feedback the other symbol in the pair was assigned negative feedback. 

After completing the training phase, the test phase began with the following instructions: 

It’s time to test what you’ve learned! During this set of trials you will NOT 

receive feedback (correct or incorrect) on your responses. If you see new 

combinations of symbols in the test, please choose the symbol that “feels” more 

correct based on what you learned during the training sessions. If you’re not sure 

which one to pick, just go with your gut instinct! 

During the test phase, all possible symbol pairings were presented (e.g., AB, AC, AD, 

AE, AF, …) without feedback. Each pair was presented 6 times, for a total of 90 trials. 

Order was randomized across subjects.  

1.2. Genotyping 

DNA samples were collected via Oragene saliva kits (DNA Genotek) and extracted using 

the Chemagen MSMI DNA Extraction system. For the COMT Val158Met SNP, Taqman 

5’ nuclease PCR primers and probes were utilized (Life Technologies). Each probe 
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consisted of an oligonucleotide with a fluorescent reporter dye, a non-fluorescent 

quencher and minor groove binder (MGB). Allele-specific cleavage of probes was 

detected using different reporter dyes for each probe (6FAM and VIC fluorophores for 

each allele), with separate wavelength maxima. PCR amplifications were set up in a 384-

well plate format in total volume of 5 µl, containing 2.5 µl 2X universal master mix, 0.25 

µl 1X primer and probe from ABI and 2.25 µl of DNA at a concentration of 5 ng/µl. 

Water as a negative control was included in each 384-well plate. PCR was performed in 

QuantStudio 12K Flex Real-Time PCR System (ABI). After an enzyme activation step 

for 10 min at 95 °C, 60 two-step cycles were performed; 15 sec denaturation at 95 °C 

followed by 1 min annealing/extension at 60 °C for all variants. After PCR, end-point 

fluorescence levels of 6FAM and VIC were measured automatically in each well using 

V1.2.2 manufacturer’s custom software (ABI). Allelic discrimination results were then 

graphed on a scatter plot contrasting reporter dye florescence (i.e., Allele X vs. Allele Y). 

For the DAT1/SLC6A3 VNTR, extracted DNA was amplified using DAT1 VNTR 

specific primers (Forward primer: 5’-6FAM-TGT-GGT-GTA-GGG-AAC-GGC-CTG-

AG-3’; Reverse primer: 5’-CTT-CCT-GGA-GGT-CAC-GGC-TCA-AGG-3’; ABI 

#450007) utilizing the Roche Expand High Fidelity PCR System (#04738268001). 

Capillary electrophoresis was performed on the ABI 3130xl DNA Analyzer running 

POP7 polymer. One μl of amplified sample was suspended in 9 μl of Hi-Di Formamide 

(ABI #4311320) and 0.5 μl of Genescan-600 LIZ Size Standard v2.0 (ABI #4408399) 

and denatured at 95 °C for 2 min then placed on ice for an additional 2 min before 
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loading onto the instrument. After electrophoresis, samples were analyzed using ABI 

Genemapper 4.0 software (Life Technologies). 

2. Supplementary Results 

Here we report the results of between-group parameter comparisons of the decision bias 

model (see sections Methods: Computational Modeling and Results: Computational 

Modeling of the main text for modeling details). These analyses complement the 

behavioral analyses in the main results of the paper, asking whether genotype and 

stimulation groups differ in the degree of their choice bias, as quantified by the ρ 

parameter of the model. See Supplementary Tables 1 and 2 for average parameter 

estimates for each group.  

2.1. COMT 

Mirroring the training phase behavioral results, we found a significant effect of COMT 

status on ρ (F(2,99) = 3.31, p = .04). The Met/Met group had a significantly larger bias 

than both Val/Val (t(99) = 2.45, pcorrected = .049) and Val/Met (t(99) = 2.34, pcorrected = 

.049). There was no difference between Val/Val and Val/Met (t(99) = 0.34, pcorrected = 

.74). We also found a significant gene-dose effect, whereby increasing Met alleles lead to 

increases in ρ (r(100) = .21, p = .04). 

Test phase fit results were similar to those on the Avoid-D/Avoid-F measure. There was 

not a significant effect of COMT on ρ (F(2,99) = 2.10, p = .13). There was, however, a 

significant gene-dose effect (r(100) = .20, p = .04), whereby increasing Met alleles were 

associated with increasing bias.  
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2.2. DAT 

Though 9-repeat carriers were on average fit with a higher value of ρ than 10/10 

homozygotes (M9c = 0.20, M10/10 = 0.12), this difference was only significant at a trend 

level (t(100) = 1.90, p = .06). Additionally, no other model parameters better explained 

the difference in instructed training phase performance (all ps > .45). 

The inability to find a significant difference in model parameters despite a significant 

difference in behavioral performance could indicate that the decision bias model merely 

fails to capture the relevant difference between DAT groups. It may be the case, however, 

that noise in the parameter estimates masks a significant group difference. One common 

source of noise in such estimates is correlations among the parameters. We therefore 

asked whether 9-repeat carriers would have a significantly greater value of ρ, controlling 

for the other model parameters. Indeed they did (β = 0.10, t(97) = 2.68, p = .009)2. 

We did not find that DAT modulated the ρ parameter at test (t(100) = 1.03, p = .31). 

However, examining the other parameters, we found that 9-repeat carriers had a 

significantly lower learning rate for losses (αl) than 10/10 homozygotes (t(100) = -2.75, p 

= .007). No other differences were significant (all ps > .14). This difference in αl is in 

keeping with the main effect of DAT on Avoid-D/Avoid-F performance in the absence of 

 
2 In light of this finding, we repeated all other group comparisons of the ρ parameter, controlling for the 

other parameters. The significance of all other comparisons were largely unchanged, excepting following: 

the COMT gene-dose effect at test fell to a trend level (p = .055), and the effect of DAC at test rose to a 

trend level (p = .052).  
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a significant interaction, though only the difference in Avoid-D was individually 

significant.  

One question raised here is why a lower learning rate for losses would produce worse 

performance, when past investigations have demonstrated that a lower learning rate for 

losses can produce better performance in avoidance learning due to more stably learned 

values (Frank et al., 2007). One possibility is that the 9-repeat carriers were to a greater 

extent fit by very low αl, such that learning was impaired. Indeed, a greater proportion of 

9-repeat carriers were fit with αl < .01 compared to 10/10 homozygotes (9c: 45.7%, 

10/10: 25.4%; p = .046, Fisher’s Exact Test).  

If low αl impaired learning, this should be reflected in the Q-values produced by the 

model. This was the case. In addition to a main effect of Symbol, indicating that overall 

Q-values were differentiated among the symbols (F(5,500) = 95.49, p < .0001), we also 

found a main effect of DAT (F(1,100) = 9.41, p = .003), qualified by a Symbol x DAT 

interaction (F(5,500) = 2.83, p = .016). Post-hoc tests revealed that all symbol values 

were inflated in the 9-carrier group relative to 10/10, and all these differences were 

significant except that for symbol A (A9c-10/10: M = 0.06, t(171.82) = 1.06, pcorrected = .29; 

B9c-10/10: M = 0.17, t(171.82) = 2.89, pcorrected = .017; C9c-10/10: M = 0.14, t(171.82) = 2.36, 

pcorrected = .04; D9c-10/10: M = 0.19, t(171.82) = 3.34, pcorrected = .005; E9c-10/10: M = 0.16, 

t(171.82) = 2.69, pcorrected = .02; F9c-10/10: M = 0.21, t(171.82) = 3.65, pcorrected = .002).  

These results suggest that the distortion of Q-values in the 9-carrier group affected 

negatively valued stimuli (B, D, F) greater than positively valued stimuli (A, C, E). This 
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in turn could have affected the overall spread in value between negative and positive 

stimuli. Indeed, while both groups valued positive stimuli more than negative stimuli (9c: 

Mpos-neg = 0.21, t(100) = 7.03, pcorrected < .0001; 10/10: Mpos-neg = 0.28, t(100) = 13.12, 

pcorrected < .0001), this difference was reduced in 9-repeat carriers (F(1,100) = 3.96, p = 

.049). This still does not explain, however, why 9-carriers were (nonsignificantly) more 

impaired on Avoid-D than Avoid-F. Though there was no effect of DAT on ρ at test, 9-

repeat carriers were on average fit with a higher value (Supplementary Table 2). It may 

be the case that this small parameter difference was enough to produce a behavioral effect 

in the absence of a significant difference in the parameter.  

These results are also illuminating with respect to the influence of DAT on phasic and 

tonic DA (see section A Dopamine Genetic Composite Is Associated With Instructed 

Learning of the main text). Other striatal genes assayed in this paradigm asymmetrically 

affect approach and avoidance learning, as measured by genotypic differences in learning 

rates for gains and losses, respectively (Doll et al., 2011; Frank et al., 2007). Such 

differences are taken to reflect differences in the efficacy of phasic DA to affect learning, 

as learning rates govern the extent to which reward prediction errors conveyed by phasic 

DA update learned stimulus values. In the training phase, the finding that 9-carriers were 

best characterized as having an increased choice bias relative to 10/10 homozygotes is 

consistent with our hypothesis of an effect of DAT1 on tonic DA. In the test phase, 

however, the decreased learning rate for losses for 9-repeat carriers—in the absence of a 

significant difference in decision bias—is better explained by an effect on phasic DA. 

One potential way to reconcile these differences between training and test would be if 
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lower tonic DA in 9-repeat carriers produced less contrast in DA for the phasic dips 

thought to convey negative reward prediction errors (Niv, Duff, & Dayan, 2005). 

2.3. DA Composite 

There was a significant effect of DAC on ρ at training (F(3,98) = 4.10, p = .009), in line 

with the behavioral results. Post-hoc comparisons revealed that the DAC3 group had a 

significantly higher bias than all other groups (DAC3 vs. DAC0: t(98) = 3.50, pcorrected = 

.004; DAC3 vs. DAC1: t(98) = 3.00, pcorrected = .017; DAC3 vs. DAC2: t(98) = 2.86, 

pcorrected = .02). No other comparisons reached significance (all pcorrected > .84). There was 

also a significant gene-dose effect, with increasing DAC status associated with increasing 

bias (r(100) = .26, p = .009).  

Again mirroring the Avoid-D/Avoid-F results, the effect of DAC on ρ during the test 

phase was not significant (F(3,98) = 2.05, p = .11). However, there was a significant 

gene-dose affect (r(100) = .21, p = .03). 

2.4. tDCS 

Though we found a significant effect of anodal stimulation during the training phase, 

there was no difference between the anodal and sham groups in the ρ parameter of the 

model (t(65) = 0.54, p = .59). Nor was there a difference between cathodal and sham 

(t(68) = 0.57, p = .57). Nor did we find differences in any other model parameters (all ps 

> .36). Because the anodal effect was only present early during training, we also refit the 

decision bias model on just the first two blocks of training phase data. We again found no 

difference in ρ between anodal and sham (t(65) = -0.49, p = .63). In keeping with the 
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behavioral results, we also found no difference in ρ during the test phase (Anodal vs. 

Sham: t(65) = -0.56, p = .57; Cathodal vs. Sham: t(68) = 0.37, p = .71). 

In sum, we failed to find an effect of stimulation on model parameters. It may be that 

noise in the model parameter estimates prevented us from corroborating what was a very 

small behavioral effect at training for the comparison of anodal and sham. It may also be 

that anodal stimulation did not have a focal effect on any one parameter but rather 

induced weak, diffuse effects that together lead to a small behavioral difference in the 

absence of significant differences in model parameters (i.e., the numerically smaller 

learning rates and temperature parameters of the anodal group, combined with a 

numerically higher bias, could potentially have produced a small behavioral difference).  
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3. Supplementary Tables 

3.1. Model Parameter Estimates 

Supplementary Table 1. Parameter estimates for the decision bias model at training. 

Group N αg αl β ρ 

Overall 103 0.34 (0.30) 0.21 (0.27) 0.29 (0.16) 0.16 (0.20) 

COMT      

Val/Val 34 0.31 (0.30) 0.22 (0.30) 0.27 (0.17) 0.12 (0.18) 

Val/Met 53 0.39 (0.31) 0.20 (0.26) 0.31 (0.17) 0.14 (0.20) 

Met/Met 15 0.29 (0.28) 0.18 (0.24) 0.26 (0.15) 0.27 (0.19) 

DAT      

10/10 67 0.34 (0.30) 0.20 (0.26) 0.30 (0.17) 0.12 (0.15) 

9c 35 0.36 (0.31) 0.22 (0.29) 0.27 (0.16) 0.20 (0.25) 

DA composite      

0 25 0.31 (0.29) 0.18 (0.26) 0.27 (0.18) 0.10 (0.13) 

1 43 0.35 (0.30) 0.23 (0.29) 0.30 (0.16) 0.15 (0.20) 

2 27 0.42 (0.32) 0.21 (0.28) 0.31 (0.17) 0.15 (0.20) 

3 7 0.19 (0.12) 0.12 (0.17) 0.20 (0.11) 0.38 (0.22) 

tDCS      

Anodal 33 0.29 (0.28) 0.20 (0.25) 0.26 (0.15) 0.17 (0.23) 

Sham 34 0.35 (0.31) 0.21 (0.30) 0.29 (0.17) 0.14 (0.19) 

Cathodal 36 0.39 (0.31) 0.21 (0.26) 0.30 (0.17) 0.16 (0.18) 

Note. Parameter estimates are given as M (SD). Genotype counts only add up to 102 because 

genotyping failed for one subject. 
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Supplementary Table 2. Parameter estimates for the decision bias model at test. 

Group N αg αl β ρ 

Overall 103 0.28 (0.35) 0.23 (0.33) 0.20 (0.08) 0.27 (0.31) 

COMT      

Val/Val 34 0.24 (0.33) 0.18 (0.31) 0.19 (0.09) 0.19 (0.25) 

Val/Met 53 0.32 (0.35) 0.28 (0.37) 0.20 (0.07) 0.29 (0.33) 

Met/Met 15 0.26 (0.39) 0.19 (0.27) 0.19 (0.08) 0.37 (0.33) 

DAT      

10/10 67 0.28 (0.33) 0.30 (0.36) 0.21 (0.08) 0.25 (0.30) 

9c 35 0.29 (0.37) 0.11 (0.23) 0.18 (0.07) 0.32 (0.32) 

DA composite      

0 25 0.26 (0.34) 0.20 (0.30) 0.19 (0.10) 0.19 (0.26) 

1 43 0.26 (0.31) 0.33 (0.39) 0.20 (0.08) 0.27 (0.31) 

2 27 0.36 (0.40) 0.15 (0.27) 0.22 (0.07) 0.28 (0.32) 

3 7 0.20 (0.36) 0.10 (0.08) 0.13 (0.04) 0.51 (0.35) 

tDCS      

Anodal 33 0.31 (0.36) 0.31 (0.39) 0.18 (0.07) 0.23 (0.29) 

Sham 34 0.30 (0.33) 0.21 (0.30) 0.21 (0.09) 0.27 (0.29) 

Cathodal 36 0.25 (0.35) 0.19 (0.31) 0.21 (0.08) 0.30 (0.34) 

Note. Parameter estimates are given as M (SD). Genotype counts only add up to 102 

because genotyping failed for one subject. 
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3.2. Demographics 

Supplementary Table 3. Demographic breakdown of the 103 subjects included in the 

analyses after performance cutoffs. 

Race/Ethnicity N 

Caucasian 50 

Asian 24 

African American 20 

Other 9 

Hispanic  

Y 14 

N 87 

Unknown 2 
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Supplementary Table 4. Demographic breakdown by tDCS condition. 

 Anodal Cathodal Sham 

Age    

Mean 21.82 21.92 21.76 

SD 5.12 3.55 4.27 

Gender    

M 10 17 11 

F 23 19 23 

Race    

Caucasian 15 23 12 

African American 8 4 8 

Asian 8 5 11 

Other 2 4 3 

Ethnicity    

Hispanic 4 5 5 

Non-Hispanic 28 30 29 

Genotype    

Val/Met 19 17 17 

Met/Met 5 8 2 

Val/Val 9 11 14 

DAT 9c 12 14 9 

DAT 10/10 21 22 24 

Note. Genotype counts only add up to 102 because genotyping failed for 

one subject. 
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Supplementary Table 5. Demographic breakdown by genotype.  

 COMT DAT 

 Val/Met Met/Met Val/Vat 9c 10/10 

Age      

Mean 22.70 21.80 20.62 21.09 22.28 

SD 5.21 3.10 2.67 3.53 4.63 

Gender      

M 24 6 7 14 23 

F 29 9 27 21 44 

Race      

Caucasian 26 13 10 21 28 

African American 9 2 9 8 12 

Asian 11 0 13 3 21 

Other 7 0 2 3 6 

Ethnicity      

Hispanic 7 1 6 7 7 

Non-Hispanic 44 14 28 28 58 

tDCS Condition      

Anodal 19 5 9 12 21 

Cathodal 17 8 11 14 22 

Sham 17 2 14 9 24 

Note. Genotype counts only add up to 102 because genotyping failed for one subject. 
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Supplementary Table 6. Demographic breakdown by DA composite.  

 DAC0 DAC1 DAC2 DAC3 

Age     

Mean 21.20 22.21 22.15 21.14 

SD 2.84 5.33 4.09 2.04 

Gender     

M 4 17 15 1 

F 21 26 12 6 

Race     

Caucasian 6 19 18 6 

African American 6 8 5 1 

Asian 12 10 2 0 

Other 1 6 2 0 

Ethnicity     

Hispanic 5 3 5 1 

Non-Hispanic 20 38 22 6 

tDCS Condition     

Anodal 5 18 7 3 

Cathodal 8 11 15 2 

Sham 12 14 5 2 

Note. Genotype counts only add up to 102 because genotyping failed for one subject. 
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3.3. Training Phase Results 

Supplementary Table 7. ANOVA table for the mixed effects logistic regression model of 

the effect of COMT on instructed (CD vs. EF) training phase performance. 

Predictor χ2 df p 

Intercept 6.24 1 .01 

COMT 4.11 2 .13 

Trial Type 66.24 1 < .0001 

Block 14.78 3 .002 

COMT x Trial Type 13.94 2 .0009 

COMT x Block 2.74 6 .84 

Trial Type x Block 0.68 3 .88 

COMT x Trial Type x Block 7.83 6 .25 

Note. Boldfaced text indicates p < .05. 

 

Supplementary Table 8. ANOVA table for the mixed effects logistic regression model of 

the effect of COMT on uninstructed (AB, EF) training phase performance. 

Predictor χ2 df p 

Intercept 194.47 1 < .0001 

COMT 2.75 2 .25 

Trial Type 76.99 1 < .0001 

Block 34.39 3 < .0001 

COMT x Trial Type 0.42 2 .81 

COMT x Block 6.91 6 .33 

Trial Type x Block 17.11 3 .0007 

Note. Boldfaced text indicates p < .05. 
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Supplementary Table 9. Mixed effects logistic regression model of the effect of DAT on 

instructed (CD vs. EF) training phase performance. 

Predictor β ORa z p 

Intercept -0.32 0.73 -3.28 .001 

9c vs. 10/10 -0.43 0.65 -2.17 .03 

Trial Type 1.00 2.72 7.18 < .0001 

Block 2 vs. 1 0.30 1.35 2.47 .01 

Block 3 vs. (1,2) 0.25 1.28 2.33 .02 

Block 4 vs. (1,2,3) 0.30 1.35 2.81 .005 

9c vs. 10/10 x Trial Type 0.53 1.70 1.91 .06 

9c vs. 10/10 x Block 2 vs. 1 -0.10 0.90 -0.41 .68 

9c vs. 10/10 x Block 3 vs. (1,2) 0.12 1.13 0.56 .57 

9c vs. 10/10 x Block 4 vs. (1,2,3) 0.02 1.02 0.08 .94 

Trial Type x Block 2 vs. 1 -0.26 0.77 -1.72 .09 

Trial Type x Block 3 vs. (1,2) -0.02 0.98 -0.14 .89 

Trial Type x Block 4 vs. (1,2,3) -0.12 0.89 -0.77 .44 

9c vs. 10/10 x Trial Type x Block 2 vs. 1 -0.24 0.79 -0.81 .42 

9c vs. 10/10 x Trial Type x Block 3 vs. (1,2) 0.01 1.01 0.02 .98 

9c vs. 10/10 x Trial Type x Block 4 vs. (1,2,3) 0.10 1.11 0.34 .73 

Note. Boldfaced text indicates p < .05. aOR: Odds Ratio 
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Supplementary Table 10. Mixed effects logistic regression model of the effect of DAT on 

uninstructed (AB, EF) training phase performance. 

Predictor β ORa z p 

Intercept 1.12 3.06 13.93 < .0001 

9c vs. 10/10 -0.004 1.00 -0.03 .97 

Trial Type 0.46 1.58 9.8 < .0001 

Block 2 vs. 1 0.40 1.49 4.38 < .0001 

Block 3 vs. (1,2) 0.23 1.26 2.77 .006 

Block 4 vs. (1,2,3) 0.19 1.21 2.09 .04 

9c vs. 10/10 x Trial Type 0.01 1.01 0.12 .91 

9c vs. 10/10 x Block 2 vs. 1 -0.12 0.89 -0.73 .47 

9c vs. 10/10 x Block 3 vs. (1,2) 0.11 1.12 0.65 .51 

9c vs. 10/10 x Block 4 vs. (1,2,3) 0.03 1.03 0.16 .87 

Trial Type x Block 2 vs. 1 0.33 1.39 4.10 < .0001 

Trial Type x Block 3 vs. (1,2) 0.004 1.00 0.08 .94 

Trial Type x Block 4 vs. (1,2,3) 0.02 1.02 0.27 .79 

Note. Boldfaced text indicates p < .05. aOR: Odds Ratio 

 

Supplementary Table 11. ANOVA table for the mixed effects logistic regression model 

of the effect of DAC on instructed (CD vs. EF) training phase performance. 

Predictor χ2 df p 

Intercept 1.45 1 .23 

DAC 11.03 3 .01 

Trial Type 85.33 1 < .0001 

Block 8.68 3 .03 

DAC x Trial Type 29.61 3 < .0001 

DAC x Block 9.68 9 .38 

Trial Type x Block 2.10 3 .55 

DAC x Trial Type x Block 9.12 9 .43 

Note. Boldfaced text indicates p < .05. 

Supplementary Table 12. ANOVA table for the mixed effects logistic regression model 

of the effect of DAC on uninstructed (AB, EF) training phase performance. 
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Predictor χ2 df p 

Intercept 174.86 1 < .0001 

DAC 3.40 3 .33 

Trial Type 67.10 1 < .0001 

Block 26.87 3 < .0001 

DAC x Trial Type 0.69 3 .88 

DAC x Block 5.55 9 .78 

Trial Type x Block 16.99 3 .0007 

Note. Boldfaced text indicates p < .05. 

 

Supplementary Table 13. Mixed effects logistic regression model of the effect of tDCS 

on uninstructed (AB, EF) training phase performance. 

Predictor β ORa z p 

Intercept 1.12 3.06 14.67 < .0001 

Anodal vs. Sham 0.09 1.09 0.55 .58 

Cathodal vs. Sham -0.15 0.86 -0.88 .38 

Trial Type 0.46 1.58 10.55 < .0001 

Block 2 vs. 1 0.40 1.49 4.79 < .0001 

Block 3 vs. (1,2) 0.22 1.25 2.74 .006 

Block 4 vs. (1,2,3) 0.18 1.20 2.17 .03 

Anodal vs. Sham x Trial Type 0.16 1.17 1.66 .10 

Cathodal vs. Sham x Trial Type  -0.05 0.95 -0.48 .63 

Anodal vs. Sham x Block 2 vs. 1 0.31 1.36 1.63 .10 

Cathodal vs. Sham x Block 2 vs. 1 0.29 1.34 1.54 .12 

Anodal vs. Sham x Block 3 vs. (1,2) -0.06 0.94 -0.34 .74 

Cathodal vs. Sham x Block 3 vs. (1,2) -0.04 0.96 -0.19 .85 

Anodal vs. Sham x Block 4 vs. (1,2,3) 0.07 1.07 0.38 .70 

Cathodal vs. Sham x Block 4 vs. (1,2,3) 0.10 1.11 0.52 .60 

Trial Type x Block 2 vs. 1 0.31 1.36 3.97 < .0001 

Trial Type x Block 3 vs. (1,2) 0.02 1.02 0.26 .80 

Trial Type x Block 4 vs. (1,2,3) 0.02 1.02 0.33 .74 

Note. Boldfaced text indicates p < .05. aOR: Odds Ratio 
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Appendix B: Supplementary Material for Chapter 3 

 

Figure S1. The effect of a change on post-explore pupil diameter: data (top) and a 

regression model controlling for gaze position (bottom). At no point was the effect of a 

change significant when controlling for multiple comparisons.  
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Figure S2. There was no significant effect of volatility condition on pupil diameter either 

at the trial level (top), or during the extended post-explore interval (bottom). In both 

cases, graphs show parameter estimates and 95% confidence intervals for the contrasts of 

interest.  
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Figure S3. Peri-explore between-system integration for all pairs of cognitive systems. 
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Figure S4. Peri-explore within and between system strength (top) and system segregation 

computed relative to the modules at each time point rather than to the Yeo cognitive 

systems (bottom). 
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Figure S5. Visualization of the maximum and minimum wavelet scales used, in the real 

number domain. Thick bars above the wavelets indicate the width of the “cone of 

influence,” the central segment of the wavelet in which changes in the underlying signal 

have the greatest impact on wavelet power (Torrence & Compo, 1998). 
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Figure S6. The effect of the volatility manipulation on integration for each cognitive 

system. * p < .05. Integration was z-scored within subject, across systems for 

visualization, but analyses were performed on untransformed values. 
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Figure S7. The effect of volatility on system segregation relative to the modules at each 

time point. * p < .05. 

  

* 
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