
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

2019 

Combining Computational And Experimental Approaches To Combining Computational And Experimental Approaches To 

Study Disordered And Aggregation Prone Proteins Study Disordered And Aggregation Prone Proteins 

John Joseph Ferrie 
University of Pennsylvania 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
Ferrie, John Joseph, "Combining Computational And Experimental Approaches To Study Disordered And 
Aggregation Prone Proteins" (2019). Publicly Accessible Penn Dissertations. 3586. 
https://repository.upenn.edu/edissertations/3586 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3586 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=repository.upenn.edu%2Fedissertations%2F3586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3586?utm_source=repository.upenn.edu%2Fedissertations%2F3586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3586
mailto:repository@pobox.upenn.edu


Combining Computational And Experimental Approaches To Study Disordered Combining Computational And Experimental Approaches To Study Disordered 
And Aggregation Prone Proteins And Aggregation Prone Proteins 

Abstract Abstract 
Over the past two decades disordered proteins have become more widely recognized, challenging the 
canonical structure-function paradigm associated with proteins. These highly dynamic proteins have 
been identified across a wide range of species and play a variety of functional roles. Furthermore, the 
structural plasticity of these proteins gives way to their increased aggregation susceptibility, compared to 
canonical, well-folded proteins, placing disordered proteins at the center of many neurodegenerative 
diseases. Despite the increased recognition of the abundance and complexity of disordered proteins, their 
structural features and the mechanisms by which they transit between functional and pathological roles 
remains elusive. The efforts described herein focus on leveraging both experimental and computational 
approaches to study the structure and dynamics of these proteins. Fluorescence-based experiment have 
proven useful for studying these systems as the intrinsic heterogeneity of this class of proteins, which 
precludes the use of many traditional structural biochemistry techniques, can be accommodated. 
Therefore, initial efforts focused on developing new minimally perturbing fluorescence probes and 
coupling these probes with site-selective labeling strategies. Subsequent efforts focused on identifying 
methods which could predict where these probes would be tolerated to boost protein yield and avoid 
structural perturbation. These and other fluorescence probes were employed in Förster Resonance 
Energy Transfer (FRET) experiments, to study the conformational ensemble of α-synuclein, a disordered 
protein whose aggregation is implicated in Parkinson’s Disease pathogenesis. Experimental FRET data 
was paired with molecular modeling in PyRosetta to simulate the conformational ensembles of α-
synuclein in the presence and absence of 2 M TMAO. The accuracy of the resultant ensembles was 
corroborated by comparison to other experimental data. Following this initial success using 
experimentally constrained simulations, attention was directed towards the development of algorithms 
capable of generating accurate structural representations of both disordered and ordered proteins de 
novo. Lastly, this work showcases the utility of a high-throughput in-silico screening approach in 
identifying a compound that binds selectively to α-synuclein fibrils with nanomolar affinity. Overall this 
work highlights several computational and experimental approaches which are broadly applicable to the 
study of disordered and aggregation prone proteins 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Chemistry 

First Advisor First Advisor 
Ernest J. Petersson 

Keywords Keywords 
amyloid, fluorescence, modeling 

Subject Categories Subject Categories 
Chemistry 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/3586 

https://repository.upenn.edu/edissertations/3586




ii 

 

Dedication 

This dissertation is dedicated to all those who have helped me grow as a 
scientist over the course of this thesis work and all those who stood by and 

supported me along the way.  
  



iii 

 

ACKNOWLEDGMENT 

 To the many people who have helped me throughout this journey a simple 

thanks is not enough. To friends and colleagues, new and old, this work is truly a 

testament not only of my own person effort, but also the effort, kindness, 

compassion and assistance that I have received from all of you daily. Truly this 

work would not exist without your tireless efforts.  

 First, I would like to thank Professor E. James Petersson for providing me 

with the opportunity to work in his lab and for all his mentorship and guidance with 

experiments, assistance with fellowship applications and paper writing and his 

career advice. I also express my deepest appreciation for the space and vote of 

confidence that he gave me to explore computational modeling, given no prior 

coding experience. No other single mission in graduate school has shaped me 

more than taking on this task. Also, I owe special thanks to my committee 

members, Professors, Rhoades, Fakhraai, Anna and Saven for all their feedback 

over the years and their encouragement.  

 The Chemistry Department at the University of Pennsylvania has provided 

me with so many talented colleagues and good friends. I want to specially thank 

my fellow classmates whom I entered graduate school with, including Michael 

Nicastri, Stan Najmr and Benjamin Partridge who helped me weather many 

challenges throughout my graduate school career. Also, I want to thank Rebecca 

Wissner, who served as my mentor throughout my first year in the Petersson Lab. 

I was able to get a strong start in the lab because of her mentorship and the 



iv 

 

comradery of these friends. Also, I would like to thank Professors Robert Mach, 

Abhinav Nath, Virginia Lee and all the other collaborators I have had the 

opportunity to work with over the years. I am gracious for all these opportunities 

and all your assistance.  I would also like to thank Professor David Baker and 

Timothy Craven for allowing me to spend a summer at the University of 

Washington to better familiarize myself with the complexities of the Rosetta 

Modeling Suite. Additionally, I would like to thank the National Science Foundation 

and the Parkinson’s Disease Foundation for their financial support during my 

graduate school career.  

 The Petersson lab most days feels like a family, and over my time here has 

grown into a tight-knit group that not only works well together but has fun and 

shares a lot of laughs. I have met some of my best friends in the Petersson lab 

such as Christopher Walters (known to many as “Old Man Walters”) who was great 

collaborator and an even better friend, Taylor Barrett whose singing voice has no 

parallel and Miklos Szantai-Kis who was my desk partner from day one. More 

recently, I have had the pleasure of working alongside Sam Giannakoulias and 

Marshall Lougee, who have helped me wrap up this work. Without these and all 

the members of the Petersson lab my graduate school career would have been 

less successful and much less fun. Additionally, I would like to thank all the 

administration and staff of the Chemistry department  

 Outside of lab I have had the strong support of many friends from high 

school and from my undergraduate studies at The College of New Jersey. 



v 

 

Although too numerous to list, I want to specifically thank Ryan Janelli, Stefan 

Turan and Andrew Apicello whom have provided me with many fantastic pieces of 

advice and have shared in many fun weekends. Also, I would like to thank my 

family especially my parents, John and Shirley Ferrie, for all their support 

throughout my endeavors. Without the values they instilled in me this would not 

have been possible.  

 Lastly, I want to thank the person who stood by me day in and day out, 

through the ups and downs, who was there to celebrate in my victories and console 

me in my defeats. Elizabeth Rossiter has been the most important person to me 

over the course of this journey and deserves all the credit in the world for all the 

effort she has put in for me. I hope that this work has made her proud.    

  

   



vi 

 

ABSTRACT 

 

COMBINING COMPUTATIONAL AND EXPERIMENTAL APPROACHES TO STUDY 

DISORDERED AND AGGREGATION PRONE PROTEINS 

John J. Ferrie 

 Professor E. James Petersson 

Over the past two decades disordered proteins have become more widely recognized, 

challenging the canonical structure-function paradigm associated with proteins. These highly 

dynamic proteins have been identified across a wide range of species and play a variety of 

functional roles. Furthermore, the structural plasticity of these proteins gives way to their increased 

aggregation susceptibility, compared to canonical, well-folded proteins, placing disordered proteins 

at the center of many neurodegenerative diseases. Despite the increased recognition of the 

abundance and complexity of disordered proteins, their structural features and the mechanisms by 

which they transit between functional and pathological roles remains elusive. The efforts described 

herein focus on leveraging both experimental and computational approaches to study the structure 

and dynamics of these proteins. Fluorescence-based experiment have proven useful for studying 

these systems as the intrinsic heterogeneity of this class of proteins, which precludes the use of 

many traditional structural biochemistry techniques, can be accommodated. Therefore, initial 

efforts focused on developing new minimally perturbing fluorescence probes and coupling these 

probes with site-selective labeling strategies. Subsequent efforts focused on identifying methods 

which could predict where these probes would be tolerated to boost protein yield and avoid 

structural perturbation. These and other fluorescence probes were employed in Förster Resonance 

Energy Transfer (FRET) experiments, to study the conformational ensemble of α-synuclein, a 

disordered protein whose aggregation is implicated in Parkinson’s Disease pathogenesis. 

Experimental FRET data was paired with molecular modeling in PyRosetta to simulate the 

conformational ensembles of α-synuclein in the presence and absence of 2 M TMAO. The accuracy 

of the resultant ensembles was corroborated by comparison to other experimental data. Following 
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this initial success using experimentally constrained simulations, attention was directed towards 

the development of algorithms capable of generating accurate structural representations of both 

disordered and ordered proteins de novo. Lastly, this work showcases the utility of a high-

throughput in-silico screening approach in identifying a compound that binds selectively to α-

synuclein fibrils with nanomolar affinity. Overall this work highlights several computational and 

experimental approaches which are broadly applicable to the study of disordered and aggregation 

prone proteins.  
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§ 1.1 The Role of Amlyoidogenic Proteins in Neurodegenerative Disease 

Introduction to Disordered Proteins 

Proteins are macromolecular biopolymers that carry out a variety of tasks 

that give rise to cellular function. Each protein carries out a specific function or set 

of functions which is often correlated with its structure. The specific composition of 

amino acids and their arrangement, termed primary structure, allows for various 

secondary structures, three-dimensional structural elements which dictate the 

overall topology of a protein. Often, proteins can adopt multiple conformations, 

each required for a specific task, and can move between these states to serve 

several functional roles.1 Despite the longstanding view that a protein’s function is 

tied to its structure via a specific sequence of amino acids, the emergence of 

disordered proteins over the past two decades has urged this canonical model to 

be refined.2 Intrinsically disordered proteins (IDPs) do not readily adopt a defined 

architecture, but instead populate a variety of folds and conformations.2-4 This 

ensemble of states is usually highly sensitive to stimuli, including changes in pH, 

ionic strength and the presence of protein partners.3 These can modulate the 

overall size, or radius of gyration, of a disordered protein and influence the 

propensity of intramolecular contact formation.3 Furthermore, in specific cases, 

these stimuli have been shown to elicit structural transitions by which a canonically 

disordered protein adopts a stable fold.2-4 Partially ordered proteins, which contain 

both well folded, ordered, domains in addition to intrinsically disordered regions 

(IDRs) also exist with many combinations of ordered and disordered domains in a 

single protein.2-4 Ultimately, IDPs and IDRs have been demonstrated to serve a 
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variety of both physiological and pathogenic roles over the past two decades, 

which has prompted their study and encouraged a more robust comprehension of 

how their structural lability gives rise their functionality.2-4  

 

 

Figure 1.1: Structural differences between disordered and ordered proteins. Top: 
Differences between the structure and rigidity of ordered and disordered proteins 
as described by conformational energy landscapes. Bottom: Modulations of 
disordered protein ensembles. 

 

Functional Role of Disorder 

IDPs and IDRs serve a variety of physiological functions in the cell which 

are reliant on their ability to interact with several partners, respond to stimuli and 

stabilize functional conformations.2 Recently, as much as 30% of the eukaryotic 

proteome and 50% of the human proteome have been hypothesized to be partially 

or fully disordered.5-6 As structural components, IDRs present sites on a protein 

surface that can be modified by post-translational modifications (PTMs) or serve 

as spacers between folded domains of a protein.2-3, 7 IDRs have been long 

recognized in histones for their ability to be modified by a host of PTMs which elicit 
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various functional and signaling consequences.7 Furthermore, a variety of IDPs 

contain molecular recognition features (MoRFs), allowing a disordered region, 

upon interaction with a protein or DNA partner, to transition from a disordered to 

an ordered state.3 For example, many transcription factors adopt helical folds when 

interacting with their partner DNA motif but are otherwise disordered when not 

complexed with DNA.4 Additionally, conformational ordering is also not required 

for interaction and many IDPs and IDRs interact through the formation of fuzzy 

complexes.3 These highly dynamic complexes, which have been theorized to be 

held together by charge complementarity and cation-π interactions, give rise to the 

formation of phase condensates and protein hubs.8-10 Despite these dynamics, 

these complexes can exist with exceptionally high affinities such as the 

prothymosin α – histoneH1 interaction which has a sub-nanomolar binding 

affinity.11 Functionally, these complexes serve as the basis for many important 

cellular processes including transcription, DNA repair, signal transduction and 

assembly of the ribosome.12-14 Therefore, a more robust understanding of the 

underlying structure and dynamics of IDPs and IDRs will allow us to not only to 

better understand which architectural aspects primes them to perform these duties, 

but will likely also elucidate how mutations and misregulation can lead to disease. 

 

Misfolding in Disease 

Although the conformational fluidity of disordered proteins allows them to 

perform a wide range of tasks, this often results in the exposure of hydrophobic 

patches. This exposure makes this class of proteins notably aggregation prone 
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and amyloidogeneic.5 Proteins fold into their canonical active structures 

sporadically or with the assistance of chaperones and other molecular machinery.1 

However, the folding process is tightly regulated as adoption of an incorrect 

topology can not only disrupt function but can serve as the basis of disease.5 

Misfolding, or the adopt of an incorrect and sometimes pathogenic structure is 

often associated with protein aggregation which is implicated in several 

neurodegenerative diseases.5, 15 Prion diseases, including bovine spongiform 

encephalopathy, or mad cow disease, and Creutzfeldt-Jakob disease, are likely 

the most widely recognized protein misfolding diseases.15 Ingestion or exposure 

to brain tissue from a specimen containing misfolded prion protein leads to further 

misfolding of the prion protein endogenous to the patient, resulting in disease 

propagation.15 Much like prions, amyloids are proteins whose topologies allow for 

the template-based recruitment of other copies of the protein, generally resulting 

in the formation of a β-sheet rich architecture known as an amyloid fibril.16 These 

fibrils, along with the β-sheet rich oligomers that can form on- and off-pathway to 

fibril formation, are cytotoxic and have been implicated in a variety of diseases.5, 

16 In neurodegeneration, amyloid fibrils consisting of the Huntington protein, 

amyloid β, α-synuclein (αS) and tau have been implicated in Huntington’s Disease, 

Parkinson’s Disease (PD), Alzheimer’s Disease and Chronic Traumatic 

Encephalopathy (CTE), respectively.5, 16 Moreover, non-neurodegenerative 

diseases such as Type II Diabetes, associated with islet amyloid polypeptide, and 

cardiac amyloidosis, associated with transthyretin, are also caused by the 

aggregation of amyloidogenic proteins.16-18 Although it is well understood that the 
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aggregation of these proteins leads to disease, the exact mechanisms of their 

pathology and the processes that trigger their aggregation are not in many cases 

elucidated.  

 

 

Figure 1.2: Overview of the functional and pathological roles of αS. Top: Cartoon 
representations of (left) helical morphologies associated with the membrane bound 
forms, (middle) the disordered state and (right) toxic oligomeric and fibrillar forms 
of αS. Middle: (left) Schematic representation of the functional role of αS and (right) 
histological staining of LBs and LNs. Figures adapted from Laushel et. al.19 Bottom: 
Bullet point summaries of the functional (left) and pathological (right) roles of αS) 

 

Physiological Role of Alpha-Synuclein 

αS is member of a protein family consisting of three members and is a 140 

amino acid long disordered protein.19-20 It consists of three domains, the first being 

a 60 residue N-terminal domain (NTD) containing several imperfect 11 amino acid 
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amphipathic, KTKEGV motif, repeats.21 This domain is largely conserved across 

the other two synuclein family members, β- and γ-synuclein, and adopts a helical 

conformation when associated with membranes and vesicles.21 Following the 

NTD, the central domain of the protein, comprised of residues 61-94, is referred to 

as the non-amyloid β component of Alzheimer’s disease amyloid plaque (NAC) 

domain.19-21 This name originates from the identification of fragments of this 

domain within plaques comprised primarily of amyloid β in the brains of Alzheimer’s 

Disease patients.19-20 The largely hydrophobic NAC domain has been shown to be 

essential for αS aggregation and adopts a variety of β-sheet rich architectures in 

the oligomers and fibrils.19-21 The final C-terminal domain (CTD) of αS boasts a 

significant enrichment in acidic residues and is found to be consistently disordered, 

regardless of the structure of the NTD or NAC domain.19-21 

Despite its long-recognized role in the pathogenesis of PD, the functional 

role of αS has remained far more elusive.22 αS is primarily localized at the synaptic 

termini of neurons and is purported to serve a variety of functions and interact with 

several protein partners.19-20 Although αS is primarily disordered in the cytosol, 

single-molecule FRET, nuclear magnetic resonance (NMR) and electron 

paramagnetic resonance (EPR) studies have revealed that αS can adopt a variety 

of helical conformations when interacting with membranes and vesicles.23-25 

Moreover, these conformations are modulated by the curvature of the 

membrane.24 On high curvature vesicles, αS adopts a bent helix conformation 

consisting of two helical stretches connected by a disordered loop, and on low 

curvature membranes the protein adopts a single extended helix.24 Additionally, 
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the final C-terminal third of the protein remains disordered, regardless of the 

specific helical conformer. 23-25  In the helical membrane-bound state, αS 

contributes to synaptic plasticity, vesicle recycling, neurotransmitter release and 

other phenomena.19-20 Soluble N-ethylmaleimide-sensitive factor Attachment 

Protein Receptor (SNARE) proteins facilitate membrane fusion which leads to 

neurotransmitter release at synapses.26 In vitro and cellular studies have revealed 

that interactions between αS and SNARE proteins, specifically VAMP-2 and 

synaptobrevin, promote SNARE complex formation and vesicle docking.27-29 

These studies, along with knockouts of α-, β-, and γ-synuclein, suggest that αS is 

a nonessential component of the larger set of machinery responsible for vesicle 

reserve pool regulation and neurotransmitter release.19  

 

Role of Alpha-Synuclein in Parkinson’s Disease 

Insoluble deposits, comprised of fibrillar αS, found in the brain have long 

served as a post-mortem hallmark of PD. These in soluble deposits, known as 

Lewy Bodies (LBs) and Lewy Neurites (LBs), are found primarily in the substantia 

nigra pars compacta of PD patients. 19, 22 LBs and LNs are linked with dopaminergic 

neuronal death which leads to the well-recognized clinical presentations of the 

disease.30 Aggregates of αS are theorized to spread from this initial location 

throughout the brain over the course of disease progression.31-32 Additionally, αS 

aggregates have been associated with other neurodegenerative diseases, termed 

synucleinopathies.33 αS aggregates take the form of LBs in dementia with Lewy 

Bodies, however in other synucleinopathies, such as multiple systems atrophy 
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(MSA), aggregates present as glia cell inclusion (GCIs).34 These different 

aggregate morphologies are often associated with different regions of the brain, as 

GCIs are often found in oligodendrocytes of white matter tracts.34 Although the 

presence of αS containing plaques is long recognized, there still exists some 

debate as to whether these features are causative or emerge later in disease 

progression, playing a potentially protective role.35 However, direct administration 

of fibrillar αS prepared in vitro to cultured neurons, or intrastriatally injected into the 

brains of model mice, has demonstrated that the presence of fibrillar αS is sufficient 

to elicit disease phenotypes associated with PD.36-38 Lastly, several familial 

mutations within the gene responsible for αS production have been identified with 

increased risks for PD.39-46 These mutations either increase the copy number of 

αS, thus enhancing aggregation propensity, or result in alteration of the protein 

sequence.39-40 Of the latter, five mutations to date (A30P, E446K, H50Q, G51D, 

and A53T) have been observed in patients and greatly increase their risk for PD.41-

46 These results together substantiate the need to better understand the 

mechanisms behind the aggregation of αS and other amyloidogenic proteins and 

their role in pathogenesis. 

 

Impetus for Dissertation Studies 

Despite the long-recognized role of αS aggregates in PD pathogenesis, 

structural and mechanistic understandings of αS aggregation and toxicity have 

been lacking. This gap in knowledge has not only hindered our comprehension of 

disease progression and onset but has also limited our ability to therapeutically 



10 

 

target PD or monitor the disease using molecular probes. Since the start of the 

work presented herein, solid-state NMR, and most impactfully cryo-electron 

microscopy (cryoEM), have emerged as powerful techniques for capturing the 

complex architectures associated with the fibrillar forms of αS.47-50  

The work presented herein focuses on combing computational and 

experimental approaches to understand the unfolded state of αS and how the 

unfolded conformational ensemble can be modulated. Initially, this work highlights 

the development of novel minimally perturbing fluorophores, which can be 

employed in a variety of fluorescence-based assays.51-52 Subsequently, in-line with 

the long-term goal, this thesis work demonstrates how fluorescence spectroscopy 

can be leveraged to gain sufficient information to generate accurate experimentally 

constrained molecular models of the disordered state of αS.53 These initial efforts 

led not only to improved experimental methods, but to the development of new 

computational approaches, capable of accurately predicting the structure of both 

ordered and disordered protein systems from their sequence. Lastly, this work 

explores the use of in silico screening methods, which use the recently available 

fibrillar structure of αS as inputs, to generate compounds which can be useful as 

radiolabelled imaging agents. Overall, the work described herein consists of a 

variety of experimental and computational method designed to gain better 

mechanistic and structural understanding of disordered and aggregation prone 

proteins. 
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§ 1.2 The Utility of Fluorescence and FRET in Studying Protein Structure 

Several different methods have been employed to study the conformations 

of proteins and track protein dynamics. Most of our understanding of protein 

structure to date has come from x-ray crystallography, NMR and, more recently, 

cryo-EM.1-2, 54-55 However, these techniques are incapable of producing structures 

for highly dynamic and heterogeneous systems and are generally not well-suited 

to cellular studies.2, 54, 56 Alternatively, fluorescence-based experiments boast both 

the ability to be performed in cells and can be used to monitor complex systems.57 

However, these advantages are juxtaposed by a steep reduction in the amount of 

structural detail obtained. Therefore, fluorescence-based experiments have 

proven as a highly useful complement to these more data rich approaches for 

watching protein systems in action.  

 

Overview of Fluorescence and FRET 

Fluorescence occurs when a photon interacts with a molecule resulting in 

the emission of a photon of a different wavelength from the molecule. As depicted 

in Fig. 1.3, a molecule can absorb the energy of an incident photon provided the 

wavelength of the light matches the energy of allowed molecular 

electronic/vibrational transitions. This places the molecule into an excited state. 

Once in an excited state, a portion of the energy is often dissipated through various 

non-radiative decay processes, which are often associated with molecular motion. 

Ultimately, fluorescence occurs when the molecule returns to the ground state, 

emitting the remaining energy as a photon, which is now shifted in wavelength from 
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the initial absorbed photon. This shift is known as the Stokes Shift, and is 

principally dictated by the vibrational modes of the molecule but can be affected 

by the molecule’s surrounding environment. In addition to fluorescence, a variety 

of relaxation processes can result in the dissipation of energy, returning a molecule 

in the excited stated to the ground state. By transferring energy into the 

surrounding environment, or through intersystem crossing, where the molecule 

enters the triplet state via an electronic spin flip, a molecule can relax to the ground 

state in the absence of fluorescence. The probability with which a photon absorbed 

by a molecule results in a fluorescent event is termed the quantum yield and is 

governed by the rates of radiative and non-radiative decay intrinsic to the molecule. 

Additionally, the fluorescence or excited state lifetime of a molecule is the time the 

molecule spends in the excited state, following an initial excitation, before emitting 

a photon. Much like the Stokes shift, the lifetime and quantum yield associated 

with a molecule’s fluorescence can be modulated by the molecule’s surrounding 

environment.57  

One photophysical phenomenon that can greatly enhanced the amount of 

information which can be gleaned from fluorescence-based experiment is Förster 

Resonance Energy Transfer (FRET). Initially described by Theodor Förster in 

1948, FRET involves the distance-dependent resonance energy transfer between 

two molecules.58 During FRET, a donor fluorophore in the excited stated is 

quenched, or returned to the ground state, by non-radiatively transmitting energy 

to an acceptor chromophore. Two major criteria dictate whether two molecules can 

be in resonance and therefore participate in FRET. First, the specific three-
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dimensional orientation of the molecules’ absorption and emission dipoles governs 

the dipole coupling. Second, there must exist an energetic overlap between the 

transition energy associated with the donor’s relaxation and the excitation energy 

of the acceptor. This is most easily visualized as an overlap between the donor 

fluorophore’s emission spectra and the acceptor chromophore’s absorbance 

spectra, as is shown in Fig. 1.3. The energy transfer probability, also referred to as 

the FRET efficiency, has a sixth-order dependency on the intermolecular 

separation. 57-58 Molecular pairs are often defined by their Förster radius, or 

distance at which the FRET efficiency is one-half, which is largely ascribed to the 

wavelengths associated with the pair’s spectral overlap. These dependencies are 

mathematically defined in the latter part of this thesis.57  
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Figure 1.3: Overview of Fluorescence and FRET. Left: Jablonski diagram 
depicting vertical transitions associated with absorbance (upward arrows) and 
fluorescence (downward solid arrows) along with non-radiative relaxations 
(downward dashed arrows) and FRET (dashed grey arrows) between a donor 
(fluorescein, chemical structure, green) and acceptor (tetramethylrhoadamine, 
chemical structure, red) fluorophore. Right Top: Absorbance (blue: fluorescein, 
orange: tetramethylrhoadamine) and fluorescence (green: fluorescein, red: 
tetramethylrhoadamine) spectra corresponding to Jablonski diagram transitions. 
Right Bottom: Plot depicting the relationship between FRET efficiency and inter-
probe difference, with the coloration representing the associated fluorophore 
emission.  

 

Description of FRET’s use in Monitoring Conformational Changes 

The sensitivity of FRET, coupled with the ability of fluorescence-based 

experiments to be employed in a wide variety of contexts, has supported its 

employment to observe the structure and motions of various biopolymers (DNA, 

RNA, proteins). FRET had been used to track changes in protein conformation, 

assembly and disassembly of protein complexes, interactions between protein 
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partners and many other phenomena.59 Recently, FRET has become a useful 

modality for studying disordered proteins, as various features associated with the 

heterogeneity of these systems preclude their study by several other methods.60 

X-ray crystallography, which is reliant on the formation of protein crystals, requires 

sampling to be highly homogenous thereby eliminating it as an option for studying 

disordered systems.55-56 Although cryo-EM is inherently a single-molecule 

technique, where data from discreet molecules can be combined, the features 

required for robust particle averaging prevent it from reporting on disordered 

structural ensembles.54 Furthermore, in solution-phase NMR, the multiplicity of 

conformers, coupled with the lack of environmental distinction between residues, 

results in significant signal broadening and overlap.2 In most cases this makes 

assignment of chemical shifts to individual residues difficult and, when possible, 

does not deliver as detailed information as would be acquired for a well-folded 

protein.2, 56 Like FRET, EPR and paramagnetic relaxation enhancement (PRE) can 

be used to obtain inter-residue distance information.3, 61 PRE experiments 

measure distances between a single residue and all other residues in a protein.61 

Although this technique delivers significantly more data than FRET, complexities 

assigning chemical shifts and a working distance of < 30 Å, which would likely not 

capture the more extended structural conformations generally associated with 

disordered systems, hinder application of this technique.61 EPR provides 

information about the distance between two spin labeled residues on a protein 

along with the distribution of distances populated.61 However, much like other 

techniques, the significant heterogeneity and breadth of the distance distribution 
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between spin labels results in inaccuracies in analysis.61 Lastly, all of these 

techniques are either inherently in vitro methods or are extremely challenging to 

implement in a cellular context.55, 62 Therefore, FRET’s ability to capture pairwise, 

inter-residue distance information, though seemingly limited, is one of the few 

approaches well suited to track changes in IDP conformation.  

 

Application of FRET to IDPs 

Ensemble FRET, and more often single-molecule FRET (smFRET), has 

been used to study a variety of disordered and unfolded protein systems.59-60, 63 By 

combining the photophysical phenomena of FRET with time-correlated single 

photon counting (TCSPC) and the use of microscopes, FRET measurements can 

be made on molecules one at a time, allowing subpopulations, which are often lost 

in ensemble experiments, to emerge.60 This has been used to measure the overall 

size, or radius of gyration, of disordered and unfolded systems and track the effects 

of PTMs, mutations and environmental factors on protein size.59-60 Despite several 

years of debate, the accuracy of these measurements has recently been 

corroborated by small-angle x-ray scattering (SAXS), following technical and 

analytical improvements to both methods.64-66 Additionally, since smFRET-based 

techniques can be performed on millisecond timescales, conformational switching 

and other dynamic processes can be observed.59 For example, the previously 

described folding phenomena associated with the interaction of αS with lipid 

membranes has been tracked by smFRET, as has the formation of oligomeric 

species en-route to fibril formation.24, 67 Lastly, smFRET has been utilized in a 
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variety of protein unfolding studies, which many researchers have used as models 

of disordered systems.60  

Despite the utility of FRET in studying disordered systems, the 

heterogeneity associated with IDPs and IDRs presents unique hurtles for analyzing 

FRET data.60 Traditionally, the interpretation of FRET data for folded proteins is 

hindered by the assumption that the attached fluorophores are capable of diffusing 

isotropically.57 This presents a challenge in accurately determining the distance 

between the two probes, due to inaccuracies in the computed orientation factor 

which impacts the transfer efficiency between two probes. However, FRET for 

disordered systems suffers from the opposite problem. Although these highly 

dynamic proteins relieve concerns associated with the orientation factor, they give 

rise to a new concern regarding the implicit assumption in the canonical Förster 

equation that the fluorophores are separated by a single distance.60, 65 This is not 

a concern for folded proteins where breadth of the distribution of any inter-residue 

distance is negligible but presents a clear problem for proteins which populate 

multiple conformations or whose populations span a significant distribution of 

distances.57, 60, 65 In part, this issue can be combatted by performing smFRET, in 

place of ensemble FRET, which can report on the presence of distinct 

subpopulations.59-60 However, this does not fully alleviate the problem as the 

millisecond measurement timescale is not rapid enough, nor is the signal-to-noise 

generally high enough, to capture information regarding the distribution breadth of 

sub-ensembles.60 Therefore, most researchers utilize a modified version of the 

Förster equation, shown in detail in the latter parts of this thesis, adding a 
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probability distribution to the traditional equation.60, 65 Although this appears to 

remedy the issue, allowing a single FRET efficiency to be correlated with a 

distribution of states, these probability distributions often need to be supplied by 

the researcher.60, 65  Due to the topological similarities between disordered proteins 

and polymers, distributions from polymer physics are often employed.60, 65, 68  The 

work presented herein demonstrates how the use of multiple FRET probe pairs 

can facilitate distribution selection and how these distributions and FRET data can 

be utilized to construct molecular models of disordered proteins.  

 

Development of Novel, Minimally Perturbing Fluorescent Probes 

Depending on the experimental requisites, the effectiveness of most FRET 

experiments relies on the choice of appropriate fluorophores. Quantities such as 

quantum yield and extinction coefficient inform the overall “brightness” of the 

molecule, which is important in cellular and single-molecule experiments.69 

Additionally, the specific spectral range over which the pair of molecules absorb 

and fluoresce, not only informs their Förster Radius and ability to serve as a FRET 

pair, but also allows the measurement to circumvent any background signal which 

can complicate the measurement.57 However, beyond the photophysical 

characteristics of the molecule, the overall molecular size, composition and 

attachment site may hinder the measurement efficacy by perturbing the system.70-

71 Many cell-based experiments, as well as some in vitro experiments, leverage 

the use of fluorescent fusion proteins, such as green fluorescent protein (GFP).72 

Although these are currently the field standard, these fluorescent proteins often 
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lack the photophysical criteria optimal for most experiments.73 Moreover, their size 

is typically on the order of the size of the systems they are used to measure. This 

often significantly complicates the interpretation of the measurement or can perturb 

the systems, preventing the biomolecule’s normal function. Ultimately, several 

groups have focused on replacing the use of GFP with Halo- and SNAP-tag fusion 

proteins, which can be subsequently specifically labeled with fluorophores that 

boast improved photophysical characteristics to enhance measurement quality.72-

75 However, these fusion proteins still rival, and in some cases surpass, the size of 

GPF, making the potential for perturbation non-trivial.71, 74-75  

With this is mind, the Petersson Laboratory has focused on developing 

fluorescent probes which are minimally perturbing to the protein conformation and 

dynamics. This has been accomplished by focusing on small fluorescent scaffolds 

which can be modified by appending molecular handles, lowering the barrier for 

their use, and derivatizing these scaffolds to improve their photophysical 

characteristics.52, 76-78 To date, the bulk of this effort has been focused on the use 

of thioamides, single atom oxygen-to-sulfur substitutions, as fluorescence 

quenching motifs.79-81 Additionally, the group has developed a derivative of 

acridone, acridon-2-lyalanine (Acd), which allows this small fluorophore to be 

directly incorporated within the primary structure of a protein via unnatural amino 

acid (UAA) mutagenesis.77 These two efforts, along with the derivatization of other 

base scaffolds such as dimethylaminoquinoline (DMAQ), have been 

supplemented by identifying additional fluorophores which can serve as FRET 

donors or acceptors for these probes.51-52, 76-77 These developments, along with 
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the employment of UAA mutagenesis, are described in part in this thesis work and 

have provided several novel fluorescent tools which are minimally perturbing to 

protein structure.  

Methods for Introducing Fluorescent Probes (UAA Mutagenesis) 

One of the major techniques used in this work to generate fluorescently 

labeled protein constructs is unnatural amino acid (UAA) mutagenesis. This 

method is used herein to incorporate both natively fluorescent amino acids and 

amino acids that serve as biorthogonal handles for chemical labeling with synthetic 

dyes.51, 53, 78 The utility of this technique is based on the concept that by hijacking 

the native machinery of the cell, one can ensure precise labeling of a protein with 

a given probe by encoding it at the DNA level. Although more non-specific 

approaches are also used herein (cysteine labeling, tryptophan fluorescence, etc.) 

they are exclusively employed in systems where they can be leveraged site-

specifically.53, 78  

 

  



21 

 

 

Figure 1.4: Overview of unnatural amino acid mutagenesis. Incorporation of two 
plasmids, one containing a protein of interested with a TAG codon and a second 
containing a UAA specific synthetase (UAARS) and cognate tRNA (tRNACUA) 
which recognizes the TAG codon, allows for site specific incorporation of an 
unnatural amino acid (UAA) which is supplied directly in the cellular media. Boxed: 
Depiction of some of the UAA used in this work which are endogenously 
fluorescent (Cnf, Acd) and others (Ppy) that can be labeled after being 
incorporated within a protein of interest. 

 

Site-specific UAA mutagenesis was first reported by Peter Schultz and 

colleagues in 1989 using in vitro methods, and its current implementation relies on 

the incorporation of new machinery into the cell that has been evolved to be 

orthogonal to the existent components.82-85 During protein synthesis, each amino 

acid is recognized by an aminoacyl tRNA synthetase (aaRS) which is responsible 

for charging this amino acid to a specific tRNA.82-83 This process allows the genetic 

code to be converted into a protein sequence by assuring that each triplet of bases 

in mRNA, which is transcribed from the DNA, is read by a single tRNA that carries, 

and results in the translation of, a single amino acid.1, 83 Therefore, by encoding for 

incorporation of a fluorescent amino acid at the DNA level, and developing the 
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appropriate orthogonality of the requisite machinery, we can ensure specific 

incorporation of the desired probe at an exact location in a protein of interest.78  

Due to the requisite specificity, development of the aaRSs utilizes directed 

evolution and a new aaRS often needs to be generated for each new amino acid 

derivative.86-87 The directed evolution process combines positive screens, where 

aaRSs which can charge the appropriate tRNA are selected for and retained.88 

Subsequently, negative selections are performed where aaRSs are screened for 

their specificity for the desired UAA against all native or undesired amino acids.88 

Lastly, due to the multiplicity of effective orthogonal synthetases developed to date, 

many efforts simply screen new UAAs against libraries of existing aaRSs.89  

Although other methods exist such as the use of auxotrophic cell lines, 

which lack a specific amino acid, or the employment of quadruplet codons, most 

UAA incorporation efforts rely on suppression of an amber stop codon.90-91 The 

amber stop codon is endogenously recognized by release factor 1 (RF1), triggering 

release of the growing polypeptide chain from the ribosome.92 Therefore, binding 

of the appropriate charged tRNA to mRNA on the ribosome is always in 

competition with RF1, resulting in a mixture of truncated protein and full-length 

protein containing the desired UAA.92-93 To circumvent this issue, researchers 

have developed RF1 knockout cell lines, and Church and colleagues have 

engineered an E. Coli cell line which both lacks RF1 and has a full genomic 

replacement of amber stop codons with ochre (UAA) stop codons.93-94 However, 

Petersson and colleagues developed an alternative strategy to ensure that 

following protein expression, only purification of the desired, full-length protein 
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occurs.95 This method leverages Ni-affinity chromatography procedures via the 

fusion of a C-terminal intein-His6 fusion to the protein of interest. This allows for 

isolation of the protein by affinity chromatography exclusively in the situation where 

the amber stop codon is effectively suppressed and an amino acid is incorporated. 

Subsequently, the intein can undergo self-excision which is triggered by the 

addition of β-mercaptoethanol, resulting in the generation of the native C-terminal 

carboxylic acid at the end of the protein of interest.95-96 Overall, the methods for 

developing and introducing minimally perturbing fluorescence probes have 

provided the necessary constructs for all of the fluorescence-based experiments 

described herein.   

 

§ 1.3 Computational Methods for Modeling Disordered Proteins 

Since the conformational ensembles populated by disordered proteins have 

remained elusive and no clear single experimental approach has been identified 

that can report on the multitude of states, a significant effort has been put forth to 

supplement experimental data with computational simulations. Initially, structural 

ensembles were generated from self-avoiding walk and other polymer-physics 

based simulations. By utilizing experimental data from PRE, residual dipolar 

coupling and other NMR-based experiments, models containing little to no 

chemical information could be refined to match input data. These initial random-

coil simulations generally treated proteins as self-avoiding polymers with bonding 

geometries serving as the only chemical consideration. Since these initial 

developments, a significant amount of effort has been devoted to developing both 
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molecular dynamics (MD) and Monte Carlo (MC) based methods to provide 

improved platforms that accurately capture disordered systems.   

 

Description of previous efforts in Molecular Dynamic 

MD methods, which utilize Newtonian physics to simulate molecular 

motions, are among the most widely employed for the study of protein dynamics. 

Although the force-fields and atomic parameters have been refined over many 

years to accurately capture protein motions in folded protein systems, initial 

simulations of disordered structures were far from accurate.97-100 These 

inaccuracies generally manifest as an over-population of secondary structural 

elements, usually helices, and over-compaction of the protein.97-100 Several groups, 

including Shaw and colleagues, focused on developing not only new force-fields 

but also new water models, which vastly improved the state-of-the-art.97, 99, 101 

Despite these improvements, the required hardware and compute times for MD 

simulations present a high barrier to entry, limiting the use of these methods to 

short trajectories unless elaborate computational resources are employed.102-103 

Furthermore, simulations that predict the fold of a protein in its native three-

dimensional architecture have been largely intractable in MD simulations outside 

of a limited number of small, fast-folding proteins.99 Overall, the requisite for 

sophisticated hardware, along with an inability to produce accurate folded 

structures from sequence, limits the utility of MD for predicting protein structure 

despite being the current state-of-the-art for disordered systems. 
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Alternatives to Molecular Dynamics 

Outside of MD, there have been similar efforts to update existing tools as 

well as develop new packages for handling disordered proteins. In addition to the 

initially described, largely polymer-based, modeling approaches used to refine 

ensembles from experimental data, there have been several efforts to develop 

methods which adequately capture the complexities of various IDPs.104-108 Several 

packages, such as AWSEM-IDP, have developed improved course-grained force-

fields and sampling approaches to circumvent the computational time and 

hardware requirements for sufficient sampling.109-110 CAMPARI, developed by 

Pappu and colleagues, utilizes Metropolis MC sampling alongside ABSINTH, an 

implicit solvent model, and has proven to be the most widely accepted non-MD 

method to date for producing accurate disordered protein ensembles.101, 110-111 

Although there currently exist several packages, many of which were developed 

during this thesis work, no package to date boasts the ability to predict the structure 

of both ordered and disordered proteins from primary sequence in a unified 

architecture. 
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Figure 1.5: Overview of PyRosetta. Left: Depiction of the three primary 
components that serve as the basis for Monte-Carlo sampling in PyRosetta. Right: 
Examples of each of the core components of PyRosetta.112  

 

The Rosetta Modeling Suite 

One software package that has demonstrated considerable success in 

predicting the structure of a folded protein from its sequence is the Rosetta 

Modeling Suite. The Rosetta Modeling Suite was initially developed by Baker and 

colleagues but has continued to be improved and maintained by the over 150 

developers from 60 laboratories at 23 universities that contribute to Rosetta 

Commons.112 Although initially conceived with the goal of protein design in mind, 

methods in Rosetta include de novo protein structure prediction, protein and ligand 

docking, modeling with experimental data and more.112-113 Rosetta operates off of 

a relatively simplistic underlying architecture by which sampling methods, termed 

movers, are applied to given molecule, generally a protein, called a pose, with the 
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efficacy of each sampling step captured by sets of energy terms, referred to as 

score functions.112 Although the bulk of Rosetta exists as compiled C++ packages 

consisting of previously devised algorithms, new algorithms can be facilely devised 

using PyRosetta.114 PyRosetta, written by Gray and colleagues, provides Python 

wrappers for the underlying functionalities in Rosetta, allowing users to rapidly 

develop new methods in Python, without needing to compile.114 Therefore, by 

using existing features of Rosetta, as well as incorporating novel methods for 

improving sampling and scoring using functionalities in Python, the work detailed 

herein has focused on developing a unified architecture for the de novo prediction 

of both folded and unfolded proteins. Lastly, the latter portion of this thesis work 

focuses on how a sub-package of Rosetta, designed for identifying pockets on a 

protein surface, can be leveraged to identify potential molecular probes that bind 

to αS fibril structures. 
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CHAPTER 2: MULTICOLOR PROTEIN FRET WITH TRYPTOPHAN, 

SELECTIVE COUMARIN-CYSTEINE LABELING, AND GENETIC 

ACRIDONYLALANINE ENCODING. 

The content of this chapter was originally published in Chemical Communications. 

It is adapted here with permission from the publisher: 

Multicolor protein FRET with tryptophan, selective coumarin-cysteine labeling, and 

genetic acridonylalanine encoding. J. J. Ferrie, N. Ieda, C. M. Haney, C. R. 

Walters, I. Sungwienwong, J. Yoon and E. J. Petersson, Chem. Commun., 

2017, 53, 11072 DOI: 10.1039/C7CC05492K – Reproduced by permission of The 

Royal Society of Chemistry. 
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§ 2.1 Introduction 

Site-specific fluorescence probes can be used to measure distances within 

proteins when used as part of a Förster resonance energy transfer (FRET) pair.  

Here we report the synthesis of a coumarin maleimide (Mcm-Mal) that is 

fluorogenic upon reaction with cysteine.  We demonstrate that cysteine, 

acridonylalanine (Acd) double mutant proteins can be produced by unnatural 

amino acid mutagenesis and reacted with Mcm-Mal to generate Mcm/Acd labeled 

proteins for FRET studies.  The Mcm/Acd FRET pair is minimally-perturbing, easy 

to install, and well-suited to studying protein distances in the 15-40 Å range.  

Furthermore, Mcm/Acd labeling can be combined with tryptophan fluorescence in 

three color FRET to monitor multiple interactions in one experiment. 

Fluorescence spectroscopy methods can be valuable ways of studying 

protein folding and dynamics, as they allow one to observe protein motions in real 

time under physiological conditions.115-116  If two probes can be attached to the 

protein, one can obtain structural information using distance-dependent 

interactions such as Förster resonance energy transfer (FRET) and quenching by 

photo-induced electron transfer.57  The development of probes that can be easily 

installed for these applications is an important area of bioorganic chemistry.  Here, 

we report the synthesis of methoxycoumarin maleimide (Mcm-Mal, Fig. 2.1), a 

probe that can be used as part of a FRET pair with acridonylalanine (Acd).  We 

further demonstrate that Mcm/Acd labeling can be combined with a single Trp 

mutant for three color FRET experiments, which can be used to simultaneously 
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monitor two interactions, such as a protein/protein interaction and a conformational 

change within one of the proteins. 

 

 

Figure 2.1:  Mcm labelling for FRET experiments.  Protein expressed with Cys and 

acridonylalanine (Acd, ) mutants is harvested as an intein fusion and reacted with 
methoxycoumarin maleimide (Mcm-Mal) for two color FRET experiments.   Inset: 
Three color FRET between Trp (purple), Mcm (pink), and Acd (cyan) can be used 
to detect binding (Trp excitation) and conformational change (Mcm excitation) 
simultaneously. 

 

The fluorescent labeling of proteins for FRET studies has been greatly 

enabled by recent advances in site-specific protein modification, particularly 

through incorporation of unnatural amino acids (Uaas) and biorthogonal 

reactions.117  However, there are still limitations to commonly used fluorophores 

such as fluorescein and rhodamine that can hamper FRET experiments.  Their 
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large size can be disruptive to protein folding, and their working range for FRET 

may not be suited to distance changes in the proteins.  The fluorescein/ rhodamine 

FRET pair has a Förster radius (R0, the distance of half-maximal energy transfer) 

of ~50 Å, making it useful for studying distances in the 30-90 Å range.  Since many 

important intraprotein distances are shorter than 30 Å, small short-range FRET 

pairs are better suited to studying these protein regions. 

Our laboratory has worked to develop non-perturbing, short/medium-range 

probe pairs that can be selectively excited in proteins.  These include fluorescent 

Uaas such as Acd.77, 118  Acd is excited at 380-400 nm with emission at 420-450 

nm.  We have shown that Acd can be a valuable FRET acceptor from 

methoxycoumarin (Mcm, excited at 325 nm) with a working range of 15-40 Å.77  

Mcm is an excellent FRET donor to Acd since it has a high extinction coefficient 

with a peak in the absorption spectrum that coincides with a minimum in the Acd 

absorption spectrum (Fig. 2.16).  However, in previous studies, Mcm was 

introduced as 7-methoxycoumarin-4-yl-alanine, which must be incorporated by 

solid phase peptide synthesis.77  We wished to introduce Mcm through selective 

Cys modification in order to more easily generate Mcm/Acd labelled proteins. 

 

§ 2.2 Characterization of Mcm-Mal and Mcm-Br 

Determination of Mcm-Mal Extinction Coefficient.  

Mcm-Mal, Ac-Cys and Mcm-AcOH (~2 mg) were weighted on an analytical 

balance. Mcm-Mal and Mcm-AcOH were dissolved in 100 μL DMSO while Ac-Cys 

was dissolved in 900 μL 20 mM Tris 100 mM NaCl pH 7.5. Mcm-Mal was reacted 
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with a 100-fold excess of Ac-Cys (resulting solutions < 1 % DMSO) and allowed to 

react for 6 hour. Following reaction, multiple dilutions were prepared of Mcm-Mal 

+ Ac-Cys and Mcm-AcOH and the UV-Vis absorbance of each sample was 

measured. The absorbance at 325 nm of each sample was plotted as function of 

concentration based on mass calculation and fit to a line with the extinction 

coefficient determined by the slope (εMcm-AcOH = 14440 M-1 cm-1, εMcm-Mal = 19010 

M-1 cm-1).   

 

 

Figure 2.2: Determination of Extinction Coefficient for Mcm-Mal. Top Left: 
Absorbance spectra of varying concentration of Mcm-AcOH in 20 mM Tris 100 mM 
NaCl pH 7.5. Top Right: Absorbance spectra of varying concentration of Mcm-Mal 
+ Ac-Cys in 20 mM Tris 100 mM NaCl pH 7.5. Bottom: Absorbance at 325 nm for 
varying concentrations of Mcm-Mal + Ac-Cys and Mcm-AcOH in 20 mM Tris 100 
mM NaCl pH 7.5, with linear correlation for determination of extinction coefficient. 
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Reactions of Cys and Ac-Cys Monitored by UV/Vis, Fluorescence, and LCMS. 

Stocks of Mcm-Mal and Mcm-Br were prepared in DMSO and stocks of Cys 

and Ac-Cys were prepared in 100 mM Tris pH 7.0 or 20 mM Tris 100 mM NaCl pH 

7.5, respectively.  Mcm-Mal and Mcm-Br were mixed with buffer, Cys, or Ac-Cys 

to final concentrations of 10 μM of both Mcm derivative and Cys/Ac-Cys for UV-

Vis absorbance, steady-state fluorescence and LRMS measurements.  Reactions 

were allowed to take place for 6 hours following vortexing for 10 seconds prior to 

measurement.  Mcm-Br [M+H]+ Calcd. 269.0/271.0, Obs. 269.0/271.0; Mcm-Mal 

[M+H]+ Calcd. 286.1, Obs. 286.2; Mcm-Mal + Cys (S4 or S5) [M+H]+ Calcd. 407.1, 

Obs. 407.2; Mcm-Mal + Ac-Cys (S6) [M+H]+ Calcd. 449.1, Obs. 449.4 
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Figure 2.3: Synthesis of Mcm-Br and Mcm-Mal. a) Ethyl acetoacetate, H2SO4, 
65%; b) 1. Ac2O, HNO3; 2) H2 (g), Pd/C, 32% (over two steps); c) Maleic anhydride, 
84%; d) NBS, NH4OAc, 78% 

 

 

Figure 2.4: Absorbance and Fluorescence Spectra of Mcm-Br.  Left: Absorbance 
Spectra: 10 µM Mcm-Br in Tris buffer (100 mM, pH 7.0, DMSO 1%) alone, or mixed 
with 10 µM Cys.  Right: Fluorescence Spectra: 10 µM Mcm-Br in Tris buffer (100 
mM, pH 7.0, DMSO 1%) alone, or mixed with 10 µM Cys.  Fluorescence excitation 
at 330 nm, emission monitored at 390 nm. 
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Figure 2.5: LCMS Analysis of Mcm-Br Reactions with Cys.  10 µM Mcm-Br or 
Mcm-Mal in Tris buffer (100 mM, pH 7.0, DMSO 1%) alone or mixed with 10 µM 
Cys.  LC chromatogram monitored at 330 nm.  MS spectrum obtained for largest 
peak in LC chromatogram. 
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Figure 2.6: Mcm-Mal Reactions with Cys and Ac-Cys and assigned products.  
Inset: Mcm-AcOH. 

 

Figure 2.7: Absorbance and Fluorescence Spectra of Mcm-Mal.  Left: Absorbance 
Spectra: 10 µM Mcm-Mal in Tris buffer (10 mM, pH 7.0, DMSO 1%) alone, or mixed 
with 10 µM Cys or Ac-Cys.  Right: Fluorescence Spectra: 10 µM Mcm-Mal in Tris 
buffer (100 mM, pH 7.0, DMSO 1%) alone, or mixed with 10 µM Cys or Ac-Cys. 

 

Fluorescence measurements were obtained using the PTI Quantamaster in 

20 mM Tris, 100 mM NaCl pH 7.5 buffer with an excitation wavelength of 325 nm, 

measuring the emission from 350-450 nm, with 2 nm excitation and emission slit 

widths, a step size of 1 nm, and an integration time of 0.25 seconds per step. 
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Reaction Timecourses of Cys and Ac-Cys Monitored by Fluorescence.  

For timecourse measurements, 2 μM dilutions were prepared for all 

components from DMSO stocks of Mcm-Br/Mcm-Mal and stocks of Cys and Ac-

Cys in 20 mM Tris 100 mM NaCl pH 7.5. Buffer, Cys or Ac-Cys were added to 

aliquots of Mcm-Mal or Mcm-Br in a 96-well plate immediately prior to 

measurement in a Tecan M1000 plate reader producing final concentrations of 1 

μM for all reaction components. Samples were excited at 325 nm and measured 

and the emission was monitored at 400 nm with excitation and emission slit widths 

of 5 nm. Measurements were taken every 20 seconds. 
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Figure 2.8: LCMS Analysis of Mcm-Mal Reactions with Cys and Ac-Cys.  10 µM 
Mcm-Mal in Tris buffer (100 mM, pH 7.0, DMSO 1%) alone or mixed with 10 µM 
Cys or Ac-Cys.  Cys reactions were incubated for 1 minute or 6 hours.  LC 
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chromatogram monitored at 330 nm.  MS spectrum obtained for largest peak in LC 
chromatogram. 

 

Figure 2.9: Mcm-Mal Reactions with Cys and Ac-Cys after 1 and 6 h.  10 µM Mcm-
Mal in Tris buffered saline (20 mM Tris, 100 mM NaCl, pH 7.5, DMSO 1%) alone 
or mixed with Cys or Ac-Cys.  Fluorescence excitation at 325 nm, emission 350-
500 nm and acquired after 1 hour (left) or 6 hours (right). 

 

Determination of Mcm-Mal post-reaction Quantum Yield.  

Mcm-Mal was reacted with 10-fold excess Ac-Cys in 20 mM Tris 100 mM 

NaCl pH 7.5 ( < 1% DMSO) for 6 hour. Six dilutions of reacted Mcm-Mal and 7-

methoxycoumarin-4-yl-acetic acid (Mcm-AcOH, see Fig 2.6, Scheme S2 inset) 

ranging in absorbances from 0.05 to 0.02 were prepared. Fluorescence emission 

spectra were measured at an excitation of 325 nm over an emission range of 335 

to 550 nm with 5 nm slit widths, a 1 nm step width and a 0.25 second integration 

time. The quantum yield was subsequently calculated for each Mcm-Mal/Mcm-

AcOH pair by multiplying the quantum yield of Mcm-AcOH (ΦMcm-AcOH = 0.18) by 

the ratio of the sum of the fluorescence emissions of Mcm-Mal to Mcm-AcOH, 

resulting in an average quantum yield of ΦMcm-Mal-Ac-Cys = 0.22. 
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Figure 2.10: Determination of Quantum Yield for Ac-Cys Mcm Product. Top left: 
Absorbance spectra of aliquots of Mcm-AcOH in 20 mM Tris 100 mM NaCl pH 7.5 
ranging from 0.05 to 0.02. Top right: Absorbance spectra of aliquots of Ac-Cys 
Mcm-Mal in 20 mM Tris 100 mM NaCl pH 7.5 ranging from 0.05 to 0.02. Middle 
left: Fluorescence emission spectra of Mcm-AcOH dilutions in 20 mM Tris 100 mM 
NaCl pH 7.5 at an excitation wavelength of 325 nm. Middle right: Fluorescence 
emission spectra of Ac-Cys Mcm-Mal dilutions in 20 mM Tris 100 mM NaCl pH 7.5 
at an excitation wavelength of 325 nm. Bottom left: Calculated quantum yield 
values for each sample combination.  
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§ 2.2 Protein Expression, Labeling and Purification 

Cloning of CaM Constructs.   

The gene encoding full-length calmodulin was previously cloned into the 

pTXB1 vector containing a C-terminal MxeGyrA intein, followed by a His6 

purification tag.95  A ‘TAG’ codon for the incorporation of Acd at Leu112 via amber 

stop codon suppression and a ‘TGC’ codon encoding Cys at Phe12 for Mcm-Mal 

labelling were inserted using the following sets of primers in QuikChange® PCR.  

In the case of the F12C-L112δ double mutant, the CaM-F12C mutant was obtained 

first, before using the TAG112 primers in a second round of PCR to obtain the 

desired plasmid. 

 

Expression of CaM C12-GyrA-H6.   

A plasmid encoding CaM F12C-GyrA was transformed into BL21-Gold (DE3) 

E. Coli cells and grown against ampicillin (Amp, 100 μg/mL) on an LB-agar plate. 

Single colonies were picked and grown in liquid LB media (2 x 5 mL, 100 μg/mL 

ampicillin) with shaking (250 RPM) at 37 C until saturation.  Both primary cultures 

were then added to a secondary culture of autoclaved M9 media (500 mL, 100 

μg/mL Amp) and grown at 37 C, with shaking (250 RPM) until OD600= 0.8 (3-4 h).  

Isopropyl β-D-1-thiogalactopyranoside (IPTG) was then added (final concentration 

= 1 mM) and the temperature and shaking speed were reduced to 25 C and 225 

RPM respectively for 16 h of additional incubation.  
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Expression of CaM-δ112 and CaM-C12δ112.   

Plasmids encoding CaM-δ112-GyrA-H6 and CaM-C12δ112-GyrA-H6 were 

separately transformed into BL21 cells that also contain a plasmid encoding for an 

orthogonal Acd synthetase 2b (AcdRS2b, also referred to as clone A9) and 

tRNACUA pair described in detail elsewhere.
95, 118

  These transformations were 

grown against streptomycin (Strep, 100 μg/mL) and Amp (100 μg/mL) on an LB-

agar plate.  Single colonies were picked and grown in liquid LB media (2 x 5 mL 

each, 100 μg/mL each of Strep and Amp) with shaking (250 RPM) until saturation.  

Both primary cultures were then added to a secondary culture of autoclaved M9 

media (500 mL, 100 μg/mL each of Strep and Amp) and grown at 37 C with 

shaking (250 RPM) until OD600=0.7 (3-4 hours).  IPTG and Acd were then added 

(1 mM and 0.5 mM final concentrations, respectively) and the temperature and 

shaking speed were reduced to 18 C and 225 RPM, respectively.  These cultures 

were then incubated at these conditions for 20 hours.  

 

Purification of CaM Constructs.   

Cells were harvested by centrifugation at 5,000 RPM in a GS3 rotor and 

Sorvall RC-5 centrifuge for 15 minutes at 4 C.  The supernatant was discarded 

and the cell pellet was suspended in 20 mL lysis buffer (50 mM HEPES, pH 7.5) 

containing a broad spectrum protease inhibitor tablet.  Resuspended cells were 

then lysed on ice by sonication (30 amps power, 2 second pulse, 2 second rest, 4 

minutes total sonication time) and then pelleted at 13,000 RPM in an SS-34 rotor 

(Sorvall RC-5 centrifuge) for 15 minutes at 4 C.  The supernatant was collected 
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and incubated with Ni2+-NTA resin (2 mL column volume) for 1 h on ice with 

shaking.  The slurry was then added to a fritted column and the liquid was allowed 

to flow through.  The resin was then washed with 3 x 10 mL of buffer (50 mM 

HEPES, pH 7.5) and 3 x 10 mL of wash buffer (50 mM HEPES, 10 mM imidazole, 

pH 7.5).  Each CaM construct was then eluted from the resin in 5 fractions each 

containing 3 mL of elution buffer (50 mM HEPES, 300 mM imidazole, pH 7.5).  The 

pooled fractions were immediately subjected to intein cleavage conditions by 

adding β-mercaptoethanol to a final concentration of 200 mM and incubated on a 

rotisserie at RT for 20 hours.  The resulting cleavage solution was then dialyzed 

against 20 mM Tris pH 8.0 (2L) overnight in preparation for anion exchange 

purification via FPLC. Prior to FPLC purification, 10 μL of 0.5 M TCEP Bond 

Breaker™ was added to the CaM-C12 and CaM-C12δ112 constructs to reduce any 

aberrant disulfides formed between CaM proteins and/or βME.  Each CaM 

construct was purified over a HiTrap Q column using a 120 min NaCl gradient (0.1 

M to 0.8 M NaCl in 20 mM Tris, pH 8.0).  Fractions containing the product peak 

were confirmed by MALDI and dialyzed twice against water at 4 C (2 L, 2 hours 

each).  These samples were then flash frozen in liquid N2 and lyophilized to a 

powder.  

 

CaM Labelling with Mcm-Mal.   

A stock solution of ~25 mM Mcm-Mal was prepared by dissolving 4.6 mg of 

Mcm-Mal solid in 645 μL DMSO.  CaM-C12 and CaM-C12δ112 samples were 

dissolved in 1 mL of 20 mM Tris, pH 7.5. To each sample was added 10 
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equivalents of Mcm-Mal (based off UV-Vis quantification of protein solutions) and 

the samples were incubated at 37 C with shaking (200 RPM) for 3 hours. Each 

sample was then diluted in 2 mL of 20 mM Tris pH 8.0 and subjected to a second 

round of FPLC purification using the gradient described above. Fractions were 

analyzed by MALDI MS and fractions containing the desired mass for Cys-Mcm 

conjugated product were pooled and dialyzed (2 x 2 L) against water before being 

flash frozen in N2 and lyophilized to a powder. 

 

αS-Q62C and αS-E114C Expression.  

α-Synuclein (αS) mutant plasmids (pTXB1_S-C62_Mxe-H6 or pTXB1_S-

C114_Mxe-H6) were transformed into competent E. coli BL21(DE3) cells and plated 

on LB agar plates supplemented with Amp overnight at 37 °C.119  Single colonies 

were used to inoculate 5 mL of LB media supplemented with Amp (100 µg/mL).  

The primary culture was incubated at 37 °C with shaking at 250 rpm for 4 h.  A 

single primary culture was used to inoculate 1 L of LB media containing Amp (100 

mg/L) which was then grown at 37 °C with shaking at 250 rpm until it reached OD 

~0.7. Expression was induced with IPTG (1 mM) and the temperature was reduced 

to 18 °C overnight.  

 

αS-δ94, αS-C62δ94, and αS-δ94C114 Expression.  

αS mutant plasmids (pTXB1_S-TAG94_Mxe-H6, pTXB1_S-

C62TAG94_Mxe-H6, or pTXB1_S-TAG94C114_Mxe-H6, generated using plasmids 

in Haney et al.) and an AcdRS2b/ tRNA plasmid were transformed into competent 
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E. coli BL21(DE3) cells and plated on LB agar plates supplemented with Amp 

overnight at 37 °C.78, 118  Single colonies were used to inoculate 5 mL of LB media 

supplemented with Amp and streptomycin (Strep, 100 μg/mL of each).  The 

primary culture was incubated at 37 °C with shaking at 250 rpm for 4 h.  A single 

primary culture was used to inoculate 1 L of LB media containing Amp and Strep 

(100 mg/L) which was grown at 37 °C with shaking at 250 rpm until it reached OD 

~0.7. Expression was induced by adding IPTG and Acd (concentrations of 1 mM 

and 140 mg/L, respectively) which was then incubated overnight at 18 °C with 

shaking at 250 rpm.   

 

Purification of αS Constructs.   

Cells were harvested by centrifugation at 4,000 RPM in a GS3 rotor and 

Sorvall RC-5 centrifuge for 20 minutes at 4 C.  The supernatant was discarded 

and the cell pellet was suspended in 15 mL lysis buffer (40 mM Tris, 5 mM EDTA, 

pH 8.0) containing one Roche protease inhibitor cocktail pill (cOmplete mini 

tablets, EDTA-free, Easy Pack, Roche Cat. #04693159001).  Resuspended cells 

were then lysed on ice by sonication (30 amps power, 1 second pulse, 1 second 

rest, 5 minutes total sonication time) and then pelleted at 14,000 RPM in an SS-

34 rotor (Sorvall RC-5 centrifuge) for 20 minutes at 4 C.  The supernatant was 

collected and incubated with Ni2+-NTA resin (3 mL column volume) for 1 h on ice 

with shaking.  The slurry was then added to a fritted column and the liquid was 

allowed to flow through.  The resin was then washed with 3 x 5 mL of buffer (50 

mM HEPES, pH 7.5) and 2 x 10 mL of wash buffer (50 mM HEPES, 10 mM 
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imidazole, pH 7.5).  Constructs were then eluted from the resin in 4 fractions each 

containing 3 mL of elution buffer (50 mM HEPES, 300 mM imidazole, pH 7.5).  The 

pooled fractions were immediately subjected to intein cleavage conditions by 

adding β-mercaptoethanol to a final concentration of 200 mM and incubated on a 

rotisserie at RT for 20 hours.  The resulting cleavage solution was then dialyzed 

against 20 mM Tris pH 8.0 overnight. Prior to FPLC purification, 10 μL of 0.5 M 

TCEP Bond Breaker™ was added to the Cys constaining constructs to reduce any 

aberrant disulfides formed between αS proteins and/or βME. Each construct was 

purified by ion-exchange chromatography using a HiTrap Q HP column (5 mL) on 

an ÄKTA FPLC using a 100 minutes NaCl gradient (0 to 500 mM NaCl in 20 mM 

Tris, pH 8.0).  The fractions containing the product were identified by MALDI MS. 

αS-δ94 mutant was dialyzed at 4 °C against αS buffer (20 mM Tris, 100 mM NaCl, 

pH 7.5) overnight and stored at –80 °C in 1.5 mL aliquots and thawed once for 

experiments. Cys containing mutants were carried directly into the labelling step 

following purification. 

 

αS Labelling with Mcm-Mal.  

The protein solution after FPLC (ca. 10–20 mL) was treated with 20 μL Bond 

Breaker solution.  To the protein solution was added 25 mM Mcm-Mal solution in 

DMSO (200–300 μL).  Each reaction step was monitored by MALDI MS.  After 

labelling with Mcm-Mal, the solution was dialyzed at 4 °C against Tris buffer (20 

mM, pH 8.0) overnight.  The dialyzed solution was concentrated by centrifugation 

with a 3 kDa cutoff filter (milliporesigma #UFC900324).  The concentrated solution 
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was purified by HPLC with a protein C4 column (Vydac #214TP1010).  After 

concentration by centrifugation with a 3 kDa cutoff filter, the solution was dialyzed 

against αS buffer (20 mM Tris, 100 mM NaCl, pH 7.5) overnight.  Following 

dialysis, αS in buffer was stored at –80 °C in 1.5 mL aliquots and thawed once for 

experiments. 

 

Table 2.1:  Protein MALDI Masses. 

Protein Calc. [M+H]+or [M+Na]+ Obs. [M+H]+or [M+Na]+ 

αS-CMcm
62 14721 14731 

αS-CMcm
62δ94 14838 14844 

αS-CMcm
114 14720 14727 

αS-δ94CMcm
114 14837 14844 

αS-δ94 14757 14757 

CaM-CMcm
12 16950 16947 

CaM-δ112 16881 16889 

CaM-CMcm
12δ112 17123 17133 

 

 

Table 2.2:  Trypsin Fragment MALDI Masses. 

Protein Fragment Calc. 
[M+H]+ 

[M + 
Na]+ 

Obs. 
[M+H]+ 

[M+Na]+ 

αS-CMcm
62 61-80 2207 2229 2206 2228 

αS-CMcm
62δ94 61-80 2207 2229 2206 2228 

 81-96 1596 1618 1595 1618 

αS-CMcm
114 103-140 4564 4586 4562 4584 

αS-δ94CMcm
114 81-96 1596 1618 1596 1618 

 103-140 4564 4586 4561 4564 

αS-δ94 81-96 1596 1618 1596 1618 

CaM-CMcm
12 1-13 1763 1785 1761 1783 

CaM-δ112 107-115 1179 1201 1180 1201 

CaM-CMcm
12δ112 1-13 1763 1785 1762 1784 

 107-115 1179 1201 1179 1201 
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Figure 2.11: MALDI MS Characterization of CaM Variants.  On each plot matrix 
adduct peaks are marked with * The plots show CaM-C12 (First Row Left), CaM-
CMcm12 (First Row Right), CaM-C12δ112 (Second Row Left), CaM-
CMcm12δ112 (Second Row Right) and CaM-δ112 (Third Row Left). An enlarged 
spectrum of the region of interest for the CaM-CMcm12δ112 shown where the 
labeled and unlabeled protein masses are indicated with † and ‡ respectively 
(Fourth Row Left). Fluorescence emission at 390 nm from excitation at 325 nm 
was monitored after mixing 35 µM CaM-C12 with 3 equiv Mcm-Mal in Tris buffer, 
pH 7.5 (Third Row Right, Green: CaM-C12, Grey: Buffer control). 
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Figure 2.12: Trypsin Digest MALDI MS Characterization of CaM Variants.  On 
each plot, the M+H peak of the fragment of interest is marked with * and the M+Na 
peak is marked with **, while the M+H peak corresponding to unlabeled Cys 
containing protein is denoted with ‡ and the M+Na peak is marked with †.. The 
plots show the fragments of CaM1-13-C12 of CaM-C12 (Top Left), CaM1-13-
CMcm12 of CaM-CMcm12 (Top Right), CaM1-13-CMcm12 of CaM-CMcm12δ112 
(Middle Left) and CaM107-115- δ112 of CaM-CMcm12δ112 (Middle Right), 
CaM107-115-δ112 of CaM-δ112 (Bottom Left). 
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Figure 2.13: MALDI MS Characterization of αS Variants.  On each plot matrix 
adduct peaks are marked with *.  The plots show αS-C62 (Row 1 Left), αS-CMcm

62 
(Row 1 Right), αS-C114 (Row 2 Left), αS-CMcm

114 (Row 2 Right), αS-C62δ94 (Row 3 
Left), αS-CMcm

62δ94 (Row 3 Right), αS-δ94C114 (Row 4 Left), αS-δ94CMcm
114 (Row 4 

Right) and αS αS-δ94 (Row 5 Left).  Fluorescence emission at 400 nm from 
excitation at 325 nm was monitored after mixing 1 µM αS-C62 or αS-C114 with 1 
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equiv Mcm-Mal in 20 mM Tris buffer, pH 7.5 (Bottom Right, Green: αS-C62, 
Orange: αS-C114, Grey: Buffer control). 

 

 

Figure 2.14: Enlarged MALDI MS of labeled αS Variants. Spectra where the 

region of interest is enlarged for αS-CMcm
62 (Top Left), αS-CMcm

62δ94 (Top Right), 
αS-CMcm

114 (Middle Left) and αS-δ94C114 (Middle Right) where the labeled and 
unlabeled protein masses are indicated with † and ‡ respectively.  MALDI MS of 
αS-CMcm

62 before (blue) and after 3 hr labeling reaction (red) showing extend of 
labeling (Bottom Left). 
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Figure 2.15: Tryspin Digest MALDI MS Characterization of αS Variants.  On each 
plot, the M+H peak of the fragment of interest is marked with * and the M+Na peak 
is marked with **. The mass corresponding to unlabeled Cys containing protein is 
denoted with ‡. The plots show the fragments αS61-80-CMcm

62 of αS-CMcm
62 (Top 

Left), αS103-140-CMcm
114 of αS-CMcm

114 (Top Right), αS103-140-CMcm
114 of αS-δ94C114 

(Upper Middle Left), αS81-94- δ94 of αS-δ94C114 (Upper Middle Right), αS61-80-CMcm
62 

of αS-CMcm
62δ94 (Bottom Middle Left), αS81-94-δ94 of αS-CMcm

62-δ94 (Bottom Middle 
Right), and αS81-94-δ94 of αS-δ94 (Bottom Left). 
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§ 2.3 FRET Measurements 

FRET Calculations 

For FRET measurements, the Förster distance, R0, is given in Å by Equation 

(S1) 

𝑹𝟎
𝟔 =

𝟗𝟎𝟎𝟎(𝒍𝒏 𝟏𝟎)𝜿𝟐𝜱𝑫𝑱

𝟏𝟐𝟖𝝅𝟓𝒏𝟒𝑵𝑨
     (Eq. 2.1) 

where 2 is a geometrical factor that relates the orientation of the donor and 

acceptor transition moments, D is the quantum yield of the donor, n is the index 

of refraction of the solvent, NA is Avogadro’s number, and J is the spectral overlap 

integral defined in units of M-1•cm-1•nm4. J is formally defined as 

𝐽 = ∫ 𝑓𝐷(𝜆)휀𝐴(𝜆)𝜆4𝑑𝜆
∞

0
   (Eq. 2.2) 

where εA(λ) is the molar extinction coefficient of the acceptor at each 

wavelength λ and fD(λ) is the normalized donor emission spectrum given by 

𝑓𝐷(𝜆) =
𝐹𝐷(𝜆)

∫ 𝐹𝐷(𝜆)𝑑𝜆
∞

0

   (Eq. 2.3) 

where FDλ(λ) is the fluorescence of the donor at each wavelength λ.  

Substituting these results into Equation 2.1, as well as the donor (Mcm) quantum 

yield, 1.33 for the index of refraction of water, and 2/3 for 2 gives the Förster 

distance.  These R0 values were used to calculate FRET efficiency (EFRET) as a 

function of distance using Equation 2.4. 

𝐸𝐹𝑅𝐸𝑇 =
1

1+(
𝑅

𝑅0
)

6   (Eq. 2.4) 

Here, EFRET is the FRET efficiency and R is the separation between the 

chromophores.  These values are reported in Table 2.5. 
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Figure 2.16: Ac-CysMcm and Acd Absorption and Emission Spectra.  Ac-CysMcm 
(puple) and Acd (blue) absorption spectra (solid lines) were measured in 20 mM 
Tris 100 mM NaCl, pH. 7.5.  Ac-CysMcm (purple) and Acd (blue) fluorescence 
emission spectra (dashed lines) were measured with excitation at 325 nm for Ac-
CysMcm and 386 nm for Acd.  Spectral overlap between Ac-CysMcm emission and 
Acd absorption is indicated by the shaded area. 

 

 

Figure 2.17: Trp and Ac-CysMcm Absorption and Emission Spectra. Ac-CysMcm 
(purple) and Trp (black) absorption spectra (solid lines) were measured in 20 mM 
Tris 100 mM NaCl, pH. 7.5.  Ac-CysMcm (purple) and Trp (black or grey) 
fluorescence emission spectra (dashed lines) were measured with excitation at 
325 nm for Mcm-Mal and 295 nm for Trp in the WpOCNC peptide in the absence 
(black) and presence (grey) of wild-type CaM to illustrate the change in overlap 
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due to solvation environment.  Spectral overlap between Trp emission and Ac-
CysMcm absorption is indicated by the shaded areas. 

 

Figure 2.18: Trp and Acd Absorption and Emission Spectra. Trp (black) and Acd 
(blue) absorption spectra (solid lines) were measured in 20 mM Tris 100 mM NaCl, 
pH. 7.5.  Trp (black and grey) and Acd (blue) fluorescence emission spectra 
(dashed lines) were measured with excitation at 386 nm for Acd and 295 nm for 
Trp in the WpOCNC peptide in the absence (black) and presence (grey) of wild-
type CaM to illustrate the change in overlap due to solvation environment.  Spectral 
overlap between Trp emission and Acd absorption is indicated by the shaded 
areas. 
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CaM FRET Measurements 

Following preparation, dried CaM mutants along with pOCNC and 

WpOCNC peptides were re-dissolved in 15 mM HEPES, 140 mM KCL, and 6 mM 

CaCl2, pH 6.70.  Concentrations of CaM mutants were determined based on Mcm 

(εMcm325 = 19010 M-1cm-1) or Acd (εAcd386 = 5700 M-1cm-1) absorbance while 

pOCNC and WpOCNC peptide concentrations were determined based on Phe 

(εPhe259 = 189 M-1cm-1) or Trp (εTrp276 = 5579 M-1cm-1) absorbance.  Fluorescence 

measurements were taken on a PTI QuantaMaster 40 system.  Trp emission 

spectra were collected with an excitation wavelength at 295 nm over an emission 

range of 305-600 nm, Mcm emission spectra were collected with an excitation 

wavelength at 325 nm over an emission range of 335-600 nm, and Acd emission 

spectra were collected with an excitation wavelength at 386 nm over an emission 

range of 396-600 nm.  All spectra were collected with excitation and emission 

wavelengths set to 5 nm with a 0.25 second integration time and a 1 nm step size.  

CaM mutants were measured at a concentration of 0.5 μM in the absence of 

peptide, and the presence of pOCNC or WpOCNC peptide at a concentration of 1 

μM.  A single control measurement to determine the fluorescence spectrum of the 

bound WpOCNC peptide was taken at a 1 μM concentration of peptide and a 2 μM 

concentration of wild-type CaM. 

To confirm that the binding affinity of CaM was not perturbed by the 

introduction of fluorescent probes, the binding affinity was determined for CaM-

CMcm
12δ112. This was performed by mixing labeled and wild-type CaM in varied 

concentrations with 1 μM WpOCNC at concentration ratios of 0.125:1, 0.25:1, 
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0.5:1, 1:1 and 1.5:1 of protein to peptide. Trp emission specta were collected as 

previously described. For the wild-type protein, the wavelength of the maximum of 

the Trp fluorescence was used to quantitatively determine the amount of bound 

peptide, while for CaM-CMcm
12δ112 the amount of bound protein was determined via 

the quenching in the emission at 350 nm. The normalized values were then fit with 

Equation 2.5 to determine Kd as in previous publications.77  

𝑦 = 𝑅
(𝐾𝑑+[𝑃]+[𝑃][𝐿])−√(𝐾𝑑+[𝑃]+[𝑃][𝐿])2−4[𝑃]2[𝐿]

2[𝑃]
 (Eq. 2.5) 

In Equation 2.5 [P] and [L] are the total concentrations of the protein and 

peptide respectively The Kd for the wild-type and CaM-CMcm12δ112 proteins 

were 7.44±6.89 and 21.8±20.5 nM respectively.  Given the high affinity of the 

WpOCNC peptide and the 1 µM concentration in our assay, these represent only 

estimates of the actual Kd, with significant error.  However, we take the 

stoichiometric binding observed in both cases to indicate that CaM labeling does 

not substantially disrupt peptide binding. 
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Figure 2.19: CaM Absorbance Measurements. Absorbance spectra of CaM-
CMcm

12 (Top Left), CaM-δ112 (Top Right) and CaM-CMcm
12δ112 (Bottom Left) 
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Figure 2.20: αS Absorbance Measurements. Absorbance spectra of αS-CMcm
62 

(Top Left), αS-CMcm
114 (Top Right) αS-CMcm

62 δ 94 (Middle Left), αS-CMcm
114 δ 94 

(Middle Right) and αS-δ 94 (Bottom Left). 

 

Table 2.3: Percent of Cys Containing Protein Labeled by Mcm-Mal 

 CaM-CMcm
12δ112 αS-CMcm

62 δ 94 αS-CMcm
114 δ 94 

Percent Labeled 90.1 % 77.3 % 67.2 % 

 

The percent of Cys containing protein labeled by Mcm-Mal was determined 

from the ratio of the concentrations of Mcm and Acd calculated from UV 
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absorbance spectra (Figs 2.19 and 2.20), using the previously described extinction 

coefficients. These values likely deviate from the true labeling percentage due to 

background and scattering profiles within the obtained spectra. 

 

Stopped-Flow Measurements.  

Stopped-flow experiments were performed with 1 μM Mcm/Acd labelled 

CaM and 2 μM pOCNC peptide.  Each measurement was taken in triplicate 

following mixing of 20 μL of protein and 20 μL of peptide.  For each mixing event 

the fluorescence emission of Acd (440 ± 40 nm) following excitation of Trp at 295 

nm or Mcm at 325 nm. For each measurement, 15000 points were collected over 

a time range of 30 milliseconds. Nonlinear fits were performed in GraphPad Prism 

7.00 where each measurement was fit over the entire time window to the equation 

Y =  Y0  +  Y𝑀 × exp(-k × 𝑥) (Eq. 2.6) 

In Eq. 2.6, Y is the fluorescence intensity as a function of time, x, where Y0 

is the maximum intensity and YM is the difference between the maximum intesnity 

and intensity at time zero. The resulting fit values for each curve and the resulting 

averages are seen in  

 

Comparison of CaM FRET Data to Other Structural Data.   

The calculated distances obtained from the experimental Mcm/Acd FRET 

measurements can be compared to published NMR structures of CaM in the 

peptide-bound (PDB ID 1SY9) and free (PDB ID 1X02) forms.120-121  We selected 

three representative substructures from the ensembles of 20 low energy structures 
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reported for each PDB entry.  Rather than simply calculate the distances between 

residues 12 and 112 from Cα to Cα, we manually placed into these PDB structures 

models of the CMcm chromophore (both R and S adducts) and Acd chromophore 

(two sidechain rotamers designated A and B in Fig. 2.26) generated from AM1 

minimized structures in Gaussian 09.122  For Acd, the sidechain orientation was 

determined by making a Phe mutation at positon 112 in PyMol and aligning the 

Acd chromophore with the Phe sidechain.  For CMcm, a Cys mutant was made at 

position 12 in PyMol and the sulfur atom in the Mcm model was aligned with the 

Cys sulfur.  The Mcm chomophore was then rotated about the C-C-S-C 

maleimide bond to minimize steric clashes.  The Mcm and Acd models used are 

shown in Figure 2.26.  The distances between the highlighted (black arrows) atoms 

were determined and averaged to identify the center-to-center distance between 

the two chromophores.  The values from the two Acd rotamers and the R and S 

adducts of the Mcm chromophore are reported in Table 2.6.  Ranges for these 

values were reported in the main text. 

 

αS FRET Measurements 

Purified CMcm-labelled, -labelled, and CMcm/ double-labelled αS proteins 

were dialyzed into αS buffer.  Protein concentrations were determined by 

absorption spectroscopy (CMcm: ε325 = 19,010 M-1cm-1 Acd: ε386 = 5,700 M-1cm-1).77, 

123  Background corrections were performed using a|e 1.2.124  Fluorescence 

steady-state spectra were obtained at protein concentrations of ~0.5 μM while 

fluorescence lifetimes were acquired at ~2 μM.  Buffers containing varying 
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concentrations of trimethylamine N-oxide (TMAO) in 20 mM Tris and 100 mM NaCl 

were prepared on the day of the spectroscopy experiments, and the pH of each 

buffer was readjusted to 7.5 following the addition of TMAO.  Both steady-state 

and lifetime measurements were performed at concentrations of 0, 2, and 4 M 

TMAO.  Steady-state measurements were performed with direct excitation of Mcm 

at 325 nm, measuring emission from 335-600 nm, with all slit widths set to 5 nm, 

a step size of 1 nm, and an integration time of 0.25 s per step.  Direct excitation of 

Acd was performed at 386 nm, measuring from 396-600 nm with the same slit 

width, step size, and integration time. 

 

Steady State Fluorescence Data Fitting and FRET Calculation.  

Due to the significant overlap of the Mcm and Acd emission spectra, 

deconvolution was required to determine the relative Mcm quenching due to FRET.  

Fitting of spectra containing Mcm and Acd double-labelled protein was performed 

by minimizing the square difference between the spectra from the double-labelled 

protein and a sum of linearly weighted single-labelled spectra using the following 

equation 

 

∑ (𝐼(𝜆)𝐷𝐴 − (𝐴𝐼(𝜆)𝐷 − 𝐵𝐼(𝜆)𝐴))
2

→ 𝑚𝑖𝑛
∑
𝜆   (Eq. 2.7) 

 

Here, I(λ)DA, I(λ)D and I(λ)A represent the fluorescence intensity at a given 

wavelength from protein which was double-labelled, single-labelled with only the 

FRET donor, and single-labelled with only the FRET acceptor, respectively.  A and 
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B are linear weights of the donor and acceptor spectra and are wavelength 

invariant.  The Solver function in Microsoft Excel was used to vary the values of A 

and B to minimize the sum of this square difference across all emission 

wavelengths.  The FRET efficiency (EFRET) was then directly obtained from the 

linear weight of donor spectrum, A, where A = 1-EFRET. 

 For CaM experiments, distances were determined using the 

canonical Förster equation (Eq. 2.4).  Error bars for CaM experiments were 

obtained via propagation of error through the determination of A and the canonical 

Förster equation.  Interfluorophore distance values for αS experiments were 

calculated using a polymer scaled version of the Förster equation of the form 

 

𝐸𝐹𝑅𝐸𝑇 = ∑ 𝑃(𝑟) (1 + (𝑟 𝑅0⁄ )6)⁄𝑟   (Eq. 2.8) 

 

were the probability distribution was set to the functional form for a 

Gaussian chain. 

 

𝑃(𝑟) = 4𝜋𝑟2 (
3

2𝜋⟨𝑟2⟩
)

3 2⁄

𝑒𝑥𝑝 (−
3

2

𝑟2

⟨𝑟2⟩
) (Eq. 2.9) 

 

Error bars were obtained via propagation of experimental error through both 

determination of A and distance determination using the Gaussian-chain scaled 

Förster equation. 
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Fluorescence Lifetime Data Fitting and FRET Calculation.  

Fluorescence lifetime measurements were acquired via time-correlated 

single photon counting using a 340 nm LED light source.  Lifetime spectra were all 

acquired at 380 nm with slit widths ≤ 8 nm and collection over a 199 ns time 

window, which was divided into 4096 lifetime bins.  Collection was terminated 

when a single bin reached a count of 10,000 photons.  TCSPC data were fit to 

single or bi-exponential decays using PowerFit-10.  The FRET efficiency (EFRET) 

was calculated as one minus the ratio of the Mcm lifetime in the presence of Acd 

to the Mcm lifetime in the absence of Acd. 

 

Comparison of αS FRET Data to Other Structural Data.   

The calculated distances obtained from the experimental Mcm/Acd FRET 

measurements were compared to published structural ensembles.  The two 

ensembles were previously published in Allison et al. and Nath et al., derived from 

a molecular dynamics simulation restrained with paramagetic relaxation 

enhancement data and a Monte Carlo simulation with constraints from FRET, 

respectively.68, 125-126  To obtain distances for comparisons, the distances between 

Cα atoms for every residue pair in the sequence were extracted from each 

structure within each ensemble.  Since αS is intrinsically disordered, it is unlikely 

that the structural ensembles represent the full distribution of states, therefore 

distances were averaged in a Flory-scaling like protocol similar to the analysis in 

Nath et al.68  For each ensemble, the inter-residue distances were averaged over 

all residue pairs spaced by the same primary sequence separation over all 
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structures, rather than just averaging over a single specific residue pair over all 

structures.  The average and standard deviation of the inter-residue distance as a 

function of primary sequence separation is shown in Figure 2.25, along with the 

probe separation distance calculated from the experimental Mcm-Acd FRET 

efficiency via the gaussian chain polymer-scaled version of the Förster equation. 

Since there are no published ensembles for the structure of αS in the presence of 

TMAO, this comparison could only be performed for measurements in the absence 

of TMAO.  

 

§ 2.3 Results 

Characterization of Mcm-Mal and Mcm-Br 

We considered two ways of installing Mcm, either through conjugate 

addition of a 3-maleimide derivative (Mcm-Mal) or through an SNAr reaction of a 3-

bromo derivative (Mcm-Br, Fig. 2.3).  Mcm-Br and Mcm-Mal were synthesized by 

Naoya Ieda as detailed in Figure 2.3. 

We tested the reaction of Mcm-Mal and Mcm-Br with Cys in aqueous buffer 

and found that reactions of Mcm-Mal were much faster (complete within a few 

seconds at 10 µM), with a >20-fold increase in fluorescence at 390 nm (Figs. 2.4 

and 2.7).  High performance liquid chromatography (HPLC) and mass 

spectrometry (MS) analysis indicated that the very rapid reaction initially yielded 

the conjugate addition product shown in Fig. 1, without maleimide ring opening 

(Figs. S3 and S5).  This product then isomerizes on a timescale of hours to a 

compound of identical mass, which we attribute to the lactam form S5 (Figs. 2.6 
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and 2.8).  This is similar to reactions recently reported for detection of Cys in its 

amino acid form by Tong et al.127  The authors ascribed the high levels of 

fluorogenicity that they observed to relief of two quenching mechanisms, one by 

conjugate addition, and the other by opening of the maleimide ring.  Since this 

second step involves the Cys -amine, we also tested the reaction of Mcm-Mal 

with N-acetyl cysteine (Ac-Cys), which is more representative of Cys in proteins.  

The resulting >20-fold turn-on of fluorescence was comparable to that seen in 

reactions with Cys (Fig. 2.21)  These Ac-Cys/Mcm-Mal data, together with our 

observations of the faster fluorescence turn-on relative to ring-opening in 

Cys/Mcm-Mal reactions, imply that the conjugate addition is the primary 

determinant of fluorescence turn-on. 

 

Figure 2.21:  Mcm-Mal turn-on experiments.  Fluorescence intensity of 10 µM 
Mcm-Mal in Tris buffer (100 mM, pH 7.0, DMSO 1%) alone or mixed with 1 equiv 
Cys or Ac-Cys.  Fluorescence excitation at 325 nm, emission monitored at 400nm; 
background corrected data are shown, see raw data in Fig. 2.9.  Inset: 
Fluorescence spectra acquired after 6 h of incubation. 
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Following these trial reactions with small molecules, we evaluated the turn-

on of Mcm-Mal fluorescence in reactions at a Cys residue in two proteins, 

calmodulin (CaM) and -synuclein (S).  CaM is a calcium sensor protein that 

undergoes a dramatic conformational change in the presence of calcium and 

helical peptide binding partners.128-129  S is a disordered protein that contributes 

to the pathogenesis of Parkinson’s disease.19, 130  These provide examples of the 

value of FRET to monitor conformational change and protein/protein interactions.  

Cys mutants of CaM and S (CaM-C12, S-C62, S-C114) were reacted with Mcm-

Mal, and fluorescence emission was monitored at 390 nm.  In all cases, we 

observed a turn-on of fluorescence, but this was significantly less than what was 

observed with Cys or Ac-Cys, due in part to higher background fluorescence in 

protein reactions because of the need to keep the protein Cys reduced.  Matrix-

assisted laser desorption ionization (MALDI) MS analysis of whole proteins and 

trypsin digests confirmed that modification took place exclusively at the Cys, 

without ring-opening. (Fig. 2.11-2.15) 

 

Use of Mcm-Acd as a FRET Pair 

In order to perform FRET measurements, one must doubly label the protein 

with a donor/acceptor probe pair.  We installed the Mcm/Acd FRET pair by using 

site-directed mutagenesis and amber codon suppression to generate constructs 

with single Cys and Acd mutations, followed by reaction of Cys with Mcm-Mal. (Fig. 

2.1)  The reaction progress was monitored using the turn-on of Mcm-Mal 

fluorescence and MALDI MS. (Figs. 2.11 and 2.13)  We commonly use C-terminal 
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intein-His6 tags to facilitate isolation of full-length proteins containing unnatural 

amino acids from truncated proteins.95  His6 tags can be cleaved with β-

mercaptoethanol either before or after Mcm-Mal labelling.  Due to the highly 

sensitive nature of FRET measurements, we typically perform a second 

purification pass by FPLC or HPLC. 

We have used our doubly labeled S and CaM constructs in proof-of-

principle FRET experiments to demonstrate the value of the Mcm/Acd pair.  For 

S, we monitored a conformational change of the monomer induced by addition of 

the compacting osmolyte trimethylamine N-oxide (TMAO).  TMAO is a naturally 

occuring osmolyte that is abundant in aquatic organisms, and counteracts the 

denaturing effects of urea required for osmotic pressure regulation.131-132  Previous 

work has demonstrated that αS undergoes successive compaction with exposure 

to increasing amounts of TMAO.133-135 

Here, we chose to monitor TMAO-induced conformational changes in S 

by introducing Cys residues at positions 62 or 114 and Acd at position 94.  Single-

labelled constructs containing either Mcm or Acd and the double-labelled 

constructs were prepared as described above.  Fluorescence spectra for all of the 

single and double-labelled constructs were collected in 0, 2, and 4 M TMAO.  

Singly-labelled spectra were used to analyse the double-labelled spectra to 

determine FRET efficiency (EFRET).  This was performed by linearly weighting the 

singly-labelled spectra and minimizing the squared difference between the doubly-

labelled spectrum and the sum of the linearly weighted single-labelled spectra at 

each wavelength. (Fig. 2.23)  This allows one to correct for changes in quantum 
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yield or spectral overlap when the chromophore changes environment, and directly 

affords the relative Mcm quenching (A in Fig. 2.23) and EFRET (EFRET = 1-A) to 

determine the FRET distance through application of an appropriate form of the 

Förster equation. 

 

 

Figure 2.22: αS Fluorescence Spectra and FRET Fitting Results. Donor-only 

(CMcm, solid blue line), acceptor-only (, solid red line), or double-labelled (CMcm/, 
solid black line) spectra are shown overlayed with the results of fitting the double-
labelled spectra to a weighted sum of the single-labelled spectra (light blue dashed 
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line).  The weighted component spectra are shown in dashed blue (donor-only) 
and dashed red (acceptor-only) lines.  Spectra were acquired in buffer containing 
0, 2, or 4 M TMAO with excitation at 325 nm. 

 

Figure 2.23: αS TMAO FRET Experiments.  Left: Incubation of S with TMAO 
causes protein compaction, which can be monitored by FRET.  Top Right: 

Fluorescence emission spectra (325 nm excitation) of 1 µM concentrations of S-

CMcm
6294 and the corresponding singly-labelled S-CMcm

6294 and S-CMcm
6294 

constructs in 0 M TMAO.  Deconvolution of the doubly labelled spectrum by fitting 
to a weighted sum of the singly-labelled spectrum are shown.  Bottom Right: EFRET 

and corresponding inter-fluorophore distances for S constructs under varying 
conditions determined using spectral deconvolution.   
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Figure 2.24a: αS Fluorescence Spectra and FRET Fitting Results.  TCSPC data 
sets in 0 M or 2 M TMAO are shown for donor-only (CMcm, dark blue line) or double 

labelled (CMcm/, dark red line).  Bi-exponential fits to the data are shown in light 
blue (donor only) or pink (double labelled); the instrument response function (IRF) 
is shown in black.  Weighted residuals are shown in corresponding colors above 
each fluorescence lifetime plot. 
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Figure 2.24b: αS Fluorescence Spectra and FRET Fitting Results.  TCSPC data 
sets in 4 M TMAO are shown for donor-only (CMcm, dark blue line) or double 

labelled (CMcm/, dark red line).  Bi-exponential fits to the data are shown in light 
blue (donor only) or pink (double labelled); the instrument response function (IRF) 
is shown in black.  Weighted residuals are shown in corresponding colors above 
each fluorescence lifetime plot. 
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Table 2.4: TCSPC Fluorescence Lifetime Values 

Protein TMAO τ1 τ2 Amp. 1 Amp. 2 τAvg. κ2 EFRET 

αS-CMcm
62 0 M 3.10 - 2.47 - 3.10 0.90 - 

 2 M 3.12 - 3.03 - 3.12 1.16 - 

 4 M 2.80 0.86 0.79 0.55 2.01 0.93 - 

αS-

CMcm
114 

0 M 2.85 0.95 1.01 0.25 2.47 1.20 - 

 2 M 3.03 0.96 1.00 0.32 2.53 0.83 - 

 4 M 3.01 1.13 0.68 0.76 2.12 0.96 - 

αS-

CMcm
62δ94 

0 M 2.74 1.29 0.93 0.50 2.23 0.84 0.28 

 2 M 2.60 1.01 1.02 0.78 1.92 0.95 0.39 

 4 M 1.90 0.39 0.17 2.81 0.48 0.97 0.76 

αS-

δ94CMcm
114 

0 M 2.17 0.71 0.70 0.71 1.43 1.07 0.42 

 2 M 0.82 2.31 0.67 1.10 1.38 1.04 0.45 

 4 M 2.07 0.42 0.28 2.68 0.57 0.99 0.73 

 

The 0 M data are consistent with Flory scaling models of inter-residue 

distances in disordered proteins. (Fig. 2.25)  Moreover, we observe compaction 

for both label positions with increasing amounts of TMAO, as previously observed 

in this system with other FRET pairs.134, 136  These results were corroborated by 

measuring the change in Mcm fluorescence lifetime for the two double-labelled 

pairs relative to the analogous Mcm single-labelled proteins. 
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Figure 2.25: Mcm/Acd FRET Data Compared to Previous Structural Models of αS 
Ensembles. 

 

For CaM, we monitored the conformational change induced by peptide 

binding.  Acd-labelled CaM was expressed and reacted with Mcm-Mal to give 

CaM-CMcm
12112.  Based on existing crystal and NMR structures of CaM, we 

expected that a significant change in EFRET would occur due to a decrease in 

distance between positions 12 and 112 upon peptide binding.  (Fig. 2.28)  We note 

that in several CaM crystal structures, an extended conformation is observed, 

making the 12/112 inter-residue distance >50 Å.  However, NMR studies have 

shown that the N- and C-terminal lobes of CaM are dynamic, and that the 

conformations sampled in solution are more compact.137 



75 

 

 

Figure 2.26: Fluorescence Assay to Determine Binding of Labeled CaM. 
Fluorescence spectra of WpOCNC binding to CaM-CMcm

12δ112 (Top Left and Right) 
and CaM-WT (Middle Left) with the relative concentration of CaM:WpOCNC 
indicated in the legend. Plots of fraction of WpOCNC bound for both CaM-
CMcm

12δ112 and CaM-WT shown as a function of the concentration ratio of 
CaM:WpOCNC with fits from Equation (S5) (Middle Right and Bottom Left). 
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Table 2.5: CaM + WpOCNC FRET 

 Free Bound 

ΦD 0.16 0.17 

J (M-1•cm-1•nm4) 7.042 x 1013 7.137 x 1013 

R0 (Å) 24.6 24.3 

EFRET 0.676 ± 0.002 0.405 ± 0.001 

Distance (Å) 25.9 ± 0.1 21.8 ± 0.1 

 

 

 

Figure 2.27: CaM Structural Models.  Left: Chromophore structures used in 
modelling Acd or CMcm in CaM structures.  Acd rotamers were superimposed on 
the lowest energy rotamer of a Phe112 mutant in each CaM structure.  R- or S-
Mcm-Mal thiol adducts were docked onto Cys12 mutants in each CaM structure.  
The distances between the atoms indicated by arrows were computed and 
averaged to determine the chromophore separation for comparison to FRET data.  
Right: Example of the four models of Mcm/Acd-labelled CaM generated from PDB-
ID 1X02 structure 14, corresponding to Acd rotamer A or B with R- or S-CMcm.  
Other structures used in the analysis reported in Table 2.5 were generated in a 
similar fashion from structures in PDB ID 1X02 or 1SY9. 
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Table 2.6: CaM Structural Model Data 

PDB ID Distance 

(Å) 

PDB ID Distance 

(Å) 

PDB ID Distance 

(Å) 

1X02 – 

14AS 
30.5 

1X02 – 

3AS 
36.7 

1X02 – 

7AS 
37.3 

1X02 – 

14BS 
28.8 

1X02 – 

3BS 
33.8 

1X02 – 

7BS 
34.9 

1X02 – 

14AR 
25.3 

1X02 – 

3AR 
36.6 

1X02 – 

7AR 
42.3 

1X02 – 

14BR 
23.1 

1X02 – 

3BR 
33.6 

1X02 – 

7BR 
40.7 

 26.9 ± 3.4  35.2 ± 1.7  38.8 ± 3.3 

1SY9 – 

11AS 
16.5 

1SY9 – 

3AS 
21.9 

1SY9 – 

17AS 
20.2 

1SY9 – 

11BS 
15.5 

1SY9 – 

3BS 
15.2 

1SY9 – 

17BS 
18.1 

1SY9 – 

11AR 
16.2 

1SY9 – 

3AR 
21.7 

1SY9 – 

17AR 
20.0 

1SY9 – 

11BR 
15.8 

1SY9 – 

3BR 
19.8 

1SY9 – 

17BR 
18.3 

 16.0 ± 0.4  19.1 ± 1.1  19.6 ± 3.1 

Structure names correspond to PDB ID, followed by substructure number, Acd A 

or B rotamer, and CMcm R or S stereochemistry at starred carbon in Fig. 2.27. 
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Figure 2.28:  CaM Peptide binding FRET.  Left: Fluorescence emission spectra of 

CaM-CMcm
12112 (325 nm excitation) obtained in the presence and absence of the 

WpOCNC binding peptide.  Note: The apparently small FRET change is the result 
of an opposing increase in Mcm emission upon binding.  This can be accounted 
for by comparison to CaM-CMcm

12 emission with and without WpOCNC.  Full 
spectral deconvolution to obtain EFRET values is described in ESI.  Right: Images 
of CaM in the presence an absence of the pOCNC peptide rendered from PDB 
entries 1X02121 and 1SY9,120 respectively.  Distances obtained from EFRET 
measurements are consistent with the CaM conformations in these NMR studies 
when models of CMcm and Acd are included.   

 

Fluorescence spectra of CaM-CMcm
12112 were obtained in Ca2+-buffered 

solutions, and indeed we observed significant Mcm-to-Acd FRET, evidence that 

positions 12 and 112 were closer than 40 Å.  Upon addition of WpOCNC, a Trp 

derivative of a known high-affinity CaM binding peptide,120, 138 we observed an 

increase in FRET.  As in our S studies, we also obtained spectra for singly-

labelled CaM-CMcm
12 and CaM-112 under identical conditions, and fit a sum of 

these spectra to the CaM-CMcm
12112 spectrum to quantitatively determine EFRET.  

The resulting inter-residue distances of 26 Å and 22 Å in the absence and presence 

of the WpOCNC peptide, respectively, are in reasonable agreement with Mcm- 
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and Acd-labelled CaM models based on existing NMR structures (Fig. 2.27 and 

2.28).120-121  These studies demonstrate the value of Mcm/Acd FRET in monitoring 

a binding induced conformational change. 

 

Trp-Mcm-Acd Three Color FRET 

 The longer wavelength excitation (325 nm) and emission of Mcm and 

Acd allowed us to selectively observe these changes in the presence of the Trp 

residue in WpOCNC.  However, we can also take advantage of the spectral 

overlap of Trp emission with both Mcm and Acd to perform three color FRET 

experiments, monitoring binding and conformational change events in the same 

experiment.  Although deconvolution to extract distance information is not reliable, 

FRET can still be used to measure binding kinetics.  Using a stopped-flow 

fluorometer, we observed rapid binding of WpOCNC through 295 nm excitation, 

monitoring Acd emission at 420 nm.  In the same experimental setup, we excited 

at 325 nm to monitor the conformational change in CaM alone.  We found that the 

rates of binding (Ex295: 338 ± 93 s-1) and conformational change were nearly 

identical (Ex325: 306 ± 40 s-1), implying that the two processes are concerted.  This 

is consistent with previous experiments showing that CaM populates compact 

structures even in the absence of peptide.121, 137  Our data support the idea that 

WpOCNC stabilizes existing compact CaM conformations rather than binding and 

then inducing a large conformational change.  We note that the rates of binding 

and conformational change are also consistent with previous data for CaM binding 

of several peptides (~500 s-1 at 1 µM peptide and CaM).139-141 
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Figure 2.29: CaM Steady State FRET Measurements. Plots display the 
background subtracted (solid) and fit (dashed) spectra for CaM-CMcm12δ112 
(Top Left) following excitation at 325 nm, CaM-CMcm12δ112 bound to WpOCNC 
(Top Right) following excitation at 325 nm, WpOCNC bound to wild-type CaM 
(Middle Left) following excitation at 295 nm, CaM-CMcm12 bound to WpOCNC 
(Middle Right) following excitation at 295 nm, CaM-δ112 bound to WpOCNC 
(Bottom Left) following excitation at 295 nm and CaM-CMcm12δ112 bound to 
WpOCNC (Bottom Right) following excitation at 295 nm. WpOCNC-Free spectra 
were obtained from measurement of WpOCNC in buffer, while the WpOCNC-
Bound spectrum was obtained from measuring WpOCNC bound to wild-type CaM 
at a 2:1 ratio of protein to peptide with final peptide concentration of 1 μM. 
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Figure 2.30: CaM Stopped-Flow FRET Measurements. Acd emission of CaM-
CMcm

12δ112 during binding of WRRIAR was monitored following excitation of Mcm 
at 325 nm (left) or Trp at 295 nm (right). Acd emission was monitored at 440 ± 40 
nm using an Edmund Optics filter. Each plot contains three single stopped-flow 
shots which were collected following four wasted shots. Protein and peptide were 
mixed in a 1:2 concentration ratio producing final concentrations of 0.5 μM protein. 

 

Table 2.7: Stopped-Flow Data Fitting 

Parameter Ex. 295 nm Std. Dev. Ex. 325 nm Std. Dev. 

Y0 4.814 0.028 5.821 0.027 

YM -0.517 0.072 -0.531 0.051 

k 0.338 0.093 0.306 0.040 
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Figure 2.31:  Three Color FRET and Rapid Mixing Measurements of Peptide 

Binding Kinetics.  Left: Emission spectrum of CaM-CMcm
12112/WpOCNC complex 

(295 nm excitation) shown deconvoluted with Trp, Mcm, and Acd components.  
Right: Overlay of fits to stopped flow fluorescence data for binding of WpOCNC to 

0.5 µM CaM-CMcm
12112.  Red: 295 nm excitation, 420 nm emission; Blue: 325 nm 

excitation, 420 nm emission.  See Figs. 2.29 and 2.30 for raw data and additional 
steady state spectra for FRET experiments. 

 

 

§ 2.6 Conclusion 

Using a combination of Cys labeling by Mcm-Mal and Acd incorporation 

allows one to easily introduce a FRET pair that is selectively excitable and 

minimally perturbing in proteins (WpOCNC Kds are nearly identical for CaM and 

CaM-CMcm
12112, Fig. 2.26).  Mcm/Acd FRET pairs can be used to monitor 

conformational changes of 15-40 Å, a useful scale for tracking motions within 

protein domains or among domains of moderately sized proteins.  We have shown 

that spectra of Mcm- or Acd-only proteins can be used to correct for changes in 

quantum yield or spectral shape to accurately determine EFRET and inter-

chromophore distance.  While background signal from reducing agents hindered 

its demonstration here, the fluorescence turn-on of Mcm-Mal gives it the potential 
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to be used for in situ FRET with Acd.  Additionally, Trp FRET with both Mcm and 

Acd can be used in combination with Mcm/Acd FRET to monitor the kinetics of two 

processes simultaneously.  We note that previous three color (or “two step”) FRET 

studies have primarily been single molecule experiments using bulky probes or 

even fluorescent proteins.142-145  An example using cyanophenylalanine, Trp, and 

7-azatryptophan by Gai uses smaller probes, but these are all UV wavelength 

probes.146  The Trp/Mcm/Acd trio balances small probe size with selective 

excitation, and we are working to develop complementary red-shifted, minimalist 

fluorescence probes. 
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CHAPTER 3: IMPROVING THE FLUORESCENT PROBE 

ACRIDONYLALANINE THROUGH A COMBINATION OF THEORY AND 

EXPERIMENT.  

The content of this chapter was originally published in the Journal of Physical 

Organic Chemistry. It is adapted here with permission from the publisher: 

Copyright 2018 Wiley. Used with permission from Itthipol Sungwienwong, John J. 

Ferrie, Joomyung V. Jun, Chunxiao Liu, Taylor M. Barrett, Zachary M. Hostetler, 

Naoya Ieda, Amara Hendricks, Anand K. Muthusamy, Rahul M. Kohli, David M. 

Chenoweth, George A. Petersson and E. James Petersson, Improving the 

fluorescent probe acridonylalanine through a combination of theory and 

experiment, Journal of Physical Organic Chemistry John Wiley & Sons, Ltd. 
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§ 3.1 Introduction 

Fluorescence spectroscopy can be a valuable tool for studying the structural 

dynamics of proteins and protein/protein interactions.116  There are several 

common types of protein experiments that employ fluorescence spectroscopy: 

folding/conformational change experiments, binding experiments, and proteolysis 

experiments (Fig. 3.1).147-148  Changes in fluorescence can be used to track protein 

structural change on the ns timescale using distance dependent chromophore 

interactions: either Förster resonance energy transfer (FRET) or quenching by 

photo-induced electron transfer (eT).149-151  Such studies require fluorescent 

probes that enable accurate measurement on a variety of distance ranges between 

the two chromophores.  FRET ranges are characterized by the Förster radius, R0, 

the distance of half-maximal energy transfer for any chromophore pair.152 For 

example, the common FRET pair fluorescein (Fam)/ tetramethylrhodamine (Tmr) 

has an R0 of 47 Å and is useful to measure distances in the 30 to 90 Å range.153  

Since many inter-residue distances in proteins are shorter than this, one needs to 

complement the Fam/Tmr FRET pair with other probe pairs that are better suited 

to shorter interactions.  With this in mind, the Petersson laboratory has developed 

a methoxycoumarinylalanine (Mcm, 1)/ acridonylalanine (Acd, 2) FRET pair for 

monitoring distances in the 15 to 40 Å range, and thioamide/Mcm or thioamide/Acd 

eT quenching pairs for short distance (<15 Å) measurements.51, 154 

In addition to being better suited to short distance ranges than Fam or Tmr, 

Acd is small enough to be directly genetically incorporated, rather than post-

translationally attached, and is less likely to disrupt protein folding.155  This allows 
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one to place a chromophore on the interior of a protein and to label proteins that 

cannot be reversibly unfolded and refolded (e.g., our published labeling of 

LexA).118  Having the chromophore attached by a short sidechain rather than a 

Cys maleimide or “click” chemistry triazole linker also reduces the positional 

uncertainty of the FRET probe with respect to the protein backbone.  Thus, 

distance measurements from FRET should more reliably report on changes in 

protein conformation.  We and others have previously shown that Acd can be a 

valuable probe for protein study because of its small size (222 Å3), high quantum 

yield in water (Φ = 0.95), unusually long fluorescence lifetime (τ ~15 ns), and high 

photostability.77, 123, 156  We have developed an engineered aminoacyl tRNA 

synthetase (RS)/ orthogonal tRNA pair for selective Acd incorporation by unnatural 

mutagenesis.77  This has allowed us to label proteins and peptides with 

methoxycoumarin/Acd FRET pairs either through Mcm incorporation by solid 

phase peptide synthesis (SPPS) or by attachment of methoxycoumarin-maleimide 

to a Cys residue in a protein.51  While many aspects of the Mcm/Acd FRET pair 

are optimal, such as significant spectral overlap and a high Mcm extinction 

coefficient at 325 nm where Acd has a minimum, one disadvantage is the small 

Acd Stokes shift which leads to significant overlap of their emission spectra.  This 

overlap necessitates a challenging deconvolution of the Mcm/Acd spectra in order 

to determine FRET efficiencies and distance measurements.  Thus, an Acd 

derivative with a larger Stokes shift would be desirable for Mcm FRET. 

In addition to improving Mcm FRET, we also wish to alter other fluorescent 

properties of Acd, such as red-shifting excitation and emission, increasing the 
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extinction coefficient, and altering solvatochromic effects to make brighter 

derivatives that are better suited to microscopy or single-molecule fluorescence 

applications.  Sisido and coworkers have previously shown that some of these 

effects can be achieved by simply homoligating Acd with a benzene ring 

(benzoacridonylalanine or Bad, 3) to extend the π-system.157  However, we wish 

to make derivatives that can still be incorporated by the ribosome, and Sisido’s 

laboratory also showed that Bad was not incorporable during in vitro translation 

with chemically-charged tRNA.  Therefore, we will use crystal structures and 

computational models of our evolved AcdRS and “rules” for ribosomal permissivity 

established in previous in vitro translation studies155, 158 to restrict Acd substitutions 

to positions that will allow in vivo tRNA charging and incorporation into proteins. 

Identifying Acd derivatives by making amino acid analogs is synthetically 

laborious and unnecessary given that Acd and Bad spectroscopic properties are 

identical to the properties of the respective chromophore cores.123, 156-157  Thus, to 

improve Acd fluorescence, we set out to make a series of acridone (5) core 

derivatives in order to identify derivatives with sufficiently improved properties to 

warrant synthesis of the amino acid form for incorporation into peptides.  Previous 

studies of acridone derivatives have shown that many of the spectroscopic 

properties can easily be modulated through substituent effects, providing strong 

precedent for our work.157, 159-165  Moreover, focusing on the acridone core makes 

computational modeling more tractable, with the potential to further narrow the 

scope of synthetic work by predicting absorption and emission spectra. 
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Here, we prepare a series of acridone derivatives in order to validate the 

accuracy of our electronic structure calculations and identify a derivative, 

aminoacridonylalanine (Aad, 4) with substantially red-shifted emission.  In addition, 

our calculations help to explain the origin of fine structure in acridone spectra, an 

explanation which is in conflict with the conclusions of previous computational and 

experimental Acd spectroscopy studies, but is consistent with the larger body of 

acridone literature.  Finally, we synthesize Aad and perform initial trials toward its 

genetic incorporation. 

 



89 

 

 

Figure 3.1: FRET experiments and fluorescent amino acids. Top: Protein 
conformational changes, protein–protein interactions, and proteolytic cleavage can 
be monitored by changes in the intra- or intermolecular distance between two 
FRET (Förster resonance energy transfer) probes.  Bottom: Fluorescent amino 
acids based on 7-methoxycoumarin and acridone cores. 

 

§ 3.2 Spectroscopic Characterization 

Acidone core derivatives, except 2-methoxyacrione (21) which was 

purchased from Sigma-Aldrich, were synthesized by Itthipole Sungweinwong 

following the routes detailed below.  
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Figure 3.2: Synthesis of nitroacridones and aminoacridones. 

 

 

Figure 3.4: Synthesis of acridones and benzoacridones. 

 

Prior to spectroscopic characterization, stocks of all acridone and 

benzoacridone compounds were prepared in acetonitrile at a concentration of 200 

or 300 μM.  All absorbance and fluorescence measurements were taken in 1:1 

CH3CN/buffer.  Buffers include citrate buffer (89.1 mM citric acid 21.8 mM 

Na2HPO4) pH 2.6, phosphate buffered saline (PBS, 137 mM NaCl, 2.7 mM KCl, 

10 mM Na2HPO4, 2 mM KH2PO4) pH 7.4, and 3-(cyclohexylamino)-1-

propanesulfonic acid (CAPS) buffer, pH 10.0.  The absorbance and emission 

spectra of all compounds were acquired in 1:1 CH3CN/PBS.  The sensitivity of the 



91 

 

absorbance and emission to pH was assessed for the parent acridone core as well 

as the 4-NH2 and 2-NH2 derivatives in 1:1 CH3CN/citrate and 1:1 CH3CN/CAPS.  

Absorbance measurements were acquired at concentrations of 75 and 7.5 μM for 

proper visualization of the spectral profile above and below ~300 nm (4-

aminoacridone absorbance measurements were taken at 7.5 and 0.75 μM). 

Fluorescence measurements were acquired under identical solution 

conditions at concentrations of 7.5 μM for all compounds, except for the 4-NH2, 2-

NO2, and 4-NO2 derivatives of Acd which were obtained at 75 μM due to a lack of 

brightness.  Spectra were collected using excitation wavelengths matching the 

maximum absorbance wavelength for each analog measured.  The collection 

window started 15 nm from the excitation wavelength and extended to 650 nm.  

This window was truncated to no less than a total range of 150 nm for more blue 

shifted chromophores.  All slit widths were set to 1.5 nm and spectra were acquired 

with an integration time of 0.25 sec/nm.  Higher signal-to-noise spectra for the 4-

NH2, 2-NO2, and 4-NO2 derivatives were collected keeping all other setting the 

same but adjusting all slit widths to 3 nm. 

Extinction coefficients were calculated from absorbance measurements 

collected on a Tecan M1000 plate reader (Mannedorf, Switzerland).  Samples 

containing 100, 80, 60, 40 and 20 μM chromophore were prepared in 1:1 

CH3CN/PBS solution with a total sample volume of 100 μL.  Following brief 

vortexing, samples were loaded into a Corning CoStar black, clear bottom, 96-well 

plate. 
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Absorbance and emission spectra are reported in Figures 3.2-S9.  Emission 

spectra are shown normalized to the acridone emission at 412 nm to approximate 

quantum yields.  The most prominent peak positions are reported along with 

extinction coefficients and these relative emission intensities in Table 3.1.  

Calculated spectra were obtained from George Petersson and were performed in 

Gaussian16™ are shown for comparison. 166-168  
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Table 3.1: Calculated and Observed Photophysical Parameters of Acridone 

Derivatives. 

         Calculated                Observed 

Compound λex/εa λem/Int.b λex/εa λem/Int.b 

Acd 5 253/11.4 00411/1.00 254/5.22 412/1.00 

 364/1.51 434/0.45 382/0.72 435/0.83 

 383/2.43  398/0.70  

2-NO2 6 235/5.32 - 230/3.33 - 

 282/2.53  296/0.87  

 341/1.03  356/0.76  

 408/1.87  402/0.37  

4-NO2 7 243/6.62 - 244/2.81 - 

 292/2.56  266/0.94  

 331/1.27  328/0.58  

 464/2.06  434/0.60  

2-NH2 8 252/4.93 509/0.21 256/3.38 527/0.16 

 278/2.96  278/2.46  

 419/0.47  420/0.52  

4-NH2 9 252/5.74 492/0.59 260/4.19 540/0.01 

 299/1.20  314/0.38  

 400/0.61  400/0.59  

4-F 15 248/12.8 397/0.48 252/4.44 412/0.65 

 365/1.19  378/0.51  

2-OMe 21 251/10.0 444/0.47 252/5.32 447/0.63 

 271/3.61  268/5.38  

 400/0.95  396/0.82  

   414/0.82  

4-OMe 16 249/6.62 421/0.35 256/6.30 431/0.37 

 375/0.62  384/0.69  

Bz 18 234/1.38 495/0.31 222/1.78 507/0.42 

 269/21.7  272/12.7  

 302/1.40  296/2.07  

 446/0.81  438/0.58  

4-F-Bz 19 268/15.3 496/0.24 268/9.96 508/0.21 

 446/0.61  448/0.54  

4-OMe-Bz 20 272/14.0 512/0.25 272/9.42 512/0.14 

 456/0.67  454/0.61  

aExtinction coefficients () reported as 104 M-1cm-1. 
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bEmission intensity (Int.) normalized the intensity of the highest emission peak of 

acridone for both calculated and observed spectra.  
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Figure 3.4: Acridone Spectra. Experimental (solid lines) and calculated (dashed 
lines) spectra and with vibronic transitions to/from lowest excited state (black bars) 
of Acridone (5) at pH 7.4, and experimental spectra at pH 2.6 and 10.0. 
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Figure 3.5: 2-Aminoacridone Spectra. Experimental (solid lines) and calculated 
(dashed lines) spectra and with vibronic transitions to/from lowest excited state 
(black bars) of 2-Aminoacridone (8) at pH 7.4, and experimental spectra at pH 2.6 
and 10.0. 
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Figure 3.6: 4-Aminoacridone Spectra. Experimental (solid lines) and calculated 
(dashed lines) spectra and vertical transitions (black bars) of 4-Aminoacridone (9) 
at pH 7.4, and experimental spectra at pH 2.6 and 10.0. 
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Figure 3.7: 2-Nitroacridone and 4-Nitroacridone Spectra.  Experimental (solid 
lines) and calculated (dashed lines) spectra and vertical transitions (black bars) of 
2-Nitroacridone (6) and 4-Nitroacridone (7) at pH 7.4. 
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Figure 3.8: 2-Fluoroacridone, 2-Methoxyacridone, and 4-Methoxyacridone 
Spectra.  Experimental (solid lines) and calculated (dashed lines) spectra and 
vertical transitions (black bars) of 2-Fluoroacridone (15), 2-Methoxyacridone (21), 
and 4-Methoxyacridone (16) at pH 7.4. 
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Figure 3.9: 4-Benzoacridone, 4-Fluorobenzoacridone, and 4-
Methoxybenzoacridone Spectra.  Experimental (solid lines) and calculated 
(dashed lines) spectra and vertical transitions (black bars) of 4-Benzoacridone 
(18), 4-Fluorobenzoacridone (19), and 4-Methoxybenzoacridone (20) at pH 7.4. 
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§ 3.3 Results 

Following production of the various Acd derivatives, we determined the 

absorbance and emission profiles, as well as the extinction coefficient, of each 

core.  These data are summarized in Figure 3.10 and Table 3.1, and the spectra 

of each compound are reported separately in the ESI.  The absorption and 

emission spectra are normalized in Figure 3.10 for clarity, raw spectra are shown 

in the ESI and extinction coefficients and emission intensities are given in Table 

3.1.  Since we ultimately endeavor to utilize these derivatives as fluorescent 

unnatural amino acids, we attempted to perform the spectroscopic characterization 

in phosphate-buffered saline (PBS), pH 7.4.  However, due to the relatively low 

solubility of the benzoacridone compounds in water, all measurements were 

performed in 1:1 acetonitrile/PBS.  Extinction coefficients were obtained through 

serial dilutions of stocks of 300 μM, which is approximately the solubility limit of 

benzoacridone in acetonitrile.  Fluorescence emission spectra were acquired 

under the same solvent conditions. 

The parent acridone (5) absorbance spectrum features two major peaks in 

the near UV region with maxima at 382 and 398 nm as well as additional features 

below 300 nm.  Derivatization of the acridone core resulted in changes of the 

absorbance profile that were both functional group and position dependent.  For 

example, introducing a methoxy group in the 2 position in 21 resulted in a ~15 nm 

red-shift in the absorbance maximum, with minimal modulation of the line shape, 

while introduction at the 4 position in 16 resulted in a very minimal shift, with the 

multi-peak profile becoming less defined.  Amino modification at either the 2 or 4 
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position produces a singular broad feature that is significantly red-shifted.  

Moreover, the absorbance profile of 2-aminoacridone (8) is pH sensitive (Fig. 3.3).  

The spectrum takes on a single broad absorbance feature very similar to that of 4-

aminoacridone (9) at high pH, which is dramatically reduced at low pH.  It is 

important to note that both the unmodified and the 4-amino Acd chromophores are 

pH insensitive (Figs. 3.4 and 3.6).  Lastly, we observe that extension of the 

conjugated system in the case of benzoacridone (18) results in an expected shift 

of the absorbance to higher wavelengths, but displays an unexpected reduction in 

the extinction coefficient.  When modified with either fluoro (19) or O-methyl (20) 

substituents, the absorbance profile is minimally shifted and the peaks become 

less well-resolved, similar to what was observed when modifying the parent 

acridone scaffold (15 and 16). 
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Figure 3.10: Absorption and emission spectra of acridone derivatives.  Spectra 
determined in 1:1 acetonitrile/PBS, pH 7.4.  Spectra are shown normalized to 
enable comparison of changes in absorption and emission maxima.  

 

Acridone substitution also elicited changes in the emission profile and 

Stokes shift.  The unmodified acridone emission features two major peaks at 412 

and 435 nm with a minor peak around 460 nm.  As in the absorbance profiles, the 

maxima of these peaks move to lower energy upon modification with the O-methyl 

group (21 or 16) with the multi-peak profile becoming less defined.  Similarly, 

introduction of the amine functionality resulted in a significant red shift as well as 



104 

 

a reduction of the multi-peak line shape to a single broad emission.  Both 

compounds 8 and 9 exhibited a dramatic increase in Stokes shift of ~100 nm 

compared to the acridone core.  Both also displayed a sensitivity to pH, manifested 

as a decrease in emission intensity with decreasing pH, compared to the 

unmodified core whose emission is insensitive to pH changes in the 2-10 range.  

Finally, the benzo modified acridone analogs all feature a nearly identical emission 

profile ~100 nm red shifted from the emission of the parent acridone compound.  

The combination of benzo and fluoro or methoxy substitution further red shifts the 

absorption spectrum, but does not appreciably change the emission spectrum. 

 

§ 3.4 Conclusions 

We can draw several conclusions from our results.  Firstly, as anticipated 

from previous literature reports, we are able to modulate the fluorescence of the 

acridone core through relatively simple substitutions.  These substitutions, 

introduced through direct modification of acridone or through cross-coupling and 

cyclization, are compatible with eventual usage in generating Acd amino acid 

derivatives.  Secondly, the close correlation (% differences  ex: 2.35, em: 2.40) 

between our calculated and observed absorption and emission spectra give us 

confidence that we can predict the spectra for acridone derivatives, providing 

guidance for future synthetic efforts.  This will be particularly valuable for targeting 

multiply-substituted derivatives, where the number of possibilities is geometrically 

larger and the synthesis will be more challenging.  Finally, Aad appears to be 

superior to Acd for several fluorescence applications.   
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CHAPTER 4: SYSTEMATIC EVALUATION OF SOLUBLE PROTEIN 

EXPRESSION USING A FLUORESCENT UNNATURAL AMINO ACID 

REVEALS NO RELIABLE PREDICTORS OF TOLERABILITY.  

The content of this chapter was originally published in ACS Chemical Biology. It is 

adapted here with permission from the publisher: 

Reprinted with permission from Z. M. Hostetler, J. J. Ferrie, M. R. Bornstein, I. 

Sungwienwong, E. J. Petersson, and R. M. Kohli. Systematic Evaluaiton of Soluble 

Protein Expression Using a Fluorescent Unnatural Amino Acid Reveals No 

Reliable Predictors of Tolerability. ACS Chem. Biol. 13, 10, 2855-2861. Copyright 

2018 American Chemical Society 
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§ 4.1 Introduction 

Technological advances in genetic code expansion have encouraged the 

design of proteins with a wide range of reactive residues, post-translational 

modifications, photocaged groups, or intrinsic fluorophores.169-171 Nonsense codon 

suppression using orthogonal tRNA/aminoacyl-tRNA synthetase pairs enables 

direct incorporation of chemically diverse unnatural amino acids (Uaas, also known 

as non-canonical amino acids) into proteins in vivo. Many efforts have sought to 

boost the efficiency of Uaa incorporation, including evolving more efficient 

aminoacyl-tRNA synthetases and recoding the E. coli genome to remove 

competing translational release factors.93, 172 Although these developments can 

improve total yields of modified proteins, factors governing the position-dependent 

effects of Uaa substitution on protein solubility remain understudied. 

Recent reports have demonstrated that the position of a Uaa can affect the 

level of total protein expressed, both in cell-free and cell-based systems.156, 173-177 

Investigations of 20 positions in IFN-α and 33 positions in VSV glycoprotein 

revealed varying total protein yields, from 0 to 95% of wildtype.177-178 Despite these 

observations, explanations for position-dependent differences in total amounts of 

Uaa-containing proteins have been limited, and no studies have explicitly 

addressed UAA incorporation versus the resulting protein solubility. 

Unnatural amino acid mutagenesis could hypothetically operate under well-

accepted principles that govern the effects of natural amino acid mutation. For 

example, substitution of a nonpolar for a polar residue within the hydrophobic core 

generally destabilizes proteins, whereas mutations on the solvent-exposed surface 
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less frequently affect solubility.179-180 Unsurprisingly, evolutionarily-conserved 

residues largely disfavor mutation.181-183 Substituting bulkier and more chemically-

diverse Uaas into a protein can restrict function and therefore could pose similar 

burdens on folding and solubility.184 Nevertheless, the applicability of principles of 

natural amino acid mutagenesis to Uaa mutagenesis remains unknown.  

Suggested guidelines or approaches for choosing Uaa-tolerant sites have 

been proposed. Some groups favor residues with structural similarity to the Uaa.175 

Others assert that candidate positions should be first assessed for mutational 

tolerability with natural amino acids or that proteins should be thoroughly screened 

by random incorporation of Uaas into protein-GFP fusions to reveal positions that 

label with high efficiency.176, 185-186 Nonetheless, the feasibility of using position-

specific properties to increase soluble protein expression remains untested. 

To address these open questions, we aimed to explore factors that impact 

Uaa incorporation and soluble protein production. By employing an intrinsically 

fluorescent Uaa, acridonylalanine (Acd),77, 118, 173 we directly detect labeled protein 

in cell lysate samples, overcoming the inability of past studies to measure levels 

of both total and soluble expressed protein. Our systematic survey of more than 

fifty sites across two proteins reveals that while incorporation efficiency is relatively 

similar, protein solubility, and by extension Uaa tolerability, varies widely across 

different positions. However, most position-specific physicochemical, evolutionary, 

and structural properties, some of which have been previously suggested to 

improve yield, were minimally predictive; instead, solubility more strongly 

associated with the identity of the protein domain. After controlling for this domain 
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effect, we found that only a few factors, such as a tolerance for aromatic residues, 

moderately trended with protein solubility. To our knowledge, this work currently 

represents the most systematic effort evaluating predictive factors for producing 

soluble Uaa-containing proteins.   

 

§ 4.2 Experimental and Computational Methods 

All experiments referenced in this chapter were performed by Zachary 

Hostetler, as were initial attempts to use computable characteristics (conservation, 

hydrophobicity, solvent accessibility, etc.) to predict Uaa mutation tolerance.  

The bacterial protein LexA, a multi-domain repressor of the DNA damage 

response, has characteristics that made it well-suited to this broader survey. Wild-

type E. coli LexA is well-behaved in overexpression and has previously tolerated 

selective unnatural amino acid (Uaa) incorporation.22 Additionally, the availability 

of protein crystal structures and a multiple sequence alignment for LexA enabled 

retrieval of position-specific properties from databases or servers that require 

these data as inputs. For every position in LexA, we calculated established metrics 

across different classes of properties: physicochemical, such as hydrophobicity; 

evolutionary, such as conservation; and structural, such as solvent accessibility. 

Using these metrics, we selected 32 positions spanning both domains of LexA, 

deliberately avoiding known deleterious mutants as well as the most conserved or 

hydrophobic positions (Figure 4.1a). Our selected positions sample the remaining 

metrics well (Figure 4.1b), indicating that this series is well-positioned to explore 
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how aromatic, accessible, or poorly-conserved residues might differentially 

tolerate Uaa incorporation.  

Historically, measuring Uaa incorporation efficiencies in vivo has 

overlooked protein solubility issues, while labeling Uaa-containing proteins in vitro 

has suffered from incomplete sample recovery and detection. Crucially, we chose 

to measure both total and soluble protein levels by using the fluorescent Uaa 

acridonylalanine (Acd, Figure 4.1c), which already possesses an optimized 

tRNA/tRNA synthetase pair for in vivo incorporation.21,22 This system offers several 

advantages. First, Acd incorporation occurs during protein overexpression without 

post-translational labeling. Second, measurements of Acd fluorescence at the 

expected size on an SDS-PAGE gel are directly proportional to levels of protein 

with successfully-incorporated Acd. Finally, gel-based detection of Acd 

demonstrates a broad dynamic range, enabling us to detect quantitative 

differences in the expression of Acd-containing LexA mutants. 

Expression levels for a single protein can range widely due to experimental 

variability, making quantitative comparison between different proteins difficult. To 

overcome this challenge, we overexpressed the 32 LexA mutants in the presence 

of both Acd and the Acd-specific tRNA/tRNA synthetase using autoinduction media 

for consistency in the timing and duration of protein production. Following 

overexpression, we measured fluorescence intensity levels of Acd-containing 

LexA protein in both the whole cell lysate and soluble fraction (Figure 4.1d). The 

use of purified Acd-containing LexA as a standard enabled quantitative and 

reproducible comparisons of protein amounts across independent experiments.   
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Simulation of Acd incorporation into LexA or RecA with Rosetta.  

Prior to performing simulations, a parameter file and rotamer library were 

produced for Acd following a previously described method.187 Starting structures 

for the LexA simulations were prepared from PDB 1JHE and PDB 1JHF by adding 

the missing residues using the remodel application in Rosetta.188-189 A blueprint file 

was prepared from each monomer and the primary sequence was modified to 

match that of the LexA expression construct. After adding the missing residues to 

each monomer, the dimer was reconstructed by merging the two PDB files and the 

resultant structure was minimized using the Relax application.190 The Relax 

application was run by setting the jump_move, bb_move, and chi_move flags to 

False and using the relax:fast flag. The starting structure was selected as the 

lowest energy structure of 10 outputs. The same protocol was followed to produce 

the RecA starting structures from PDB 3CMW, omitting the remodel application 

step as all residues were present.191 For the Backrub-based method, a total 2,500 

structures were produced from each starting structure. This was done by running 

the Backrub application in Rosetta performing 10,000 trials at 0.6 kT to generate 

each output structure.192 The total energy was computed for each member of the 

ensemble following the single-site mutation to Acd and global repacking in 

PyRosetta.114 For RecA, all mutations were performed and assessed within a 

single monomeric unit (residues 967-1299) within the multimer. The total energy 

was averaged across all members of the single ensemble for RecA and across all 

members of both ensembles for LexA. LexA simulations based on the relax-based 

algorithm were performed in PyRosetta using the same initial structures as starting 



111 

 

points. The method consisted exclusively of the FastRelax mover constrained to 

the starting coordinates using the 'lbfgs_armiho_nonmonotone' min_type and a 

maximum of 200 iterations. A total of five output were produced for each mutation 

and the energy was averaged across all outputs for both starting structures for a 

given site.  All methods were run using the 'beta_nov15' score function weights. 

 

§ 4.3 Results and Discussion 

Observing that the position of Acd can substantially impact protein solubility, 

we next asked which of the properties that ostensibly affect Uaa tolerability might 

correlate with solubility (Fig. 4.1). We fitted the soluble fraction as a response 

variable to each property in individual linear regression models. For almost all of 

the properties we evaluated, the explained variability (adj. R2) was about 5% or 

less, indicating that if any property-specific effect exists, it is insubstantial and likely 

below our ability to detect with a sample size of 32. We note that particular 

properties—such as accessibility, conservation, and hydrophobicity—did not 

explain any substantial variation in our data, despite past suggestions that 

choosing accessible, less-conserved, and chemically-similar residues may yield 

more soluble Uaa-containing protein ( 

Figure 4.1c). 
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Figure 4.1: Scanning a variety of positions in LexA for Acd tolerability. (a) Positions 
chosen for Uaa incorporation in the LexA dimer. Chosen positions are depicted in 
yellow, α-helices in blue, and β-sheets in green. (b) Principal component analysis 
(PCA) of LexA positions determined by multiple structural, evolutionary, and 
physicochemical properties (see methods). All residues in LexA were scored and 
plotted against the first two principal components, with positions chosen for Uaa 
incorporation highlighted in yellow. Arrow segments represent a few notable 
variables among those used in PCA loaded onto the plotted data. (c) Chemical 
structure of Acd with indicated excitation and emission peaks. (d) Acd-labeled 
LexA samples visualized in 15% SDS-PAGE gels by Coomassie staining (left) or 
UV excitation (right). Lanes 1–3 show purified LexA standards. Lanes 4–11 show 
paired total and soluble fractions from four individual mutants as representative 
examples.   
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Figure 4.2: Features associated with soluble Acd-labeled LexA proteins. (Previous 
Page) (a) Smoothed density plots of log10-transformed amounts of total protein or 
soluble protein. (b) Average log10-transformed soluble protein amounts overlaid on 
average log10-transformed total protein amounts for each mutant. Error bars 
indicate the standard deviation from three individual replicates each derived from 
separate clones. (c) Plots of the average fraction of soluble protein as a function 
of three selected parameters: conservation, hydrophobicity, and accessibility. Fits 
for the entire LexA dataset to individual linear regression models yield best fit lines 
(solid black) and 95% confidence intervals (shaded gray). Fits of data from each 
separate LexA domain yield best fit lines for the NTD (dashed green) or CTD 
(dashed blue). (d) Boxplots comparing the average fraction of soluble protein 
against either domain or secondary structure, with individual averages overlaid. 
Differences between groups were evaluated using Tukey’s HSD test for multiple 
pairwise comparisons (** = p-value < 0.01; *** = p-value < 0.001). (e) Plot of the 
average fraction of soluble protein as a function of position in the LexA sequence, 
with error bars indicating the standard deviation from three replicates. Above, the 
secondary and tertiary structure of LexA is indicated; α-helices are depicted as 
green ovals and β-sheets as blue rectangles. (f) Separate boxplots for each LexA 
domain indicating the relationship between average fraction of soluble protein and 
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evolutionary tolerance at each position to tryptophan, as one example of an 
aromatic residue. 

 

Conspicuously, several highly-correlated properties each explained around 

50% of the variability in our data, including individual residue position (adj. R2 = 

0.53), secondary structure (adj. R2 = 0.45), and overall protein domain (adj. R2 = 

0.53) ( 

Figure 4.2d and  

Figure 4.2e). Specifically, we obtained more soluble protein when Acd was 

incorporated within the first 74 residues of LexA, which includes all three of the α-

helices that comprise the N-terminal domain. By contrast, Acd incorporation within 

the β-sheets of the C-terminal domain resulted in much lower proportions of 

soluble protein. The nearly uniform secondary structure composition of each 

domain limited our ability to interpret whether Acd tolerability is due to local 

secondary structure effects or global protein domain stabilities. 

Studying Acd incorporation in a distinct protein scaffold with mixed α/β 

character could help dissect the similar effects we observed from the highly-

correlated domain and secondary structure factors with LexA. Thus, we extended 

our survey to RecA, a bacterial ATPase that binds LexA to suppress its repressor 

function.26 We selected positions in E. coli RecA that satisfied one or more criteria: 

high accessibility, low conservation, few inter-residue contacts, or prior functional 

tolerance to mutation (Figure 4.3a).27 After expressing these mutants with Acd and 

measuring protein amounts, we again observed greater variability in 
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logarithmically-transformed soluble protein levels (mean = 3.42, SD = 0.40) 

compared to total protein levels (mean = 3.72, SD = 0.17) (Figure 4.3b and 4.3c). 

Similar to LexA, most properties examined did not explain much variation in the 

fractions of soluble protein (Figure 4.3d), with the exception that solubility modestly 

trended with domain type and tolerance to aromatics. However, unlike in LexA, no 

clear relationship existed between protein solubility and type of secondary 

structure (Figure 4.3e), a result consistent with a more limited prior survey of GFP.8 

This survey in RecA bolsters a model in which the intrinsic Uaa tolerability of a 

protein domain remains the key obstacle for the production of soluble protein. 
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Figure 4.3: Features associated with soluble Acd-labeled RecA proteins. (a) 
Positions chosen for Acd incorporation in RecA. Chosen positions are depicted in 
yellow, α-helices in blue, and β-sheets in green. (b) Smoothed density plots of 
log10-transformed amounts of total protein or soluble protein. (c) Average log10-
transformed soluble protein amounts overlaid on average log10-transformed total 
protein amounts for each mutant. Error bars indicate the standard deviation from 
three individual replicates each derived from separate clones. (d) Plots of the 
average fraction of soluble protein as a function of three selected parameters: 
conservation, hydrophobicity, and accessibility. Fits to individual linear regression 
models yield best fit lines (solid black) and 95% confidence intervals (shaded gray). 
(e) Boxplots comparing the average fraction of soluble protein against domain or 
secondary structure, with individual averages overlaid. 

 

Searching for easily-determined properties that correlate with Acd 

tolerability may have eliminated from consideration more complicated properties 

with higher predictive ability. Additionally, linear regression modeling may have 

over-simplified the inter-dependence of certain properties and protein solubility. 
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Previously, Rosetta modeling has predicted the ΔΔG associated with a particular 

mutation and identified tolerated mutations within a protein.192-194 Speculating that 

Rosetta modeling could recapitulate our experimental results, we used the Rosetta 

Modeling Suite to simulate the resulting energy associated with Acd incorporation 

in LexA or RecA. However, we observed no significant correlations between 

simulated energies and soluble fractions of LexA or RecA (Figure 4.4 and Figure 

4.5). Incidentally, we noted that nearly all high-energy positions in LexA 

experimentally yielded insoluble protein and may therefore have been useful in 

filtering out those positions; however, we did not observe a similar energy 

threshold effect for RecA. Accordingly, further refinement towards predicting Uaa 

incorporation using Rosetta is required in order to recapitulate experimental data 

and exclude higher-energy and lower-solubility mutants. 
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Figure 4.4: Predicting protein solubility through simulation of Acd incorporation in 
LexA. Scatterplots of the total energies in Rosetta Energy Units (REU) from 
simulating Acd incorporation in LexA as a function of the soluble fraction of total 
protein. Rosetta energies were obtained by performing each single mutation on a 
relaxed structure of LexA derived from one of two previously published structures 
(PDB: 1JHE or 1JHF), using either a Relax-based (left) or Backrub-based (right) 
method. The total energy of each LexA mutant was computed following mutation 
of the residue of interest to Acd either by minimizing of the energy using a relax-
based protocol or following repacking of all residues for each member of an 
ensemble of LexA structures. Each point represents the average of the two 
different simulations, with vertical error bars representing standard deviations. The 
solid turquoise line represents the average energy of energy-minimized LexA 
without any Acd mutation. 
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Figure 4.5: Predicting protein solubility through simulation of Acd incorporation in 
RecA. Scatterplot of the total energies in Rosetta Energy Units (REU) from 
simulating Acd incorporation in RecA as a function of the soluble fraction of total 
protein. Rosetta energies were obtained by performing each single mutation on 
each member of a 2,500 structure RecA ensemble generated using the Backrub 
application. Separate ensembles were generated from the previously published 
structure (PDB: 3CMW). The total energy of each RecA mutant was computed 
after mutating the residue of interest to Acd and repacking all residues in RecA. 
Each point represents the average energy computed across all members of the 
different simulations, with vertical error bars representing standard deviations. The 
solid turquoise line represents the average energy of energy-minimized RecA 
without any Acd mutation. 

 

§ 4.3 Initial Conclusions 

The expression of soluble protein is a major bottleneck for the study of 

protein function. Here, we leveraged the fluorescence of Acd to study how protein 

solubility is impacted by Uaa mutagenesis. In two bacterial proteins, we 

demonstrated the dramatic impact that Uaa position has on protein solubility. 

Surprisingly, a number of amino acid properties that purportedly contribute to Uaa 
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tolerability—including low evolutionary conservation, similar hydrophobic 

character, or high surface accessibility—were unreliable predictors of protein 

solubility. Instead, these inconsistent relationships suggest that consideration of 

specific amino acid features for successful Uaa mutagenesis is less critical than 

previously thought. Rather, we speculate that the Uaa tolerability of a protein 

domain may matter more. Our results also emphasize a continued need to explore, 

through theory and experiment, the steric and chemical burdens different Uaas 

pose to the expression of soluble protein. In the absence of reliable predictors or 

refined simulation algorithms for Uaa tolerability, a chemical biologist pursuing Uaa 

incorporation in a new protein, as of now, should broaden rather than narrow the 

types of residues screened for Uaa tolerability when possible.  

 

§ 4.4 Further Algorithmic Development 

Following the previously described efforts to identify a metric or algorithm 

which can adequately predict the soluble fraction of Uaa containing protein, further 

attempts were made to develop an effective Rosetta-based method. The previous 

simulations leveraged different sampling approaches but utilized a single common 

score function. Since all Rosetta score functions are a composite of several 

different energy terms which describe various physical characteristics of the 

system, I sought to identify which aspects of scoring along with which isolable 

energy terms best captured the variance in the data. This was accomplished by 

re-performing the previously described Backrub-based and Relax-based 

simulations on the LexA 1JHE PDB structure and computing the score contribution 
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from each energy term across the entire protein, each monomer of the LexA dimer, 

each protein domain and on a per-residue basis. Table 4.1 details the 

nomenclature employed in Figures 4.6 – 4.7 comparing the results of these 

simulations to the previously acquired total expression and soluble fraction 

experimental data. 

Although the previous methods using the fully compiled “beta_nov15” 

Rosetta energy function did not have a sufficient correlation with the protein soluble 

fraction data, the investigation of individual energy terms (Fig 4.6a-d) revealed that 

several terms may serve as useful predictors in a threshold-based prediction 

scheme. Decomposition of the “beta_nov15” score function in its constituent 

energy terms revealed that the top 20 highly correlated terms, shown in Figs. 4.ba-

d, all display a stepwise relationship with the fraction soluble data. Curiously, the 

bulk of these correlates emerge on domain-level scoring, which supports the 

findings of the previous work which demonstrated that domain identification was a 

strong predictor in LexA of position tolerance to amino acid substitution. 

Furthermore, it is important to note that almost all sampling schemes are 

represented in the top 20 correlates indicating that even though different sampling 

approaches lead to different energy terms which are significant, all sampling 

schemes are capable of producing some form of prediction.  

These findings are further reinforced when investigating the potential 

correlations with the total expression values for Acd mutant LexA variants. 

Compared with the soluble fraction data, the total expression data has a 

significantly reduced variance and, unsurprisingly, the single-term correlates from 
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Rosetta appear to perform less effectively for the total expression dataset. 

However, the individual energy terms no longer show stepwise correlations (Fig 

4.7a-d) demonstrating that linear regression of combined terms may deliver a 

highly effective metric. Lastly, several of the top 20 correlates originate from the 

energy values associated with the native residue in LexA which is selected for 

mutation (Fig 4.7a-b). If a significant correlation can be gleaned from simply 

scoring the input structure, a very rapid algorithm that does not require in silico 

mutation and sampling may be capable of predicting components of the LexA 

dataset.  

Ultimately these findings encourage further investigation into the feasibility 

of employing sampling and scoring methods endogenous to the Rosetta Modeling 

Suite to predict which sites are more favorable for mutations to Uaas. Overall, 

through the use of PyRosetta, development of new score functions through linear 

regressions of exiting energy terms and the ability to make slight modifications to 

current sampling schemes should lead to an effective predictive algorithm. 
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Table 4.1:  List of descriptors for Rosetta simulations 

Sampling Schemes 

Backrub_Pre Mutation of residue to Acd is performed 
prior to running 100 independent backrub 
trajectories 

  
Backrub_Post Mutation of residue to Acd is performed 

prior after running 100 independent 
backrub trajectories on the unmutated 
proteins 

  
Relax_Cst Following mutation of the residue to Acd, 

the whole protein is relaxed in the 
presence of constraints based on the 
starting structure 

  
Relax_No_Cst Following mutation of the residue to Acd, 

the whole protein is relaxed in the 
absence of constraints 

 

Scoring Granularity 

Full_Length All residues in the protein are used to 
compute the score 

  
Monomer_One/Monomer_Two Residues from a single chain (A/B) are 

used to compute the score 
  
Domain_One/Domain_Two All residues in the N-terminal or C-

terminal domain from a single chain (A/B), 
whichever contains the amino acid of 
interest, is used to compute the score 

  
Residue The single residue site post mutation is 

used to compute the score 
  
WT The single residue site pre mutation is 

used to compute the score 
  

Energy Terms 

Total_score “beta_nov15” containing weighted 
contributions from all energy terms 
assayed 

  
* All energy terms are described in detail in Alford et. al.194 
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Figure 4.6a: Comparison of Rosetta energy terms to the soluble fraction of Acd 
mutant LexA protein expression. Depicted are members of the top-20 correlates 
of single energy terms from Rosetta simulations to the fraction of soluble protein 
from expression of single-point Acd mutants of LexA. Figure titles (experimental 
data, sampling scheme, scoring granularity, energy term) shown above each plot 
follow the nomenclature detailed in Table 4.1.   
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Figure 4.6b: Comparison of Rosetta energy terms to the soluble fraction of Acd 

mutant LexA protein expression. Depicted are members of the top-20 correlates 

of single energy terms from Rosetta simulations to the fraction of soluble protein 

from expression of single-point Acd mutants of LexA. Figure titles (experimental 

data, sampling scheme, scoring granularity, energy term) shown above each plot 

follow the nomenclature detailed in Table 4.1. 
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Figure 4.6c: Comparison of Rosetta energy terms to the soluble fraction of Acd 

mutant LexA protein expression. Depicted are members of the top-20 correlates 

of single energy terms from Rosetta simulations to the fraction of soluble protein 

from expression of single-point Acd mutants of LexA. Figure titles (experimental 

data, sampling scheme, scoring granularity, energy term) shown above each plot 

follow the nomenclature detailed in Table 4.1. 
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Figure 4.6d: Comparison of Rosetta energy terms to the soluble fraction of Acd 
mutant LexA protein expression. Depicted are members of the top-20 correlates 
of single energy terms from Rosetta simulations to the fraction of soluble protein 
from expression of single-point Acd mutants of LexA. Figure titles (experimental 
data, sampling scheme, scoring granularity, energy term) shown above each plot 
follow the nomenclature detailed in Table 4.1. 
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Figure 4.7a: Comparison of Rosetta energy terms to the total expression of Acd 
mutant LexA proteins. Depicted are members of the top-20 correlates of single 
energy terms from Rosetta simulations to the total protein yield from expression of 
single-point Acd mutants of LexA. Figure titles (experimental data, sampling 
scheme, scoring granularity, energy term) shown above each plot follow the 
nomenclature detailed in Table 4.1. 
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Figure 4.7b: Comparison of Rosetta energy terms to the total expression of Acd 
mutant LexA proteins. Depicted are members of the top-20 correlates of single 
energy terms from Rosetta simulations to the total protein yield from expression of 
single-point Acd mutants of LexA. Figure titles (experimental data, sampling 
scheme, scoring granularity, energy term) shown above each plot follow the 
nomenclature detailed in Table 4.1. 
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Figure 4.7c: Comparison of Rosetta energy terms to the total expression of Acd 
mutant LexA proteins. Depicted are members of the top-20 correlates of single 
energy terms from Rosetta simulations to the total protein yield from expression of 
single-point Acd mutants of LexA. Figure titles (experimental data, sampling 
scheme, scoring granularity, energy term) shown above each plot follow the 
nomenclature detailed in Table 4.1. 
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Figure 4.7d: Comparison of Rosetta energy terms to the total expression of Acd 
mutant LexA proteins. Depicted are members of the top-20 correlates of single 
energy terms from Rosetta simulations to the total protein yield from expression of 
single-point Acd mutants of LexA. Figure titles (experimental data, sampling 
scheme, scoring granularity, energy term) shown above each plot follow the 
nomenclature detailed in Table 4.1. 
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CHAPTER 5: USING A FRET LIBRARY WITH MULTIPLE PROBE PAIRS TO 

DRIVE MONTE CARLO SIMULATIONS OF ALPHA-SYNUCLEIN. 

The content of this chapter was originally published in Biophysical Journal. It is 

adapted here with permission from the publisher: 

This article was published in Biophysical Journal, 114, John J. Ferrie, Conor M. 

Haney, Jimin Yoon, Buyan Pan, Yi-Chih Lin, Zahra Fakhraai, Elizabeth Rhoades, 

Abhinav Nath, and E. James Petersson, Using a FRET Library with Multiple Probe 

Pairs to Drive Monte Carlo Simulations of α-Synulcein, 53-64, Copyright 

Biophysical Society 2017. 
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§ 5.1 Introduction  

Intrinsically disordered proteins (IDPs) and proteins containing disordered 

regions are exceptionally responsive to changes in solution conditions, making 

them prone to misfolding and aggregation. One such IDP is α-synuclein (αS), a 

140-amino acid neuronal protein the aggregation of which is implicated in 

Parkinson's Disease pathogenesis 19-20. αS is primarily expressed at presynaptic 

termini and is suspected to play roles in regulating neurotransmitter release and 

maintaining synaptic function and plasticity 195. Likely the most recognized aspect 

of αS is its ability to misfold and self-associate, resulting in the production of toxic 

amyloid fibrils. These fibrils are the primary components of Lewy Bodies, which 

have been long been recognized as a post mortem hallmark of Parkinson's 

Disease 19. The protein is comprised of three domains: the N-terminal domain 

(residues 1-60), comprised of four imperfect 11-amino acid repeats featuring a 

KTKEGV motif featured in amphipathic helices; the non-amyloid β component, or 

NAC domain (residues 61-95), which contains two additional KTKEGV repeats and 

forms the β-sheet rich core of amyloid aggregates; and the acidic C-terminal 

domain, which is highly charged and considered largely disordered. The first two 

domains adopt an α-helical structure in the presence of lipid membranes or 

detergent micelles, while in solution the αS monomer is largely disordered 20, 23-25, 

196-197. The structural plasticity of αS, and most IDPs, is attributed to a lack of 

hydrophobic residues and an excess of charged residues, producing systems that 

are self-repulsive and unable to form a collapsed hydrophobic core 197. Despite 

these characteristics, α-synuclein has been shown to be partially collapsed and to 
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deviate from a true random coil structure 104, 108, 126, 198-200. Moreover, the dynamic 

structure of αS has high environmental sensitivity that has largely hindered 

development of a cohesive characterization of the structural ensemble of 

monomeric αS in solution64, 68, 104, 108, 126, 197, 199-202. Solution conditions including 

temperature, salt concentration, and pH all have substantial effects on the partial 

folding and collapse of αS. Furthermore, cosolvents and osmolytes have been 

shown to drive conformational readjustment of αS 197, 203-206. In particular, seminal 

work by Uversky, Fink and coworkers demonstrated the ability of trimethylamine-

N-oxide (TMAO) to promote compaction and partial helical folding of αS 

monomers, and in high concentrations drive the formation of helical oligomers 133. 

Intriguingly, these helical conformations are morphologically distinct from the 

helical structure formed on membranes, and the presence of osmolytes has been 

show to affect fibril formation 134. 

TMAO is a naturally occurring amphiphilic osmolyte that is found in several 

aquatic organisms, where it counteracts the destabilizing effects of high 

concentrations of urea required for regulation of osmotic pressure 131-132, 207. 

Experimental and theoretical efforts have afforded an effective model by which 

preferential exclusion of TMAO from the protein backbone and sequestration of 

water by TMAO promotes the formation of intramolecular hydrogen bonds and a 

reduction in exposed surface area for the protein 30, 208-213. Solution studies of 

TMAO have revealed that the large 4.67 D dipole moment prompts significant 

water ordering around each molecule 214. Comprised of a total of ~13 water 

molecules, direct coordination of water to the oxygen along with formation of a 
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clathrate like structure about the methyl groups produces a first solvation shell with 

a 6 Å radius and elicits an excluded volume effect that entropically drives protein 

compaction 208, 214-216. In addition to the effects of excluded volume and water 

arrangement, TMAO has been proposed to act as a nanocrowder and also serves 

as a poor solvent of the peptide backbone 217-218. Single-molecule Förster 

resonance energy transfer (FRET) has been previously used by Deniz and 

coworkers to investigate the compact structure of αS in TMAO 134-135. These 

studies were performed with a limited set of measurements and demonstrated that 

successive compaction of αS occurs with increasing concentrations of TMAO while 

maintaining a single, broadly distributed conformational state. Moreover, the work 

by Deniz and coworkers showed that despite the emergence of a partially helical 

secondary structure, the folding pathway and resulting structure were distinct from 

helices formed on membranes. Although a putative structural ensemble was not 

proposed in this work, our laboratory and others have demonstrated the ability to 

apply distances and distributions obtained from single molecule FRET data as 

constraints for Monte Carlo (MC) simulations 68. In the context of the present 

problem of TMAO compaction of αS, we wish to further develop a method for 

employing FRET constraints to generate experimentally-constrained models of 

intrinsically disordered protein ensembles. 

Although the use of FRET data has not been extensively explored as a 

basis for generating structural ensembles of IDPs, the application of other long-

range measurements has demonstrated success. Work by Forman-Kay, 

Zweckstetter, Blackledge and others has shown the efficacy of utilizing data from 
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paramagnetic relaxation enhancement (PRE) NMR experiments as restraints for 

simulating ensembles of IDPs 61, 107-108, 199-200. Dobson, Vendruscolo and Eliezer 

have also applied NMR-based methods to study the disordered ensemble of αS 

104, 126. Moreover, efforts by Langen have demonstrated the similar usefulness of 

electron paramagnetic resonance (EPR) 196, 219. To date, most studies have 

focused on the application of PRE data, which lacks description of the underlying 

distribution of states 61. Single molecule FRET has demonstrated an exceptional 

ability to visualize subpopulations of disordered ensembles 60. Furthermore, Best 

and Schuler have addressed some of the major concerns surrounding distance 

extraction from FRET data 64, 202. Studies of chemically denatured ubiquitin have 

shown that FRET and SAXS data afford comparable molecular sizes and that the 

inclusion of large hydrophobic probe molecules does not significantly impact the 

structural ensemble 202. Moreover, recent work by Schuler has verified that 

distributions extracted from single molecule FRET data display a high degree of 

agreement with distributions compiled from structural ensembles generated from 

molecular dynamics simulations restrained with NMR and SAXS data 64. 

In this report, we focus on elucidating the structural changes associated 

with TMAO induced compaction of αS by combining MC simulations in PyRosetta 

with experimental constraints from ensemble FRET measurements. Although 

single molecule FRET measurements provide additional information regarding the 

number of distributions as well as the distribution breadth associated with a 

particular average value, the photophysical requisites for these measurements 

(i.e., bright, visible wavelength fluorophore pairs, which tend to have 30-70 Å 
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working ranges) generally preclude accurate measurement of distances below ~30 

Å. This limitation is important, as we wish to generate atomically-detailed 

computational models of αS and therefore need short distance constraints for our 

simulations.  Based on the aforementioned results from Deniz and coworkers, we 

assume that the observed ensemble FRET efficiencies are resultant from single 

distributions, well described by polymer physics models, allowing us to rely on 

distances obtained from single distribution analysis 60, 134-135. Furthermore, we 

propose that the most effective set of constraints would encompass not only long 

distances, such as those traditionally afforded from single molecule FRET, but also 

short distances, closer to those obtained via PRE measurements, which should 

more effectively limit the conformational variability within the ensemble. 

Previously, we have studied αS compaction using the p-

cyanophenylalanine (Cnf) and thioamide probe pair, which has a short Förster 

radius (R0, the distance of half-maximal energy transfer) of 18 Å 136, 220. We showed 

that increases in FRET efficiency (EFRET) indicating compaction are observable as 

αS is incubated with increasing concentrations of TMAO. However, these Cnf-

thioamide labeled proteins required semi-synthesis through native chemical 

ligation, a method with insufficient throughput for FRET library construction. 

Herein, we employ Cnf-tryptophan (Trp) as a genetically incorporable, short range 

probe pair allowing for more facile production of a library of labeled constructs for 

measuring distinct intramolecular distances in the presence of TMAO 221-222. 

Additionally, we have incorporated a second, longer range probe pair, fluorescein-

5-maleimide (Fam) conjugated to cysteine (Cys) and tetramethylrhodamine azide 
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(Raz) conjugated to an O-propargyl tyrosine (Ppy) unnatural amino acid 78. The 

Fam-Raz pair has a working distance around 50 Å and provides accuracy in 

ranges equivalent to those accessible through single molecule FRET. 

By applying measurements from these two complementary FRET libraries 

as weighted constraints for atomically-detailed MC simulations in PyRosetta, we 

construct model conformational ensembles that agree well with experimental data 

such as fluorescence correlation spectroscopy (FCS), reporting on the overall 

average size of the protein.  This strategy of using FRET data to direct all atom 

models in MC simulations provides a means to generate structure-guided 

hypotheses for allosteric transitions in αS in order to understand the effects of 

changes in environment or interactions with ligands. 

 

§ 5.2 Protein Overexpression and Purification 

Protein expression was performed in E. Coli. where unnatural amino acids 

were incorporated via amber stop codon suppression and traceless purification 

was facilitated via attachment of a C-terminal intein containing a C-terminal His-

tag (Fig. 5.1). For the Cnf-Trp library, all native tyrosine residues were mutated to 

phenylalanine to assure that all energy transfer occurred exclusively between Cnf 

and Trp. 
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Figure 5.1: Scheme for labeled protein production. Top: Direct incorporation of p-
cyanophenylalanine (Cnf) and tryptophan (Trp) via unnatural amino acid 
mutagenesis and conventional mutagenesis, respectively. Bottom: Incorporation 
of Cysteine (Cys) and O-propargyl tyrosine (Ppy) with subsequent labeling by 
fluorescein-5-maleimide (Fam) and tetramethylrhodamine azide (Raz), 
respectively. 

 

General Expression Protocol for αS-intein-H6 Fusion Proteins:  

A pTXB1 plasmid encoding for the αS-intein-H6 fusion protein was 

transformed into E. coli BL21-Gold (DE3) cells. The DNA GyrA intein from Mxe 

fusion construct has been previously reported 78. Transformed cells were selected 

based on ampicillin (Amp) (100 mg/L) resistance, encoded on the pTXB1 plasmid 

containing the protein of interest. Single colonies were selected and used to 

inoculate 5 mL primary cultures of LB media, and were grown at 37 °C, shaking at 

250 rpm in the presence of 100 μg/mL Amp. A secondary culture of LB media 

containing 100 mg/L Amp was inoculated with a single saturated primary culture, 

and was grown at 37 °C while shaking at 250 rpm. After reaching an OD600 of 0.7-

1.0, 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to the 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tryptophan
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mutagenesis
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cysteine
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tyrosine
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culture to induce expression. Following induction the culture continued to grow 

overnight at 18 °C overnight.  

Expression of αS-intein-H6 Proteins Containing Unnatural Amino Acids:  

The procedure for the expression of mutants containing Cnf or Ppy was 

identical to the general protocol above with the following noted exceptions. The 

pTXB1 plasmid coding for the protein of interest contained an amber stop codon 

(TAG) at the intended site for unnatural amino acid introduction was co-

transformed with a plasmid encoding a pDULE2-pFX plasmid containing an 

orthogonal aminoacyl synthetase/tRNA pair 78. pDULE2-pFX encodes 

streptomycin (Strep) resistance, and cells containing both plasmids were selected 

for based on Strep (100mg/L) resistance in addition to Amp resistance. Primary 

cultures were also grown in the presence of both Strep (100 μg/mL) and Amp (100 

μg/mL). In place of LB, secondary cultures were grown in M9 minimal media 

containing 6 g Na2HPO4, 3 g KH2PO4, 0.5 g NaCl and 1 mL of 2 M MgSO4, 1 mL 

of 1mg/mL FeCl2 (in 1.0 M HCl), 1 mL of 15 mg/mL, 2 mL of 10% Yeast Extract, 

12.5 mL 40% glucose (w/v) in 1L of autoclaved water, along with 100 mg/L Amp 

and 100 mg/L Strep. Lastly, once the secondary culture reached an OD600 of 0.7-

1.0, 0.8 mM of the unnatural amino acid was added to culture prior to induction 

with IPTG. Expression was performed overnight at 18 °C. 

General Purification Protocol for Cnf-Trp containing αS-intein-H6 Fusion Proteins:  

Cells were harvested via centrifugation at 5000 rpm for 20 minutes at 4 °C 

with a GS3 rotor on a Sorvall RC-5 centrifuge. The supernatant was decanted 

away from the cell pellet, and the pellet was resuspended in 20 mL resuspension 
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buffer containing 40 mM Tris, 5 mM EDTA, pH 8.3 and a protease inhibitor tablet 

(Roche cOmplete mini tabs, EDTA free). Cells were lysed by sonication at an 

amplitude of 30 for 5 minutes with 1 second on 1 second off. Lysate was 

subsequently centrifuged at 14000 rpm for 20 minutes using an SS-34 rotor on a 

Sorvall RC-5 centrifuge. His tagged protein was isolated from the supernatant via 

nickel affinity. Ni-NTA resin (3 mL CV) was incubated with the supernatant on ice 

for 1 hour. Following incubation the mixture was loaded into a fritted column, and 

the lysate was drained. The resin was initially washed with 15 mL of 50 mM 

HEPES, pH 7.5 followed by 20 mL of 50 mM HEPES, 5 mM imidazole, pH 7.5, 

prior to elution of the protein of interest with 12 mL of 50 mM HEPES, 300 mM 

imidazole, pH 7.5. Cleavage of the intein was performed via addition of β-

mecaptoethanol (βME) to a final concentration of 200 mM and incubation at room 

temperature for 18 hours on a rotisserie. Following cleavage of the intein, removal 

of imidazole and βME was facilitated by dialysis into 20 mM tris base pH 8.0 at 4 

°C overnight. The undesired intein was removed by a second Ni column (3 mL 

CV). The flow though containing the protein of interest was collected after 1 hour 

incubation with the Ni resin on ice. 

 

General Labeling Protocol for Fam-Raz containing αS-intein-H6 Fusion Proteins:  

S variants containing Cys and/or Ppy were expressed as described above 

and purified by Ni-NTA affinity. Following the second purification subsequent to 

intein cleavage, the desired protein was dialyzed into 20 mM Tris, pH 8.0 overnight 

at 4 °C. The protein was then labeled in this semi-crude state in one (donor-only 
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or acceptor-only) or two (doubly-labeled) labeling steps as described below. 

Proteins lacking an unnatural amino acid (S-Cys) were quantified by UV-Vis 

spectroscopy using ε280 = 5120 M-1 cm-1 with the exception of S-Cys136, which 

was quantified using ε280 = 3840 M-1 cm-1 223. Protein variants containing Ppy were 

quantified using the BCA assay with bovine serum albumin (BSA) standards 

generated by two-fold serial dilution in water from 2 mg/mL to 0.125 mg/mL. 

Labeling reactions of proteins containing Cys were carried out by addition of 

BondBreaker® TCEP solution to a final concentration of 1 mM and incubation at 

room temperature for 10-15 minutes. Following this time, fluorescein-5-maleimide 

(Fam) was added from a 25 mM stock in DMSO to a final concentration equal to 

five-fold excess relative to protein (typical dye concentration was ~500-800 µM). 

The labeling reaction was shielded from light by wrapping in aluminum foil and 

incubated at 37 °C. The labeling reaction was monitored by MALDI-TOF MS 

following 5-fold dilution of the reaction into water. Following complete 

disappearance of unlabeled protein as determined by MALDI, the labeled product 

was dialyzed overnight at 4 °C in 20 mM Tris pH 8.0. Proteins containing Ppy were 

labeled via copper(I) catalyzed azide-alkyne cycloaddition as described below; 

doubly-labeled proteins were first labeled with Fam as described above and 

subsequently by Raz. Azide-alkyne labeling reactions were performed by 

preparation of copper(I)-tris(3-hydroxypropyltriazolylmethyl)amine (THPTA) 

catalyst mixture by using 80 mM CuSO4 in water (1.25 µL/mL protein solution) to 

which was added 50 mM THPTA in water (30 µL/mL protein solution) and then 100 

mM sodium ascorbate in water (30 µL/mL protein solution). This solution was 
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incubated at room temperature for 10-15 minutes prior to addition to the protein 

solution. Protein was labeled by addition of five equivalents of Raz from a 50 mM 

stock in DMSO (typical dye concentrations were ~300-500 µM), followed by 

addition of the Cu(I) catalyst mixture. Labeling reactions were then shielded from 

light and incubated at 37 °C and reaction progress monitored by MALDI-TOF MS 

following 5-fold dilution of the reaction in water. Upon completion of the reaction, 

the labeled product was dialyzed into 20 mM Tris pH 8.0 overnight at 4 °C to 

remove excess dye.  

 

Purification Protocol for All αS Proteins:  

All proteins were then purified by anion-exchange chromatography on an 

ÄKTA FPLC system using HiTrap Q HP columns and elution between 20 mM Tris 

pH 8.0 (buffer A) and 20 mM Tris, 1 M NaCl pH 8.0 (buffer B). Fractions containing 

the desired protein were identified by MALDI-TOF MS and were pooled. All 

proteins from the Fam-Raz library as well as poorly expressing member of the Cnf-

Trp library were concentrated using Amicon Ultra 3 kDa filters to a total volume of 

≤ 1 mL. Further purification was then performed using a Varian HPLC system and 

a Vydac C4 TP reverse-phase semi-preparative column with a flow rate of 4 

mL/min and gradient between 0.1% TFA in water (solvent A) and 0.1% TFA in 

acetonitrile (solvent B). Fractions containing the desired product were identified by 

MALDI-TOF MS and judged to be of high purity were combined and diluted a 

minimum of 5-fold by addition of 20 mM Tris, 100 mM NaCl pH 7.5 and 

subsequently concentrated via Amicon µLtra 3 kDa centrifugal filters to a total 
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volume of ≤ 5 mL, diluted 3-5 fold and re-concentrated; the final dilution and 

concentration was repeated twice. All proteins were then assessed for purity and 

integrity of the fluorescent label by MALDI-TOF analysis of whole protein and 

tryptic fragments. 
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Table 5.1: MALDI Masses from Cnf-Trp Library 
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Table 5.2: MALDI Masses from Fam-Raz Library 

 

 

§ 5.3 FRET Data Collection and Analysis 

TMAO Assay:  

All labeled αS variants were dialyzed into 20 mM tris, 100 mM NaCl, pH 7.5. 

Buffers containing TMAO were also prepared with 20 mM tris, 100 mM NaCl, and 

the pH was adjusted to 7.5 following the addition of TMAO. Concentrations for the 

Cnf-Trp library was determined using the Sigma-Aldrich FluoroProfile 

Quantification Kit, while concentrations for Fam-Raz constructs were determined 

via UV-Vis absorbance. Steady-state measurements for the Cnf-Trp library and 

time correlated single photon counting (TCSPC) measurements of the Fam-Raz 
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library were performed at 1 μM, while steady-state measurements for the Fam-Raz 

library were performed at 100 nm. Prior to each measurement, labeled protein was 

mixed with TMAO containing buffer and briefly vortexed. Measurements were 

taken in triplicate at final concentrations of 0, 2 and 4 M TMAO at 20 °C. Steady-

state measurements for the Cnf-Trp library were collected with an excitation of 240 

nm over an emission range of 275 - 410 nm with excitation and emission slits set 

to 5 nm and 1 nm step size collecting for 0.75 seconds per step, exciting primary 

the Cnf fluorophore. Spectra were collected for direct excitation of Trp with an 

excitation of 280 nm over an emission range of 310 - 410 nm with excitation and 

emission slits set to 5 nm and 1 nm step size collecting for 0.75 seconds per step. 

Measurements of the Fam-Raz library were collected with an excitation of 486 nm 

over an emission range of 495 - 700 nm with excitation and emission slits set to 5 

nm and 1 nm step size collecting for 0.25 seconds per step. Direct excitation of 

Raz was performed by exciting at 555 and measuring over an emission range of 

565 - 700 nm with a 1 nm step size and a collection time of 0.25 seconds per step.  

All TCSPC measurements of fluorescence lifetime decays were collected 

using a pulsed LED with a maximum emission at 486 nm. Fluorescence was 

collected at 515 nm with the slit widths adjusted for each measurement to keep the 

ACD value between 1 - 3 % of the SYNC value. The instrument response function 

(IRF) was collected for each slit width used for collection. For these experiments 

labeled αS was mixed with TMAO containing buffer to final protein concentrations 

of 2 μM and 0, 2 or 4 M TMAO. Additionally, formation of aggregates in buffer or 

TMAO were assayed by mixing single-labeled αS containing FAM and single-
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labeled αS containing Raz in equimolar concentrations with a final protein 

concentration of 2 μM in 0, 2 and 4 M TMAO.  

 

Fitting Steady-State Data:  

Following data collection, the single labeled spectra were used to quantify 

the degree of energy transfer.  First, the spectral overlap of the donor and acceptor 

were deconvoluted by fitting the double labeled spectrum with the linear sum of 

the individual donor and acceptor-labeled spectra. Fitting was performed by 

minimizing the total least squared difference using the Excel Solver feature to 

adjust the constants A and B: 

 

∑ (𝐼(𝜆)𝐷𝐴 − 𝐴𝐼(𝜆)𝐷 − 𝐵𝐼(𝜆)𝐴)2 → 𝑚𝑖𝑛 
𝜆  (Eq. 5.1) 

𝐼(𝜆)𝐷𝐴 = 𝐴𝐼(𝜆)𝐷 + 𝐵𝐼(𝜆)𝐴  (Eq. 5.2) 

 

Here, I(λ)DA, I(λ)D and I(λ)A are the wavelength dependent fluorescence 

intensities of the double-labeled, single labeled protein containing the donor, and 

single-labeled protein containing the acceptor fluorophore, respectively.  Solutions 

to Eq. 5.2 were obtained by utilizing the Excel Solver functionality. This procedure 

was performed at each TMAO concentration, thus accounting for any changes in 

quantum yield or spectral shifting.  The linear contributions of the single-labeled 

construct containing the donor only, A, and the contribution from the single-labeled 

construct containing the acceptor only, B, were both used to independently 
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calculate the EFRET through Eq. 5.3 and 5.4 and combined in a weighted average 

via Eq. 5.5: 

 

𝐸𝐷 = (1 − 𝐴)    (Eq. 5.3) 

𝐸𝐴 = (𝐵 − 1) 𝐴

𝐷
    (Eq. 5.4) 

𝐸𝐹𝑅𝐸𝑇 = (
1

𝑆𝐷
+

1

𝑆𝐴
)

−1

(
𝐸𝐷

𝑆𝐷
+

𝐸𝐴

𝑆𝐴
)  (Eq. 5.5) 

 

In Eqs. 5.3-5.5, ED and EA are EFRET values calculated from the donor and 

acceptor weights respectively. Additionally, Eq. 5.4 requires ratio of the extinction 

coefficient for the acceptor, εA, to the donor, εD, which are detailed in Tables 5.3a 

and 5.3b and have been determined from the absorption spectrum of each 

fluorophores scaled using published extinction coefficients (Cnf ε240=13,921 M-

1cm-1 221, Trp ε278=5700 M-1cm-1 221, FAM ε494=68,000 M-1cm-1 224 and Raz 

ε555=87,000 M-1cm-1 as indicated by the manufacturer) . The EFRET values from the 

donor and acceptor were then used to compute a weighted average EFRET value 

by using the inverse of the experimental error to weight each EFRET value, where 

SD and SA represent the donor and acceptor propagated error respectively.  

 

𝑆𝐴 = 𝐴 × √(𝑆𝐼𝐴
× 𝐵 𝐼𝐷⁄ )

2
+ (𝑆𝐼𝐷𝐿

𝐼𝐷⁄ )
2

+ (𝑆𝐼𝐷
× (𝐼𝐷𝐿 − 𝐵 × 𝐼𝐴) 𝐼𝐷

2⁄ )
2
 (Eq. 5.6) 

𝑆𝐵 = 𝐵 × √(𝑆𝐼𝐷
× 𝑆 𝐼𝐴⁄ )

2
+ (𝑆𝐼𝐷𝐿

𝐼𝐴⁄ )
2

+ (𝑆𝐼𝐴
× (𝐼𝐷𝐿 − 𝐴 × 𝐼𝐷) 𝐼𝐴

2⁄ )
2
 (Eq. 5.7) 

𝑆𝐸𝐹𝑅𝐸𝑇 = √2 (
1

𝑆𝐴
+

1

𝑆𝐵
)⁄     (Eq. 5.8) 
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Lastly, SEFRET represents the propagated error of the calculated weighted 

average EFRET value. 

Accurate calculation of R0 was required for calculation of interresidue 

distances from the determined EFRET. R0 was calculated using the equation: 

 

𝑅0
6 = (9 𝑙𝑛(10) 𝜅2𝛷𝐷𝐽) (128𝜋2𝑁𝐴𝑛4)⁄   (Eq. 5.9) 

 

Here, NA is Avogadro's number, 2 is the dipole orientation factor, 

approximated at 2/3, ΦD is the quantum yield of the donor, J is the spectral overlap 

integral between the emission of the donor and the absorbance of the acceptor 

and n is the refractive index of the medium. The overlap integral of the donor 

fluorescence and acceptor absorbance spectra for each fluorophore pair was 

determined empirically from the absorbance and emission spectra of the free 

fluorophores in buffer through application of the integral: 

 

𝐽 = ∫ 𝑓𝐷(𝜆)휀𝐴(𝜆)𝜆4𝑑𝜆
∞

0
   (Eq. 5.10) 

 

where fD(λ) is the normalized donor emission, εA(λ) is the molar extinction 

coefficient of the acceptor, at each wavelength (λ).  The normalized donor emission 

is given by: 

 

𝑓𝐷(𝜆) =
𝐹𝐷(𝜆)

∫ 𝐹𝐷(𝜆)𝑑𝜆
∞

0

    (Eq. 5.11) 
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where FD(λ) is the fluorescence emission spectrum of the donor dye. Following 

determination of R0 average distance values from the polymer scaled Förster 

equation (Eq. 5.12), using either Eq 5.13 or Eq 5.14 to determine Pn(r,x)), along 

with the associated error and constraint weights for each constraining function, 

were determined in Wolfram Mathematica. 

 

𝐸𝐹𝑅𝐸𝑇 = ∑ 𝑃𝑛(𝑟, 𝑥) (1 + (𝑟 𝑅0⁄ )6)⁄𝑟   (Eq. 5.12) 

𝑃1(𝑟, 𝑥) = 4𝜋𝑟 (
3

2𝜋𝑥2)
3/2

𝑒𝑥𝑝 (−
3

2

𝑟2

𝑥2)   (Eq. 5.13) 

𝑃2(𝑟, 𝑥) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

1

2

(𝑟−𝑥)2

𝜎2 )   (Eq. 5.14) 

 

Fluorescence measurements of labeled proteins have shown that the 

quantum yield is sensitive to the local environment, as well as TMAO 

concentration.  Therefore, changes in quantum yield must also be taken into 

account to effectively determine R0 via Eq. 5.9.  The quantum yield was calculated 

by fitting the emission spectrum of the free fluorophore in buffer, without TMAO, to 

the emission spectrum of each labeled analog at each concentration of TMAO, 

again using a linear least squared difference approach.   

 

∑ (𝐼𝐷 − 𝐶 × 𝐼𝐷𝑦𝑒)
2

𝜆     (Eq. 5.15) 

 

The sum in Eq. 5.15 was minimized using the Excel solver function by 

adjusting the constant, C.  Here, ID and IDye represent the sum of the fluorescence 
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intensity over all wavelengths of the labeled protein and the free fluorophore, 

respectively.  The donor quantum yield is then defined as: 

 

𝛷𝐷 = 𝐶 × 𝛷0     (Eq. 5.16) 

 

where Φ0 is the quantum yield of the free fluorophore.  By using this 

empirically adjusted quantum yield in the calculation of R0, we effectively reduce 

inaccuracies in the determined interchromophore distance arising from changes in 

quantum yield.  Lastly, the distance of interest, R, is determined from the above 

variables as described in the main text.   

Finally, error was propagated through the calculation of the interprobe 

distance. This was performed by determining the inverse function of Pn(r,x), here 

represented as F(EFRET), using Wolfram Mathematica as shown in Eq. 5.17.  

 

𝐹(𝐸𝐹𝑅𝐸𝑇) = 𝑃𝑛
−1(𝑟, 𝑥)   (Eq. 5.17) 

 

The error is then simply propagated following the determination of the partial 

derivative of Pn
-1(EFRET)  with respect to the EFRET variable as shown in Eq. 5.18. 

 

𝑆𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑆𝐸𝐹𝑅𝐸𝑇 ×
𝛿𝐹(𝐸𝐹𝑅𝐸𝑇)

𝛿𝐸𝐹𝑅𝐸𝑇
  (Eq. 5.18) 
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Table 5.3a: Steady-State FRET Fitting and Distance Determination 
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Table 5.3b: Steady-State FRET Fitting and Distance Determination 
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Fitting Lifetime Data:  

Lifetime data were fit using PowerFit10 distributed by PTI. Each decay was 

fit to a single or double exponential decay where the time regime was selected to 

minimize the chi-squared values and the residuals. EFRET was determined from 1-

(τDA/τD) where τDA and τD are the lifetimes for double-labeled and donor-only 

constructs respectively. For biexponential decays both the amplitude average and 

the intensity average lifetimes were used to calculate EFRET values for comparison 

to the EFRET values extracted from steady-state measurement.  
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Table 5.4a: TCSPC Data and Fitting 
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Table 5.4b: TCSPC Data and Fitting 
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Table 5.5: Calculated EFRET values from TCSPC 

 

 

§ 5.4 FCS and AFM Characterization 

FCS Measurements:  

FCS measurements were done at 20°C on a lab-built instrument based on 

an Olympus IX71 microscope. A continuous emission 488 nm DPSS 50 mW laser 

(Spectra-Physics, Santa Clara, CA) was adjusted to 4.5 W power just prior to 

entering the microscope. Fluorescence was collected through the objective and 
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separated from the excitation laser using a Z488rdc long pass dichroic and an 

HQ600/200m bandpass filter (Chroma, Bellows Falls, VT). Fluorescence was 

focused onto the aperture of a 50 m optical fiber coupled to an avalanche 

photodiode (Perkin Elmer, Waltham, MA). 10 autocorrelation curves of 10 seconds 

each were taken using a digital correlator (Flex03Q-12, correlator.com, 

Bridgewater, NJ). Fitting was done using MATLAB (The MathWorks, Natick, MA). 

Eight-well chambered coverglasses (Nunc, Rochester, NY) were cleaned 

by plasma treatment followed by incubation with polylysine-conjugated 

polyethylene glycol (PEG-PLL). PEG-PLL was prepared from a modified Pierce 

PEGylation protocol (Pierce, Rockford, IL). After overnight incubation with PEG-

PLL, chambers were rinsed with Millipore water and stored until use for 

measurements. Measurements were done by first replacing the water with 

solutions of ~400 M wild type -synuclein in each concentration of TMAO to 

prevent adsorption of labeled protein. 20 nM of Alexa Fluor 488 or labeled -

synuclein were added into a chamber, and each sample was mixed by pipetting 

immediately before measurement. The free dye measurements were used to 

obtain reference diffusion times.  

The observed fluorescence fluctuations were autocorrelated and the raw 

autocorrelation data was fit to the equation: 

 

𝐺(𝜏) =
1

𝑁
(

1

1+
𝜏

𝜏𝛼𝑆

× (
1

1+
𝑠2𝜏

𝜏𝛼𝑆

)

1 2⁄

)  (Eq. 5.19, S15) 
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N is the number of molecules in the focal volume, τ is the delay time, ταS is 

the time spent by the sample in the focal volume, and s represents the eccentricity 

of the confocal volume, and is fixed to 0.2. The diffusion time of the protein, ταS, is 

extracted from fit.  

 

AFM Measurements:  

Three droplets of αS solution were incubated on the mica substrate for 5 

minutes. To remove the excess solution, the samples were blotted by Kimwipe, 

gently rinsed with 2 mL Milli-Q water, and then dried using a weak nitrogen stream. 

During the sample preparation, the substrate was tilted 30-45° to prevent the 

solution from flowing backwards. The samples were imaged in tapping mode using 

a Keysight 5500 AFM instrument (Keysight Technologies) equipped with a closed-

loop scanner. Rotated silicon probes with aluminum reflex coating 

(BudgetSensors, Tap-300G, resonance frequency ~300 kHz, tip radius <10 nm, 

force constant 40 N/m) were used to record topographic, amplitude, and phase 

images with 512 x 512 pixel resolution. The AFM images were analyzed by 

Gwyddion package. A third-order polynomial was used to flatten the background 

for topographic images. The volumetric analyses of globular structures were 

performed using Gwyddion software. 
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§ 5.5 Computational Modeling Procedures 

Semi-Empirical Probability Distribution:  

This simulation was run utilizing the same format as the 0 M TMAO 

unconstrained simulation where the score function at each step was replaced 

simply with a single repulsive van der Waals term. For the combined set of outputs, 

all segments which are spaced by the same number of residues in the primary 

sequence were fit to a normal distribution. From this an empirical relationship was 

constructed between the distance spanning any two parts of the protein and the 

average breadth, σ. 

 

PyRosetta Simulations:  

All simulations were performed in PyRosetta on the University of 

Pennsylvania School of Arts and Science General Purpose Cluster. The simulation 

format followed a basic simulated annealing procedure detailed in the general 

script attached. In short, the initial protein structure was randomized by sampling 

random backbone φ/ψ angles against a score function consisting solely of 

repulsive van der Waals energy terms while the protein was represented in the 

course-grained centroid model. Following randomization, constraints were applied 

with continued sampling of φ/ψ angles in centroid model while increasing the score 

function complexity from score0-score3 ending with the score3 function as well as 

long and short range hydrogen bonding terms (hbond_srbb and hbond_lrbb). 

Lastly, the protein representation was switched into full-atom and backbone torsion 

angles were sampled along with side-chain χ angles while the 'beta' score function 
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was applied with the addition of constraints. Acceptance for a set of moves was 

determined as usual in a Monte Carlo simulation by comparing the sum of the 

score energy and constraint energy of the previous structure to the newly 

generated structure. The lowest energy structure generated from each of these 

steps was retained and used as the starting structure for the next simulation step. 

The final output structure as determined from the sum of the total 'beta' score 

function energy and the constraint energy.  

Several different methods were employed in an attempt to capture the 

influence of TMAO on the protein structure in addition to applying constraints. 

Simulations were performed where the solvation term (fa_sol) was removed from 

the score function since solvation effects from TMAO introduction could not be 

accounted for directly. Moreover, fragment insertions was employed alongside φ/ψ 

angle sampling in an effort to incorporate the possible formation of significant 

secondary structure. Fragment libraries were prepared from the primary sequence 

of wild-type αS using Robetta, a protein prediction server which uses Rosetta 

software and was developed and supported by the Rosetta Commons and the 

Baker Lab 225. Modifications to the base method for each simulation for the 2 M 

TMAO data set are detailed with the reported results. 

In order to produce a simulation which accurately represented the FRET 

data, each distance constraint was implemented with a "knowledge" weighting 

factor, γ. This knowledge weighting factor, γ, is inversely proportional to the 

standard deviation in the calculated distance, based on a given version of the 

polymer-scaled Förster equation.  
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𝛾(𝐸𝐹𝑅𝐸𝑇) =
𝑁

𝑆𝐷𝐴×𝛿𝑥(𝐸𝐹𝑅𝐸𝑇) 𝛿𝐸𝐹𝑅𝐸𝑇⁄
  (Eq. 5.20, S16) 

𝑁 = (∫
1

𝑆𝐷𝐴×𝛿𝑥(𝐸𝐹𝑅𝐸𝑇) 𝛿𝐸𝐹𝑅𝐸𝑇⁄
𝑑(𝐸𝐹𝑅𝐸𝑇)

𝐸𝐹𝑅𝐸𝑇
)

−1

  (Eq. 5.21, S17) 

 

Constraints were applied using one of two functions based on the probability 

distribution functions used to interpret the FRET data. The Gaussian chain (Eq. 

5.13) and normal distribution (Eq. 5.14) functions were transformed into Eq. 5.22 

and 5.23 respectively to generate potential energy functions termed the Gaussian 

chain constraint and the harmonic constraint functions respectively. 

 

𝑈1(𝑟) = 𝑎 × 𝛾 × 𝑙𝑜𝑔 (4𝜋𝑟 (
3

2𝜋⟨𝑟2⟩
)

3/2

𝑒𝑥𝑝 (−
3

2

𝑟2

⟨𝑟2⟩
))  (Eq. 5.22, S18) 

𝑈2(𝑟) = 𝑎 × 𝛾 × 𝑙𝑜𝑔 (
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

1

2

(𝑟−⟨𝑟2⟩)
2

𝜎2
))  (Eq. 5.23, S19) 

 

The additional term, a, in both equations represents the “thermodynamic” 

weighting factor of the constraints with respect to the Rosetta score function. The 

optimal thermodynamic weighting factor was determined empirically by running 

trial simulations with a set to values from 0.25-5. The breadth, σ for the harmonic 

restraints (Eq. 5.23) was determined from a relationship between the average 

distance and the normal distribution breadth derived from the simulated structures 

used to generate the semi-empirical constraints. The optimal weight (a) was 

determined to be 1, since at that value constraints were satisfied but the resulting 
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ensembles were not overconstrained so as to yield physically unreasonable 

conformations. For each interpretation of the data, both constraint functions were 

applied to determine the efficacy of the constraining method and the data 

interpretation. Simulations assessing the constraint weight and the method of 

constraining generated 120 outputs, where the lowest 100 structures were used in 

analysis due to the lack of differences in energy in the outputs. Final simulations 

of the Gaussian chain interpreted and Gaussian chain constrained data produced 

1020 structures where the lowest 1000 were used for interpretation.  

 

Simulation Output Analysis: 

 HydroPro was used to calculate the diffusion coefficients and radii of 

gyration.226 For analysis of 2 M simulated structures in HydroPro, the input 

viscosity was multiplied by the ratio of the 0 M:2 M diffusion times of 

AlexaFluor488. This effectively accounted for the increase in viscosity in 2 M 

versus 0 M TMAO. Following determination in HydroPro, the diffusion coefficient 

was converted for comparison with the diffusion coefficient determined from FCS 

using a previously published conversion equation detailed in Eq. 5.24, while the 

diffusion coefficient was determined from the measured diffusion time via Eq. 5.25 

227. 

 

𝐷𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑 =
𝐷𝐻𝑦𝑑𝑟𝑜𝑃𝑟𝑜+0.582

1.08
  (Eq. 5.24) 

𝐷𝑃 = 𝐷𝐴𝐹488
𝜏𝐴𝐹488

𝜏𝑃
  (Eq. 5.25) 
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In these equations, DP, DAF488, DHydroPro and DCalibrated are the diffusion 

coefficients of the protein of interest, AlexaFluor488, as determined from literature, 

from HydroPro and the experimentally calibrated diffusion coefficient for 

comparison to DP respectively. Additionally, τAF488 and τP are the experimentally 

derived diffusion times of AlexaFluor488 and the protein of interest respectively.  

All distances required for Flory scaling plots, heat maps and comparisons 

to experimental FRET data were extracted from C-alpha to C-alpha distances for 

each residue using Python or BioPython and all calculations were performed using 

NumPy. For EFRET determination, distance values from each member of a given 

ensemble were transformed into EFRET values using the classical Förster equation 

prior to averaging to capture the explicit distance probability distribution of the 

ensemble. The same method was used to calculate comparisons to paramagnetic 

relaxation enhancement data, where distances were extracted from C-alpha to 

amide proton distance. Distances converted into intensity ratios as described by 

Piana et. al. and the intensity ratios were averaged to calculate the final values 97. 

 

Impact of the Thermodynamic Constraint Weight:  

Assessment of the thermodynamic constraint weight effects were assessed 

prior to application of the knowledge constraint weight. This was done in order to 

assess the maximum impact of the constraint set. Knowledge constraints applied 

to the full simulation were scaled to a maximum value determined by the 

thermodynamic constraint as shown in Eq. 5.22 and Eq. 5.23, which is why 
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determination of the maximum impact of the constraint set was crucial. 

Experimentally constrained simulations were run as described below with the 

omission of side chain rotamer packing using constraints where the distances were 

determined by using the Gaussian chain version of the polymer scaled Förster 

equation and were applied using the Gaussian chain derived constraining function.  

 

 

Figure 5.2: Determination of Optimal Thermodynamic Constraint Value. Radius of 
gyration (left) and average Flory scaling behavior (right) of simulated structures 
with varying values of the thermodynamic constraint weight, a. 
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Figure 5.3a: Effect of Constraints on Interresidue Distance Heat Maps. Heat maps 
depicting the average interresidue distance for each thermodynamic constraint 
weight, a, (left) and average difference in interresidue distance between 
constrained and unconstrained simulations (right).  Heat maps depict averages 
from an unconstrained simulation (top row) and simulations with thermodynamic 
constraint weights set to 0.25 (middle row) and 0.5 (bottom row). 
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Figure 5.3b: Effect of Constraints on Interresidue Distance Heat Maps. Heat maps 
depicting the average interresidue distance for each thermodynamic constraint 
weight, a, (left) and average difference in interresidue distance between 
constrained and unconstrained simulations (right).  Heat maps depict averages 
from simulations with thermodynamic constraint weights set to 1.0 (top row), 2.5 
(middle row) and 5.0 (bottom row). 
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Assessment of the Constraint Functional Form and Sampling Method:  

Simulations were performed utilizing distances from the Gaussian chain 

(Eq. 5.13) and semi-empirical (Eq. 5.14) FRET distribution analyses in conjunction 

with either the Gaussian chain (Eq. 5.22) or harmonic (Eq. 5.23) constraints. This 

was done to assure that no bias was introduced by selecting a particular 

constraining method. No significant differences in the resulting ensembles were 

observed between simulations run with different constraint data or constraining 

functions when comparing the results in Flory-scaling plots (Fig. 5.4), or plots of 

computed EFRET values (Fig. 5.5-5.6), diffusion coefficients (Fig. 5.7), or “heat 

maps” of global structural analyses (Fig. 5.14a-5.14b). 

 

 

Figure 5.4: Flory Scaling Plots. Plots of Flory scaling determined from simulated 
ensembles constrained with distance constraints from measurements in 0 M (top 
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left) and 2 M (top right/bottom left) TMAO. Names in the legends represent the 
probability distribution used in the polymer-scaled Förster equation for obtaining 
distances (Gaussian-chain = GC or semi-empirical = Pr) followed by the 
constraining function employed (Gaussian-chain = GC or harmonic potential = 
HR). Simulations marked with † indicate that the weight of the solvation term 
(fa_sol) was set to 0 while simulations marked with ‡ indicated that fragment 
insertion was incorporated within the search.  
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Figure 5.5: 0 M TMAO EFRET Plots. (Previous Page) Plots show the average and 
standard deviation of the EFRET values determined from simulated ensembles 
constrained with distance constraints from measurements in 0 M (top/middle) and 
2 M (bottom) TMAO. Names in the legends represent the probability distribution 
used in the polymer-scaled Förster equation for obtaining distances (Gaussian-
chain = GC or semi-empirical = Pr) followed by the constraining function employed 
(Gaussian-chain = GC or harmonic potential = HR). Simulations marked with † 
indicate that the weight of the solvation term (fa_sol) was set to 0 while simulations 
marked with ‡ indicated that fragment insertion was incorporated within the search.  

 

Figure 5.6: 2 M TMAO EFRET Plots. (Next Page) Plots show the average and 
standard deviation of the EFRET values determined from simulated ensembles 
constrained with distance constraints from measurements in 2 M TMAO. Names 
in the legends represent the probability distribution used in the polymer-scaled 
Förster equation for obtaining distances (Gaussian-chain = GC or semi-empirical 
= Pr) followed by the constraining function employed (Gaussian-chain = GC or 
harmonic potential = HR). Simulations marked with † indicate that the weight of 
the solvation term (fa_sol) was set to 0 while simulations marked with ‡ indicated 
that fragment insertion was incorporated within the search. 
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Figure 5.7: Diffusion Coefficients. Plots show the average diffusion coefficient 
determined from FCS data (black line) and from various simulations (red points).  
Simulation names represent the concentration of TMAO in which measurements 
were taken, the probability distribution used in the polymer-scaled Förster equation 
for obtaining distances (Gaussian-chain = GC or semi-empirical = Pr) and the 
constraining function employed (Gaussian-chain = GC or harmonic potential = 
HR), respectively. Simulations marked with † indicate that the weight of the 
solvation term (fa_sol) was set to 0 while simulations marked with ‡ indicated that 
fragment insertion was incorporated within the search. 

 

§ 5.6 Results  

We began by generating two libraries of proteins, labelled with either Cnf-

Trp or Fam-Raz pairs, and making FRET measurements in varying concentrations 

of TMAO.  For both FRET pairs, we observed changes in photophysical 

parameters impacting the extraction of distance information from FRET data that 

necessitated performing control fluorescence measurements using singly-labelled 

proteins. When calculating R0 (Eq. 5.9) for these experiments, there were four 

parameters of interest, D, J,  2 and n, which represent the quantum yield of the 
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FRET donor, the overlap integral between donor emission and acceptor 

absorbance, the orientation factor between the two fluorophores, and the refractive 

index of the solution, respectively. Of these parameters, we determined that 

changes in D as a function of environment contributed most significantly to 

changes in R0 for both Cnf and Fam.  Additionally, Zheng et al. previously 

demonstrated that for disordered proteins the orientations of the fluorophores are 

sufficiently isotropic to warrant the approximation of 2 = 2/3, which is the value for 

an isotropic distribution of orientations 64. Fluorescence measurements made on 

donor-only and acceptor-only proteins enabled us to not only account for changes 

in D to enhance our accuracy in calculating R0, but also allowed us to easily 

overcome the difficulties of interpreting highly overlapped spectra and extract 

distances from EFRET measurements for use in modeling. 

 

Cnf-Trp library 

The Cnf-Trp construct library consisted of a total of 27 proteins, 17 double-

labeled and 10 single-labeled αS mutants, spanning 16 unique intramolecular 

distances. Acquiring concentration-matched emission spectra for each single-

labeled construct in varying TMAO conditions allowed for tracking of changes in 

the quantum yield and spectral shape of Cnf and Trp emission. The sensitivity of 

these photophysical properties to increasing concentrations of TMAO was initially 

assessed for the free amino acids (Fig. 5.8). 
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Figure 5.8: Steady-state Fluorescence Spectra of Free Fluorophores. Plots show 
background subtracted spectra of Cnf (top left), Trp (top right), Fam (bottom left) 
and Raz (bottom right) for 0 (blue), 2 (red) and 4 M TMAO (black). 

 

Although a decrease in the quantum yield was observed for both Cnf and 

Trp, no major change in emission maximum was observed in the Trp spectrum. In 

contrast to the free amino acid measurements, Trp-containing αS mutants 

successively blue-shifted in increasing concentrations of TMAO, as a result of 

changes in local environment upon compaction. Thus, measuring single-labeled 

spectra was not only crucial for tracking spectral changes due to environmental 

effects, but was also essential for deconvoluting the highly overlapped Cnf and Trp 

emission spectra in constructs containing both fluorophores.  EFRET values were 

obtained for each probe pair in buffer containing 0, 2, and 4 M TMAO. Figure 5.9 

shows the deconvolution of a 0 M measurement as well as a 2 M measurement 

for the Cnf125-Trp94 pair. As expected, EFRET increases, correlating with the 
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expected decrease in inter-residue distance resulting from compaction in TMAO. 

Without TMAO present, in most cases this probe pair is not able to accurately 

capture the apparent intraresidue distance as seen in low EFRET values outside of 

the most reliable FRET range (EFRET = 0.3-0.7). This is most clearly observed in 

Figure 5.10, where the distances extracted from these data are largely invariant 

above sequence separations of 50 residues. However, in cases where the probes 

are relatively close in primary sequence, the utility of this short-range pair is clearly 

demonstrated. In the presence of 2 M, and especially 4 M TMAO, a significant 

number of the probed regions display EFRET values within the optimal range for 

accurate distance determination. 

 

 

Figure 5.9: Determination of EFRET. Left: Background subtracted fluorescence 
emission spectra of constructs labeled with Cnf, Trp, or both Cnf and Trp in 0 M 
(top) and 2 M TMAO (bottom). Right: Double-labeled Cnf-Trp spectrum compared 
to weighted sum of Cnf-only and Trp-only spectra, along with the contributions from 



178 

 

each single-labeled spectrum shown for 0 M (top) and 2 M TMAO (bottom) 
spectra.  

 

Figure 5.10: Comparison of experimental and simulated data. Left: Distances 
extracted from EFRET measurements of the Cnf-Trp and Fam-Raz libraries shown 
with interresidue distances for a given primary sequence separation in 
unconstrained or constrained MC simulations. The average (solid line) and 
standard deviation (dashed line) of interresidue distances are shown for the 
simulated ensembles. Right: Experimental and simulated EFRET values. Dashes 
represent average EFRET values for each pair of labeled residues, with 
interconnecting lines to guide the eye. The average (point) and standard deviation 
(line) of EFRET values obtained based on interresidue separations in the 
unconstrained or constrained simulated ensembles. 

 

Fam-Raz library 

To complement our Cnf-Trp data, we also performed FRET measurements 

with a probe pair with a longer working range. A set of 21 constructs, consisting of 
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10 dual-labeled and 11 single-labeled analogs containing Fam and/or Raz, was 

produced to accurately monitor long range distance changes during the 

compaction of αS by TMAO. In cases where exceedingly low EFRET was observed 

with the short-range probe pair, we observed efficiencies much closer to the 

optimal efficiency range for the Fam-Raz pair.  This was most significant in the 

absence of TMAO. However, our measurements approached the short end of the 

working range for the Fam-Raz pair in some instances in 2 M TMAO and 

exhausted its utility in 4 M TMAO. 

In 4 M TMAO, the long working range of this probe pair was effective for 

assessing the formation of oligomers, which were reported by Uversky et al. When 

mixing Fam and Raz single-labeled species in 4 M TMAO, there was a significant 

reduction in the lifetime of the Fam labeled construct, consistent with 

intermolecular FRET (Figs. 5.11a-5.11c).  
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Figure 5.11a: Intermolecular FRET Lifetime Decays and Fits. Plots show lifetime 
decays and fits of (Left) αS-Fam9 + αS-Raz94, (Middle) αS-Fam9 + αS-Raz136 
and (Right) αS-Fam24 + αS-Raz94 in (Top-Bottom) 0, 2 and 4 M TMAO. Decay of 
single-labeled Fam constuct decays are shown before (red) and after (blue) the 
addition of the Raz containing construct with fits shown as dashed lines.  
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Figure 5.11b: Intermolecular FRET Lifetime Decays and Fits. Plots show lifetime 
decays and fits of (Left) αS-Fam87 + αS-Raz94, (Middle) αS-Fam114 + αS-
Raz136 and (Right) αS-Fam123 + αS-Raz94 in (Top-Bottom) 0, 2 and 4 M TMAO. 
Decay of single-labeled Fam constuct decays are shown before (red) and after 
(blue) the addition of the Raz containing construct with fits shown as dashed lines.  
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Figure 5.11c: Intermolecular FRET Lifetime Decays and Fits. Plots show lifetime 
decays and fits of αS-Fam136 + αS-Raz94 in (Left-Right) 0, 2 and 4 M TMAO. 
Decay of single-labeled Fam constuct decays are shown before (red) and after 
(blue) the addition of the Raz containing construct with fits shown as dashed lines. 

 

In buffer or 2 M TMAO, there was no observed change in the lifetime of the 

Fam labeled protein due to the presence of the protein containing Raz. FCS and 

AFM measurements also demonstrate the formation of oligomers in 4 M TMAO 

(Figs. 5.12–5.13). As a result of these observations, we decided to forego modeling 

the 4 M structure due to the complexity of deconvoluting intra- and intermolecular 

FRET in oligomers. 
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Figure 5.12: Autocorrelation plots from FCS Data. Plots show the average 
autocorrelation decays from 10 measurements (red) with fits (black-dashed) for 
αS-AF4889 (Top), αS-AF488114 (Middle) and αS-AF488130 (Left) in 0 M (Left) 
and 2 M (Right) TMAO. 
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Table 5.6: FCS Data 

 Position (TMAO) 9 (0 M) 114 (0 M) 130 (0 M) 

N 8.9006 17.809 6.8298 

Delay Time 0.401 0.42034 0.40662 

Intensity 59007 193000 51376 

αS 0.43 ± 0.027 0.418 ± 0.010 0.411 ± 0.010 

 Position (TMAO) 9 (2 M) 114 (2 M) 130 (2 M) 

N 12.889 38.693 17.384 

Delay Time 0.79827 0.94794 0.68422 

Intensity 44824 163510 54824 

αS 0.822 ± 0.007 0.946 ± 0.035 0.779 ± 0.037 
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Figure 5.13: The effect of TMAO on the aggregation of wild type αS. Top: AFM 
images of the dried samples. Bottom: corresponding volume histograms of the αS 
aggregates. The αS concentration used for these samples are (left) 10 μM, 
(middle) 0.1 μM, and (right) 0.5 μM. Each volume histogram was obtained with 
accumulated data from more than five AFM images screened at various area on 
the sample. No αS fibrillization is observed, which is consistent with the fact that 
αS fibrillization in solution can’t occur in low concentrations and under static 
conditions, and no agitation or shacking of the solution were performed here. 

 

Interpretation of FRET data 

Because αS is disordered, the interresidue distance separating any given 

label pair is widely distributed. To accurately obtain an average distance value, this 

distribution needs to be taken into account. Therefore, the corresponding 

interresidue distances were calculated using a polymer-scaled Förster equation, 

Eq. 5.12, taking into account changes in R0 resulting from changes in quantum 

yield for each labeling position. Distances were calculated using both the Gaussian 
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chain (Eq. 5.13) and semiempirical (Eq. 5.14) models, which produced significantly 

different sets of results. Conceptually, two positions labeled with two FRET pairs 

with different R0 values should have distinct FRET efficiencies, but comparable 

extracted distances. Since the Cnf-Trp and Fam-Raz libraries contained a limited 

number of labeled positions in common, for comparison the distances were plotted 

in Fig. 5.11 as a function of probe pair primary sequence separation.  

 

 

Figure 5.14: Distance from Polymer-Scaled Förster Equation. Plot show distances 
obtained from steady-state derived EFRET values through the Gaussian chain 
(GC) or semi-epirical (Pr) forms of the polymer-scaled Förster equation. Plots are 
shown for data obtained in 0 M (left) and 2 M (right) TMAO. 

 

We reasoned that the consistency between data from the Cnf-Trp and Fam-

Raz libraries on a Flory scaling plot should help us to identify the more accurate 

probability distribution. In Fig. 5.14, it is clear that there is substantially better 

agreement between the Cnf-Trp and Fam-Raz data sets when applying the 

Gaussian chain distribution to extract distance data from the EFRET values. 
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Simulations 

After data collection, simulations were performed in PyRosetta to generate 

structural ensembles that represent the changes observed by FRET. Before 

introducing FRET-based constraints, we optimized a PyRosetta script to effectively 

produce ensembles of structures in general agreement with previously published 

radius of gyration (Rg) and radius of hydration (Rh) values 205, 228. Simulations were 

performed where the weighting of the FRET constraints relative to other Rosetta 

energy terms (a, Eqs. 5.22 and 5.23) was varied, and different shapes for the FRET 

constraint function were assessed. These constraint function shapes were based 

on the Gaussian chain (Eq. 5.13) or semiempirical (Eq. 5.14) distance distributions 

used in the FRET analyses. Given the greater consistency between Cnf-Trp and 

Fam-Raz data when using the Gaussian chain probability distribution (above), we 

favored using this function for implementing constraints as well. However, we 

tested all combinations to ensure that no bias was introduced based on the pairing 

of distribution functions used in FRET data analysis and in constraint 

implementation. The results of these tests are detailed in Figs. 5.2-5.7, 5.14a-5.15c 

and are discussed further below. We found that setting the weight of the 

constraints relative to the other score function components to unity allowed the 

FRET constraints to influence the structure without overconstraining, and that 

reasonable variations of the shape of the constraint function did not dramatically 

influence the simulation results. Thus, in the main text, we exclusively report 

simulations performed using the Gaussian chain distribution, with all other 

simulations reported in the Supporting Material. The 2 M TMAO simulations were 
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performed with the solvation term removed in an effort to account for the significant 

change in solvation. Unconstrained simulations performed with this altered score 

function provided a more compact starting point for introducing FRET constraints, 

whereas constrained ensembles were noticeably more compact (Figs. 5.4-5.7). 
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Figure 5.14a: Global structural summary for 0 M TMAO ensembles. Plots are 
derived from unconstrained (top set), 0M_GC-GC (middle set) and 0M_GC-HR 
(bottom set) simulations. Simulation names represent the concentration of TMAO 
in which measurements were taken, the probability distribution used in the 
polymer-scaled Förster equation for obtaining distances (Gaussian-chain = GC or 
semi-empirical = Pr) and the constraining function employed (Gaussian-chain = 
GC or harmonic potential = HR), respectively. Structures (left) show the 10 lowest 
energy structures faded with the single lowest energy structure darkened (blue - 
red, N-term - C-term). Heat map (middle) shows the average inter-residue 
distances from all output structures (above diagonal) and the inter-residue 
distances from the single lowest energy structure (below diagonal) as a function of 
residue pair. Histogram (right) of the percent of output structures for a given radius 
of gyration with bin widths of 2 Å. 
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Figure 5.14b: Global structural summary for 0 M TMAO ensembles. Plots are 
derived from 0M_Pr-GC (top set), 0M_Pr-HR (middle set) and unconstrained† 
(bottom set) simulations. Simulation names represent the concentration of TMAO 
in which measurements were taken, the probability distribution used in the 
polymer-scaled Förster equation for obtaining distances (Gaussian-chain = GC or 
semi-empirical = Pr) and the constraining function employed (Gaussian-chain = 
GC or harmonic potential = HR), respectively. Structures (left) show the 10 lowest 
energy structures faded with the single lowest energy structure darkened (blue - 
red, N-term - C-term). Heat map (middle) shows the average inter-residue 
distances from all output structures (above diagonal) and the inter-residue 
distances from the single lowest energy structure (below diagonal) as a function of 
residue pair. Histogram (right) of the percent of output structures for a given radius 
of gyration with bin widths of 2 Å. Simulations marked with † indicate that the 
weight of the solvation term (fa_sol) was set to 0. 
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Figure 5.15a: Global structural summary for 2 M TMAO ensembles. Plots are 
derived from 2M_GC-GC† (top set), 2M_GC-HR† (middle set) and 2M_Pr-GC† 
(bottom set) simulations. Simulation names represent the concentration of TMAO 
in which measurements were taken, the probability distribution used in the 
polymer-scaled Förster equation for obtaining distances (Gaussian-chain = GC or 
semi-empirical = Pr) and the constraining function employed (Gaussian-chain = 
GC or harmonic potential = HR), respectively. Structures (left) show the 10 lowest 
energy structures faded with the single lowest energy structure darkened (blue - 
red, N-term - C-term). Heat map (middle) shows the average inter-residue 
distances from all output structures (above diagonal) and the inter-residue 
distances from the single lowest energy structure (below diagonal) as a function of 
residue pair. Histogram (right) of the percent of output structures for a given radius 
of gyration with bin widths of 2 Å. Simulations marked with † indicate that the 
weight of the solvation term (fa_sol) was set to 0. 
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Figure 5.15b: Global structural summary for 2 M TMAO ensembles. Plots are 
derived from 2M_Pr-HR† (top set), 2M_GC-GC (middle set) and 2M_GC-GC‡ 
(bottom set) simulations. Simulation names represent the concentration of TMAO 
in which measurements were taken, the probability distribution used in the 
polymer-scaled Förster equation for obtaining distances (Gaussian-chain = GC or 
semi-empirical = Pr) and the constraining function employed (Gaussian-chain = 
GC or harmonic potential = HR), respectively. Structures (left) show the 10 lowest 
energy structures faded with the single lowest energy structure darkened (blue - 
red, N-term - C-term). Heat map (middle) shows the average inter-residue 
distances from all output structures (above diagonal) and the inter-residue 
distances from the single lowest energy structure (below diagonal) as a function of 
residue pair. Histogram (right) of the percent of output structures for a given radius 
of gyration with bin widths of 2 Å. Simulations marked with † indicate that the 
weight of the solvation term (fa_sol) was set to 0 while simulations marked with ‡ 
indicated that fragment insertion was incorporated within the search. 
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Figure 5.15c: Global structural summary for 2 M TMAO ensembles. Plots are 
derived from unconstrained†‡ (top set) and 2M_GC-GC†‡ (bottom set) 
simulations. Simulation names represent the concentration of TMAO in which 
measurements were taken, the probability distribution used in the polymer-scaled 
Förster equation for obtaining distances (Gaussian-chain = GC or semi-empirical 
= Pr) and the constraining function employed (Gaussian-chain = GC or harmonic 
potential = HR), respectively. Structures (left) show the 10 lowest energy structures 
faded with the single lowest energy structure darkened (blue - red, N-term - C-
term). Heat map (middle) shows the average inter-residue distances from all output 
structures (above diagonal) and the inter-residue distances from the single lowest 
energy structure (below diagonal) as a function of residue pair. Histogram (right) 
of the percent of output structures for a given radius of gyration with bin widths of 
2 Å. Simulations marked with † indicate that the weight of the solvation term 
(fa_sol) was set to 0 while simulations marked with ‡ indicated that fragment 
insertion was incorporated within the search. 

 

Moreover, for simulations of the 2 M ensemble, fragment insertion was 

incorporated within the MC search to increase the amount of resultant secondary 

structure which has been observed by circular dichroism studies of the TMAO-

induced conformation 133. Although this significantly increased the number of 
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helices, there was no marked improvement in the match of simulated structures 

with experimental FRET data (Fig. 5.4-5.7). 

Initially, we compared the constrained simulations to the FRET data using 

Flory scaling plots, where the average interresidue distance (between α-carbons) 

as a function of sequence separation was plotted for the ensemble of 1000 lowest 

energy structures with experimental FRET data overlaid as discrete points (Fig. 

5.10, left). All experimental data were close to the average simulation distance or 

within the standard deviation for both 0 and 2 M ensembles, with the notable 

exception of the Fam9-Raz136 FRET data. It is notable that the distance determined 

for this FRET pair using the harmonic potential (Fig. 5.14) does not show such 

dramatic discord with the other distances, potentially suggesting a limitation of the 

Gaussian chain model for very long distance ranges. We also predicted FRET 

values for all of the pairs of label sites for comparison to the experimental FRET 

data (Fig. 5.10, right). Distances between the α-carbons of the amino acids at the 

label sites were extracted from each structure in a simulated structural ensemble 

and converted to EFRET values using the classical Förster equation (Eq. 5.12, 

where P(r,x) = 1). Since the variations in conformation in the ensemble explicitly 

capture the distribution of interresidue distances, the average EFRET was computed 

as a simple average of the values extracted from each structure with no further 

correction for polymer scaling of the distance distribution. We found good 

agreement, with an average absolute EFRET difference of 0.09 and all experimental 

values falling within the standard deviation of the simulated values. As discussed 

below, the close match between these values helps to validate our choice of a 
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polymer-scaled distance distribution function in interpreting EFRET values to input 

constraints in the simulations. 

 

 

Figure 5.16: Analysis of αS structural ensembles. Left: Representative structures 
from 0 and 2 M simulations. The darkened structure in the foreground is the lowest 
energy structure and the faded ensemble in the background includes the 10 lowest 
energy structures. Middle: Heat maps showing the average interresidue distances 
in the simulated ensembles. Each heat map shows the average distance for the 
full simulated ensemble of structures above the diagonal and distances from the 
single lowest energy structure below the diagonal. Top right: Histograms of radii of 
gyration of structures from simulations, plotted with literature values of Rg 
determined from SAXS data and the hydrodynamic radius from NMR studies. 
Bottom right: Diffusion coefficients from FCS and simulated structures. 

 

Fig. 5.16 shows the 10 lowest energy structures from the 0 and 2 M 

simulations, aligned and with a single structure darkened for clarity. One can see 

significant compaction of the 2 M ensemble, which can be quantified using 

histograms of the Rg for each structure in the ensemble. The average radius of 

gyration in 0 M TMAO is 29.3 ± 4.6 Å, which shrinks to 23.5 ± 3.4 Å in 2 M TMAO. 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hydrodynamics
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/diffusion-coefficient
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Interestingly, despite this compaction, αS remains disordered in 2 M TMAO. The 

disorder can be visualized using a plot of the distribution of interresidue distances 

as a two-dimensional “heat map,” with interresidue distances for the entire 

ensemble plotted above the diagonal and interresidue distances for the single 

darkened structure below the diagonal. As seen in the middle plots in Fig. 5.16, in 

both 0 and 2 M TMAO, the average interresidue distance scales with primary 

sequence separation, despite the fact that long-range contacts occur in individual 

structures within the ensembles (Fig. 5.17).  
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Figure 5.17: Contact maps from experimentally constrained ensembles. Contact 
maps from the 0M_GC-GC (top) and 2M_GC-GC† (bottom) ensembles. A cutoff 
distance of 10 Å was set as a contact. Each half of each heat map are analyses of 
the same ensemble and show all residue pairs which make contact in one or more 
structures from the ensemble as white while residue pairs which do not make 
contact are shown in blue (top left). The fraction of structures of the ensemble 
which make contact are shown over the full fractional scale with a red/white 
gradient (bottom right). 

 



198 

 

 

Figure 5.18: Average interresidue distance heat map. Heat map showing the 
average difference in interresidue distance between the 0M_GC-GC and 2M_GC-
GC† ensembles.  

 

 

Figure 5.19: Experimentally constrained ensemble Flory scaling plot. Flory scaling 
plots of 0M_GC-GC (red) and 2M_GC-GC† (blue) simulated ensembles along with 
the random coil simulation (black) used for the construction of P2(r,x) and a curve 
representing the scaling of a globule protein(green) 68.  
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Figure 5.20: Experimentally constrained ensemble DSSP analysis. DSSP 
analysis of 0M_GC-GC (red) and 2M_GC-GC† (blue) ensembles for comparison. 
(Top Left) Histogram showing the percent of structures binned based on the total 
solvent accessible surface area of a given structure (Å2). (Top Right)  Histogram 
showing the percent of structures binned based on the total number of 
intramolecular hydrogen bonds present in a given structure. (Bottom Left) Plot of 
the average value of the cosine of the angle between the backbone carbonyl of the 
current residue and the carbonyl of the previous residue (TCO) for each residue 
for each structure within a given ensemble. (Bottom Right) Plot of the average 
value relative solvent accessibility for each residue for each structure within a given 
ensemble.   

 

This combined information indicated that, in the presence of 2 M TMAO, αS 

populates a compacted disordered ensemble that still maintains a high degree of 

structural heterogeneity. To confirm that the structure ensembles were consistent 

with other experimental observables, we calculated the diffusion coefficient for 

each structure of the 0 and 2 M ensembles using HydroPro 226. As seen in 
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Fig. 5.16, the calculated diffusion coefficients are slightly (16%) smaller, but in 

reasonable agreement with those measured in our FCS experiments. 

 

Comparison of structure ensembles to data from literature 

We compared our structural models in the absence of TMAO to data from 

the literature as well as other published models. The average Rg of our 0 M 

ensemble matched well with reported values of Rg from SAXS experiments and Rh 

(typically 30% larger than Rg) from NMR experiments 205, 228. Furthermore, our 

models agreed remarkably well with both the primary NMR PRE data (Fig. 5.21) 

and Flory scaling plots of the resulting models (Fig. 5.22) reported by Allison et al. 

126. 
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Figure 5.21: Intensity ratios from PRE measurements. Each plot shows the 
measured intensity ratio from PRE data obtained by Allison et. al. (grey bars) and 
the calculated average intensity ratio from the constrained simulation (red lines) 
were derived from data acquired in 0 M TMAO and interpreted using the 
Gaussian-chain polymer scaled Förster equation 126. Plots show data for spin-
label placement at residues 24 (top left), 42 (top right), 62 (middle left), 87 
(middle right) and 103 (bottom right). 
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Figure 5.22: Flory scaling plot comparison to previously published ensemble. Plot 
shows the average distance as a function of sequence separation for simulated 
ensembles (PED9AAC) and unconstrained and constrained simulations reported 
herein 125-126. Distance constraints were derived from data acquired in 0 M TMAO 
and interpreted using the Gaussian-chain polymer scaled Förster equation. 
Constraints were implemented using the Gaussian-chain constraint function.  

 

 We do observe rare contacts between regions of the protein that are distant 

in primary sequence (Fig. 5.17), consistent with reports of transient C-terminal 

contacts with the NAC and N-terminus 200.  

Although there is limited information on the structure of αS in 2 M TMAO, 

we find that our models agree with the available information. Similar to previous 

studies, our circular dichroism measurements made in 0 or 2 M TMAO show little 

change in αS helicity (Fig. 5.23), consistent with our models which show that the 

2 M ensembles are still highly disordered.  

https://www.sciencedirect.com/science/article/pii/S0006349517312134?via%3Dihub#mmc1
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/n-terminus
https://www.sciencedirect.com/science/article/pii/S0006349517312134?via%3Dihub#mmc1
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Figure 5.23: CD spectra of αS in varying concentrations of TMAO. Full plot and 
insert show the same data set, where the insert is adjusted to show difference in 
spectra above 220 nm. Measurements were taken on an Aviv model 410 circular 
dichorism spectrometer in 1 mm path length quartz cuvettes and were performed 
with 20 μM wild-type αS in 20 mM Tris 100 mM NaCl pH 7.5. TMAO was added to 
each buffer and the pH was readjusted at 25 °C. Scans from 190-260 nm were 
performed with a 1 nm bandwidth, 1 nm step size and an averaging time of 10 
seconds.  

 

Previously, Uversky and coworkers monitored fibrillization of αS in TMAO 

using thioflavin T (ThT) fluorescence, and found that aggregation was accelerated, 

but that the final level of ThT fluorescence was lower. Our own studies with Congo 

Red (Fig. 5.24) corroborated this observation, although, intriguingly, changes in 

fluorescence polarization (Fig. 5.25) were slower in 2 M TMAO, possibly indicating 

that the ThT and Congo Red spectroscopic properties are changed in TMAO.  
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Figure 5.24: Aggregation kinetics of αS monitored by Congo Red. Aggregation 
was performed with 100 μM wild-type αS in 20 mM Tris 100 mM NaCl pH 7.5. 
TMAO was added to each buffer and the pH was readjusted. Samples were 
agitated in an orbital shaker at 1500 rpm at 37 °C. At each timepoint, 10 μL of 
sample was removed and added to 140 μL of 20 μM Congo Red in water and 
incubated for 20 minutes at room temperature prior to measurement. Absorption 
spectra (230-700 nm) were measured in a 96-well black CoStar clear bottom plate 
on a Tecan M1000 plate reader. Kinetics were fit to Eq. 5.26 in Prism with the 
detailed values in Table 5.7. 

 

𝑌 =  A + (B-A) (1 + (C/x)^D)⁄                       (Eq. 5.26) 
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Table 5.7: Values from fits of Congo Red aggregation kinetics.  

 0 M TMAO 2 M TMAO 4 M TMAO 

A 0.5977 0.6289 0.7003 

B 1.123 1.03 0.7656 

C 9.989 6.397 19.72 

D 4.357 1.708 1.104 

R2 0.9855 0.9526 0.9062 

 

 

Figure 5.25: Aggregation kinetics of αS monitored by fluorescence polarization. 
Aggregation was performed with 100 μM αS-Fam136 in 20 mM Tris 100 mM NaCl 
pH 7.5. TMAO was added to each buffer and the pH was readjusted. Samples 
were agitated in an orbital shaker at 1500 rpm at 37 °C. At each timepoint, 10 μL 
of sample was removed and added to 90 μL of 20 mM Tris 100 mM NaCl pH 7.5. 
Fluorescence polarization measurements were taken in a 96-well black CoStar 
clear bottom plate on a Tecan F200 plate reader. Kinetics were fit to Eq. 5.26 in 
Prism with the detailed values in Table 5.8. 
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Table 5.8: Values from fits of fluorescence polarization aggregation kinetics.  

 0 M TMAO 2 M TMAO 4 M TMAO 

A 48.65 58.28 76.27 

B 278.1 240.9 86.22 

C 8.495 13.74 23.99 

D 3.82 2.248 80.41 

R2 0.9806 0.9734 0.2733 

 

 

Thus, although compacted, αS remains disordered and able to sample 

conformations that lead to fibril formation. This can be seen in Figs. 5.19 and 5.20 

where, despite compaction observed by changes in solvent-accessible surface 

area, metrics such as numbers of intramolecular hydrogen bonds and backbone 

dihedral angles do not indicate the presence of persistent structure. 

 

§ 5.7 Discussion 

Our previous study of αS structures using MC simulations with only a 

repulsive Lennard-Jones potential and harmonic constraints based on single-

molecule FRET data gave structural ensembles with global properties that 

matched well to experimental measurements such as Rg. This modeling protocol, 

with constrained simulations utilizing exclusively a repulsive van der Waals 

potential, was extremely efficient in its simplicity, but the resulting models lacked 

atomic-scale details that could be used in generating hypotheses or interpreting 
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mechanisms of conformational change. We and others have also performed 

unconstrained simulations which included the amino acids using single-sphere 

“centroid” representations of the side chains, as well as all-atom molecular 

dynamics simulations of αS, which do provide such detailed information, but are 

much more computationally intensive and generally limited in the conformational 

space explored. We wished to find an intermediate level of simulation wherein we 

could include side chains in MC simulations and maintain efficient sampling. 

However, we reasoned that the previous long-range constraints (>30 Å) derived 

from single-molecule FRET data would not provide sufficient information on short-

range interactions to properly direct these simulations. Thus, we here included 

data from the short-range Cnf-Trp pair along with data from the Fam-Raz pair, 

which has a comparable FRET range to the previous single-molecule FRET 

probes. These short-range probe pairs may be crucial for identifying contacts or 

collapsed regions that can exist under varied solution conditions or in the presence 

of allosteric molecules. 

 

Assessing the validity of P(r) 

We reasoned at the outset that the Gaussian chain P(r) was more accurate 

because it led to greater consistency between the distances obtained from the Cnf-

Trp and Fam-Raz libraries. However, this method of analysis was complicated by 

the limited numbers of intramolecular distances in a range that could be accurately 

captured by both pairs, as these probes were selected specifically for their efficacy 

across different distance ranges. Furthermore, one can observe that the Cnf-Trp 
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distances are largely invariant after reaching a sequences separation of ∼50 

residues due to a working range that extends to only ∼35 Å. Therefore, our 

assignment of the Gaussian chain P(r) as the more accurate distribution function 

arises from visual inspection of the Flory scaling plots in Fig. 5.14 in the 25–45 Å 

range, which encompass the upper and lower bounds of the Cnf-Trp and Fam-Raz 

probe pairs, respectively. It is important to note that at very short (<15 residues) 

and very long (>115 residues) sequence separations, the calculated distances are 

likely unable to be accommodated by any conformation of the protein. 

Furthermore, the functional form of the distribution may also be dependent on the 

number of residues between two probes (e.g., short sequence separations cannot 

have truly polymer-like behavior and may need to be treated with classical FRET 

equations) or heterogeneity not accounted for by polymer-scaling behaviors 229. 

 

Differences between constraint methods 

Since IDPs have relatively flat energetic landscapes, improper introduction 

of constraints can easily result in ensembles where the resultant conformations 

are not sufficiently diverse, especially proximal to constrained sites. This arises 

primarily from constraining potentials that are too deep or too narrow, but can also 

occur when conformational space is not effectively sampled. The latter problem 

could be caused by poor parameterization of the Metropolis criterion (such as 

selection of a kT value that is too low) or by not having an appropriate score 

function to produce the multiple local minima present within a single pair-wise 

constraint potential. By expanding our score function from a single repulsive van 
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der Waals term to the current optimal score function utilized by Rosetta, we assure 

that output states populate local minima that allow us to extract high-resolution 

information and provide an effective buffer for constraint introduction. Achieving 

unconstrained simulations of this quality required significant adjustment of 

PyRosetta scripts, which normally are used to model folded proteins rather than 

IDPs. These optimization efforts will be reported in detail elsewhere. In addition to 

improved modeling scripts, we hypothesized that issues related to the constraint 

functional form could be circumvented by directly employing appropriate distance 

distributions for disordered ensembles to analyze the FRET data. 

Nonetheless, we performed simulations with all four combinations of the two 

P(r) functions used to obtain distances and the two corresponding constraining 

functions. This allowed us to consider how the ensembles were influenced by the 

method of constraining in addition to the sets of distances used as constraints. 

Figs. 5.4-5.7, 5.14a-5.15c demonstrate that neither the method of constraint nor 

the P(r) utilized for the distance determination through Eq. 5.12 had a dramatic 

impact on the resulting structures. This likely arises from the fact that distances 

from the unconstrained simulation are already very close to the distances obtained 

from the experiments. Despite the relative agreement between the ensembles 

produced across all constraining methods for a given concentration of TMAO, 

there are several noteworthy observations. Figs. 5.14a-5.15c show that in all cases 

in which a harmonic potential was employed, the structural diversity, most clearly 

observable in the dispersion of Rg values, is visibly decreased. Moreover, 

harmonic constraints consistently produced deviations in the scaling behavior, 

https://www.sciencedirect.com/science/article/pii/S0006349517312134?via%3Dihub#mmc1
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where the heat maps (Figs. 5,14a-5,15c) reveal distances between the N-terminal 

region and the NAC domain that are, on average, longer than those between the 

C-terminal region and the NAC. This observation is independent of the input data, 

as these nuances are observed for both data sets, with constraints from data 

obtained utilizing P2(r,x) further enhancing these trends. These observations 

demonstrate that there are significant differences between these ensembles which 

result exclusively from the functional form of the constraining potential. 

The relative impacts of changes in the score function or in the constraints 

are evident in comparisons between 2 M simulations performed using Gaussian 

chain derived data with or without constraints or solvation term modification (Figs. 

5.4, 5.14a-5.15c). FRET constraints alone compacted the 2 M ensemble (2 M GC-

GC) relative to the 0 M ensemble (0 M GC-GC), but were not sufficient to generate 

ensembles that were consistent with the 2 M experimental data. However, it is 

important to note the marked differences between the 0 and 2 M ensembles, as 

these demonstrate that simulations in PyRosetta can be significantly influenced by 

constraints, which was not evident from the 0 M simulations alone. The fact that 

these constraints alone were unable to produce ensembles in full agreement with 

the 2 M data suggests that αS in the presence of molar quantities of TMAO 

populates a subset of conformations that are not accessible with the standard 

score function. With the solvation term removed, comparison of the 2 M 

constrained (2M GC-GC†, see Fig. 5.15a) and unconstrained (Unconstrained†, see 

Fig. 5.14b) simulations demonstrate that the constraints serve to exclude extended 

structures. This further suggests that the application of constraints does not 
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produce new conformations not present in the unconstrained population, but can 

effectively remove unfavorable structures from an ensemble based on 

experimental data. Overall, we see this as a favorable compromise as the 

necessity to modulate the unconstrained population through changes to the 

PyRosetta scoring is likely driven by the dramatic change in buffer conditions, 

which would not be present in many other applications. Systems where dramatic 

changes in solvent conditions occur (as in this study) can be effectively 

represented by adjusting the score function, whereas intramolecular (or 

intermolecular) contacts can be accounted for by changing the constraint 

functional form to accurately represent experimental data. 

 

Comparison of experimental and simulated data 

Initial comparisons between the experimental and simulated distances in 

Figs. 5.10 and 5.4 demonstrate that most of the obtained distances fall within 1 SD 

of the average interresidue distance for the given sequence separation. The 

observed disagreements at high and low sequence separation are likely due to 

inaccuracies in the determination of the experimental distance arising from either 

the working range of the probe or the polymer-scaling function, as previously 

discussed. Moreover, agreement in simulated and experimental FRET efficiencies 

in Figs. 5.10, 5.5, and 5.6 demonstrate that the underlying conformation dispersion 

is accurately captured, since appropriate efficiencies are obtained for both probe 

pairs. The FCS measurements herein also demonstrate that the simulated 

ensembles are of approximately the correct overall size and that the degree of 
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compaction is qualitatively accurate. The quantitative disagreement between the 

simulated diffusion coefficients observed in Fig. 5.16, where the simulated 

diffusion coefficients are systematically lower than the experimental values, could 

arise from several different factors. Given that the overall size agrees with 

previously published NMR and SAXS data, it is possible that we encountered 

small, systematic inaccuracies in determining diffusion coefficients resulting from 

a combination of the treatment of the disordered ensemble in HydroPro, the need 

for an empirical conversion factor, or accounting for the change in viscosity 

induced by TMAO. Importantly, we have demonstrated in Figs. 5.21 and 5.22, 

respectively, that our 0 M ensembles agree with previously published PRE data 

and the structural ensembles generated from those data 104, 126. 

It is worth noting that in our effort to establish an efficient, intermediate level 

of simulation, we chose not to pursue some elements that could have further 

improved the accuracy or tested the boundaries of our simulations. For example, 

we elected not to incorporate probe/linker spatial exploration. Although we 

acknowledge that simulations would be made more accurate by including 

representations of the probes, with FRET based on distances between fluorophore 

transition dipoles instead of α-carbons, this would have significantly increased the 

computational time, undermining our intention of creating an efficient approach. 

Additionally, we envision that coupling our method with the strategy previously 

employed by Dobson and Vendruscolo, where constraining functions were 

iteratively updated, could produce a more refined, but computationally intensive, 

version of our modeling protocol 104. Moreover, this method circumvents the need 
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to assume a probability distribution function when interpreting the FRET data, as 

the constraints would be applied directly as FRET efficiencies. Finally, since 

introduction of a new constraint functional form is as simple as writing a new 

function in Python, we hypothesize that our method of constraint introduction, 

where assumptions regarding underlying distributions are directly converted into a 

potential, is not only useful for applying FRET data from disordered systems, but 

would also allow for efficient incorporation of other types of experimental data such 

as PRE data 107-108, 126 . 

 

§ 5.8 Conclusions 

We have developed a Rosetta modeling protocol using explicit protein side 

chains and sophisticated score functions in combination with appropriately 

weighted distance constraints to generate models of IDPs. By performing 

simulations that were constrained with experimental FRET data from two libraries 

containing different FRET pairs, we were able to model the ensemble of αS in 

buffer and in the presence of 2 M TMAO. Our models agreed well with independent 

measurements of αS structure from FCS, NMR, PRE, and SAXS data, and were 

computationally less taxing than traditional molecular dynamics simulations. In 

future work, we intend to explore the degree to which ensembles generated in 

PyRosetta capture residual secondary structure and the accuracy of values 

computed from these ensembles, such as chemical shifts or J-couplings in 

comparison with NMR experiments. The modifications made to our Rosetta 

modeling protocol allowed us to produce reasonable αS starting models in the 
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absence of constraints. The quality of these unconstrained models gives us greater 

confidence in interpreting the interactions observed in the constrained structural 

ensembles, and makes the simulations more robust to the inclusion of an 

inconsistent constraint. After careful consideration of constraint function shape and 

weight, we have found a form that allows them to influence the structural ensemble 

without overconstraining. Future investigations could employ different weights for 

different FRET pairs, or different functional forms for different distance ranges. 

Our modeling protocol for IDPs incorporates atomic detail relevant to the 

study of chemical-, ligand-, or environment-induced conformational changes, and 

yet is sufficiently rapid both in data collection and simulation time to be applied in 

a moderate throughput fashion. Once libraries of labeled proteins have been 

generated, FRET measurements of the type reported here could easily be 

acquired under a variety of conditions, potentially even in a multiwell format. The 

collection of FRET constraints could then be used to generate structural 

ensembles to explore hypotheses for mechanisms of conformational change or to 

rationalize trends among molecules and modifications that modulate IDP 

conformation. For example, Kakish et al. 230 have recently shown that bis-

heterocycles linked by a flexible tether are able to bind to αS and induce 

conformational changes in the monomer that inhibit its propensity to aggregate. 

The procedures used here to study the effects of TMAO on αS structure could be 

applied to study such molecules with therapeutic potential. Furthermore, recent 

work has shown that modifications such as serine glycosylation and tyrosine 

phosphorylation affect aggregation and membrane binding respectively 231-232. 
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Subsequent modification of the current labeled library, or production of a new 

library, would allow one to utilize the method reported herein to visualize the effect 

of these and other posttranslational modifications on the disordered ensemble. 

Although certain classes of molecules or solution conditions may spectroscopically 

interfere with our FRET probes, it is important to note that we can easily vary these 

probes using essentially the same labeling strategies. For example, we have 

recently reported a methoxycoumarin-acridonylalanine FRET pair that can be 

introduced by a combination of cysteine modification and unnatural amino acid 

mutagenesis 51. Finally, it is important to note that our methods are not restricted 

to pure IDPs like monomeric αS, but can be applied to disordered regions of folded 

proteins or ordered aggregates such as the N- and C-terminal regions of fibrillar 

αS 47, 233. 
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CHAPTER 6: A UNIFIED DE NOVO APPROACH FOR PREDICTING THE 

STRUCTURES OF ORDERED AND DISORDERED PROTEINS. 

 

  



217 

 

§ 6.1 Introduction 

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions 

(IDRs) of proteins have garnered increasing attention due to growing recognition 

of their roles in cellular health and disease.2, 234 These highly dynamic systems 

play crucial roles in signaling pathways, the function of the nuclear pore, lipid 

transport, membraneless organelles, and several pathologies.2, 20, 234 These 

functions are often related to structural transitions, where protein-protein 

interactions or ligand binding events facilitate conversion from a broad 

conformational ensemble to a much smaller number of states.2 The ability to model 

both the conformationally diverse states as well as the induced ordered structures 

of IDPs is essential for mechanistic understanding of their activity and for potential 

therapeutic development for IDP-related proteinopathies. 

As interest in IDPs and IDRs has continued to grow, experimental and 

theoretical techniques originally developed for structured proteins have been 

adapted to accommodate these dynamic systems. Although NMR, fluorescence 

and scattering-based methods have all been effectively utilized to characterize 

unstructured systems, the production of representative structural ensembles for 

IDPs using computational methods has proven far more challenging.53, 60-61, 68, 104, 

107-108, 200-202, 219 Many approaches have constructed ensembles by using 

experimental data to filter sets of potential structures generated from random-coil 

or Protein Data Bank (PDB) fragment libraries.107-108, 199 Molecular dynamics (MD) 

based methods have been developed and optimized to predict IDP ensembles.97-

100, 105 Monte Carlo (MC) methods, such as those employed in CAMPARI, have 
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demonstrated efficacy in modeling structural ensembles with and without data 

restraints, but protocols developed to date cannot generally accommodate both 

folded proteins and IDPs.53, 68, 235-236 

Our goal was to develop an architecture which effectively handles both 

ordered and disordered proteins and can generate accurate structural 

representations of both, de novo. Furthermore, we want to develop algorithms that 

do not suffer the hardware and computational time burdens associated with MD 

simulations. We posit that MC sampling, which allows for broad sampling of 

conformational space, is more efficient than the relatively local sampling 

associated with MD. However, one major hurdle with MC methods is that the 

identification of true minima is often challenging. With these ideas in mind, we have 

turned our attention towards the Rosetta Modeling Suite. This platform has 

demonstrated extensive success in predicting structures for ordered systems 

through the use of a simulated annealing MC approach with limited gradient-based 

minimization.237 Simulated annealing methods effectively reduce simulation time 

by utilizing coarse grained representations during early stages of sampling and 

can greatly favor the identification of minima. In addition, Rosetta has been utilized 

successfully to model IDRs and IDPs with the application of experimental 

constraints.53, 68, 236 

Here, we focus on adapting two algorithms: AbInitio, which can predict 

folded protein structure from sequence, and FloppyTail, which can produce 

structural ensembles of IDRs.236, 238-240 For the first time, to our knowledge, we 

tested these method’s ability to produce an accurate structural ensemble of an 



219 

 

IDP, α-synuclein (αS), for which there exists a battery of experimental data. αS is 

fully disordered in solution and is a key player in the pathogenesis of Parkinson's 

Disease and other proteinopathies and is one of the most well-studied IDPs.19-20 

After demonstrating the limitations of both algorithms, we developed a generalized 

simulation format in PyRosetta that allowed us to test the efficacy of the underlying 

energy term and sampling methods that exist in Rosetta.114 After identifying issues 

with Rosetta’s knowledge-based terms and fragment sampling approach, we 

demonstrate methods for improving the energy term accuracy and fragment 

selection process. Although the solutions posited here are applied exclusively to 

Rosetta, both the issues themselves and the solutions are finding that are likely 

generalizable for other Monte-Carlo based methods.110 Lastly, we demonstrate 

that the incorporation of these improvements, along with additional improvements 

to sampling schemes, affords two improved algorithms, AbInitioVO and 

FastFloppyTail, which in concert allow for the accurate prediction of structural 

representations of proteins across all degrees of foldedness. 

When considering a unified architecture, we noted that Rosetta-based 

algorithms such as AbInitio, designed for folded structures, and FloppyTail, 

designed for disordered structures, vary dramatically in their approaches.236, 238, 240 

AbInitio utilized simulated annealing, coarse-graining and knowledge-based 

scoring terms to sample nine-residue (9-mer) and three-residue (3-mer) fragments 

culled from the PDB.238-240 With each simulation stage more score terms are added 

to the MC score function and the number of fragment insertions tested between 

score events is reduced. Lastly, the simulated structures are processed via the 
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Relax algorithm, which performs a series of gradient based minimizations with 

varied weightings of the repulsive van der Waals term.190 This allows the protein 

to pulse and wiggle towards an energetically minimized conformation. By 

comparison, FloppyTail also utilized knowledge-based scoring and coarse-

graining to perform initial 3-mer sampling.236 Following initial simulation under a 

coarse-grained representation, the structure is converted into an all atom 

representation and 3-mer sampling proceed under the “score12” all-atom score 

function used by Rosetta. Throughout, fragment insertion steps are coupled to 

gradient based minimization and, after the algorithm switches to an all-atom 

representation, sidechain rotamer sampling is also added.  

 

§ 6.2 Methods 

Computational Resources 

All simulations were performed on the University of Pennsylvania School of 

Arts and Sciences General Purpose Cluster (GPC). Each of the four GPC compute 

nodes contains 24 cores at 2.6 Ghz, 256 GB RAM, 1 GbE Networking, 56 Gb 

Infiniband and 3.6 TB OS/Scratch storage. All times reported herein were from 

140-residue αS. On average, Full-atom Generalized Simulations required ~3 hours 

per structure while simulations using exclusively Centroid course-graining required 

~30 minutes per structure. Simulations using both course-grained and all-atom 

molecular representations (SimAnn) took ~ 1.5 hours per structure and the 

previously reported FloppyTail simulation method took ~30 minutes per structure 

whereas FastFloppyTail simulation method took ~ 3 minutes per structure. The 
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AbInitio and AbInitioVO algorithms both required ~ 45 minutes per structure and 

Relaxes took ~ 3 minutes a structure. 

 

Generalized Simulation Format: 

We chose to sample the effects of full-atom and centroid AtomTypes on the 

simulation, in an effort to assess the possibility of using the course-grained method 

to speed up the simulation during initial sampling steps as is frequently done in 

Rosetta. Additionally, we assessed the utility of different score terms and focused 

on six different score weights (VDW: exclusively repulsive van der Waals term 

"fa_rep", CenStd: "cen_std" score term weights, CenStdExt: "cen_std" score term 

weights adding "rama", "cenpack", "hbond_lr_bb" and "hbond_sr_bb" all at weights 

of 1.0, Beta: "beta_nov15" score term weights, SimAnn: simulated annealing 

where additional score terms were included as sampling progressed utilizing 

"score0", "score1", "score2", "score3" and "beta_nov15", CenNath: "vdw", "rama", 

"pair", "env", "hbond_lr_bb" and "hbond_sr_bb" all at weights of 1.0, and CenOpt: 

identical to the SimAnn centroid score functions with “rg” at a weight of 0 and 

“hbond_lr_bb” and “hbond_sr_bb” at weights of 1.0).68 Finally, we utilized three 

different types of Movers within each of the different AtomType/ScoreFunction 

combinations (PP: φ/ψ torsion angle changes using Small/Shear Movers, FI: 

fragment insertion, and SC: side-chain rotamer optimization using the 

PackRotamersMover). The simulation nomenclature is in the form 

AtomType_Scoring_Sampling. For example, FA_Beta_PPFI utilizes the full-atom 

AtomType, the "beta_nov15" scoring term weights for the ScoreFunction and 
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application of both phi/psi sampling and fragment insertion. To assess the impact 

of each of these parameters on the resultant ensemble, a base script was devised 

which could be easily altered to analyze variable effects while keeping the number 

of Movers applied to the protein backbone over the course of the simulation 

constant. In brief, the method consisted primarily of RandomMovers, which select 

and apply a single move from a detailed set of movers comprised of SmallMovers 

and ShearMovers (apply φ/ψ torsion angle changes), as well as MinMovers 

(perform gradient-descent minimization to locate local minima). Fragment insertion 

in the form of the ClassicFragmentMover was added directly to RandomMovers 

for both 9-mer and 3-mer fragments. Side-chain sampling was not added directly 

to the RandomMover, but was applied after a move from the RandomMover. The 

number of moves applied by the RandomMover prior to application of the 

Metropolis-Hastings acceptance criteria were decreased over the course of the 

simulation. The temperature (specified kT) value was also decreased.  Lastly, the 

structure was set to the lowest energy structure found after each sampling stage 

and at the end of the simulation. For each simulation the resultant ensembles 

consisted of ~1000 structures. 

 

Construction of Fragment Libraries: 

The Robetta server was used to generate the initial fragment library for 

testing all variants of the “Generalized Simulation” along with “FloppyTail” and 

“FloppyTail_ref2015”.225 Production of the custom fragment libraries used were 

prepared using the FragmentPicker application in Rosetta.241 The 
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"FloppyTail_Quota" library was prepared using secondary structure probability 

predictions from the primary sequence of α-synuclein (αS) using the Jufo, PsiPred 

and RaptorX servers.242-244 The "FloppyTail_Loop" library was prepared by 

exchanging the secondary structure predictions with a single manually crafted 

prediction input that contains 1.0 loop probabilities at every residue of the 

sequence.  

All “FloppyTail” simulations not previously addressed, including all 

FastFloppyTail simulations of non-αS disordered proteins, utilized a quota-style 

fragment library using the same inputs as detailed above, where the disordered 

probability prediction was used to re-weight loop contributions as described in the 

main text. Additionally, AbInitio and AbInitioVO simulations were generated using 

the FragmentPicker following the best protocol, using only PsiPred predictions as 

inputs. AbInitioVO PsiPred predictions were loop reweighted as described in the 

main text. All fragment libraries contained 200 fragments. 

 

§ 6.3 Calculation of Data from Ensembles 

FRET Data: 

FRET efficiencies (EFRETs) for each residue pair were computed for each 

individual structure and averaged across all structures in a given ensemble to 

determine the average EFRET of the ensemble. This was performed through 

application of the Förster Equation: 

𝐸𝐹𝑅𝐸𝑇 =
1

1+(𝑟 𝑅0⁄ )6                                   (Eqn. 6.1)57 
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which is dependent on the interfluorophore distance, r, and the Förster distance 

(R0). For expedience, we approximated the interfluorophore distance as the 

distance between the Cα atoms of the labeled residues. 

 

 

Distance Data 

Distances for each residue pair were determined from the distances 

between the Cα atoms of each residue for each structure in a given ensemble and 

were averaged over all members of the ensemble. 

 

PRE Data: 

Paramagnetic relaxation enhancement (PRE) values (Γ2) were computed 

and converted to the experimentally observed value (Iox/Ired) from each structure in 

the ensemble using the formulas: 

𝛤2 = [
𝐾

𝑟6 (4𝜏𝑐 +
3𝜏𝑐

1+𝜔2𝜏𝑐
2)]                               (Eqn. 6.2) 

𝐼𝑜𝑥

𝐼𝑟𝑒𝑑
=

𝑅2𝑟𝑒𝑑 𝑒𝑥𝑝(−𝛤2𝑡)

𝑅2𝑟𝑒𝑑+𝛤2
                                    (Eqn. 6.3) 

previously detailed by Sung et al.201 Here, K is a constant that describes the 

spin properties for the nitroxide radical (1.23 x 10-32 cm6 s-2), c is the correlation 

time for the electron-nuclear interaction vector (4 ns) and ω/2π is the Larmour 

frequency of an amide proton (computed in all cases for a 700 MHz field), R2red is 

the transverse relaxation rate in the diamagnetic state (set to 4 s-1) and t is the total 

INEPT evolution time of the HSQC experiment, which was 10 ms for comparisons 



225 

 

to data from Dedmon et al.104 (as previously done by Piana et al.97) and 4 ms for 

comparisons to data from Sung et al.201  

 

Chemical Shift Data: 

The amide proton (H), amide nitrogen (N), carbonyl carbon (C), α-carbon 

(Cα) and β-carbon (Cβ) chemical shifts were all computed using the SPARTA+ 

package developed by Shen and Bax.245 The chemical shift values were computed 

for each structure and averages were computed uniformly across a given 

ensemble. 

 

Residual Dipolar Couplings: 

All residual dipolar couplings (RDCs) were computed using PALES.246 For 

each structure in a given ensemble, the RDC for a given residue was computed 

considering only a 15 residue segment where the residue of interest occupied the 

central position, as previously done by Piana et al.97 For the first and last seven 

residues in a given protein, the N- and C-terminal 15 residue segments were used. 

The averages were computed for the 1000 lowest energy structures in each 

ensemble. 

 

J-Couplings: 

The NMR J-couplings were calculated using fitted Karplus equations 

previously utilized by Shen and Bax from backbone φ/ψ dihedral angles.247 For 

each structure, φ and ψ were computed in DSSP.248 As with other values, the J-
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coupling was computed for each residue in each structure and averaged across 

all members of the ensemble. The Karplus equations used to compute each J-

coupling are detailed below: 

 

𝐽𝐻𝑁−𝐻𝐴 = 7.97 cos2(𝜑 − 60°) − 1.26 cos(𝜑 − 60°) + 0.63 
3        (Eqn 6.4)249 

𝐽𝐶𝛼−𝐻𝛼 = 𝐴𝑅𝐶 + 1.4 sin(𝜓 + 138°) 
1 − 4.1 cos(2[𝜓 + 138°]) + 1.7 cos(2[𝜑 + 60°]) 

(Eqn 6.5)250  

𝐽𝐶𝛼−𝑁 = 
1 9.5098 − 0.9799 cos(𝜓) + 1.7040 cos2(𝜓)          (Eqn 6.6) 251 

𝐽𝐶𝛼−𝑁 = 
2 𝐶 − 1.5176 cos(𝜓) − 0.2047 cos2(𝜓)                (Eqn 6.7)247 

𝐽𝐶′−𝐶′ = 
3 0.46 − 0.95 cos(𝜓) + 1.78 cos2(𝜓)                 (Eqn 6.7)252  

 

For both the 1JCα-Hα and the 2JCα-N couplings, the value of the constants ARC 

and C are amino acid dependent. For Val, Thr, Ile, and Ser C = 7.65 while for all 

other amino acids, C = 8.15.247 The constant ARC values are listed in Table S1 

below and originate from the random coil 1JCα-Hα values.250 

 

  



227 

 

Table 6.1: Values for Computing J-Couplings.  

Residue ARC Residue ARC Residue ARC Residue ARC 

Ala 143.7 Glu 141.9 Met 142.2 Trp 143.0 

Arg 141.5 His 143.8 Phe 142.9 Tyr 143.0 

Asn 141.5 Ile 141.3 Pro 148.4 Val 141.3 

Asp 142.5 Leu 141.1 Ser 142.1 Other 140.3 

Gln 141.1 Lys 141.5 Thr 141.4   

 

 

§ 6.3 Results 

To determine the effective capacity of each method, structural predictions 

were preformed using the AbInitio and FloppyTail methods, and were compared 

to 1) Förster resonance energy transfer (FRET) data from four different probe 

pairs, 2) inter-residue distances, determined from FRET, 3) electron transfer 

experiments, and 4) paramagnetic relaxation enhancement (PRE) measurements, 

to assess global ensemble accuracy.51, 53, 68, 104, 201, 253-254 Furthermore, the 

accuracy of residue level information for αS ensembles was analyzed through 

comparison to 5) chemical shift (δ) data, 6) residual dipolar couplings (RDCs) and 

7) NMR J-couplings.201, 247  

Of the two methods, FloppyTail significantly outperformed the AbInitio in 

generating accurate disordered ensembles of αS, as might be expected (referred 

to as FlopppyTail_score12 and AbInitio, respectively, Tables 6.2-4). The 

FloppyTail ensemble demonstrated an impressive degree of agreement with 
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global descriptors of the proteins overall topology including radius of gyration (Rg), 

EFRET, distance and PRE data (Figs. 6.3b, 6.4b, 6.5b and 6.22)  However, upon 

comparison to residue-level information, we noted that the predicted C and Cβ 

chemical shifts (Fig. 6.52) as well as 2JNCα J-couplings (Fig. 6.84) deviate from the 

experimental data (Tables 6.3-4). These deviations are likely attributable to 

overpopulations of helical structure and is clearly observed when plotting per 

residue helical propensity across all members of the resultant ensemble (Fig. 

6.2b). Indeed, overpopulations of helical architectures was not isolated to the 

FloppyTail simulation and was more pronounced in the AbIntio simulated 

ensemble (Fig. 6.2b). In contrast with the FloppyTail output, the AbInitio algorithm 

also presented severe discrepancies in the overall Rg and other global parameters 

compared to experimental values (Figs 6.3b, 6.4b, 6.5b and 6.33). Overall, both 

methods overpopulate helical architecture, while the AbInitio method additionally 

produces overcompacted structures. In comparison to other simulation 

approaches previously explored in the literature, overcompaction and 

overpopulation of helices are common problems in both MD and MC-based 

methods which have been optimized for ordered proteins.97, 99-100, 109-110 

 

Employment of a Generalized Simulation Format 

To overcome these barriers, a new method was drafted in PyRosetta 

allowing for a comparison of 17 different combinations of score functions, sampling 

schemes and atomic representations.114 PyRosetta is a python-wrapped version 

of Rosetta, that allows for new algorithm development in a relatively easy coding 
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language without the need to compile. The nomenclature and specifics of each 

simulation are detailed in the Supporting Information. In short, the format consists 

of six sampling stages where the temperature used for assessing the Metropolis 

criteria is decreased at each stage. Sampling consists of φ/ψ backbone torsion 

angle sampling, fragment insertion and/or sidechain rotamer sampling (indicated 

by PP, FI and SC suffixes in the generalized simulation names respectively). 

Additionally, simulations were tested under different score function and atomic 

representations utilizing the standard centroid scoring procedure in Rosetta, the 

standard full-atom score function in Rosetta, or the scoring procedure utilized by 

AbInitio (CenStd, Beta, and SimAnn prefixes respectively).194, 238-240 Additionally, 

polymer-like self-avoid walk simulations were also performed where the score 

function was exclusively comprised of a repulsive van der Waals energy term. 

(VDW prefix).194  

We observed that over-compaction was most severe when using the 

centroid coarse-grained representation (CenStd_PP and CenStd_PPFI 

simulations, Table 6.2, Figs. 6.3a, 6.4a, 6.5a, 6.10 and 6.11). The “centroid” 

coarse-graining approach represents the backbone atoms explicitly, while 

reducing sidechain atoms to a single pseudo-atom located on the gamma-carbon, 

with appropriate parameters to approximate the side-chain.240 This representation 

utilizes several knowledge-based score terms in place of the physics-based energy 

terms which are utilized in the explicit, all-atom representations in Rosetta.194 

Although we observed overcompaction when employing centroid coarse graining, 

we observe that either subsequent all-atom sampling (all SimAnn simulations, 
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Figs. 6.15-18) or sampling utilizing the specific centroid score function utilized by 

the FloppyTail algorithm (all CenStd_Ext simulations, Figs. 6.12-13) alleviated 

compaction (Table 6.2 and Figs. 6.3a, 6.4a and 6.5a).236 Therefore, we were able 

to determine that the “rg” score term, which is excluded from the score terms 

utilized in the centroid phase of the FloppyTail algorithm, was the likely source of 

overcompation. 

Unlike overcompaction, overpopulation of helical structures appeared to 

occur independent of the atomic representation or score function and was solely 

an artifact of sampling. Indeed, overpopulation occurred in all cases where 

fragments were sampled (all PPFI and PPFISC simulations, chemical shifts: Figs. 

6.37, 6.38, 6.41, 6.43, 6.46 and 6.47 J-couplings: Figs. 6.68, 6.69, 6.72, 6.74 and 

6.78) except when the protein was reduced to self-avoiding polymer (VDW_PPFI 

and VDW_PPFISC simulations, chemical shifts: Figs. 6.50 and 6.51 and J-

couplings: Figs. 6.81 and 6.82) as observed in Figure 6.2. Therefore, we 

hypothesized that fragment selection, as opposed to the fragment sampling 

condition, was the likely source of error. 

Lastly, we observed that sidechain sampling had a relatively minimal impact 

in the absence of fragment sampling. Inspecting the all-atom simulations and 

simulated annealing simulations (Beta, SimAnn and VDW simulations) we observe 

that the impact of sidechain sampling is relatively small compared to the impact of 

sampling fragments (Tables 6.2-4). Since sidechain packing in Rosetta accounts 

for a significant portion of the simulation time, we rationalize that simulation speed 

might be enhance by reducing the frequency of sidechain sampling events.  
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Increased Accuracy through Improved Fragment Selection 

Fragment libraries in Rosetta are typically generated from 3-state 

secondary structure predictions based on protein primary sequences.241 For the 

initial assessment of the performance of FloppyTail, a fragment library generated 

from the Robetta server was employed.225 We further corroborated our hypothesis 

that the observed overpopulation of helical structures originated from sampling, 

and not scoring, by confirming that the FloppyTail algorithm yielded a similar output 

when using an up-to-date all-atom score function, “ref2015”.194 This was indeed 

the case with no apparent differences in comparisons to all experimental data 

(FloppyTail_ref2015 simulation, Figs. 6.2b, 6.3b, 6.4b, 6.5b, 6.23, 6.53, 6.66d and 

6.84) Therefore, we wanted to assess the impact of sampling a broader array of 

input fragments through manual construction of a new fragment library. To do this 

we employed the FragmentPicker protocol.241 This method utilizes secondary 

structure inputs from servers such as PsiPred, Jufo and RaptorX, which predict the 

probability of each residue existing in a helix, sheet or loop for a supplied 

sequence.242-244 Traditionally, structural predictions in Rosetta utilize a fragment 

selection scheme where only fragments that match the highest probability 

architecture for each residue are chosen.241 This is referred to as a “best” protocol, 

which can be exchanged for a “quota” fragment selection protocol, which 

probabilistically collects fragments such that the frequency with which each 

secondary structural element is sampled for a given residues matches the 

probabilities in the input prediction. This library, though sampling a broader array 
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of secondary structural elements, provided a very minor improvement (Tables 6.2-

4) and still presented regions with a significant helical content (FloppyTail_Quota 

simulation, Figs. 6.2b, 6.3b, 6.4b, 6.5b, 6.24, 6.54, 6.66d and 6.85). This was 

unsurprising as all three predictions used contained a significant helical probability 

corresponding to the region of αS that organizes into a helices when bound to 

membranes.23-24 Therefore, we attempted to remove all fragment sampling from 

the protocol (FloppyTail_NoFrags simulation), exclusively employing pseudo-

random φ/ψ torsional sampling. The resulting simulation provided very good 

agreement with all data (Tables 6.2-4, Figs. 6.2b, 6.3b, 6.4b, 6.5b, 6.25, 6.55, 

6.66d and 6.86), however we suspected that this approach would be insufficient 

for IDPs which transit more frequently between folded and unfolded architectures.  

Recent studies by Bax and coworkers demonstrated that loops from PDB 

structures populated a similar Ramanchandran backbone dihedral space to that of 

IDPs.255 Therefore, we hypothesized that a fragment library composed exclusively 

of loops might allow us to re-introduce fragment insertion. Replacement of the 

initial fragment library with an all-loop library in the FloppyTail algorithm resulted in 

an ensemble which was devoid of extended secondary structure 

(FloppyTail_Loops simulation, Tables 6.2-4, Figs. 6.2b, 6.3b, 6.4b, 6.5b, 6.26, 

6.56, 6.66e and 6.87). Although this fragment library was sufficient to demonstrate 

that fragment sampling can be employed in an efficacious manner, this strategy 

for fragment library construction would require prior knowledge of a protein’s 

degree of order. Therefore, we sought to identify a surrogate for this knowledge, 

identifying disordered probability predictions from primary sequence as a 
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potentially useful candidate. Along with secondary structure predictions, many 

servers provide disordered probability predictions.243-244 Although many servers 

incorrectly characterized αS as being probabilistically ordered in at least a single 

stretch of residues, the RaptorX sever provided a correct prediction that the protein 

was entirely disordered. 243-244 Therefore, we envisioned that disordered probability 

predictions from RaptorX could be used to reweight the secondary structure 

predictions by adjusting the loop probability as follows:  

 

𝑃𝑟𝑒𝑠
′ (𝑙𝑜𝑜𝑝) =  𝑃𝑟𝑒𝑠(𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟)                                (Eq. 6.9) 

𝑃𝑟𝑒𝑠
′ (𝑠ℎ𝑒𝑒𝑡) = (1 − 𝑃𝑟𝑒𝑠(𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟)) × 𝑃𝑟𝑒𝑠(𝑠ℎ𝑒𝑒𝑡)               (Eq. 6.10) 

𝑃𝑟𝑒𝑠
′ (ℎ𝑒𝑙𝑖𝑥) = (1 − 𝑃𝑟𝑒𝑠(𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟)) × 𝑃𝑟𝑒𝑠(ℎ𝑒𝑙𝑖𝑥)                 (Eq. 6.11) 

 

Here, Pres(disorder) represents the predicted probability of a given residue 

to be disordered, while Pres(loop), Pres(helix), Pres(sheet) represent the probability 

of the residue being a loop, helix or sheet. Additionally, primed and non-primed 

variables represent the reweighted and original predictions respectively. 

Gratifyingly, the resultant fragment library constructed using these reweighted loop 

predictions as inputs for the previously described “quota” fragment library 

construction approach resulted in a highly accurate FloppyTail output ensemble 

(FloppyTail simulation, Tables 6.2-4, Figs. 6.2b, 6.3b, 6.4b, 6.5b, 6.27, 6.57, 6.66e 

and 6.88) comprised of very few helices. 
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Acceleration and Improved Accuracy via Adjustment to Sampling 

As previously stated, results from the generalized simulation suggest that a 

reduction of sidechain sampling could afford an accelerated simulation with 

comparable accuracy. Therefore, we removed sidechain sampling from one of the 

interior loops of the FloppyTail protocol, reducing the sampling frequency 15-fold. 

This resulted in a substantial ~10-fold reduction in compute time and produced an 

ensemble (FloppyTail_Rot simulation, Tables 6.2-4, Figs. 6.2b, 6.3b, 6.4b, 6.5b, 

6.29, 6.61, 6.66f and 6.92) that was nearly identical across all experimental 

comparisons. Additionally, unlike a traditional MC approach, at several stages of 

the FloppyTail simulation, the structure is returned to the lowest energy structure 

encountered in the search up until that point.236 This helps to restrict sampling to 

states near minima, while allowing limited sampling following Metropolis criteria 

acceptance to avoid trapping in local minima. Serendipitously, we discovered that 

reducing the amount of sampling between instances where the structure is 

returned to the lowest energy conformer further improved agreement with the 

experimental data, resulting in the algorithm now called FastFloppyTail (Tables 

6.2-4, Figs. 6.2b, 6.3b, 6.4b, 6.5b, 6.31, 6.59, 6.66e and 6.90). Finally, we 

employed the Relax algorithm, commonly used after the AbIntio algorithm, to 

further minimize outputs from the FastFloppyTail simulation, and again were met 

with an additional improvement in the overall agreement with experimental data 

(Tables 6.2-4, Figs. 6.2b, 6.3b, 6.4b and 6.5b, FloppyTail_Relax: 6.28, 6.58, 6.66e 

and 6.89, FloppyTail_Rot_Relax: 6.30, 6.62, 6.66f, 6.93, and 

FastFloppyTail_Relax: 6.32, 6.60, 6.66f, 6.91.194, 238-239 This final coupled 
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algorithm, FastFloppyTail-Relax, produces αS ensembles with comparable 

agreement with ensembles generated from state-of-the-art MD (Tables 6.2-4). 

 

Re-defining Knowledge Based Terms 

Although improved fragment selection was sufficient for delivering the 

improved FastFloppyTail method for generating disordered protein structural 

ensembles, the reliance of knowledge-based terms for the prediction of folded 

proteins required additional attention. The final stages of the AbInitio simulation is 

reliant on the “rg” score term, whose energetic penalty is equal to the Rg of the 

structure.240 Although this facilitates the compaction necessary for the adoption of 

well packed folded proteins, this produces severe over competition in IDPs and 

IDRs. Therefore, we propose replacement of this term with a score term that 

compares the Rg of the current simulated protein structure to that expected from 

polymer-scaling laws. Employing the following equations from Schuler and co-

workers, we can predict an expected Rg from the hydrophobic or charge content 

of a protein from a given sequence: 

 

𝑅𝑔
̅̅̅̅ = √

2𝑙𝑝
∗ 𝑏

(2𝑣+1)(2𝑣+2)
𝑁𝑣                               (Eq. 6.12) 256 

 

Here, 𝑅𝑔
̅̅̅̅  is the predicted mean Rg value determined from the persistence 

length (lp* = 0.53 nm) and the average distance between two Cα atoms (b = 0.38 

nm), which have been previously determined, along with the number of residues 
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in the sequence, N, and the scaling factor, v. The polymer scaling term, v, can be 

computed using Eqs. 6.13 or 6.14 depending on whether net charge or 

hydrophobicity serves as the dominating characteristic.  

 

𝜈(𝑄) =
1

3
+ 𝑎 [1 +

exp (𝑥0−𝑄)

𝑧
]

−1

                             (Eq. 6.13)256 

𝜈(𝐻) =
1

3
+ 𝑎 [1 +

exp (𝑥0+𝑐𝐻−𝑑)

𝑧
]

−1

                         (Eq. 6.14) 256 

 

In Eqs. 6.13 and 6.14, constants have been previously determined through 

fitting to experimental data (a = 0.394, z = 0.09, x0 = 0.114, c = 1.72 and d = 0.9) 

while variable Q and H represent the net charge and the mean hydrophobicity 

respectively.256 To select between the scaling factors computed by the net charge 

and hydrophobicity when computing an expected radius of gyration, the 

polyampholyte theory was applied to determine the effect of the net charge on the 

excluded volume of the system by computing the excess volume: 

 

 𝑣∗ =
4𝜋𝑙𝐵(𝑓−𝑔)2

𝜅2 −
𝜋𝑙𝐵

2(𝑓+𝑔)2

𝜅
                                    (Eq. 6.15)256 

 

Here, f and g are the fraction of positively (Arg/Lys) and negatively (Glu/Asp) 

charged residues, respectively, κ is the Debye length defined by 𝜅−1 = 0.304 √𝐼⁄ , 

where I is the ionic strength and lB is the Bjerrum length defined by: 
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 𝑙𝐵 = 𝑒2

(4𝜋휀0휀𝑟𝑘𝐵𝑇)⁄                                        (Eq. 6.16)256 

 

In the above equation, e is the elementary charge (1.602 × 10-19), ε0 is the 

dielectric constant (8.854 × 10-12), εr is the permittivity of water (78.7) and kB is 

the Boltzmann constant. In the general case for the calculation of v*, the ionic 

strength and the temperature are set to 0.15 M and 298 K respectively. Since 

values of v* greater than zero correspond to net electrostatic repulsion, when v* is 

greater than zero, the scaling term computed using the net charge is applied when 

predicting the radius of gyration. Conversely, when v* is less than zero, there is a 

net electrostatic attraction, forcing the scaling based on the hydrophobicity to 

dominate. In cases where both the fractions of positively and negatively charged 

residues are zero, the scaling is determined using the net hydrophobicity. Lastly, 

in the cases where either the fraction of positively or negatively charged residues 

equals zero, the scaling due to the net charge is selected.  

Upon further inspection of the above method proposed by Hofmann et al., 

we noted that when testing this function for lysozyme (PDB: 2LZM) the predicted 

scaling value (ν = 0.519) is significantly higher than the expected value for a folded 

protein.256 Since the fitting was performed on denatured proteins, the work by 

Hofmann et al. shows that when determining the radius of gyration for a suite of 

proteins from the Protein Data Bank, the minimum observed scaling factor is not 

equal to 0.33, which is the value for well-folded proteins, but instead is ~ 0.4.256 

Therefore, we utilized the per residue disordered probability of the protein to 
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determine if a given segment of the protein of interest was folded or unfolded. For 

predictions by the RaptorX server we used the suggested cutoff, where residues 

with a disordered probability >0.5 were determined to be disordered.244 Segments 

were defined as any stretch of residues greater than 10 in which all residues were 

of the same classification, ordered or disordered. Segments deemed ordered were 

assigned a scaling value of v = 0.33 while the scaling value for disordered regions 

was computed using the above equations. Therefore, we intend to predict Rg 

values for each ordered/disordered segment and compute the associated score 

on a per segment bases, with the overall score simply representing the sum of the 

scores across all segments.  

To incorporate the predicted Rg within an energy term we elected to craft a 

potential from a general version of a self-avoiding walk (SAW) probability 

distribution, previously employed by Zheng, Best, Schuler and coworkers, that 

accommodates changes in the scaling exponent.65 

 

𝑃(𝑟) = 𝐴
4𝜋

𝑅𝑔̅̅ ̅̅
(

𝑟𝑔

𝑅𝑔
)

2+𝑔

exp [−𝛼 (
𝑟𝑔

𝑅𝑔̅̅ ̅̅
)

𝛿

]                           (Eq. 6.17) 65 

𝑔 = (𝛾 − 1) 𝑣⁄  𝑎𝑛𝑑 𝛿 = 1 (1 − 𝑣)⁄             (Eq. 6.18 and 6.19) 65 

 

Above, rg represents the Rg of the structure being assess by the scoring 

function and again 𝑅𝑔
̅̅̅̅  represents the predicted mean Rg. The constants g and δ in 

Eq. 6.17 are defined in the subsequent equations Eq. 6.18 and 6.19. The constant 
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γ (1.1615) has been previously estimated for proteins, while the constants A and 

α are determined for a given 𝑅𝑔
̅̅̅̅  and v pair based on the normalization conditions: 

 

∫ 𝑃(𝑟𝑔)𝑑𝑟𝑔 = 1 𝑎𝑛𝑑 
∞

0
∫ 𝑃(𝑟𝑔)𝑟𝑔

2𝑑𝑟𝑔 = 𝑅𝑔
̅̅̅̅ 2∞

0
   (Eq. 6.20 and 6.21) 65 

 

This distribution provides a broad distribution of radii of gyration while at the same 

time preventing structures from becoming overly compact. The per segment 

energy potential is defined as: 

 

𝐸𝑅𝑔̅̅ ̅̅ (𝑟𝑔) = 1 − 𝑃(𝑟𝑔) 𝑚𝑎𝑥[𝑃(𝑟𝑔)]⁄                    (Eq. 6.22) 65 

 

Through this form, the energy value scales from zero to one for any average Rg 

allowing the weight of this score term within our overall score function to determine 

the depth of the potential. To determine the optimal weight of the new Rg score 

term, αS simulations were performed under the AbInitio protocol using a range of 

weighting values. We identified the optimal weighting value as that which 

maximized the impact of the score term on the average radius of gyration while 

minimizing the restriction on the conformational diversity (Fig. 6.1). Combination 

of this novel scoring approach with the previously described fragment selection 

strategy results in the new simulation termed AbInitioVO, or AbInitio Variable 

Order. 
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Figure 6.1: Determination of optimal new Rg score term weight. Plot shows the 
average (filled blue circles) and standard deviation (filled red circles) radius of 
gyration resultant from simulations with various relative weights of the new Rg 
score term compared to the simulation lacking the traditional rg term (open red and 
blue circles) and experimental data from SAXS228 (pink dashed line) and NMR205 
(cyan dashed line). The vertical black dashed line illustrates the chosen optimal 
score term weight, as this pushes the average Rg closest to the experimental value 
without over-constraining the sampling. Therefore, the weights of all terms in the 
new score3 term is equivalent to the traditional score3 term, with the canonical rg 
term set to weight a zero and the weight of this new term set to 84. 

 

Accurate De Novo Prediction of Disordered and Ordered Proteins 

To determine whether this modified AbInitioVO protocol outperforms the 

original AbItitio method, a set of 25 proteins were selected containing a variety of 

different secondary structural elements and spanning varying levels of 

order/disorder. For each AbInitioVO simulation, disordered probability predictions 

were performed based on the input sequence using RaptorX and fragment libraries 

were assembled using a best fragment selection protocol based on a loop-

reweighted secondary structure prediction from PsiPred, using Eqs. 6.9-6.11. The 

resultant structural predictions from AbIntioVO were compared to structures 
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generated using the standard AbInitio protocol (Table 6.5). For ordered and 

partially-ordered proteins, prediction accuracy was assessed by comparing the 

resultant structures to x-ray crystal structures and NMR structures deposited in the 

PDB by computing Cα-RMSDs. Disordered proteins were inspected for agreement 

with the experimentally determined Rg of each protein (Table 6.5). Overall, we 

observed that across all ordered and partially-ordered proteins tested, that 

AbInitioVO performs comparably to AbInito for the prediction of folded regions 

across all secondary structures (Table 6.5, Folding Funnels: Figs. 6.100-117, 

Structural Overlays: Figs. 6.124-141). Although there are some cases where 

AbInitioVO appears to be outperformed by AbInitio (ex: 1b3a, 1bq9, 1ejf, 1lwm) 

there are at leas as many cases where AbIntioVO outperforms AbInitio (ex: 1shf, 

1bk2, 1ghc, 1ubi). For partially-ordered proteins, as expected, the average Rg is 

from the AbInitioVO simulations is larger than the for AbInitio simulations (Fig 

6.98). Curiously, we observed that ordered proteins were on average slightly more 

compact in AbInitioVO compared to AbInitio (Fig. 6.97). Lastly, we find that the 

resultant average Rg values for disordered protein from AbInitioVO are more in-

line with the experimental Rgs than those from AbInitio (Table 6.5, Fig 6.99). These 

results support the notion that AbInitioVO is able to correctly predict the folded 

portions of ordered and partially-ordered proteins, while identifying disordered 

regions with the correct secondary structure and overall size. These disordered 

regions can then be simulated using the FastFloppyTail approach to create 

accurate structural ensemble of disordered and partially-ordered proteins.   
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Table 6.2: Comparison of Simulated αS Ensembles to Global Experimental Data.  

  EFRET IO/IR Dist. 

Name Rg (Å) RMSD RMSD RMSD 

Generalized Simulation 

VDW_PP 43.7 + 8.0 0.18 0.23 17.5 

VDW_PPFI 39.7 + 6.8 0.15 0.21 13.17 

VDW_PPFISC 40.0 + 7.0 0.15 0.21 14.0 

CenStd_PP 19.6 + 2.5 0.28 0.20 11.9 

CenStd_PPFI 19.2 + 2.5 0.28 0.22 12.5 

CenNath 33.4 + 7.9 0.11 0.18 8.09 

CenStd_Ext_PP 32.7 + 8.7 0.11 0.17 7.02 

CenStd_Ext_PPFI 25.6 + 5.6 0.17 0.16 6.69 

Beta_PP 30.6 + 5.5 0.13 0.17 8.23 

Beta_PPFI 36.4 + 6.9 0.12 0.19 11.7 

Beta_PPFISC 40.5 + 6.7 0.18 0.20 15.2 

Beta_PPSC 30.3 + 5.3 0.13 0.17 7.74 

SimAnn_PP 33.9 + 7.0 0.10 0.18 8.54 

SimAnn_PPFI 33.4 + 6.8 0.11 0.18 9.02 

SimAnn_PPFISC 25.5 + 4.0 0.18 0.17 8.14 

SimAnn_PPSC 31.7 + 6.3 0.12 0.17 7.38 

FloppyTail 

FloppyTail_score12 32.8 + 6.0 0.12 0.18 8.36 

FloppyTail_ref2015 33.9 + 6.4 0.12 0.18 9.39 

FloppyTail_Quota 34.2 + 6.1 0.12 0.18 9.02 

FloppyTail_Loops 35.3 + 6.7 0.12 0.18 9.75 

FloppyTail_NoFrags 34.8 + 6.3 0.12 0.18 9.00 

FloppyTail-Relax 27.7 + 8.1 0.15 0.15 7.03 

FloppyTail 34.0 + 7.7 0.11 0.18 7.94 

FastFloppyTail-Relax 31.0 + 9.0 0.11 0.17 5.37 

FastFloppyTail 38.0 + 9.4 0.12 0.20 10.1 

FloppyTail_Rot 37.2 + 8.6 0.12 0.19 10.4 

FloppyTail_Rot-Relax 29.2 + 8.7 0.13 0.15 6.25 

AbInitio 

DeNovoIDP 28.4 + 5.1 0.15 0.17 9.63 

AbInitio 17.3 + 1.0 0.32 0.31 12.2 

AbInitioVO 22.7 + 2.6 0.24 0.22 12.9 

Robustelli et. al.99 

a99SB-disp 36.73 - 0.17 - 
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 *Atom type abbreviations: CEN = centroid, FA = full-atom. 

** Rg values can be compared to experimentally determined values of 33.0 ± 3.0 

Å and 26.6 ± 0.5 Å from SAXS228 and NMR205 data, respectively. EFRET RMSD 

values were computed from data from Ferrie et. al., Ferrie et. al. and Nath et. 

al.51, 53, 68  Distance RMSD values were computed from Grupi et. al. and Lee et 

al.253-254 PRE RMSD values were computed from data from Sung et. al. and 

Dedmon et. al.104, 201 
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Table 6.3: Comparison of Simulated αS Ensembles to Chemical Shift and RDC 

Data.  

Simulation Name N H C Cα Cβ 
All 
CS 

RDC 
D.E 

RDC 
M.Z. 

Generalized Simulation 

VDW_PP 1.19 0.88 0.84 0.76 1.05 0.87 0.65 0.55 

VDW_PPFI 1.52 0.17 0.55 0.65 1.06 0.91 0.63 0.55 

VDW_PPFISC 1.83 0.19 0.49 0.50 1.08 1.01 0.61 0.52 

CenStd_PP 3.42 0.25 0.70 0.65 1.28 1.69 0.64 0.55 

CenStd_PPFI 3.66 0.20 0.66 1.07 1.31 1.83 0.60 0.44 

CenNath 2.10 0.22 0.40 0.50 1.37 1.16 0.64 0.51 

CenStd_Ext_PP 2.07 0.22 0.40 0.49 1.35 1.15 0.64 0.51 

CenStd_Ext_PPFI 3.60 0.28 1.28 1.52 1.42 1.95 0.61 0.36 

Beta_PP 0.95 1.06 0.57 2.67 0.14 1.38 0.64 0.54 

Beta_PPFI 3.37 0.31 1.18 1.58 1.18 1.83 0.62 0.39 

Beta_PPFISC 2.93 0.26 1.68 2.60 1.23 1.99 0.61 0.32 

Beta_PPSC 1.59 0.13 1.00 0.41 1.11 0.99 0.66 0.57 

SimAnn_PP 2.74 0.14 0.65 0.49 1.06 1.37 0.63 0.52 

SimAnn_PPFI 3.63 0.31 0.83 1.10 1.14 1.81 0.60 0.43 

SimAnn_PPFISC 3.10 0.27 1.20 1.81 1.08 1.77 0.59 0.37 

SimAnn_PPSC 2.17 0.12 0.64 0.43 1.03 1.13 0.63 0.51 

FloppyTail 

FloppyTail_score12 2.03 0.18 0.39 0.58 1.02 1.07 0.63 0.48 

FloppyTail_ref2015 1.93 0.17 0.39 0.58 1.02 1.02 0.63 0.48 

FloppyTail_Quota 1.75 0.18 0.38 0.46 1.03 0.95 0.64 0.49 

FloppyTail_Loops 1.52 0.13 0.40 0.39 1.02 0.86 0.65 0.55 

FloppyTail_NoFrags 1.52 0.13 0.41 0.38 1.01 0.86 0.64 0.55 

FloppyTail-Relax 1.79 0.13 0.38 0.34 0.98 0.94 0.63 0.44 

FloppyTail 1.69 0.13 0.36 0.35 0.98 0.90 0.62 0.44 

FastFloppyTail-Relax 1.62 0.11 0.47 0.36 1.02 0.90 0.63 0.42 

FastFloppyTail 1.55 0.12 0.42 0.33 1.01 0.86 0.62 0.41 

FloppyTail_Rot 1.66 0.13 0.36 0.33 0.98 0.89 0.62 0.44 

FloppyTail_Rot-Relax 1.77 0.12 0.38 0.34 0.97 0.93 0.63 0.44 

AbInitio 

DeNovoIDP 1.67 0.22 0.39 0.48 1.04 0.93 0.67 0.52 

AbInitio 2.68 0.25 1.37 2.08 1.23 1.73 0.60 0.38 

AbInitioVO 2.24 0.24 0.61 0.72 1.03 1.19 0.63 0.47 

Robustelli et. al. 

a99SB-disp 1.46 0.14 0.31 0.51 1.04 0.85 - 0.41 
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*All chemical shift data are reported as RMSD values from computed from data 

from Sung et al.201 RDC values are computed as Q-values, as described in 

Zweckstetter et. al.246, based on data from Sung et. al. (RDC D.E.)201 and 

Bertoncini et. al. (RDC M.Z.).200  
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Table 6.4: Comparison of Simulated αS Ensembles to J-Coupling Data 

Simulation Name 3JHNHα 1JCαHα 1JNCα 2JNCα 3JC’C’ All J 

 Generalized Simulation 

VDW_PP 2.38 1.31 0.63 0.42 0.69 1.30 

VDW_PPFI 2.63 1.10 0.72 0.74 0.57 1.38 

VDW_PPFISC 2.39 1.51 0.94 0.93 0.52 1.42 

CenStd_PP 1.41 1.37 0.66 0.46 0.61 0.99 

CenStd_PPFI 1.21 1.68 0.98 1.25 0.14 1.17 

CenNath 1.67 1.46 0.25 0.45 0.41 1.03 

CenStd_Ext_PP 1.61 1.43 0.25 0.45 0.39 1.00 

CenStd_Ext_PPFI 1.85 3.15 0.89 1.55 0.42 1.83 

Beta_PP 0.89 1.39 0.43 0.40 0.73 0.85 

Beta_PPFI 1.22 2.81 0.91 1.29 0.38 1.55 

Beta_PPFISC 2.41 4.31 1.15 1.48 0.40 2.37 

Beta_PPSC 0.82 1.28 0.38 0.40 0.74 0.79 

SimAnn_PP 0.67 1.68 0.55 0.45 0.58 0.91 

SimAnn_PPFI 0.84 2.08 0.91 1.37 0.24 1.25 

SimAnn_PPFISC 1.50 3.21 0.99 1.39 0.34 1.77 

SimAnn_PPSC 0.43 1.39 0.60 0.49 0.50 0.76 

 FloppyTail 

FloppyTail_score12 0.48 1.64 0.54 0.70 0.16 0.88 

FloppyTail_ref2015 0.52 1.68 0.52 0.79 0.17 0.88 

FloppyTail_Quota 0.62 1.55 0.49 0.74 0.19 0.85 

FloppyTail_Loops 0.51 1.10 0.35 0.43 0.10 0.60 

FloppyTail_NoFrags 0.53 1.11 0.35 0.43 0.10 0.60 

FloppyTail-Relax 0.59 1.25 0.41 0.54 0.16 0.69 

FloppyTail 0.64 1.45 0.40 0.53 0.16 0.77 

FastFloppyTail-
Relax 

0.65 1.14 0.36 0.39 0.26 0.64 

FastFloppyTail 0.56 1.22 0.35 0.39 0.24 0.65 

FloppyTail_Rot 0.61 1.41 0.40 0.51 0.16 0.75 

FloppyTail_Rot-
Relax 

0.60 1.23 0.40 0.52 0.17 0.68 

 AbInitio 

DeNovoIDP 0.74 1.55 0.72 0.98 0.28 0.95 

AbInitio 2.15 3.49 0.99 1.32 0.37 1.98 

AbInitioVO 1.16 1.82 0.71 1.12 0.25 1.13 

 Robustelli et. al 

a99SB-disp 1.11 - - - 0.18 - 

*All data are reported as RMSD values computed from data from Mantsyzov et 

al. and Lee et. al.247, 252 
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Analysis of Per Residue Percent Helicity for α-Synuclein Simulations 

 

Figure 6.2a: Plots of Percent Helicity. Plots of the percentage of structures 
containing helices on a per residue basis from Beta_PP (Row 1 Left), Beta_PPFI 
(Row 1 Middle), Beta_PPFISC (Row 1 Right), Beta_PPSC (Row 2 Left), 
CenStd_PP (Row 2 Middle), CenStd_PPFI (Row 2 Right), CenStd_Ext_PP (Row 
3 Left), CenStd_Ext_PPFI (Row 3 Middle), CenNath (Row 3 Right), SimAnn_PP 
(Row 4 Left), SimAnn_PPFI (Row 4 Middle), SimAnn_PPFISC (Row 4 Right), 
SimAnn_PPSC (Row 5 Left), VDW_PP (Row 5 Middle) and VDW_PPFI (Row 5 
Right) ensembles compared to percentages computed from Sung et. al. chemical 
shift data using the D2D method from Camilloni et. al.201, 257 
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Figure 6.2b: Plots of Percent Helicity. Plots of the percentage of structures 
containing helices on a per residue basis from VDW_PPFISC (Row 1 Left), 
FloppyTail_score12 (Row 1 Middle), FloppyTail_ref2015 (Row 1 Right), 
FloppyTail_Quota (Row 2 Left), FloppyTail_NoFrags (Row 2 Middle), 
FloppyTail_Loops (Row 2 Right), FloppyTail (Row 3 Left), FloppyTail_Relax (Row 
3 Middle), FastFloppyTail (Row 3 Right), FastFloppyTail_Relax (Row 4 Left), 
FloppyTail_Rot (Row 4 Middle), FloppyTail_Rot_Relax (Row 4 Right), AbInitio 
(Row 5 Left), AbInitioVO (Row 5 Middle) and DeNovoIDP (Row 5 Right) ensembles 
compared to percentages computed from Sung et. al. chemical shift data using the 
D2D method from Camilloni et. al.201, 257 
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Radii of Gyration for α-Synuclein Simulations 

 

Figure 6.3a: Histograms of Radii of Gyration. Histograms of the radius of gyration 
from Beta_PP (Row 1 Left), Beta_PPFI (Row 1 Middle), Beta_PPFISC (Row 1 
Right), Beta_PPSC (Row 2 Left), CenStd_PP (Row 2 Middle), CenStd_PPFI (Row 
2 Right), CenStd_Ext_PP (Row 3 Left), CenStd_Ext_PPFI (Row 3 Middle), 
CenNath (Row 3 Right), SimAnn_PP (Row 4 Left), SimAnn_PPFI (Row 4 Middle), 
SimAnn_PPFISC (Row 4 Right), SimAnn_PPSC (Row 5 Left), VDW_PP (Row 5 
Middle) and VDW_PPFI (Row 5 Right) ensembles compared to experimental 
values from SAXS228 (grey) and NMR205 (black). 
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Figure 6.3b: Histograms of Radii of Gyration. Histograms of the radius of gyration 
from VDW_PPFISC (Row 1 Left), FloppyTail_score12 (Row 1 Middle), 
FloppyTail_ref2015 (Row 1 Right), FloppyTail_Quota (Row 2 Left), 
FloppyTail_NoFrags (Row 2 Middle), FloppyTail_Loops (Row 2 Right), FloppyTail 
(Row 3 Left), FloppyTail_Relax (Row 3 Middle), FastFloppyTail (Row 3 Right), 
FastFloppyTail_Relax (Row 4 Left), FloppyTail_Rot (Row 4 Middle), 
FloppyTail_Rot_Relax (Row 4 Right), AbInitio (Row 5 Left), AbInitioVO (Row 5 
Middle) and DeNovoIDP (Row 5 Right) ensembles compared to experimental 
values from SAXS228 (grey) and NMR205 (black). 
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Comparison of EFRET Data from α-Synuclein Simulations 

 

Figure 6.4a: Comparison of Simulated EFRET with Experimental EFRET. 
Simulated EFRETs for Beta_PP (Row 1 Left), Beta_PPFI (Row 1  Center), 
Beta_PPFISC (Row 1  Right), Beta_PPSC (Row 2 Left), CenStd_PP (Row 2 
Center), CenStd_PPFI (Row 2 Right), CenStd_Ext_PP (Row 3 Left), 
CenStd_Ext_PPFI (Row 3 Center), CenNath (Row 3 Right), SimAnn_PP (Row 4  
Left), SimAnn_PPFI (Row 4 Center), SimAnn_PPFISC (Row 4 Right), 
SimAnn_PPSC (Row 5 Left) , VDW_PP (Row 5 Middle) , VDW_PPFISC (Row 5 
Right) with data from Ferrie et al. Cnf-Trp53 (Purple) and Fam-Raz53 (Red) Pairs, 
Ferrie et al. Mcm-Acd pair51 (Blue), and Nath et al.68 (Green). 
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Figure 6.4b: Comparison of Simulated EFRET with Experimental EFRET. 
Simulated EFRETs for VDW_PPFISC (Row 1 Left), FloppyTail_score12 (Row 1 
Center), FloppyTail_ref2015 (Row 1  Right), FloppyTail_Loops (Row 2 Left), 
FloppyTail_Quota (Row 2 Center), FloppyTail_NoFrags (Row 2 Right), FloppyTail 
(Row 3 Left), FloppyTail_Relax (Row 3 Center), FastFloppyTail (Row 3 Right), 
FastFloppyTail_Relax (Row 4  Left), FloppyTail_Rot (Row 4 Center), 
FloppyTail_Rot_Relax (Row 4 Right), AbInitio (Row 5 Left) , AbInitioVO (Row 5 
Middle) , DeNovoIDP (Row 5 Right) with data from Ferrie et al. Cnf-Trp53 (Purple) 
and Fam-Raz53 (Red) Pairs, Ferrie et al. Mcm-Acd pair51 (Blue), and Nath et al.68 
(Green). 
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Comparison of Distance from α-Synuclein Simulations 

 
Figure 6.5a: Comparison of Simulated Distance with Experimental Distances. 
Simulated EFRETs for Beta_PP (Row 1 Left), Beta_PPFI (Row 1  Center), 
Beta_PPFISC (Row 1  Right), Beta_PPSC (Row 2 Left), CenStd_PP (Row 2 
Center), CenStd_PPFI (Row 2 Right), CenStd_Ext_PP (Row 3 Left), 
CenStd_Ext_PPFI (Row 3 Center), CenNath (Row 3 Right), SimAnn_PP (Row 4  
Left), SimAnn_PPFI (Row 4 Center), SimAnn_PPFISC (Row 4 Right), 
SimAnn_PPSC (Row 5 Left) , VDW_PP (Row 5 Middle) , VDW_PPFISC (Row 5 
Right) with data from Lee et al.253 (Red) and Grupi et al.254 (Blue). 
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Figure 6.5b: Comparison of Simulated Distance with Experimental Distances. 
Simulated EFRETs for VDW_PPFISC (Row 1 Left), FloppyTail_score12 (Row 1 
Center), FloppyTail_ref2015 (Row 1  Right), FloppyTail_Loops (Row 2 Left), 
FloppyTail_Quota (Row 2 Center), FloppyTail_NoFrags (Row 2 Right), FloppyTail 
(Row 3 Left), FloppyTail_Relax (Row 3 Center), FastFloppyTail (Row 3 Right), 
FastFloppyTail_Relax (Row 4  Left), FloppyTail_Rot (Row 4 Center), 
FloppyTail_Rot_Relax (Row 4 Right), AbInitio (Row 5 Left) , AbInitioVO (Row 5 
Middle) , DeNovoIDP (Row 5 Right) with data from Lee et al.253 (Red) and Grupi 
et al.254 (Blue). 
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Comparison with α-Synuclein PRE Data 

 

Figure 6.6: Comparison of Simulated Beta_PP PRE Values and Experimental 
PRE Values. Simulated PRE values from Beta_PP (red line) overlayed on top of 
experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.7: Comparison of Simulated Beta_PPFI PRE Values and Experimental 
PRE Values. Simulated PRE values from Beta_PPFI (red line) overlayed on top of 
experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.8: Comparison of Simulated Beta_PPFISC PRE Values and 
Experimental PRE Values. Simulated PRE values from Beta_PPFISC (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.9: Comparison of Simulated Beta_PPSC PRE Values and Experimental 
PRE Values. Simulated PRE values from Beta_PPSC (red line) overlayed on top 
of experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.10: Comparison of Simulated CenStd_PP PRE Values and Experimental 
PRE Values. Simulated PRE values from CenStd_PP (red line) overlayed on top 
of experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.11: Comparison of Simulated CenStd_PPFI PRE Values and 
Experimental PRE Values. Simulated PRE values from CenStd_PPFI (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.12: Comparison of Simulated CenStd_Ext_PP PRE Values and 
Experimental PRE Values. Simulated PRE values from CenStd_Ext_PP (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.13: Comparison of Simulated CenStd_Ext_PPFI PRE Values and 
Experimental PRE Values. Simulated PRE values from CenStd_Ext_PPFI (red 
line) overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 
24 (Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.14: Comparison of Simulated CenNath PRE Values and Experimental 
PRE Values. Simulated PRE values from CenNath (red line) overlayed on top of 
experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.15: Comparison of Simulated SimAnn_PP PRE Values and Experimental 
PRE Values. Simulated PRE values from SimAnn_PP (red line) overlayed on top 
of experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.16: Comparison of Simulated SimAnn_PPFI PRE Values and 
Experimental PRE Values. Simulated PRE values from SimAnn_PPFI (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.17: Comparison of Simulated SimAnn_PPFISC PRE Values and 
Experimental PRE Values. Simulated PRE values from SimAnn_PPFISC (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.18: Comparison of Simulated SimAnn_PPSC PRE Values and 
Experimental PRE Values. Simulated PRE values from SimAnn_PPSC (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.19: Comparison of Simulated VDW_PP PRE Values and Experimental 
PRE Values. Simulated PRE values from VDW_PP (red line) overlayed on top of 
experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.20: Comparison of Simulated VDW_PPFI PRE Values and Experimental 
PRE Values. Simulated PRE values from VDW_PPFI (red line) overlayed on top 
of experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.21: Comparison of Simulated VDW_PPFISC PRE Values and 
Experimental PRE Values. Simulated PRE values from VDW_PPFISC (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.22: Comparison of Simulated FloppyTail_score12 PRE Values and 
Experimental PRE Values. Simulated PRE values from FloppyTail_score12 (red 
line) overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 
24 (Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.23: Comparison of Simulated FloppyTail_ref2015 PRE Values and 
Experimental PRE Values. Simulated PRE values from FloppyTail_ref2015 (red 
line) overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 
24 (Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 

  



273 

 

 

Figure 6.24: Comparison of Simulated FloppyTail_Quota PRE Values and 
Experimental PRE Values. Simulated PRE values from FloppyTail_Quota (red 
line) overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 
24 (Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.25: Comparison of Simulated FloppyTail_NoFrags PRE Values and 
Experimental PRE Values. Simulated PRE values from FloppyTail_NoFrags (red 
line) overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 
24 (Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.26: Comparison of Simulated FloppyTail_Loops PRE Values and 
Experimental PRE Values. Simulated PRE values from FloppyTail_Loops (red 
line) overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 
24 (Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.27: Comparison of Simulated FloppyTail PRE Values and Experimental 
PRE Values. Simulated PRE values from FloppyTail (red line) overlayed on top of 
experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.28: Comparison of Simulated FloppyTail_Relax PRE Values and 
Experimental PRE Values. Simulated PRE values from FloppyTail_Relax (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.29: Comparison of Simulated FloppyTail_Rot PRE Values and 
Experimental PRE Values. Simulated PRE values from FloppyTail_Rot (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.30: Comparison of Simulated FloppyTail_Rot_Relax PRE Values and 
Experimental PRE Values. Simulated PRE values from FloppyTail_Rot_Relax (red 
line) overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 
24 (Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 

  



280 

 

 

Figure 6.31: Comparison of Simulated FastFloppyTail PRE Values and 
Experimental PRE Values. Simulated PRE values from FastFloppyTail (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.32: Comparison of Simulated FastFloppyTail PRE Values and 
Experimental PRE Values. Simulated PRE values from FastFloppyTail (red line) 
overlayed on top of experimental data (grey bars) from positions 20 (Top Left), 24 
(Top Right), 42 (Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle 
Left), 87 (Lower Middle Right), 103 (Bottom Left), 120 (Bottom Right). 
Experimental data for positions 20, 85, and 120 are from Sung et al.201 and data 
for positions 24, 42, 62, 87, and 103 are from Dedmon et al.104 
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Figure 6.33: Comparison of Simulated AbInitio PRE Values and Experimental 
PRE Values. Simulated PRE values from AbInitio (red line) overlayed on top of 
experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.34: Comparison of Simulated AbInitioVO PRE Values and Experimental 
PRE Values. Simulated PRE values from AbInitioVO (red line) overlayed on top of 
experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Figure 6.35: Comparison of Simulated DeNovoIDP PRE Values and Experimental 
PRE Values. Simulated PRE values from DeNovoIDP (red line) overlayed on top 
of experimental data (grey bars) from positions 20 (Top Left), 24 (Top Right), 42 
(Upper Middle Left), 62 (Upper Middle Right), 85 (Lower Middle Left), 87 (Lower 
Middle Right), 103 (Bottom Left), 120 (Bottom Right). Experimental data for 
positions 20, 85, and 120 are from Sung et al.201 and data for positions 24, 42, 62, 
87, and 103 are from Dedmon et al.104 
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Comparison with α-Synuclein Chemical Shift Data 

 

Figure 6.36: Comparison of Simulated Beta_PP and Experimental NMR Chemical 
Shift Data. Simulated Chemical Shift values from the Beta_PP ensemble (red) 
overlayed on experimental data (black bars) of N (Top), H (Upper Middle), C 
(Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung et al.201 
Neighbor corrected random coil chemical shift values have been subtracted from 
both simulated and experimental data.245   
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Figure 6.37: Comparison of Simulated Beta_PPFI and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the Beta_PPFI 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245   

  



287 

 

 

Figure 6.38: Comparison of Simulated Beta_PPFISC and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the Beta_PPFISC 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245   
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Figure 6.39: Comparison of Simulated Beta_PPSC and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the Beta_PPSC 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245 
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Figure 6.40: Comparison of Simulated CenStd_PP and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the CenStd_PP 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245 
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Figure 6.41: Comparison of Simulated CenStd_PPFI and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the CenStd_PPFI 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245 
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Figure 6.42: Comparison of Simulated CenStd_Ext_PP and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the CenStd_Ext_PP 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245   
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Figure 6.43: Comparison of Simulated CenStd_Ext_PPFI and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the CenStd_Ext_PPFI 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245 
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Figure 6.44: Comparison of Simulated CenNath and Experimental NMR Chemical 
Shift Data. Simulated Chemical Shift values from the CenNath ensemble (red) 
overlayed on experimental data (black bars) of N (Top), H (Upper Middle), C 
(Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung et al.201 
Neighbor corrected random coil chemical shift values have been subtracted from 
both simulated and experimental data.245  
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Figure 6.45: Comparison of Simulated SimAnn_PP and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the SimAnn_PP 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245   

  



295 

 

 

Figure 6.46: Comparison of Simulated SimAnn_PPFI and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the SimAnn_PPFI 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245 
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Figure 6.47: Comparison of Simulated SimAnn_PPFISC and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the SimAnn_PPFISC 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.48: Comparison of Simulated SimAnn_PPSC and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the SimAnn_PPSC 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.49: Comparison of Simulated VDW_PP and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the VDW_PP 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.50: Comparison of Simulated VDW_PPFI and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the VDW_PPFI 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.51: Comparison of Simulated VDW_PPFISC and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the VDW_PPFISC 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.52: Comparison of Simulated FloppyTail_score12 and Experimental 
NMR Chemical Shift Data. Simulated Chemical Shift values from the 
FloppyTail_score12 ensemble (red) overlayed on experimental data (black bars) 
of N (Top), H (Upper Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) 
chemical shifts from Sung et al.201 Neighbor corrected random coil chemical shift 
values have been subtracted from both simulated and experimental data.245  
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Figure 6.53: Comparison of Simulated FloppyTail_ref2015 and Experimental 
NMR Chemical Shift Data. Simulated Chemical Shift values from the 
FloppyTail_ref2015 ensemble (red) overlayed on experimental data (black bars) 
of N (Top), H (Upper Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) 
chemical shifts from Sung et al.201 Neighbor corrected random coil chemical shift 
values have been subtracted from both simulated and experimental data.245  
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Figure 6.54: Comparison of Simulated FloppyTail_Quota and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the FloppyTail_Quota 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.55: Comparison of Simulated FloppyTail_NoFrags and Experimental 
NMR Chemical Shift Data. Simulated Chemical Shift values from the 
FloppyTail_NoFrags ensemble (red) overlayed on experimental data (black bars) 
of N (Top), H (Upper Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) 
chemical shifts from Sung et al.201 Neighbor corrected random coil chemical shift 
values have been subtracted from both simulated and experimental data.245  
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Figure 6.56: Comparison of Simulated FloppyTail_Loops and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from FloppyTail_Loops 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.57: Comparison of Simulated FloppyTail and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the FloppyTail 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.58: Comparison of Simulated FloppyTail_Relax and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the FloppyTail_Relax 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.59: Comparison of Simulated FastFloppyTail and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the FastFloppyTail 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.60: Comparison of Simulated FastFloppyTail_Relax and Experimental 
NMR Chemical Shift Data. Simulated Chemical Shift values from the 
FastFloppyTail_Relax ensemble (red) overlayed on experimental data (black bars) 
of N (Top), H (Upper Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) 
chemical shifts from Sung et al.201 Neighbor corrected random coil chemical shift 
values have been subtracted from both simulated and experimental data.245  
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Figure 6.61: Comparison of Simulated FloppyTail_Rot and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the FloppyTail_Rot 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Figure 6.62: Comparison of Simulated FloppyTail_Rot_Relax and Experimental 
NMR Chemical Shift Data. Simulated Chemical Shift values from the 
FloppyTail_Rot_Relax ensemble (red) overlayed on experimental data (black 
bars) of N (Top), H (Upper Middle), C (Middle), Cα (Lower Middle), and Cβ 
(Bottom) chemical shifts from Sung et al.201 Neighbor corrected random coil 
chemical shift values have been subtracted from both simulated and experimental 
data.245  
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Figure 6.63: Comparison of Simulated AbInitio and Experimental NMR Chemical 
Shift Data. Simulated Chemical Shift values from the AbInitio ensemble (red) 
overlayed on experimental data (black bars) of N (Top), H (Upper Middle), C 
(Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung et al.201 
Neighbor corrected random coil chemical shift values have been subtracted from 
both simulated and experimental data.245  
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Figure 6.64: Comparison of Simulated AbInitioVO and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the AbInitioVO 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  

  



314 

 

 

Figure 6.65: Comparison of Simulated DeNovoIDP and Experimental NMR 
Chemical Shift Data. Simulated Chemical Shift values from the DeNovoIDP 
ensemble (red) overlayed on experimental data (black bars) of N (Top), H (Upper 
Middle), C (Middle), Cα (Lower Middle), and Cβ (Bottom) chemical shifts from Sung 
et al.201 Neighbor corrected random coil chemical shift values have been 
subtracted from both simulated and experimental data.245  
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Comparison with α-Synuclein Residual Dipolar Coupling Data 

 

Figure 6.66a: Comparison of Simulated and Experimental Residual Dipolar 
Coupling Data. Simulated RDC values (red line) from Beta_PP (Top), Beta_PPFI 
(Upper Middle), Beta_PPFISC (Lower Middle), and Beta_PPSC (Bottom) 
overlayed on experimental data (black bars) from Bertoncini et. al.200 
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Figure 6.66b: Comparison of Simulated and Experimental Residual Dipolar 
Coupling Data. Simulated RDC values (red line) from CenStd_PP (Top), 
CenStd_PPFI (Upper Middle), CenStd_Ext_PP (Lower Middle), and 
CenStd_Ext_PPFI (Bottom) overlayed on experimental data (black bars) from 
Bertoncini et. al.200 
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Figure 6.66c: Comparison of Simulated and Experimental Residual Dipolar 
Coupling Data. Simulated RDC values (red line) from SimAnn_PP (Top), 
SimAnn_PPFI (Upper Middle), SimAnn_PPFISC (Lower Middle), and 
SimAnn_PPSC (Bottom) overlayed on experimental data (black bars) from 
Bertoncini et. al.200 
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Figure 6.66d: Comparison of Simulated and Experimental Residual Dipolar 
Coupling Data. Simulated RDC values (red line) from CenNath (Top), VDW_PP 
(Upper Middle), VDW_PPFI (Lower Middle), and VDW_PPFISC (Bottom) 
overlayed on experimental data (black bars) from Bertoncini et. al.200 
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Figure 6.66d: Comparison of Simulated and Experimental Residual Dipolar 
Coupling Data. Simulated RDC values (red line) from FloppyTail_score12 (Top), 
FloppyTail_ref2015 (Upper Middle), FloppyTail_Quota (Lower Middle), and 
FloppyTail_NoFrags (Bottom) overlayed on experimental data (black bars) from 
Bertoncini et. al.200 
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Figure 6.66e: Comparison of Simulated and Experimental Residual Dipolar 
Coupling Data. Simulated RDC values (red line) from FloppyTail_Loops (Top), 
FloppyTail (Upper Middle), FloppyTail_Relax (Lower Middle), and FastFloppyTail 
(Bottom) overlayed on experimental data (black bars) from Bertoncini et. al.200 
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Figure 6.66f: Comparison of Simulated and Experimental Residual Dipolar 
Coupling Data. Simulated RDC values (red line) from FastFloppyTail_Relax (Top), 
FloppyTail_Rot (Upper Middle), FloppyTail_Rot_Relax (Lower Middle), and 
AbInitio (Bottom) overlayed on experimental data (black bars) from Bertoncini et. 
al.200 
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Figure 6.66g: Comparison of Simulated and Experimental Residual Dipolar 
Coupling Data. Simulated RDC values (red line) from AbInitioVO (Top) and 
DeNovoIDP (Bottom) overlayed on experimental data (black bars) from Bertoncini 
et. al.200 
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Comparison with α-Synuclein J-Coupling Data 
 

 

Figure 6.67: Comparison of Simulated Beta_PP and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the Beta_PP ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.68: Comparison of Simulated Beta_PPFI and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the Beta_PPFI ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.69: Comparison of Simulated Beta_PPFISC and Experimental J-
Coupling Data. Simulated Chemical Shift values from the Beta_PPFISC ensemble 
(red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.70: Comparison of Simulated Beta_PPSC and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the Beta_PPSC ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.71: Comparison of Simulated CenStd_PP and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the CenStd_PP ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.72: Comparison of Simulated CenStd_PPFI and Experimental J-
Coupling Data. Simulated Chemical Shift values from the CenStd_PPFI ensemble 
(red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα (Upper 
Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov 
et al. and Lee et. al.247, 252 
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Figure 6.73: Comparison of Simulated CenStd_Ext_PP and Experimental J-
Coupling Data. Simulated Chemical Shift values from the CenStd_Ext_PP 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα 
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.74: Comparison with α-Synuclein PRE Data Comparison of Simulated 
CenStd_Ext_PPFI and Experimental J-Coupling Data. Simulated Chemical Shift 
values from the CenStd_Ext_PPFI ensemble (red) overlayed on experimental data 
(black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) 
and 2JNCα (Bottom) from Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.75: Comparison of Simulated CenNath and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the CenNath ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.76: Comparison of Simulated SimAnn_PP and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the SimAnn_PP ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.77: Comparison of Simulated SimAnn_PPFI and Experimental J-
Coupling Data. Simulated Chemical Shift values from the SimAnn_PPFI ensemble 
(red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα (Upper 
Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov 
et al. and Lee et. al.247, 252 
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Figure 6.78: Comparison of Simulated SimAnn_PPFISC and Experimental J-
Coupling Data. Simulated Chemical Shift values from the SimAnn_PPFISC 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα 
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.79: Comparison of Simulated SimAnn_PPSC and Experimental J-
Coupling Data. Simulated Chemical Shift values from the SimAnn_PPSC 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 

(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.80: Comparison of Simulated VDW_PP and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the VDW_PP ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.81: Comparison of Simulated VDW_PPFI and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the VDW_PPFI ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.82: Comparison of Simulated VDW_PPFISC and Experimental J-
Coupling Data. Simulated Chemical Shift values from the VDW_PPFISC ensemble 
(red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.83: Comparison of Simulated FloppyTail_score12 and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FloppyTail_score12 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.84: Comparison of Simulated FloppyTail_ref2015 and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FloppyTail_ref2015 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

 

(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.85: Comparison of Simulated FloppyTail_Quota and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FloppyTail_Quota 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.86: Comparison of Simulated FloppyTail_NoFrags and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FloppyTail_NoFrags 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.87: Comparison of Simulated FloppyTail_Loops and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FloppyTail_Loops 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.88: Comparison of Simulated FloppyTail and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the FloppyTail ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.89: Comparison of Simulated FloppyTail_Relax and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FloppyTail_Relax 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.90: Comparison of Simulated FastFloppyTail and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FastFloppyTail 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.91: Comparison of Simulated FastFloppyTail_Relax and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FastFloppyTail_Relax 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.92: Comparison of Simulated FloppyTail_Rot and Experimental J-
Coupling Data. Simulated Chemical Shift values from the FloppyTail_Rot 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.93: Comparison of Simulated FloppyTail_Rot_Relax and Experimental 
J-Coupling Data. Simulated Chemical Shift values from the FloppyTail_Rot_Relax 
ensemble (red) overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  
(Upper Middle), 1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from 
Mantsyzov et al. and Lee et. al.247, 252 
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Figure 6.94: Comparison of Simulated AbInitio and Experimental J-Coupling Data. 
Simulated Chemical Shift values from the AbInitio ensemble (red) overlayed on 
experimental data (black) of 3JHNHα (Top), 3JHNHα

  (Upper Middle), 1JHαCα (Middle), 
1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and Lee et. al.247, 

252 
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Figure 6.95: Comparison of Simulated AbInitioVO and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the AbInitioVO ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Figure 6.96: Comparison of Simulated DeNovoIDP and Experimental J-Coupling 
Data. Simulated Chemical Shift values from the DeNovoIDP ensemble (red) 
overlayed on experimental data (black) of 3JHNHα (Top), 3JHNHα

  (Upper Middle), 
1JHαCα (Middle), 1JNCα (Lower Middle) and 2JNCα (Bottom) from Mantsyzov et al. and 
Lee et. al.247, 252 
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Comparison of AbInitio and AbInitioVO Simulations to Experimental Data 

Table 6.5: Comparison of AbInitio and AbInitioVO Outputs to PDB Structures 

PDB 
ID 

# of 
Res. 

Ordered 
Region 

Fold 
Type 

Min RMSD <Rg>  

AbInitio 
AbInitio

VO 
AbInitio 

AbInitio
VO 

Exp Rg 

Ordered  

1B3A 67 - α/β 2.68 3.31 12.0 11.8 - 

1BK2 57 - β 2.33 2.16 11.4 11.1 - 

1BQ9 54 - β 2.64 3.91 11.0 10.7 - 

1ENH 54 - α 0.77 1.18 10.7 10.5 - 

1HZ6 64 - α/β 2.16 1.99 12.4 12.1 - 

1PGX 70 - α 3.71 3.54 13.0 13.0 - 

1R69 63 - α 0.99 1.14 10.7 10.5 - 

1SHF 59 - β 3.30 1.52 11.8 11.2 - 

1UBI 76 - α/β 2.72 2.59 12.5 12.3 - 

5CRO 61 - α/β 4.35 4.56 11.3 11.0 - 

Partially-Ordered  

1D7Q 144 27-115 α/β 6.38 6.41 17.4 21.8 - 

1EJF 160 1-110 β 6.97 7.73 18.4 26.5 - 

1FOX 76 1-76 α/β 1.10 1.22 12.7 12.1 - 

1GHC 225 41-114 α/β 3.04 2.33 21.6 47.6 - 

1LWM 93 26-93 α 1.43 3.61 15.2 17.5 - 

1VZS 76 1-49 α 2.02 1.98 13.3 12.8 - 

2L42 100 14-90 α/β 6.70 5.32 14.3 14.0 - 

2LSU 110 1-89 α 1.06 1.64 14.9 13.9 - 

Disordered  

ASYN 140 - - - - 17.4 28.4 33.0 / 26.6 

DSH3 59 - - - - 12.3 11.5 10.3 / 18.3 

NTAL 125 - - - - 15.9 27.0 27.5 

PAAA 142 - - - - 18.4 19.6 22.4 

SIC1 92 - - - - 14.0 30.6 32.1 

TAUK 130 - - - - 16.0 15.9 - 

* Experimental values for the radius of gyration were determined for ASYN from 

SAXS228 and NMR205 experiments, for DSH3 from NMR experiments capturing 

the Rg of the folded258 and unfolded259 states, for NTAL from NMR 

experiments260, for PAAA from a simulated ensemble generated from SAXS and 

NMR experiments261, for SIC1 from simulated ensembles from SAXS and NMR 

experiments262 and was not reported for TAUK.124 
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Comparison of Radii of Gyration: 

 

Figure 6.97: Radii of Gyration of Ordered Proteins. 
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Figure 6.98: Radii of Gyration of Partially-Ordered Proteins. 
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Figure 6.99: Radii of Gyration of Disordered Proteins. 
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Comparison of Folding Funnels 

 

Figure 6.100: Folding Funnel Comparison for 1bka. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the PDB structure. 
For each folding funnel, histograms of the computed RMSD (top) and REU (right) 
are shown. KDE plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) 
folding funnels. 

 

 

Figure 6.101: Folding Funnel Comparison for 1bq9. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the PDB structure. 
For each folding funnel, histograms of the computed RMSD (top) and REU (right) 
are shown. KDE plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) 
folding funnels. 

  



358 

 

 

Figure 6.102: Folding Funnel Comparison for 1enh. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the PDB structure. 
For each folding funnel, histograms of the computed RMSD (top) and REU (right) 
are shown. KDE plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) 
folding funnels. 

 

 

Figure 6.103: Folding Funnel Comparison for 1hz6. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the PDB structure. 
For each folding funnel, histograms of the computed RMSD (top) and REU (right) 
are shown. KDE plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) 
folding funnels. 
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Figure 6.104: Folding Funnel Comparison for 1pgx. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the PDB structure. 
For each folding funnel, histograms of the computed RMSD (top) and REU (right) 
are shown. KDE plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) 
folding funnels. 

 

 

Figure 6.105: Folding Funnel Comparison for 1r69. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the PDB structure. For each folding 
funnel, histograms of the computed RMSD (top) and REU (right) are shown. KDE 
plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) folding funnels. 

 

  



360 

 

 

Figure 6.106: Folding Funnel Comparison for 1shf. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the PDB structure. For each folding 
funnel, histograms of the computed RMSD (top) and REU (right) are shown. KDE 
plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) folding funnels. 

 

 

Figure 6.107: Folding Funnel Comparison for 1ubi. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the PDB structure. For each folding 
funnel, histograms of the computed RMSD (top) and REU (right) are shown. KDE 
plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) folding funnels. 
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Figure 6.108: Folding Funnel Comparison for 5cro. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the PDB structure. For each folding 
funnel, histograms of the computed RMSD (top) and REU (right) are shown. KDE 
plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) folding funnels. 

 

 

Figure 6.109: Folding Funnel Comparison for 1b3a. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the folded domain 
of the PDB structure. For each folding funnel, histograms of the computed RMSD 
(top) and REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo 
(red) and AbInitio (blue) folding funnels. 
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Figure 6.110: Folding Funnel Comparison for 1d7q. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the folded domain 
of the PDB structure. For each folding funnel, histograms of the computed RMSD 
(top) and REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo 
(red) and AbInitio (blue) folding funnels. 

 

 

Figure 6.111: Folding Funnel Comparison for 1ejf. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the folded domain of the PDB 
structure. For each folding funnel, histograms of the computed RMSD (top) and 
REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo (red) and 
AbInitio (blue) folding funnels. 
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Figure 6.112: Folding Funnel Comparison for 1fox. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the folded domain of the PDB 
structure. For each folding funnel, histograms of the computed RMSD (top) and 
REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo (red) and 
AbInitio (blue) folding funnels. 

 

 

Figure 6.113: Folding Funnel Comparison for 1ghc. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the folded domain 
of the PDB structure. For each folding funnel, histograms of the computed RMSD 
(top) and REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo 
(red) and AbInitio (blue) folding funnels. 
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Figure 6.114: Folding Funnel Comparison for 1lwm. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the folded domain 
of the PDB structure. For each folding funnel, histograms of the computed RMSD 
(top) and REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo 
(red) and AbInitio (blue) folding funnels. 

 

 

Figure 6.115: Folding Funnel Comparison for 1vzs. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the folded domain of the PDB 
structure. For each folding funnel, histograms of the computed RMSD (top) and 
REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo (red) and 
AbInitio (blue) folding funnels. 
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Figure 6.116: Folding Funnel Comparison for 2l42. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the folded domain of the PDB 
structure. For each folding funnel, histograms of the computed RMSD (top) and 
REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo (red) and 
AbInitio (blue) folding funnels. 

 

 

Figure 6.117: Folding Funnel Comparison for 2lsu. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the folded domain of the PDB 
structure. For each folding funnel, histograms of the computed RMSD (top) and 
REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo (red) and 
AbInitio (blue) folding funnels. 
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Figure 6.118: Folding Funnel Comparison for asyn. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the lowest energy 
structure. For each folding funnel, histograms of the computed RMSD (top) and 
REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo (red) and 
AbInitio (blue) folding funnels. 

 

 

Figure 6.119: Folding Funnel Comparison for dsh3. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the lowest energy 
structure. For each folding funnel, histograms of the computed RMSD (top) and 
REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo (red) and 
AbInitio (blue) folding funnels. 
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Figure 6.120: Folding Funnel Comparison for ntal. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the lowest energy structure. For 
each folding funnel, histograms of the computed RMSD (top) and REU (right) are 
shown. KDE plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) 
folding funnels. 

 

 

Figure 6.121: Folding Funnel Comparison for paaa. Folding funnel from 
AbInitioVO (left) and AbInitio (middle) simulations plotting Cα RMSD versus 
Rosetta Energy Units (REU) from each structure compared to the lowest energy 
structure. For each folding funnel, histograms of the computed RMSD (top) and 
REU (right) are shown. KDE plot (right) showing overlay of AbInitiovo (red) and 
AbInitio (blue) folding funnels. 
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Figure 6.122: Folding Funnel Comparison for sic1. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the lowest energy structure. For 
each folding funnel, histograms of the computed RMSD (top) and REU (right) are 
shown. KDE plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) 
folding funnels. 

 

 

Figure 6.123: Folding Funnel Comparison for tauk. Folding funnel from AbInitioVO 
(left) and AbInitio (middle) simulations plotting Cα RMSD versus Rosetta Energy 
Units (REU) from each structure compared to the lowest energy structure. For 
each folding funnel, histograms of the computed RMSD (top) and REU (right) are 
shown. KDE plot (right) showing overlay of AbInitiovo (red) and AbInitio (blue) 
folding funnels. 
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Comparisons of Folded Domain Structures of Ordered and Partially-Ordered 
Proteins 

 

 

Figure 6.124: 1bk2 Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1bk2 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.125: 1bq9 Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1bq9 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.126: 1enh Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1enh 
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(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.127: 1hz6 Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1hz6 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

Figure 6.128: 1pgx Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1pgx 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 
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Figure 6.129: 1r69 Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1r69 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

Figure 6.130: 1shf Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1shf 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.131: 1ubi Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1ubi 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 
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Figure 6.132: 5cro Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 5cro 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.133: 1b3a Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1b3a 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.134: 1d7q Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1d7q 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 
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Figure 6.135: 1ejf Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1ejf 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.136: 1fox Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1fox 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

Figure 6.137: 1ghc Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1ghc 
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(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.138: 1lwm Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1lwm 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.139: 1vzs Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 1vzs 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 
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Figure 6.140: 2l42 Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 2l42 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 

 

 

Figure 6.141: 2lsu Lowest RMSD Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right) along with the overlay (center) of PDB 2lsu 
(white) and the single lowest RMSD structure from AbInitioVO (red) and AbInitio 
(blue) 
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Structural Comparisons of Disordered Domains of Partially-Ordered and 
Disordered Proteins 

 

 

Figure 6.142: 1b3a Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right) 

 

 

Figure 6.143: 1d7q Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right) 

 

 

Figure 6.144: 1ejf Lowest RMSD Full Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right)  
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Figure 6.145: 1fox Lowest RMSD Full Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right)  

 

Figure 6.146: 1ghc Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right)  

 

 

Figure 6.147: 1lwm Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right)  
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Figure 6.148: 1vzs Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right)  

 

Figure 6.149: 2l42 Lowest RMSD Full Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right)  

 

 

Figure 6.150: 2lsu Lowest RMSD Full Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right)  
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Figure 6.151: Asyn Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right)  

 

Figure 6.152: Dsh3 Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right)  

 

 

Figure 6.153: Ntal Lowest RMSD Full Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right)  
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Figure 6.154: Paaa Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right)  

 

Figure 6.155: Sic1 Lowest RMSD Full Structures. 10 lowest RMSD structures from 
AbInitioVO (left) and AbInitio (right)  

 

 

Figure 6.156: Tauk Lowest RMSD Full Structures. 10 lowest RMSD structures 
from AbInitioVO (left) and AbInitio (right)  
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CHAPTER 7: HIGH-THROUGHPUT IN SILICO AND IN VITRO SCREENING 

FOR COMPOUNDS THAT SELECTIVELY BIND TO ALPHA-SYNUCLEIN 

FIBRILS. 
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§ 7.1 Introduction  

α-Synuclein (αS) is a 140 amino acid, intrinsically disordered protein which 

is abundantly expressed at the presynaptic termini of central nervous systems 

neurons.19, 263 When bound to membranes, αS takes on a partially helical structure 

and is involved is various physiological activities.23, 264 Although the function of αS 

is poorly understood, its localization, along with knockout and overexpression 

studies, suggests that alongside synapsin, VAMP2 and others, αS plays a 

significant role in maintaining synaptic vesicle reserve pools, neurotransmitter 

release and synapse function and plasticity.19, 27-28 Conversely, the potential 

pathological role of αS is well documented, where neuronal inclusions comprised 

principally of fibrillar αS termed Lewy bodies (LBs) and Lewy neurites (LNs) have 

long served as post-mortem hallmarks of Parkinson’s Disease (PD).19, 22 

Furthermore, similar aggregates can be observed in dementia with Lewy bodies 

(DLB), while a second form of aggregate has been identified in multiple system 

atrophy (MSA).34 Compared to LBs and LNs which often appear in the substantia 

nigra, glia cell inclusions (GCIs) associated with MSA are found in 

oligodendrocytes of white matter tracts.34  However, the inability to track fibril 

formation and localization in living patients has hindered the development of robust 

correlations between PD progression and fibril burden and prevents αS fibrils from 

serving as useful clinical markers.  

To date, diagnosis of PD has primarily relied on the presentation of clinical 

symptoms, chiefly motor deficits. Although these symptoms are effective in 

tracking progression at later stages of disease, they are not observed until a 
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substantial degree of neuronal loss has occurred.30 Moreover, these symptoms 

are not exclusive to PD, but are observed for other Parkinsonian syndromes.33 

Therefore, since differences in the presence and localization of fibrillar αS have 

already been established, methods for tracking deposits in patients could clarify 

diagnosis. Over the past decade, a breakthrough in the clinical evaluation of 

Alzheimer’s disease (AD) was enabled in vivo imaging of amyloid β (a) plaques 

with positron emission tomography (PET), a molecular imaging technique.265-271 

The development of a and tau specific PET probes has allowed researchers to 

determine that the formation of a aggregates precedes disease onset while tau-

based neurofibrillary tangles (NFTs) occur later in disease progression.272 These 

promising results from the imaging studies of AD patients have generated interest 

in the development of PET radiotracers to image S and improve the diagnosis of 

PD.  

Despite these advancements, the development of imaging probes with the 

requisite specificity for use in PD research and diagnosis has been challenging. In 

addition to LBs and LNs, PD patients also present neuronal aggregates comprised 

of a and tau.273 Although the Petersson and Mach laboratories as well as others 

have successfully identified compounds with moderate binding affinity for 

employment as PET imaging agents, no compound to date has displayed high 

enough affinity and specificity for use as a radioligand.274-275 Previously, following 

publication of the first solid-state NMR structure of αS fibrils by Rienstra and 

colleagues, we demonstrated that through the combined use of computational 
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docking, competition radioligand binding assays and photocrosslinking mass 

spectrometry we were able to posit binding sites for several previously developed 

compounds.47, 276  

Here, we explore the utility of another computational approach, exemplar-

based in silico screening, in an effort to develop a molecule that potently and 

specifically binds to αS fibrils.277 Through the application of this method we have 

identified a molecular scaffold and confirmed through structure-activity relationship 

(SAR) studies that members of this isoxazole containing compound series have 

nanomolar affinity for αS fibrils. Moreover, several of these compounds have 

moderate specificity for αS over a fibrils. Lastly, we demonstrate the potential of 

this molecule as a PET probe by imaging fibrillar αS deposits in mouse brain tissue 

using a radiolabeled analog of the identified molecule.  

 

§ 7.2 Methods 

In-Silico Exemplar-based Screening in Align-It.  

The Rosetta Modeling Suite was used to map exemplars at each residue of 

the 2N0A PDB by running47: 

ROSETTA/make_exemplar.linuxgccrelease -database 

ROSETTA/database -in:file:s 2N0A.pdb -pocket_grid_size 12 -pocket_static_grid 

-pocket_filter_by_exemplar -pocket_surface_dist 1 -central_relax_pdb_num XX 

Where residues for the previously identified sites 2, 3/13 and 9 

corresponded to residues 156, 163 and 198.276 In order to allow Align-It to 

recognize the exemplar outputs from Rosetta, the hydrogen bond donating and 
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accepting parameters in Align-It were altered. Prior to compiling Align-It, the 

following lines were added at line 42 to the file hDonFuncCalc.cpp in the src 

directory: 

      if (a->GetAtomicNum() == 4) 

      { 

            PharmacophorePoint p; 

            p.func = HDON; 

            p.point.x = a->x(); 

            p.point.y = a->y(); 

            p.point.z = a->z(); 

            p.hasNormal = false; 

            p.alpha = funcSigma[HDON]; 

            pharmacophore->push_back(p); 

      } 

 

Additionally, the following lines were added to line 42 to the file 

hAccFuncCalc.app in src directory: 

 

      if (atom->GetAtomicNum() == 10) 

      { 

         if(_hAccCalcAccSurf(atom) < 0.02) 

         { 

            continue; 
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         } 

         PharmacophorePoint p; 

         p.func = HACC; 

         p.point.x = atom->x(); 

         p.point.y = atom->y(); 

         p.point.z = atom->z(); 

         p.hasNormal = false; 

         p.alpha = funcSigma[HACC]; 

         pharmacophore->push_back(p); 

     } 

 

The ZINC15, lead-like, commercially available compound database, 

consisting of ~ 10 million molecules was used for the initial screen against the three 

sites.278 Molecular alignments of target molecules to each selected exemplar were 

performed using Align-It which reduces each molecule/exemplar to a set of 

pharmacophores and reports a Tanimoto Coefficient for each alignment which 

captures both agreements in molecular features and their alignment in three-

dimensional space.279 The top 30 compounds as quantified by the Tanimoto 

Coefficient from each search were retained and a subset of compounds from each 

search was selected by hand for experimentation. Since the compounds identified 

for site 3/13 were either too small or too similar to compounds previously 

explored,276 select compounds from the site 2 and site 9 screens were used in 
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subsequent experimental screens and the full set of compounds can be found in 

Figures 7.5 and 7.7. 

Preparation of αS Monomer Fibrils.  

Recombinant expression and purification of wild-type αS protein was 

performed as previously described.78, 276 Fibrils were prepared in a manner similar 

to previously described, where 100 μM αS monomer was incubated in 20 mM tris 

100 mM NaCl, pH 7.4 at 37 C and shaken at 1300 rpm for 3 days.78, 276 

 

Preparation of a fibrils.  

a fibrils were prepared as described previously.280 Briefly, monomer a (1 

mg, Bachem) was dissolved in hexafluoroisopropanol (HFIP) at a concentration of 

2 mg/mL and incubated for 1 hour at 37 °C until the peptide completely dissolved. 

Then HFIP was evaporated under air. The peptide powder was dissolved again in 

HFIP (2 mg/mL), aliquoted and left to dry overnight under vacuum. Aliquots were 

stored in a freezer at -20 °C.  

To prepare fibrils, the HFIP-treated peptide aliquot was dissolved in 10 mM 

NaOH (10 µL) solution, then the sample was diluted with 90 µL 10 mM phosphate 

buffer, pH 7.4. Concentration of the peptide solution was confirmed by measuring 

the absorbance at 214 nm with NanoDrop 2000c spectrophotometer. Extinction 

coefficient (76848 M-1cm-1) was calculated using literature values.281 Next, the 

solution was agitated by a continuous slow rotation at room temperature for 3 days 

and fibril formation was confirmed by TEM. 
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Aggregation and Disaggregation Fluorescence Polarization Assays.  

Wild-type and fluorescently labeled α-synuclein was produced as previously 

described.119 Aggregations were performed at a total monomer concentration of 

100 μM with 1 % labeled αS in 20 mM tris 100 NaCl pH 7.4 in the presence of 10 

and 100 μM compound and with equivalent volume of DMSO as a control. At each 

timepoint an aliquot of the fibrilization reaction was removed and diluted 10-fold in 

buffer. Fluorescence polarization was measured in a half-area well plate at a total 

volume of 50 μL on a Tecan F200 plate reader. Aggregations were performed in 

triplicate.  

Disaggregation experiments were performed on labeled fibril samples 

prepared as described above in the absence of compound. A final concentration 

of 10 μM fibrils was added to each well for each disaggregation experiment and 

each compound was added just prior to measurement to the final concentrations 

detailed in Figure 7.9 and total volumes of 50 μL. Samples were shaken at 149 

rpm at room temperature with polarization measurements taken every 150 second.  

 

Photocrosslinking Assay.  

Aggregations prepared as described above were dosed with equimolar 

photocrosslinking compound  in DMSO and shaken overnight at 37 °C shaking at 

250 rpm. A control was also prepared where the same volume of DMSO used to 

add compound was added and incubated as previously described. Following 

incubation samples were irradiated under a TLC lamp (365 nm) for 1 hour. Fibrillar 

samples were disaggregated by adding 20 mM SDS and boiled for 20 mins. SDS 
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and excess compound were removed through chloroform methanol 

precipitation.282 Samples were digested with trypsin at 37 °C and were the resultant 

peptides were analyzed by MALDI mass spectrometry to identify crosslinking site.   

  

Screening compound library.  

Compounds 1-17 were purchased from vendors that were listed on the 

ZINC15 compound library. Compounds were screened for αS binding and after 

identifying the lead compound, 6, the core structure of compound 6 and its 

pyrazole or oxadiazole derivatives were used for similarity search on the websites 

of Mcule, Inc., ChemDiv, Inc., MolPort, and Enamine, Ltd. The similarity threshold 

was set to higher than 0.8, then compound 18-56 were chosen and ordered from 

the four companies mentioned above.        

In order to screen the purchased compounds for αS binding, 100 nM of each 

compounds were incubated for 1 hour at 37 °C with 100 nM ASyn fibrils and [3H]-

Tg-190b (6 nM) or [3H]-BF2846 (3 nM) in 50 mM Tris-HCl, pH 7.4. Total binding 

was measured in the absence of competitor and nonspecific binding was 

determined in reactions containing cold Tg-190b (1 µM) or BF2846 (0.5 µM). After 

incubation, bound and free radioligand were separated by vacuum filtration 

through Whatman GF/C filters (Brandel) in a 24-sample harvester system 

(Brandel), followed by washing with buffer containing 10 mM Tris-HCl (pH 7.4) and 

150 mM NaCl. Filters containing the bound ligand were mixed with 3 mL of 

scintillation cocktail (MicroScint-20, PerkinElmer Informatics, Inc.) and counted 

after 12 hours of incubation on a MicroBeta System (PerkinElmer Informatics, Inc.). 
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All data points were performed in triplicates. Percentage of bound radioligand 

relative to total binding was plotted and data was analyzed by One-Way ANOVA, 

comparing the mean of each data set to the mean of total binding.  

 

Competition binding assay.  

αS fibrils (100 nM for site 2 and 50 nM for site 9) or aβ fibrils (100 nM) were 

mixed with site 2 ligand [3H]-Tg-190b (6 nM) or site 9 ligand [3H]-BF2846 (3 nM) 

and varying concentration of cold compounds. Compounds were diluted in 50 mM 

Tris-HCl (pH 7.4) and mixed with fibrils and radioligand in a total volume of 150 µL. 

Total binding was measured in the absence of competitor and nonspecific binding 

was determined in reactions containing cold Tg-190b (1 µM) or BF2846 (0.5 µM). 

In a duplicate set of binding reaction, fibrils were replaced with equal volume of 

buffer to measure the amount of radioligand binding to the filter paper. Reactions 

were incubated at 37 °C for 1 hour. After incubation bound and free radioligand 

were separated by vacuum filtration through Whatman GF/C filters (Brandel) in a 

24-sample harvester system (Brandel), followed by washing with buffer containing 

10 mM Tris-HCl (pH 7.4) and 150 mM NaCl. Filters containing the bound ligand 

were mixed with 3 mL of scintillation cocktail (MicroScint-20, PerkinElmer 

Informatics, Inc.) and counted after 12 hours of incubation on a MicroBeta System 

(PerkinElmer Informatics, Inc.). All data points were performed in triplicates. Ki 

values were calculated by fitting the data to the equation below by nonlinear 

regression, using GraphPad Prism software:  
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logEC50 = log(10𝑙𝑜𝑔𝐾𝑖 ∗ (1 + [𝑟𝑎𝑑𝑖𝑜𝑙𝑖𝑔𝑎𝑛𝑑]/𝐾𝑑))              (Eq. 7.1) 

Y = Bottom + (Top-Bottom) / (1+ 10(𝑋−𝑙𝑜𝑔𝐸𝐶50))             (Eq. 7.2) 

 

Where logEC50 is the log of the concentration of competitor that results in 

binding half-way between Bottom and Top; logKi is the log of the molar equilibrium 

dissociation constant of unlabeled ligand; [radioligand] is the concentration of hot 

ligand in nM; Kd is the equilibrium dissociation constant of the hot ligand in nM; 

Top and Bottom are plateaus in the units of Y axis. 

 

Saturation binding assay.  

αS (50 nM) or aβ (100 nM) fibrils were incubated for 1 hour at 37 °C with 

increasing concentrations of [125I]61 in 50 mM Tris-HCl, pH 7.4, in a total volume 

of 150 µL. Nonspecific binding was determined in a duplicate set of binding 

reactions containing 2 µM cold 52. To measure the amount of radioligand binding 

to the filter paper, fibrils were replaced with equal volume of buffer in a duplicate 

set of binding reaction. After incubation, bound and free radioligand were 

separated by vacuum filtration through Whatman GF/C filters (Brandel) in a 24-

sample harvester system (Brandel), followed by washing with buffer containing 10 

mM Tris-HCl (pH 7.4) and 150 mM NaCl. Filters containing the bound ligand were 

counted immediately on 2470 WIZARD Automatic Gamma Counter (Perkin Elmer). 

All data points were performed in triplicate. The equilibrium dissociation constant 

(Kd) and the maximal number of binding sites (Bmax) were determined by fitting 

the data to the equation Y = Bmax*X/(Kd+X), using GraphPad Prism software. 
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Animals.  

A53T (B6C3-Tg(Prnp-SNCA*A53T)83Vle/J) and B6C3F1/J mice were 

obtained from The Jackson Laboratory. All animal studies were performed under 

protocols approved by the University of Pennsylvania Institutional Animal Care and 

Use Committee. Animals were euthanized by cervical dislocation under isoflurane 

anesthesia at 17 months of age and the brain was extracted for autoradiography 

and microscopy. 

 

In vitro autoradiography.  

Blocks of mouse brain tissue were frozen in optimal cutting temperature 

compound (OCT, Tissue-Tek, Sakura Finetek, USA). The frozen tissue was sliced 

into 10 µM thick sections in a Leica CM1950 cryostat and mounted onto Apex 

Superior Adhesive slides (Leica). Frozen sections of both A53T and B6C3F1/J 

mouse brain tissue were thawed at RT for 20 min, then washed with 40% ethanol 

in PBS for 5 min. Next, sections were incubated (1 hour at RT) with 40% ethanol 

in PBS containing either [125I]61 (6 nM) alone or [125I]61 (6 nM) with 20 µM cold Tg-

190b. After incubation, sections were washed in ice-cold 40% ethanol in PBS 

(2x30 sec), followed by a wash in ice-cold DI water (1 min). Sections were dried in 

a stream of air and then exposed to a phosphor screen (Fujifilm) and the screen 

was imaged on a Typhoon FLA 7000 phosphor imager (GE Healthcare Europe). 

Raw autoradiography images were imported to MATLAB R2017b (MathWorks 

Inc., Natick, MA) to extract individual image. Each autoradiography image was 
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manually registered to corresponding staining image by using PMOD image 

analysis software (version 3.7; PMOD Technologies Ltd, Zurich, Switzerland).  

 

Immunofluorescence.  

Frozen brain tissue sections, adjacent to the ones used for autoradiography, 

were thawed at room temperature for 20 min. Sections were fixed with 4% 

paraformaldehyde in PBS, washed with PBS three-times, then permeabilized with 

0.1% Triton X-100 in PBS. Sections were blocked with 10% normal goat serum 

(Fisher Scientific) at room temperature for 1 hour, then with goat F(ab) anti-mouse 

IgG H&L (1:1000 in 1% normal goat serum in PBS with 0.2% Tween-20; ab6668) 

for 1 hour at RT. After blocking, sections were incubated with primary Anti-αS 

(phosphor S129) antibody (81A; 1:1000 in 1% normal goat serum in PBST) 

overnight at 4 °C. After three washes with PBST, the tissue was incubated with a 

secondary antibody labeled with Alexa Fluor 488 (1:500 in 1% normal goat serum 

in PBST) for 1 hour at room temperature. Tissue was washed with PBST twice, 

then with PBS once and coverslipped. The fluorescent images were acquired by a 

Zeiss Axio Imager M2 microscope. 

 

§ 7.3 Results 

Exemplar-Based In-Silico Screen 

Through methods developed by Karanicolas and colleagues, using the 

Rosetta Modeling Suite, exemplars can be facilely generated for any protein of 

interest given an input structure.283 An exemplar is a pseudoligand designed to be 
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a perfect molecular complement to a surface exposed pocket on a protein of 

interest (Fig 7.1b).277, 283 Following selection of an anchor residue, the protein is 

cast onto a three-dimensional grid, and grid points that correspond to the protein 

pocket are “chemotyped” by the adjacent functional features on the protein. Based 

on whether the protein surface presents hydrogen bond donating or accepting 

moieties or a hydrophobic patch, grid points are assigned characteristics that are 

complementary to the protein surface. Subsequently, molecular alignment of 

compounds from a database allows for rapid in silico screening to identify 

molecular architectures that satisfy the chemical features (i.e. hydrogen 

bonding/accepting) captured by the exemplar (Fig 7.1b).277 
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Figure 7.1: Exemplar-based in-silico screening. (a) PDB 2N0A with exemplars of 
previously described sites 2 (Y39-S42-T44) and 9 (G86-F94-K96) shown as 
spheres representing hydrophobic (cyan), hydrogen bond donating (yellow) and 
accepting (light blue) pharmacophores. Compounds used in site-specific 
competition binding experiments are listed with for each site in gray. (b) Workflow 
for identifying small molecules.276 A zoom in on the site 2 exemplar is shown on 
the left with compound 6 docked in the conformation identified from the ZINC 
database by Align-It .278-279  

 

In order to assess the potential efficacy of using an exemplar-based 

approach, we targeted sites that had been identified through our prior efforts as 

the binding sites for a myriad of previously described αS fibril radioligands (Fig 

7.1a).276 Our previous work highlights two compounds, [3H]Tg-190b and 

[3H]BF2846 (Fig 7.2), which selectively bind to site 2 and 9 respectively and can 

be utilized for in vitro competition binding assays to screen compounds identified 

in silico.  
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Figure 7.2: Radioligand Structure and Initial Binding Assay. (Top Left) Molecular 
structure of radioligands used in the screening and competition binding assays. 
(Top Left ) Radioligand displacement assay testing binding affinity of each 
compounds against a site 9 radioligand, [3H]BF2846. (Bottom Left) Molecular 
structures of the two top hits (2 and 6) from the initial screen. (Bottom Right) 
Competition binding curves in αS fibrils (100 nM) for compounds 2 and 6. αS fibrils 
were incubated with [3H]Tg-190b (6 nM) and increasing concentrations of 
competitors (2 and 6). Compounds 2 and 6 have Ki values of 85.6 nM and 1.18 
nM, respectively. Data points represent mean ± s.d. (n=3). 
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Figure 7.3. Molecular structures of 17 compounds from the Exemplar screening. 
Compound 6 showed high affinity for Asyn fibrils in vitro and its core structure was 
used for similarity search.  

 

 

Therefore, we selected these two sites as our initial targets. Using the 2N0A 

PDB structure deposited by Rienstra and colleagues, pocket templates were 

generated using residues 44 and 86 of the central strand of the fibril as anchor 
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points for sites 2 and 9 respectively. The exemplar for each site was screened 

using Align-It against ~ 10 million commercially available, lead-like molecules from 

the ZINC15 database. The top 50 molecules which displayed the best overlap with 

each exemplar pseudoligand were retained. From the top 50 molecules identified 

in the initial screen at sites 2 and 9 (Figs 7.4-5 and 7.6-7), 17 compounds were 

purchased and were employed in high throughput screening to determine their 

relative affinities for αS fibrils. Of the set of molecules selected, 2 molecules were 

able to displace the site 2 specific radioligand [3H]Tg-190b (Fig 7.2a). Competitive 

binding experiments revealed that compounds 2 and 6 displayed inhibitor 

constants (Ki) of 85.6 nM and 1.18 nM, respectively, against a site 2 specific 

radioligand (Fig 7.2b).284  

 

 

Figure 7.4: Site 2 Exemplar from PDB 2N0A fibril. 
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Figure 7.5: Top Hits from ZINC15 database for Site 2 Exemplar. 
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Figure 7.6: Site 9 Exemplar from PDB 2N0A fibril. 
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Figure 7.7: Top Hits from ZINC15 database for Site 9 Exemplar. 

 

Lead Compound Binds to Site 2 and Does Not Affect αS Aggregation 

Following the identification of two potential lead compounds, we decided to 

further investigate the more potent binder to confirm that the compound 1) binds 
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to the target site on αS fibrils and that 2) the compound is non-perturbing and does 

not affect the aggregation of αS. We posit that a suitable imaging compound should 

not perturb the aggregation process, nor should it remodel or disaggregate fibrils. 

Therefore, a derivative of compound 6 was synthesized by Marshall Lougee with 

a photocrosslinking group to confirm the binding location (Fig. 7.8). Following 

incubation of compound 62 with αS fibrils and irradiation with 365 nm light, the 

sample was analyzed by full-protein and trypsin digest MALDI mass spectrometry 

(Fig. 7.8). Analysis of the resultant data revealed a clear single mass shift, 

suggesting that most of the compound binds at a single site. Furthermore, analysis 

of the digested sample confirmed that crosslinking could be observed at the target 

site, site 2, initially used in the in silico screen (Fig. 7.8). 
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Figure 7.8: Photocrosslinking of radioligand analog to αS fibrils. Top: Experimental 
scheme illustrating that following incubation of 62, a photocrosslinkable analog of 
6 synthesized by Marshall Lougee, with αS fibrils that irradiation with UV light and 
fibril digest results in identification of the compound binding site. Bottom: MALDI 
mass spectrometry data before (left) and after (right) digestion of αS with trypsin 
following photocrosslinking with a BJ-1-094 analog.  

 

To confirm that the probe does not affect the aggregation state or propensity 

of αS, we generated fluorescently labeled αS for use in fluorescence polarization 

(FP) assays performed by Marshall Lougee. By attaching fluorescein-maleimide to 

a Y136C mutant αS construct FP can be used to monitor fibril aggregation and 

stability as well as the compound’s effect on these processes, as previously 

described.78, 119 The compound did not show any significant effect on the rate of 

aggregation or on the stability of αS fibrils (Fig 7.9).  
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Figure 7.9: Impact of identified molecule on αS fibril aggregation and stability. Top: 
Experimental scheme illustrating that incorporation of fluorescently labeled 
monomer into fibrils results in a significant increase in fluorescent polarization 
allowing aggregation to disaggregation to be tracked. Middle: Aggregation of αS in 
the presence of 1% labeled monomer along with 10 and 100 μM 6 compound. 
Bottom: Assessment of potential remodeling of 1% labeled αS fibrils by 6 
compared to EGCG and NDGA as a positive control and DMSO as a negative 
control.  

 

SAR Screen to Improve Affinity/Specificity 

In order to improve the affinity and selectivity of compound 6, Zsofia 

Lengyel-Zhand conducted an SAR screen by culling structurally similar 

compounds from the Mcule library via similarity search.285 In total 39 molecules, 

summarized in Figure 7.10 and Figure 7.11, assayed the impact of various 
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substituents on the two terminal aryl rings as well as the importance of the central 

isoxazole by replacement with a pyrazole or oxadiazole. High throughput 

screening of the selected compounds revealed that the majority of them effectively 

displace the site 2 radioligand (Fig. 7.10b), however only 3 of the compounds 

showed binding to site 9 (Fig. 7.10c). One of these compounds features the 

replacement of the central isoxazole with a pyrazole (compound 55) and 

interestingly was the only non-isoxazole compound to show any affinity for either 

site of αS fibrils. Moreover, all binding competent compounds with a bromine 

substitution at the para position of the leftmost ring (as drawn in Fig 3a) display a 

high affinity for both site 2 and site 9 (compounds 28 and 31). Furthermore, we find 

that ortho substitutions on the rightmost ring (compounds 18, 22, 27, 30, 38, 47, 

49 and 54) hinder binding while meta substitutions (compounds 20, 28, 40, 41 and 

52) are tolerated. That same rightmost aryl system is also largely intolerant to the 

addition of halogens (compounds 23, 25, 32, 35, 37, 44, 50) but accommodates 

more electron donating groups such as methyl (compounds 28, 36 and 40) and 

methoxy (19, 21, 24, 31, 34 and 39) groups. Lastly, we find that branching points 

such as the insertion of a methyl group at the methyl ether adjacent to the central 

amide eliminates binding (compound 23 and 35). 
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Figure 7.10: SAR screen based on exemplar compound (6). (a) Example set of 
compounds identified through similarity search. The core structure of 6 and its 
pyrazole and oxadiazole derivatives were used for similarity search, with similarity 
threshold set to 0.8 or higher. (b,c) Radioligand displacement assay testing binding 
affinity of each compounds against a site 2 (b) or site 9 (c) radioligand. Data points 
represent mean ± s.d. (n=3). 
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Figure 7.11. Molecular structure of the 39 compounds from the similarity search. 
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 αS Fibrils Ki (nM) aβ Fibrils  

Ligand [3H]Tg-190b  [3H]BF2846 [3H]BF2846  

6 1.18 (0.90-1.56) 32.7 (20.7-51.5) 7.59 (3.14-18.7) 

24 47.9 (22.3-101) 139 (87.1-268) 352 (206-609) 

28 1.97 (1.51-2.58) 8.57 (3.77-19.5) 4.13 (2.10-8.54) 

31 34.4 (13.6-84.6) 7.53 (5.21-10.9) 16.8 (11.0-25.5) 

39 2.83 (1.55-5.14) >1000 19.3 (7.07-53.9) 

40 5.63 (2.05-15.5) >1000 15.7 (4.97-48.3) 

52 8.39 (4.94-14.2) >1000 11.2 (3.69-34.2) 

 

Table 7.1: Comparison of Ki values in αS and aβ (using aβ42) fibrils. Values 

were determined by competition binding assay with [3H]Tg-190b or [3H]BF2846. 

95% confidence intervals for Ki values are shown in parentheses (n=3). 

 

High throughput screening of the SAR library was analyzed with One-Way 

ANOVA and compounds showing the highest affinity for S fibrils (P<0.0001) were 

selected for in-depth characterization. We measured their affinity for both site 2 

and site 9 in S and also in a fibrils (Table 7.1). Site 9 radioligand [3H]BF2846, 

has similar affinity for aβ fibrils and αS fibrils, allowing it to also be employed in aβ 

fibril competition assay. Gratifyingly, we observed that the most potent αS fibril 

binders all displayed a preference for αS over aβ fibrils with selectivity ranging from 

2- to 7-fold.  

 



409 

 

Synthesis and characterization of radioligand 

Despite elucidating several important features of the base-scaffold in the 

SAR study, the initial compound (6) identified in the in-silico screen remained the 

most potent binder, thus we set out to synthesize and further characterize its 

iodinated derivative, compound 61, as well as its radiolabeled isotopolog [125I]61. 

Synthesis of the [125I]61 compound was performed by Bieneke Janssen as detailed 

in Figure 7.12. 

 

 

Figure 7.12: Synthesis route towards 61 and [125I]61. Reagents and conditions: 
(a) 2-chloroacetyl chloride, TEA, CH2Cl2, 0 °C – rt, 20 h (59 67%; 60 65%); (b) 3,4-
dimethylphenol, Cs2CO3, MeCN, 60 °C, 14-20 h, (28 36%; 61 42%); (c) (SnBu3)2, 
Pd(PPh3)4, toluene, 110 °C, 3 h (55%); (d) [125I]NaI, H2O2, AcOH, MeOH, 60 min, 
57% radiochemical yield, radiochemical purity >99%, molar activity of 81 
GBq·µmol-1. 
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Figure 7.13: Characterization of the lead compound. (a,b) Competition binding 

curves in αS fibrils with [3H]Tg-190b (a) and in a42 fibrils with [3H]BF2846 (b). 

Compounds 61 has a Ki of 1.84 nM and 4.66 nM in αS and a42 fibrils, 
respectively. (c,d) Saturation binding curves for [125I]61. Kd and Bmax values were 

obtained for αS fibrils (c, Kd = 1.06 nM and Bmax = 1392 fmol/nM of fibrils) and a42 
fibrils (d, Kd = 4.56 nM and Bmax = 1058 fmol/nM of fibrils). Data points represent 
mean ± s.d. (n=3). 

 

The potential efficacy of this radioligand as an imaging probe was tested by 

Zsofia Lengyel-Zhand by in vitro autoradiography studies.  Images were obtained 

by incubating sagittal brain sections from 17-month old PD mouse model (A53T) 

and C6C3F1/J control with [125I]61 and subsequent exposure to storage phosphor 

screens. The autoradiograms are shown in Fig 7.14b. and clearly demonstrate that 

there is increased signal in A53T mouse brain compared with the control across 

the entire brain section. Adjacent brain sections were also stained with PS129 anti-
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S antibody (Fig 7.14) and colocalization between the autoradiogram and 

fluorescence images was observed in the medulla, pons and midbrain regions 

containing the substantia nigra.  

 

 

Figure 7.14: In vitro autoradiography on mouse brain tissue sections to assess 
[125I]61 binding. (a) Immunofluorescence staining of A53T and normal 

(B6C3F1/J) mouse brain sections with PS129 anti-S antibody (scale bar: 1000 
µm). (b) Autoradiograms showing the binding of [125I]61 in A53T and normal mouse 
brain sections. Upper two sections are total binding (TB) and lower two sections 
are non-specific binding (NSB), defined using non-labeled Tg-190b (20 µM).  
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§ 7.4 Discussion 

The development of a PET tracer to image Parkinson’s disease is a high 

priority in the field of radiopharmaceutical research, since a radioligand that binds 

to S could greatly improve the clinical diagnosis of PD. Despite the progress in 

recent years, a radiotracer for imaging S aggregates with high affinity and 

selectivity has yet to be developed. In this work, we utilized a combination of 

exemplar-based in silico screening and radioligand binding studies to identify 

several compounds that bind to S fibrils with nanomolar affinity and moderate 

selectivity over aβ. Our approach is unique and represents the first use of this 

method in radioligand development; we envision further exploring this method 

towards development of a PET tracer targeting αS.  

Although we were able to successfully identify a radioligand to image S in 

vitro, there are several potential avenues for improving the compound identification 

process by modifying the library composition. The current library contained single 

rotamers from the ZINC15 commercially available, lead-like library.278 After 

identifying similar compounds through the SAR screen which afforded a reduced 

base scaffold, and our ultimate radioligand, we looked to see if this scaffold was 

contained in our searched database and why this compound series may have been 

missed in the initial screen. We verified that this reduced scaffold was indeed 

present in the original library and that the single rotamer of this series of 

compounds contained in the database did not align favorable with the input 

exemplar. Therefore, we envision that the incorporation of more rotamers alone 

would likely improve our hit rate and may intrinsically lead to new scaffolds.   
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CHAPTER 8: FUTURE DIRECTIONS AND OUTLOOK 
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The efforts described in this thesis work have afforded novel computational 

and experimental methods for studying disordered and aggregation prone 

proteins. Early chapters highlight the developments of minimally perturbing 

fluorescence probes, in the form of unnatural amino acids and small scaffold 

protein modifications and showcase their employment in protein-based FRET 

experiments. Furthermore, this work describes an initial exploration of methods for 

predicting which sites are optimal for incorporation of a given unnatural amino acid 

probe, laying the groundwork for a predictive algorithm. The latter chapters focus 

on using FRET-based experimental methods, alongside experimentally restrained 

computational modeling, to gain a better understanding of the disordered 

ensemble of α-synuclein. This allowed for the development of new PyRosetta-

based algorithms which, in tandem, allow for the accurate prediction of ordered 

and disordered proteins from sequence. Lastly, the work herein culminates in the 

identification of a small molecule probe, using exemplar modeling, which can 

selectively bind to α-synuclein fibrils and can be leveraged as a positron emission 

tomography imaging probe. Overall, this work has demonstrated the usefulness of 

the approaches and tools developed herein, providing new platforms for further 

experimentation on α-synuclein and other disordered proteins. 

 

§ 8.1 Identification of Novel Compounds with Improved Therapeutic Potential 

via FRET-based Screening 

This work has demonstrated that FRET-based fluorescence assays, 

alongside experimentally restrained molecular modeling, were able to capture 
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differences in the structural ensembles of αS in the presence and absence of 2 M 

TMAO. Although this model system may not feature a high degree of physiological 

relevance, it provides an important benchmark for the conditions under which 

ensemble FRET can be used. Indeed, this method has already been employed to 

study the effects of small molecules such as epigallocatechin gallate (EGCG), 

nordihydroguaiaretic acid (NDGA) and NDGA derivatives on the structure of αS in 

a plate-reader based assay.286 Overall, these efforts demonstrate that high-

throughput ensemble FRET-based screens may be useful in identifying new 

therapeutic candidates for Parkinson’s Disease.  

Since fibrils have long served as the pathological hallmark of PD several 

group have attempted to identify compounds that disaggregate αS fibrils.19, 287 

Fibrils are notoriously stable, and incomplete dissociating of fibrillar architectures 

generally leads to shedding of highly-mobile oligomers, which are still highly 

cytotoxic.288 Moreover, the identification of poly-ubiquitinylation and other 

degradation markers on fibrillar αS suggests that endogenous cell machinery may 

not be sufficient to clear these bulky, insoluble species.289-291 Therefore, in contrast 

to clearing fibrils, which appears to be quite difficult, small molecules which hinder 

fibrils’ ability to recruit monomer may be a more efficacious route to the 

development of a novel therapeutic.286-287, 292-293 This approach could be leveraged 

from the fibril end, where a small molecule which targets fibrils prevents fibril ends 

from templating naïve monomer, or from the monomer end, where a small 

molecule stabilizes the soluble form of αS or lowers the available pools by pushing 

monomer towards degradation.287, 292-293 The former approach appears more 
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reasonable in light of the myriad of small molecules that have been identified that 

target fibrillar architectures and is discussed later in this chapter.276 However, the 

latter approaches present a clear barrier in identifying small molecules that 

specifically target the disordered conformation of αS, as described earlier.  

The approach of targeting a protein’s disordered state, though still in its 

infancy, is not novel to this thesis.294-297 Indeed, others have successfully identified 

molecules which are capable of binding to disordered proteins using NMR-based 

experimental and MD-based computational approaches.14, 297-298 Furthermore, the 

work of Kelley and coworkers with transthyretin supports the notion that a protein’s 

soluble form might be stabilized relative to fibril formation.299 Therefore, the next 

major application of the developed ensemble-based FRET approach is to perform 

high-throughput screens with the goal of identifying molecules that bind to, and 

impact the structural ensemble, of αS. Recently, the National Cancer Institute at 

the National Institute of Health has begun to provide natural products libraries to 

labs free of charge.300 These libraries contain 150,000 pre-fractioned marine, 

microbial and plant extracts and are provided in 384-well plates. Therefore, future 

work will be focused on developing the ensemble FRET-based approach, 

described herein, into a robust high-throughput strategy aimed at identifying 

compounds that modulates the conformational ensemble of αS. 

 

§ 8.2 Continued Exemplar-based Screening 

In addition to these clear experimental next steps, further computational 

efforts towards the identification of PD probes are underway. The final chapter of 
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this thesis work outlined a general workflow for identifying novel molecular 

scaffolds that are capable of selectively binding to αS fibrils. Although the 

compound identified was sufficient for vetting the validity of this approach, the 

selectivity and solubility of the molecule could stand to improve. Therefore, a 

second in silico search is currently being prepared, making use of the 

improvements noted in that chapter, which will hopefully lead to an improved hit. 

Additionally, although the recently identified compound boasts improved specificity 

for αS fibrils over other protein fibrils, there is also an ongoing effort to further 

enhance compounds selectivity. To solve this problem, exemplars will once again 

be employed, and a library of exemplars has been crafted from tau and aβ fibril 

structures deposited in the PDB. After a set of potential binders has been identified 

using a target exemplar, compounds will be counter screened against this off-

target exemplar library. This method, which has been previously demonstrated by 

Karanicolas and coworkers, allows for the rapid removal of non-specific 

compounds from a set of potential binders.301 Furthermore, efforts are ongoing for 

developing a second tier in silico screening approach to cull false positions from 

potential hits identified in the initial screen. The basis of this approach to date has 

employed modeling in PyRosetta, along with the development of a custom score 

function, to predict experimental binding data. The concept of custom score 

functions is discussed later in this chapter. The identification, testing and 

development of new compounds is the subject of a recently approved U19 grant 

from the NIH which involves the Petersson Lab, along with many others. Overall, 

the exemplar-based methods employed in the latter portion of this thesis will be 
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employed to generate new lead compounds for αS fibrils from the multitude of cryo-

EM structures recently deposited in the Protein Data Bank and can be extended 

to other fibrillar proteins for identifying targeting compounds.50, 302-303 

The final future focus on this topic is on the combination of disordered 

ensemble prediction with exemplar-based modeling to identify compounds that 

bind disordered proteins. Unlike the previous focus on targeting fibrils, the lack of 

static pockets in the disordered state makes pocket identification and thus 

exemplar selection difficult. However, the previously described FastFloppyTail 

method for generating accurate models of disordered proteins at unparalleled 

speeds provides a potential avenue to overcoming this sampling issue. By crafting 

composite exemplars from similar protein regions across many structures, one 

may be able to capture the necessary three-dimensional architecture and chemical 

interactions sufficient for identifying binders. Moreover, the efforts of Nath and 

colleagues as well as others suggests that this may be a viable strategy.298, 304 

Lastly, the recent excitement surrounding proteolysis targeting chimera (PROTAC) 

further increases the potential utility for small molecules which are capable of 

selectively targeting a disordered protein.305 Ultimately this approach could open 

the class of disordered proteins to new therapeutic approaches.  

 

§ 8.3 Novel Approaches in Rosetta Targeting Experimental Optimization 

Finally, an ongoing computational effort is focused on developing custom 

score functions. In the Rosetta Modeling Suite, score functions are utilized 

alongside the Metropolis criterion to perform Monte Carlo sampling of protein 
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structures.240 Here, custom score functions allow a sequence or molecule to be 

scored, post-sampling, to predict experimental measurables. Although these are 

comprised of the same energy terms as the canonical Rosetta score functions, 

which have been optimized to serve as a surrogate for overall energetics, the 

reweighting of these terms is optimized to predict some experiment of interest. This 

requires a significant experimental dataset whose fundamental experimental 

measurable can be traced to a structural phenomenon. Interestingly, this is not an 

approach previously employed within the Rosetta community which has largely 

focused on optimizing the core scoring performance of Rosetta (i.e., matching 

structural or thermodynamic data).194 A preliminary example of how this may be 

employed is demonstrated in this thesis work in the chapter entitled “Systematic 

Evaluation of Soluble Protein Expression Using a Fluorescent Unnatural Amino 

Acid Reveals No Reliable Predictions of Tolerability.” Following an initial 

demonstration that the energetic differences between the mutant and native 

proteins as assessed by the canonical Rosetta energy indeed was insufficient for 

the prediction of soluble protein fractions, it was demonstrated that individual 

components were able to demonstrate some correlative capacity. Therefore, it is 

likely that recombination of these terms can afford a score function that is capable 

of predicting the soluble fraction of a given mutant provided the initial dataset 

utilized for training is sufficient. To this end, further experimentation is underway 

with a more extensive library of proteins and unnatural amino acid mutants.  

Although the concept of custom score functions was conceived with the goal 

of predicting tolerability of unnatural amino acid incorporation, there are many 
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opportunities to extend this approach to predict other phenomena of interest. 

Exemplar-based modeling provides an efficient platform for identifying potential 

lead molecules but, as previously demonstrates, delivers several false-positives. 

Therefore, a custom score function is currently in development which utilizes 

binding data from the SAR study present herein to generate a second-tier 

screening algorithm. This approach docks each compound to the input fibril 

structure and uses the resulting structure as the basis for custom score evaluation. 

Preliminary efforts, not presented in this work, have shown significant promise in 

the capabilities of this method. Lastly, this approach is being extended to other 

systems of interest in the Petersson lab which are focused on design. Custom 

score functions from peptide proteolysis and logP data are providing algorithms for 

designing stabilized peptides while directed evolution data will be used to improve 

in silico directed evolution of aminoacyl tRNA synthetase. 

Overall, the methods and tools developed herein have been and continue 

to be employed towards challenging problems for disordered and aggregation 

prone proteins and beyond. This work has focused on developing generalized 

approaches and employing these and other methods to elucidate the structural 

complexities of disordered proteins. Moreover, this work has extended previously 

developed methods to the class of aggregation prone proteins and demonstrated 

the efficacy of these approaches. Lastly, these developments are continuing to be 

improved and are being leveraged for new protein systems of interest. 
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