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ABSTRACT 

 

SYSTEMS BIOLOGY OF GENE REGULATION ACROSS SCALES:  

FROM SINGLE MOLECULES TO CELLULAR IDENTITIES 

Ian A. Mellis 

Arjun Raj, Ph.D. 

Gene regulation takes many forms and is responsible for phenotypes at the scale of individual 

molecules up through the scale of complex tissue functions. At the smallest level, single-base 

modifications of individual mRNA molecules transcribed from the same gene can lead to 

functionally different protein products. In the first chapter of this thesis, I develop a new method, 

inoFISH, and associated analytical tools to visualize and quantify RNA editing with single 

molecule resolution in single mammalian cells. Using this new method in conjunction with 

mathematical modeling I show that the heterogeneity of single-cell mRNA editing rates across a 

population depends on the gene of interest. Further, I characterize subcellular localization 

patterns of edited and unedited mRNAs. At the other end of the spectrum, the regulation of 

transcriptome-wide patterns of gene expression can underpin cellular identities. In the second 

chapter of this thesis I develop a new experimental design and analytical framework for 

prioritizing lists of transcription factors that can be used for directed changes of cellular identity. 

With Perturbation Panel Profiling (P
3
), I show that cardiomyocyte lineage-driving transcription 

factors are more frequently up-regulated, or “perturbable”, than other highly expressed 

transcription factor genes. I subsequently demonstrate that a known cocktail of cardiomyocyte-

perturbable transcription factors enables cardiac transdifferentiation of several types of human 

fibroblasts. Lastly I extend perturbability-based selection of transcription factors to another 

biological context, i.e., fibroblast reprogramming to pluripotency. I show that fibroblast-perturbable 

factor knockdown often enables more efficient fibroblast reprogramming. Together, my thesis 

makes critical steps toward understanding and engineering gene regulation through the 

development of a diverse array of methods, experimental designs, and analytical frameworks. 
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INTRODUCTION  

 

 

In its myriad forms gene regulation generates diversity in the function of the genome at many 

scales of biological organization: from single-molecule-scale copies of transcripts in single cells to 

transcriptome-scale patterns of gene expression across tissues. Scientific questions about gene 

regulation at these different scales come with different accompanying challenges. In this thesis I 

identify and resolve some of these diverse challenges for two different questions about the 

function of gene regulation at two different levels of biological organization. 

 

At the level of single molecules in single cells, RNA editing is a form of gene regulation that 

generates diversity in the base composition of transcripts arising from the same gene. These tiny, 

yet precise, differences are sometimes associated with life-or-death outcomes for single cells but 

are extremely challenging to study due to a lack of sufficiently sensitive experimental techniques. 

In the first chapter of this thesis I develop a new experimental technique and improve associated 

analytical tools to enable unprecedented single-molecule resolution of RNA editing in single cells 

in situ. I apply this technique to the study of several genes in neural lineage cell lines. These 

genes include GRIA2, which, when its RNA editing is disturbed, is implicated in the loss of 

neurons in models of neurodegenerative diseases. 

 

At the level of the entire transcriptome across tissues, transcription factor-driven gene expression 

patterns can dictate cellular identity. A major goal in the field of cellular engineering is efficiently 

directing cells toward a cell identity of interest on demand, e.g., toward pluripotency in the case of 

fibroblast reprogramming to induced pluripotent stem cells. However, an outstanding question in 

the field is whether we can establish a general procedure for identifying those transcription factors 

capable of driving cells toward a cell identity of choice on demand. In the second chapter of this 

thesis, I develop a new experimental pipeline and analytical framework for the identification of 
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transcription factors that enhance directed changes of cellular identity when overexpressed or 

suppressed.  

 

ONE BASE CAN CHANGE EVERYTHING: RNA EDITING IS IMPORTANT BUT 

HARD TO STUDY 

 

Of the more than one hundred known types of RNA editing resulting in chemical base 

modification, one of the most common events is adenosine deamination, which results in a base 

identity switch from adenosine to inosine (A-to-I).(Piskol et al., 2013; Sakurai et al., 2014) A-to-I 

editing, among other effects, changes the complementarity profile of the affected base from 

adenosine’s affinity for thymidine to inosine’s affinity for cytosine; inosine functions as a 

guanosine analog (Fig. 1a). Researchers have studied RNA editing, including A-to-I editing, in the 

context of structural stabilization and regulation of abundant non-coding RNAs (ncRNAs; e.g., 

tRNAs) for decades. However, in addition to affecting the secondary structure of an A-to-I edited 

RNA molecule, an inosine resulting from editing could also modulate codon identity, alternative 

splicing, or other post-transcriptional regulation of an mRNA.(Flomen et al., 2004; Sommer et al., 

1991) 

 

ADAR enzymes, which catalyze A-to-I editing, are important for normal mammalian physiology: 

ADAR mutants have well-characterized phenotypes.(Higuchi et al., 2000; Rice et al., 2012) 

Phenotypes resulting from loss of A-to-I editing are not solely due to defects in abundant 

ncRNAs. One of the best known examples of conserved ADAR-mediated A-to-I editing of a 

mammalian mRNA is that of GRIA2, whose editing results in a non-synonymous Q607R change 

in GluR2 subunit of the glutamate receptor, thereby modulating the receptor’s Ca
++

 

permeability.(Sommer et al., 1991) Electrophysiological studies show excessive divalent cation 



 
 

3 

permeability of neurons in model organisms with perturbed editing of GRIA2. Phenotypically, 

GRIA2 editing-deficient model rat forebrain neurons are more susceptible to ischemic 

insult.(Peng et al., 2006) In humans with ALS, some disease-affected motor neurons appear to 

die as a result of glutamate excitotoxicity and have perturbed GRIA2 A-to-I editing 

rates.(Hideyama et al., 2012) Research on mouse models has provided evidence suggestive of a 

causal role of deficient GRIA2 editing in ALS-like pathology: ADAR knockout mice demonstrate 

an ALS-like phenotype, which is rescued upon exogenous expression of edited 

GRIA2.(Hideyama et al., 2010) In addition to GRIA2, serotonin receptor 2C (5-HT2C) is a well-

known A-to-I editing target, with clear effects on receptor activity resulting from A-to-I 

editing.(Flomen et al., 2004)  

 

Since the 1990s, the research community has used RT-PCR-based techniques to study editing 

rates in these canonical example transcripts.(Sommer et al., 1991) However, little is known about 

how editing affects the localization of these mRNAs to specific compartments of the cell, which is 

important for understanding the factors that regulate their translation. For example, specific edited 

RNAs, such as CTN-RNA, appear to be sequestered in paraspeckles until the cell is exposed to 

stress.(Prasanth et al., 2005) Overall, multiple experiments have provided conflicting evidence 

about the subcellular localization of edited transcripts, including about GRIA2 with respect to 

nuclear retention, affecting how these genes could be post-transcriptionally regulated in stressful 

environments.(Jepson et al., 2011; Kumar and Carmichael, 1997; Prasanth et al., 2005; Savva et 

al., 2012; Wong et al., 2003) 

 

Additionally, recent transcriptome-wide surveys of A-to-I editing in mammals suggest that there 

may be many more mRNA targets than were previously known.(Bahn et al., 2012; Porath et al., 

2014; Ramaswami et al., 2012, 2013; Sakurai et al., 2010, 2014) These studies have put forward 

more than 20,000 candidate ADAR targets, most but not all in Alu repeat regions. Several 

hundred non-Alu candidate editing sites are conserved between orthologous loci in humans, 
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mice, chimpanzees, and rhesus macaques, suggesting that they may in fact be functional in 

mammals.(Ramaswami and Li, 2014) However, as above, little about the basic biology of ADAR-

mediated mRNA A-to-I editing is conclusively known.  

 

In combination, these results provide strong motivation for developing a new generation of 

precise techniques for studying RNA editing, and for using these tools to begin the quantification 

of mRNA editing rate perturbation in diseases such as ALS.  

 

In chapter 1 of this thesis I apply a variant of the single-molecule FISH (smFISH) method to 

characterizing the subcellular localization of A-to-I edited transcripts and to identifying the 

distribution in editing rates in populations of neural lineage cells. (Levesque et al., 2013; Mellis et 

al., 2017; Raj et al., 2008)  

  

 

THE WHOLE TRANSCRIPTOME MATTERS: THE STATE OF IDENTIFYING 

LINEAGE-DRIVING TRANSCRIPTION FACTORS 

 

Cellular transdifferentiation, i.e., transforming a cell of one type into another type, is a long-

standing goal in the biomedical field. However, the biology of many terminally differentiated cell 

types (e.g., fibroblasts and cardiac myocytes) is such that they are phenotypically stable in the 

sense that they retain their cell type even when subjected to perturbation. A striking but 

commonplace example of this stability is growing cells on tissue culture dishes, in which cells are 

clearly not in their native context, but still retain recognizable features of being, say, a fibroblast or 

cardiac myocyte.  

 



 
 

5 

Decades of work have shown that one can, however, directly change cellular identity through 

manipulation of genetic material. In the 1950s, Briggs and King and Gurdon et al. demonstrated 

that frog blastula whole-nuclear transplantation could transform eggs into cells resembling 

zygotes, capable of complete development to sexually mature individuals.(Briggs and King, 1952; 

Gurdon et al., 1958) Relatedly, in the 2000s, Sul et al. showed that transplantation of the whole 

transcriptome of a rat astrocyte into a rat neuron was sufficient to transform the neuron into an 

astrocyte-like cell.(Sul et al., 2009)  

 

The work of Davis et al. showed that one can, further, transform one cell type into another 

through ectopically inducing expression of a small set of genetic factors (Davis et al., 1987) 

known to regulate larger gene expression programs. The celebrated work of Yamanaka 

(Takahashi and Yamanaka, 2006) showed that one can similarly turn a terminally differentiated 

cell into a pluripotent stem cell. These genetic factors are often transcription factors, which 

appear to induce reprogramming through the regulation of large genetic programs akin to those in 

the target cell type. However, a major issue in the field is knowing which factors to test for their 

potential for reprogramming to a fate of interest. Given that many of them work best in a “cocktail” 

consisting of multiple factors, brute force genome-wide screening is not feasible, leaving us with 

the requirement to narrow the list of potential factors down before testing them experimentally. 

 

Thus far in the field, there have been two broad sets of approaches to identifying putative 

reprogramming factors. The approach taken by Yamanaka and many subsequent studies has 

been to take a limited pool of factors known to be involved in the maintenance of pluripotent stem 

cells, and then to methodically test combinations of subsets of those factors to see which ones 

were most critical to inducing cells to reprogram. Such an approach is no doubt powerful and 

rooted in years of painstaking developmental biology, but a fundamental problem is that it is 

limited in scope to factors that have a known role in development. In principle, however, many 

forms of transdifferentiation have no real analogy in developmental biology, and as such, it is 
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possible that there are many other factors that could potentially induce transdifferentiation that 

are completely independent of those involved in the developmental trajectory. Identification of 

such unknown factors could have a huge impact on our ability to transdifferentiate cells. 

 

Recent studies have tried to use molecular profiling of cells to reveal these factors (e.g., CellNet 

(Cahan et al., 2014; Morris et al., 2014; Radley et al., 2017), Mogrify (Rackham et al., 2016), and 

others (D’Alessio et al., 2015; Tomaru et al., 2014)). These studies use primarily transcriptome 

data (microarray, CAGE, or RNA sequencing) to identify transcription factors with predicted gene 

regulatory activity that is highly specific to a particular cell type. The underlying hypothesis in 

these studies is that these lineage-specific factors might also be lineage-driving in the sense that 

their expression can induce cells to transform into the type for which they are most specific. 

However, in practice, this strategy has met with fairly limited success. For instance, CellNet used 

thousands of profiles to try to identify factors for a B-cell to macrophage transdifferentiation 

protocol, but it didn’t identify the most important known factor in the transformation: C/EBPα 

overexpression. Mogrify also was a limited success: it did find some previously known factors, but 

failed to identify others. In the years subsequent to publication, to my knowledge, neither has 

been used to prospectively identify new transdifferentiation protocols. 

 

A central conceptual limitation of these approaches is that they only identify factors whose 

expression or activity is specifically associated with the cell type, irrespective of how that cell type 

is able to maintain its overall phenotypic stability. In principle, there may be sets of factors that 

are neither cell type-specific nor associated with a cell type’s development that are nonetheless 

important for maintaining its cellular identity. How, then, might one identify these additional 

factors, whose role in cell identity maintenance suggests that they are promising candidates for 

inclusion in a transdifferentiation protocol? 
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In the second chapter of this thesis, I develop an experimental and analytical pipeline for 

identifying transcription factors for use in directed changes of cell identity through their 

association with cellular responses to a variety of perturbations. I subsequently test several 

candidate factors identified in studies of perturbed cardiac myocytes and dermal fibroblasts in 

cardiac transdifferentiation and iPSC reprogramming experiments.  
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CHAPTER 1: VISUALIZING ADENOSINE-TO-INOSINE RNA 

EDITING IN SINGLE MAMMALIAN CELLS 

 

Conversion of adenosine to inosine is a frequent type of RNA editing, but important details about 

its biology remain unknown due to a lack of imaging tools. We developed inoFISH to directly 

visualize and quantify adenosine-to-inosine edited transcripts in situ. We found that editing of 

GRIA2, EIF2AK2, and NUP43 is uncorrelated with nuclear localization and paraspeckle 

association. Further, NUP43 exhibits constant editing levels between single cells while GRIA2 

levels vary. 

 

ADENOSINE DEAMINATION RNA EDITING CHANGES BASE PAIRING 

 

Many RNA species are modified to contain non-canonical bases, a process known as RNA 

editing. The most prevalent type is adenosine-to-inosine editing(Bass and Weintraub, 1987), 

wherein adenosine deaminases (e.g., ADARs) enzymatically modify an adenosine base to an 

inosine base (Figure 1.1),  disruption of which leads to defects in hematopoiesis (Liddicoat et al., 

2015) and neurological function(Higuchi et al., 2000). It has been speculated that adenosine-to-

inosine RNA editing influences subcellular localization patterns like nuclear retention(Chen and 

Carmichael, 2009; Kumar and Carmichael, 1997; Prasanth et al., 2005; Zhang and Carmichael, 

2001), but the lack of visualization tools has left this and other hypotheses untested. We thus 

developed inosineFISH (inoFISH), a fluorescence in situ hybridization-based method for directly 

imaging adenosine-to-inosine RNA editing events with single-molecule resolution.  
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Figure 1.1 
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COMPETITIVE HYBRIDIZATION AS A STRATEGY FOR DETECTING RNA 

EDITING IN SITU 

 

Discriminating edited from unedited RNA via RNA fluorescence in situ hybridization (RNA FISH) 

is difficult because it relies on the hybridization of oligonucleotide probes to visualize the target of 

interest(Raj et al., 2008).  Short oligonucleotides bind nonspecifically while long oligonucleotides 

cannot discriminate single-base differences. We thus used a ‘toehold probe’ strategy(Levesque et 

al., 2013) to reduce the initial hybridization region of our detection probes in order to confer 

selectivity based on single-nucleotide differences (Figure 1.2). Our scheme took advantage of 

the fact that inosine preferentially binds to cytosine rather than thymine by using two detection 

probes that compete to target the unedited, adenosine-bearing sequence using a thymine, and 

the edited, inosine-bearing sequence using a cytosine. Upon specific binding, the “mask” 

sequence is released by strand displacement to stabilize hybridization. However, single 

oligonucleotides are still prone to nonspecific binding, so we simultaneously used smFISH (the 

“mRNA guide” probe) to target a constant region of mRNA, coupled to a unique fluorophore 

(Figure 1.2). The mRNA guide showed us where to look for specific detection probes. 
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Figure 1.2: Overview of the inoFISH probe design strategy 
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VALIDATING INOFISH OF GRIA2 IN HUMAN NEURAL LINEAGE CELL LINES 

 

To test whether inoFISH could visualize adenosine-to-inosine editing, we chose the canonical, 

well-studied example of the Glutamate receptor 2 transcript (GRIA2). (GRIA2 editing is critical for 

neuronal function(Seeburg et al., 2001) and defects in GRIA2 editing have been associated with 

ALS(Yamashita et al., 2012).)  We confirmed that GRIA2 was edited by comparing genomic DNA 

and cDNA sequence in SH-SY5Y cells (Figure 1.3), and verified that it is a viable target for 

smFISH based on probe design constraints.(Raj et al., 2008) Combining four biological replicates, 

10.53% of mRNA guides uniquely colocalized with adenosine or inosine detection probes, with 

5.25% and 5.28% of GRIA2 guides colocalizing with the adenosine-detection and inosine-

detection probes respectively Figure 1.4a,b). The estimated mean editing level for GRIA2 was 

57.3% (95% confidence interval: 45.1%, 69.5%, full statistical model in Appendix A). 

 

To confirm that detection probes did not colocalize with guide probes by random chance, we 

measured the rate of random colocalization by computationally shifting guide spots by 5 pixels in 

both the X and Y direction (“Pixel-shift”), thereby moving them outside the range of any true 

colocalization events (see Appendix B; Figures 1.4b, 1.5). Pixel-shift analysis reduced 

colocalization to 1.83% and 1.16% for adenosine and inosine, respectively, showing that most of 

colocalization events were specific. (Substituting an unrelated guide probe yielded similar results; 

Figure 1.6.) To check for dye-specific effects, we swapped fluorophores on the detection probes 

(Figures 1.4b, 1.5), revealing variation in the estimated mean editing level of 22% (Figure 1.5, 

and Appendix A). Together, these findings show that inoFISH can measure editing levels 

provided that one checks for dye-specific biases in detection probe sets. 
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Figure 1.3:  Sanger sequencing of GRIA2 RT-PCR product  
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Figure 1.3: Sanger sequencing of GRIA2 RT-PCR product 
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Figure 1.4 
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(a) Fluorescence micrographs of Cal Fluor 610–labeled guide 

probe detecting GRIA2 mRNA (upper left), Cy5-labeled inosine 
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Figure 1.5 

 

 

Figure 1.5: Expanded controls for GRIA2. InoFISH results for 
each replicate, including pixel-shift and dye-swap controls for 
GRIA2 in SH-SY5Y cells.



 
 

16 

Figure 1.6 

 

 

Figure 1.6: False-colocalization of GRIA2 detection probes with SFPQ 
guide probes. (top) Schematic representation of the experiment. Control 
experiment is normal GRIA2 inoFISH with GRIA2 detection probes. On the 
right, the guide probe has been replaced to target SFPQ with the GRIA2 
detection probes. (bottom) Fraction of colocalized guides with GRIA2 (left) 
and SFPQ (right).
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To verify that inoFISH signals were specific to inosine bases and not adenosine or guanosine 

bases, we altered the frequency of inosines in two different ways. GRIA2 mRNA is primarily 

edited by the enzyme ADAR2, so we used siRNA to knock down ADAR2 mRNA levels by 60% in 

SH-SY5Y cells(Melcher et al., 1996; O’Connell et al., 1997). We observed a concomitant 

reduction in mean estimated GRIA2 editing level from 65% to 14% (Parametric bootstrap p = 

0.0004, see Appendix A; Figure 1.7a,c). We also chemically modified inosine bases with 

acrylonitrile on the N
1
 position to prevent base pairing to cytosine(Sakurai et al., 2010; Yoshida 

and Ukita, 1968), reducing observed editing level from 52.1% to 13.5% (Parametric bootstrap p = 

0.0006) (Figure 1.7b,d).   

 

Additionally, we designed a guanosine-carrying “false detection” probe, which should not bind to 

either the edited or unedited transcript; it did not bind more than expected by chance (Figure 

1.8). These results show that inoFISH specifically discriminates adenosine and inosine bases. 

 

COMPARING EDITING RATE ESTIMATES OF INOFISH AND OTHER METHODS 

 

We validated inoFISH estimates of editing levels by comparing them to three established 

population-based methods (Figure 1.9). We generated GRIA2 cDNA and estimated editing ratio 

either through Sanger sequencing or by digesting with a restriction enzyme specific to cDNA from 

the edited transcript(Paschen et al., 1994). We also cloned and sequenced individual GRIA2 

cDNA molecules. We found editing ratios of 59%, 54.9% and 50%, respectively, consistent with 

the 57.3% mean estimated editing level (95% confidence interval: [45.1%, 69.5%]) measured by 

inoFISH. Publicly available RNA-sequencing data from untreated SH-SY5Y cells also revealed 

GRIA2 editing (see Appendix B and Figure 1.9).  
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Figure 1.7 
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Figure 1.8 
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Figure 1.9: GRIA2 editing levels estimated by inoFISH and traditional methods 
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IDENTIFICATION OF CANDIDATE INOFISH-COMPATIBLE RNA EDITING 

SITES WITH RNA-SEQ 

 

Besides the well-studied editing target GRIA2, we wanted to test inoFISH on editing targets that 

are less commonly studied in the literature. For these we referred to the literature, to the RADAR 

database of RNA editing, and to publicly available RNA-seq data for screening. We identified 

NUP43 and EIF2AK2 as targets 1) with conserved editing sites across humans, chimps, and 

mice; 2) that are studied by a small number of research groups; 3) that are candidate editing 

targets in published transcriptome-wide adenosine-to-inosine editing screens; and 4) that have 

editing sites amenable to inoFISH probe designs. (Figure 1.10) 

 

Then we wanted to check if these transcripts were also edited to any extent in the neural lineage 

cell lines we were studying: SH-SY5Y and U-87 MG. Therefore we downloaded publicly available 

RNA-seq data for these cell lines and conducted our own assessment of A-to-I editing at the 

annotated editing sites. We identified three sites amenable to inoFISH probe design across these 

two genes, 1 in NUP43 and 2 in EIF2AK2. We validated as editing targets by Sanger sequencing 

of genomic DNA and cDNA (Figure 1.11). For two of these sites we were able to design inoFISH 

detection probe sets that gave colocalization with guide probes above pixel-shift estimates of 

random chance. 
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Figure 1.10 
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Figure 1.10: Outline of experimental design pipeline for inoFISH, including representative 
results (LSG1 RT-PCR/Sanger and MYO1C genotyping/Sanger) at critical steps in the target 
selection process.
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Figure 1.11 
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Figure 1.11: Sanger sequencing of EIF2AK2 and 
NUP43 RT-PCR products



 
 

24 

SUBCELLULAR LOCALIZATION OF EDITED AND UNEDITED TRANSCRIPTS IN 

NEURAL LINEAGE CELL LINES 

 

We next measured the subcellular localization of edited and unedited transcripts. Previous 

studies used cell fractionation to show that unmodified RNAs exist in both the nucleus and the 

cytoplasm, whereas hyper-edited RNAs—but not selectively edited RNAs—were predominantly 

nuclear(Kumar and Carmichael, 1997),(Zhang and Carmichael, 2001). Other studies have shown 

that mRNAs containing Alu repeats, which are prone to adenosine-to-inosine editing, are 

inefficiently exported to the cytoplasm(Chen and Carmichael, 2009).  

 

We therefore looked for associations between editing status and subcellular localization of GRIA2 

transcripts. We classified GRIA2 transcripts as nuclear if they overlapped with the nuclear stain 

DAPI. Estimated GRIA2 editing levels were roughly equal in both cellular compartments (p = 

0.38; Figure 1.12a, 1.13a). (Uncharacteristically of most mRNAs, 93.4% of GRIA2 transcripts 

localized to the nucleus, though they were still translated; Figure 1.14) 

 

We also used inoFISH to visualize localization of adenosine-to-inosine editing in two additional 

targets: the hyper-edited transcript EIF2AK2(Wang et al., 2013) (Figure 1.12b) as well as the 

Alu-bearing NUP43 (Chen and Carmichael, 2009) (Figure 1.12c) in U-87 MG cells (Figure 1.10), 

which We found that 6.91% and 5.57% of EIF2AK2 guide spots colocalized with adenosine- and 

inosine-specific detection spots, respectively (Figures 1.12b, 1.15), giving a population-wide 

mean editing level estimate of 36.4% (95% confidence interval: [20.4%, 53.1%]). For NUP43, 

11.3% and 12.4% of guide spots colocalized with the adenosine- and inosine-specific detection 

spots (Figures 1.12c, 1.15), giving a population-wide editing level estimate of 53.2% (95% 

confidence interval: [45.1%, 61.2%]). In both cases, the editing level did not vary between 

nucleus and cytoplasm (p=0.18, 0.81 for EIF2AK2, NUP43, respectively); (Figures 1.12b,c, 
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1.13). Note that the three inoFISH targets studied had detection efficiencies of 10%, 12% and 

24%; the reasons for this variability is unknown, but it is within previous bounds(Levesque et al., 

2013; Shaffer et al., 2015). As before, cyanoethylation reduced the percentage of inosine-

detection probe colocalization with guide probe for both EIF2AK2 and NUP43, again showing 

specificity (Figure 1.16).  
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Figure 1.12 
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Figure 1.12: Analysis of subcellular localization using 
inoFISH. Nuclear localization analysis reveals no signifi-
cant differences (parametric bootstrapping) in editing 
levels for each target between nucleus and cytoplasm. 
(a) GRIA2 (n = 4 biological replicates; p = 0.38), (b) 
EIF2AK2 (n = 3; p = 0.18) and (c) NUP43 (n = 2; p = 
0.81) transcripts: representative overlays and fractions of 
labeled transcripts found to be unedited or edited (inlay).
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Figure 1.13 

 

Figure 1.13: Mean editing level estimate distributions for all three targets. Boxplots of 10000 

parametric bootstrapped samples of editing level per boxplot for GRIA2 (top), EIF2AK2 (mid-

dle), and NUP43 (bottom). Mean editing level models resampled irrespective of subcellular 

localization (left) and considering nuclear vs cytoplasmic localization (right).
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Figure 1.14 
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Figure 1.15 

 

 

Figure 1.15: Expanded controls for EIF2AK2 and NUP43 inoFISH. 
InoFISH results for each replicate, including pixel-shift and dye-swap 
controls for EIF2AK2 in U-87 MG cells (top) and NUP43 in U-87 MG 
cells (bottom).
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Figure 1.16:   
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Figure 1.16: Cyanoethylation reduces number of detected inosines in situ. 
inoFISH mean +/- s.e.m after cyanoethylation treatment from a minimum of 2 
biological replicates (left) including pixel-shift and dye-swap controls per repli-
cate (right) for GRIA2 in SH-SY5Y cells (top), EIF2AK2 in U87 MG cells (mid-
dle), and NUP43 in U87 MG cells (bottom).
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ASSOCIATION OF EDITED AND UNEDITED GRIA2 TRANSCRIPTS WITH 

NUCLEAR PARASPECKLES 

 

InoFISH also allowed us to test whether edited transcripts are trafficked to nuclear 

paraspeckles(Prasanth et al., 2005). We performed inoFISH together with single-molecule RNA 

FISH of NEAT1 RNA, a marker of nuclear paraspeckles(Sunwoo et al., 2009), in SH-SY5Y cells 

(Figure 1.17), revealing that 8.57% of all GRIA2 transcripts colocalized with paraspeckles 

(Figure 1.17). Simulations (see Appendix B) showed that the observed rate of GRIA2-

paraspeckle association was 1.7-fold greater than expected by random chance (Simulation of 

GRIA2-paraspeckle association rate null distribution for one representative replicate p < 0.001, 

see Online Methods). 

 

We then used inoFISH to determine whether edited or unedited GRIA2 transcripts were 

preferentially associated with paraspeckles. We found no significant differences in the editing 

status in paraspeckles for GRIA2 in SH-SY5Y cells (p = 0.44, determined via simulation, for one 

representative replicate; Figure 1.17), demonstrating that edited GRIA2 transcripts in SH-SY5Y 

cells do not necessarily preferentially associate with paraspeckles. 
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Figure 1.17 
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VISUALIZATION OF UNEDITED NUP43 TRANSCRIPTS AT THE SITE OF 

TRANSCRIPTION 

 

We next used inoFISH to determine whether adenosine-to-inosine editing is co-transcriptional or 

post-transcriptional. Introns mark transcription sites, and colocalization of edited transcripts with 

intron signal would suggest that editing can occur co-transcriptionally. We concurrently performed 

NUP43 inoFISH with single-molecule FISH targeting NUP43 introns in 212 U-87 MG cells (Figure 

1.18), observing 17 total transcription sites, of which 5 transcription sites contained  unedited 

NUP43 and none containing edited NUP43 (Figure 1.18). This result does not rule out co-

transcriptional editing of NUP43 altogether, but does suggest that some NUP43 editing may be 

post-transcriptional.  

 

GRIA2 AND NUP43 RNA EDITING LEVELS ACROSS A POPULATION 

 

We also looked for evidence of fluctuations in editing level from cell to cell. We simulated  

inoFISH results in the cases of uniform (Figure 1.19a) or variable editing levels in single cells 

(Figure 1.19b). We found that GRIA2 editing in single cells was not consistent with the constant 

editing level model, suggesting per-cell heterogeneity in GRIA2 editing levels (Figure 1.19c). 

NUP43 editing in U-87 MG cells, however, was consistent with the constant-editing level model 

(Figure 1.19d). Thus single-cell fluctuations in the level of editing may occur in a target-specific 

manner.  
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InoFISH provides a direct method for visualizing adenosine-to-inosine RNA editing in single cells 

with single-nucleotide resolution. Cell population-wide studies lack the resolution to provide 

information such as subcellular localization and cell-to-cell variability of RNA editing. This new 

tool will enable researchers to answer basic questions about edited RNA species and will enable 

a deeper understanding of the biology of adenosine-to-inosine editing. 
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Figure 1.18 
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Figure 1.19 
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Figure 1.19: Single-cell analysis of inoFISH. 
Simulated inoFISH results assuming (a) 
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edited and unedited transcripts; or (b) two 
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95% editing and the other with 5% editing, 
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lation-wide editing level (c) Single-cell 
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exact conditional null distribution of -log(-
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Appendix A).
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CHAPTER 2: PERTURBATION PANEL PROFILING (P
3
) 

IDENTIFIES TRANSCRIPTION FACTORS THAT ENHANCE 

DIRECTED CHANGES OF CELLULAR IDENTITY 

 

MOST CURRENT PROTOCOLS FOR DIRECTED CHANGES OF CELL IDENTITY 

ARE INEFFICIENT 

 

The directed conversion of one terminally differentiated cell type into another cell type without 

passing through a pluripotent intermediate stage, a process known as transdifferentiation, has a 

variety of scientific and translational implications. Over the last few years there have been many 

important discoveries of new transdifferentiation methods, however, transdifferentiation protocols 

for cell types of interest are usually very difficult to engineer, even in vitro. In particular, many 

existing transdifferentiation protocols change relatively few cells of the starting cell type and only 

do so in a way that incompletely reprograms to the target cell type (Becker et al., 2017; Fu and 

Srivastava, 2015). Conversion of adult human fibroblasts to cardiac myocytes, for example, has 

been studied by several groups for years, but remains inefficient using genetic factors (i.e., gene 

overexpression or knockdown) alone (Mohamed et al., 2017; Nam et al., 2013). Relatedly, 

despite more than a decade of study, the reprogramming to pluripotency of many terminally 

differentiated cell types also stubbornly remains inefficient.(Cacchiarelli et al., 2015; Takahashi 

and Yamanaka, 2016) 

 

Overexpression of transcription factors often occupies the core of transdifferentiation protocols, 

with the idea being that these factors coordinate larger gene expression programs that are 
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specific to the target cell type. Strategies for identifying sets of transcription factor genes to be 

overexpressed or repressed for transdifferentiation fall into two major classes: testing 

combinations of a limited number of transcription factors known to influence the development of 

the target cell type, and screens of individual additional factors (Cao et al., 2016; Fu et al., 2013; 

Nam et al., 2013; Takahashi and Yamanaka, 2006; Vierbuchen et al., 2010; Zhou et al., 2017).  In 

recent years there have been several improvements to these strategies, each of which have 

enhanced the efficiency and fidelity of different transdifferentiation protocols. Several groups have 

considered predicted TF gene regulatory activity and specificity of TF gene expression in the cell 

types of interest to augment the limited sets of TFs to be tested combinatorially (Cahan et al., 

2014; Morris et al., 2014; Rackham et al., 2016; Tomaru et al., 2014). Others have made clever 

use of single-cell techniques and CRISPR-based epigenome engineering to improve the 

throughput of larger, more unbiased factor screens (Black et al., 2016; Duan et al., 2018; Liu et 

al., 2018; Parekh et al., 2018). These new approaches have led to some improvement in the 

efficiency and accuracy of transdifferentiation toward several cell types across all three germ 

layers, but there is still plenty of room for improvement (Guo and Morris, 2017). 

 

Here we propose a complementary experimental and analytical strategy, Perturbation Panel 

Profiling (P
3
), for the selection of transcription factor genes for transdifferentiation and other 

cellular reprogramming protocols. Different cell types display unique and complex phenotypes, 

but are unified by one major property: individually, each cell type is often resilient to a variety of 

minor perturbations. For example, in vivo myocytes remain myocytes and fibroblasts remain 

fibroblasts when challenged with changes in their environments, such as when people get sick, 

exercise, or take medications. That is, many mature cell types stabilize their identity in response 

to perturbation. In vitro, much the same can be seen when manipulating nonessential 

components of primary cell culture conditions. Can we use this common property of different cell 
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types—phenotypic stability to perturbation—to prospectively identify transcription factors that are 

capable of specifying a cell type of interest? 

 

PARALLEL SMALL-MOLECULE PERTURBATIONS OF FIBROBLASTS AND 

CARDIOMYOCYTES 

 

Our first major experimental goal was to observe gene expression patterns transcriptome-wide in 

the cell types of interest exposed to a wide variety of perturbations. Specifically, we set out to 

conduct RNA-seq on hundreds of parallel bulk samples of each cell type of interest, cultured 

under standard (i.e., control) and tens of perturbed conditions. Ultimately we hoped to enhance 

directed changes of cell identity of human fibroblasts, either to cardiomyocyte-like states or more 

generally to other cell identities, like pluripotent stem cells. For our perturbation panels we used 

samples of human fibroblasts (GM942, Coriell) and genetically matched iPSC-derived 

cardiomyocytes (iCard-942) (Figure 2.1). We selected small molecule perturbagens in the 

SelleckChem Bioactive Library targeting any kinases or G protein-coupled receptors (GPCR) in 

order to induce in vitro perturbations that lead to changes in intracellular signal transduction 

(Table 2.1). Additionally, in order to simulate as many different types of perturbation as possible 

while still using small molecule drugs, we minimized redundant primary target set overlap, using 

information about signaling pathways and corresponding targets provided by the manufacturer, 

SelleckChem. We settled on a list of 100 drugs, administered individually or in pairs, for a total of 

75 different perturbation culture conditions (Figure 2.2).  
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Figure 2.1 
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Figure 2.2 
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288 iCard 284 fibroblast

control
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225
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75 conditions
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Figure 2.2: GM00942 fibroblast and iPSC-derived iCard-942 
samples processed for P3
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A POTENCY-BASED DRUG DOSING SCHEME FOR PERTURBATION PANEL 

PROFILING (P
3
) 

 

We first developed a dosing scheme that enabled screening of a large number of drugs that 

would perturb fibroblasts and cardiomyocytes in culture. In this scheme we wanted to avoid 

wasted samples that are either unperturbed by too low a drug dose or lethally perturbed by too 

high a dose. Therefore, we started by dosing parallel cultures of GM00942 dermal fibroblasts with 

a pilot panel of 12 drugs at a fixed concentration (100 nM) for 2 days, each in triplicate, along with 

vehicle controls (see Appendix C). We prepared RNA sequencing libraries in parallel for all 

samples using RNAtag-seq (Shishkin et al., 2015), and we quantified the number of differentially 

expressed genes in each drug condition relative to vehicle controls. We observed that only 7 of 

the 12 perturbations induced any differential expression of genes at a concentration of 100 nM 

(Figure 2.3). 

 

We next wondered if the extent of gene expression perturbation (i.e., number of differentially 

expressed genes induced) was correlated with the potency of the drug. Therefore, we mined the 

literature for the annotated IC50s of each drug for each of its known targets. We observed 

anticorrelation between the median annotated IC50 of each drug with the number of differentially 

expressed genes it induced (Figure 2.4). More potent drugs have lower IC50s, so we concluded 

that a strategy for consistently delivering a drug at a high enough dose to elicit a response might 

be achieved by tuning the dosage its known IC50s. 
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Figure 2.3 
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Figure 2.3: Number of differentially expressed genes detected relative to DMSO controls 
in GM00942 fibroblasts. 
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Figure 2.4 
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Following up on this, we set out to identify whether there might be a predictable ratio of a drug’s 

known IC50s that we could deliver to elicit a perturbation that was both significant enough to 

induce differential gene expression and mild enough to not grossly change the cells. That is, we 

also wanted to avoid killing the cells, altering their morphology, or in the case of cardiomyocytes, 

inhibiting their stereotypical ability to spontaneously beat in 2D culture. Therefore, we next dosed 

parallel cultures of GM00942 dermal fibroblasts with a new panel of 12 drugs, each at 3 drug-

specific doses for 2 days (1x, 20x, and 100x the median annotated IC50 of that drug), along with 

vehicle controls. We administered the same doses of the same drugs to parallel cultures of iPSC-

derived cardiomyocytes of the same genetic background (See Appendix C). We again performed 

highly parallelized RNA-seq with RNAtag-seq and quantified differential gene expression for each 

drug at each dose relative to vehicle controls of the same cell type.  

 

We observed that 9 of 12 drugs induced some differential gene expression in fibroblasts at 100x 

IC50 and 10 of 12 drugs induced any differential gene expression in iCards at that same dose, 

while generally preserving gross morphology and iCard beating activity (Figure 2.5). At lower 

doses, these drugs tended to induce fewer differential gene expression events. Therefore, we 

concluded that for a larger set of small molecules with similar classes of targets (i.e., GPCRs and 

kinases), we should be able to frequently induce a moderate-strength differential gene expression 

response by administering these drugs at 100x the median annotated IC50.  
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Figure 2.5 
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We next wondered whether there was any information about the drugs that failed to induce any 

differential expression that we might use to avoid such lack of perturbation. Therefore we asked 

whether gene expression of a drug’s targets in the cell type of interest might be correlated with 

the presence or absence of differential gene expression. We found that the targets of the drugs 

that failed to induce differential gene expression in fibroblasts were not expressed in fibroblasts 

(Figure 2.6). Therefore, we also decided to restrict the list of P
3
 drugs to those whose targets are 

expressed in both GM00942 fibroblasts and iCard-942 cells (See Appendix C).  

 

MOST P
3
 PERTURBATIONS INDUCE DIFFERENTIAL EXPRESSION PROFILES 

WHILE GROSS CELLULAR PHENOTYPES REMAIN STABLE 

 

After 4 days of perturbagen or DMSO-only exposure, we took transmitted light videos of iCard-

942 cultures to check whether cells were still beating and morphologically similar to controls as a 

proxy for maintained cell identity, and found that 63 out of 75 conditions had wells with beating 

cells and without evident cell death. Similarly, we took transmitted light images of GM942 

fibroblast perturbation cultures and found that 62 out of 75 conditions had wells with fibroblastic 

cells and without evident cell death (Figure 2.7). In sum, we developed a strategy for delivering 

small molecule perturbagens in a relatively highly parallelized fashion to samples of the same cell 

type in a format compatible with bulk RNA sequencing without obviously altering their grossest 

phenotypes. 
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Figure 2.6 
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Figure 2.7 

 

Figure 2.7: Representative frames from quality control videos for iCards-942 cells in 96-well 
format. Note the stretching in cells during contraction, or “beating”, activity.
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We next sought to conduct transcriptome-wide gene expression profiling of the hundreds of 

perturbed (and control) samples of cardiomyocytes and fibroblasts. We performed RNAtag-seq in 

batches of 96 samples, spreading DMSO controls evenly across each batch.  

 

In our exploratory analysis, we clustered gene expression profiles across the 458 quality-

controlled samples (454, excluding HeLa outgroup) clustered first by cell type, and then often by 

perturbation condition (Figure 2.8). We identified hundreds to thousands of differentially 

expressed genes in most perturbed conditions relative to corresponding cell type controls (Figure 

2.9, Appendix C). Note that the number of detected differentially expressed genes is power-

limited by relatively low sequencing depth. However, for genes with high expression, i.e., mean 

RPM > 20, we estimated that we can detect most differential expression events at the current 

sequencing depth (Figure 2.10). (We intentionally chose relatively low sequencing depth as a 

trade-off with an increased number of perturbation conditions; this allowed us to focus on 

dysregulation patterns of highly expressed genes across a large number of samples.) This shows 

that our perturbation panel did in fact elicit perturbation of gene expression levels, even when the 

cell’s type, or grossest phenotypes, remained stable. 
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Figure 2.8 
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Figure 2.8: Heatmap with hierarchical clustering of all quality-controlled 
samples based on log2(TPM) values of all genes expressed at 20RPM 
in both GM00942 and iCard-942 cells. 
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Figure 2.9 
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Figure 2.10 
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Figure 2.10: Downsampling analysis of iCard-942 RNAtag-seq data. Counts per sample 
were randomly downsampled to 50%, 70%, and 90% of the total dataset, using two different 
random seeds, and re-calculated. Each black line represents the fraction of differentially 
expressed genes still detected at the downsampled read fraction. The green line represents 
the median fraction of total differentially expressed genes per drug at that downsampled 
read fraction. Results are shown for four minimum log2FoldChange filters (0, 0.5, 0.75, and 
1). Drugs are only included in this analysis if they have 200 or more differentially expressed 
genes detected in the full dataset.
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MOST HIGHLY EXPRESSED GENES ARE DIFFERENTIALLY EXPRESSED 

AFTER AT LEAST ONE PERTURBATION 

 

We then wondered whether only a small subset of genes were dysregulated in each cell type 

across the 60+ perturbation conditions, or if most genes were dysregulated in response to some 

perturbation. To check this, in each cell type for each gene that was highly expressed in controls 

of that cell type, we counted the number of perturbations causing differential expression vs. 

controls. We found that the vast majority of highly expressed genes in each cell type were 

differentially expressed in at least 1 quality-controlled perturbation condition relative to that cell 

type’s controls (Figure 2.11), suggesting that most highly expressed genes can be dysregulated 

by some of the signaling perturbagens in our library.  
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Figure 2.11 
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Figure 2.11: Cumulative fraction of genes differentially expressed in at least one 
condition as one consider more drugs in the dataset. Only genes with minimum aver-
age expression of 10 TPM shown.
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CARDIOMYOCYTE LINEAGE-DRIVING TRANSCRIPTION FACTORS ARE UP-

REGULATED IN MORE PERTURBATION CONDITIONS THAN OTHER HIGHLY 

EXPRESSED TRANSCRIPTION FACTORS 

 

Given that most genes can be differentially expressed in at least one perturbation condition, we 

wondered if some genes were dysregulated in more conditions than other genes. In particular, we 

wanted to know if known lineage-driving transcription factor genes were dysregulated following a 

relatively low or high number of different perturbations, i.e., whether these known lineage-driving 

TF genes are more or less “perturbable” than other highly expressed TF genes. If high or low 

perturbability is a feature of known lineage-driving TF genes, perhaps it could be used to 

prospectively identify other TFs that may also play a role in specifying or maintaining lineage 

identity (and therefore might be useful in transdifferentiation experiments). We pre-registered a 

set of 14 cardiomyocyte lineage-driving TF genes prior to analyzing our RNAtag-seq data (Figure 

2.12). For each of these genes, we counted the number of perturbations that resulted in 

differential expression in cardiomyocytes vs. controls. Although we had initially hypothesized that 

lineage-driving TFs would be less perturbable than other highly expressed TF genes, we found 

the opposite to be true: lineage-driving TFs are highly perturbable.  

 

Specifically, they are up-regulated across many different perturbation conditions (Figure 2.12). 

This effect is not explained by differences in the power to detect differential expression due to 

differences in average expression levels; i.e., lineage-driving TFs are more perturbable than other 

TF genes expressed at the same level in control samples (Figure 2.13A). Further, it is not the 

case that lineage-driving TF genes are up-regulated more dramatically on average than other 

genes differentially expressed in a similar number of conditions (Figure 2.13B). 
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Figure 2.12 
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Figure 2.13 
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OVEREXPRESSION OF A KNOWN COCKTAIL OF TRANSCRIPTION FACTORS 

PERTURBABLE IN CARDIOMYOCYTES ENABLES CARDIAC 

TRANSDIFFERENTIATION OF FIBROBLASTS 

 

We then wondered whether we could confirm that known lineage-driving transcription factors, 

most of which were highly perturbable, could induce transdifferentiation in the GM00942 dermal 

fibroblasts used for P
3
 profiling. To do this we used pMXs retroviruses to overexpress a cocktail 

of 7 transcription factors (7F: GATA4, MEF2C, TBX5, MESP1, ESRRG, MYOCD, and ZFPM2) 

previously shown to transdifferentiate other human fibroblasts to a cardiomyocyte-like state.  

 

A major challenge for this project was figuring out how to assess whether cells had entered a 

cardiomyocyte-like state after the process of transdifferentiation. I found that many published 

methods for such assessments, including cardiac Troponin immunofluorescence (IF), Troponin 

promoter-GFP reporters, and Troponin promoter-calcium transient reporters had too high 

background (IF) or too low signal (reporters) to be analyzed efficiently in thousands of mostly 

negative cells. These methods do work in iCard-942 cells, which are >95% positive. Eventually 

we developed a protocol to make post-transdifferentiation samples compatible with smFISH and 

its associated high-magnification fluorescence imaging (See Appendix C).  

 

In order to use smFISH to assess transdifferentiation, we designed smFISH probe sets for 

markers specific to mature cardiomyocytes, NPPA and TNNT2.(Mohamed et al., 2017) These 

probes show high expression of both markers in iCard-942 cells and extremely low expression in 

cardiac fibroblasts (Figure 2.14). 
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Figure 2.14 
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Figure 2.14: TNNT2 and NPPA smFISH counts per cell. 
Average of 33 cells per cell type. iCard-942 cells and 
immHCF, immortalized human cardiac fibroblasts.
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We cultured 7F- and vehicle control-treated cells under progressively reduced serum conditions 

for 24 days following infection and at day 24 observed a small fraction of cells dramatically and 

concordantly up-regulate both NPPA and TNNT2 (Figure 2.15). Large-scale scans of 

approximately 1000 cells per sample suggested that approximately 1% of cells treated with 7F 

either marker gene expression above 25 copies per cell in a single focal plane at 60X 

magnification. 0 such cells were observed in vehicle controls (Figure 2.16). Therefore, we can 

conclude that some P
3
-identified frequently up-regulated transcription factors, i.e., members of 

7F, were sufficient to induce cardiac transdifferentiation of cells of the genetic background in 

which they were identified. 

 

We next tested whether 7F could induce transdifferentiation of fibroblasts from other sources, as 

well. Therefore we overexpressed 7F under similar conditions in two additional types of 

fibroblasts: an immortalized cardiac fibroblast cell line (immHCF) previously shown by one group 

to transdifferentiate with low efficiency upon 7F overexpression and primary cardiac fibroblasts 

(GM11169) that have not been studied in this context before. We observed rates of 

transdifferentiation in both of these cell lines comparable to the dermal fibroblasts used for P
3
 

analysis. This rate is consistent with published results in immHCF, as well (Figure 

2.17).(Mohamed et al., 2017) Therefore, a cocktail of perturbable transcription factors identified in 

iCard-GM942 enable transdifferentiation to a cardiomyocyte-like state in fibroblasts of different 

genetic backgrounds, as well. This lends further support to the idea that this cocktail is generally 

sufficient for inducing cardiac transdifferentiation. 
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Figure 2.15 

 

Figure 2.15: smFISH assessment of 7F-mediated transdif-

ferentiation of GM00942 fibroblasts. (top) representative 

images of GAPDH, NPPA, and TNNT2 smFISH demon-

strating a cell that expresses marker genes NPPA and 

TNNT2 at high levels and one cell that does not. (bottom) 

smFISH counts per cell of two marker genes for cells after 

receiving either vehicle control (MXs-empty) or 7F.
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Figure 2.16 
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Figure 2.16: A) Reconstruction and per-gene quantification of smFISH scans of 
GM00942 cells exposed to vehicle control (MXs-empty; 2267 cells) or 7F (1693 cells). 
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arrowheads. B) Comparison of single-cell TNNT2 and NPPA expression levels for all 
cells in smFISH scans.

A

B



 
 

64 

Figure 2.17 

 

immHCF
MXs−empty

immHCF
7F

GM11169
MXs−empty

GM11169
7F

0 250 500 750 1000 1250 0 250 500 750 1000 1250

0

100

200

300

400

0

100

200

300

400

NPPA spot counts per cell

TN
N

T2
 s

po
t c

ou
nt

s 
pe

r c
el

l

Figure 2.17: smFISH assessment of transdifferentiation of immHCF and GM11169 human 
cardiac fibroblasts after exposure to vehicle control (MXs-empty) or 7F. Average of 1151 +/- 51 
cells per condition.
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Next, we wondered whether any cocktail comprised of highly cardiomyocyte-perturbable 

transcription factors would be capable of inducing cardiac transdifferentiation of fibroblasts. 

Therefore we selected a set of seven transcription factors from the total list of 47 such factors that 

were highly perturbable and highly expressed in iCard-942 cells (7UP: SP3, ZBTB10, ZBTB44, 

NFIA, SSH2, ZNF770, and ZFP91. See Appendix C for details on how these factors were 

selected). We tested whether overexpression of this set of transcription factors, previously 

unstudied in the context of cardiac transdifferentiation, followed by culture in progressively 

reduced serum conditions would lead to up-regulation of cardiomyocyte markers. We did not 

observe a dramatic increase in TNNT2 and NPPA expression after overexpression of 7UPs in 

fibroblasts. 

 

KNOCKDOWN OF TRANSCRIPTION FACTORS THAT ARE PERTURBABLE IN 

FIBROBLASTS OFTEN ENHANCES FIBROBLAST REPROGRAMMING TO IPSC 

 

We wondered whether we could use perturbation panel profiling to identify transcription factors 

that are presumably important for driving or maintaining another cell lineage, beyond those for 

cardiomyocytes. Therefore, we exposed GM00942 fibroblasts in culture to the same perturbation 

panel in culture as GM942-iCards and performed RNAtag-seq after several days of perturbation. 

We observed similar numbers of detectably differentially expressed genes in fibroblasts as in 

iCards across the perturbation panel (Figure 2.9).  

 

Our first question was whether the same genes are differentially expressed in each condition in 

both iCards and fibroblasts. We found little overlap in the specific genes that were detectably 

differentially expressed in response to the same drug in each cell type (Figure 2.18). 
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Figure 2.18 
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Figure 2.18: Overlap between differentially expressed genes per drug across 
GM00942 fibroblasts and iCard-942.
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Since we found that cardiomyocyte lineage-driving transcription factor genes are frequently up-

regulated in perturbed cardiomyocytes, we wondered whether transcription factors that are up-

regulated in fibroblasts across many perturbation conditions could be useful in directed changes 

of fibroblasts to a new cell identity. Specifically, our hypothesis was that genes frequently up-

regulated in fibroblasts may be useful for fibroblast identity maintenance and therefore their 

suppression could make fibroblasts more “reprogrammable”. We chose 16 transcription factors 

that were frequently up-regulated in fibroblasts and used shRNAs to knock down their expression 

levels in hiF-T cells prior to doxycycline-inducible Yamanaka Factor (Oct4, Sox2, Klf4, Myc; 

OSKM) over-expression (Figure 2.19). Of these 16 transcription factors, we found that at least 8 

reproducibly increased the frequency of fibroblast reprogramming, as measured by counting 

Alkaline Phosphatase-positive colonies after 3 weeks of OSKM induction (Figure 2.20). This 

success rate, 8/16, is comparable to the validation rate of a recent pooled shRNA screen of 

epigenetic regulators of hiF-T reprogramming (Cacchiarelli et al., 2015), 9/23. Overall, this 

suggests that transcription factor perturbability is useful for identifying genes useful for directed 

changes of fibroblast identity, as well.   

 

In summary, we developed P
3
 for profiling gene expression differences in cell types of interest 

following a broad panel of small molecule perturbations. We found that known cardiomyocyte 

lineage-driving genes are frequently up-regulated after perturbation in cardiomyocytes. Further, 

we demonstrated that a known cocktail of cardiomyocyte-perturbable transcription factors 

enables transdifferentiation of multiple types of human fibroblasts. Additionally, we extended 

perturbability to the identification of fibroblast-perturbable factors, the knockdown of which 

improves the efficiency of fibroblast reprogramming to pluripotency. Overall, these results suggest 

that the high perturbability of lineage-driving transcription factors can be used to prioritize factors 

to include in protocols for directed changes of cellular identity. 
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Figure 2.19 
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Figure 2.20 
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CONCLUSIONS AND FUTURE DIRECTIONS 

 

The components of this thesis represent some of the many different ways in which we can build 

tools, design experiments, and construct analytical frameworks for quantitative models of gene 

regulatory processes and the effects of these processes on cellular phenotypes. I focused on two 

disparate topics of interest to me: RNA editing and cellular identity. While different, these two 

topics are both grounded in generating cellular diversity through regulation of a common genome. 

 

In the first chapter I developed a relatively general method for visualizing and quantifying A-to-I 

RNA editing of single mRNA molecules with subcellular resolution. Prior to this work, no one had 

actually “seen” an edited mRNA before. The state of the art for detecting A-to-I RNA editing 

involved RT-PCR-based methods, such as restriction digestion of PCR products or RNA-seq, 

which sacrifice resolution in both single-cell quantification and localization.(Higuchi et al., 2000; 

Liddicoat et al., 2015) Alternatively, related methods included standard smFISH with 

immunofluorescence for enzymes involved in the process of RNA editing, which visualize a 

transcript’s physical association with an enzyme rather than its sequence identity (i.e., whether it 

is actually edited).(Jepson et al., 2011) Ultimately, in the case of GRIA2, the field required a more 

precise tool for studying this sequence-level difference in single cells.  

 

Now we have seen edited mRNAs and their unedited cohorts in single human cells. With 

inoFISH, we can measure differences in localization and quantities of edited and unedited 

transcripts arising from the same gene within individual cells in situ. Using this new technique, we 

observed nuclear and cytoplasmic localization of both edited and unedited transcripts in the same 

cells. For the three genes and two cell lines studied, editing levels were not significantly different 

between these two cellular compartments. inoFISH also revealed high physical association of 
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GRIA2 with nuclear paraspeckles and that this association was possible for both edited and 

unedited transcripts. Additionally, we demonstrated that our method could discriminate the editing 

status of transcripts at transcription sites, and that we only observed unedited NUP43 transcripts 

at their transcription sites (though we of course could not demonstrate a conclusive absence of 

edited transcripts at these sites). Lastly, we showed that the distribution of single-cell editing 

levels can differ by gene: NUP43 editing levels are homogeneous across a population of cells, 

while GRIA2 editing levels are more variable. 

 

In a broader context, inoFISH enables testing of hypotheses about whether single-cell RNA 

editing levels are correlated with single-cell-level phenotypes, such as permeability to divalent 

cations or cell death. In combination with recent advances in tissue clearing strategies for related 

smFISH methods, inoFISH might be used to visualize the editing status of GRIA2 in human 

brains with and without ALS lesions.(Symmons et al., 2019)  

 

Furthermore, inoFISH is a proof of principle that smFISH-based methods could be used to 

discriminate the editing status of transcripts in single cells in general. For other interesting types 

of RNA editing, such as pseudouridylation, we can imagine designing related techniques for 

single-molecule resolution of editing status at sites of interest. One could imagine combining 

established techniques for selective chemical labeling of pseudouridine bases by CMC 

derivatization with a new click chemistry-based technique for amplified smFISH signal to 

specifically hybridize clampFISH probes to edited transcripts.(Rouhanifard et al., 2018; Sakurai et 

al., 2014)  
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In the second chapter of this thesis, I developed an experimental and analytical pipeline for 

identifying transcription factors to be used in directed changes of cellular identity based on their 

expression levels following a broad panel of perturbations (P
3
). We used a drug-specific dosing 

scheme that allowed us to choose drugs and deliver them at a dose that would reliably perturb, 

but not kill, the cells of interest. Our IC50-based dosing scheme is consistent with observations of 

transcriptional responses after dosing curves of small molecules in other human cell lines, as 

well. (Srivastan et al., unpublished) 

 

We validated our approach by showing that we could re-identify members of the previously 

characterized 7F transcription factor cocktail sufficient for cardiac transdifferentiation of 

fibroblasts.(Fu et al., 2013) In particular, we showed that transcription factors that drive a cellular 

identity, in this case cardiomyocyte, are highly “perturbable” in cardiomyocytes. Prior to collecting 

these results we had hypothesized that the opposite would be true, i.e., that lineage-driving 

factors would be less perturbable than other similarly expressed genes. Nonetheless, members of 

7F are often up-regulated after several kinds of small molecule perturbation, whereas other 

highly-expressed transcription factors are not as frequently up-regulated by many kinds of 

perturbations. Following up on this, we developed a new smFISH-based assessment of cardiac 

transdifferentiation efficiency and applied it to verify 7F-based transdifferentiation in three types of 

human fibroblasts.  

 

We then extended the discovered association between cardiomyocyte lineage-driving capacity of 

transcription factors and high perturbability to rational manipulation of fibroblast cell identity. That 

is, we identified transcription factors based on their high perturbability in fibroblasts and 

hypothesized that for them the inverse of 7F would be true. If 7F overexpression drove cells 

toward cardiomyocyte identity, then maybe fibroblast-perturbable factor knockdown could drive 
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cells away from fibroblast identity. Therefore, we tested knockdown of 16 fibroblast-perturbable 

factors in fibroblasts prior to iPSC reprogramming and observed that 8 of them enhanced the 

efficiency of conversion to pluripotency. This success rate, 8/16, is comparable to the validation 

rate of the top hits from a pooled screen of reprogramming efficiency enhancement by hundreds 

of epigenetic modifiers conducted in the same cell line (9/23 tested; (Cacchiarelli et al., 2015)). 

 

Overall, these results provide insight into both practical and theoretical aspects of the regulation 

of cellular identity from two perspectives. First, from a practical, engineering point of view, the P
3
 

experimental design and analysis pipeline could be useful for prioritizing the sets of transcription 

factors to overexpress or suppress when developing a new transdifferentiation or reprogramming 

protocol. Second, theoretically, we can infer from these results that for maintenance of cell 

identity in general, it may be that, in some way, it is useful to reinforce the expression of particular 

transcription factors to stabilize larger gene expression programs. Intriguing work in yeast 

suggests that in new environments cells can stochastically tune and then reinforce the expression 

of fitness-enhancing genes.(Freddolino et al., 2018) Extended to a given cell identity in its niche 

in the body, fitness enhancement could come from best fulfilling its needed role in that 

niche.(Arendt et al., 2016)  

 

Alternatively, the observation of perturbability in P
3
 experiments might just be coincidental (and 

convenient for engineering) rather than per se functional. If, for example, lineage-driving 

transcription factors are downstream of a larger number of signal transduction pathways in a cell 

type than non-lineage-driving transcription factors, then perhaps there are therefore more ways to 

elicit a differential expression response in these genes.  
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In the future, I hope that P
3
 proves to be useful not only in developing more efficient protocols for 

the manipulation of fibroblast and cardiomyocyte cellular identity, but also protocols for 

engineering any cell type of interest. Additionally, I look forward to comparing the results of P
3
 

with orthogonal methods for the discovery of factors that enhance directed changes of cellular 

identity. For instance, in the Raj lab we have already started an exciting new project, which 

combines cellular barcoding and a form of RNA FISH to retrospectively isolate the rare fibroblasts 

that go on to successfully reprogram to iPSC after Yamanaka factor induction. It will be 

interesting to see if fibroblast-perturbable factors are lower in cells primed to reprogram relative to 

cells that are destined to fail to reprogram. 

 

In summary, inoFISH and P
3
 are two projects that focused on building quantitative models of 

gene regulation, each at different scales of biological organization. As such, we needed to 

overcome different types of challenges to complete them. In the case of inoFISH, we had a 

straightforward, traditional small-scale model of single-cell variability for a small number of 

interacting molecules. In the case of P
3
, however, we were faced with a more complicated 

system: the set of all transcription factors. Therefore, we developed an analytical framework that 

was not just like an inoFISH-scale model but 1000-times larger. Through the lens of perturbability 

we were able to separate out lineage-driving transcription factors from others of similarly high 

expression level, and to use them in directed changes of cellular identity. Hopefully these 

projects, considered side-by-side, together demonstrate the utility of diverse methods, 

experimental designs, and models in the systems biology of gene regulation as this field develops 

in a world with access to ever higher-throughput and more precise genetic and biochemical 

techniques. (Mellis and Raj, 2015) 
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APPENDIX A: STATISTICAL ANALYSIS OF RNA EDITING LEVELS 

BASED ON INOFISH EXPERIMENTAL RESULTS 

 

Please note that much of this analysis is based on the Supplementary Note in Levesque, et al., 

2013. This analysis originally appeared in the Supplementary Note of Mellis et al., 2017. 

1  DETECTING THE PRESENCE OF ANY RNA EDITING 

The most basic question we can answer with inoFISH is whether or not there is any editing at a 

given site of interest in a given transcript of interest.  

Consider an experiment with T total transcripts of a species of interest expressed across all N 

cells observed. Of these T transcripts, we observe O
I
 colocalizing with an Inosine detection probe 

spot. Upon pixel-shift analysis, we see that the probability of guide colocalization with an inosine 

detection probe spot purely by chance is S
I
 (range 0 - 1). 

For simplicity, we will also assume that the editing status detection label (only false-positive here) 

of each transcript (of all T transcripts) in an inoFISH experiment is independent of the editing 

status label of any other transcript. 

Therefore, we can model O
I
 as being drawn from a binomial distribution with parameters S

I
 and 

T. Our null hypothesis is that any observed colocalizations are false-positive colocalizations. The 

probability of observing at least O
I
=x spots under the null hypothesis is:  

 P(OI≥x|SI,T)= å
j=x

T
 Tj⋅SjI(1−SI)T−j (1) 

2  MODELING RNA EDITING LEVELS IN A SINGLE EXPERIMENT 
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The next level of detail we might want from an inoFISH experiment is a quantitative estimate of 

the editing level of a given site of interest in a given transcript of interest. That is, what fraction of 

these transcripts are edited at this site? 

Consider an experiment with T total transcripts expressed across all N cells observed. We 

observe some number O
I
 of them to be labelled Inosine, i.e., edited, and some fraction O

A
 

labelled Adenosine, i.e., unedited. The remaining U transcripts are unlabelled.  

2.1  GOAL: ESIMTATING EDITING LEVEL 

We will model the editing level E (range 0 - 1), which is the probability that a transcript in this 

population is in fact edited at this point in time. The T total transcripts are composed of T
I
 edited 

transcripts and T
A

 unedited transcripts, where T
I
+T

A
=T. The editing level of the transcript of 

interest at the site of interest is:  

 E= 
TI
T  (2) 

The goal of our analysis, therefore, is to estimate E. Here we outline a framework for calculating a 

MLE for Ê, including upper and lower bounds on the confidence interval for Ê.  

2.2  MODELING INOFISH DETECTION EFFICIENCY 

Since we don’t directly have access to T
I
 in an experiment, we need some other way to estimate 

the fraction in Eq. 2. As outlined above, inoFISH gives us the ability to observe some transcripts 

labelled as unedited (O
A

) and some transcripts labelled as edited (O
I
). We also know our 

expected false-positive colocalization rate for each detection probe through pixel-shift analysis. 

The fraction of all T spots colocalizing with Adenosine detection probes after pixel-shift is S
A

. The 

fraction of all T spots colocalizing with Inosine detection probes after pixel-shift is S
I
. We will 

exploit our measurements of T,O
A

,O
I
,S

A
, and S

I
 to estimate E.  
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Before we do that, however, we have to make assumptions about O
A

 and O
I
. Specifically, we 

need to make an educated guess about whether they equally scale with respect to the true values 

they are designed to measure (T
A

 and T
I
). Formally, we will make assumptions about the probe-

specific true-positive detection efficiencies, which we will denote as d
true

A
 and d

true

I
. d

true

A
 is the 

fraction of all T
A

 unedited transcripts correctly labelled as Adenosine. Similarly, d
true

I
 is the 

fraction of all T
I
 edited transcripts correctly labelled as Inosine.  

2.2.1  A QUICK ILLUSTRATION OF DETECTION EFFICIENCY 

Note that d
true

A
 and d

true

I
 may be equal while O

A
 and O

I
 are not (even if S

A
=S

I
, as well). For 

example, consider an experiment in which T=100 total transcripts, of which T
A

=90 and T
I
=10 and 

d
true

A
=d

true

I
=10%. If S

A
=S

I
=2%, then we would expect to observe:  

 False−positiveAdenosinelabels= SATA+SATI=0.02(90)+0.02(10)=2 

 True−positiveAdenosinelabels= dtrueA TA=0.1(90)=9 

 False−positiveInosinelabels= SITA+SITI=0.02(90)+0.02(10)=2 

 True−positiveInosinelabels= dtrueI TI=0.1(10)=1 

Which gives O
A

=2+9=11 and O
I
=2+1=3. 

2.2.2  EMPIRICAL ESTIMATES OF DETECTION EFFICIENCY 

In an inoFISH experiment, the fraction of guide spots colocalizing with an Adenosine or Inosine 

detection probe spot is the total detection efficiency, d
total

.  
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 dtotal= 
OA+OI
T  

We can decompose the detection efficiency into true-positive and false-positive signal. The false-

positive colocalization events are entirely estimated by pixel-shift analysis:  

 dtotal= dtrue+dfalse 

        = dtrue+SA+SI 

Therefore, in any experiment, we can estimate an overall fraction of likely true-positive 

colocalization events:  

 ̂dtrue= 
OA+OI
T −(SA+SI) 

This total true-positive fraction can itself be decomposed into Adenosine and Inosine fractions:  

 dtrue= 
dtrueA TA+d

true
I TI

T  

If d
true

A
=d

true

I
=d,  

 dtrue= 
dtrueA TA+d

true
I TI

T  

 dtrue= 
d(TA+TI)
T  

 dtrue= 
d(T)
T  

 ⇒̂d= ̂dtrue 
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If d
true

A
≠d

true

I
=d, the estimation of editing level is a bit more complicated (as we will explore 

below). 

In the case of the inoFISH-like method SNP FISH (Levesque et al., 2013), which allows for 

visualization of genetically encoded single-nucleotide variation in transcripts, we can directly 

estimate individual detection probes’ detection efficiencies with homozygous genetic controls. 

However, since RNA editing is a post-transcriptional regulatory process, we know of no way to 

ensure that all endogenously-transcribed copies of a transcript of interest are edited. This limits 

our ability to directly measure d
true

I
 alone. Similarly, we cannot directly measure d

true

A
; ADAR 

protein family members, which catalyze RNA editing, often have redundant targets and knockout 

of some family members is lethal. Hence, we also cannot directly measure the detection 

efficiency of the unedited detection probe on endogenously-transcribed RNAs that are all surely 

unedited. 

In experiments evaluating genetically-encoded single-nucleotide variation in transcripts, rather 

than post-transcriptional single-nucleotide variation, we can design simple panels of controls to 

systematically quantify detection efficiencies for each detection probe. In our lab we have 

observed detection efficiencies of detection probes in such control experiments ranging from 5% 

to 60%. Further, in the majority of probe sets we have examined, the two detection probes have 

equal detection efficiencies. In an inoFISH experiment, equal detection efficiencies would mean 

that d
true

A
=d

true

I
. In the few cases where detection efficiencies differ between a probe set’s two 

detection probes, we have not observed any differing by more than about 8%.  

We will present a statistical framework for calculating Ê and its confidence interval under different 

assumptions about the detection efficiencies of inoFISH detection probes. 

2.3  MODELING INOFISH EXPERIMENTS 
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Our general strategy for finding a MLE and confidence interval bounds on Ê will be to model 

inoFISH experiments based on our observations. From this model we can solve for a MLE and 

computationally simulate similar experimental observations to draw bounds on the confidence 

interval for Ê. 

2.3.1  MODELING INOFISH WITH A MULTINOMIAL 

In order to find a MLE, we need a functional form for data likelihood. For simplicity, we will 

assume that the editing status of each transcript (of all T transcripts) in an inoFISH experiment is 

independent of the editing status of any other transcript’s editing status. Further, we will assume 

that whether or not any transcript is detected at all is independent the detection of any other 

transcript. Therefore, we can model an inoFISH experiment as T transcripts drawn from a 

multinomial with probabilities as follows:  

 P(OA=x,OI=y|T)=  multinomial(α,β,γ)  

  

Where for any individual transcript r∈T,  

 α= P(r∈OA) 

 β= P(r∈OI) 

 γ= P(r∈U) 

2.4  POPULATION-WIDE PARAMETER ESTIMATION 

Consider an experiment, as above, with the following findings: Across N cells, there are T total 

transcripts of interest, of which O
A

=x are observed unedited and O
I
=y are observed edited. Upon 

pixel-shift analysis, we see that the probability of false-positive colocalization with Adenosine 
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detection probes is S
A

=s
A

 and the probability of false-positive colocalization with Inosine 

detection probes is S
I
=s

I
. With knowledge of T,O

A
,O

I
,S

A
,  and S

I
, we can also calculate d

true

A
 

and d
true

I
, as above. 

By the law of conditional probability, since P(r∈T
A

)+P(r∈T
A

)=1 for any transcript r,  

 P(r∈OA)= P(r∈OA|r∈TA)P(r∈TA)+P(r∈OA|r∈TI)P(r∈TI) 

 = −dtrueA E+dtrueA +sA 

  

 P(r∈OI)= P(r∈OI|r∈TI)P(r∈TI)+P(r∈OI|r∈TA)P(r∈TA) 

 = dtrueI E+sI 

These will be two of our three probability parameters for the multinomial distribution simulating an 

inoFISH experiment:  

 P(r∈OA)= −dtrueA E+dtrueA +sA=α 

 P(r∈OI)= dtrueI E+sI=β 

  

All U=T−O
A

−O
I
 transcripts not labelled as either Adenosine or Inosine are undetected, so:  

 P(r∈U)= 1−α−β 
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 = (dtrueI −dtrueA )E−dtrueA −sA−sI+1=γ 

This means that we can model inoFISH experiments that are consistent with our observations as 

follows:  

 P(OA=x,OI=y|T)=  multinomial(α,β,γ)  

 = 
T!

x!y!(T−x−y)!α
xβyγT−x−y 

We can find the maximum likelihood estimate of E by differentiating the data likelihood with 

respect to E and finding the root. Further, since the logarithm is a monotonically increasing 

function, we can alternatively solve for the maximum of the log-likelihood (which is simpler in this 

case).  

 0= 
∂
∂Eln( 

T!
x!y!(T−x−y)!α

xβyγT−x−y) 

 0= 
x(−dtrueA )
α + 

y(dtrueI )
β + 

(T−x−y)(dtrueI −dtrueA )
γ  

From here, we can solve for Ê∈[0,1].  

2.4.1  EQUAL DETECTION EFFICIENCIES 

If d
true

A
=d

true

I
=d

true
, as is usually the case for probe sets of the sort used in inoFISH, the 

functional form of Ê is rather simple:  

 0= 
−xdtrue
α + 

ydtrue
β + 

(T−x−y)(0)
γ  

 
xdtrue
α = 

ydtrue
β  
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 x(dtrueE+sI)= y(−dtrueA E+dtrueA +sA) 

 Ê= 
y(dtrue+sA)−xsI
(xdtrue+ydtrue)

 (3) 

This result (Eq. 3) makes intuitive sense: it is the fraction of all labelled transcripts observed to be 

inosine, correcting for false-positives. 

For example, consider a simple experiment in which we have the following observations:  

 T=100, OA=15, OI=25 

Upon pixel-shift analysis, we get:  

 SA=0.03, SI=0.03 

As in section 2.2.2, if we assume equal detection efficiencies we get:  

 ̂dtrue= 
OA+OI
T −(SA+SI) 

 ̂dtrue= 
15+25

100 −(0.03+0.03)=0.34 

Therefore, in this experiment we get an estimated editing level:  

 Ê= 
y(dtrue+sA)−xsI
(xdtrue+ydtrue)

 

 = 0.647 

Note that on first glance the results might suggest an editing level estimate of about 

25/(15+25)=0.625. The MLE, however, accounts for false-positive colocalizations as measured by 
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pixel-shift for each detection probe channel. In this case, there are the same number of expected 

false-positive colocalizations for each detection probe. When these are subtracted out in the 

MLE, the proportional difference between O
A

 and O
I
 is accentuated, giving a slightly higher MLE 

for editing level (0.647>0.625).  

2.4.2  UNEQUAL DETECTION EFFICIENCIES 

If d
true

A
≠d

true

I
, as has been observed in some cases of probe sets like those used in inoFISH, we 

can still solve for a maximum likelihood estimate of E, but the functional form is not as compact.  

 0= 
x(−dtrueA )
α + 

y(dtrueI )
β + 

(T−x−y)(dtrueI −dtrueA )
γ  

 0= 
x(−dtrueA )

−dtrueA E+dtrueA +sA
+ 
y(dtrueI )

dtrueI E+sI
+ 

(T−x−y)(dtrueI −dtrueA )

(dtrueI −dtrueA )E−dtrueA −sA−sI+1
 

 0= x(−dtrueA )(dtrueI E+sI)((d
true
I −dtrueA )E−dtrueA −sA−sI+1)+ 

  y(dtrueI )(−dtrueA E+dtrueA +sA)((d
true
I −dtrueA )E−dtrueA −sA−sI+1)+ 

  (T−x−y)(dtrueI −dtrueA )(−dtrueA E+dtrueA +sA)(d
true
I E+sI) 

  

 0= aE2+bE+c,where  

 a= dI
true(−T+x+y) ( )−dA

true+dI
true dA

true−xdI
true ( )dA

true 2+x ( )dI
true 2dA

true 

  −ydI
true ( )dA

true 2+y ( )dI
true 2dA

true 
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 b= −ysA ( )dI
true 2+sAdI

true(T−x−y) ( )−dA
true+dI

true −xdI
truedA

true−ydI
truedA

true+ 

 

 2sIxdI
truedA

true+sIydI
truedA

true+xsAdI
truedA

true+2ysAdI
truedA

true−y ( )dI
true 2dA

true+ 

  sI(−T+x+y) ( )−dA
true+di

true dA
true+di

true(T−x−y) ( )−dA
true+di

true dA
true− 

  sIx ( )dA
true 2+xdI

true ( )dA
true 2+2ydI

true ( )dA
true 2 

 c= ysAdI
true−sIysAdI

true−ys2AdI
true+sIsA(T−x−y) ( )−dA

true+dI
true −sIxdA

true+ 

  s2I xdA
true+sIxsAdA
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truedA

true+ 

  sI(T−x−y) ( )−dA
true+dI

true dA
true+sIx ( )dA

true 2−ydI
true ( )dA

true 2 

  

The root that falls within [0,1] will be the physically realizable solution (our Ê). The quadratic 

formula gives us the roots: 

 Ê= 
−b± b2−4ac

2a  (4) 

2.5  PERFORMING SIMULATED DETECTION EXPERIMENTS 
For a given experiment, we know T,O

A
,O

I
,S

A
,  and S

I
. As discussed above, from here we can 

model our experiment with a multinomial distribution. We can simulate the population-wide 

results, i.e., O
A

=x, O
I
=y, U=T−x−y , of one such inoFISH experiment by drawing from the 

multinomial above according to:  

 P(OA=x,OI=y|T)=  multinomial(α,β,γ)  
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After drawing O
A

=x, O
I
=y, U=T−x−y , we can re-calculate Ê (call this Ê') using the method 

above. 

2.6  PARAMETRIC BOOTSTRAPPING A CONFIDENCE INTERVAL FOR Ê 

We can re-sample from this multinomial distribution many times (e.g., 100000 draws) and 

calculate the range of values of Ê' seen in 95% of the samples. This method is known as 

parametric bootstrapping.  

The 2.5%ile of Ê' is the lower bound Ê
LB

 on the 95% CI for Ê. The 97.5%ile of Ê' is the upper 

bound Ê
UB

 on the 95% CI for Ê. 

3  MODELING DIFFERENCES BETWEEN RNA EDITING LEVELS 

Consider two different inoFISH experiments with sets of population-wide findings 

{T
(1)

,O
(1)

A
,O

(1)

I
,S

(1)

A
,S

(1)

I
} and {T

(2)
,O

(2)

A
,O

(2)

I
,S

(2)

A
,S

(2)

I
}. Are the estimated editing levels, Ê

(1)
 

and Ê
(2)

, observed in these two experiments different from one another? We can parametrically 

bootstrap this, too, as follows. 

1. Model both experiments with multinomials, as above. Call these distributions M
(1)

 and M
(2)

.  

2. Draw a sample from M
(1)

 and calculate Ê'
(1)

  

3. Draw a sample from M
(2)

 and calculate Ê'
(2)

  

4. Calculate Ê'
(1)

−Ê'
(2)

=δ'. Store this result in the vector Δ'.  

5. Repeat steps 2-4 100000 times.  

To check the significance level of your favorite difference a, calculate the fraction of entries δ'∈Δ' 

that satisfy δ'≥a. 
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3.1  BOOTSTRAPPING A CONFIDENCE INTERVAL FOR THE DIFFERENCE BETWEEN EDITING LEVELS 

Alternatively, one could just report the 95% CI for the magnitude of the difference Δ between 

editing rates between the experiments modeled by M
(1)

 and M
(2)

. The lower bound of this CI 

Δ
LB

 is the 2.5%ile of Δ'. The upper bound of this CI Δ
UB

 is the 97.5%ile of Δ'. 

4  INCORPORATING MULTIPLE INOFISH EXPERIMENTAL REPLICATES 

In order to have a more accurate estimate of the editing rate, we care about the average editing 

rate across multiple replicates. The following strategy for estimating average editing level across 

multiple replicates can be applied to any number of replicates, R.  

For example, if we have three replicates (R=3) with results: {T
(1)

,O
(1)

A
,O

(1)

I
,S

(1)

A
,S

(1)

I
}, 

{T
(2)

,O
(2)

A
,O

(2)

I
,S

(2)

A
,S

(2)

I
}, and {T

(3)
,O

(3)

A
,O

(3)

I
,S

(3)

A
,S

(3)

I
}. We think that the mean of the editing 

levels across these three replicates is a good summary statistic for describing the editing level in 

the biological and experimental conditions we are observing.  

 Ē=mean(E(1),E(2),E(3)) (5) 

Our maximum likelihood estimate of Ē is simply the mean of the editing rate across all three 

replicates, ̂Ē. We can draw a confidence interval on ̂Ē using a similar algorithm to an individual Ê. 

In the case of averaging over three replicates:  

1. Model all three experiments with multinomials, as above. Call these distributions M
(1)

, M
(2)

, 

and M
(3)

.  

2. Draw a sample from M
(1)

 and calculate Ê'
(1)

  

3. Draw a sample from M
(2)

 and calculate Ê'
(2)

  



 
 

88 

4. Draw a sample from M
(3)

 and calculate Ê'
(3)

  

5. Calculate the mean of these draws: ̂Ē'=mean(Ê'
(1)

,Ê'
(2)

,Ê'
(3)

). Store this result.  

6. Repeat steps 2-5 100000 times.  

As above, the 2.5%ile is the lower bound on the confidence interval, ̂Ē'
LB

. The 97.5%ile is the 

upper bound on the confidence interval, ̂Ē'
UB

. 

4.1  ALTERNATIVE SUMMARY STATISTICS ON EXPERIMENTAL REPLICATE RESULTS 

One might also reasonably want to report statistics on editing levels across multiple replicates 

other than the mean. For example,  

1. The maximum might help you better understand if the editing level of the site of interest 

saturates at a given percentage in these experimental conditions.  

2. The median editing level across multiple replicates may be a more stable average value if you 

want to de-emphasize outlying results.  

3. The sample variance would give insight into the variability between replicates.  

In order to use these, or any other summary statistics on replicate editing levels, substitute that 

statistic in step 5 of the algorithm in Section 4.  

4.2  DETECTING DIFFERENCES IN SUMMARY STATISTICS WITH MULTIPLE REPLICATES IN TWO 

CONDITIONS 

To bring our population-wide analyses to a close, let’s integrate multiple experimental replicates 

across multiple conditions. In a toy case, let’s work with C=2 conditions, each with R=3 replicates. 

We want to know if the mean editing rates are significantly different from each other Ē
(1)

−Ē
(2)

=̄Δ. 

As above, we can model each replicate j∈{1,2,3} in each condition i∈{1,2} with R⋅C=6 

multinomials M
i,j

.  
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Our estimate of ̄Δ is ̂̄Δ=̂Ē
(1)

−̂Ē
(2)

. As above, we can use parametric bootstrapping to draw a 

confidence interval around this estimate or to check its significance.  

1. Model all experiments with multinomials, as above. Call these distributions M
(1,1)

, M
(1,2)

, 

M
(1,3)

, M
(2,1)

, M
(2,2)

, M
(2,3)

.  

2. Draw a samples from condition 1 models M
(1,1)

, M
(1,2)

, M
(1,3)

 and calculate ̂Ē'
(1)

  

3. Draw a samples from condition 2 models M
(2,1)

, M
(2,2)

, M
(2,3)

 and calculate ̂Ē'
(2)

  

4. Calculate ̂Ē'
(1)

−̂Ē'
(2)

=̄δ'. Store this result in the vector ̄Δ'.  

5. Repeat steps 2-5 100000 times.  

As above, the 2.5%ile is the lower bound on the confidence interval, ̂̄Δ
LB

. The 97.5%ile is the 

upper bound on the confidence interval, ̄̂Δ
UB

.  

5  SINGLE-CELL EDITING LEVEL ANALYSIS 

inoFISH also enables quantitative analysis of editing levels with single-cell resolution. The most 

obvious question we might ask about editing levels in single cells is whether all cells in the 

population appear to have the same editing level, or if they instead appear to have different 

editing levels.  

Each cell has a variable and relatively small number of transcripts. Therefore our resolution of 

single-cell editing levels is much more limited than population-wide. However, if we make a 

simplifying assumption, we can nonetheless use our inoFISH data to answer this question. In 

particular, we will assume that all of our labels are true-positive.  
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Consider an experiment with N cells and population-wide measurements as above, along with an 

estimate of population-wide editing level Ê. For i∈{1,...,N}, cell
i
 has O

(i)

I
 transcripts labelled as 

edited and O
(i)

A
 labelled as unedited. Call O

(i)

T
=O

(i)

I
+O

(i)

A
. 

If all N cells have the same level of editing, then each cell’s count of labelled edited transcripts 

(O
(i)

I
) will appear to be drawn from a binomial distribution with parameters O

(i)

T
 and Ê. The data 

likelihood of observing these results in all N cells is:  

 P(D|τ)= Õ
i=1

N
 P(O(i)

I |O(i)
T ,Ê)= Õ

i=1

N
 O(i)
T O

(i)
I ÊO

(i)
I (1−Ê)O

(i)
T −O

(i)
I  (6) 

We can use this formula to bootstrap a distribution for data likelihood values (as in previous 

sections). If the observed value of P(D|τ) falls outside of the bulk of the simulated values, then we 

can conclude that the experimental results are unlikely to come from our simple binomial model. 

That is, some other source of variability must also contribute to our results. The most intuitive 

explanation for this is that there is some cell-to-cell difference in editing level. 
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APPENDIX B: MATERIALS AND METHODS FOR CHAPTER 1 

 

InoFISH protocol. 

The step-by-step inoFISH protocol (description below) can be found 

https://media.nature.com/original/nature-assets/nmeth/journal/v14/n8/extref/nmeth.4332-S3.pdf. 

Cell culture. We grew human neuroblastoma cells (SH-SY5Y, ATCC CRL- 2266) in a 1:1 mixture 

of Eagle’s Minimum Essential Medium and F12 Medium supplemented with 10% FBS and  50 

U/mL penicillin and streptomycin. We grew human glioblastoma cells (U-87 MG, ATCC HTB-14) 

in Eagle’s Minimum Essential Medium supplemented with 10% FBS and 50 U/mL penicillin and 

streptomycin. Note: Some SH-SY5Y and U87 cells can be autofluorescent when grown on glass 

slides, this is improved when the cells are ~70% confluent. 

Verification of RNA editing of candidate targets. As described below, we used RT-PCR of total 

RNA and PCR of genomic DNA in cell lines of interest to further check that candidate editing sites 

were in fact RNA edited in our cell lines. 

Optimization of inoFISH targets. We then chose targets for inoFISH by checking RT-PCR and 

genomic DNA PCR Sanger sequencing results for each candidate site to ensure that there would 

be no additional polymorphisms in transcripts, resulting either from RNA editing or single-

nucleotide polymorphisms, in the regions flanking the editing site up to 30-bp up- or downstream. 

We ultimately designed inoFISH probe sets against one editing site in NUP43 and two editing 

sites in EIF2AK2 (both using the same guide probe set) that appeared to be amenable to inoFISH 

guide and detection probe set design. We were able to verify inoFISH probe binding with 

detection efficiencies greater than expected by random colocalization for the one NUP43 

candidate editing site and one of the two EIF2AK2 editing sites. (See below for experimental 

methods.) 

Genotyping of edited regions. We extracted genomic DNA from SH-SY5Y cells and U-87 MG 

cells using the Qiagen DNeasy Blood & Tissue kit. We used Platinum Taq (Invitrogen cat. 

#10966-018) for PCR amplification of the genomic regions of interest for each target, following 
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manufacturer’s recommendations for reaction component concentrations. We PCR-amplified two 

biological replicates, each with two technical PCR replicates. For GRIA2, we used primers 

GRIA2-F1 and GRIA2-R2 (Table 1.1). For EIF2AK2, we used EIF2AK2_20-F1 and EIF2AK2_20-

R1, and for NUP43 we used  NUP43-F1 and NUP43-R1 (Table 1.1). We confirmed PCR product 

sizes by gel electrophoresis, using a 1.5% agarose gel in TAE.  Then, we treated these PCR 

products with ExoSAP-IT (Affymetrix 78200) according to manufacturer’s instructions, and 

submitted them for Sanger sequencing at the University of Pennsylvania DNA Sequencing 

facility. 

Estimation of editing efficiency by RT-PCR and Sanger sequencing. We extracted total RNA 

from SH-SY5Y and U-87 MG cells using miRNeasy kits (Qiagen 217004) according to 

manufacturer’s instructions. Then, we reverse-transcribed target transcripts around editing sites 

of interest using Superscript III First strand RT kit (ThermoFisher 18080044) according to 

manufacturer’s instructions. In separate reactions for RNA from each cell type, we used both 

oligo-dT and transcript-specific primers for reverse-transcription. Briefly, we used 50 ng of RNA 

per reaction for reverse transcribed with either oligo-dT or transcript-specific primers (Table 1.1). 

Then, we performed PCR with transcript-specific primers (Table 1.1) using Platinum Taq 

(Invitrogen cat. #10966-018) according to manufacturer’s instructions. We completed biological 

replicates, each with technical PCR replicates for these reactions. We confirmed product sizes by 

gel electrophoresis on 1.5% agarose gels in TAE. Then, we treated these products with ExoSAP-

IT (Affymetrix 78200) according to manufacturer’s instructions and submitted for sequencing at 

the University of Pennsylvania DNA Sequencing facility. 

Estimation of editing efficiency by clonal analysis of GRIA2 RT-PCR product. The amplified 

GRIA2 cDNA was cloned into a vector using the TOPO TA cloning kit (Thermo), transformed into 

chemically competent Escherichia coli cells, and plated on LB plates with 0.1 mg/mL ampicillin. 

We isolated DNA from >20 Individual colonies and submitted it for sequencing at the University of 

Pennsylvania DNA Sequencing Facility. We performed sequence alignment at the editing site 

using MAFFT in Benchling to determine the ratio of edited and unedited transcripts. 
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Estimation of editing efficiency by restriction digest and bioanalyzer analysis. Edited and 

unedited GRIA2 cDNAs yield distinct restriction fragment patterns upon digestion with BbvI 

(Whitney et al., 2008). Edited GRIA2 cDNA yields two DNA fragments upon digestion (225 bp 

and 46 bp), and unedited GRIA2 cDNA yields three DNA fragments (145 bp, 80 bp, and 46 bp). 

Following BbvI digestion (NEB R0173S) of GRIA2 cDNA, according to manufacturer’s 

instructions, we submitted digestion products for fragment sizing analysis on an Agilent 2100 

Bioanalyzer at the University of Pennsylvania DNA Sequencing Facility. 

RNA probe design and synthesis. For each of the validated editing sites, we designed probes 

by matching free energies of hybridization as specified in Levesque et al. (2013b). We optimized 

mask oligonucleotides to leave 8-base-pair (bp) overhangs for each of the detection probes and 

pooled all five together to act as the complete allele-specific probe. We provide all oligonucleotide 

sequences in Table 1.1. We coupled 3’ amine-labeled adenosine- and inosine-detection probes 

to NHS-Cy3 or NHS-Cy5 fluorophores (GE Healthcare) and purchased respective guide probes 

labeled with Cal fluor 610 (Biosearch Technologies). We coupled probes targeting ADAR1, 

ADAR2 and NEAT1 mRNA to NHS-Atto700. We purified dye-coupled probes by high-

performance liquid chromatography.  

inoFISH procedure. We grew cells on glass coverslides until ~70% confluent. We washed the 

cells twice with 1X PBS, then fixed for 10 minutes with 4% formaldehyde/1X PBS at room 

temperature. We aspirated off the formaldehyde, and rinsed twice with 1X PBS prior to adding 

70% ethanol for storage at 4°C or inoFISH after a one hour permeabilization in 70% ethanol. We 

incubated our cells overnight at 37°C in hybridization buffer (10% dextran sulfate, 2× SSC, 10% 

formamide) with 100 nM concentration of guide probe, 24 nM concentration of the adenosine- 

and inosine-detection probes and 72 nM concentration of the mask probe, ensuring excess mask 

for complete hybridization to the detection probes. The following morning, we performed two 

washes in wash buffer (2X SSC, 10% formamide), each consisting of a 30-min incubation at 

37°C. After the second wash, we rinsed once with 2X SCC/DAPI and once with anti-fade buffer 

(10 mM Tris (pH 8.0), 2X SSC, 1% w/v glucose). Finally, we mounted the sample for imaging in 
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an anti-fade buffer with catalase and glucose oxidase (Raj et al. 2008) to prevent photobleaching. 

We performed RNA FISH on cell culture samples grown on a Lab-Tek chambered coverglass 

using 50 μL of hybridization solution spread into a thin layer with a coverslip and placed in a 

parafilm-covered culture dish with a moistened Kimwipe to prevent excessive evaporation.  

Imaging. We imaged each samples on a Nikon Ti-E inverted fluorescence microscope using a 

100× Plan-Apo objective (numerical aperture of 1.40) and a cooled CCD camera (Andor iKon 

934). For 100× imaging, we acquired z-stacks (0.3 µm spacing between stacks) of stained cells in 

five different fluorescence channels using filter sets for DAPI, Cy3, Calfluor 610, Cy5, and Atto 

700. The filter sets we used were 31000v2 (Chroma), 41028 (Chroma), SP102v1 (Chroma),17 

SP104v2 (Chroma) and SP105 (Chroma) for DAPI, Atto 488, Cy3,  Atto 647N/Cy5 and Atto 700, 

respectively. A custom filter set was used for Alexa 594/CalFluor610 (Omega). We tuned the 

exposure times depending on the dyes used: 4 seconds for each guide probe, 4000 msec for 

each of the detection probes, 5000 msec for the NEAT1 probe, and 7000 msec for ADAR1 and 

ADAR2 probes. We also acquired images in the Atto 488 channel with a 1000 msec exposure as 

a marker of autofluorescence. 

Image analysis. We first segmented and thresholded images using a custom Matlab software 

suite (downloadable at https://bitbucket.org/arjunrajlaboratory/rajlabimagetools/wiki/Home). 

Segmentation of cells was done manually by drawing a boundary around non-overlapping cells. 

The software then fits each spot to a two-dimensional Gaussian profile specifically on the Z-plane 

on which it occurs in order to ascertain subpixel-resolution spot locations. Colocalization took 

place in two stages: In the first stage, guide spots searched for the nearest-neighbor detection 

probes within a 2.5-pixel (360-nm) window. We ascertained the median displacement vector field 

for each match and subsequently used it to correct for chromatic aberrations. After this correction, 

we used a more stringent 1.5-pixel (195-nm) radius to make the final determination of 

colocalization. In order to test random colocalization due to spots occurring randomly by chance, 

we took our images and shifted the guide channel by adding 5 pixels (1.3 µm) to the X and Y 

coordinates and then performing colocalization analysis.  
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Autofluorescence subtraction. For U-87 MG cells, we controlled for punctate autofluorescence 

by imaging with the 41028 (Chroma) filter set, the ‘gfp channel’, which we have previously found 

to be sensitive for autofluorescence in this cell line (data not shown). We performed colocalization 

as previously described between guide spots and any spot-like autofluorescence called in the gfp 

channel. In R, we excluded spots colocalizing with this autofluorescence from all inoFISH 

analyses. 

Subcellular localization. Nuclear localization. We extracted a DAPI nuclear mask as previously 

described (Raj et al., 2008). We call a spot as localized to the nucleus if the guide spot X and Y 

coordinates overlap with the 2D nuclear mask.  

Localization to transcription sites. We visualized NUP43 introns by probing with intron-specific 

probes coupled to Atto 700 and imaging with SP105 filter set. We used the txnSiteGUI2 interface 

within rajlabimagetools to manually curate calls of exon-intron spot colocalization. 

Localization to paraspeckles. We visualized paraspeckles by probing with NEAT1-specific probes 

coupled to Atto 700 and imaging with SP105 filter set. We used the txnSiteGUI2 interface within 

rajlabimagetools to manually curate calls of transcript-paraspeckle association.  

In situ cyanoethylation. Cyanoethylation was performed similarly to previous descriptions 

(Sakurai et al., 2010; Yoshida and Ukita, 1968). We aspirated the 70% ethanol off of the fixed 

cells and added cyanoethylation solution (1.1 M triethylammoniumacetate (pH 8.6) resuspended 

in 100% ethanol) with or without 1.6 M acrylonitrile at 70 °C for 15 min. Use large volume to 

prevent drying from evaporation. Remove from heat after 15 min (30 min incubation abolishes 

guide probe signal) and wash twice with wash buffer (2× SSC, 10% formamide) before beginning 

inoFISH procedure.  

Statistical analysis. Detection efficiency. For each label (edited or unedited) in each experiment 

we calculated the mean fraction of transcripts colocalized with a spot of that label over all 

replicates (excluding 3-color spots). For complete details of this analysis, please see Appendix A. 

Population-wide editing level estimation by inoFISH. We define the population-wide editing level 

estimate as the average over all replicates of the inferred fraction of uniquely labelled guide spots 
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labelled as edited. For a complete description of our estimation of population-wide editing level, 

please see the Supplementary Note. 

Paraspeckle-transcript association rates. In MATLAB, we simulated the exact conditional null 

distribution of paraspeckle-transcript association rates for each experiment under the null 

hypothesis that a paraspeckle and a nuclear-localized transcript will only colocalize by chance. 

For each cell in each experiment, we conditioned on (1) the shape and size of that cell’s nucleus, 

(2) the locations of all paraspeckles in that nucleus, and (3) the number of transcripts of interest 

(GRIA2 or EIF2AK2) retained in the nucleus. In order to efficiently simulate these distributions, 

rather than using txnSiteGUI2 as above, we generated 2D masks for paraspeckle locations and 

called paraspeckle-transcript association when a randomly placed transcript spot overlapped with 

this mask. We selected the mask size as 25 pixels per paraspeckle spot called--roughly the mean 

paraspeckle size--based on our inspection of paraspeckles while calling spots (as in Image 

analysis). For each experiment, we simulated draws from the exact conditional null distribution 

1000 times. A raw p-value for paraspeckle-transcript association rate is equal to the fraction of 

simulations with a higher paraspeckle-transcript association rate. We similarly simulated exact 

conditional null distributions for paraspeckle-edited-transcript and paraspeckle-unedited-transcript 

association rates. 

Single-cell editing level distributions. In R, we assessed single-cell spot counts after inoFISH 

colocalization as reported by rajlabimagetools 

(https://bitbucket.org/arjunrajlaboratory/rajlabimagetools/wiki/Home; in Image analysis), as well as 

after autofluorescence subtraction (for U-87 MG data). We simulated the null distribution of data 

likelihood under a null model wherein all cells sharing the same effective editing level: for an 

experiment with overall estimated editing level equal to pe (above), let ne
j
 be the number of edited 

transcripts detected in cell j and nu
j
 be the number the number of unedited transcripts detected in 

cell j. Under the null model, ne
j
 is drawn from a Binomial with (ne

j
 + nu

j
) draws and probability pe. 

We simulated single-cell label counts for cells by drawing from these conditional null distributions 

for each cell 100000 times. We then compared the negative log-likelihood of the observed data, 
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combined over all replicates, with the distribution of negative log-likelihoods of each simulation 

iteration. A p-value of 0.12 indicates that 12% of the simulated iterations had a negative log-

likelihood that was greater than the observed data. Note that the -log(likelihood) density plots in 

Fig. 3 are subsampled to 3000 of the aforementioned 100000 such iterations per plot, in order to 

facilitate figure generation. For complete details of this analysis, please see the Supplementary 

Note. 

siRNA knockdowns of ADAR2. Briefly, we used Lipofectamine RNAimax to transfect SH-SY5Y 

cells with Silencer Select siRNAs targeting ADARB1 (ADAR; ID:s1011, Ambion) and a Negative 

Control siRNA (#1, Ambion) for 72 hrs, verifying knockdown via RNA FISH of ADAR2. 

SFPQ-guided GRIA2 inoFISH. We performed GRIA2 inoFISH, as described above, but 

substituted a smFISH probe set for SFPQ (Cabili et al., 2015) for the GRIA2 guide. Like GRIA2 

transcripts, SFPQ transcripts are localized to the nucleus in SH-SY5Y cells. In parallel we 

performed regular GRIA2 inoFISH on a sample of cells from the same passage. We counted the 

number of GRIA2 mRNA per cell in the regular sample, and subsampled the SFPQ “guide” spots 

from that distribution of mRNA counts per cell. In this way, we could more directly compare 

colocalization rates with GRIA2 detection probes between SFPQ-guided and GRIA2-guided 

experiments. We then performed colocalization as described above. 

Cell cycle inhibitor. We measured nuclear retention of GRIA2 mRNA by inhibiting transcription 

for 24 hr by applying aphidicolin at 1 ug/ml.  

Reproducible analyses. Scripts for all analyses presented in this paper, including all data 

extraction, processing, and graphing steps are freely accessible at the following url: 

https://www.dropbox.com/sh/j5umuneita1nck9/AAA4W4I648glUUhePJfXyaRaa?dl=0 . 

All imaging and other non-RNA-sequencing data associated with this paper are also freely 

available at the following url: 

https://www.dropbox.com/sh/vwwnwrmgg72o75c/AACsFK6VbJHY2S5MK8JLR2JNa?dl=0 . For 

publicly available RNA-seq data discussed in Supp. Fig. 1, please see EBI ArrayExpress 

(https://www.ebi.ac.uk/arrayexpress/) accession numbers E-MTAB-2690 (SH-SY5Y samples 



 
 

98 

“SY5Y_A” and “SY5Y_B”) and E-MTAB-1875 (U-87 MG samples “s_2_78”, “s_2_82”, and 

“s_2_88”). 
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APPENDIX C: MATERIALS AND METHODS FOR CHAPTER 2 

 

Cell culture 

Unless otherwise noted, all cell culture incubations below were performed at 37°C, 5% CO2. We 

tested intermittently for mycoplasma contamination. 

GM00942 human dermal fibroblast culture 

We cultured GM00942 human dermal fibroblasts (Coriell, GM00942; XX donor, normal-appearing 

tissue) according to the distributor’s instructions, on tissue culture-treated dishes in E-MEM (QBI 

112-018-101) + 10% FBS (Life Technologies 16000044, lot 1802004) + Pen/Strep. 

GM11169 human cardiac fibroblast culture 

We cultured GM11169 human cardiac fibroblasts (Coriell, GM11169; XX donor) on tissue culture-

treated dishes in DMEM w/Glutamax + 9% FBS (Life Technologies 16000044) + P/S. 

HEK293FT culture 

We expanded HEK293FT cells in DMEM w/Glutamax + 9% FBS + P/S. 

hiF-T culture 

We cultured hiF-T cells as previously described prior to hiF-T-iPSC reprogramming 

experiments(Cacchiarelli et al., 2015). Briefly, we expanded hiF-T cells in growth medium on TC 

plastic dishes coated with Attachment Factor (Fisher S006100), and split cells 1:3 when they 

reached 60-70% confluency. hiF-T growth medium (GM) is DMEM/F-12 w/ Glutamax (Life Tech. 

10565018) + 10% ES-FBS (Life Tech. 16141079) + 1x 2-Mercaptoethanol (Life Tech. 21985023) 

+ 1x NEAA (Invitrogen 11140050) + P/S + 0.5µg/mL Puromycin + 16ng/mL rhFGF-basic 

(Promega G5071). 

Immortalized human cardiac fibroblast (immHCF) culture 

We cultured human immortalized human cardiac fibroblasts (HCFs) as previously 

described(Mohamed et al., 2017). We received HCFs from Deepak Srivastava. In brief, we 

expanded HCFs on gelatin-coated (Millipore ES-006-B) tissue culture dishes in iCM medium (per 
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500mL: 350mL DMEM w/Glutamax + 85mL Medium 199 + 50mL FBS + 5mL Non-essential 

amino acids + 10mL Pen/strep).  

Platinum-A (Plat-A) retroviral packaging cell line culture 

We cultured Platinum-A cells (Cell Biolabs RV-102) according to the manufacturer’s instructions. 

We expanded these cells in DMEM w/Glutamax + 9% FBS + P/S + 10ug/mL Blasticidin + 1ug/mL 

Puromycin.  

 

Cellular reprogramming 

Derivation of cardiomyocytes (iCards) from GM942-iPSCs 

We derived cardiomyocytes from GM942-iPSCs, called iCard-942 cells, as previously 

described(Laflamme et al., 2007; Palpant et al., 2015; Zhu et al., 2010, 2011). Briefly: 

Seeding of GM942-iPSCs 

We thawed GM942-iPSCs and grew them in feeder-free conditions on Geltrex-coated 

(ThermoFisher, cat. A1413301) dishes in iPS-Brew (Miltenyi, cat. 130-104-368) for 4-5 days, until 

~75% confluency. Then, we split and seeded GM942-iPSCs into Geltrex-coated 12-well plates at 

a density of roughly 1e6 cells per well in iPS-Brew + 2µM Thiazovivin (Sigma, cat. SML1045-

5MG). After 24 hours, we changed the culture medium to iPS-Brew + 1µM Chiron 99021 

(Cayman Chemical, cat. 13122) and then incubated the cells for a further 24 hours. 

Differentiation to iCard-942 cells 

Starting on Day 0, we incubated GM942-iPSCs for 18 hours in RPMI (Life Technologies, cat. 

11875-119) + 100ng/ml Activin A (R&D systems, cat. 338-AC- 010) + 2% B-27 (minus insulin; Life 

Technologies, cat. 17504-044). Next, on Day 1 we changed the medium to RPMI + 2% B-27 

(minus insulin) + 5ng/ml BMP4 (Peprotech, cat. AF-120-05ET) + 1uM Chiron 99021 and 

incubated these cells for 48 hours. On day 3 we changed the medium to RPMI + 2% B-27 (minus 

insulin) + 1uM Xav 939 (Tocris Bioscience, cat. 3748) and incubated cells for 48 hours. On Day 5 

we changed the medium to RPMI + 2% B-27 (minus insulin) and incubated the cells for 72 hours. 
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From Day 8 - 12 we changed the medium to RPMI + 2% B-27 (including insulin) + 1% pen/strep, 

and replaced medium every other day.  

Glucose-free medium selection steps for cardiomyocytes 

In order to enrich the culture for cardiomyocytes, we subjected these cells to two glucose-free 

selection steps. On Day 12 we started the first selection step by replacing the medium with RPMI 

glucose free (ThermoFisher, cat. 11879020) + 2% B-27 (including insulin) + 1% Pen-Strep and 

incubated for 72 hours. On day 15 we replated the cells onto Geltrex-coated dishes at 6.3e5 

cells/cm
2
 in RPMI + 20% FBS (Seradigm, lot 050B14) + 1uM Thiazovivin and incubated them for 

24 hours. On Day 16 we changed the medium to RPMI + 2% B-27 (including insulin) and 

incubated them for 48 hours to recover. On Day 18 we started the second selection step, again 

by replacing the medium with RPMI glucose free (ThermoFisher, cat. 11879020) + 2% B-27 

(including insulin) + 1% Pen-Strep and incubated for 72 hours. 

Splitting iCard-942 cells into 96-well plates 

On Day 21 we split the double-selected iCard-942 cells into Geltrex-coated 96-well plates at a 

density of 1e5 cells per well in RPMI + 20%FBS + 1µM thiazovivin and incubated overnight. On 

Day 22 we changed the medium to RPMI + 2% B-27 (with insulin) + pen/strep and incubated for 

48 hours. By Day 23 or 24 we expected to observe recovery of beating activity among a majority 

of the cardiomyocytes in all of the wells. If we did not observe beating activity we changed the 

RPMI + 2% B-27 (with insulin) + pen/strep medium on Day 24, incubated for another 48 hours, 

and checked again for beating activity on Day 26. If the cardiomyocytes did not regain beating 

activity by Day 26 we did not proceed to perturbation culture. 

 

Perturbation culture 

GM00942 fibroblasts 

For GM00942 fibroblasts, we called the day on which they were seeded in 96-well plates Day -2 

of perturbation. We split 95% confluent 10cm tissue culture-treated dishes of cells into 96-well 

plates at a density of roughly ~1.5e4 cells per well in EMEM + 10% FBS + Pen/strep and 
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incubated for 48 hours. On Day 0 we replaced the medium (250 µL) in each well and added 0.7 

µL of drug stock in DMSO (see Table 2.1) or of DMSO (for control cultures). This kept total 

DMSO concentration of the perturbation culture medium below 0.3% for all conditions. We 

incubated cells for 48 hours, and then on Day 2 replaced medium and re-adding a fresh dose of 

drug stock at the same volumes as Day 0. We incubated cells for a further 48 hours before taking 

images of each well (below) and extracting RNA (below) on Day 4. 

iCard-942 

For iCard-942 cells, we called the first day on which we observed beating activity in the majority 

of wells of each 96-well plate Day 0 of perturbation. On Day 0 we replaced the medium with 

250µL RPMI + 2% B-27 (with insulin) + pen/strep and added 0.7µL of drug stock in DMSO (See 

Table 2.1) or of DMSO (for control cultures), again keeping total DMSO concentration of 

perturbation culture medium below 0.3% for all conditions. We incubated cells for 48 hours, and 

then on Day 2 replaced medium and re-adding a fresh dose of drug stock at the same volumes 

as Day 0. We incubated cells for a further 48 hours before taking videos of each well (below) and 

extracting RNA (below) on Day 4. 

Transdifferentiation of immortalized HCFs to induced cardiomyocyte-like cells 

We performed transdifferentiation of immortalized HCFs to induced cardiomyocyte-like cells 

(iCMs) as previously described(Mohamed et al., 2017). Briefly, on day -3 we plated HCFs in 12-

well culture vessels (indicated cell number per experiment) in iCM medium and Plat-A cells in 

10cm dishes (4e6 cells per dish) in DMEM w/Glutamax + 9% FBS without any antibiotics. On day 

-2 we transfected each dish of Plat-A cells with 10ug of one indicated pMXs expression plasmid 

in 500uL Optimem + 35uL Fugene HD. On day 0, we collected viral supernatants and pooled 

them as needed for replicate conditions, filtered them through 0.45µm filter units, and transduced 

HCFs. For transductions we used 6µg/mL polybrene, a 30min 930 x g spin, and overnight 

incubation at 37C. On day 1 we replaced transduction medium with iCM medium. On day 4 we 

replaced iCM medium with 75% iCM medium/25% Reprogramming medium (RPMI 1640 + B-27 

+ P/S), on day 7 with 50% iCM medium/50% Reprogramming medium, on day 11 with 25% iCM 
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medium/75% Reprogramming medium, and on day 14 with Reprogramming medium alone. We 

then changed reprogramming medium daily until analysis on the indicated day per experiment, 

usually day 24. On day 24, we fixed cells in two formats for analysis. Some 12-well TC plastic 

wells were fixed in place using 3.7% formaldehyde and permeablized at least overnight with 70% 

Ethanol in 4C, while others were dissociated with Accutase and transferred to Concanavalin-

coated (Sigma C0412) 8-well Lab-Tek chambers. After 90-120 minutes, transferred samples were 

fixed in these 8-well chambers using 3.7% formaldehyde and permeablized at least overnight with 

70% Ethanol in 4C. Samples in 12-well wells were processed for FISH imaging by excising them 

from their 12-well plate after fixation with a heated 20mm cork borer and processing them for 

FISH or immunofluorescence as described below. 

Cloning of transcription factor genes and TurboGFP into pMXs 

In order to drive overexpression of perturbable transcription factor genes and TurboGFP, we 

cloned cDNA for genes of interest into pMXs-gw (Addgene 18656; a gift from Shinya Yamanaka) 

using BP and LR Clonase II (Invitrogen). We amplified cDNA of targets of interest using attB-

target-specific primers (Table 2.2). We used standard tools to verify sequence identity of the 

plasmid backbone and gene insert, such as restriction digestion and Sanger sequencing. We 

amplified attB-TurboGFP off of the SHC003 plasmid (Sigma SHC003).  

Indirect functional titering of pMXs retroviral vectors 

Since our expression vectors do not contain selectable or fluorescent markers and pMXs 

retroviral vectors only transduce dividing cells, we indirectly titered each experimental replicate’s 

batch of virus by co-transducing parallel samples of HCFs with pMXs-DsRed Express (Addgene 

22724; a gift from Shinya Yamanaka) and pMXs-TurboGFP (see “Cloning” above) produced 

using the same batch of Plat-A cells under the same conditions. In order to estimate the fraction 

of cells that are infected at least once per factor, we considered the infection rates of these 

fluorescent pMXs vectors. By comparing the fraction that are co-infected with both against the 

fraction that are infected with each factor at all, we can infer the fraction of cells dividing in the 

population during the transduction period and the fraction of those cells that receive at least one 
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copy of any individual expression vector. We make the simplifying assumption that among 

dividing cells infection events are independent of each other. Therefore, the ratio of the fraction 

that are DsRed+ and GFP+ to the fraction that are DsRed+ (or GFP+) is approximately the 

square of the transduction rate for any individual virus. E.g., for 30% of cells being DsRed+ and 

24.3% being DsRed+ and GFP+, 24.3/30 = 0.81, which gives 90% transduction rate for each 

individual virus.  

shRNA-based knockdown of transcription factors in hiF-T cells 

We conducted knockdown of individual transcription factors using shRNAs essentially as 

previously described.(Cacchiarelli et al., 2015) In brief, we acquired cloned pLKO.1, pLKO.1-

shRNA, and pLKO.1-TurboGFP plasmids from the University of Pennsylvania High-Throughput 

Screening Core (Table 2.3). We verified shRNA and backbone sequence with Sanger 

sequencing. We packaged shRNA lentivirus using pMD2.G (Addgene 12259; a gift from Didier 

Trono) and psPAX2 (Addgene 12260; a gift from Didier Trono) in HEK293FT cells, and filtered 

viral supernatant through 0.22µm filter units prior to infecting hiF-T cells. We infected hiF-T cells 

at an MOI of approximately 1 (for a transduction efficiency of ~70%) with 4µg/mL polybrene and 

30 min 930 x g centrifugation. Since hiF-T cells are already Puromycin-resistant, we were unable 

to perform an antibiotic selection step after infection with these pLKO.1-puro-based shRNA 

plasmids. 

Verification of knockdown efficiency following shRNA transduction 

We performed RT-qPCR on RNA extracted from samples of the hiF-T cells that we used in 

reprogramming experiments. We used Superscript III Reverse Transcriptase for first-strand cDNA 

synthesis and Power SYBR qPCR Master Mix with gene-specific primer pairs for qPCR on an 

Applied Biosystems 7300 system. We performed all statistical analysis using custom scripts in R 

(see “Code accessibility” below for all scripts) and calculated knockdown efficiency using the 

ΔΔCt method. 

 

hiF-T reprogramming to pluripotency 
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We performed hiF-T reprogramming experiments as previously described. Briefly, after shRNA 

transduction on day -7, we expanded cells in hiF-T GM without puromycin for one week. On Day -

1 we seeded CF-1 Irradiated MEFs on uncoated 24-well plates (Corning) at a density of 2.5e5 

cells per well in hiF-T GM without puro. On Day 0, we seeded 10
4
 hiF-T cells per 24-well plate 

well. On Day 1 we began Yamanaka factor induction by switching media to hiF-T GM with 

2µg/mL doxycycline and without puromycin. On Day 3 we switched media to KSR Medium 

(KSRM): DMEM/F-12 w/ Glutamax (Life Tech. 10565018) + 20% Knockout Serum Replacement 

(Life Tech. 10828010) + 1x 2-Mercaptoethanol (Life Tech. 21985023) + 1x NEAA (Invitrogen 

11140050) + P/S + 8ng/mL rhFGF-basic + 2µg/mL Doxycyclin. We changed KSRM daily, and 

analyzed cells on day 21.  

 

High-throughput RNA extraction  

We used RNaqueous-96 kits (Ambion AM1920) for RNA extraction without the optional DNase 

step, according to manufacturer’s instructions. 

 

RNAtag sequencing 

We conducted highly parallelized bulk RNA sequencing with RNAtag-seq as previously 

described, using all components and steps in the published protocol.(Shishkin et al., 2015) We 

ordered the specified 32 barcoded DNA oligos for RNAtags from Biosearch Technologies and 

indexed primers for library amplification and reverse transcription from IDT. We sequenced all 

RNAtag-seq libraries in batches of 96 samples on an Illumina NextSeq 550 using 75 cycle high-

output kits (Illumina 20024906). 

 

RNAtag-seq data processing 

We demultiplexed RNAtag-seq reads using custom scripts, courtesy of Edward Wallace.(Wallace 

and Beggs, 2017) We aligned RNAtag-seq reads to the human genome (hg19) with STAR 

v2.5.2a and counted uniquely mapping reads with HTSeq v0.6.1.(Shaffer et al., 2017) We 
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performed all downstream analysis in R v3.6.1 using packages yaml_2.2.0, DESeq2_1.24.0, 

SummarizedExperiment_1.14.0, DelayedArray_0.10.0, BiocParallel_1.18.0, matrixStats_0.54.0, 

Biobase_2.44.0, GenomicRanges_1.36.0, GenomeInfoDb_1.20.0, IRanges_2.18.1, 

S4Vectors_0.22.0, BiocGenerics_0.30.0, e1071_1.7-2, magrittr_1.5, ggrepel_0.8.1, 

ggplot2_3.2.0, tibble_2.1.3, tidyr_0.8.3, and dplyr_0.8.3 and their associated dependencies. 

 

Gene expression perturbability 

As a measure of gene expression perturbability we used the count of the number of conditions in 

which a gene was differentially expressed relative to cell type DMSO controls. For most analyses 

we used any change with a DESeq2 adjusted p-value less than 0.1, but also conducted analyses 

with additional filters, such as minimum absolute values of log2FoldChange. We also considered 

other measures of perturbability, as well, which are not included in the manuscript above, details 

of which are available upon request. 

 

Prioritization of highly perturbable genes for use in transdifferentiation and 

reprogramming experiments 

We chose to follow up on highly perturbable genes in transdifferentiation and reprogramming 

experiments. In order to narrow down the list of transcription factors, we considered those 1) with 

average expression of 50 TPM or greater in controls of the cell type of interest, 2) with at least 4 

conditions in which they are up-regulated, and 3) that are up-regulated in more conditions than 

they are down-regulated. Then we selected from these lists genes that were relatively unstudied 

in the context of cardiac transdifferentiation and iPSC reprogramming, as far as we could find in 

the literature. 

 

Live cell Tra-1-60 imaging 
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In a pilot reprogramming experiment without shRNA transduction, we conducted live-cell staining 

of hiF-T-iPSC colonies Tra-1-60 with TRA-1-60 Alexa Fluor™ 488 Conjugate Kit for Live Cell 

Imaging (Life Tech. A25618) according to the manufacturer’s instructions. 

 

Alkaline phosphatase staining with colorimetry 

We used the Vector Red Substrate kit (Vector Labs SK-5100) to stain hiF-T-iPSC colonies after 

fixation on day 21 of reprogramming experiments. We fixed wells in 24-well format using 3.7% 

formaldehyde for 3 minutes, and followed the manufacturer’s instructions. 

 

Immunofluorescence 

We performed immunofluorescence for several markers. For Tra-1-60 immunofluorescence of 

hiF-T-iPSC samples that had already been stained with Vector Red, we blocked and 

permeablized in 5% BSA + 0.1% Triton X-100 in PBS at room temperature for 30 min. Then we 

washed samples in PBS and used Stemgent 09-0068 at 1:200 in 5% BSA + 0.1% Triton X-100 

for 2 hours at room temp. We washed samples in PBS and stained with DAPI prior to imaging. 

For cardiac Troponin immunofluorescence of iPSC-derived cardiomyocytes and 

transdifferentiated samples, we fixed samples in 3.7% formaldehyde for 10 min at room temp, 

washed in PBS, and permeablized with 70% Ethanol overnight at 4C. Independent of smFISH or 

after the smFISH protocol, we performed immunofluorescence with Abcam ab45932 primary 

(1:200) with goat anti-rabbit-Alexa 594 (1:200) secondary and Fisher MA5-12960 primary (1:200) 

with donkey anti-mouse-Alexa 488 (1:200) secondary. We used samples in 3% BSA + 0.1% 

Tween 20 for blocking/binding buffer. Primary antibody incubations of 1 hour and secondary 

incubations of 30 min, both at room temperature. Samples were washed with PBS and stained 

with DAPI prior to imaging.  

 

Single-molecule RNA FISH 
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We incubated our cells overnight at 37°C in hybridization buffer (10% dextran sulfate, 2× SSC, 

10% formamide) with standard concentrations of RNA FISH probes (Table 2.2).(Padovan-Merhar 

et al., 2015) The following morning, we performed two washes in wash buffer (2X SSC, 10% 

formamide), each consisting of a 30-min incubation at 37°C. After the second wash, we rinsed 

once with 2X SCC/DAPI and mounted the sample for imaging in and 2X SSC.(Raj et al., 2008) 

We performed RNA FISH on cell culture samples grown on a Lab-Tek chambered coverglass 

using 50 μL of hybridization solution spread into a thin layer with a coverslip and placed in a 

parafilm-covered culture dish with a moistened Kimwipe to prevent excessive evaporation.  

Imaging. We imaged each sample on a Nikon Ti-E inverted fluorescence microscope using a 

60× Plan-Apo objective and a Hamamatsu ORCA Flash 4.0 camera. For 60× imaging of complete 

cells, we acquired z-stacks (0.3 µm spacing between stacks). For 60× imaging of a large field of 

cells with one plane each, we used Nikon Elements tiled image acquisition with perfect focus. All 

image of stained cells were in different fluorescence channels using filter sets for DAPI, Cy3, 

Alexa 594, and Atto 647N. The filter sets we used were 31000v2 (Chroma), 41028 (Chroma), 

SP102v1 (Chroma),17 SP104v2 (Chroma) and SP105 (Chroma) for DAPI, Atto 488, Cy3,  Atto 

647N/Cy5 and Atto 700, respectively. A custom filter set was used for Alexa 594/CalFluor610 

(Omega). We tuned the exposure times depending on the dyes used: 400 ms for probes in Cy3 

and Alexa 594, 500 ms seconds for each probe in Atto 647N, and 50 ms for DAPI probes. We 

also acquired images in the Atto 488 channel with a 400 ms exposure as a marker of 

autofluorescence. 

Image Processing 

smFISH analysis of image scans and stacks was done as previously described using 

rajlabimagetools changeset 775fd10 

(https://bitbucket.org/arjunrajlaboratory/rajlabimagetools/wiki/Home) in MATLAB v2019a.(Shaffer 

et al., 2017)  
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