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ABSTRACT

MEASURING BEHAVIORAL PHENOTYPES FROM COMPLEX SOCIAL

INTERACTIONS IN NON-HUMAN PRIMATES

Seth Madlon-Kay

Michael L. Platt

Humans are innately social animals, and social interactions are among the single most bio-

logically important type of behavior in which humans and non-human primates engage. Life

outcomes such as mental and physical health, status, material well-being, and reproductive

success depend on an individual’s ability to successfully navigate social interactions by

deploying appropriate combinations of behavior. Direct observation of the fine structure of

social interactions in free-ranging non-human primates can provide valuable insights into

the neurobiological processes underlying social behavior by making it possible to quantify

social phenotypes in terms of how they deploy particular combinations of behavior in so-

cial interactions. However, the complexity of social interactions makes the estimation of

such phenotypes computationally and statistically challenging. I develop computational

methods for modeling behavioral phenotypes in terms of the combinations of behaviors

that characterize social interactions, and apply these methods to behavioral observations of

rhesus macaques. I find that modeling the way animals combine social behaviors reveals

novel information about animal social phenotypes that is lost when behaviors are considered

individually, and I extend the model to directly incorporate biological and environmental

covariates.
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CHAPTER 1 : INTRODUCTION

Much of human life consists of a continuous series of social interactions, ranging from the

everyday necessities of purchasing groceries from a store clerk, navigating a crowded sidewalk,

or sharing meals and casual conversation with friends and family, to high-stakes encounters

such as a job interview or a meeting with a potential romantic partner. Humans are typically

able to fluently navigate such interactions by choosing an appropriate combination of actions

for a given social context, and the ability to do so is critical to human well-being. Severe

difficulty navigating social interactions can be considered pathological and is associated

with neurological disorders such as autism spectrum disorder and schizophrenia (American

Psychiatric Association, 2013; Barak & Feng, 2016; Burns & Patrick, 2007), while the

inability to build and maintain social bonds leads to increased risk of a wide variety of poor

mental and physical health outcomes (House, Landis, & Umberson, 1988; Steptoe, Shankar,

Demakakos, & Wardle, 2013; Umberson & Karas Montez, 2010). In accordance with the

importance of sociality to human life, many researchers from across the biological sciences,

ranging from genetics to cognitive neuroscience, have over the last few decades increasingly

directed their efforts towards understanding the biological basis of human social behavior

(Insel, 2010).

However, for reasons logistical, ethical, and computational, understanding the biological

processes underlying natural human social behavior is among the most difficult challenges of

modern neuroscience. One major difficulty is collecting and analyzing ecologically relevant

data. Research on human subjects is often, for logistical and ethical reasons, unable to

directly observe and measure social interactions themselves, instead using indirect measures

such as survey responses or demographic data that can collected inexpensively and non-

invasively. Such measures may reflect the outcomes of social interactions, but they leave

unobserved the underlying social interactions themselves. Laboratory research in humans

is able to directly observe interactions, but necessarily takes place in artificial, low-stakes

environments where only a relatively narrow slice of the human social repertoire can be
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expressed and measured. While standard laboratory model organisms such as mice and

flies permit direct and comprehensive observation of social interactions (see Robie et al.

(2017) for a recent example), the more limited repertoires of social behavior in those species

may limit the applicability of such research to human social behavior. Furthermore, such

model organisms may differ from humans in the biological mechanisms associated with social

behavior and live in laboratory environments with much less varied and dynamic social

stimuli than the natural social environments of humans. Researchers rarely have opportunity

to directly observe human social interaction in realistic environments. A consequence of

these challenges is that we have few examples of biological explanations that causally and

mechanistically link ecologically relevant human social behavior to a specific neurobiological

or physiological process.

An alternative approach to the biological study of social behavior to use free-ranging

populations of non-human primates (NHP), whose biology and social behavior are much

closer to our own than animal models such as rodents or flies. Free-ranging NHP provide

ecologically valid and biologically-relevant variability in social behavior that cannot be

modeled in the laboratory or easily collected in humans. In particular, they provide an

opportunity the observe the fine detail of social interactions and trace their relationship with

the kinds of broader outcomes that can be measured in humans. For example, whereas in

humans it is possible to assess, usually by self-report, the number and quality of a person’s

social relationships, NHP provide an opportunity to directly observe how relationships

manifest as social interactions. This is important for the biological study of behavior because

behavior at the level of the social interaction is closer to direct neurophysiological control

than long-run summaries or outcomes of social interactions.

However, the complexity of social interactions presents serious methodological challenges.

Social interactions between primates, both human and otherwise, are characterized not

only by the use of behaviors at a given rate, but by the use of a particular combination of

behaviors in sequence. The space of all possible ways in which individual behaviors can be
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combined into patterns cannot be traversed using standard statistical methods. Accordingly,

even research in NHP typically represents the behavioral phenotypes of animals in terms of

summaries of long-run rates of behaviors, rather than in terms of the fine structure of social

interactions. The second chapter of this thesis provides such an example of neurobiological

research of social behavior using free-ranging NHP where social phenotypes are measured in

terms of rates of individual behaviors.

The primary aim of this thesis is, first, to develop a methodological framework for quantifying

the social phenotypes of non-human primates in terms of the combinations of behaviors that

characterize social interactions. To accomplish this, I draw from methodological advances in

machine learning for identifying complex but interpretable structure in high-dimensional

data (Bishop, 2006; Murphy, 2012). Second, I investigate the usefulness of this framework

in terms of what new information it can reveal about rhesus macaque social phenotypes

compared to existing methods for quantifying social phenotypes that are standard in the

animal personality literature. These efforts and their results are described in the third

chapter. In the fourth chapter, I show how this methodological framework can be extended

to include large quantities of data and behaviors, and directly infer relationships between

the use of patterns of behavior at the individual level and biological and environmental

covariates of interest.

In this work the model species used is the rhesus macaque (Macaca mulatta), due to their

extensive use in lab and field research, neural circuitry which is homologous to that of

humans, and complex social behaviors that contribute to biological success. The frequent

use of rhesus macaques in laboratory, neurophysiological studies of behavior, including an

increasing number in the domain of social behavior, makes it possible to draw links from the

neural mechanisms of constrained laboratory behavior to the kinds of natural, unconstrained

behavior that is our focus here (Pearson, Watson, & Platt, 2014).
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A brief profile of rhesus macaques

The animal population whose behavior is examined throughout this thesis is the colony of

rhesus macaques living on the island of Cayo Santiago, a 37-acre island off the southeastern

coast of Puerto Rico. As described by one of the colony’s founders, since its beginning the

colony has been used as a resource for ecologically relevant natural social behavior, providing

opportunities “not only to study animals as wholes but to study whole animals in their

natural groupings in that environment which has been operating selectively on the species”

(Carpenter, 1942).

Much of our basic knowledge of the nature of rhesus macaque social life derives from

early research on Cayo Santiago by Carpenter and his colleagues (Rawlins & Kessler,

1986). Rhesus macaques are a despotic species with linear dominance hierarchies and social

interactions characterized by strong dominance asymmetries. Lower ranking monkeys risk

severe aggression if they do not submit to higher ranking animals (Thierry, 1985; Waal &

Luttrell, 1989). Males and females live together in mixed social groups, and males emigrate

from their natal group around the age of sexual maturity, while females typically remain

in their natal group (Altmann, 1962). Among females, rank is inherited matrilinealy, with

daughters tending to fall directly below their mothers in the dominance hierarchy. Multiple

matrilines typically coexist within a single social group.

The colony on Cayo Santiago has been used to investigate the way physiological, hormonal,

and genetic factors drive complex social behaviors, dating back to observations of Carpenter

(1942) that the interplay between reproductive state and dominance status greatly impacted

the nature of social interactions among male and female macaques (see Widdig et al. (2016)

for a thorough review). More recently, Higham et al. (2011) has examined the role of oxytocin

in female parental care, Brent et al. (2013) studied the relationship between serotonergic

genotype and patterns of relationships among adult females, Trefilov, Berard, Krawczak,

and Schmidtke (2000) found that serotonergic genotype impacted that age at which animals

would leave their natal groups, and Charpentier, Prugnolle, Gimenez, and Widdig (2008)
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investigated the relationship between genomic heterozygosity and rates of social behaviors.

Natural social phenotypes in humans and non-human primates

A major finding of the biological study of human behavior is that most human phenotypes

that can be measured, including ones of social significance, are predictable on the basis of

genetics, with most studies estimating phenotypic heritability in the range of 0.3 to 0.8

(Polderman et al., 2015; Turkheimer, 2000). Martin et al. (1986) found genetic influence

on social attitudes ranging from jazz music to the death penalty. Numerous studies have

found genetic influence on summaries of sexual behavior, such as the age of first date and

lifetime number of sexual partners (see Harden (2014) for a general review). Similar genetic

influence has been found in social behaviors such as political participation (Fowler, Baker,

& Dawes, 2008), as well as general measures of social temperament such as the “Big Five”

personality scales (Jang, Livesley, & Vernon, 1996). In recent years it has become possible

to identify specific genetic variants associated with social behaviors and outcomes, such as

educational attainment (Okbay et al., 2016; Rietveld et al., 2014).

Despite the ubiquity of genetic influence on behavior, we know little about the specific

neurobiological mechanisms that give rise to complex social behavior. Turkheimer (2000)

attributes the difficulty of identifying biological mechanisms as the problem of weak genetic

explanation: though there exists some statistical relationship between a genetic or neurobio-

logical variable and complex behavior, there is not necessarily any clear causal pathway that

links the two. As Fowler et al. (2008) describes the problem, “there are simply too many

genes and too many causal steps between genes and behavior to expect that genetic analysis

will ever lead to improved understanding” of a complex behavior. For example, a personality

rating on a survey represents a coarse summary of some large number of social interactions,

which is then filtered through a process of retrospective evaluation as the survey taker decides

how to answer the specific question on the form in front of them. In contrast, in certain

animal models, it has for example proved possible to trace the expression of specific types of

naturally-occurring social behaviors in rodents to the activation of particular neural circuits
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linking sensory inputs to the hypothalamus, and even to induce different types of affiliative

or agonistic interactions via neural activation (Kruk, 1991; Nelson & Trainor, 2007). By

examining social behavior in non-human primates, we may hope to alleviate this problem by

studying social behaviors that are closer to a direct neurobiological cause. If a molecular or

neurobiological covariate is identified as predicting this response, the relationship between

such a covariate and the underlying social behaviors of interest will not necessarily be clear;

the covariate could act on the social behaviors, the evaluative process, the act of responding,

or any combination of the above. If we are interested in social behavior, the first of these is

more relevant than the second or third processes. In non-human primates it is possible to

study complex, human-like social interactions directly.

However, research in NHP does not typically quantify phenotypes in terms of social in-

teractions. As in human research, social phenotypes in NHP typically consist of long-run

summaries or outcomes of social interactions. Most common methods of social phenotyp-

ing in NHP based on natural social behavior fall into one of three categories: observer

ratings, rates of individual behaviors, and network measures which describe an animal’s

social relationships. The first category, phenotyping from observer ratings uses survey

responses from humans, often caretakers, who rate the animals on how well they match a

variety of descriptors such as “curious” and or “aggressive” (Freeman & Gosling, 2010;

Stevenson-Hinde & Zunz, 1978). As with human personality research, this method relies

on subjective descriptions of social behavior over long periods of time, and in some cases

the surveys are explicitly modeled after personality scales used in human research (King

& Figueredo, 1997). The second category, phenotyping based on average rates of behavior

involves the observation of individual animals for fixed intervals of time, repeatedly over

a period of months or years, during which the observer records the occurrences of various

behaviors defined in a predefined ethogram (Altmann, 1974). The number of occurrences

of each behavior are then converted into rates at the end of the study period (Anestis,

2005; Brent et al., 2014; Koski, 2011; Martin & Suarez, 2017; Seyfarth, Silk, & Cheney,

2012; Seyfarth, Silk, & Cheney, 2014). The third category, social network measures, are
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derived directly from observed behavior, but unlike measures from the previous category

they combine the occurrences of behaviors with the identities of an animal’s interaction

partners to describe the nature of the animal’s social relationships. Often such measures

focus on an animal’s direct connections (that is, dyadic relationships) with others, such as

the percentage of possible partners an animal interacts with or how evenly they distribute

their grooming activity among their total set of grooming partners (Bitetti, 2000; Koski,

2011). However, some recent work has examined measures of indirect connectedness as well

(Brent, 2015; Brent et al., 2013). Additionally, many studies estimate animal phenotypes

from responses to some experimental task or stimulus (Araya-Ajoy, Mathot, & Dingemanse,

2015; Freeman & Gosling, 2010); however, as we are currently concerned with natural social

behavior in unconstrained environments, we do not consider this category further.

Rates of social behavior and network measures are, unlike observer ratings, objective and

derived directly from observed social interactions. However, both types of measures can

be thought of as summary statistics describing many social interactions, which necessarily

discard information about how particular social interactions unfold. Therefore, while NHP

research provides a unique opportunity to study the fine structure of complex, human-

like social interactions, existing methods for estimating social phenotypes do not take full

advantage of this opportunity. The goal of the research presented here is to develop methods

which capture more of the complexity of NHP social interactions, and to determine what

novel information we can learn from such methods about variability in NHP phenotypes.
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CHAPTER 2 : WEAK EFFECTS OF COMMON GENETIC VARIATION IN

OXYTOCIN AND VASOPRESSIN RECEPTOR GENES ON RHESUS

MACAQUE SOCIAL BEHAVIOR

Abstract

The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence pair bonding,

attachment, and sociality, as well as anxiety and stress responses in humans and other

mammals. The effects of these peptides are mediated by genetic variability in their associated

receptors, OXTR and the AVPR gene family. However, the role of these genes in regulating

social behaviors in non-human primates is not well understood. To address this question,

we examined whether genetic variation in the OT receptor gene OXTR and the AVP

receptor genes AVPR1A and AVPR1B influence naturally-occurring social behavior in

free-ranging rhesus macaques – gregarious primates that share many features of their biology

and social behavior with humans. We assessed rates of social behavior across 3,250 hours

of observational behavioral data from 201 free-ranging rhesus macaques on Cayo Santiago

island in Puerto Rico, and used genetic sequence data to identify 25 OXTR, AVPR1A, and

AVPR1B single-nucleotide variants (SNVs) in the population. We used an animal model

to estimate the effects of 12 SNVs (n=3 OXTR; n=5 AVPR1A; n=4 AVPR1B) on rates

of grooming, approaches, passive contact, contact aggression, and non-contact aggression,

given and received. Though we found evidence for modest heritability of these behaviors,

estimates of effect sizes of the selected SNVs were close to zero, indicating that common

OXTR and AVPR variation contributed little to social behavior in these animals. Our results

are consistent with recent findings in human genetics that the effects of individual common

genetic variants on complex phenotypes are generally small.

Introduction

The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) regulate social behaviors

across a variety of mammalian species. In various non-human primate (NHP) species,
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introducing exogenous OT into the central nervous system promotes affiliative social re-

lationships and pair bonding behaviors (Smith, Ågmo, Birnie, & French, 2010; Snowdon

et al., 2010), increases social interaction, and inhibits social aversion (Parr, Modi, Siebert, &

Young, 2013). Vasopressin has been less studied in NHPs, but may play a role in promoting

paternal care in tamarins (Kozorovitskiy, Hughes, Lee, & Gould, 2006). In humans, OT has

been implicated in a wide variety of social behaviors, ranging from trust and altruism in

economic games (Kosfeld, Heinrichs, Zak, Fischbacher, & Fehr, 2005) to eye contact and

social attention (Auyeung et al., 2015), as well as a role in reducing anxiety (Bartz, Zaki,

Bolger, & Ochsner, 2011). However, a common limitation of both human and NHP research

into the role of OT and AVP is the reliance on laboratory tasks in relatively small samples,

with correspondingly less variable and dynamic social stimuli than in natural environments.

Humans and many NHP species live in large social groups where maintaining relationships

and navigating hierarchies are crucial to biological success (Brent, Ruiz-Lambides, & Platt,

2017; Fedigan, 1983; Silk, Alberts, & Altmann, 2003; Steptoe et al., 2013). Yet to what

extent laboratory findings regarding OT and AVP generalize to richer, more realistic social

environments remains an open question. In this chapter, we attempt to address this question

by comparing variability in social behavior in free-ranging rhesus macaques (Macaca mulatta)

in a naturalistic setting, to variability in the genes that encode OT and AVP receptors,

OXTR and AVPR.

The OXTR and the AVPR family of genes encode the OT and AVP receptors respectively.

While OXTR is the only oxytocin receptor gene, three AVP genes encode three different

vasopressin receptors: AVPR1A, AVPR1B, and AVPR2. AVPR1A and 1B, but not 2, are

expressed in the brain (Freeman, Inoue, Smith, Goodman, & Young, 2014). Since OT and

AVP share similar amino-acid sequences, they can bind to each other’s receptors, albeit with

different affinities (Freeman et al., 2014; Young & Flanagan-Cato, 2012). This structural

commonality may contribute to similarities in the range and type of processes that the two

neuropeptides mediate. Researchers have consistently cited AVPR1A as the AVPR gene

most relevant to social functions (Freeman & Young, 2016). In humans, genetic variants of
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AVPR1A are associated with behaviors ranging from altruism in an economic game (Israel

et al., 2008) to self-reported partner bonding (Walum et al., 2008). AVPR1B variation, while

not implicated as directly in social behavior, is associated in humans with stress responses

(Keck et al., 2008) and mood disorders (Dempster et al., 2007). OXTR polymorphisms in

humans have been linked to variation in a wide range of social behaviors and phenotypes,

ranging from attachment style (Costa et al., 2009) and prosociality in economic games (Israel

et al., 2009) to emotion perception and stress reactivity (Rodrigues, Saslow, Garcia, John,

& Keltner, 2009) (see Ebstein, Knafo, Mankuta, Chew, and Lai (2012) for a more thorough

review).

The role of variation in these genes is less studied in NHPs than in humans, though several

studies have investigated an indel polymorphisms in the 5’ flanking region of AVPR1A in

the social behavior of captive great apes (Hopkins, Donaldson, & Young, 2012; Latzman,

Hopkins, Keebaugh, & Young, 2014; Staes et al., 2015; Wilson et al., 2017). Hopkins

et al. (2012), Latzman et al. (2014), and Wilson et al. (2017) each examined the relationship

between the long versus short allele and personality, as measured by observer questionnaires,

in captive chimpanzees (Pan troglodytes). Hopkins et al. (2012) found a sex-by-genotype

interaction whereby “dominance” and “conscientiousness” personality traits differed between

males and females, but only among animals carrying a copy of the long allele, while Wilson

et al. (2017) found using the same personality dimensions as Hopkins et al. (2012), that

the long allele predicted decreased extroversion but with no interaction with sex. Latzman

et al. (2014), using a similar questionnaire-based data set, but a different decomposition into

personality dimensions, also reported a sex-by-genotype interaction wherein males carrying

the long allele were higher for “dominance” and “stability” personality dimensions. Staes

et al. (2015) also looked at captive chimpanzee personality, but used observed rates of specific

behaviors to assess personality rather than questionnaire ratings, and reported that the long

allele was associated with total time spent giving and receiving grooming. Staes et al. (2016)

reported a study of the same polymorphism in captive bonobos rather than chimpanzees,

using both observer questionnaires and behavioral rate observations, and found the long
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allele associated with higher “attentiveness” and lower “openness”. To our knowledge only

Staes et al. (2015) has examined OXTR in NHPs social behavior, which reported no effect

of an intronic SNV.

In the present study, we drew on a large set of behavioral and genetic sequence data from

the free-ranging rhesus macaque colony on Cayo Santiago Island off the coast of Puerto Rico.

Rhesus macaques are an excellent model organism for studying biological and environmental

influences on social behavior due to their extensive use in laboratory and field research, and

complex social behaviors that are critical to their survival and reproductive output (Brent

et al., 2017; Brent et al., 2013; Massen & Koski, 2014). The large macaque population

and minimal human intervention on Cayo Santiago provide a unique opportunity to study

the genetic influence of OXTR and AVPR variation in a naturalistic setting where social

environment more closely resembles conditions in the wild, and social behavior can directly

impact biological success. Demographic, life history, and pedigree data are also available for

the Cayo population, which allows us to disentangle the effects of specific genetic regions

from the influence of environment and overall genetic similarity. Though OT and AVP have

been implicated in a variety of behaviors that include both social and non-social, here our

interest lay specifically with social interactions between monkeys that indicate the quality

and nature of their social relationships. Accordingly, we focused on rates of giving and

receiving grooming, approaches towards another macaque (approach), being in non-grooming

physical contact (passive contact), aggression that resulted in physical contact between

macaques (contact aggression), and aggressive actions and threats that did not result in

physical contact.

Methods

Study site

The studied population is a colony of rhesus macaques living on the island of Cayo Santiago,

a 15-hectare island located 1km off the southeastern coast of Puerto Rico (18◦ N, 66◦
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W). This is a free-ranging, freely-breeding population with known pedigrees, rich data on

life histories and fitness, and extensive genetic and observational data on behavior. The

colony was founded in 1938 with a population of 409 Indian-origin rhesus macaques and

is currently maintained by the Caribbean Primate Research Center (CPRC; University of

Puerto Rico Medical Sciences Campus). The population as of July 2017 numbered 1571

animals self-organized into six different social groups. 537 of the animals are adults of age six

or above, and 758 are juveniles between the ages of one and five. Researcher and caretaker

intervention in the population is minimal. Animals in the colony are provided commercially

available monkey chow daily and unlimited access to water. Animals are handled only

during designated annual trapping periods, during which infants are tagged for identification.

Despite the lack of immigration since its founding there is little evidence for high rates

of inbreeding on Cayo Santiago (Blomquist, 2009; Widdig et al., 2016). All procedures

described below were approved by the University of Puerto Rico’s Institutional Animal Care

and Use Committee (IACUC #A6850108) and adhered to the legal requirements of the

United States of America and the American Society of Primatologists’ Principles for the

Ethical Treatment of Primates.

Genetic data

Animals were captured by CPRC staff and technicians during annual trapping procedures.

Following capture, subjects were caged and anesthetized for blood draws using an intra-

muscular injection of ketamine HCl, 10mg/kg body weight. Blood was drawn by animal

health technicians, and animals were released after full recovery from anesthesia. DNA

was immediately isolated from blood in the field using commercially available QIAGEN

extraction kits (QIAamp DNA Blood Mini Kit). Extracted DNA was stored frozen until

shipment to the Genomics and Microbiology Research Lab at the North Carolina Museum

of Natural Sciences, where libraries were prepared for next-generation sequencing, and a

catalog of variants were genotyped. We used standard tools to identify single nucleotide

variants (SNVs) by aligning sequence reads to the three genes of interest (OXTR, AVPR1A
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and AVPR1B) from the two most recent published rhesus macaque reference assemblies

(Gibbs et al., 2007; Zimin et al., 2014), as well as the current reference assembly (rheMac8

or Mmul 8.0.1). Our variant calling pipeline integrated read alignment using bwa-mem (Li

et al., 2009), PCR duplicate removal using picard, as implemented within SAMtools (Li &

Durbin, 2009) and simultaneous SNV discovery using GATK (McKenna et al., 2010). We

excluded SNVs with minor allele frequency <0.05, where the minor (vs major) allele refers

to the allele that is less (vs more) frequent in the sampled population. If genotype coverage

depth fell below a minimum of two reads, then genotypes were imputed using standard

default parameters in the software Beagle version 4.1 (Browning & Browning, 2016). All

variants were annotated using the software SNPeff (Cingolani et al., 2012), and SNVs of

interest were those predicted as having high, moderate, or low impact. Genotypes and

their predicted impact results were then compared across all three reference assemblies. All

reported genotypes were denoted using rheMac8 genomic coordinates. Next, designated

missense variants were assessed for predicted functional impact (e.g., protein structure,

protein stability, binding affinity, etc.) using the SNAP2 browser (Hecht, Bromberg, & Rost,

2015). Finally, human orthologues of the macaque SNVs were identified using KAVIAR and

the UCSC Genome Browser (Glusman, Caballero, Mauldin, Hood, & Roach, 2011; Kent

et al., 2002). We used dbSNP (build 150) to determine whether any human orthologues had

known clinical significance (Sherry et al., 2001).

Nearby SNVs are often highly correlated to the level of redundancy, which can cause issues

in interpreting and estimating phenotypic effects. Accordingly, we iteratively identified pairs

of the SNVs with a correlation >0.9 and randomly removed one of the SNVs, repeating

the process until no such pairs existed. Only the SNVs which survived this process were

included in the behavioral analyses.

Behavioral data

The data is comprised of ten-minute focal samples (Altmann, 1974). The order in which

animals were observed was semi-randomized to equalize the times of day and year of each
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animal’s observation periods. Observers recorded the times at which the monkey engaged

in any behaviors specified by a rhesus macaque-specific ethogram consisting of both social

and non-social behaviors (Brent, 2010). A total of 201 macaques (123 females, 78 males)

were both represented in the behavioral data set and had genotype data available, and were

used for the present study. The behavioral data used in this study were 19,501 ten-minute

focal observations collected from adult (age > 6 years) male and female macaques from

five social groups, F, R, V, HH, and KK. Observational data was collected from group KK

in 2014, from group F during 2011 through 2016 , from group V during 2015 and 2016,

and from group HH and R during years 2014 and 2015, respectively. If an animal had an

unusually small number of focal observations taken for their group in a given year, their

focal observations from that year were removed from the data set. The threshold for removal

was two standard deviations below the mean number of focal observations across animals

for their social group in that year. The total number of focal observations per animal across

all years ranged from 174 (approximately 29 hours) to 11 (approximately 1.83 hours), with

an average of 79.99 focal observations per animal (approximately 13.16 hours).

The following behaviors were analyzed in this study:

1. Grooming: Running the hands or mouth through the hair of another monkey for at
least 5 s.

2. Passive contact: Sitting or lying in physical contact with another animal without
grooming.

3. Approach: One individual approaches another to within arms’ reach (2 m) without
physical contact, and remains within that distance for at least 5 s.

4. Contact aggression: Direct physical contact such as a bite, hit, push, or grab.

5. Noncontact aggression: A lunge, charge, or chase that does not result in direct physical
contact, or a threatening gesture that entails some combination of staring, barks, head
bobs, and opening one’s mouth with covered teeth.

Each behavior except for passive contact was further divided into whether the focal animal

performed the action or received the action from another animal, for a total of nine interaction

types. Only social interactions involving another adult macaque were used in this study;
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interactions with infant or juvenile macaques were not used.

Pedigree data

We obtained animal pedigrees from a long-term database maintained by the CPRC. From the

founding of the population up through 1992, maternal identity was ascertained by behavioral

observations, such as nurturing behaviors and lactation. For most macaques born after 1992,

both maternal and paternal identity were ascertained genetically through the analysis of 29

microsatellite markers (Brent et al., 2013). In this study, maternity was known from genetics

for 195 macaques (97%), while paternity was known from genetics for 197 macaques (98%).

When maternity was not known from genetics, maternity assignments from behavior were

used. The population pedigree was used to generate a kinship matrix across animals via R

package kinship2. We multiplied each element of the kinship matrix by two to create the

genetic covariance matrix in order to measure the heritability of social behaviors. Maternal

identity was known on average for 6 (1.4 sd) previous generations, and paternal identity was

known on average for 2 (0.8 sd) previous generations.

Data processing and model specification

We used individual 10-minute focal observations as the basic unit of analysis rather than

aggregating those focal observations into rates of behaviors for each animal across longer

periods of time. The motivation for this approach is that when animals have different

numbers of focal observations being aggregated into a single rate, the rates of animals with

fewer focal observations will be intrinsically more noisy and less precise than those of animals

with more focal observations, and thus should be weighed less. By using individual focal

observations as data points, the number of focal observations itself for a given animal in a

given year provides the appropriate weighting.

We represented each focal observation in terms of the total amount of each behavior that

occurred during that focal observation. For behaviors with durations, such as grooming,

that amount corresponded to the total time spent engaged in that behavior, while for
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events such as approaches, it was the number of times that behavior occurred during an

observation. The distributions of behavior amounts across focal observations were highly

right-skewed and zero-inflated for each of the behaviors examined in this study. Furthermore,

some behavior amounts were continuous (e.g., amount of time grooming), while others were

discrete (number of times aggressive acts occurred). These issues rendered ordinary linear

regression inappropriate. Therefore, for each focal observation, each behavior was discretized

into one of three ordered categories, or levels. The levels corresponded to a behavior not

occurring at all (none), occurring at a low rate (low), and occurring at a high rate (high)

during a given focal observation. Focal observations in which the behavior did not occur

were assigned to the “none” category, and we divided the remaining observations into the

“low” and “high” categories by performing a median split on the behavior amounts. Note

that the median used for the median split was calculated using only the focal observations

not in the “none” category. The end result is that each focal observation was represented

as a vector of category labels (none, low, or high), one for each behavior. This approach

preserved information about relative amounts of behaviors while avoiding problems arising

from mismatches between an assumed distribution of observations (e.g. normal or poisson)

and the true distribution.

We assessed the contribution of the genetic variants to social behaviors using multivariate

ordered logistic regression. We included age (linear and quadratic), sex, dominance rank (lin-

ear and quadratic), age-by-sex (linear and quadratic) and rank-by-sex (linear and quadratic)

interactions as fixed effects covariates in the model. Nonlinear terms were included for age

because the effect of aging one year likely changes across the lifespan, and for dominance rank

because the difference between low and middle-ranked macaques may not be the same as

the difference between middle and high ranked macaques. Dominance rank was represented

on an ordered categorical scale: low-ranking animals outranked less than 50% of their social

group, medium-ranking animals outranked between 50% and 80%; and high-ranking animals

outranked greater than 80%. All covariates were mean-centered, and the linear and quadratic

age terms were orthogonalized against each other and z-scored.
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Additive genetic effects, permanent environment effects, maternal effects, and the year and

group during which the observation took place (that is, observations from each year-group

pair being grouped together) were included as random effects. We defined both genetic

and permanent environment effects as those associated with particular animals that were

consistent across focal observations of the same animal, but they differed in whether the

effects were correlated across animals. Additive genetic effects refer to animal-specific

effects that were assumed to be correlated across animals according to their kinship, here

calculated using the Cayo pedigree, while permanent environment effects were assumed to

be independent across animals (Fisher, 1918; Kruuk, 2004). We also note that permanent

environment effects are “permanent” in the sense that they are consistent within an animal

across the full timespan that the animal was studied. Finally, maternal effects were effects

consistent across all focal observations of animals with the same dam (Wilson et al., 2010).

The magnitude of the additive genetic variance component relative to the other sources of

variation determined the narrow-sense heritability of a phenotype.

The effects of genotypes on behaviors were modeled as random effects with a heavy-tailed

distribution, details of which are described in the section below. The motivation for treating

genotypic effects as random rather than fixed is to provide regularization and prevent false

positives (Gelman, Hill, & Yajima, 2012). This approach is also consistent with the approach

used by genomic prediction tools, which generally assume that for complex phenotypes,

many genetic variants have some small effect that comes from a common distribution that is

estimated directly (Yang, Lee, Goddard, & Visscher, 2011; Zhou, Carbonetto, & Stephens,

2013). Animal genotypes were coded as the number of minor alleles at each locus (Balding,

2006; Yang, Manolio, et al., 2011).

Regression model and fitting procedure

We used a multivariate ordinal logistic version of the animal model:
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ηi,j = x′iβj + z′iuj + s′a(i)λj + ga(i),j ,

p(yi,j > 0|ηi,j) = logit−1(ηi,j − α(0)
j ) ,

p(yi,j > 1|ηi,j) = logit−1(ηi,j − α(1)
j ) ,

logit−1(x) = 1
1 + exp(−x) ,

(2.1)

where yi,j is the level (0, 1, or 2) of behavior j that occurred during focal observation i, xi

is a vector of fixed effects covariates, and zi is a vector of random effects covariates. The

vector sa is the vector of SNVs belonging to the animal a, while a(i) is the focal animal

followed during observation i. The parameters βj , uj and λj are the regression weights for

behavior j associated with the fixed effects, random effects, and SNV effects respectively.

The parameters ga represent the overall additive genetic component to the phenotype of

animal a, as in the traditional animal model (Henderson, Kempthorne, Searle, & von Krosigk,

1959; Kruuk, 2004). The parameters αj , where α(0)
j < α

(1)
j , are offsets that determine the

baseline probabilities of each level of behavior j.

To avoid false positives when estimating the genetic effects, we regularized the effect estimates

using a flexible sparsity-inducing prior:

λj,l ∼ Student’s t(4, 0, σ2
λ) ,

σλ ∼ N+(0, 2) ,
(2.2)

where λj,l is the effect of a minor allele at locus l on behavior j. The genetic effects are

given a Student’s t distribution centered at zero with four degrees of freedom, with a width

σλ that is estimated from the data and is given a normal prior truncated at zero. This and

similar priors have been used frequently in the estimation of genetic effects and predicting

genetic values for animal breeding (Meuwissen, Hayes, & Goddard, 2001; Resende et al.,

2012; Zhou et al., 2013). This prior has the property that effects for which the evidence is

weak will be penalized and pooled towards zero, preventing overfitting, but because of the
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t-distribution’s heavy tails, large effects for which there is strong evidence will be preserved.

Finally, the fixed effects, random effects terms are given weakly-informative priors (Gelman,

2006):

βj ∼ N(0, 2) ,

uj ∼ N(0, σ2
j ) ,

gj ∼ N(0, γ2
jA) ,

σj ∼ N+(0, 2) ,

γj ∼ N+(0, 2) ,

(2.3)

where A is the relatedness matrix among animals, and σ2
j and γ2

j are the random effect

variance components and the additive genetic variance components respectively. Note that

although for brevity only one random effect covariance component is listed in the equations,

separate variances were fit for the animal identity and observer identity random effects

terms.

Following Davies, Scarpino, Pongwarin, Scott, and Matz (2015), Nakagawa and Schielzeth

(2010), and Vazquez et al. (2009), we estimated the narrow-sense heritability of each behavior

j using the equation γ2
j /(γ2

j + σ2
j + π2/3) where σ2

j is the sum of the variance components

associated with permanent environmental and maternal effects. Note that heritability as

estimated here refers to heritability of the latent continuous variables underlying logistic

regression, rather than of the discrete behavioral data itself. Further, because fixed effects

are not taken into account, it is the heritability in a population of animals belonging to the

same social group and sex, and of similar age and rank, and so on.

We estimated posteriors for the model parameters using Markov-Chain Monte-Carlo sampling

sampling via the Stan software package (Stan Development Team, 2016). We ran three

chains with 1000 samples each, discarding the first 200 iterations of each as burn-in, for a

total of 2400 samples used for inference. Convergence was assessed using the Rhat metric
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reported by the rstan package.

We report the estimated effects of a SNV on behavior as the percent change in the odds

of a behavior occurring associated with having one more copy of the minor allele. This

corresponds to exp(λ) − 1 rather than the raw λ values themselves. The reported point

estimates of all parameters, effects, and quantities of interest are posterior means. We

estimated the phenotypic variance contributed to behavior j by all the SNVs together as

λ′jSS
′λj , where S is the matrix of mean-centered genotypes.

Results

OXTR and AVPR variants

We identified a total of 25 SNVs of interest (6 OXTR, 13 AVPR1A, and 6 AVPR1B). Table

2.1 shows genomic coordinates and descriptive information for these variants. Of these

25 SNVs, eight were missense variants (see Table 2.2). Two of the missense variants (one

in AVPR1A and one in AVPR1B) were predicted to impact the structure of the receptor,

according to assessments in SNAP2. Eleven SNVs had known analogues in the human

genome, though none of those SNVs had known clinical significance (see Table 2.3). After

pruning for high linkage disequilibrium among the 25 SNVs (see Methods), we retained 12

SNVs for phenotypic analysis (3 OXTR, 5 AVPR1A, and 4 AVPR1B).

Heritability and repeatability of rates of social behaviors

Before examining effects of specific single-nucleotide variants on social behaviors, we first

assessed both genetic and non-genetic variability in social behaviors across individuals. Figure

2.1 shows the proportion of variance accounted for by additive genetic variance (heritability);

the variance accounted for by permanent environmental effects; and the variance accounted

for by maternal effects.

The three variance component estimates were modest for all behaviors. We estimated

that the largest and smallest additive genetic effects accounted for 3.8% (passive contact)
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and 1.2% (noncontact aggression received) of total variance of their respective behaviors.

Similarly the largest and smallest estimated permanent environment effects were 5.1%

(contact aggression received) and 0.6% (approach given) of total variability, and the largest

and smallest maternal effects were 3.1% (grooming given) and 0.5% (approach received).

Posterior uncertainty for all three variance components were such that negligibly small

variance contributions could not be ruled out for most behaviors. The explained variance

had a greater than one-in-ten chance of being below 1% for all variance components and

all phenotypes, with the exception that the additive genetic variance component explained

<1% of the variability of approaches (given) with probability 0.06.

Some of this posterior uncertainty is due to the fact that additive genetic and permanent

environment are effectively correlated because permanent environmental effects are indepen-

dant per-animal effects, and animals are genetically identical to themselves. Similarly, the

fact that many dams had only one offspring in the data set (201 macaques with 156 unique

dams) resulted in a correlation between maternal and permanent environmental effects. This

relationship made it difficult for the model to distinguish between one effect being large and

the others small, or the reverse. However, the sum of the three variance components was

better determined, as can be seen in Figure 2.1, from the fact that in several behaviors, the

sum had smaller 95% credible intervals than any individual variance component. The sum

of heritability, permanent environmental effects, and maternal effects is the “repeatability”

of a trait within individuals; that is, variability that is consistent within animals across

observations, but that is not explained by the demographic and environmental variables in

the fixed effects or the observation period random effect. Repeatability contributed >1% of

total variance with probabilities >0.95 for all nine behaviors.

Effect sizes and credible intervals for the fixed effects parameters are shown in Figure 2.2.
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Figure 2.1: Proportion of residual variance attributed to additive genetic, permanent
environmental, maternal effects, and the total proportion of residual variance explained by
the three factors together. Points indicate posterior means, while thick lines and thin lines
indicate 80% and 95% central credible intervals, respectively.
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Figure 2.2: Effect sizes for fixed effects on social behaviors. Effect sizes are shown in terms
of the percent change in the odds of a social behavior occurring during a focal observation
associated with a unit increase in the dependant variable. Points indicate posterior means,
while thick lines and thin lines indicate 80% and 95% central credible intervals, respectively.

23



Effects of SNVs on rates of social behaviors

The estimated effects on social behavior of oxytocin and vasopressin SNV minor alleles are

shown in Figure 2.3. All effects were small, with the absolute average effect size estimated

as a 0.2% change in the odds of a social behavior occurring, and the largest absolute effect

estimated as a 1.7% change in odds. The 95% credible intervals (CI) included zero for all

loci and all behaviors. Collectively, all SNVs together contributed between 0.03% and 0.04%

of total phenotypic variation for each behavior. Beyond encompassing an effect size of zero,

posterior distributions of the SNV effect sizes also indicated that the range of plausible effect

sizes was small. Out of the 108 effects estimated (9 behaviors by 12 SNVs), 105 had 95% CIs

that did not extend beyond an absolute effect size of a 6% change in odds. Of the remaining

three effects whose CIs did exceed 6%, two were associated with AVPR1A missense variant

chr11:62125302. The effects of this SNV were detected for approaches given (1.2% effect

size, CI=[-1.7%, 8.7%]) and approaches received (1.6% effect size, CI=[-1.2%, 11.1%]).

Discussion

Our analysis of OXTR and AVPR genetic variants sought to measure the relationship

between genetic variation in those genes and rates of spontaneous social interactions in a

naturalistic setting in rhesus macaques, a highly social primate species. Our results are

consistent with genetic variation in OXTR and AVPR having little to no influence on rates

of social interaction. Though a number of previous studies found relationships between

social behaviors and genetic variants in these genes, including in NHPs, this result is not

entirely surprising and has several potential explanations.

First, many genetic associations identified in the human literature entailed analyses of

behavior from laboratory tasks (Johansson et al., 2012; Knafo et al., 2008; Rodrigues et al.,

2009) or from clinical phenotypes such as autism and mood disorders (Dempster et al., 2007;

Israel et al., 2008; Lerer et al., 2008). It may be that genetic influences become attenuated

in the more naturalistic social situations and non-clinical phenotypes studied here. Previous
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Figure 2.3: Effect sizes of OXTR, AVPR1A, and AVPR1B SNVs on social behaviors. Effect
sizes are shown in terms of the additive effect of a minor allele on the percent change in
the odds of a social behavior occurring during a focal observation. Points indicate posterior
means, while thick lines and thin lines indicate 80% and 95% central credible intervals,
respectively.
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studies in great apes were more similar to ours in that they involved natural, non-clinical

social behaviors, but to our knowledge these examined only captive populations in zoos

and research colonies (Hopkins et al., 2012; Latzman et al., 2014; Staes et al., 2015;

Wilson et al., 2017). Such settings are more constrained than Cayo Santiago in that animals

cannot easily self-sort into distinct social groups, and human researchers and caretakers often

intervene in reproductive success, health, access to resources for members of the population,

and in order to prevent aggression that could cause serious injury or death. It is possible

that in a naturalistic, unconstrained environment such as Cayo Santiago, environmental

variability is larger and effectively “drowns out” genetic contributions.

Second, our results are consistent with recent findings that in general, complex behavioral

and morphological phenotypes have a massively polygenic genetic architecture and individual

variants have very small effects (Anney et al., 2012; Benjamin, Cesarini, Chabris, et al.,

2012; Boyle, Li, & Pritchard, 2017; Chabris et al., 2013; Davies et al., 2011; Yang

et al., 2015; Yang et al., 2010). Because effect sizes are typically small, historically both

genome-wide and candidate gene studies of complex phenotypes with small sample sizes

have low replication rates and are prone to false-positives (Chabris et al., 2012; Hart, de

Wit, & Palmer, 2013; Ho et al., 2010; Ioannidis, Tarone, & McLaughlin, 2011; Siontis,

Patsopoulos, & Ioannidis, 2010). We know of two reported replication failures of OXTR

gene effects (Apicella et al., 2010; Munk, Hermann, El Shazly, Grant, & Hennig, 2016).

Furthermore, two recent meta-analyses reported equivocal results regarding the influence

of two heavily studied human OXTR SNVs on sociality (Bakermans-Kranenburg & van

IJzendoorn, 2014; Li et al., 2015). Similarly, though several studies have implicated a

5’ AVPR1A polymorphism in chimpanzee social behavior, the identified effects have been

inconsistent. Hopkins et al. (2012) and Latzman et al. (2014) reported sex-by-genotype

interactions and no main effects, whereas Staes et al. (2015) and Wilson et al. (2017) found

only main effects of genotype on personality traits and no interactions with sex. While

Staes et al. (2015) and Wilson et al. (2017) both reported effects of genotype on personality

traits relating to prosocial and affiliative behaviors, the effects were in opposite directions,
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with the same allele predicting higher prosociality in Staes et al. (2015) and lower in Wilson

et al. (2017). While there may be unknown moderators that account for the differences

between these studies, these inconsistent findings may also be the result of a lack of statistical

power (Gelman & Carlin, 2014; Lemoine et al., 2016; Open Science Collaboration, 2015).

Adding weight to this interpretation, we note that several of the papers listed above do

not control for overall genetic relatedness within the population, do not adjust p-values for

multiple comparisons or otherwise regularize effect estimates, or both, which can increase

the likelihood of finding a false-positive genetic association. It may therefore be prudent to

view OXTR and AVPR associations as preliminary, both in humans and in great apes, until

they have been directly replicated.

Though we did not find evidence that OXTR and AVPR variants influenced social behavior,

our results do suggest that social behaviors on Cayo Santiago have a modest additive genetic

component. This is consistent with previous research on the same macaque population

(Brent et al., 2013; Brent et al., 2014). This finding is also consistent with the theory that

genetic influences on the social behaviors studied here are driven by small effects across

large numbers of genetic polymorphisms (Fisher, 1918), however, it is worth noting that

the magnitude of additive genetic effects relative to permanent environment and maternal

effects was not well resolved in this study.

Our results do not indicate that all genotypic variability in the Cayo Santiago rhesus macaque

population in OXTR and AVPR have small or no effects on rates of social interaction. Rare

variants with very low MAF and de novo mutations are likely to have larger effects on

complex phenotypes than common variants (Gratten, Wray, Keller, & Visscher, 2014; Neale

et al., 2012), and because common variants are imperfectly correlated with rare variants

and not at all with de novo variants (Eberle, Rieder, Kruglyak, & Nickerson, 2006; Speed,

Hemani, Johnson, & Balding, 2012), those sources of genetic variability are not well captured

by the SNVs genotyped in this study. Future research may profitably target rare rather than

common genetic variants.
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Gene Position Consequence Type Read
Depth

Mapping
Quality

Reference
Allele

Alternate
Allele

Alternate Allele
Frequency

Included in
Behavioral
Analysis

OXTR chr2:57649859 missense variant 893 59.95 G T 0.72
OXTR chr2:57649912 synonymous variant 917 59.97 A C 0.34
OXTR chr2:57650182 synonymous variant 1117 60 C T 0.34
OXTR chr2:57650410 synonymous variant 1018 60 C G 0.48 Yes
OXTR chr2:57650752 synonymous variant 1693 59.96 C T 0.34 Yes
OXTR chr2:57664901 synonymous variant 2717 59.99 A G 0.28 Yes
AVPR1A chr11:62121832 missense variant 1767 60 A C 0.09 Yes
AVPR1A chr11:62124427 synonymous variant 1830 53.03 C T 0.91
AVPR1A chr11:62124548 missense variant 1912 60.01 C A 0.36 Yes
AVPR1A chr11:62124701 missense variant 1650 60 A C 0.48
AVPR1A chr11:62124871 synonymous variant 1046 60 C G 0.89
AVPR1A chr11:62124901 synonymous variant 1049 60 G A 0.11
AVPR1A chr11:62124906 missense variant 1069 60 A T 0.72 Yes
AVPR1A chr11:62125186 synonymous variant 822 60 T C 0.1
AVPR1A chr11:62125214 missense variant 947 60 A G 0.09
AVPR1A chr11:62125231 synonymous variant 970 60 C T 0.46
AVPR1A chr11:62125240 synonymous variant 925 60 T C 0.1
AVPR1A chr11:62125243 synonymous variant 911 60 A G 0.1 Yes
AVPR1A chr11:62125302 missense variant 1027 60 G A 0.48 Yes
AVPR1B chr1:160482462 synonymous variant 1353 60 G A 0.83 Yes
AVPR1B chr1:160482464 missense variant 1290 59.97 C T 0.89
AVPR1B chr1:160482644 synonymous variant 1288 59.97 G A 0.87 Yes
AVPR1B chr1:160482660 synonymous variant 1282 59.96 G A 0.88
AVPR1B chr1:160482702 synonymous variant 1274 60 C G 0.88 Yes
AVPR1B chr1:160488705 synonymous variant 1615 59.99 T C 0.44 Yes

Table 2.1: OXTR, AVPR1A, and AVPR1B SNVs

Though the relationship between social behavior, the molecules OT and AVP and their

associated receptor genes, OXTR and AVPR has been studied extensively in laboratory

settings in humans and captive animal populations, it is unknown to what extent those

findings generalize to spontaneous behaviors in naturalistic environments. We examined

this issue using an extensive behavioral and genomic data set from the free-ranging rhesus

macaque population on Cayo Santiago, focusing on the relationship between OXTR and

AVPR single nucleotide variants and social interactions related to the quality and kind of

social relationships between animals. We found that the effects of SNVs in OXTR and AVPR

on rates of social interactions were very small and possibly nonexistent, consistent with the

idea that common genetic variants have generally weak effects on complex phenotypes.
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Gene Position Amino Acid Change
(refference/variant)

Amino Acid
Position

Functional
Effect

SNAP2
Score

Expected
Accuracy

OXTR chr2:57649859 Ala/Ser 6 no effect -88 93.00%
AVPR1A chr11:62121832 Ile/Val 419 no effect -98 97.00%
AVPR1A chr11:62124548 Ala/Glu 263 no effect -70 82.00%
AVPR1A chr11:62124701 Gln/Pro 212 no effect -25 61.00%
AVPR1A chr11:62124906 Met/Leu 144 effect 44 71.00%
AVPR1A chr11:62125214 Asp/Gly 41 no effect -38 66.00%
AVPR1A chr11:62125302 Ala/Thr 12 no effect -91 97.00%
AVPR1B chr1:160482464 Ala/Val 84 effect 59 75.00%

Table 2.2: OXTR, AVPR1A, AVPR1B missense variants

Gene Macaque Position Human Genome
Liftover Position

Human Genome
Liftover rsID

Clinical Significance
in Humans

OXTR chr2:57649859 chr3:8768172
OXTR chr2:57649912 chr3:8768119 rs780323772 none known
OXTR chr2:57650182 chr3:8767849 rs775129787 none known
OXTR chr2:57650410 chr3:8767621 rs762128258 none known
OXTR chr2:57650752 chr3:8767279 rs769535684 none known
OXTR chr2:57664901 chr3:8752980 rs146441685 none known
AVPR1A chr11:62121832 chr12:63147370
AVPR1A chr11:62124427 chr12:63149937
AVPR1A chr11:62124548 chr12:63150058 rs776846916 none known
AVPR1A chr11:62124701 chr12:63150211 rs190242785 none known
AVPR1A chr11:62124871 chr12:63150381 rs553995625 none known
AVPR1A chr11:62124901 chr12:63150411
AVPR1A chr11:62124906 chr12:63150416
AVPR1A chr11:62125186 chr12:63150696
AVPR1A chr11:62125214 chr12:63150724
AVPR1A chr11:62125231 chr12:63150741
AVPR1A chr11:62125240 chr12:63150750
AVPR1A chr11:62125243 chr12:63150753
AVPR1A chr11:62125302 chr12:63150812
AVPR1B chr1:160482462 chr1:206116822
AVPR1B chr1:160482464 chr1:206116640 rs138075414 none known
AVPR1B chr1:160482465 chr1:206116639
AVPR1B chr1:160482660 chr1:206116624
AVPR1B chr1:160482702 chr1:206116582 rs781803425 none known
AVPR1B chr1:160488705 chr1:206110210 rs781813621 none known

Table 2.3: OXTR, AVPR1A, AVPR1B SNV human genome analogs
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CHAPTER 3 : MODELING SOCIAL INTERACTIONS IN FREE-RANGING

RHESUS MACAQUES

Abstract

Non-human primates are powerful model organisms for understanding complex social behav-

iors and the determinants of those behaviors among humans NHP behavioral phenotypes are

usually estimated as a list of long-run average rates of individual behaviors. This limits the

complexity that can be described in individual animals because it discards all information

about the way animals deploy behaviors in coordinated patterns. We propose instead a

representation of phenotypes in terms of the patterns in which behaviors co-occur, and

develop two computational models by which this representation can be learned for individual

animals even in small datasets. The second model borrows from Machine-Learning to

describe behavior in terms of discrete strategies across all behaviors, which are shared by

all animals in the population. We apply these methods to behavioral observations from a

population of free-ranging rhesus macaques, and find that both models show much higher

predictive power than the default of treating each behavior as independent. The behavioral

strategy model further outperforms the correlative model, and identifies strategies which

are interpretable and consistent with the existing literature on the complexity of NHP

behavior. We also quantify the amount of information about individual animals we uncover

through these methods, and find that representing individual phenotypes as patterns yields

approximately 25% more information than representing behaviors as rates.

Introduction

A key characteristic of human social interactions is that we deploy particular combinations

of behavior according to our social context and goals. A single behavior can be used as

part of many different strategies for navigating social situations. For example, a ubiquitous

human behavior such as speaking can take on distinct meanings and implications depending

on whether it is combined with aggressive or relaxed body language. While one individual
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might overall speak more than others, their long-run average amount of speaking may not

by itself fully characterize the strategies they deploy in social situations. A more complete

description of an individual’s social phenotype should rely not just on the tallying of overall

rates of individual behaviors, but on the particular combinations of behaviors they deploy in

particular social interactions across different times and different contexts.

Measuring social phenotypes in terms of combinations of behaviors requires observing the

fine details of natural social interactions. Research into the biological correlates of human

social behavior rarely has direct access to behavior at such granularity. Alternative model

organisms that do permit the direct study of complex social interactions are non-human

primates (NHP). Like humans, many species of NHP live in large hierarchically-organized

social groups and navigate their social environment by deploying particular combinations of

behavior appropriate to their social context and goals. The field of animal personality has

taken advantage of this opportunity to study the biological correlates of social interactions

and their consequences (Gosling, 2001; Roche, Careau, & Binning, 2016; Freeman & Gosling,

2010). However, standard quantitative methods in animal personality research do not exploit

the full complexity of NHP behavior because they represent behavioral phenotypes as

long-run average rates of behaviors considered in isolation. In terms of the previous example,

this simplification is analogous to considering how much an individual talks and how often

they employ different types of body language, but not how that individual combines these

behaviors into strategies for navigating their social environment. We hypothesize that the

way animals combine social behaviors carries important information about the behavioral

phenotypes of individual animals, and that a substantial portion of this information is

lost when rates of behavior are considered in isolation. In the present work, we develop

quantitative methods to test this hypothesis and do so in a large data set of observational

data collected from free-ranging rhesus macaques living in a large social group. If the

hypothesis is true, it indicates untapped potential for using rhesus macaques and other

NHP species to identify the environmental and biological factors underpinning of the fine

structure of social interactions.
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As noted in Altmann (1962) regarding rhesus macaques in particular, NHP are able to

choose particular combinations of behaviors “out of all available courses of action” in order

to “maximize their gains and minimize their losses”. For example, NHP have been found

to choose grooming partners based on the benefits of affiliation compared to the cost of

competition (Schino, 2001; Seyfarth, 1977; Seyfarth, 1980) and form coalitions in order to

maintain or improve their social rank, using information about the relative ranks of their

peers (Altmann, 1962; Maslow, 1936; Silk, 1999).

While this research has demonstrated the existence and importance of complex combinations

of behavior at the level of NHP species, such patterns of behavior are not generally identified

at the level of the individual animal. Examining the biological correlates of social behavior

benefits greatly from an understanding of behavioral phenotypes at the level of the individual

animal, because variability in social phenotypes across animals can then be compared with

biology, e.g., genotypic variability. Standard methods for measuring the phenotype of an

individual animal involves the observation of that animal over some periods of time during

which the occurrences of various behaviors are recorded (Altmann, 1974). The estimate

of the behavioral phenotype is these occurrences aggregated into rates of each behavior

(Anestis, 2005; Capitanio, 1999; Koski, 2011; Martin & Suarez, 2017; Neumann, Agil,

Widdig, & Engelhardt, 2013; Seyfarth et al., 2012; Seyfarth et al., 2014). Several such

studies have found that behavioral phenotypes in NHP are heritable (Blomquist & Brent,

2014; Brent et al., 2014; Madlon-Kay et al., 2018; Staes et al., 2016), and some have also

found effects of genetic variants in genes related to neuropeptide function in apes (Staes

et al., 2015; Staes et al., 2016); though see Madlon-Kay et al. (2018). However, this analytic

approach discards all information about the ways animals combine behaviors into strategies

for dealing with particular social situations.

One reason prior research has considered behaviors independently rather than in combination

is the computational and statistical difficulty of the latter. Animal personality research

regularly deals with ten or more distinct behaviors, leading to 210 possible combinations of
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behaviors and requiring tens of thousands of observations of every animal in the studied

population. To overcome this challenge, we utilize methods from Bayesian machine learning

to develop computational methods for searching the space behavior combinations and

identifying those combinations that are important for explaining observed behavior. These

combinations are captured via a set of probabilistic strategies which are used across the

population. During any given period of time an animal chooses one of these available

strategies, with each animal’s individual phenotype being described by the rates at which

they use each of these possible strategies, as well as a global bias for each animal towards or

against each behavior.

Here we test the hypothesis that behavioral phenotypes defined in terms of strategies involving

combinations of beahaviors, as described above, provide novel and interpretable information

about individual animals that is lost when rates of behavior are considered in isolation. We

do so by applying the computational methods described above to extensive observational

data collected from free-ranging rhesus macaques on the island of Cayo Santiago. First, we

ask whether the strategies which we identify in the rhesus macaque population are consistent

with our extant knowledge of NHP behavior. Second, we examine whether we find significant

heterogeneity across animals in their use of those strategies, and whether that heterogeneity

could be explained only by differences between animals in rates of individual behaviors.

Finally, we develop an information-theoretic method for quantifying how much information

we gain by considering behavioral phenotypes in terms of strategies versus rates of individual

behaviors.

Methods

Study site

The studied population is a colony of rhesus macaques living on the island of Cayo Santiago,

a 15-hectare island located 1 km off the southeastern coast of Puerto Rico. This is a

free-ranging, freely-breeding population with known pedigrees, rich data on life histories and
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fitness, and extensive genetic and observational data on behavior. The colony was founded

in 1938 with a population of 409 Indian-origin rhesus macaques and is currently maintained

by the Caribbean Primate Research Center (CPRC; University of Puerto Rico Medical

Sciences Campus). The population as of July 2017 numbered 1,571 animals self-organized

into six different social groups. 537 of the animals are adults of age six or above, and 758

are juveniles between the ages of one and five. Researcher and caretaker intervention in the

population is minimal. Animals in the colony are provided commercially available monkey

chow daily and unlimited access to water. Animals are handled only during designated

annual trapping periods, during which infants are tagged for identification. All procedures

described below were approved by the University of Puerto Rico’s Institutional Animal

Care and Use Committee (IACUC #A6850108) and adhere to the legal requirements of the

United States of America and the American Society of Primatologists’ Principles for the

Ethical Treatment of Primates.

Behavioral data

The data is comprised of 10-min focal samples (FS) (Altmann, 1974). The order in which

animals were observed was semi-randomized to equalize the times of day and year of each

animal’s observation periods. Observers recorded the times at which the monkey engaged in

any behaviors specified by a rhesus macaque-specific ethogram consisting of both social and

non-social behaviors (Brent, 2010). For this project we analyzed behavioral data collected

from adult females of the largest and best-studied social group on the island, group F, during

the years 2013 through 2016. This group constituted 94 animals, with an average of 19.7

(9.4 hour sd) hours of focal samples per animal. Because we are interested specifically in

idiosyncratic variability in behavioral phenotypes that is not directly explainable by known

situational factors, we excluded the highest ranking animals from the analysis, for a total of

80 animals. If an animal had an unusually small number of focal samples taken for their

group in a given year, their focal samples from that year were removed from the data set.

The threshold for removal was two standard deviations below the mean number of focal
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samples across animals for their social group in that year.

Our analysis included eleven behaviors. Of those, three were self-directed:

• Self-directed behaviors

• Autogrooming

• Scratching

• Traveling

• Feeding

Five behaviors were affiliative:

• Groom (higher-ranked partner)

• Approach (higher-ranked partner)

• Groom (lower-ranked partner)

• Approach (lower-ranked partner)

• Passive physical contact

Three behaviors were aggressive or agonistic:

• Aggression

– Threats, e.g. barks, head bobs

– Non-contact, e.g. lunges

– Contact, e.g. bites, grabs

• Submission

• Avoidance

Only interactions with adult female conspecifics were counted.

We controlled for various covariates by including fixed-effects that influence the rates of

each behavior independently from the animal’s identity. The fixed effects were the year

of the focal sample coded as dummy variables and ordinal dominance rank. Rank was
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measured on an ordinal scale: low-ranking animals outranked less than 50% of their social

group, medium-ranking animals outranked between 50% and 80%, and high-ranking animals

outranked greater than 80%.

Covariates were standardized such that the intercepts corresponded to population averages

rather than baseline groups using the R package “standardize” (Eager, 2017).

Data representation

The basic unit of our behavioral analysis is the focal sample (FS). In order to render the

analysis of behavioral combinations tractable, we make two major simplifying assumptions.

First, we treat all time points within a single FS as equivalent; all events of the same behavior

are treated as equivalent regardless of the relative or absolute timing of the event within an

FS. Second, we also treat behavior occurrence within a FS as binary, representing them as

either occurring or not, even if they occur more than once during a FS.

Formally, we represent FS as the random variable Y ∈ {0, 1}D, and denote a particular

FS as the data vector y. This is a D-dimensional binary vector where D is the number of

behaviors considered. With D behaviors, Y can take 2D possible values, corresponding to

2D different combinations of behaviors. In the following section, we use P (Y ) to denote

a probability distribution over all 2D combinations and P (Y |A) to denote the probability

distribution associated with a specific animal A.

Models for the use of combinations of behavior in social interactions

With unlimited data, it would be possible to estimate directly for each animal the probability

of exhibiting each of the 2D combinations of behavior. With the modest amounts of data

available from NHP populations, this is not feasible, so we instead rely on a model by which

we may describe the probabilities of each combination using many fewer free parameters.

At the heart of the model is a repertoire of strategies which exist in the population. A

strategy consists of a probability associated with each behavior, which determines how likely
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an animal is to exhibit that behavior while using that strategy. Because strategies are

probabilistic in nature, many individual combinations of behaviors are compatible with a

single strategy. For example, consider a strategy under which grooming and feeding have

high probabilities, threats have low probability, and all other behaviors have moderate

probabilities. Such a strategy is consistent with all combinations of behavior in which

grooming and feeding occur and threats do not, regardless of what other behaviors occur.

Every animal has a unique probability distribution over strategies, which describes how

often each animal uses each strategy. An intuitive interpretation of this aspect of the model

is that at the beginning of a FS, the focal animal flips a K-sided die. Whichever side the die

lands on determines which of the K strategies the animal uses for the duration of the FS,

which in turn determines the combination of behaviors the animal will deploy during that

FS. While the K strategies are shared across all animals, each animal has a unique die with

different probabilities of landing on any given side compared to any other animal.

The model takes the form of a probit mixed-effects regression:

pY |A(yi|ai) =
D∏
d=1

Φ(ηi,d)yi,d(1− Φ(ηi,d))1−yi,d ,

ηi,d =
K∑
k=1

αk,d1k(zi) + u
(ai)
d +X ′iβd ,

u(a) ∼ N (0,Σ) ,

(3.1)

where Φ is the cumulative distribution function of the standard normal distribution, zi ∈

{1, . . . ,K} indicates which of the K behavioral strategies animal ai used on focal sample i.

The parameters αk,d are the propensities to engage in behavior d while using strategy k. The

random effects u(a)
d represents an animal’s global bias towards or against each behavior d,

which is active across all of that animal’s focal samples regardless of the behavioral strategy

used.

Each animal’s rate of using each strategy is determined by a mixed-effects multinomial
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logistic regression:

p(zi = k) = exp θ(ai)
k∑K

k′=1 exp θ(ai)
k′

,

θ
(ai)
k = µk + ε

(ai)
k ,

εk ∼ N (0, σ2
k) ,

(3.2)

where µk determines the overall frequency of strategy k across the population, and the

per-animal random effects ε determine how animal a’s rate of using each strategy deviates

from the population average.

The number of strategies available in the population is fixed at K. To determine an

appropriate number of strategies we fit multiple versions of the BS model with varying K,

denoting a model with exactly K strategies as BSK. For examination of the contents of

the BS model strategies, we select the least complex model with performance within one

standard error of the best-performing model (Hastie, Tibshirani, & Friedman, 2009). Here,

less complex corresponds to smaller K.

To address the concern that the particular structure of the BS model might be a poor

match for the macaque behavioral data, and that therefore conclusions drawn on the basis

of it may be misleading, we also compare the BS model to an existing model for describing

combinations of binary variables. Specifically, we adapt the quadratic exponential binary

model (Cox, 1972; Cox & Wermuth, 1994), in which the probability of a combination

of behaviors is determined by main effects of each behavior and second-order interactions

between them. The main effects and interactions here are analogous to the means and

correlations among a set of continuous variables. Intuitively, the BS model identifies a small

number of high-order interactions between behaviors, whereas the correlative model uses all

possible second-order interactions.

Formally, the model is given by
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pY |A(y|ai, Xi) = ∆−1 exp(ηi) ,

ηi =
D∑
d=1

y∗d(α
(ai)
d +X ′iβd) +

D−1∑
d1=1

D∑
d2>d1

y∗d1y
∗
d2γ

(ai)
d1d2

(3.3)

where yd is the dth element of the FS y, ai is the focal animal observed during the ith

FS, α and γ are the main effects of and interactions between behaviors d, and ∆ is the

normalizing constant, and Xi sample-specific covariate vectors. We follow Cox (1972) in

using the centered transformation of the data, y∗d = 2yd − 1.

This model represents the behavioral phenotype of an animal a using D + D(D − 1)/2

parameters. Rather than estimating these parameters independently for each animal, we

use a hierarchical formulation of the model:

α(a) ∼ N (µ,Σ) ,

γ
(a)
d,d′ ∼ N (νd,d′ , σ2

d,d′) ,

σd,d′ ∼ N (0, τ2) ,

(3.4)

where α = [α1, . . . , αd]′ is the vector of main effects. This formulation pools each animal’s

main effects and interactions towards the population means µ and ν respectively, according

to the inferred population (co)variances Σ and σ2 (Gelman & Hill, 2007).

Prior specification and inference

For the correlative model, we use weakly informative priors on the hyperparameters (Gelman,

2006; Gelman, Jakulin, Pittau, & Su, 2008):

39



µ ∼ N (0, 25) ,

β ∼ N (0, 25) ,

Σ = (Iψ)Ω(Iψ) ,

Ω ∼ LKJCorr(2) ,

ψ ∼ N (0, 1) ,

ν ∼ N (0, 1) ,

τ ∼ N (0, 1) ,

(3.5)

where the correlation matrix Ω is distributed according to the LKJ distribution described

in Lewandowski, Kurowicka, and Joe (2009). Inference was performed via the No-U-Turn

Sampler algorithm (NUTS) for Hamiltonian Markov Chain Monte Carlo (MCMC) in the

RStan software package (Carpenter et al., 2017). We used four chains of 400 samples each

and a burn-in period of 150 samples and assessed convergence using the Rhat metric and

visual inspection of the hyperparameter chains.

For the behavioral strategy model we performed inference via a custom Gibbs sampler

implemented in the Julia programming language (Bezanson, Edelman, Karpinski, & Shah,

2017) with the following priors:

α ∼ N (0, 10) ,

β ∼ N (0, 5) ,

p(Σ) ∝ |Σ|−(1+D)
D∏
d=1

(2Σ−1
d,d + 1)−(1+D/2) ,

µk ∼ N (0, 5) ,

σ2
k ∼ InvGamma(0.5, 0.05) .

(3.6)

Gibbs sampling was used because we found NUTS was unable to generate samples from the

strategy model in a reasonable timeframe. We render the probit regression layer amenable

40



to Gibbs sampling by using the latent variable formulation from Albert and Chib (1993).

To permit Gibbs sampling from the logistic distribution over z that determines individual

strategy utilization, we use the Polya-gamma latent variable representation derived in Polson,

Scott, and Windle (2013). For the covariance matrix Σ we used the prior described in Huang

and Wand (2013), which is conjugate scale-mixture of Inverse-Gamma distributions and

permits independent estimation of the variances and correlations as well inference by Gibbs

sampling. Our implementation mirrors the algorithm developed for logistic topic modeling

in Chen, Zhu, Wang, Zheng, and Zhang (2013).

We initialized the Gibbs sampler based on maximum likelihood estimates of a simplified

version of the BS model. The simplified model included only the αk terms and treated

strategy utilization as fixed across the population. Estimation was performed from 100

random starting points, and the fit parameters with the highest likelihood were used

to generate the initial values of z for each FS. Specifically, each z was sampled from a

multinomial distribution over the K strategies, with the probabilities being the normalized

likelihoods of each observation. The Gibbs sampler was run for 40k iterations, with the

first 4k iterations discarded as burn-in, with convergence assessed by visual inspection of

the chain and split-half Rhat on the hyperparameters. The Gibbs sampler for the strategy

model was found to be less efficient than HMC inference via Stan for the correlative model,

necessitating many more samples be taken.

We assessed the predictive power of each model using the Widely Applicable Information

Criterion (WAIC), which approximates leave-one-out cross validation similarly to Akaike

Information Criterion (AIC) (Vehtari, Gelman, & Gabry, 2017; Watanabe, 2010) but unlike

AIC is applicable to Bayesian posteriors rather than maximum-likelihood point estimates.

The use of WAIC enables comparison of models through their out-of-sample predictive

power without incurring the severe computational cost of When used for model comparison,

WAIC magnitudes have the same interpretation other information criteria such as AIC and

BIC. Conventionally, an absolute difference of 6 or more between models providing strong
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evidence in favor of the better model roughly analogous to statistical significance at the

α = 0.05 level, and a difference of 10 or more being very strong evidence corresponding to

the data being over 100 times more likely under the better model than the alternative model

(Raftery, 1995).

Quantifying information gained using population mutual information

Mutual information (MI) is a general measure of the association between two random

variables (Shannon, 1948). Intuitively, it corresponds to the reduction in uncertainty in

one variable when another variable is taken into account, or in other words the explanatory

power of one variable on another. Importantly, we can use MI to quantify the diversity of

behavioral phenotypes in a population, which we will refer to as the population MI (PMI).

Specifically we can calculate PMI as the difference between the uncertainty of behavior at

the population level and the average uncertainty for individual animals:

H(Y )−H(Y |A) , (3.7)

where H(Y ) = −∑
y∈Y p(y) log p(y) is the Shannon entropy of the population distribution,

and H(Y |A) = Ea∈A[−∑
y∈Y p(y|a) log p(y|a)] is the conditional entropy of behavior given

that Y is being observed from animal a.

The most explanatory power that a source of biological or environmental variability could

possibly have on behavioral phenotypes would be to explain entirely the differences between

individual animals. Therefore PMI constitutes an upper bound on the MI between behavior

and any source of variability that may explain differences in behavioral phenotypes between

animals. PMI shares this characteristic with repeatability, the more traditional measure

of behavioral diversity used in animal personality and ethology generally (Dingemanse &

Dochtermann, 2013; Nakagawa & Schielzeth, 2010). However, repeatability is defined in

terms of the variance of a single behavior, and has no immediate generalization to multiple
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behaviors that can co-occur in arbitrary patterns.

We can make the connection between PMI and repeatability explicit by noting that both

are examples of a general class of measures of explained dispersion:

D(Y )− EX [D(Y |X)]
D(Y ) , (3.8)

where D is some function that measures dispersion (Efron, 1978; Haberman, 1982; Theil,

1970). For repeatability that function is variance, while for PMI that function is entropy.

Results

Behavioral strategies in the Cayo population

At the population level, we find that capturing combinations of behavior via the behavioral

strategy model significantly improves predictive power compared to a conventional analysis

that does not account for combinations of behavior (Figure 3.1a). The simplest model, BS1,

only permits a single strategy and so does not take into account combinations of behaviors.

Because in this model animals are assumed to differ only in their constant biases for or

against behaviors, this model is equivalent to conventional analyses that describe animal

phenotypes in terms of rates of individual behaviors. All BS models with multiple strategies

outperform BS1. The model with the best performance was BS8 (WAIC 57838, SE 350),

while BS6 was the simplest model whose performance fell within one standard error of the

minimum (WAIC 57926, SE 351). We therefore use BS6 in subsequent analyses of the

behavioral strategy model.

Examining behavioral strategies estimated under BS6 (Figure 3.2), we find that they describe

strategies of varying riskiness in foraging and socializing. Animals, on average, used strategies

S1-3 on 87% (SE 1%) of FS, with use rates being roughly even among those top three

strategies. Strategy 2 is a low-risk, low-reward strategy in which the animal experiences
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low rates of feeding and both affiliative and agonistic interactions. Strategies 1, 3, and

5 index foraging with varying riskiness; S1 and S5 have high feeding rates at the cost of

high rates of agonistic interactions, and S2 has lower rates of agonism at the cost of lower

feeding rates. Strategy 5 is distinguished from the more common S1 by even higher rates of

aggression and a lack of travel, possibly indicating fierce competition or defense of resources

versus the opportunistic foraging of free resources. This distinction between competition

over localized resources versus foraging for dispersed resources has been previously observed

in Japanese macaques (Mori, 1977) among other NHP (Hill, 1999). S4 and S6 are different

social strategies – the former socializing with animals of similar or lower rank, and the latter

socializing with higher-ranking animals. Consistent with the competitive grooming theory

described in Seyfarth (1977) and Schino (2001), the latter occurs less often than the former

(posterior means 6% and 1%, SE 0.7% and 0.3%), and involves high rates of all agonistic

behaviors.

Individual variability in strategy use

We have shown that accounting for the use of combinations of behavior improves our

predictive power for rhesus macaque behavior at the population level. However, the question

remains as to whether individual animals differ in their use of combinations of behavior.

First, we compare the predictive power of BSK to a submodel in which all animals are

assumed to have the same rates of using each strategy. We implement this submodel by

fixing the parameter σ2
k to zero for each strategy k. Under this submodel, the only differences

in the behavioral phenotypes of each animals can be described by differences in the global

biases towards individual behaviors (the parameters u), regardless of the strategy being

used. For all models other than BS2, we find strong evidence in favor of the full model

versus the submodel (Figure 3.1b). The smallest difference in performance among BS4-8

was 214.6 (56.7 SE). Second, we examine the inferred variability in strategy use across the

Cayo population. We find substantial heterogeneity in the rates at which different animals

use each strategy. The three most frequently used strategies, S1-3, have posterior mean

44



5.8e+04

5.9e+04

6.0e+04

6.1e+04

W
A

IC
a

−400

−300

−200

−100

0

∆W
A

IC

b

0.0%

10.0%

20.0%

BS1 BS2 BS4 BS6 BS8 Corr

Model

M
I i

nc
re

as
e

c

Figure 3.1: Quantitative comparisons of models for social interactions. a) Widely-applicable
information criterion (WAIC) for models BSR1-8 and the correlative model. Lower is better.
b) Difference in WAIC between each model and it’s equivalent submodel where phenotypes
are restricted to differ only in their rates of behavior. c) Percent increase in PMI under
from using the full phenotype of each animal, versus reducing the phenotypes to rates of
individual behaviors considered separately as in conventional analyses. Dots and lines are
population means and standard errors in a) and b), posterior means and standard deviations
in c).
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Figure 3.2: Relative probabilities of socially-relevant behaviors occurring in each of the
strategies identified by BS6. Behavior probabilities are normalized such that 1 is the
maximum probability of a given behavior across all strategies. Dots and lines represent
posterior means and standard errors.
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coefficients of variation near 18%, while strategies S4-6 have higher coefficients of variation

at 60% or above, albeit estimated less precisely due to the less frequent occurrence of these

strategies.

Information gained by the estimation of strategies

While the previous analyses have shown that animals differ measurably in their use of

combinations of behavior, the relative importance of these differences to understanding

overall differences in behavior between animals is still unclear. By modeling the way

animals deploy combinations of behavior, how much more have we learned about their

individual behavioral phenotypes than we would have from looking at rates of individual

behaviors? To answer this question we estimate the mutual information in the population

(PMI) between observed animal behavior and animal identity. PMI effectively quantifies the

amount of behavioral diversity between individual animals compared to the total diversity of

behavior observable within population. PMI also represents the upper-bound for how much

information any environmental or biological factor can carry about behavior, because no

determinant of behavior could do better than perfectly predicting the behavioral phenotypes

of animals in the population.

Our present interest is not in the estimated PMI per se, but rather the increase in PMI from

modeling the use of combinations of behaviors. We calculated, under each model, the PMI

that we would expect from an analysis of rates of behavior. Specifically, for each posterior

sample we discard all information about the behavioral phenotypes of all animals other than

the rates of behaviors, calculate PMI as though each behavior occurred independently at

those rates, and compare it to the PMI under the full model to approximate the percent

increase in PMI achieved by using the full behavioral phenotype. We find that under the

best-fitting models, BS6 and BS8, the estimated gains in PMI are 25% (2%, 3%, and 3%

SEs respectively) (Figure 3.1c). The models with fewer behavioral strategies, which also

have significantly lower predictive power, show lower increases in PMI.
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What is the source of the additional information uncovered by modeling social interactions

using combinations of behaviors? One implication of the behavioral strategy model is that

there are distinct routes by which animals can arrive at similar rates of a behavior. The rate

at which an animal engages in passive contact is predicted independently by the utilization

of two different behavioral strategies: S2, a frequent strategy in which affiliation is relatively

rare; and S4, a less common strategy of frequent interaction with lower-ranked animals.

In the population we see that high rates of passive contact are associated with high use

of either S2 or S4, or modest utilization of both (Figure 3.3a). We see similar patterns of

results in other behaviors, such as feeding, which is predicted independently by high use

of the two most risky foraging strategies, S1 and S5 (Figure 3.3b). These results indicate

that the behavioral strategy model is disentangling distinct types of behavior that are not

distinguishable when a behavior is considered in isolation.
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Figure 3.3: Posterior mean use rates for strategies from model BS6 across the population,
with color indicating the animal’s rates of the behaviors a) passive contact, and b) feeding.
Rates of Passive Contact are discretized into tertiles.
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Alternative model for combinations of behavior

In previous analyses we modeled the use of combinations of behavior in social interactions in

terms of a small number of strategies which are shared across the population. However, this is

only one possible method for modeling the way in which behaviors co-occur in combinations,

and it may be that the results described above are an artifact of our particular choice of

model. Accordingly, we also developed an alternative model in which the relationships

between individual behaviors are modeled in terms of their pairwise correlations. This

correlative model attempts to estimate all second-order interactions between behaviors, as

opposed to BSK which estimates a small number of higher-order interactions between many

behaviors at once.

We found that the BS with six or more strategies have significantly better predictive perfor-

mance than the correlative model (minimum WAIC difference 244.9, SE 33.7), suggesting

that BSK is a more appropriate model for rhesus macaque behavior. Nonetheless, we

find similar results between the correlative and BSK models with regards to the impact of

modeling combinations of behavior. As with BSK, we compare the full correlative model to

a reduced model in which the second-order interactions between behaviors are assumed to be

the same across all animals. We find that the full model has significantly better predictive

power than the reduced model (WAIC difference 65.6, 16.7 SE). We also estimate PMI

in the correlative model, and find that including combinations of behaviors in behavioral

phenotypes increases the information gained by 25% (3% SE).

Discussion

In this chapter we developed a methodological framework for quantifying the social pheno-

types of non-human primates in terms of the combinations of behaviors that characterize

social interactions. We find that a model using six behavioral strategies, defined as a set of

probabilities of individual behaviors, is able to capture patterns of behavior interpretable in

terms of strategies of varying riskiness for foraging and socializing. Individual variability
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in the use of strategies was not reducible to variability in rates of behaviors considered

in isolation. By modeling the use of combinations of behavior, we increase the amount

of information regarding phenotypic differences between animals by approximately 25%.

These results suggest the utility of the methods developed here for understanding biological

correlates of social behavior by providing greater behavioral diversity from which associations

can be estimated, and by mapping biological correlates to the fine-grained details of social

interactions.

To render tractable the analysis of combinations of behavior, we relied on a parametric

model which necessarily imposes restrictions on the structure of animal interactions. The

use of such models is currently unavoidable due to the logistical difficulties of collecting large

amounts of data from free-ranging animal populations and the breadth of the primate social

repertoire, but it also leads to the question of to what extent the results obtained depend

on the specific choice of model. We find here that two classes of models which make very

different assumptions regarding the structure of behavior produce very similar results, with

both finding strong evidence that animals differ in the ways that they combine behaviors

and estimating the amount of information gained about individual animals from considering

combinations of behavior at 25%. These convergent results suggest the observed increase in

PMI is not artifactual, but we possess no guarantee that some other method not considered

here may provide a different result. It may be possible to obtain a non-parametric estimate

of PMI in smaller, captive populations of animals with more restrictive environments, where

each individual animal can be studied intensively. For example, Koski (2011) studied the

behavior of several captive chimpanzees living in different zoos, and for one population had

collected an average of 70 hours of focal observation compared to an average of 20 hours of

focal observation per subject in the current study. This amount of data is equivalent to 420

ten-minute focal samples per animal, with which it may be feasible to independently estimate

the rates of all combinations of six behaviors (or equivalently, 64 unique combinations of

behavior). Such an analysis could then assess the bias associated with the parametric

methods used here. However, any method that does not rely on parametric assumptions
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on the structure of social interactions would still need to protect against overfitting, as we

discuss below.

Though the primary goal of the methods developed here are to identify ways in which animals

differ in their social interactions, it is important to note that identifying such differences in

phenotypes is not in itself an indication that a method has been successful. A method can

maximize the inferred differences between animals by overfitting the observed behavior of

each animal, thus producing apparent differences in phenotypes that cannot be replicated

between data sets. It is therefore important to protect against overfitting before evaluating

the phenotypic differences obtained from a given model. We adopt two techniques to protect

against overfitting: first, each model we considered features regularization in the form of

hierarchical priors which pool the estimated phenotypes towards to population average

(Gelman & Hill, 2007; Gelman et al., 2012), and second, we quantitatively compare models

regarding their predictive power while correcting for model complexity, i.e. the capacity of the

model to overfit (Watanabe, 2010). As a general rule, inferred differences between animals

should only be regarded as plausible if the method by which they were estimated involves at

least one, and ideally several, protections against overfitting. In the case where different

methods are similar predictive power (or some other metric for model comparison) but give

differing estimates of the amount by which phenotypes differ, then a single estimate could

be produced using a method for multimodel inference such as Bayesian model averaging

(Burnham, Anderson, & Huyvaert, 2011; Kass & Raftery, 1995). We did not need to use

such methods here, because even though the behavioral strategy models with six or more

strategies had similar WAIC scores they also produced very similar estimates of PMI.

Although here we focus on social interactions in the unconstrained setting of free-ranging

animal populations, the logic of the models and analyses developed here also apply to

social interactions studied in laboratory contexts. Historically, laboratory studies of social

interactions have focused on a small number of predefined behaviors of interest, such as

in the study of aggression and mating in rodents (Kruk, 1991; Hashikawa, Hashikawa,
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Falkner, & Lin, 2016; Nelson & Trainor, 2007). Popular paradigms in this domain, such

as the resident-intruder and standard opponent tests, involve placing two animals into a

common environment for a short period of time and observing their interactions (Crawley,

2007). Such interactions are directly amenable to analysis under the methods proposed

here, which could permit comparison across species regarding the types of strategies they

deploy in social interactions and to what extent animals vary in such strategies. Recently,

researchers have also begun investing the neural basis of social interactions among rhesus

macaques in laboratory settings (Chang et al., 2015; Iqbal et al., 2019), as well as examining

behavior in settings where animals can move about their environment in increasingly less

constrained manner (Yin, Tseng, Rajangam, Lebedev, & Nicolelis, 2018). Applying the

methods developed here to interactions among laboratory rhesus macaques would help bridge

the gap between laboratory and field studies of social interactions.

Finally, in order to rigorously test and quantify our ability to uncover novel phenotypes from

combinations of behavior in social interactions, here we restricted ourselves to examining

a relatively small number of macaques from the same social group and of similar rank, a

relatively small number of behaviors, and treated the occurrence of behaviors within focal

observations as binaries. In the following chapter, we will show how the analysis of behavioral

strategies can be extended to relax these restrictions and study large numbers of behaviors

among hetergeneous populations of animals, as well as estimate the effects of biological and

environmental covariates on social interactions.
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CHAPTER 4 : USING MACHINE LEARNING TO DISCOVER LATENT SOCIAL

PHENOTYPES IN FREE-RANGING MACAQUES

Abstract

Investigating the biological bases of social phenotypes is challenging because social behavior

is both high-dimensional and richly structured, and biological factors are more likely to

influence complex patterns of behavior rather than any single behavior in isolation. The space

of all possible patterns of interactions among behaviors is too large to investigate using

conventional statistical methods. In order to quantitatively define social phenotypes from

natural behavior, we developed a machine learning model to identify and measure patterns

of behavior in naturalistic observational data, as well as their relationships to biological,

environmental, and demographic sources of variation. We applied this model to extensive

observations of natural behavior in free-ranging rhesus macaques, and identified behavioral

states that appeared to capture periods of social isolation, competition over food, conflicts

among groups, and affiliative coexistence. Phenotypes, represented as the rate of being in

each state for a particular animal, were strongly and broadly influenced by dominance rank,

sex, and social group membership. We also identified two states for which variation in rates

had a substantial genetic component. We discuss how this model can be extended to identify

the contributions to social phenotypes of particular genetic pathways.

Introduction

Understanding how biological and environmental factors shape human social phenotypes –

the ways in which we interact with others and in which others shape our own behavior – is a

topic of intense interest in neuroscience. While neuroscientific research has made impressive

strides in identifying genetic pathways and brain areas that contribute to specific social

phenotypes, traditional approaches are limited in their ability to assess how biological and

environmental factors contribute to naturalistic social behaviors in real-world environments.

Animals used in laboratory research may differ from humans in the brain areas associated
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with social cognition, and live in laboratory environments with much less varied and dynamic

social interactions than natural environments (Morgan et al., 2007). Research in humans

faces similar limitations, as comprehensive, in-depth observations of human social behavior

in natural environments is both logistically and ethically problematic, while controlled

laboratory tasks take place in restricted and low-stakes environments which may leave the

true social environment unobserved.

An alternative approach to understanding biological contributions to human social behavior

is to study free-ranging animals whose biology and social behavior more closely approximate

our own. Free-ranging non-human primates (NHPs) provide naturalistic and human-relevant

variability in social behavior that cannot be modeled in the laboratory or easily (or ethically)

collected in humans. With free-ranging NHPs, it is possible to collect comprehensive data

on many different aspects of social behavior, as well as both noninvasive and invasive

biological samples and life history information that can be used to disentangle genetic

and environmental influences. However, natural social behavior is both noisy and high-

dimensional, presenting severe challenges for traditional methods of data analysis. Standard

methods for relating genetic variation to traits take an atomistic view by measuring genetic

influences on each measured variable individually. While this approach makes sense for

specific, well-defined phenotypes of interest such as educational attainment (Rietveld et al.,

2013) or height (Lango Allen et al., 2010), it is less useful for high-dimensional data where

any individual dimension is of limited or unknown significance.

In the case of natural behavior, continuous streams of activity are necessarily segmented

into many discrete behavioral categories during measurement, in many cases with no specific

behavior being of special interest relative to the whole. The challenge is thus to develop

a rigorous and biologically meaningful approach for reconstructing a “whole” behavioral

state based on discrete, atomized behaviors. Such a challenge can be viewed as a type of

latent structure learning, in that there is some underlying structure that is not directly

observed but that ties together many different individual pieces of data. Models of this
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sort are increasingly popular in the field of probabilistic machine learning (Murphy, 2012).

Though machine learning models are most frequently used for prediction, here we adapt

methods from the machine learning literature to infer a meaningful and useful structure in

observational data sets.

Any source of genetic variation is unlikely to affect only a single discrete social behavior. A

genetic variant associated with grooming behavior, for instance, may also be associated with

increased time spent in the proximity of other animals in general. Genetic influences are

more likely distributed across many different individual social behaviors than localized to

specific types of actions (Brent et al., 2014). Furthermore, in the case of observations of

natural social behavior, it is important to recognize that each type of behavior does not occur

in isolation. Rather, the set of behaviors that occur during a given observational session may

reflect the current situation or behavioral state the animal is in. The relationship between

any given behavior and an underlying social phenotype thus may vary with context. For

example, adjusting a watchband while speaking to a group of people may be a nervous tick

reflecting social anxiety, while adjusting a watchband in one’s bedroom might reflect only

an ill-fitting watchband.

Thus, it is critical for any useful model of observed social behavior to reflect the complex

interrelatedness of individual behaviors, while retaining identifiability and scalability to large

data sets with dozens of individual behaviors and thousands of observations. To achieve

this goal, we here adapt a family of models from machine learning known as topic models.

Topic models are tools for describing the topics that are covered by a corpus of documents

and to what degree each document is focused on each topic (Blei, Ng, & Jordan, 2003; Blei,

2012). In our analysis, each animal is analogous to a document, while the animal’s social

phenotype, or the weights assigned to different behavioral states, correspond to the weights

a document assigns to each of the different topics. Under a topic model, each word in a

document belongs to a topic, just as in the current model each observational session belongs

to a behavioral state. Of the many topic modeling variants that exist in the literature, the
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current model is most closely related to the logistic normal topic model (Lafferty & Blei,

2006; Chen et al., 2013). Our model differs from the standard logistic normal topic model

in that we do not explicitly model correlations between topic weights (here, weights on

behavioral states); instead, our model uses a hierarchical regression layer to incorporate

outside information about documents (here, animals) in predicting their phenotypes. To the

best of our knowledge, no previous topic model has included hierarchical regression at the

level of topic weights (but see Rodŕıguez and Dunson (2011) for a related model).

Recent research on behavioral phenotypes in NHPs has used principle components analysis

(PCA) to identify latent structure in natural behavior (Seyfarth et al., 2012; Brent et al.,

2014), as well as in the study of animal behavior generally (Budaev, 2010). However,

that research relied on rates of behaviors averaged across many different observational

periods on the same animal. This means that the relationships among behaviors and the

patterns in which they co-occur within a single observation are lost. That is, PCA captures

variation among animals, but at the cost of losing all information on variability at the level

of individual observational periods. By contrast, the hierarchical nature of topic models

allows us to explicitly capture variability at both the level of individual animals and the

level of observational sessions, in the form of the phenotypes used to represent individual

animals and the behavioral states used to characterize observations, respectively.

Our behavioral data is a large set of animal observations taken from the free-ranging

rhesus macaque (Macaca mulatta) colony on Cayo Santiago Island off the coast of Puerto

Rico. Rhesus macaques provide an excellent model species for studying biological and

environmental influences on human social behavior due to their extensive use in lab and field

research; neural circuitry that is homologous to that of humans; and complex social behaviors

that are critical to their biological success (Brent et al., 2013; Widdig et al., 2004; Carpenter,

1942; Bernstein & Sharpe, 1966). Because demographic, pedigree, and genetic data are also

available for the colony (Brent, 2010), this detailed record of natural social behavior provides

a unique opportunity for modeling genetic, demographic, and environmental influences on
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complex social phenotypes.

Materials and methods

Study site and subjects

The studied population is a colony of rhesus macaques (Macaca mulatta) living on the island

of Cayo Santiago, a 37-acre island 1 km off the southeastern coast of Puerto Rico. This is a

free-ranging, freely-breeding population with known pedigrees, rich data on life histories and

fitness, and extensive genetic and observational data on behavior. The colony was founded

in 1938 with a population of 409 Indian-origin rhesus macaques and is currently maintained

by the University of Puerto Rico Medical Sciences Campus (Rawlins & Kessler, 1986). The

current population numbers approximately 1600 animals self-organized into six different

social groups. Approximately 600 of the animals are adults of age six or above, and 600

are juveniles between the ages of one and five. Researcher and caretaker intervention in the

population is minimal. Animals in the colony are provided commercially available monkey

chow daily and unlimited access to water. Animals are handled only during designated

annual trapping periods, during which infants are tagged for identification and population

control can be implemented via the removal of small numbers of animals.

The data used in this study were 8205 ten-minute focal observations collected from adult

(age > 6 years) male and female macaques from three social groups (F, HH, and R). Ob-

servational data was collected from group F during 2012 and 2013 and from group HH

and R during years 2014 and 2015, respectively. A total of 227 macaques (71 male) were

represented in this data set, with 106 from group F (41 male), 41 from group HH (11 male),

and 80 from group R (19 male). The number of focal observations per animal ranged from

80 (approximately 13.33 hours) to 11 (approximately 1.83 hours), with an average of 36.15

focal observations per animal (approximately 6 hours).

57



Observational data

The data is comprised of ten-minute focal samples, wherein a trained researcher tracks

an individual monkey (the focal animal) for a ten-minute period while comprehensively

recording the animal’s behaviors (Brent, 2010; Altmann, 1974). Once each ten-minute

session is complete, the observer moves on to a new focal animal. Observers recorded the

times at which the monkey engaged in any behaviors specified by a predetermined ethogram,

as well as the identities of nearby animals during the focal observation (Brent, 2010). The

order in which animals were observed was semi-randomized to equalize the times of day and

year that animals were observed.

This research complied with protocols approved by the Institutional Animal Care and Use

Committee of the University of Puerto Rico (protocol #A6850108) and adhered to the legal

requirements of the United States of America.

Behaviors

The ethogram used to guide data collection consisted of both social and self-directed behaviors.

Social behaviors were further classified into affiliative and agonistic behaviors. Each social

behavior was further divided based on whether the behavior was initiated by another animal

and directed towards the focal animal, or initiated by the focal animal towards another

animal. A total of 30 behaviors were used in the present study, including behaviors divided

by giving versus receiving. Only social behaviors involving another adult macaque were used

in this study; behaviors directed at infant or juvenile macaques or human researchers were

not included. The behaviors were defined as follows:

• Self-directed behaviors

– Scratch: Rapid and repeated movement of the nails of a hand or foot across the
skin.

– Self groom: Running of hands or mouth through one’s own hair for at least 5 s.

– Feed: Searching for, manipulating, holding and ingesting food items, including
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water, for at least 5 s.

– Travel: Movement from one location to another over a distance of at least 5 m.

• Affiliative behaviors

– Approach: One individual approaches another to within arms’ reach (2 m) without
physical contact, and remains within that distance for at least 5 s.

– Leave: Exiting a 2 m area around another without an agonistic interaction.

– Affiliative vocalization (AffilVocal in figures): Emiting a friendly vocalization in
the form of either a grunt, girney, vocal exchange, or lipsmack. Individuals will
often emit many vocalizations in short succession.

– Groom: Running the hands or mouth through the hair of another monkey for at
least 5 s.

– Passive contact: Sitting or lying in physical contact with another animal without
grooming.

– Social proximity: Number of time points out of three at which the focal was
observed to be within 2 m of at least one other animal. The time points were at
the beginning, middle, and end of the focal observation.

– Proximity group size: Number of unique animals with whom the focal animal
shared social proximity as defined above.

• Agonistic behaviors

– Threat: One individual threatens another with one or a combination of staring,
barks, head bobs, and opening one’s mouth with covered teeth.

– Avoid: Moving out of the way of another before they come within 2 m.

– Displacement: Similar to avoid, but within 2 m.

– Fear grimace: Submissive facial expression wherein lips are retracted horizontally
to expose teeth.

– Submit: Leaning away from another or crouching while raising hindquarters
towards another.

– Noncontact aggression: A lunge, charge, or chase that does not result in direct
physical contact.

– Contact aggression: Direct physical contact such as a bite, hit, push, or grab.

For more information on the behaviors defined above, see Brent, 2010.
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Genetic data

We obtained animal pedigrees from a long-term database maintained by the Caribbean

Primate Research Center (CPRC). From the founding of the population up through 1992,

maternal identity was ascertained by behavioral observations, such as nurturing behaviors

and lactation. For most macaques born after 1992, both maternal and paternal identity

were ascertained genetically through the analysis of 29 microsatellite markers. Previous

studies revealed a 97.4% agreement rate between maternity determined by behavior and

by genetics (Brent et al., 2014). The population pedigree was used to generate a kinship

matrix for the animals in the present study via the R package kinship2 (Sinnwell, Therneau,

& Schaid, 2014). The kinship matrix was then element-wise multiplied by two to create the

genetic covariance matrix used to estimate the heritability of behavioral states.

A model for social phenotypes

At the heart of the model is a finite set of latent behavioral states that determines the rates

at which different behaviors occur. An animal’s social phenotype is represented in the model

as the rate at which that animal experiences the different behavioral states. We describe

each component of the model in detail below. In this section, we first present a conceptual

description of the model, and the description of the mathematical implementation follows in

section 2.6.

Each ten-minute focal sample is assumed to belong to one and only one behavioral state;

that is, during a given focal observation, the focal animal is assumed to be in a particular

behavioral state. Each state is defined by a set of parameters that determines the probabilities

that each of the discrete behaviors will occur, and, should they occur, how frequently or

in what amount they will occur during a focal observation. In the data analyzed here, we

used a categorical distribution over various levels of behavioral quantities, but the algorithm

can trivially be modified to use different data likelihoods, such as a Poisson distribution for

data in count form, a normal distribution for continuous data, and so on. For details on the
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coding of discrete behaviors in the current study, see section 2.5 below.

Every animal has a different probability distribution over behavioral states, which describes

how often it finds itself in each of those states. This probability is what we call the animal’s

social phenotype. An intuitive interpretation of this aspect of the model is that at the

beginning of a focal observation, the focal animal flips a K-sided die where K is the number

of states in the model. Whichever side the die lands on determines which behavioral state

the animal will be in for the duration of the focal observation. While the K behavioral states

are common across all animals, each animal has a unique die with different probabilities of

landing on any given side compared to any other animal.

Ultimately, we are interested in not just describing social phenotypes and behavioral states,

but also understanding how they are associated with other variables of scientific interest, be

they morphological, demographic or genetic. Accordingly, our model allows the phenotypes

of each animal to be influenced by covariates. We accomplish this by having the probabilities

in the animals’ phenotype be determined by a mixed-effects multinomial logistic regression.

The regression model incorporates the influence of covariates as fixed effects. Two random

effects components are also included in the model. The first describes the intercepts of

each of the K states, which determine how typical each state is across the population as

a whole. The second describes animal-specific error terms for each state, which capture

how each animal deviates from the predicted phenotypes based on its covariates and the

population average. This mixed effect formulation allows the model to refine the predicted

phenotypes for each individual animal by pooling information across the entire population,

as represented in the data (Gelman & Hill, 2007).

In addition to the random effects terms described above, the model can also incorporate a

third random effects component based on groupings or relationships among animals. Here

we use this term to incorporate genetic effects into the model so that the heritability of

phenotypes can be calculated as in the popular “animal model” in behavioral ecology (Kruuk,

2004).

61



A major constraint in the model is that during a ten-minute focal sample, the focal animal

is confined to only one behavioral state. This constraint is equivalent to assuming that the

rate of switching between behavioral states is low enough that the probability of changing

states during a consecutive ten-minute period is effectively zero. Though this constraint

is not particularly realistic, attempting to infer state shifts within focal samples would

dramatically increase the computational complexity of the model. Furthermore, because

many individual behaviors are quite sparse—occurring on average at a rate of less than once

per focal observation—state transitions within focal samples are likely to be very difficult to

detect. We therefore justify this simplifying assumption for the computational efficiency

and scalability it permits, though it can be relaxed in the future or with different data.

Data processing and likelihood

To construct the input to the model, we calculated the total amount of each behavior present

in each observation, and converted those amounts into ordered levels. The exact procedure

is described below:

1. Construct a data matrix with a row for each focal observation, and a column for each
behavior in the ethogram.

2. For each focal observation:

(a) For each “event” behavior, count the number of times that behavior occurred
during the observation.

(b) For each “activity” behavior, calculate the total proportion of the focal observation
spent engaged in that behavior.

(c) Populate the associated row in the data matrix with these values.

3. For each behavior:

(a) Calculate quintiles, e.g., 20th percentile, 40th percentile, etc., of the values in
that behavior’s associated column in the data matrix.

(b) Also calculate the 1st and 99th percentile of the behavior to make high and low
outliers.

(c) Bin focal observation using the quantiles calculated above as cutpoints, e.g.,
values ≤ 1st percentile being 1, > 1st and ≤ 20th percentiles being 2, etc.
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This procedure divides each behavior into up to seven levels, with 1 being the smallest

amount of a behavior and 7 being the most. However, in practice many behaviors occurred

so infrequently that the bottom 50% or more of the data were all zeros. This meant that 19

of 30 behaviors were split into three levels representing 0, 1, and ¿1 occurrences, and no

behavior was divided into more than 6 levels.

A behavioral state consists of a set of categorical distributions, one for each behavior.

Each categorical distribution has as many parameters as the behavior has levels that

determine the probability of each level of the behavior occurring under that state. This

allows each behavioral state to be extremely flexible; a state need not specify a narrow range

of values or a specific distributional shape for every behavior. A state may be associated with

a very specific amount of one behavior, but also consistent with a wide range of amounts of

a different behavior.

The categorical distribution we used as the data likelihood can be easily changed to any

distribution with a conjugate prior. For example, one might use the Poisson distribution

for event behaviors and the zero-truncated normal distribution for activity behaviors. We

chose the categorical distribution here because, as can be seen in Figure S1, many behaviors

were zero-inflated with long right tails, which cannot be captured by Poisson and normal

distributions.

Mathematical description of the model

The content of a focal observation is represented by y(i,f), a vector of length B, where B is

the number of individual behaviors considered in the model. Element y(i,f)
b is the amount

of behavior b that occurred in that focal observation. Each focal observation in the data

belongs to a single behavioral state. Formally, this means that each observation f of animal

i is associated with a latent variable zi,f which can take on values 1 through K, where K is

the number of behavioral states in the model. This value denotes which of the K behavioral

states to which the focal observation belongs. Given a value for behavioral state zi,f we
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can write the data likelihood of the focal observation using the parameters defining the

behavioral state:

p(y(i,f)|zi,f = k, θ(k)) =
∏
b∈1:B

θ
(k,b)
y

(i,f)
b

, (4.1)

where θ(k) is the set of all parameters associated with state k, θ(k,b) is the vector of

probabilities for different levels of behavior b in state k, and θ
(k,b)
l is the probability that

behavior b occurs at level l in state k. Note that this data likelihood is simply a product of

categorical likelihoods, one for each behavior. Because each focal observation is statistically

independent conditional on the state assignments, we can write the complete likelihood for

animal i as simply the product of the likelihoods of the focal observations:

p(y(i)|zi, θ) =
∏

f∈1:ni

p(y(i,f)|zi,f , θ(zi,f )) , (4.2)

where ni is the number of focal observations for animal i.

We now turn our attention from the likelihood to the phenotype, which is the prior probability

of a focal observation f of animal i belonging to each of the k behavioral states. We can

write this prior probability as

p(zi|πi) =
∏

k∈1:K
π
ni,k

i,k ,

ni,k =
∑

f∈1:ni

1(zi,f = k)
(4.3)

where πi,k is the prior probability that animal i finds itself in state k and ni,k is the total

number of focal observations of animal i belonging to state k. The probabilities πi,k are

themselves determined by via multinomial logistic regression:
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πi,k = exp(ηi,k)∑
k∈1:K exp(ηi,k)

,

ηi,k = αk +XT
i βk + ui,k + εi,k .

(4.4)

Here ηi is a vector of unbounded propensities for animal i to fall into each behavioral state,

which are transformed by the softmax function into the probability distribution over states,

πi. Xi is a vector of animal-specific covariates, with the state-specific fixed effect regression

coefficient vectors βk. The quantities α, u, and ε are random effects terms representing

baseline state propensities, genetic effects, and individual animal effects, respectively. These

random effects are given normal distributions with the variances as free parameters to be

estimated:
εi,k ∼ N(0, σ2

k) ,

αk ∼ N(0, τσ2
k) ,

u·,k ∼ N(0, γkσ2
kA) .

(4.5)

The parameters σ2
k determine how much variability exists across animals in the propensity

for state k (outside of variability accounted for by the covariates Xi). The parameter τ

controls the extent to which the states themselves vary in their average propensities across

animals. That is to say, in a model where the σ2
k are large and τ is small, no state will

consistently have high or low probability across the population, whereas when σ2
k are small

and τ is large, states will have similar probabilities across animals but some states will

be consistently high probability and others low. Finally, the covariance matrix A is the

relatedness matrix of the animals in the study population. The parameters γk determine how

much variation in each state’s propensities is accounted for by genetic effects. Further, note

that the variance component parameters τ and γk are being scaled by the “global” variances

σ2
k. This causes the linear regression in Equation 4.4 to be fully conjugated, such that the

sampler can be “partially collapse” during inference by integrating out the components of

the linear regression (van Dyk & Park, 2008). See (Park & Min, 2014) for an explanation of

partially collapsed samples in mixed effects regression.
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As we are using a fully Bayesian approach, we must specify priors for the free parameters.

We use standard conjugate uninformative or weakly informative priors in all cases:

θ(k,b) ∼ Dirichlet(1) ,

βk ∼ N(0, 1) ,

σ2
k ∼ InvGamma(0.005, 0.0005) ,

τ ∼ InvGamma(0.005, 0.0005) ,

γk ∼ InvGamma(0.165, 0.0165) .

(4.6)

See Gelman et al. (2008) for a discussion on weakly informative priors, though we do

not use their exact priors. Note that the seemingly weakly informative prior on the γk

parameters was chosen in order to achieve an uninformative (high variance) prior on

heritability, which in this model is approximately γk/(1 + γk). An uninformative prior such

as γk ∼ InvGamma(0.005, 0.0005) would actually place high prior probability mass on values

of γk/(1 + γk) near 1. The chosen prior is roughly symmetric on γk/(1 + γk) and places

much of the probability mass near both 0 and 1.

Model fitting

We fit the model using a custom Gibbs sampler implemented in the Julia technical computing

language v0.5.0 (Bezanson et al., 2017). As standard logistic regression representation is

non-conjugate and therefore cannot be sampled from using Gibbs, we use the fully conjugate

latent variable formulation of logistic regression described in Polson et al. (2013) and

previously applied to topic models in Chen et al. (2013). In the results reported below we

ran two chains of 100,000 samples each, which were thinned to 1000 samples, with the first

100 of those discarded as burn-in.

Our model involves unsupervised classification with several hundred parameters, which means

the posterior is likely to be highly multimodal. Gibbs sampling with naively chosen random

starting points can often get stuck around suboptimal and idiosyncratic local maxima, which
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leads to both poor inference and results that are unpredictable and unreproducible between

runs. Tests with random starting points indicated that even in simple synthetic data sets,

where observations fall into distant, non-overlapping clusters, Gibbs sampling alone very

frequently yielded incorrect clustering whenever more than three or four behavioral states

were used. In many applications of topic modeling, reproducibility and interpretability of

model outputs are of secondary concern to pure predictive performance, but for scientific

inference they are paramount.

In order to improve the quality and reliability of inference we first fit a simpler version of the

model which we then used to generate starting points for the full model. Specifically, we fit

a “flattened” version of the full model which is equivalent to assuming that all observations

came from the same animal, thus discarding all information about differences between

animals and population level covariates. This model is in effect a naive Bayes classifier,

where each possible classification is analogous to a behavioral state. This flat model was

fit by maximum likelihood (ML) using the Stan software package v2.14.0 (Carpenter et al.,

2017). The initial points for this optimization step were generated by first taking the ML

solution for a model with a single behavioral state, then adding independent Gaussian noise

to each parameter to generate starting points for each behavioral state. Multiple fits with

independent initializations were generated and the fit with the highest posterior density was

used to initialize the Gibbs sampler. Specifically, for each focal observation, an assignment

to a behavioral state was randomly drawn from the posterior distribution of behavioral state

memberships under the ML fit, and this mapping from observations to behavioral state was

used as the starting point for the Gibbs sampler. We found that in practice this procedure

very reliably recovered the true parameters when applied to simulated data and provided

consistent results using real data.

Repeatability analysis

Seventy-seven animals from social group F were observed for two consecutive years (2012

and 2013), and we used these animals to assess the stability of the phenotypes discovered by
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our model. To accomplish this objective, we ran a separate model in which all animals from

the previous analysis were included, but animals with dual observation years were permitted

to have independent phenotypes for each year. We then examined the correlation between

the posterior means of the phenotypes in 2012 and 2013. No heritability component was

included in this model. Note that this version of the model was not used for any analysis

other than heritability, as the artificial inflation of the number of animals might lead to

unwarranted confidence in population-level inferences.

Simulations

To verify that the behavioral state model could correctly recover both state contents and

individual phenotypes, we tested the model on synthetic data in series of five simulations

using 5, 10, 20, 40, and 80 states. For each simulation, we simulate 200 individuals with 100

focal observations each, using an ethogram consisting of 30 behaviors. Each behavior was

represented as a categorical distribution with 3 levels. States were generated by sampling

from the following prior:
λ

(k,b)
l ∼ N(0, 1.0) ,

θ
(k,b)
l = exp(λ(k,b)

l )∑
l′∈1:3 exp(λ(k,b)

l′ )
.

(4.7)

Similarly, individual phenotypes were generated by sampling from the following distribution:

ηi,k ∼ N(αk, 0.0625) ,

αk ∼ N(0, 0.25) .
(4.8)

These values are converted into individual probability distributions over states. Each

individual’s probabilities are then used to sample a state membership for each of that

individual’s 100 focal observations.

Because states have no intrinsic ordering, some method is required for associating states

in the simulated data with a matching state in the model output before it is possible to
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determine whether a state or phenotype has been accurately estimated. To accomplish this,

we used a greedy matching algorithm with the folowing steps:

1. Pick an output state k′ and calculate the posterior mean for each of its parameters,
θ̂(k′).

2. For each simulated state k that is not already matched with an output state, calculate
the correlation between θ(k) and θ̂(k′).

3. Pick the simulated state with the highest correlation as the match for the output state
k′.

4. Repeat for each k′.

After the matching procedure, we assessed how well the model recovered individual pheno-

types by calculating for each individual the correlation between that individual’s simulated

probability of being in each state and the probabilities of being in the matching states

of under the fitted model. We also assessed our ability to recover the true number of

behavioral states in the 5-state simulation by comparing WAIC scores of the model with 5

states to models with 3, 4, 6, and 7 states fitted to the same data.

The model was fit to the simulated data using the same fitting procedure as used with the

Cayo data. However, no regression coefficients or heritabilities were calculated.

Comparisons with factor analysis

We fit factor analysis models to the Cayo Santiago data set to compare with the behav-

ioral state model presented here. As factor analysis and related models have no explicit

hierarchical structure, they cannot separate observation-level relationships among behaviors

from organism-level relationships; they can either examine how behaviors co-occur within

observations, or how average rates of behaviors can co-occur between macaques, but not both

simultaneously. Therefore we fit two models. The factor model 1 used the focal observations

themselves as independent data points. For factor model 2, we calculated average rates of

each behavior for each macaque and used macaques as independent data points. To set the

number of factors used, we used 5-fold cross-validation to choose amongst 5, 10, 15, and 20

69



factors. For both versions 1 and 2 of the model, models with 10 factors or more performed

similarly, so we used 10 factors for ease of comparison with the state model. We defined the

phenotypes infered by the factor models as the factor scores of the individual animals. In the

case of factor model 1, scores are associated with individual focal observations rather than

individual animals, so the phenotypes were the average of the scores across each macaque’s

focal observations.

To estimate heritability of phenotypes under both models, we fit an animal model to the

inferred phenotypes. These models used the same covariates as the state model.

To calculate conditional means for rates of behaviors under factor model 1, we sampled focal

observations from a multivariate normal distribution with the means and covariance matrix

fit by the factor model. Since the true data is discrete rather than continuous, for each of

the sampled observations we rounded the behavior amounts to the nearest whole number

occurring in the true data.

All factor analyses were carried out using the factanal function in R 3.4.0 using “regression”

scores. (R Core Team, 2017). Animal models were written and fit using the Stan software

package (Carpenter et al., 2017).

Assessing genetic and covariate influences on social phenotypes

In multinomial logistic regression, regression coefficients associated with a state are only

interpretable relative to a baseline state (Agresti, 2002). This is due to the fact that a

probability distribution over K states has only K − 1 free variables, as the probability

of a single state is determined completely by that of the remaining states. If a baseline

state is not specified, parameters will be unidentifiable with respect to the data and will be

constrained only by the prior. Regression coefficients and genetic effects, with the coefficients

and genetic effects of the baseline state subtracted, therefore reflect an influence on the

relative probabilities of a each state occurring versus the baseline state.
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A related issue is that the state probabilities, here the phenotypes of interest, are a nonlinear

function of the underlying model parameters and covariates. The impact on the phenotypes

of any given component of the model depends on the value of every other covariate and

parameter in the model. Due to this nonlinearity, and because values depend on the baseline

selected, parameter estimates themselves can be very difficult to interpret. However, an

advantage of our Bayesian approach is that we can easily derive estimates and central credible

intervals (CIs) for the influence of specific components of the model on the phenotypes of

interest. We accomplished this by generating predicted phenotypes from posterior samples

under different assumptions to assess the contributions of different components of the model.

To assess the impact of a specific covariate on phenotypes, we generated predicted state

probabilities at varying levels of that covariate while holding every other covariate fixed

at its population average value (or, in the case of discrete covariates, the modal level).

This process was repeated for every posterior sample of the model parameters, yielding a

full posterior distribution of predicted phenotypes.

To assess which, if any, behavioral states were strongly influenced by genetic effects, we

calculated a pseudo-h2 metric to describe the amount of variance in state probabilities that

was explained by genetic effects and covariates combined relative to the variance captured

by covariates alone. Formally, for state k the total variance in state probabilities is var(π·,k),

where π·,k is the vector of state probabilities as defined above (Equation 4.4). We can also

define partial variances based on state probabilities estimated when certain components of

the model are omitted:

π̂
(B)
i,k =

exp(η̂(B)
i,k )∑

k∈1:K exp(η̂(B)
i,k )

,

η̂
(B)
i,k = αk +XT

i βk,

(4.9)

π̂
(u)
i,k =

exp(η̂(u)
i,k )∑

k′∈1:K exp(η̂(u)
i,k′)

,

η̂
(u)
i,k = αk +XT

i βk + ui,k.

(4.10)
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We then define pseudo-h2 for behavioral state k as

1−
var(π·,k − π̂(u)

·,k )

var(π·,k − π̂(B)
·,k )

. (4.11)

This is the proportion of variance explained by adding genetic effects back into a model,

out of the residual variance left over by a model with covariates alone. This is both closely

related to a partial R2, and to the traditional h2 measure used in animal models, where the

latter is commonly defined as the proportion of variance explained by genetic effects out of

the residual variance after the effects of covariates are removed (Wilson et al., 2010). As

with covariates, we calculated pseudo-h2 for every posterior sample. Finally, we note that

unlike standard h2 and R2, pseudo-h2 can be negative, indicating that including genetic

components reduces predictive accuracy.

Results

Simulation tests

We first verified that our model could accurately recover both the contents of behavioral

states and phenotypes of individual animals by fitting the model to simulated data sets

and comparing the model outputs to the ground truth. Figure 4.1 shows that for data sets

of similar size as the Cayo Santiago data, the model accurately recovered all behavioral

states so long as the number of states did not exceed 20. In each simulated data set with

up to 20 states, every simulated state had a unique state in the fit model for which their

state parameters θ(k) had a correlation coefficient above 0.95. When the number of states

exceeded 20, the majority of simulated states had a close match in the model’s estimated

states, but several simulated states had no match with correlations above 0.5. This suggests

that the model was unable to find some behavioral states.

Similarly, the ability of the model to reliably recover phenotypes declined as the number

of states increased. With 5 and 10 states, the correlation between fitted and simulated
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phenotypes was above 0.75 for most individuals and above 0.5 for nearly all of them, while

in the data sets with 40 and 80 states most individuals had correlations below 0.5. This is

not surprising, as larger numbers of states means more parameters must be estimated for

each individual using the same number of observations.

Individual phenotypes State content
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Figure 4.1: Correlations between simulated and fit phenotypes (left) and state contents
(right). Both panels show boxplots, though for the state contents the values are concentrated
enough that the hinges of the plots are not distinguishable. For phenotypes, each data point
is an individual, while for states, each data point is a state.
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Figure 4.2: Choosing number of states for simulated data using WAIC. Y-axis shows
difference in WAIC between the model with the correct number of states, K, and models
with more and fewer states. Error bars represent two standard errors. Lower is better.

We also found that for the data set with five states we were able to identify the model with
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five behavioral states as the optimal model using WAIC goodness-of-fit metric. See Figure

4.2 for the WAIC simulation results.

Phenotype distributions and behavioral state content

In order to choose an appropriate number of behavioral states, K, we calculated the widely-

applicable information criterion (WAIC) (Vehtari et al., 2017) for models (without a genetic

component) with 5, 10, 15, and 20 states, and used the number of states associated with the

lowest WAIC. We identified the model with 10 states as having the lowest WAIC (Figure

4.3). Accordingly, we used 10 behavioral states for all subsequent analyses (referred to

hereon as S1–S10). Figure 4.4 shows the distribution of phenotypes across the population,

in the form of the rate at which each animal exhibited each behavioral state. We ordered

the states in terms of how frequently each state occurred in the population, with S1 having

the highest average rate of occurrence and S10 having the lowest. S1–S3 showed both high

overall rates, with animals spending on average 55% of their focal observations in these

states, as well as high variability in their rates across animals, with substantial numbers of

animals spending more than 30% of their focal observations in a single one of these three

states. S4–S9, on the other hand, all had median rates falling in a narrow range between

7% and 5.6%, with only one animal displaying a rate greater than 20% in any one of those

states. Finally, S10 has a median rate of only 1.4%.
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Figure 4.3: Choosing number of states for the Cayo Santiago data using WAIC. Y-axis
shows difference in WAIC between the model with 10 states and models with more and
fewer states. Error bars represent two standard errors. Lower is better.
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Figure 4.4: The distribution of phenotypes of the studied population. The box-and-whisker
plots display the distribution of posterior mean probabilities of being in each state across all
studied individuals. States are ordered by descending mean probability across the population.
“Hinges” of the boxes represent 25%, 50%, and 75% quartiles.

Next we examined the contents of these behavioral states. Figure 4.5 visualizes the typical

behaviors of each state in terms of their relative frequency, with very rare behaviors omitted

for legibility. Such “at a glance” summaries distinguish particular features of each behavioral
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state. Immediately apparent is the distinction between the more frequent S1–S3 and the

infrequent S4–S9. S1–S3 paint a rather prosaic portrait of macaque life, consisting largely of

self-directed behaviors, such as scratching oneself, eating, and walking. Indeed, S2 entailed

doing little other than resting. The social interactions that did occur in these three states

were primarily agonistic. In particular, both overt non-contact aggression and less overt

agonistic actions, such as fear grimaces and avoidances, were quite common in S1. The

middle infrequent S4–S9 on the other hand, displayed mixtures in varying proportions of

agonistic and affiliative actions. Incidental affiliative behaviors such as approaching other

animals occurred commonly throughout all of these infrequent states, while grooming, a

more significant sign of affiliation, appeared concentrated in S4, S5, and S8.

Repeatability

As our goal is to identify phenotypes with underlying biological bases, it is important to

show that phenotypes produced from the model are consistent within animals and relatively

stable across time. To that end we compared estimated phenotypes from animals in group F

from years 2012 and 2013. Phenotypes in 2012 were strongly correlated with phenotypes in

2013 for all behavioral states, with the lowest correlation coefficient being 0.64 for S1, and

the largest being 0.88 for S8 (p < 0.001 for both).

Group, rank, and sex effects on social phenotypes

While describing the content of behavioral states is useful, scientists are often more interested

in identifying sources of behavioral variability. In rhesus macaques and other NHPs, it is

important to understand how much variability in social phenotypes across animals can be

predicted on the basis of demographic covariates, and how much is idiosyncratic to each

individual. In the present model we included age, sex, dominance rank, social group, and

age-by-sex and rank-by-sex as population-level predictors of phenotypes. Dominance rank

was represented on an ordered categorical scale: low-ranking animals outranked less than

50% of their social group, medium-ranking animals outranked between 50% and 80%; and
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Figure 4.5: The content of behavioral states fit by the model. Relative rates for each behavior
are calculated by dividing the posterior mean rates across states by the mean rate of the
highest state, such that 1 represents the highest mean rate across states. For visual clarity,
behaviors with relative rates below 0.05 are omitted, and behaviors for which the difference
between the “give” and “receive” variants is less than 0.33 are concatenated into a single
label (give/rec).
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high-ranking animals outranked greater than 80%. Ranks were available annually, so for

animals with multiple years of observations that changed ranks, their average rank was used.

Figure 4.6 displays the regression coefficients for each covariate’s influence on the probability

of being in each behavioral state. Here we choose S2 as baseline as it provides a neutral

default state with little in the way of positive or negative social interactions.
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Figure 4.6: Effects of covariates on phenotypes. Regression coefficients with S2 as a baseline
(see Methods). Points represent posterior means and lines, 95% central credible intervals.

The posterior distributions of the regression coefficients indicate that social group membership

and sex had large influences on social phenotypes. Animals in groups R and HH had,

for instance, lower relative rates of being in S1 versus S2 than animals in the largest

social group, F, with regression coefficients of −0.52 ([−0.78, −0.27] 95% CI) and −0.88

([−1.20,−0.58] 95% CI), respectively. As S1 had much higher rates of agonistic behavior

than the unsocial S2 and typically involved very little affiliative behavior, this suggests

that animals in group F were more likely to become involved in agonistic interactions. Sex
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and linear dominance rank were the most common predictors of relative behavioral state

occurrence rates, with four and five of the nine non-baseline states respectively showing

significant effects. These states overlap, with S1, S3, and S6 being more frequent in male

macaques and in lower ranking monkeys, which we note were states with higher rates of

agonistic behaviors and relatively lower rates of affiliative behaviors.

Though examining the posterior of regression coefficients predicting relative odds of states

can be useful, it is often more intuitive to directly examine the influence of covariates on the

absolute rates at which an animal experiences behavioral states. We used this method to

examine how sex, group membership, and dominance rank influenced phenotype. Figure 4.7

displays the influence of social group membership on the social phenotype of male and female

animals of median age and rank. This representation of the model demonstrates that males

experienced S1 and S3 more frequently than females, at the expense of slightly lower rates

of all of the less frequent, more social S4–S10. S1 entailed giving and receiving aggression

while moving and feeding, while S3 consisted of self-directed grooming and scratching with

some amount of agonistic actions that may have served to defuse aggression. Both featured

low rates of affiliative social behavior. In contrast, the states males experienced less often

contained higher relative rates of affiliative behaviors and peaceful sharing of space with

conspecifics. This implies that males spent more of their time avoiding confrontations and

competing for resources and less time experiencing social support.
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Figure 4.7: Expected probabilities of being in a state across different social groups for
animals of average age and rank. Points represent posterior means and error bars, 95%
central credible intervals of the expected probability.

It is worth noting that males experienced S6 at lower rates than females did, despite the

fact that the S6 regression coefficient for “male” has a positive posterior mean and little

posterior mass below zero (0.13 posterior mean, [−0.03,0.45] 95% CI). This illustrates the

value of examining absolute state probabilities rather than regression coefficients themselves.

In other words, because males spent so many focal observations in S1 and S3, the positive

coefficient for males in S6 reduced the extent to which S1 and S3 crowded out S6 for males,

but did not reverse the gap between sexes.

Finally, we note that S10, the least frequent of states overall, showed a dramatic difference

between groups. Monkeys in group R experienced this state far more often than members of

either F or HH. As before, this effect was not apparent from the raw regression coefficients,

as the coefficients for HH and R membership were similar in absolute value, with posterior

means of −0.91 ([−1.80,−0.14] 95% CI) and 1.45 ([0.96, 1.95] 95% CI) respectively. S10

was characterized by very high rates of feeding while maintaining close proximity to large

numbers of other animals. Focal animals in S10 also engaged in high rates of agonistic

behaviors such as threats and non-contact aggression, suggesting this state captured episodes
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of food competition within or between groups.

Figure 4.8 shows the influence of dominance rank on the phenotype of an animal of median

age in group F. Here we observed an overall pattern across behavioral states that was similar

to the effect of gender, in that S1 and S3 were overall more frequent among low ranking

animals than high, while S4–S10 were more frequent in high ranking animals. We also

observed strong rank-by-sex interactions in S3 and S9, whereby higher rank had little effect

on the rate of being in S3 for females but greatly decreased that rate for males, while the

opposite was true for S9.
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Figure 4.8: Relationship between dominance rank and the expected probability of being in
a state for animals of average age in group F. Curves represent posterior means and shaded
regions, 95% central credible intervals of the value of the curve at the corresponding rank.

Genetic components of social phenotypes

Finally, we sought to clarify which aspects of social phenotypes were strongly influenced

by genetic factors. To quantify how much variability in the probability of being in each

behavioral state could be accounted for by genetic factors, beyond the variability explained

by demographic covariates alone, we calculated pseudo-h2 as described above for each

behavioral state and displayed the posterior distributions in Figure 4.9. For most states, we

found very wide 95% credible intervals for the variability explained with the lower bounds
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of eight of the ten states falling below 10%. For these states, we could not effectively rule

out negligibly small contributions of genetics in determining behavioral state probabilities.

However, S5 and S6 showed reliably high pseudo-h2 of 0.69 ([0.43, 0.80] 95% CI) and 0.6

([0.24, 0.76] 95% CI), respectively.

S5 was associated with high levels of affiliative behavior, involving high rates of friendly

vocalizations, grooming, and passive physical contact, as well as being in close proximity to

a high number of conspecifics for long periods of time (Proximity Group Size and Social

Proximity, respectively, see Appendix for definitions). S5 also showed low rates of most

agonistic interactions. Conversely, S6 was characterized by a more diverse selection of

behaviors, entailing high rates of less confrontational forms of agonistic behavior (e.g., giving

and receiving fear grimaces and displacements) and more actively confrontational behavior

(e.g., giving threats and noncontact aggression, as well as submissive gestures). Nonetheless,

animals in S6 were not deterred from affiliative approaches.
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Figure 4.9: Genetic influences on the probability of being in a state in the studied population.
Points represent posterior means, thick error bars, 66% central credible interval (roughly
equivalent to 1 standard error), and thin error bars, 95% central credible intervals. See
Methods for definition of the pseudo-h2 measure.
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Comparison with factor analyis

One advantage of the state model over factor analysis and related methods is that it can

capture a wider range of relationships among behaviors. Figure 4.10a gives an example of this

using the behaviors Travel, Feed, and Noncontact Aggression (received). The relationship

between traveling and feeding is nonlinear, with the rate of traveling increasing with the

rate of feeding for low levels of feeding, but sharply decreasing at very high rates of feeding.

Moreover, this relationship is moderated by noncontact aggression received. During focal

observations when the animal is not feeding, animals travel much more when receiving

aggression, but when feeding occurs received aggression has little impact on time spent

traveling. The state model captures both the nonlinear relationship between travel and

feeding as well as the interaction with noncontact aggression received, though it does notably

underestimate how quickly time spent traveling decreases at high levels of feeding. Factor

model 1, however, can only represent linear relationships (Roweis & Ghahramani, 1999)

and so captures only the positive correlation between traveling and feeding at low levels of

feeding. We did not assess factor model 2 in this way; because factor model 2 is a model of

average behavior rates by individuals rather than a model of focal observations themselves,

we saw no clear method for generating predictions for these observation-level relationships.

Finally, we also compared the state model to the factor models in the repeatability and

heritability of the phenotypes generated by the model. As shown in Figure 4.10b, the

phenotypes under the state model showed higher repeatability than those of either factor

model. As shown in Figure 4.10c, the factor model yielded no phenotypes with heritability

estimated at above 0.5, while the state model and factor model 1 phenotypes showed broadly

similar distributions of heritabilities. However, given the high uncertainties associated with

heritability estimates under all models, any conclusions about differences among models

must be tentative at best.
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Figure 4.10: Comparisons between the state model and factor analysis models. (a) The
leftmost panel shows observed means and standard errors of rates of Travel at varying levels
of Feed and Noncontact Aggression (received); The right two panel shows the expected levels
of Traveling under the state model and factor model 1; (b) Repeatability, as measured by
the correlation between 2012 and 2013 phenotypes, for the three models; (c) Heritability
estimates of phenotypes from the three models. Error bars in all panels represent one
standard error.

Discussion

The influence of typical biological and environmental factors on social behavior is likely to

be many-to-many, with any given factor impacting many different behaviors together rather

than any specific behavior in isolation (Yang et al., 2010; Davies et al., 2011; Benjamin,

Cesarini, van der Loos, et al., 2012; Neale et al., 2012). Dealing with high-dimensional,

structured behavioral data will therefore be important for understanding the biological bases

of behavior. The field of primatology has decades of experience collecting detailed, high-

dimensional data on social behavior in species with complex, human-like social behaviors, and
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this data may prove invaluable for linking fundamental biology to complex social behavior.

However, extracting useful structure from natural, high-dimensional and relatively noisy

behavioral data sets remains a major challenge. In this chapter we presented a model

for identifying patterns of social behavior and relating them to environmental and genetic

factors, as inspired by machine learning methods for uncovering underlying topics in corpora

of documents.

The behavioral states our model discovered and their relationships with demographic covari-

ates were consistent with our knowledge of rhesus macaque behavior generally. Macaques

on average spent about 50% of their time in S1–S3, which involved little social interaction

beyond receiving non-contact aggression and other agonistic encounters in S1. This pattern

may reflect conflict over food or space given that state’s high levels of feeding and traveling.

The other 50% of the observed time was evenly distributed across the remaining states,

S4–S10, which consisted of idiosyncratic combinations of agonistic and affiliative behaviors,

reflecting the long-known importance of sociality in rhesus macaque life (Carpenter, 1942;

Rawlins & Kessler, 1986). Among both males and females, higher dominance rank was

associated with a shift away from the frequent S1 and S3, which involved mostly self-directed

behavior amidst some agonistic interactions, and towards S4–S10 which had higher rates

of many different social interactions overall as well as high rates of affiliative interactions.

This is consistent with the many previous findings that high ranking macaques, and other

primates as well, receive higher rates of affiliative behaviors from others in their social group,

while low ranking individuals are more likely to experience social isolation (Carpenter, 1942;

Brent et al., 2013; Brent, 2015; Seyfarth, 1980, 1977; Bernstein & Sharpe, 1966). The effect

of sex on predicted phenotypes was similar to the effect of dominance rank, with males, like

low-ranking animals, having higher probabilities of assignment to S1 and S3 at the expense

of time spent in S4–S9 (but not S10, notably). This may reflect the inheritance of female

rank in rhesus societies, with females remaining in their natal groups and acquiring a rank

just below their mother. By contrast, males disperse into new social groups at adulthood

and must earn their ranks there. This results in dominance hierarchies generally being more
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stable, and therefore social relationships more peaceful, among females than males (Colvin,

1986; Melnick, Pearl, & Richard, 1984).

Our model improves upon the commonly used factor analysis and PCA methods in that

it captures information regarding the way individual behaviors co-occur. First, factor

analysis and related methods implicitly assumes that data is normally distributed (Roweis

& Ghahramani, 1999). This assumption is strongly violated by observations of natural

behaviors, which are typically represented as counts. Furthermore, many behaviors of interest

are relatively infrequent (see section 2.6 on data processing and likelihood), leading to highly

skewed, zero-inflated distributions for individual behaviors. Our model uses instead a flexible

discrete distribution to avoid mismatches between the assumed data distribution and the data

itself (though any distribution with conjugate priors can be substituted with minimal effort).

Second, and more because of the multivariate normal assumption, PCA and factor models

can only represent relationships between two behaviors as correlations. The behavioral state

model, being a type of mixture model, is more flexible and capable of capturing nonlinear

relationships and interaction effects (Gelman, Hwang, & Vehtari, 2013). This means PCA

cannot capture nonlinear relationships between pairs of behaviors, or relationships which

are modulated by a third behavior. The seemingly quadratic relationship between time

spent feeding and traveling in Cayo Santiago macaques, which itself depends on whether

aggression is received, is an example of the kind of complex relationship among behaviors

that that the behavioral state model is able to represent.

We are not the first to apply topic model-like methods to primate behavioral data. The

popular program STRUCTURE, which was in fact developed prior to topic models, represents

the genotypes of organisms as distributions over distinct genetic populations (Pritchard,

Stephens, & Donnelly, 2000), just as topic models treat documents as distributions over

topics and just as our current model describes the phenotype of an animal as a distribution

over behavioral states. This model has been applied to distinguish Indian and Chinese

rhesus macaque genotypes (Hernandez et al., 2007). The current model is, to the best of
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our knowledge, the first attempt to apply topic models to natural animal behavior.

In this chapter we used a pedigree to estimate additive genetic influences on behavioral

phenotypes, as per classical heritability analyses. An alternative approach is to include

individual genetic variants as predictors in the model as in genome-wide association analyses

(GWAS). Our model’s regression layer makes GWAS very straightforward to implement, as

variant data such as minor allele count can be included directly in the model as a per-animal

covariate. However, while this approach would yield much more precise information on how

different genetic variants influence phenotypes, it may be difficult to implement for two

reasons. First, the traditional GWAS methodology involves fitting a separate model for

many common genetic variants (Balding, 2006). While this is tractable when the model

being fit is a standard linear regression, fitting a complex hierarchical model thousands of

times is computationally infeasible. Second, the sample sizes available in observational data

sets of wild or free-ranging animals reach the hundreds or low thousands at best, which

are orders of magnitude too small to achieve adequate power to detect the generally small

effects of common genetic variants (Chabris et al., 2012; Spencer, Su, Donnelly, Marchini, &

Marchini, 2009; Willer et al., 2009). We will return to the latter issue and discuss potential

solutions in subsequent chapters.

As neuroscientists and biologists investigate the biological determinants of natural social

behavior and attempt to translate laboratory findings into more realistic, unconstrained

environments, they face the challenge of quantifying natural social behavior. Because

natural social behavior is high-dimensional, highly variable, and yet highly structured,

straightforward measurement of its influences is difficult. We have worked to address this

issue by developing a model for identifying patterns of social behavior and relating them to

environmental and genetic factors. Based on techniques in machine learning for identifying

latent structure among documents, this method captures a wider range of relationships

among behaviors than is possible using popular methods such as factor analysis or PCA, and

explicitly disentangles variability in an individual’s social behavior from variability across
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the population. We hope that this model will aid researchers in quantifying social behaivior

in a way that is rigorous and consistent, while also capturing the richness and complexity of

social behavior.
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CHAPTER 5 : CONCLUSION

Capturing the full complexity of behavior in social phenotypes

The central aim of the work presented in this thesis has been to bring the representation of

social phenotypes in non-human primates closer to the level of the social interaction and

the particular patterns of behaviors exhibited in engagement with, or in avoidance of, other

agents. This aim was motivated by the presumption that this level of analysis should be more

closely connected to neurobiological and physiological causes than the long-run summaries or

outcomes of behavior which are commonly studied in both humans and non-human primates.

Because the study of non-human primates provides opportunities to observe both the fine

structure of social interactions and their long-term consequences, it can help bridge the gap

between neurobiological processes, specific instances of social behavior, and long-term social

outcomes.

In the previous chapters we have taken a modest step towards quantifying the full complexity

of social interactions by developing models which consider not just the occurrence of

individual behaviors but also the combinations in which they are deployed. We also found

that this step revealed novel information, both qualitatively and quantitatively, regarding

the behavioral phenotypes of rhesus macaques. However, there is still much nuance and

complexity to rhesus macaque social interactions, known from a long and rich literature

from psychology and primatology, that the behavioral strategy models developed here fail to

capture. Below I briefly discuss two extensions to the models developed here which bring the

representation of behavioral phenotypes closer to the full complexity of social interactions.

Behavioral strategies in continuous time

A major simplification throughout all analyses presented in this thesis is that all behaviors

which occur during a focal sample are treated as simultaneous. This makes it difficult to

capture the kinds of complex strategies that depend on the particular sequences of events.
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Tactical redirection, for example, in which an animal defuses tensions with an antagonistic

animal by redirecting their attention, involves receiving an angonistic approach followed by

emitting a threat or or vocalization to a third party (Altmann, 1962; Mercier et al., 2017;

Wheeler, 2009; Whiten & Byrne, 1988), while the recruitment of coalitions to defend against

or perpetrate aggression is indicated by the ordering in which animals approach and attack

one another (Altmann, 1962; Silk, 1982; Schülke, Bhagavatula, Vigilant, & Ostner, 2010).

These particular sequences of actions may have some signature in terms of the combinations

of behavior considered simultaneously that can be captured by the behavioral strategy

models developed above, but even if this is true it still would be difficult to determine

whether a particular behavioral strategy encompassed something like coalitionary aggression.

Therefore, an important extension to the models presented here would be to consider the

occurrence of behavior in real time. The problem of modeling the dependencies between

different kinds of data in real time has attracted interest in the Machine Learning literature,

which has developed a number of useful methods that may be applicable to NHP social

behavior. One such tool is the Hawkes Process, which describes a continuous self-exciting

point process in which the occurrence of an event drives the rates of other events in the

immediate future (Hawkes, 1971). The Hawkes process has, for example, been used to model

social interactions by email between humans where an email from one person excited a

response from another (Blundell, Beck, & Heller, 2012; Guo, Blundell, Wallach, & Heller,

2015). Such formulations could be adapted to the domain of interactions between animals by

construction a model where the behavior of one animal directed towards another excites or

suppresses the rates at which the receiver exhibits different behaviors. A behavioral strategy

under this model would then correspond to a particular pattern of excitation between

individual behaviors. One challenge in applying this framework would be representing and

estimating the differences between individual animals.

Another advantage of a continuous time model is that it would be more generally applicable.

The behavioral strategy model developed here are tailored to the particular structure of the
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behavioral data collected from Cayo Santiago. The assumption that each focal observation

is associated with a single strategy is tenable and supported by the data when each sample

is relatively short, but this is not likely to be the case with the hour-long focal samples used

in, e.g. Koski (2011). A continuous-time extension of the model would be equally valid for

long, short, or continuous observation periods.

Social relationships among rhesus macaques

Extensive research on many species of non-human primates has established that individuals

form unique relationships with group members and are aware of and sensitive to the

relationships among third parties. Animals form lasting social bonds with others, associated

with consistent expression of affiliative or agonistic social interactions over time (Cheney

& Seyfarth, 1986; Silk, 2007a; Silk, 2007b). The relationships between animals are

also influenced by indirect relationships with third parites; for example an animal will

respond differently to the vocalizations of another individual if that individual is a kin or

a close associate of an opponent (Cheney, Seyfarth, & Smuts, 1986; Cheney & Seyfarth,

2018; Wittig, Crockford, Seyfarth, & Cheney, 2007; Wittig, Crockford, Langergraber, &

Zuberbühler, 2014). These bonds between individuals are influenced, but not determined,

by kinship relations and relative dominance rank (Seyfarth et al., 2014; Silk, 1982). In the

behavioral state models presented here, we treat relationships between animals as categorical

and determined on the basis of kinship or relative dominance rank (the model described

in Chapter 3 uses only relative dominance rank, but the outcomes are qualitatively and

quantitatively similar whether distinctions are made on kin relationships or dominance rank).

Accordingly, the behavioral strategies we estimate cannot take into account the true nature

of the relationships between two animals; for instance a strategy of coalitionary aggression

or defense among friends against long-term enemies. A natural extension to the behavioral

strategy model is therefore to endogenously identify the nature of relationships between

animals within the context of the model. For example, a level of categorical latent variables

could be used to represent whether each pair of animals had a strong, weak, or antagonistic
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relationship, and behavioral strategies then defined on the basis of probabilities of behaviors

with animals of each kind of relationship.

Behavioral genetics in free-ranging animal populations

Regardless of the method used to quantify social phenotypes, efforts to identify relationships

between genotypic variability and behavior face serious challenges. This topic is of general

relevance because genomic association is one of, if not the most used methods for drawing links

between neurobiological and physiological processes and behavioral phenotypes measured

outside of the laboratory.

As we have noted before, both genome-wide and candidate gene studies of complex phenotypes

with small sample sizes have low power to detect genetic effects and low replication rates

(Border et al., 2019; Chabris et al., 2012; Ho et al., 2010; Ioannidis et al., 2011; Siontis

et al., 2010). In general, the ability to accurately and replicably detect the effects of

single common genetic variants will be limited by their effect sizes. The largest reliable

reported effect sizes in genome-wide association studies (GWAS) come from studies of

morphological phenotypes with extremely high genetic contributions, such as height and

body mass index, where the most strongly associated SNVs explained on the order of 0.4%

of variation (Speliotes et al., 2010). Smaller single-allele effect sizes have been reported in

recent large-scale studies of educational achievement, which is a complex phenotype with

a smaller and indirect genetic contribution (Branigan, McCallum, & Freese, 2013). The

most predictive SNVs in these studies explain on the order of 0.02% of the total variance

(Rietveld et al., 2013; Okbay et al., 2016). Social phenotypes in NHPs are likely to fall

somewhere between these two extremes of being directly versus indirectly linked to genetics,

and so 0.02% and 0.4% may be reasonable upper and lower bounds for plausible single SNV

effect sizes on that phenotype. Such effect sizes imply required sample sizes on the order of

thousands in order to reach a power to detect effects above 50%. In human research it is

only in the last decade that sample sizes in GWAS have reached a threshold where effects

on complex phenotypes can be reliably and replicably detected. It is unlikely that studies of
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free-ranging animal populations will achieve these size in the near future.

Despite these difficulties in studying individual genetic variants, natural behavior is pre-

dictable on the basis of genetics in both humans and animals. Our results in Chapters 2

and 4 suggest that social behaviors on Cayo Santiago, quantified in terms of combinations

of behavior or as rates of individual behaviors, have a modest additive genetic component as

measured in terms of heritability. This finding is consistent with previous research on the

same macaque population (Brent et al., 2013; Brent et al., 2014), as well as the ubiquitous

finding that human phenotypes in general show heritabilities on the order of 0.3 to 0.6

(Polderman et al., 2015; Turkheimer, 2000). This finding is also consistent with the theory

that genetic influences on the social behaviors studied here have a massively polygenic

genetic architecture, and individual variants have very small effects (Fisher, 1918; Anney

et al., 2012; Benjamin, Cesarini, Chabris, et al., 2012; Boyle et al., 2017; Chabris et al.,

2013; Davies et al., 2011; Yang et al., 2015; Yang et al., 2010).

Considering the distributed nature of genomic effects, it may be fruitful to broaden the scope

of the common variants examined to include not just the variants in a specific gene such

as OXTR, but also the broader gene networks that may impact neurobiological function.

Recent research suggests that aggregating information across large numbers of common

variants may permit the identification of genetic contributions from specific genomic regions,

even in sample sizes that are small relative to those used in traditional GWAS research

(Benjamin, Cesarini, van der Loos, et al., 2012; Yang, Manolio, et al., 2011). Interestingly,

this method is analogous to the method long used in quantitative genetics to estimate

heritability on the basis of family relationships, only with genotype data used to estimate

genetic similarity rather than kinship; hence this method is sometimes referred to as “realized

relatedness” (Powell, Visscher, & Goddard, 2010; Speed et al., 2012). These methods have

been used to partition the genomic influence in a trait into the contributions of distinct

subsets of genomic regions. Yang, Lee, et al. (2011) found that in several morphological

phenotypes, each chromosome explained an amount of trait variability proportional to the
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length of the chromosome, while Gusev et al. (2014) found that a large amount of the

genomic contribution to several complex disease phenotypes was localized to non-coding

regulatory regions. Similar methods could be applied to primate behavior, for example

to estimate the contribution of all known neurotransmitter genes or all genes involved in

neuron development. However, little is currently known regarding the sample sizes required

to reliably estimate the contributions of a gene set or network.

Other avenues for future research are the study of rare, rather than common genetic variants,

or gene expression rather than genotype. Rare variants with very low minor allele frequency

and de novo mutations are likely to have larger effects on complex phenotypes than common

variants (Gratten et al., 2014; Neale et al., 2012), and because common variants are

imperfectly correlated with rare variants and not at all with de novo variants (Eberle et al.,

2006; Speed et al., 2012), those sources of genetic variability are not well captured by

common genetic variants that are most often studied. Recent studies have also found large

effects of social relationships on gene expression (Kohn et al., 2016; Snyder-Mackler et al.,

2016), albeit in captive rather than a free-ranging populations.

The novel methods developed in Chapters 3 and 4 of this thesis can make more effective use

of observational behavioral data than conventional methods of quantifying social phenotypes

from NHP behavior. We found that modeling phenotypes in terms of behavioral strategies

increased the information gained about animal phenotypes by around 25%. Providing more

information about how animals differ from each other should translate into more efficient

estimation and identification of neurobiological correlates of behavior, because it effectively

increases the effect size of any covariate that predicts difference between animals, unless the

novel information uncovered is completely unrelated to biological factors. However, while the

magnitude of the increase in information is not insubstantial, it is also not large enough to

alter the reality that the bottleneck for genetic association studies is sample size. It may be

more relevant for biological covariates with larger average effect sizes, such as rare variants

or gene expression.
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Machine learning methods across the behavioral hierarchy

While here we have focused on the modeling and representation of behavioral phenotypes in

the context of the primate personality literature, in recent years neuroethologists have taken

an increasing interest in fine structure of natural behavior in laboratory animal models.

Several lines of research are examining the natural behavior of model organisms such as mice

and Drosophila, and as in the present work they are increasingly turning to machine-learning

methods to aid in parsing that behavior (Branson, Robie, Bender, Perona, & Dickinson,

2009; Geissmann et al., 2017; Reiser, 2009). One popular approach that has been used

primarily in Drosophila is to use supervised computer-vision algorithms to automatically

label behaviors of animals according to a human-defined ethogram (Branson et al., 2009;

Kabra, Robie, Rivera-Alba, Branson, & Branson, 2013), while another is to use unsupervised

machine-learning models to both label behavior and discover the underlying ethogram

(Vogelstein et al., 2014; Wiltschko et al., 2015; Sharma, Johnson, Engert, & Linderman,

2018). The supervised method in Branson et al. (2009), for example, labels individual frames

of video data based on a set of predefined physical descriptors of the state of the animal

(e.g. posture, velocity). The unsupervised method developed in Vogelstein et al. (2014)

learns to categorize and label the short-term reaction of Drosophila larvae to stimulation,

while the method in Wiltschko et al. (2015) uses a Hidden Markov Model to break down a

continuous series of positional data in mice into a sequence of discrete states with subsecond

duration, and Sharma et al. (2018) uses a combination of discrete states and continuous

trajectories to classify the movement patterns of larval zebrafish.

Our work here differs from the machine learning methods described above in that we are not

identifying and labeling individual behaviors. The outputs of the machine-learning algorithms

described above are analogous to the focal samples used here as raw data. Similarly, our

analog to the machine learning algorithms themselves is the dedicated research staff working

on Cayo Santiago who have trained extensively in recognizing different behaviors and labeled

their occurrences during in-person observation. Our innovation is in examining how these
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elementary behaviors are assembled into temporally-extended patterns reflecting the context

and longer-term goals of the animals, and how statistical methods can measure such patterns.

To the best of our knowledge, this sort of analysis of in terms of combinations of co-occurring

behavior is novel both to animal personality research and to neuroethology. Like animal

personality research, neuroethological research using machine learning methods has focused

on rates of individual behaviors. Robie et al. (2017), for example, which measured differences

in behavior between Drosophila genetic lines, represented the behavioral phenotype of each

line as a vector of rates of individual behaviors (e.g., walking, chasing, grooming). Similarly,

Vogelstein et al. (2014), working with Drosophila larvae and examining differences in behavior

resulting from the optogenetic activation of different lines of neurons, represented phenotypes

as probabilities of each of the reactions identified by their unsupervised learning algorithm.

While it is possible that in Drosophila, rates of individual behaviors contain all relevant

information about behavioral phenotypes, we doubt this is the case in NHP such as rhesus

macaques. The rich documentation of the sophistication of NHP behavior suggests otherwise

(Altmann, 1962), as do the results presented here. That the patterns of co-occurrence

of individual behaviors may matter is raised in Wiltschko et al. (2015), who note that

complex patterns of behaviors are built from simple modules; their work focused on the

detection and identification of those simple modules. The present work is complimentary to

these methods, in that it attempts to assemble those modules into the overarching complex

patterns. Though the particular models developed here are tailored to the focal sampling

data widely available for non-human primates, they could also be integrated directly into

machine learning algorithms developed in neuroethology.
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Resende, M. F. R., Muñoz, P., Resende, M. D. V., Garrick, D. J., Fernando, R. L., Davis,
J. M., . . . Kirst, M. (2012). Accuracy of genomic selection methods in a standard data
set of loblolly pine (Pinus taeda L.) Genetics, 190 (4), 1503–10. doi:10.1534/genetics.
111.137026

Rietveld, C. A., Esko, T., Davies, G., Pers, T. H., Turley, P., Benyamin, B., . . . Koellinger,
P. D. (2014). Common genetic variants associated with cognitive performance identified
using the proxy-phenotype method. Proceedings of the National Academy of Sciences
of the United States of America, 111 (38), 13790–13794. doi:10.1073/pnas.1404623111

Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. G. N. W.,
. . . Koellinger, P. D. (2013). GWAS of 126,559 individuals identifies genetic variants
associated with educational attainment. Science, 340 (6139), 1467–71. doi:10.1126/
science.1235488

Robie, A. A., Hirokawa, J., Edwards, A. W., Umayam, L. A., Lee, A., Phillips, M. L.,
. . . Branson, K. (2017). Mapping the neural substrates of behavior. Cell, 170 (2),
393–406.e28. doi:10.1016/J.CELL.2017.06.032

Roche, D. G., Careau, V., & Binning, S. A. (2016). Demystifying animal ‘personality’ (or
not): Why individual variation matters to experimental biologists. The Journal of
Experimental Biology, 219 (24). doi:10.1242/jeb.146712

Rodrigues, S. M., Saslow, L. R., Garcia, N., John, O. P., & Keltner, D. (2009). Oxytocin
receptor genetic variation relates to empathy and stress reactivity in humans. Proceed-
ings of the National Academy of Sciences of the United States of America, 106 (50),
21437–41. doi:10.1073/pnas.0909579106
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