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ABSTRACT 
 

A DROSOPHILA MODEL OF SLEEP RESTRICTION THERAPY FOR INSOMNIA AND 

NEURODEGENERATIVE DISEASE 

Samuel J. Belfer 

Matthew S. Kayser 

Insomnia is the most common sleep disorder among adults, especially affecting 

individuals of advanced age or with neurodegenerative disease.  Humans with insomnia 

often expand the amount of time they spend in bed in an attempt to compensate for 

inability to sleep.  However, this mismatch of time in bed (high) with sleep ability (low) 

perpetuates insomnia symptoms.  Cognitive Behavioral Therapy for Insomnia (CBT-I) is 

the first-line insomnia treatment.  Sleep restriction – a key component of CBT-I – 

addresses mismatch between sleep opportunity and ability by restricting time in bed to 

an amount equal to average sleep ability, leading to enhanced sleep drive and 

consolidation.  Though effective, limited accessibility of practitioners and long duration of 

therapy are barriers to broad implementation of CBT-I.  Deciphering a molecular basis 

for this behavioral therapy has potential to open new treatment avenues.  In Chapter 1, I 

discuss the utility of modeling insomnia, behavioral therapy, and neurodegenerative 

disease in Drosophila.  In Chapter 2, we develop a Drosophila model for sleep restriction 

therapy (SRT).  We find that restriction of sleep opportunity through manipulation of 

environmental cues improves sleep efficiency and continuity in multiple short-sleeping 

Drosophila mutants.  We apply SRT to a Drosophila model of Alzheimer’s disease, in 

which Aβ accumulation causes decreased and fragmented sleep, and demonstrated that 

sleep restriction reverses these sleep deficits, with associated extension in lifespan.  In 

Chapter 3, we expand our search for fly models of human neurodegenerative disease 



vi 
 

associated with short-sleeping phenotypes.  We find that overexpression of human TDP-

43, the protein deposited in intracellular inclusions in ALS and FTD, cause profound 

sleep disturbances that can be rescued by SRT.  TDP-43 flies also exhibit increased 

arousal threshold and extended longevity with SRT, suggesting deeper sleep with sleep 

opportunity restriction confers health benefits.  In Chapter 4, I discuss ongoing work 

investigating the intracellular localization of TDP-43, and how improved sleep might 

mediate toxicity of this protein.  Finally, I discuss use of this model to identify molecular 

signals mediating the response to sleep restriction therapy. These findings have 

important implications for our understanding of behavioral sleep therapy and its potential 

as a therapeutic intervention for neurodegenerative disease. 
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Introduction 

 
 

םיינ אלד ןאמל אתימד םיינד ןאמל אייחד אתנישל ידבעד לעוש לש ןשבו   ןיאצוי …
 

 
 

“One may go out on the Sabbath … with a fox tooth, as they use it as a talisman for 

sleep; the tooth of a live fox for one who sleeps too much to wake him up, and the tooth 

of a dead fox for one who does not sleep” 

   - Babylonian Talmud, Tractate Shabbat 67a 

 

 

 While modern medicine has not fully embraced fox teeth as a therapeutic 

strategy for sleep disorders, the search for effective approaches to treat disturbances in 

sleep is at least as old as the codification of the Mishnah in 200 CE.  In modern times, 

the need for therapy is at an all-time high: more than 1 in 3 adults in the United States 

has insufficient sleep according to CDC estimates.  This problem continues to grow in 

teenagers, as 68% of high school students report not getting adequate sleep (Wheaton 

et al., 2016).  With the strong association between poor sleep and chronic disease, it is 

becoming clear that treating disordered sleep should be a priority in all disciplines of 

medicine.  Furthermore, changes in sleep represent an important characteristic of the 

normal aging process.  Aging is associated with a degradation of sleep quality, which 

includes decreased sleep efficiency, sleep fragmentation, and early morning awakening.  

Sufficient sleep is necessary to support a large number of brain functions, and disruption 

of sleep negatively impacts vigilance, cognition and learning (Roth, 2007).  Sleep is 
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hypothesized to affect these functions by serving as a regulator of neural clearance of 

cellular products and waste, while loss of sleep leads to increased production of these 

compounds (Kang et al., 2009; Musiek and Holtzman, 2016). Protein accumulation can 

serve to worsen sleep, resulting in a vicious cycle of poor sleep and pathogenic 

aggregation. It is therefore no surprise that sleep quality is worsened by the onset of 

dementia. Although dementia is typically characterized by progressive memory loss and 

deterioration of other neurocognitive functions, sleep disturbance represents a significant 

toll for both patients and caregivers. In fact, up to 45% of Alzheimer’s disease patients 

report sleep disturbances in epidemiological studies (Moran et al., 2005), while sleep 

degradation represents a significant risk factor for institutionalization (Peter-Derex et al., 

2015). Interestingly, degraded sleep can occur up to 10 years before the clinical onset of 

cognitive decline (Sterniczuk et al., 2013), consistent with the finding that brain regions 

involved in sleep are affected early in the pathogenesis of disease (Y. E. S. Ju, Lucey 

and Holtzman, 2014). 

While many patients turn to hypnotics to treat sleep deficits, use of these drugs is 

associated with increased mortality in the elderly, a population especially at risk for 

cognitive and behavioral decline (Kripke, Langer and Kline, 2012).  Fortunately, 

behavioral therapies to treat sleep disorders present safe and effective treatment options 

for patients.  Yet, with the high demand for practitioners outpacing their availability, 

behavioral therapies are not available to all patients.  Moreover, the long duration of 

treatment can disincentivize patients who can access behavioral therapy from pursuing 

it.  Clearly, mechanistic insight into how behavioral therapies work is necessary to devise 

new strategies to treat sleep.  Understanding behavioral therapy on a cellular and 

molecular level would create novel approaches that target specific disease pathways to 

revolutionize treatment strategies. 
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Here, I discuss the epidemiology and deleterious sequelae associated with 

untreated sleep deterioration, as well as the first-line treatment for insomnia in humans, 

Cognitive Behavioral Therapy for Insomnia (CBT-I).  CBT-I includes a combination of 

modalities: Behavioral Therapy (sleep restriction and stimulus control), Cognitive 

Therapy (e.g., cognitive restructuring of dysfunctional beliefs about sleep), and sleep 

hygiene. I consider the components of this behavioral therapy, and examine the 

physiologic rationale for each part of CBT-I. The model organism Drosophila 

melanogaster has become one of the most powerful systems for studying how brain 

circuits give rise to complex behaviors (Bellen, Tong and Tsuda, 2010). The discovery 

that Drosophila sleep (Hendricks et al., 2000; Shaw et al., 2000) has opened the door to 

using this tractable genetic system to explore the regulation of sleep, leading to novel 

insights that scale to mammalian systems.  I discuss the utility of model systems in the 

mechanistic study of sleep and insomnia, and how the study of sleep across phylogeny 

has sought to further understand the underlying function of sleep.  In addition to short 

sleeping Drosophila mutants being among the best animal models of chronic insomnia, 

models of neurodegenerative disease have been established as well.  Transgenic lines 

can incorporate pathogenic mutations found in humans afflicted with neurodegenerative 

disease, recapitulating cellular and molecular changes that lead to cognitive decline.  

Moreover, I discuss Drosophila as the ideal model system to lay the groundwork for this 

pursuit; well-validated insomnia, aging, and neurodegenerative disease models that can 

be studied in a reasonable time course to allow for mechanistic insight.  I detail how 

tenets of CBT-I can be adapted for experimental feasibility in Drosophila, and how 

findings in this system can be extrapolated to human patients.  In this way, behavioral 

therapy can be modeled in the fly to identify and elucidate novel therapeutic treatment 

strategies. A mechanistic understanding of therapies for sleep disturbances opens new 
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doors for treatment of aging-related sleep decline, neurodegenerative disease, or other 

maladies that feature significant sleep disturbances. 

 

Insomnia – Epidemiology, Causes, and Consequences  

Insomnia is characterized by difficulty initiating or maintaining sleep, despite 

adequate opportunity (Roth, 2007).  Insomnia can take many clinical forms: patients who 

report inability to fall asleep, frequent night time awakenings, or persistent early 

awakenings all meet diagnostic criteria.  There have been some efforts to distinguish the 

clinical features of  sleep onset insomnia, sleep maintenance insomnia, and early 

morning awakening insomnia but studies have demonstrated the limited durability of 

these specific subtypes (Hohagen et al., 1994). Moreover, chronic nonrestorative or poor 

quality sleep is also classified as insomnia, provided it is not as a response to poor 

conditions for sleep.  Importantly, patients must also experience daytime impairments 

that include but are not limited to: fatigue, attention or memory impairment, mood 

instability, daytime sleepiness, negative feelings about sleep, or physiological symptoms 

related to poor sleep (Thorpy, 2017).  Clinical insomnia specifies ample opportunity and 

conditions for sleep, as to distinguish from sleep deprivation due to inadequate time in 

bed.  There is no specific criteria for sleep amount, as genetic and environmental factors 

cause variability in baseline sleep amount necessary for each individual.  Therefore, 

differences in sleep amount and quality from each patient‘s baseline sleep 

characteristics (which often cannot be measured quantitatively until insomnia resolves) 

are used to track progression of the disorder.  Other than total sleep amount, sleep 

efficiency (total sleep time divided by time in bed), time to fall asleep (sleep latency), and 

total wake time after sleep onset are also followed to determine severity of disease. 
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Insomnia has historically been classified as primary or secondary insomnia, based on 

whether another medical or psychiatric condition was identified as the cause of 

insomnia.  However, insomnia is now conceptualized as an independent risk factor for 

numerous psychiatric and medical conditions, making it difficult to establish causality.  

DSM-V has therefore eliminated this distinction, uniting all forms of insomnia under the 

umbrella diagnostic category of “insomnia disorder” (American Psychiatric Association, 

2013). 

Insomnia symptoms are quite prevalent in the population, with greater than 50% 

of adults experiencing acute symptoms each year (Riemann et al., 2019).  It is estimated 

that 40-70% of individuals who experience acute insomnia symptoms progress to 

chronic insomnia, with the remaining cases self-resolving, likely with the removal of an 

acute stressor (Morin, Bélanger, et al., 2009).  Chronic insomnia indicates that 

symptoms of insomnia have recurred at least three times per week over a period of three 

months.  Which cases of insomnia will progress to chronic insomnia and which will be 

self-delimited has been the focus of much scientific work to date.  One study identified 

higher baseline anxiety and depressive symptoms, and negative overall health as 

independent risk factors for progression to chronic insomnia (LeBlanc et al., 2009).  

Another study identified dysfunctional beliefs about sleep as a critical factor in identifying 

which patients will progress to a chronic insomnia phase (Yang, Lin and Cheng, 2013).  

However, a neurobiological understanding of who may be at higher risk for prolonged 

sleep degradation has been elusive. 

One helpful model in framing the risk of progression to chronic disease is the 3P 

behavioral model (Spielman et al. 1987).  This model supposes that three factors can 

describe how acute insomnia occurs and how actions taken in response to acute 

insomnia can cause prolonging of symptoms into a chronic phase.  The first of the 3P’s 
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described in this model is predisposing factors, and they include biological, 

environmental, and social variables that affect sleep.  Genetic factors that contribute to 

insomnia have been well-studied in human cohorts (Lind and Gehrman, 2016).  Chief 

among these have been polymorphisms in genes that encode components of 

neurotransmitter systems.  A ‘short’ allele in a serotonin transporter gene-linked 

polymorphic region predicted increased sleep latency in a population of caregivers 

whose jobs included frequent night time awakenings (Brummett et al., 2007).  Another 

study implicated this same locus as predisposing to insomnia in shift workers (Pallesen 

et al., 2019).  However, other studies found no direct correlation between allelic status at 

the serotonin transporter locus and risk of insomnia, observing an interaction only 

between allele and stress level on subjective sleep quality (van Dalfsen and Markus, 

2019).  Genome-wide association studies have been essential in the discovery of novel 

genes that have never been previously associated with insomnia, as well as validation of 

loci discovered by other means.  A recent analysis in 1.3 million individuals identified 

numerous novel genes, including one associated with type 2 diabetes and autism 

spectrum disorder (diseases with prominent sleep deficits) that has never before been 

associated with insomnia (Jansen et al., 2019).  Causal genetic interactions between loci 

associated with psychiatric disorders and insomnia have also been explored (Gao et al., 

2019).  While biological explanations receive much focus to explain the prevalence of 

chronic insomnia, research into predisposing social determinants of health have lagged.  

Recent work has pointed to an association between perceived neighborhood safety and 

sleep duration (Ruff et al., 2018), while another study has shown high rates of 

community unemployment predisposes to insomnia (Riedel et al. 2012).   

The second of the 3P’s describes precipitating factors, acute triggers that initially 

disturb sleep, often categorized as the causes of the initial insomnia symptoms.  These 
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can include a new medical or psychiatric illness, stressful life event, the physiological 

changes of pregnancy, or other factors that directly affect sleep.  While precipitating 

factors are often identified as the cause of acute bouts of insomnia symptoms, the stress 

and arousal associated with these events is reduced over time.  In this manner, 

precipitating events are usually not the sole cause of chronic cases of insomnia.  Finally, 

perpetuating factors refer to cognitive and behavioral adaptations to the poor sleep that 

the person suffering from insomnia undertakes to compensate for the lack of sleep 

caused by precipitating factors.  These include incorporating non-sleep activities into 

sleep routines, frequent daytime napping, and spending longer durations in bed to 

compensate for poor sleep.  While self-reinforcing in the short term, perpetuating factors 

can predict the progression to chronic insomnia 

(Perlis et al. 2014).  The 3P model posits that 

there is a threshold above which insomnia 

symptoms occur (Figure 1.1). When predisposing 

factors and precipitating stressors combine to 

overcome this threshold, acute insomnia occurs.  

As individuals with insomnia adapt to the acute 

stressor (precipitating factor), or it resolves, sub-

threshold levels are reached and insomnia will not 

progress to a chronic phase.  However, if 

perpetuating behaviors are adopted, these can combine with predisposing and 

precipitating factors and enable insomnia symptoms to occur over a longer term.  This 

combination of these three factors therefore models who is at the most risk for 

development of chronic insomnia, as well as identifies behaviors and ideation that can 

be targeted for therapy. 
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One instance of the 3P model guiding therapeutic strategies is sleep restriction 

therapy (SRT).  SRT seeks to treat chronic insomnia by addressing the perpetuating 

factor of sleep time extension, or spending too much time in bed.  Patients with insomnia 

often expand time in bed in hopes of recovering lost sleep (Spielman, 1986). This 

adaptation perpetuates symptoms by encouraging fragmentation of sleep times, as well 

as encouraging non-sleep behaviors while in bed. By restricting time in bed, SRT leads 

to enhanced sleep drive and consolidation by EEG (Krystal and Edinger, 2010). Once 

efficient sleep is established (sleep efficiency > 90%), sleep opportunity is carefully 

titrated as sleep ability stabilizes and increases.  The 3P model predicts that the 

elimination of perpetuating symptoms should resolve chronic insomnia, by bringing pro-

insomnia factors to subthreshold levels.  In the case of SRT, this model is supported by 

clinical evidence.  A 3P model-based approach has been quite influential among sleep 

medicine practitioners, and evaluation approaches for chronic insomnia feature 

questions about time in bed as one of the first line of inquiry for patients (Sutton, 2014). 

The 3P model fails to predict every factor that influences disease course, 

however.  In chronic anxiety patients, circadian chronotypes that are incompatible with 

typical sleep schedules have significantly greater sleep anxiety than other chronotypes 

(Passos et al., 2017).  Delayed- or advanced sleep phase syndromes can cause 

mistimed therapies that prove ineffective simply because they were offered at 

inopportune times for sleep.  Additionally, the 3P model fails to provide a physiological 

rationale for how precipitating factors cause sleep fragmentation (Perlis et al. 2014).  

Rumination about a stressful life event can partially explain sleep onset insomnia, but 

other subtypes are less clear, especially as sleep need remains unchanged.  Despite its 

flaws, the 3P model gives a conceptual framework to understand the onset and 
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persistence of insomnia symptoms, and suggests efficacious behavioral adaptations for 

patients.  

 

The Treatment of Insomnia 

 A low threshold for treatment of insomnia during the acute and early chronic 

stages is critical to prevent continued daytime impairment, as well as preventing 

perpetuating behaviors from becoming part of patients’ routine (Sutton, 2014).  Cognitive 

Behavioral Therapy for Insomnia (CBT-I) is the first-line intervention for treatment of 

insomnia.  Meta-analysis has shown this behavioral modality to be equal to 

pharmacologic therapy at treating acute insomnia, and as more effective in the long term 

(Smith et al., 2002). Furthermore, the effectiveness of CBT-I has made it an attractive 

alternative to treat insomnia that occurs in the context of psychiatric comorbidities, like 

bipolar disorder (Kaplan and Harvey, 2013), PTSD (Ho, Chan and Tang, 2016), and 

depression (Cunningham and Shapiro, 2018).  While CBT-I was conceived as a therapy 

for chronic insomnia due to its long duration, one-visit adaptations to treat acute 

insomnia have shown some efficacy (Ellis, Cushing and Germain, 2015).  

CBT-I includes a combination of modalities: Behavioral Therapy (sleep restriction 

and stimulus control), Cognitive Therapy (e.g., cognitive restructuring of dysfunctional 

beliefs about sleep), and sleep hygiene.  Behavioral therapy addresses prominent 

clinical feature of insomnia: the mismatch between sleep opportunity and sleep ability.  

Patients with insomnia often expand time in bed in hopes of recovering lost sleep 

(Spielman, 1986).  This adaptation worsens symptoms by mismatching sleep ability 

(low) and opportunity (high), leading to less efficient and more fragmented sleep. By 

restricting time in bed, sleep restriction allows for better matching.  In practice, patients 
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are asked to provide an average of the total number of hours of sleep per night, by 

keeping a sleep diary.  Parameters for time in bed are set to match patients’ average 

sleep time; patients are instructed to remain out of bed at all other times.  While patients 

often report feeling tired in the first few days of implementation (Sutton, 2014), this 

represents a necessary part of the therapeutic process as sleep drive builds, 

subsequently increasing the intensity of slow wave sleep (Krystal and Edinger, 2010).  A 

sleep diary is kept throughout this process, and sleep efficiency is monitored such that 

patients are sleeping for >90% of time spent in bed.  After days or weeks of obtaining 

efficient, but restricted sleep opportunity, time in bed is slowly titrated by 15-30 minutes 

per week until a duration is reached that is efficient and restorative by patient report.  

Sleep restriction therapy has been used as monotherapy; studies show that sleep 

restriction alone is sufficient to gain most of the benefits of CBT-I (Miller et al., 2014).   

 Stimulus control has also been utilized effectively and coupled with counseling on 

sleep hygiene to compose an important part of CBT-I.  At its core, stimulus control 

encourages pro-sleep behaviors while in bed, while eliminating extraneous activities not 

associated with sleeping.  Avoidance of daytime napping, non-sleep activities in bed, 

and caffeine, while encouraging regular exercise during wake times are important tenets 

of stimulus control (Sutton, 2014).  Patients are also advised to get out of bed if they are 

having trouble falling asleep for 20 minutes or more; they can return to bed if tired after 

pursuit of a quiet activity in a low-lit room (reading, meditation, mindfulness exercises).  

Cognitive therapy aims to combat negative emotions that have accumulated due to 

disordered sleep.  

 CBT-I has shown efficacy in treatment regardless of etiology of insomnia 

(Riemann and Perlis, 2009), but limited accessibility of practitioners and long duration of 

therapy are the biggest roadblocks to broad implementation.  To this end, adaptations to 
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traditional CBT-I have sought to bridge this gap and provide access to additional 

patients.  Abbreviated treatment courses have been studied to treat primary insomnia, 

as well as insomnia comorbid with cancer (Palesh et al., 2018) and depression (Wagley 

et al., 2013; Pigeon et al., 2017). Further extending the reach of CBT-I, telephone visits 

with practitioners or teleconferences with other patients (Brenes et al., 2016), CBT-I 

‘coaches’ on a mobile device (Koffel et al., 2018), and text message services (Filion et 

al., 2015) represented the first wave of technological applications to CBT-I.  Recent 

advances have allowed patients to engage with mobile apps (Horsch et al., 2017), even 

incorporating data from actigraphy to achieve accurate accounts of sleep timing and 

treatment compliance. 

 Despite the efficacy and increasing access to CBT-I, drug treatments still 

represent an outsized portion of treatments for insomnia.  Two classes of drugs 

represent a majority of prescriptions for sleep disturbances: benzodiazepine receptor 

agonists and benzodiazepines.  Sharing a common mechanism of action, these drugs 

increase inhibitory tone by binding the GABAA receptor, and counteract pro-arousal cues 

throughout the brain.  For short term use in acute insomnia, benzodiazepines and  

benzodiazepine receptor agonists have been shown to be safe and effective (Smith et 

al., 2002).  Their primary danger is to overuse, overdose, and dependency on these 

drugs for sleep in the long term.  For this reason, these drug classes are no longer 

approved to treat chronic insomnia in Europe (Riemann et al., 2015).   

 New treatments are in various stages of development; perhaps the most exciting 

is suvorexant, a receptor agonist that affects orexin receptors.  Compared to placebo, 

patients taking suvorexant reported improvements in many subjective sleep metrics, 

including sleep latency and total sleep time (Kuriyama and Tabata, 2017).  Notably, 

these results were after one year of treatment, longer time periods than benzodiazepines 
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are recommended to be used (Riemann et al., 2015).  Suvorexant is FDA-approved for 

the treatment of primary insomnia, and its limited side effect profile makes it an attractive 

option for individuals with comorbid dementia (Kuriyama and Tabata, 2017).  Dual 

therapy with suvorexant and benzodiazepines causes high rates of oversedation and 

these patients had a high discontinuation rate in a retrospective study (Hatano et al., 

2018).  Suvorexant alone causes somnolence and drowsiness as side effects, and 

strange dreams have also been reported as a side effect that can affect drug 

compliance.  Perhaps most critically, suvorexant is metabolized via the cytochrome 

P450 system and levels can be directly altered by other drugs that affect this system 

(macrolide antibiotics, warfarin), leading to dangerous drug-drug interactions (Kishi, 

Matsunaga and Iwata, 2015).  A direct comparison of efficacy of suvorexant to drugs in 

the benzodiazepine class would clarify under what conditions each drug should be used 

for maximal improvement of insomnia symptoms (Kuriyama and Tabata, 2017), but this 

new drug class represents an exciting development for pharmacologic therapies for 

insomnia.   

 Despite the numerous treatment options available, 40% of patients do not 

respond to treatment, even when CBT-I is combined with pharmacologic therapy (Morin, 

Vallières, et al., 2009).  Are there biological predictors that could identify who is at 

increased risk to be resistant to therapy?  Perhaps lessons in prediction of treatment 

resistance can be gleaned from major depressive disorder, in which a third of patients 

are resistant to therapy (De Carlo, Calati and Serretti, 2016).  Recent studies have used 

machine learning to accurately identify patients who are unlikely to respond to treatment 

(Kautzky et al., 2017, 2018).  Additionally, several studies have attempted to identify 

transcriptomic biomarkers and neuroimaging trends that could predict non-responders 

(Thase, 2014).  While a single biological variable remains elusive in predicting resistance 
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to therapy in major depression, such investigations are lagging in the study of insomnia.  

Further investigation into treatment resistance is necessary to better understand this 

population.  

 

Animal Models of Insomnia 

Sleep research in humans and animal models alike has sought to answer a 

fundamental question:  what essential function does sleep behavior serve?   While they 

are sleeping, animals must overcome several evolutionary disadvantages.  During sleep 

an animal is not eating or drinking, not seeking a mate for reproduction, and not 

searching for safe locations for shelter.  Meanwhile, they are vulnerable to predation due 

to decreased arousability in response to external stimuli.  Therefore, for sleep to be 

evolutionarily maintained, it must serve an essential purpose.  Lending support to this 

idea, every animal that has been carefully studied has revealed robust sleep states.  

Initial studies of sleep states in animal models were classified according to the widely-

accepted two-process model of sleep regulation (Borbély, 1982).  Briefly, this model 

describes sleep behavior as being regulated by a homeostatic process depending on 

sleep and wake (Process S) and by the circadian pacemaker (Process C).  Process S 

represents the need for sleep. It therefore increases throughout the waking period and is 

subsequently reduced by sleep behavior.  Process C varies directly with an organisms 

circadian timing, carefully entrained to light/dark cycles.  Measurement of these 

processes in animals lends itself to behavioral observation; the two-process model 

predicts that deprivation of sleep should further increase process S, meaning that 

organism should compensate for lost sleep by sleeping deeply in the subsequent period.  
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Furthermore, the model predicts that sleep behavior should have periodicity as the 

circadian system delineates opportunistic times for rest.  

Therefore, sleep in animals has been classified according to a series of 

behavioral criteria: (1) animals must display decreased responsiveness to external 

stimuli, (2) but sleep must be reversible with sufficiently strong stimulation.  (3) Sleep 

also must be subject to homeostatic regulation, such that sustained arousal from sleep 

induces subsequent compensatory increases in sleep amount and sleep depth (Allada 

and Siegel, 2008).  In addition to behavioral measures, EEG monitoring of animals 

during sleep has enabled electrical signatures of sleep states to be elucidated.  Regional 

brain differences in EEG in mammals as well as inability to adapt whole-brain electrical 

modeling to simpler model organisms has led to a preference for behavioral 

characterization of sleep.  Through these behavioral classification schemes, common 

molecular criteria and neurotransmitter systems have been implicated in control of sleep 

across phylogeny (Crocker and Sehgal, 2010; Anafi, Kayser and Raizen, 2019).   

The mechanistic study of sleep in invertebrates began in earnest at the turn of 

the millennium when sleep was described in Drosophila melanogaster, the vinegar fly 

(Hendricks et al., 2000; Shaw et al., 2000).  In addition to meeting the behavioral criteria 

detailed above, sleep timing in flies was found to be regulated, but separable, from the 

function of circadian clocks, such that clock mutants achieved the same overall amount 

of total sleep time, though it was dispersed evenly throughout the day (Hendricks et al., 

2000). 

The finding that Drosophila sleep likewise set the stage for forward genetic sleep 

screens, heralding discovery of new sleep-regulating genes and mapping of sleep neural 

microcircuitry.  Critically, the deep understanding of genetic contributors to sleep has 

established many short-sleeping mutant lines that are potential models for insomnia in 
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Drosophila.  An animal model of insomnia should recapitulate the key pathology of 

disease (decreased ability to sleep despite environmental circumstances that normally 

promote sleep, with associated daytime impairment). Several Drosophila mutants meet 

this criteria; mutations and alterations in expression of Shaker potassium channels 

produce changes to sleep.  Shaker, a mutant line which carries a point mutation in a 

domain conserved in mammals, sleep for only 3-4 hours per day, whereas wild type 

control flies sleep 9-13 hours (Cirelli et al., 2005).  Two other mutant lines, hyperkinetic 

and sleepless, feature mutations in proteins that bind directly to Shaker channels or 

modify its expression, altering Shaker current kinetics (Bushey et al., 2007; Wu et al., 

2010).  These mutant lines also have severely shortened sleep duration (Bushey et al., 

2007; Koh et al., 2008).  These lines are compelling models of insomnia: reductions in 

sleep seen in shaker, hyperkinetic, and sleepless mutants are primarily due to severely 

decreased sleep bout length, indicating that flies initiate but cannot maintain sleep 

(Cirelli et al., 2005; Bushey et al., 2007; Koh et al., 2008). It is unlikely that these short 

sleepers simply do not need sleep, since all three mutations reduce lifespan and shaker 

and hyperkinetic mutants have memory deficits (Cirelli et al., 2005; Bushey et al., 2007, 

2010; Koh et al., 2008).  Several additional mutant lines with etiologies distinct from 

Shaker currents also produce short sleeping phenotypes in Drosophila. Insomniac 

mutants, who have aberrant ubiquitination, also have decreased sleep bout length and 

show an increased number of sleep episodes, indicating that they repeatedly initiate 

sleep to meet need, but cannot stay asleep (Stavropoulos and Young, 2011).  The gene 

redeye, which encodes an a subunit of a nicotinic acetylcholine receptor, causes severe 

sleep deficits when mutated in Drosophila, and levels of REDEYE increase with high 

homeostatic drive for sleep (Shi et al., 2014).  Fumin flies, with a mutation in the 
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dopamine transporter, have significant reductions in sleep time as well as decreased 

arousal threshold and memory problems, again suggesting mutants are not able to fulfill 

their sleep need, as with human insomnia (Kume et al., 2005).  Mutant Drososphila lines 

provide compelling models of insomnia from a diversity of etiologies, mimicking the 

heterogeneity of human disease. 

In addition to mutants discovered through screens, advanced understanding of 

arousal networks in Drosophila provide another potential avenue to model insomnia. 

Despite anatomical differences, the neural logic underpinning how specific Drosophila 

brain regions interact to control sleep and wakefulness can prove immensely useful for 

understanding similar processes in humans, as well as their potential contribution to 

disease. Experimental activation of 2 dopaminergic neurons (Liu et al., 2012; Ueno et 

al., 2012), a small cluster of octopaminergic neurons (Crocker et al., 2010), or well-

described populations of neuropeptidergic cells (Parisky et al., 2008), each induces 

sustained wakefulness.  Constitutive activation or silencing of these specific neurons is 

possible with precise genetic control in Drosophila (Baines et al., 2001; Luan et al., 

2006).  Temporally-regulated manipulation can also be attained by expression of the 

heat-activated depolarizing channel TrpA1 (Hamada et al., 2008), while the temperature-

sensitive dominant negative allele of shibire blocks synaptic transmission (Kitamoto, 

2001).  Recent work has also harnessed optogenetic and chemogenetic tools to alter 

activation of specific groups of neurons, enabling rapid reversibility (Becnel et al., 2013; 

Klapoetke et al., 2014).   

The ease of use and powerful genetic tools to study sleep in Drosophila spawned 

additional models in even simpler organisms.  Caenorhabditis elegans, a nematode with 

only 302 adult neurons, exhibits sleep between transitions of larval stages, as well as in 

response to cellular stressors (Raizen et al., 2008; Hill et al., 2014).  Recent work 
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indicates that Cnidarians, which lack a brain structure and instead have a simple nerve 

net, demonstrate behavioral quiescence that meets criteria for sleep (Nath et al., 2017).  

That these tissues can control sleep in their limited behavioral repertoire speaks to the 

essential function of sleep behavior. 

 While rodent models of normal sleep/wake function have been remarkable in 

helping to understand neuronal networks and electrical signatures involved in sleep, only 

a few valid insomnia models are widely accepted (Revel et al., 2009).  While sleep 

fragmentation is a characteristic symptom of human insomnia, baseline sleep in rodents 

is already quite fragmented.  REM sleep cycles, which occur every 60-90 minutes in 

humans, occur on the order of seconds to minutes in several wild type mice strains 

(McShane et al., 2010).  Therefore, hypnotics or behavioral therapeutics that extend 

sleep bout duration can be tested in these strains, but relevance of these outcomes is 

difficult to interpret.  Beyond viewing wild type mice as models of insomnia, stress is 

often leveraged to disrupt sleep and cause arousal, thereby decreasing total sleep and 

sleep continuity.  Paradoxically, mild and brief stressors tend to cause increases to REM 

sleep, while more intense and prolonged stress leads to phenotypes that more closely 

resemble human insomnia (Revel et al., 2009).  Stressors can involve perception of a 

dangerous or taxing situation (viewing water underneath a transparent cage, seeing an 

aggressive conspecific in an adjacent cage), direct noxious stimuli like a foot shock, or 

gentle handling for long periods of time.  The effect of individual stressors on sleep has 

been well-studied (Pawlyk et al., 2008), but it remains difficult to generalize these 

models to human insomnia.  Furthermore, these models more closely mimic acute 

insomnia as conceptualized by the 3P framework, as they feature acute stress in the 

absence of adaptations that perpetuate short sleep.  Other models of insomnia leverage 

activation of arousal systems by caffeine or high-dose nicotine, or suppression of 
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serotonin production by synthesis inhibitors (Borbély, Neuhaus and Tobler, 1981; Revel 

et al., 2009).  These manipulations, while successful in limiting slow wave and REM 

sleep, are likely to have broad effects on neuronal function.  Recent work in rodents has 

identified discrete neuronal subtypes involved in activating or suppressing REM 

behavior.  GABAergic neurons with cell bodies in the dorsomedial hypothalamus that 

project to the preoptic area suppress REM sleep, while neurons projecting to the raphe 

pallidus promote REM (Chen et al., 2018).  Similarly, periaqueductal gray neurons have 

a privileged role in gating REM sleep (Weber et al., 2018).  Dissecting neuronal 

networks to understand regulation of sleep phases is essential to the understanding of 

behavior, but these genetic tools have not yet been applied to modeling insomnia. 

 

 

 Sleep, Aging, and Neurodegenerative Disease 

 
Sleep is a dynamic process that changes throughout lifespan.  Infants and 

toddlers require long sleep times, and spend a large percentage of time in REM sleep 

(Roffwarg, Muzio and Dement, 1966).  These ontogenetic changes are mirrored by 

young zebrafish, fruit flies, and roundworms (Kayser and Biron, 2016).  As children 

mature into adults, sleep times decline overall, and the REM/NREM ratio reaches a 

steady state.  In the 5th decade of life, sleep again begins changing as a result of normal 

aging.  Many of the effects of sleep on aging have been investigated in animal models.  

Drosophila studies on aging will be discussed in a separate section below.  Here, I will 

detail how studies in humans and rodent models have informed our understanding of the 

effects of aging on sleep. 
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The most salient effect of age on sleep in both rodents and humans is sleep 

fragmentation, defined as a weakened ability to stay asleep during normal sleep times, 

as well as an inability to sustain wakefulness when usually awake (Van Gool and 

Mirmiran, 1983; Bliwise, 1993).  In humans, these changes are reported to physicians as 

shorter sleep duration, earlier bedtimes and rise times, increased latency to sleep onset, 

increased sleep fragmentation, and greater likelihood of being awoken in response to 

external stimuli (Mander et al. 2017). During waking hours, there is increased propensity 

to nap at a population level, but this finding may be obscured by sleep disruption due to 

comorbid chronic conditions or frequent nighttime awakenings (Foley et al., 2007).  In 

fact, there is evidence to suggest healthy aging may reduce the susceptibility to daytime 

naps (Dijk et al., 2010).  Objective changes to sleep with age can be quantified by 

polysomnography.  When the sleep of aging adults is measured by polysomnography, a 

reduction in time spent in slow wave sleep (SWS, deep NREM stages) is observed, as is 

a decrease of the total number and duration of NREM-REM cycles.  EEG results in 

rodents corroborate the human polysomnographic findings; aging male mice have 

shorter time spent in SWS, and a slowing of theta peak frequency, a correlate of arousal 

(Wimmer et al., 2013). In sum, normal aging causes decreased sleep, sleep that is more 

fragile and fragmented, and impaired sleep depth.   

 

Influences of circadian rhythm degradation 

Some neurobiological insights have been gleaned as to how age-related 

changes to sleep occur.  Circadian rhythm strength has long been proposed as a 

potential cause of age-related sleep changes.  Amplitude of peripheral rhythms as 

measured by body temperature regulation are found to be attenuated in older people, 

and aging affects one’s ability to adapt to changing or irregular rhythms (Dijk, Duffy and 



21 
 

Czeisler, 2000).  These changes were noted in rodent models nearly 20 years earlier 

(Halberg et al., 1981).  Additional work has implicated changes in the suprachiasmatic 

nucleus (SCN), the master pacemaker in the hypothalamus, as a site of aging-related 

changes.  The volume of the SCN has been reported to decrease with age in some 

studies in both humans and rats (Swaab, Fliers and Partiman, 1985; Tsukahara et al., 

2005), but not others (Madeira et al., 1995).  A more consistent change with age has 

been observed in the synchrony of firing in SCN neurons themselves.  Aged mice have a 

larger number of neurons firing out of phase with other neurons (Farajnia et al., 2012), 

which is likely a cause of dampened output function with increasing age.  Others have 

found that altered production of neuropeptides that serve to align firing patters is another 

consequence of aging (Kawakami et al., 1997), and can be another potential cause of 

desynchrony. 

 

Homeostatic drive to sleep and aging 

After sleep deprivation, the homeostatic drive for sleep responds by increasing 

SWS amount to compensate for time missed.  Older adults have decreased slow wave 

sleep; does this indicate age-related degradation of the homeostat?  EEGs of older 

adults who underwent sleep deprivation exhibited increased slow wave activity following 

a missed night sleep, indicating that homeostatic rebound is still present (Dijk, Duffy and 

Czeisler, 2001; Schmidt, Peigneux and Cajochen, 2012).  However, slow wave activity 

response is diminished with age in frontal brain regions (Münch et al., 2004), raising the 

possibility that changes with aging occur differently in different brain regions.  Taken 

together, these findings indicate that while homeostatic drive to sleep is present in older 

adults, it may be weakened. 
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Functional consequences 

Are there functional consequences for these sleep changes in older adults?  

Individuals with higher latency to sleep onset and increased wake time after sleep onset 

were found to have worse working memory than age-matched individuals with better 

sleep (Cavuoto et al., 2016).  Furthermore, long sleep duration (which may predict sleep 

disruption or fragmentation) was associated with poorer memory and processing speed 

(Low, Wu and Spira, 2019).  Intriguingly, recent work indicates that age-related cognitive 

decline associated with poor sleep may be reversible.  Improving slow wave sleep via 

auditory stimulation or transcranial direct current stimulation has shown promise in 

improving declarative and visual memory (Mander, Winer and Walker, 2017a).  

Pharmacologic induction of increased slow wave sleep failed to show memory effects, 

however (Feld et al., 2013).  Therefore, more studies are needed to elucidate if 

improving sleep may combat the effects of aging-related cognitive deterioration, thereby 

improving cognition and memory in the aging population.  

 

Sleep and Dementia 

 While sleep disturbances impact the quality of life in the healthy aging population, 

in patients with dementia, the impact of sleep degradation is magnified.  The association 

between sleep deficits and the progression of dementia has been best characterized in 

Alzheimer’s disease (AD) patients.  Up to 45% of AD patients report sleep disturbances 

in epidemiological studies (Moran et al., 2005), and sleep degradation represents a 

significant risk factor for institutionalization (Peter-Derex et al., 2015). Pathologically, 

self-reported somnolence, sleep problems, and short sleep duration predicted amyloid b 

burden in brain tissue (Spira et al., 2013; Sprecher et al., 2015), while CSF levels of 
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amyloid b were associated with decreased sleep efficiency and increased sleep latency 

(Liguori et al., 2014). Interestingly, degraded sleep can occur up to 10 years before the 

clinical onset of cognitive decline (Musiek and Holtzman, 2016), consistent with the 

finding that brain regions involved in sleep are affected early in the pathogenesis of 

disease (Ju et al. 2014). 

 The link between sleep and Alzheimer’s disease is bidirectional: progression of 

disease is associated with worsened sleep, and poor sleep causes worsening cognitive 

function (Spira et al., 2013; Iranzo, 2016).  In rodent models of Aβ deposition, sleep 

deprivation accelerates accumulation, whereas promoting sleep inhibits plaque 

formation by decreasing Aβ production and increasing the rate of protein clearance 

(Kang et al., 2009; Xie et al., 2013).  While initial studies focused on Aβ accumulation as 

the cause of neurodegeneration, recent work has implicated tau pathology as the 

primary driver of AD.  In fact, tau pathology in postmortem brains more closely 

associates with the onset of cognitive symptoms than Aβ. Whatever the pathologic 

cause, facilitating clearance of accumulated proteins while sleeping may explain the 

association between sleep and Alzheimer’s disease.  Recent work indicates that flow 

through glymphatic fluid transport system robustly increases during sleep versus wake, 

and proposes sleep as a privileged time for increased flow and clearance of 

accumulated toxins (Achariyar et al., 2017).  Specifically, sleep deprivation increases tau 

spreading throughout brain tissues (Holth et al., 2019).  Furthermore, levels of tau in 

CSF while awake were nearly 100% higher than sleeping levels (Holth et al., 2019).  

Sleep behavior is clearly critical for the progression of disease, and these findings 

propose promotion of healthy sleep should be included as an essential part of disease 

therapy.   
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 Other forms of dementia have unique sleep degradation signatures that are 

helpful in diagnosis and stratifying risk of disease progression.  Idiopathic REM Behavior 

Disorder, a parasomnia that features loss of atonia and dream enactment during REM 

sleep, is considered one of the strongest risk factors for later development of a-

synucleinopathy, which includes Parkinson’s disease (PD), dementia with Lewy Bodies, 

and multiple system atrophy (Schenck, Bundlie and Mahowald, 1996; Iranzo et al., 2006; 

Postuma et al., 2009; Schenck, Boeve and Mahowald, 2013).  Diagnosis of REM 

Behavior Disorder can be used as a predictor of PD subtype and disease course, as 

REM Behavior Disorder can precede the onset of cognitive symptoms by a decade 

(Kumru et al., 2007; Postuma et al., 2008; Lin and Chen, 2018).  Due to this relationship, 

serial cognitive testing is common in the workup of parasomnias, and is often 

responsible for early diagnosis of neurodegenerative diseases (Gagnon et al., 2009, 

2010).   

 While sleep disturbances have been well-characterized in AD and a-

synucleinopathy, sleep disturbances are rarely mentioned in the disease course of 

amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD).  Long considered 

a disease that solely affected motor neurons, recent work has implicated cognitive and 

autonomic dysfunction as being involved in the disease (Congiu et al., 2017).  Moreover, 

polysomnography studies indicate that sleep is significantly disrupted in ALS/FTD 

patients, despite a dearth of patient reports of sleep disturbances (Congiu et al., 2019; 

Panda, Gourie-Devi and Sharma, 2019).  This study implies that sleep degradation may 

be more widespread than has been previously reported in this population.  Therefore, a 

comprehensive study of sleep in ALS/FTD, and across all related disorders remains 
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necessary to fully understand the associations between sleep and neurodegenerative 

disease. 

Drosophila Models of Aging and Neurodegenerative Disease  

 Flies can live a maximum of about 90 days at normal rearing temperature of 

25°C (Ziehm, Piper and Thornton, 2013).  This duration makes aging studies less 

tedious than mammalian models, which requires months to years of aging before age-

related changes occur.  It is therefore no surprise that Drosophila has been embraced as 

a model system for elucidating mechanisms of behavioral change with age.  Flies 

demonstrate numerous behavioral changes with advanced age, including reduced 

feeding, egg laying behavior, and physical activity (Piper and Partridge, 2018).  This is 

coupled with physiological changes to metabolic rate and decreased cardiac function.  

Mechanisms of longevity extension discovered in other model systems are evolutionarily 

conserved in Drosophila, indicating that lessons learned in flies can be broadly 

applicable (Altintas, Park and Lee, 2016).  Complicating the study of aging is that it is 

unclear what exactly causes death in flies, although gut leakiness is the leading 

hypothesis (Rera, Azizi and Walker, 2013). 

 Critical for the research undertaken here has been the thorough characterization 

of the effects of aging on sleep in Drosophila.  Koh and colleagues characterized that 

age-advanced flies demonstrate sleep fragmentation, characterized by a decrease in 

average sleep bout length, increased number of sleep bouts, and an increased number 

of brief awakenings when compared to young adults, recapitulating the most striking 

sleep changes in humans.  Furthermore, a redistribution of sleep was noted; aged flies 

show increased sleep during the day and decreased sleep amount at night (Koh et al., 

2006).  These changes to sleep were modulated by altering rearing temperature, 
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indicating they reflect the physiological age of the fly (Koh et al., 2006).  Building upon 

this foundation, recent work has revealed that aging causes decreased arousal threshold 

during sleep and reduced rebound sleep following mechanical sleep deprivation (Vienne 

et al., 2016), again mirroring aging effects un humans. 

In addition to robust models of aging, Drosophila has been leveraged to study 

mechanisms of neurodegenerative diseases in vivo.  Since the first neurodegenerative 

mutant was discovered in a screen for aberrant phototaxis in flies (Hotta and Benzer, 

1972), Drosophila has been viewed as a dynamic system for studying 

neurodegeneration (Zhang, Coyne and Lloyd, 2018).  Increasing understanding of 

human disease has enabled compelling models to be developed in Drosophila. 

 

Alzheimer’s disease 

 Alzheimer’s disease is characterized in human postmortem brains by two 

characteristic pathologic findings: extracellular plaques composed mainly of amyloid β 

(Aβ) peptides, and intracellular microtubule-associated tangles that are composed 

primarily of tau.  Since Aβ and tau deposits are pathognomonic for Alzheimer’s disease, 

exploring these peptides’ roles in Drosophila represented the first models in the fly field.  

Flies have a homolog of amyloid precursor protein (APP), the gene from which Aβ is 

made.  Knockdown of endogenous APP produces aberrant phototaxis phenotypes, and 

remarkably these deficits can be rescued by ectopic expression of human APP protein, 

indicating their close homology (Luo, Tully and White, 1992).  However, APP 

overexpression does not on its own produce visible plaques in Drosophila brains.  It 

requires combination with overexpression of Aβ cleavage enzymes to produce 

meaningful memory phenotypes and neurodegeneration (Mhatre et al., 2014; Dissel et 

al., 2017).  While this combination may provide interesting clues into the mechanisms of 
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accumulation of wild type Aβ, to expedite the phenotypes of interest, expression of pre-

processed Aβ peptides has been embraced in Drosophila.  Two Aβ peptides accumulate 

in extracellular plaques, Aβ40 and Aβ42, with the numbers indicating the amino acid 

lengths of the peptides.  Aβ40 on its own does not induce pathology with overexpression 

in Drosophila.  Aβ42 however, forms deposits during aging in the fly brain (Koichi Iijima 

et al., 2004).  Furthermore, known mutations in APP that cause early-onset familial 

Alzheimer’s disease have been leveraged in Drosophila to expedite the onset of 

observable phenotypes.  AβArctic, a fast-aggregating peptide derived from a familial 

mutation, has been demonstrated to have more severe neurodegenerative phenotypes 

and deposition of plaques than overexpression of Aβ42 (Crowther et al., 2005; Iijima et 

al., 2008).  These flies also have locomotor defects as well as truncated lifespan 

(Nilsberth et al., 2001).  Several models of Aβ42 overexpression have also been shown 

to have sleep deficits with increased age (Tabuchi et al., 2015; Dissel et al., 2017). 

 Tau is most notably associated with Alzheimer’s disease, but tau pathology also 

characterizes corticobasal degeneration, Pick’s disease, progressive supranuclear palsy, 

and forms of frontotemporal dementia, a group collectively referred to as tauopathies.  

Like APP, Drosophila have an endogenous copy of a tau gene (Iijima-Ando and Iijima, 

2010).  Overexpression of this endogenous gene produced a more severe eye 

degeneration phenotype than the human tau gene (Chen et al., 2007).  Overexpression 

of human tau is sufficient for shortened lifespan and neurodegeneration (Wittmann et al., 

2001).  Many tau mutations have been discovered in human patients and found to be 

associated with early onset and severe nature of disease.  Similarly, these mutated 

peptides cause hastened neurodegeneration when expressed in Drosophila brains as 

well (Wittmann et al., 2001).  Surprisingly, these models do not feature intracellular 

inclusions characteristic of human disease (Wittmann et al., 2001).  Expression of tau in 
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mushroom bodies, the site of olfactory memory in the fly, produces memory deficits 

before the onset of neurodegeneration (Mershin et al., 2004).  This diverse array of 

models of Alzheimer’s disease in Drosophila enables further study into the mechanisms 

of disease and potential therapies in a genetically tractable system. 

 

Amyotrophic Lateral Sclerosis 

 In contrast to the overexpression models that predominate in the study of 

Alzheimer’s disease, Drosophila models of amyotrophic lateral sclerosis (ALS) have 

utilized both knockdown and overexpression models to study disease progression 

(Zhang, Coyne and Lloyd, 2018).  Some of the known ALS-causing mutations cause no 

obvious phenotype in Drosophila (Chang and Morton, 2017), perhaps a function of the 

condensed lifespan of flies compared to the time to disease onset in humans.  It is for 

these reasons that overexpression models have again been embraced in the study of 

this disease.  In nearly all cases of ALS, regardless of genetic etiology, brains show a 

mislocalization of TDP-43 protein out of the nucleus and into cytoplasmic accumulations 

(Neumann et al., 2006).   

 The most compelling models of ALS in the fly are therefore overexpression 

models of TDP-43.  These models produce a remarkable deterioration of photoreceptors 

and retinal neurons when overexpressed in the eye (Elden et al., 2010; Hanson et al., 

2010; Li et al., 2010).  Importantly, neuronal overexpression of TDP-43 confers truncated 

lifespan, neuronal degradation, and motor deficits as well (Elden et al., 2010).  On a 

cellular level, these models critically confer similar pathologic findings to human brains: a 

redistribution of TDP-43 to cytoplasmic stress granules (Kim et al., 2014).  This 

overexpression paradigm has also resulted in the discovery of novel modifiers of TDP-43 

toxicity (Kim et al., 2014; Berson et al., 2017; C. Y. Chung et al., 2018; McGurk et al., 
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2018).  Mutations in endogenous Drosophila TDP-43 similarly cause shortened lifespan 

and motor deficits (Feiguin et al., 2009).  Intriguingly, depletion and overexpression of 

TDP-43 cause similar gene expression changes (Vanden Broeck et al., 2013), implying 

that manipulation of TDP-43 levels in either direction may be activating similar pathways 

(McGurk, Berson and Bonini, 2015).  ALS models in Drosophila therefore provide 

compelling data that promotes a deeper understanding of disease processes. 

 

Concluding Remarks 

With a vast array of genetic tools, the fruit fly has become one of the most 

powerful model systems for studying how brain circuits give rise to complex behaviors; 

research in the fly has repeatedly led to novel insights into basic principles that scale to 

mammalian systems.  For this reason, Drosophila has tremendous potential to elucidate 

the relationship between sleep and neurodegenerative diseases.  The diverse models of 

disease in flies presents an opportunity to exploit these tools to gain insight into disease 

pathogenesis and novel treatment strategies. 
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Abstract 
 

Insomnia is the most common sleep disorder among adults, especially affecting 

individuals of advanced age or with neurodegenerative disease. Insomnia is also a 

common comorbidity across psychiatric disorders. Cognitive Behavioral Therapy for 

Insomnia (CBT-I) is the first-line treatment for insomnia; a key component of this 

intervention is restriction of sleep opportunity, which optimizes matching of sleep ability 

and opportunity, leading to enhanced sleep drive. Despite the well-documented efficacy 

of CBT-I, little is known regarding how CBT-I works at a cellular and molecular level to 

improve sleep, due in large part to an absence of experimentally-tractable animals 

models of this intervention. Here, guided by human behavioral sleep therapies, we 

developed a Drosophila model for Sleep Restriction Therapy (SRT) of insomnia. We 

demonstrate that restriction of sleep opportunity through manipulation of environmental 

cues improves sleep efficiency in multiple short-sleeping Drosophila mutants. The 

response to sleep opportunity restriction requires ongoing environmental inputs, but is 

independent of the molecular circadian clock. We apply this sleep opportunity restriction 

paradigm to aging and Alzheimer’s Disease fly models, and find that sleep impairments 

in these models are reversible with sleep restriction, with associated improvement in 

reproductive fitness and extended lifespan. This work establishes a model to investigate 

the neurobiological basis of CBT-I, and provides a platform that can be exploited 

towards novel treatment targets for insomnia.    
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Introduction 
 

Insomnia is the most common sleep disorder among adults, with significant 

public health and economic consequences (Dement and Pelayo, 1997; Ozminkowski, 

Wang and Walsh, 2007; Daley et al., 2009; Sarsour et al., 2010). Cognitive Behavioral 

Therapy for Insomnia (CBT-I) is the first-line intervention for treatment of insomnia 

(Qaseem et al., 2016). CBT-I includes a combination of modalities: behavioral therapy 

(restriction of sleep opportunity and stimulus control), cognitive therapy (cognitive 

restructuring of dysfunctional beliefs about sleep and sleep disturbances), and sleep 

hygiene (education pertaining to behaviors that facilitate sleep continuity). Recent work 

suggests that restriction of sleep opportunity alone (Sleep Restriction Therapy [SRT]) is 

sufficient to gain most of the benefits of CBT-I (Miller et al., 2014). SRT addresses a 

prominent clinical feature of insomnia: the mismatch between sleep opportunity and 

sleep ability. Patients with insomnia often expand time in bed (sleep opportunity 

extension) with the goal of recovering lost sleep (Spielman, 1986). This adaptation is 

thought to perpetuate insomnia in the long term by promoting the mismatch between 

sleep ability (low) and opportunity (high), leading to less efficient, less consolidated 

sleep. By restricting time in bed, SRT optimizes matching of sleep ability and 

opportunity, leading to enhanced sleep drive (increased homeostatic pressure for sleep) 

and more consolidated sleep. Sleep opportunity is titrated as sleep ability stabilizes and 

increases. Although CBT-I has shown reliable and durable efficacy for insomnia 

treatment (Morin et al., 2006; Trauer et al., 2015; Wu et al., 2015), limited accessibility of 

practitioners and long duration of therapy are obstacles to broad implementation 

(Mitchell et al., 2012; Sivertsen, Vedaa and Nordgreen, 2013; Kathol and Arnedt, 2016).  
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If behavioral sleep interventions could be studied at a molecular/cellular level, this might 

guide new avenues for treatment.  

Insomnia is characterized by persistent difficulty initiating or maintaining sleep 

despite adequate sleep opportunity, along with associated daytime impairment (Roth, 

2007). An animal model of insomnia should recapitulate these characteristics and, in 

particular, display decreased ability to sleep despite environmental circumstances that 

normally promote sleep. Rodent models of insomnia generally involve perturbations 

such as stress or fear conditioning to activate arousal systems (Toth and Bhargava, 

2013), perhaps informative about acute insomnia (stress-precipitated sleep loss), but 

less representative of chronic insomnia (conditioned sleeplessness). Neuro-imaging, 

EEG, and genetic work in humans have not yielded molecular mechanisms involved in 

onset and treatment of insomnia at a causal level. In contrast, short-sleeping Drosophila 

mutants are compelling models of chronic insomnia: reductions in sleep seen in 

numerous single gene mutants are primarily due to severely decreased sleep bout 

length, indicating that flies can initiate but not maintain sleep (Cirelli et al., 2005; Kume et 

al., 2005; Bushey et al., 2007; Koh et al., 2008; Stavropoulos and Young, 2011). It is 

unlikely that these short sleepers simply do not need sleep, as mutants exhibit shortened 

lifespan and/or memory deficits (Cirelli et al., 2005; Bushey et al., 2007, 2010; Koh et al., 

2008; Zhang et al., 2008; Stavropoulos and Young, 2011). In addition, a fly line 

generated by laboratory selection for insomnia-like traits (Seugnet et al., 2009) shares 

many features of human insomnia, including reduced sleep time and consolidation, 

along with shortened lifespan and learning deficits. These fly models might therefore 

serve an important role in studying insomnia etiology and treatment.  
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Sleep quantity and quality also decrease with aging across species, including 

humans (Hasan et al., 2012; Robertson and Keene, 2013; Mander, Winer and Walker, 

2017a).  Moreover, recent work suggests a bidirectional relationship between sleep and 

Alzheimer’s Disease (AD) pathology in flies, mice, and humans, where accumulation of 

the protein b-amyloid (Ab) worsens sleep while poor sleep accelerates Ab accumulation 

(Kang et al., 2009; J H Roh et al., 2012; Y.-E. S. Ju, Lucey and Holtzman, 2014). 

Indeed, in Drosophila, Ab accumulation in the brain leads to reduced and fragmented 

sleep (Tabuchi et al., 2015) and shortened lifespan (Koichi Iijima et al., 2004; Tabuchi et 

al., 2015). Related lines of work also suggest that sleep might serve as a modifiable risk 

factor in AD progression (Kang et al., 2009; J H Roh et al., 2012; Y.-E. S. Ju, Lucey and 

Holtzman, 2014; Tabuchi et al., 2015; Dissel et al., 2017). While hypnotic use is 

associated with increased morbidity/mortality in individuals with AD (Saarelainen et al., 

2018), behavioral therapies show promise for improving sleep (Riemann and Perlis, 

2009; Krystal and Edinger, 2010; Kivipelto et al., 2013; Ngandu et al., 2015). Here, using 

principles of human behavioral sleep therapies in Drosophila, we developed a behavioral 

paradigm that markedly improves sleep in fly models of insomnia. We applied this 

approach to an AD model and found that sleep impairments due to Ab are reversible 

with behavioral sleep modification; animals with improved sleep also show lifespan 

extension. Our findings demonstrate efficacy of behavioral sleep therapy in an 

experimentally-tractable system, establishing a new model to investigate the 

neurobiological basis of CBT-I.  
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Methods 
 
Fly Strains 

Iso31, sleeplessP1, redeye, period01, fumin, and cry02 flies were obtained from A. Sehgal. 

UAS-AbArctic (Crowther et al., 2005) and wide awake were obtained from M. Wu. These 

lines were outcrossed at least 5x into the iso31 background. Canton S were obtained 

from E. Kravitz. Elav-Gal4 (#458) and glass3 (#508) were obtained from the Bloomington 

Drosophila Stock Center. Flies were maintained on standard yeast/cornmeal-based 

medium (2% yeast, 5.4% cornmeal, 0.05% agar, 9.5% molasses, 0.12% of 5% Tegosept 

solution, 0.04% propionic acid) at 25 degrees on a 12hr:12hr LD cycle. 

 

Sleep Analysis 

Male and female flies were collected at 1-3 days old and aged in group housing, and 

flipped onto new food every 3-4 days. Flies aged 5-8 days were loaded into 5 x 65 mm 

Pyrex glass monitor tubes (Trikinetics) containing 5% sucrose and 2% agar. Locomotor 

activity was monitored using Drosophila Activity Monitoring (DAM) system (DAM2 

monitors, Trikinetics, Waltham MA). Activity was measured in 1 min bins and sleep was 

defined as 5 minutes of consolidated inactivity (Gilestro, 2012). Data was processed 

using PySolo software (Gilestro and Cirelli, 2009). All sleep measurements were 

quantified during the period of sleep opportunity (e.g., the dark period) or designated 

time period in non-sleep restricted conditions, not over the entire 24 hour day, unless 

otherwise specified. Sleep latency (SL) was determined by time (minutes) until first sleep 

episode following start of the sleep period (e.g., lights off). Wake after sleep onset 

(WASO) was calculated as the minutes of wake after initiation of the first sleep episode 

until end of the sleep period. Activity index was calculated as the average number of 
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beam breaks per minute of wake time. For all experiments, the first day of data following 

loading was discarded. Male flies were used for all experiments unless otherwise 

specified.  

 

Dark Time Extension 

Five to eight day old flies were loaded into incubators and 2 days of data were collected 

under 12:12 LD (9AM-9PM) cycles to compare populations at baseline. On day 3, light 

schedules either remained at 12:12 LD or shifted to a 10:14 LD or 8:16 LD cycle. Sleep 

data was collected for 4 additional days. Under 10:14 LD, the dark period was from 

8PM-10AM, while under 8:16 LD, the dark period was from 7PM-11AM. Day 4-5 of data 

collection was used for analysis. 

 

Dark Time Restriction 

Five to eight day old flies were loaded into incubators and 2 days of data were collected 

at 12:12 LD (9AM-9PM) cycles to compare populations at baseline. On day 3, light 

schedules changed to the following (dark hours in parentheses): 20:4 LD (1AM-5AM) for 

days 3-4, 18:6 LD (12AM-6AM) for days 5-6, 16:8 LD (11PM-7AM) for days 7-8, and 

14:10 LD (10PM to 8AM) for days 9-10 (Figure 2A). The 2nd day of each new LD cycle 

was used for analysis.  

 

To evaluate the effects of tapering dark time, light schedules were changed directly to 

18:6, 16:8 or 14:10 LD conditions, or the tapered restriction schedule above. 18:6 LD 

was compared to the tapered condition on Day 6, 16:8 LD was compared on day 8, and 

14:10 LD was compared on day 10. 
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Arousal Threshold 

Mechanical stimulation was performed as previously described (Kayser, Yue and 

Sehgal, 2014). Briefly, a 685g rubber weight was dropped onto a rack supporting small 

DAMs monitors (Trikinetics, wide awake) or MultiBeam Activity Monitors (Trikinetics, 

AbArctic overexpression) at 12AM, 3AM, and 6AM. The absence of activity 5 min before 

a stimulus was counted as a sleep episode, and flies exhibiting beam crossings within 2 

min after the stimulation were recorded as “aroused”. We detected no differences in 

arousal within an experimental condition across the time points. 

 

Temperature Change  

Five to eight day old flies previously entrained to 12:12LD conditions were loaded into 

incubators. For low temperature experiments, two days of data were collected under DD 

(constant dark) conditions at 26°C to compare populations at baseline. On day 3, 

temperatures were reduced to 18°C during the following periods (otherwise at 26°C): 

1AM-5AM for days 3-4, 12AM-6AM for days 5-6, 11PM-7AM for days 7-8, and 10PM to 

8AM for days 9-10. The 2nd day of each new temperature cycle was used for analysis. 

High temperature experiments were performed in the same manner but under 12:12 LD 

conditions with a restricted period of 28°C from 12PM-6PM and temperature otherwise 

at 22°C. The 4th day of restriction was used for analysis. 

 

Aging  

Male and female flies were collected at 1-3 days old and group housed at a density of 

approximately 10 male and 10 female flies per vial. Flies were maintained on a dextrose-

based food mixture, containing 11.7% (wt/vol) dextrose, 0.6% corn meal, and 0.3% 
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yeast, and transferred to fresh food every 3-4 days.  If fly density in vials became <10 

flies, vials were combined to maintain original density. Flies were assayed for sleep and 

egg laying behaviors at 53 days post-eclosion. 

 

Egg Laying Assay 

Egg laying assays were performed in 60 mm Petri dishes. Dishes were first filled with 8 

mL molten dextrose-based food which was allowed to cool and solidify. Dishes were 

visually examined to ensure that the surface was smooth. Twenty aged female flies were 

placed upon a dextrose dish in an embryo collection cage (Genesee Scientific, cat#: 59-

100). Dishes were replaced after 24 hours, and 3 consecutive days were averaged for 

each replicate experiment. 

Longevity Assay 

Ten replicate vials, each containing 10 male and 10 female flies, were established for 

each condition. Flies were transferred to fresh dextrose-based food vials every 2‐3 days, 

at which time dead flies were removed and recorded. Assays were conducted blind to 

genotype with a minimum of two replicates. 

 

Statistical Analysis and Data Reproducibility 

Analysis was done using Prism (GraphPad Software). ANOVA with Tukey’s test was 

used in Figure 1D-J; Figure 2F-L; Figure 3B-E, G-J; Figure 4F-J; Figure 5B,D-I; 

Supplementary Figure 1A-L; Supplementary Figure 2A-C; Supplementary Figure 3A-I, L-

M; Supplementary Figure 4A-D, F-I; Supplementary Figure 5A-G; Supplementary Figure 

6D; and Supplementary Figure 7B-D. Student’s t-test was used in Figure 3L-O; Figure 

4B-D, N-O; Supplementary Figure 2D-H; Supplementary Figure 3J-K; Supplementary 

Figure 4E; Supplementary Figure 5H-I; and Supplementary Figure 6B-C, E-H; . Fisher’s 
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Exact test was used in Figure 3P and Figure 5J. Kolmogorov–Smirnov test was used in 

Figure 5A. Log-rank test was used in Figure 5K and Supplementary Figure 7F. For 

significance: *p≤0.05; **p<0.01; ***p<0.001. Each experiment was generated from a 

minimum of 3 independent replicates. Samples were allocated based on genotype or 

experimental manipulation and statistics performed on aggregated data. Data generated 

from flies that died during sleep experiments were excluded. Bar graphs depict the mean 

± SEM. Variance was similar between groups that were statistically compared. 

Preliminary experiments and previous work were used to assess variance and determine 

adequate sample sizes in advance of conducting experiments (Kayser, Yue and Sehgal, 

2014; Dilley et al., 2018). 

 

 

Results 
 

Sleep opportunity extension impairs sleep in Drosophila 

In aiming to model human behavioral sleep interventions in Drosophila, we first 

asked whether mismatch of sleep opportunity and ability degrades sleep in fruit flies 

(Fig. 1A), as it does it humans. Darkness is a powerful sleep-promoting cue in humans 

and Drosophila, and wild type flies raised on a 12hr:12hr light:dark (LD) cycle exhibit 

high sleep efficiency (sleep time divided by total sleep opportunity) over the dark period 

(Hendricks et al., 2000; Shaw et al., 2000). To control sleep timing and experimentally 

expand sleep opportunity, we examined sleep in wild type flies (iso31) following extension 

of the dark period from a baseline of 12 hours to 14 or 16 hours (Fig. 1B-C). This 

manipulation significantly decreased sleep efficiency, and increased sleep fragmentation 

as evidenced by shorter, more frequent sleep bouts during the dark period (Fig. 1D-F). 
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Total sleep time (TST) was only minimally increased despite an extended period of 

opportunity (Fig. 1G), and at the expense of all other sleep measures. A similar effect on 

sleep following extension of the dark period was observed across multiple wild type 

strains (Supplementary Fig. 1A-D, 1G-J). In the clinical setting, measurement of sleep 

latency (SL) and time of wake after sleep onset (cumulative wake duration during the 

period of sleep opportunity after the first sleep episode; WASO) are used to measure 

severity of sleep deficits (Sateia et al., 2000). We also observed prolonged SL and 

increased WASO with sleep opportunity extension in flies (Fig. 1H-I, Supplementary Fig. 

1E-F, 1K-L).  

We next examined whether certain portions of the night were particularly affected 

by sleep opportunity extension. Flies specifically showed a large reduction in sleep 

efficiency during the first and last 4 hours of the night with extension of the dark period; a 

small decrease was observed in the middle hours of the night, but sleep efficiency 

remained over 90% (Fig. 1J). Reduced sleep efficiency at the beginning of the dark 

period was driven by prolonged SL and shorter sleep bouts (Fig. 1H; Supplementary Fig. 

2A); reduced efficiency at end of the night reflected sleep fragmentation (Supplementary 

Fig. 2A,B). Together, these factors led to lower TST at the beginning and end of the dark 

period with sleep extension (Supplementary Fig. 2C). To test the role of the circadian 

clock in impaired sleep following sleep extension, we examined the period null mutant 

per01 (Konopka and Benzer, 1971). While sleep efficiency was already low in these flies 

due to arrhythmicity (Supplementary Fig. 2D), sleep opportunity extension resulted in 

sleep fragmentation, prolonged SL, and increased WASO (Supplementary Fig. 2E-H), 

indicating that the response to sleep extension was not simply due to a mismatch in 

circadian timing. Together, these results suggest that, as in humans, flies cannot 

maintain efficient sleep when given an overabundance of sleep opportunity.  
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Sleep opportunity restriction enhances sleep in a short-sleeping mutant 

If sleep extension results in analogous behavioral responses in humans and flies, 

can sleep opportunity restriction potentiate sleep efficiency in Drosophila short-sleeping 

mutants, as it does in humans with insomnia (Fig. 2A)? We first examined fumin (fmn) 

mutants, which lack a functional dopamine transporter and sleep ~200-300 minutes per 

day, representing a 70-80% reduction from wild type levels (Fig. 2C, Kume et al. 2005). 

In humans with insomnia undergoing Sleep Restriction Therapy (SRT), the initial amount 

of sleep restriction is determined based on an individual’s TST; a titration procedure is 

then used to increase sleep opportunity as sleep is consolidated and becomes more 

efficient (Kyle et al., 2015). Applying this approach to fmn mutants, sleep time was 

compressed by initially contracting dark time to 4 hours, followed by titration of sleep 

opportunity by expanding the dark period by 2 hours every other day (Fig. 2B). Using 

this paradigm, we observed a threefold increase in sleep efficiency during the 

compressed dark period compared to fmn flies that remained under 12:12 LD conditions, 

with maximal improvement at 6-8 hours sleep opportunity (Fig. 2C-F; Supplementary 

Table 1). Enhanced sleep efficiency was not simply a function of comparing sleep within 

a compressed dark period to the entire 12 hours of dark: sleep efficiency in the restricted 

condition was also elevated in comparison to non-restricted flies (12:12 LD) during the 

same smaller time window or the equivalent number of hours following start of the dark 

period (Supplementary Fig. 3A-D). Interestingly, TST with compression of the dark 

period to 6-10 hours was increased above 12:12 LD conditions (Fig. 2G), despite 

reduced opportunity. The enhancement in sleep efficiency and TST was driven by an 

increase in the frequency and duration of sleep bouts initiated during the dark period 
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with sleep opportunity restriction (Fig. 2H). With only 6 hours of sleep opportunity (18:6 

LD), fmn flies initiated the same number of bouts during the dark period that normally 

occurred during the entire 12 hours of dark under 12:12 LD conditions (Fig. 2H); indeed, 

comparison of the same 6 hour dark period under 12:12 LD and 18:6 LD conditions 

revealed that restricted flies exhibit significantly more sleep bouts during this time 

(Supplementary Fig. 3E). Moreover, given 8 hours of sleep opportunity (16:8 LD), fmn 

flies initiated even more sleep bouts than within the entire 12 hour period under non-

sleep restricted conditions (Fig. 2H). In addition, an increase in sleep bout duration was 

observed with compression of sleep opportunity (Fig. 2I), indicating that fmn flies initiate 

more bouts with matching of sleep opportunity and ability, along with improved sleep 

maintenance. Both SL and WASO during the dark period were significantly decreased 

under all dark time-restricted conditions (Fig. 2J,K), further indication of increased drive 

to sleep.  

Importantly, similar restriction of sleep opportunity in wild type flies did not 

increase sleep efficiency, perhaps because of a ceiling effect (baseline ~90%, 

Supplementary Fig. 3F). While there was a trend towards more consolidated nocturnal 

sleep in wild type flies with a compressed dark period (Supplementary Fig. 3G,H), this 

occurred in the setting of daytime rebound sleep (Supplementary Fig. 3I). These results 

indicate that, as would be expected, restricting sleep opportunity in efficient-sleeping wild 

type flies induces a state of sleep deprivation and associated homeostatic 

compensation. In contrast, restriction of sleep opportunity to as little as 6 hours in fmn 

mutants did not induce subsequent daytime rebound sleep or a change to daytime 

activity (Supplementary Fig. 3J-L), suggesting that sleep opportunity and ability become 

better matched with sleep restriction.  
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Humans with insomnia who undergo behavioral sleep modification might restrict 

sleep from the beginning of the night, end, or both depending on patient preference. We 

initially modeled Drosophila sleep restriction by limiting sleep opportunity from both start 

and end of the night (e.g., Zeitgeber Time (ZT) 15-21 for 6 hours of restriction, Fig. 2B). 

To test whether this behavioral paradigm depends on timing of sleep restriction or only 

total amount, we limited sleep opportunity to either the first 6 (ZT 12-18) or last 6 (ZT 18-

24) hours of the subjective night. We observed no significant difference in sleep 

efficiency or SL between these conditions (Fig. 2L, Supplementary Fig. 3M), indicating 

that the amount of sleep opportunity, not the timing, determines response. 

Nocturnal sleep opportunity restriction improves daytime sleep 

In contrast to humans, flies have a major sleep phase during the day (Hendricks 

et al., 2000; Shaw et al., 2000). How does increased nocturnal sleep efficiency affect 

daytime sleep? We compared fmn mutants undergoing SRT at 18:6 LD, 16:8 LD, or 

14:10 LD to those on a 12:12 LD schedule, focusing on sleep characteristics during the 

light period. Fmn flies on a 20:4 LD schedule were not included in the analysis because 

they exhibit sleep rebound during the light period following such stringent restriction of 

the dark period (Supplementary Fig. 3L). We found that fmn mutants restricted to 6 or 8 

hours of nocturnal sleep opportunity actually show increased day sleep efficiency 

compared to fmn flies on a 12:12 LD cycle during the equivalent 12 hour light period 

(Supplemental Fig. 4A). TST during the equivalent 12 hour light period was also 

increased (Supplemental Fig. 4B), driven by more frequent sleep bouts without a change 

in bout duration (Supplemental Fig. 4C,D).  

The normal Drosophila light phase sleep period, or siesta, is consolidated into 

the middle portion of the day (Majercak et al., 1999; Hendricks et al., 2000; Shaw et al., 
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2000). As such, sleep efficiency of fmn flies on a 12:12 LD schedule is elevated during 

this middle 6 hour period of the light phase in comparison to the entire 12 hour day 

(24.05±0.74% for ZT 3-9 vs. 16.18±0.52% for ZT 0-12; p < 0.001; Supplementary Fig. 

4E). However, nocturnal sleep restriction of fmn mutants with 6 or 8 hours of dark 

potentiated daytime sleep efficiency even more during the 6 hour daytime siesta period 

(32.65±1.51% for 18:6 LD, 32.67±1.45% for 16:8 LD; 24.05±0.74% for 12:12 LD; p < 

0.001; Supplementary Fig. 4F). TST and number of sleep bouts were likewise elevated 

during this siesta period following compression of the dark phase to 6-8 hours 

(Supplemental Fig. 4G-I). Although SRT in fmn mutants with a 14:10 LD schedule 

resulted in increased nocturnal sleep effiency (Fig. 2F), daytime sleep was not improved 

compared to LD 12:12 fmn controls (Supplemental Fig. 4A,F). Together, these results 

indicate that optimal matching of nocturnal sleep opportunity and ability also improves 

sleep behaviors during the day. 

 

Sleep opportunity restriction is effective in multiple short-sleep mutants 

To test whether enhanced sleep with SRT is specific to fmn mutants, we next 

examined this paradigm in other mutants with distinct genetic lesions underlying a short-

sleep phenotype: sleepless (sss), redeye (rye), and wide awake (wake) (Koh et al., 

2008; Liu et al., 2014; Shi et al., 2014). The restricted dark period was calculated based 

on average TST for each mutant under 12:12 LD cycles. For a given genotype, we 

compared nocturnal sleep measures under control (12:12 LD) versus dark-restricted 

conditions. We found that restriction of sleep opportunity in each mutant increased 

nocturnal sleep efficiency, while reducing SL and WASO (Fig. 3; Supplementary Table 1; 

and Supplementary Fig. 5). The effect on sleep bout number and duration was more 
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variable, with only some mutants (sss and wake) exhibiting longer sleep bouts (Fig. 

3C,H,M; Supplementary Fig. 5). TST was largely unchanged with sleep compression 

(Supplementary Fig. 5), consistent with CBT-I findings in humans (Edinger et al., 2001, 

2007; Smith et al., 2002). These results demonstrate that behavioral sleep modification 

can be applied across a variety of short-sleep etiologies, and indicate there is a ceiling 

beyond which sleep cannot be improved (i.e., sleep mutants cannot be fully restored to 

wild type sleep levels).  

Do SRT-induced changes to sleep efficiency in flies coincide with deeper sleep? 

To begin answering this question, we examined whether restriction of sleep opportunity 

increases the arousal threshold during sleep compared to animals on a standard LD 

cycle. We focused on wake mutants because of the less severe sleep duration 

phenotype compared to other mutants, and thus higher probability of encountering a 

sleep episode. Delivery of a mechanical stimulus to wake mutants during the dark period 

aroused significantly fewer sleeping flies under SRT (14:10 LD) compared to control 

(12:12 LD) conditions (Fig. 3P). These findings provide evidence that restriction of sleep 

opportunity is associated with increased sleep depth. Together, our data establish a 

paradigm for SRT in flies, and suggest that sleep ability is plastic in Drosophila short-

sleeping mutants.  

 

Response to sleep restriction requires ongoing environmental cues. 

Aberrant light cycles affect function of the molecular clock (Qiu and Hardin, 

1996). To determine whether enhanced sleep following sleep opportunity restriction 

requires molecular circadian rhythms, we generated per01;fmn double mutants that lack 

a functional molecular clock in addition to exhibiting a short-sleep phenotype. With SRT 
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via dark period compression, we observed that increased sleep efficiency and 

decreased SL persist, indicating that sleep restriction is clock-independent (Fig. 4A-D).  

We next asked if sleep restriction is specific to dark as a sleep-permissive cue. 

Cool temperatures are also sleep-permissive in both humans and flies (Kaneko et al., 

2012; Luo et al., 2012; Okamoto-Mizuno and Mizuno, 2012), and under constant dark 

conditions, flies exhibit consolidated sleep at subjective night with lower temperature 

(Ishimoto, Lark and Kitamoto, 2012). Using temperature changes (TC) from warm (26°C) 

to cool (18°C) under constant darkness (DD), we assessed sleep in fmn flies exposed to 

restricted periods of low temperature in comparison to those at a constant 26°C. 

Restriction of sleep opportunity with low temperature, like darkness, resulted in 

increased sleep efficiency, increased bout length, and decreased SL (Fig. 4E-H). Low 

temperature can reduce overall locomotion in flies, raising the possibility that improved 

sleep measures observed with temperature-based SRT reflect non-specific activity 

changes. To address this issue, we took advantage of the fact that elevated 

temperatures are sleep-promoting during the day in flies, without altering activity 

(Parisky et al., 2016). Under 12:12 LD conditions, fmn mutants exposed to a 6 hour 

daytime period of elevated temperature (28°C) exhibited increased sleep efficiency and 

bout duration compared to flies at a constant temperature (Supplementary Fig. 6A-C). 

Together these results indicate that enhanced sleep with sleep restriction is not specific 

to light/dark inputs. Lastly, we assessed SRT using coincident darkness and low 

temperature. Combining these sleep-permissive cues yielded similar increases in sleep 

efficiency to darkness or low temperature alone (Supplementary Fig. 6D), suggesting 

that either cue is sufficient for the maximum sleep improvement in fmn mutants.  

How do other features of behavioral sleep modification in humans function in our 

fly model? First, in humans, SRT initiates with the greatest restriction of sleep 
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opportunity and the goal of enhancing sleep drive/stabilizing sleep ability. This is 

followed by increased periods of sleep opportunity (titration) that would not have yielded 

efficient sleep at the outset. To test whether the titration paradigm is necessary in flies, 

we examined gradual extension of the dark period from 4 to 10 hours in comparison to 

direct initiation of sleep opportunity restriction at either 6, 8, or 10 hours in fmn mutants. 

Comparisons were made between groups of fmn mutants either tapered to or directly 

initiated on a given LD schedule. We found that enhanced sleep efficiency and other 

sleep measures were similar whether tapered from 4 hours or restricted directly to 6, 8, 

or 10 hours of dark (Fig. 4I, Supplementary Fig. 6E-F). Second, improved sleep with 

SRT in humans can take days to manifest, as sleep drive builds. We found in fmn 

mutants that the first day of sleep opportunity restriction (whether 4 or 6 hours) did not 

induce a maximal improvement in nocturnal sleep efficiency or SL compared to 12:12 LD 

conditions; improvement reliably maximized by day 3 of restriction (Supplementary Fig. 

6G-H), suggesting that homeostatic sleep drive has to build over time. Third, adherence 

to the components of CBT-I, including sleep restriction, is strongly related to treatment 

outcome (Matthews et al., 2013). We asked whether enhanced sleep with dark period 

compression persists with termination of sleep restriction. We restricted sleep 

opportunity in fmn mutants to 6 hours (18:6 LD) for 5 days, and then shifted the flies 

back to a 12:12 LD cycle to test if increased sleep efficiency continues. With this 

manipulation, we found an immediate regression of nocturnal sleep efficiency back to 

baseline (Fig. 4J), suggesting that improvements in sleep with SRT require ongoing 

restriction of sleep opportunity.  

Our results suggest that blocking sensory processing of LD cues should occlude 

the response to sleep restriction with dark period compression. Flies process light 

through canonical visual pathways as well as other light sensors such as 
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CRYPTOCHROME (CRY, Yoshii et al. 2016); genetic disruption of both of these 

pathways renders Drosophila insensitive to LD cycling and behavioral arrhythmicity 

(Helfrich-Förster et al., 2001; Yoshii, Hermann-Luibl and Helfrich-F??orster, 2016). We 

generated glass;fumin double mutants, which lack all functional eye components and are 

short-sleepers. These double mutants exhibited no change in sleep efficiency or SL with 

dark period restriction (Fig. 4L,N-O), indicating that a functional eye is necessary for 

induction of SRT using altered LD cycles. CRY is a UV- and blue light-sensitive protein 

that communicates light information to the circadian system (Emery et al., 1998, 2000; 

Agrawal et al., 2017). To test whether CRY plays a role in the response to sleep 

opportunity restriction, we generated cry02:fumin double mutants. These flies exhibited 

increased sleep efficiency and reduced SL with sleep restriction (Fig. 4M-O), though the 

responses were attenuated compared to fmn mutants alone, suggesting that maximal 

increases in sleep efficiency with restriction of the dark period utilize multiple light-

processing systems. Together, these data demonstrate that sleep restriction has a direct 

reliance on environmental cues to produce its effect regardless of prior experience, and 

that sleep opportunity restriction in flies does not cause a long-lasting change in the 

absence of these cues.  

 

Sleep restriction improves sleep in aging and Alzheimer’s Disease models. 

Aging is associated with increased sleep fragmentation in Drosophila (Koh et al., 

2006; Brown et al., 2014; Vienne et al., 2016) and humans (Pandi-Perumal et al., 2002).  

We next investigated whether behavioral sleep modification through sleep restriction 

might improve sleep in aged flies. Behavioral response to light cues are weakened in 

aged flies (Luo et al., 2012), so a compressed dark period is not sufficient to restrict 
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sleep opportunity (Supplementary Fig. 7A); however, sleep can be consolidated by 

adding coincident temperature cycles to 12:12 LD cycles (Luo et al., 2012). To 

investigate whether aged flies further consolidate sleep with sleep opportunity restriction, 

we compared aged female flies (53 days post-eclosion) under 12:12 LD+TC (26°C:18°C) 

conditions to flies that were restricted to 10 hours dark and coincident low temperature. 

We chose 10 hours of sleep opportunity to match TST during the night at baseline. We 

observed an increase in sleep bout length in restricted flies, above that of 12:12 LD+TC 

alone, indicating a consolidation of nocturnal sleep with restriction (Fig. 5A). No 

significant increase in sleep efficiency was observed above 12:12 LD+TC, likely due to a 

ceiling effect in sleep efficiency in aged flies (Supplementary Fig. 7B). To assess 

behavioral consequences of consolidating sleep in aged flies, we examined reproductive 

fitness following sleep opportunity restriction. Aged female flies normally exhibit a 

dramatic reduction in reproductive output (Curtsinger, 2013), and reproductive output is 

also impaired with sleep deprivation (Potdar et al., 2018). We tested whether such 

decrements are modifiable with improved sleep. We assessed egg laying behavior after 

5 nights of sleep opportunity restriction in 53 day old mated female flies, and found that 

flies with improved sleep laid significantly more eggs in a 24-hour period than controls 

(Fig. 5B). This increase was not simply due to exposure to cool temperatures, as 

addition of an equivalent low temperature period during the day under 12:12 LD 

conditions was indistinguishable from control flies (Fig. 5B). These results raise the 

possibility of potential behavioral benefits to improved sleep in aged flies following 

restriction of sleep opportunity. 

Sleep quality degrades with normal aging, but disruptions to sleep are also 

increasingly appreciated in neurodegenerative processes like Alzheimer’s disease (AD, 

Ju et al. 2014). Several models of AD have been described in Drosophila, including 
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those based on expression of aggregating b-amyloid (Ab) peptides (Finelli et al., 2004; 

Koichi Iijima et al., 2004); Aβ accumulation results in decreased and fragmented sleep, 

while sleep deprivation increases Aβ burden (Tabuchi et al., 2015). We examined sleep 

following pan-neuronal expression of AbArctic, which carries a mutation to induce 

enhanced aggregation (Nilsberth et al., 2001; Crowther et al., 2005). Consistent with 

previous work (Tabuchi et al., 2015), we observed a reduction in TST and increase in 

sleep fragmentation during the nocturnal period in 7-10 day old male flies with pan-

neuronal AbArctic expression under 12:12 LD cycles (Fig. 5C,E,F,I). Sleep during the 

night was less efficient, due to a reduction in sleep bout duration and increase in number 

of sleep bouts (Fig. 5D-F); WASO was likewise increased with pan-neuronal AbArctic 

expression, though SL was unaffected (Fig. 5G,H).  

We next examined whether sleep degradation related to Ab accumulation is 

reversible with sleep opportunity restriction using dark period compression. In contrast to 

aged wild-type flies, compression of the dark period alone was sufficient to alter 

sleep/wake patterns in AbArctic-overexpressing flies, eliminating the need for coincident 

temperature changes. We found SRT restored sleep efficiency, sleep bout length, and 

number of sleep bouts back to control levels during the dark period (Fig. 5D-F, 

Supplementary Fig. 7C); WASO was also normalized, and SL was shortened (Fig. 

5G,H). TST during the dark period was equivalent in AbArctic-overexpressing animals 

whether given a 12 or 10 hour night, meaning the flies were able to achieve the same 

amount of sleep in a compressed dark window (Fig. 5I). Pan-neuronal ectopic 

expression of AbArctic did not consistently impair daytime sleep efficiency compared to 

genetic controls, and nocturnal sleep restriction had no further effect on day sleep 

(Supplementary Fig. 7D). We also assessed nocturnal sleep depth in AbArctic-
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overexpressing flies under either 12:12 or 14:10 LD conditions, and found that SRT 

(14:10 LD) was associated with increased arousal threshold (Fig. 5J). Thus, 

manipulation of environmental cues is sufficient to improve sleep despite pan-neuronal 

Ab aggregation. 

Does enhancement of sleep in this model of AD have other beneficial effects? 

AbArctic flies exhibit severely curtailed lifespan (Tabuchi et al., 2015), so we tested 

whether correcting sleep can affect longevity. Comparing flies expressing AbArctic pan-

neuronally under either 12:12 LD or dark-restricted (14:10 LD) conditions, we found that 

sleep opportunity restriction was associated with a small but significant extension of 

lifespan in both males and females (Fig. 5K, Supplementary Fig. 7E). This longevity 

extension was not due to changes in the LD cycle, as genetic controls showed no 

alteration in longevity with sleep opportunity restriction. Taken together, these data 

suggest that SRT mitigates Ab-related sleep disturbances and shortened lifespan. 
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Discussion 
 

CBT-I is the first-line treatment for insomnia, offering advantages over existing 

pharmacotherapies with regard to safety and durability of response (Riemann and Perlis, 

2009). However, CBT-I is limited by obstacles to broad implementation (Mitchell et al., 

2012; Sivertsen, Vedaa and Nordgreen, 2013; Kathol and Arnedt, 2016). Research in 

Drosophila has yielded numerous insights into basic sleep neurobiology, and here, we 

have leveraged this system to develop a tractable experimental model of sleep 

restriction therapy (SRT) for insomnia. We find that mismatch of sleep opportunity and 

ability degrades sleep continuity in flies, as in humans. Surprisingly, compression of 

sleep opportunity in short-sleeping genetic mutants improves sleep efficiency along with 

multiple other measures of sleep. We apply this paradigm to normal aging and 

neurodegeneration, both of which are associated with impaired sleep, and find that 

behavioral sleep modification restores sleep consolidation and extends lifespan. These 

data establish a new platform for deciphering mechanistic principles of a behavioral 

sleep therapy that improves sleep across species.         

 

Towards a molecular and genetic basis of SRT using Drosophila 

Previous work has argued that short-sleeping flies are a compelling model for 

studying human insomnia (Seugnet et al. 2009; Perlis et al. 2014). Single gene mutants 

such as those tested here (Kume et al., 2005; Koh et al., 2008; Liu et al., 2014; Shi et 

al., 2014), as well as a line generated by laboratory selection over many generations 

(Seugnet et al., 2009), recapitulate central features of human insomnia: reduced sleep 

time, increased sleep latency and sleep fragmentation, and daytime impairments. The 

conserved response in flies to both sleep opportunity extension and restriction provides 
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further support for the idea that this organism can serve as a valid model for insomnia. 

Human evidence is consistent with a genetic component to insomnia (Gehrman, 

Pfeiffenberger and Byrne, 2013; Lind and Gehrman, 2016), and while this disease is 

likely multigenic in nature (Veatch et al., 2017), highly penetrant single gene mutations 

are important for studying disorder mechanisms and treatment approaches. The fact that 

genetically-distinct Drosophila sleep mutants all respond to the sleep compression 

paradigm suggests these lesions might converge on a shared physiological, and 

perhaps cellular, endpoint. Future work will use these models to understand how SRT 

alters function of well-characterized sleep circuits in the fly brain (Dubowy and Sehgal, 

2017), with the ultimate goal of identifying molecular changes in these circuits induced 

by SRT.  

While SRT increases sleep efficiency in multiple short-sleeping models, other 

sleep characteristics do not show a uniform response. For example, fmn mutants initiate 

more frequent sleep bouts during the compressed nocturnal period (LD 18:6) in 

comparison to the same genotype under LD 12:12 conditions, but the duration of sleep 

episodes is only modestly increased, suggesting a persistent deficit in sleep 

maintenance. In contrast, Ab-overexpressing flies on an LD 12:12 schedule exhibit 

fragmented sleep (increased, short sleep bouts) compared to genetic controls on the 

same schedule; however, SRT restores sleep efficiency by promoting more consolidated 

sleep (fewer, longer sleep bouts), along with increased sleep depth. The distinct 

response patterns to SRT elicited in different short-sleep models might prove informative 

towards understanding how this paradigm acts at a genetic level. This line of work will be 

complemented by examination of SRT in outbred fly populations exhibiting natural 

variation in sleep need and duration (Harbison, McCoy and Mackay, 2013).   
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Implications for human insomnia and SRT 

The efficacy of sleep opportunity restriction in multiple mutants suggests that, in 

humans, SRT should be effective across insomnia subtypes, provided there is a 

mismatch between sleep opportunity and ability.  A possible exception is evidence that 

insomnia patients with objective short sleep duration do not respond as well to CBT-I as 

those with relatively normal TST (Bathgate, Edinger and Krystal, 2017). This stands in 

contrast to our model which explicitly focuses on genetic models of short sleep. The 

difference between fly and human might reflect limitations of the paradigm in modeling 

insomnia, but our findings in Drosophila also raise the possibility that more significant 

curtailment of sleep opportunity is necessary for clinically-improved insomnia in patients 

with short sleep duration. Interestingly, results in fmn mutants suggest that titration of 

sleep opportunity might not be necessary in flies, in contrast to humans. Future work will 

examine whether this result is generalizable to other short-sleep etiologies, and if 

modification of the titration protocol can in fact yield additional benefits to sleep.  

As with sleep opportunity restriction, we find sleep extension yields a conserved 

response from flies to humans. Wild type flies exhibit impaired sleep continuity when 

presented with an overabundance of sleep opportunity, along with increased sleep onset 

latency. TST does increase with sleep extension, but at the expense of other sleep 

measures. This response to sleep extension is consistent with findings in humans that 

suggest time in bed extension is associated with increased TST, but impairments in 

sleepiness, mood, and performance (Taub and Berger, 1973; Reynold et al., 2014). We 

also find that degradation of sleep measures occurs primarily at the beginning and end 

of the extended nocturnal sleep period in flies. It will be of interest to examine whether 

similar temporally-specific disruptions to sleep continuity occur in humans.   
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Our data indicate that sleep ability is plastic: optimizing environmental conditions 

can enhance sleep efficiency (and even total sleep time in fmn flies; Fig. 2G) despite 

fixed genetic mutations, suggesting biological determinants of sleep are highly mutable. 

This idea is conceptually informative for humans with insomnia, and provides empirical 

evidence for focusing on mechanisms of sleep opportunity restriction as the core 

insomnia treatment modality. Indeed, the Spielman model for insomnia (also known as 

the 3P model) identifies predisposing (e.g., genetic) and precipitating factors (e.g., acute 

stressor) that lead to acute insomnia, with perpetuating factors (e.g., sleep extension) 

that shift acute insomnia to chronic (Spielman et al. 1987; Perlis et al. 2014). This model 

has served as the basis for using sleep restriction in humans to target sleep extension (a 

perpetuating factor). Our results raise the possibility that sleep restriction also targets 

predisposing genetic factors, by better matching intrinsic sleep ability with opportunity. In 

other words, humans with a genetic predisposition to insomnia might be sleep “over-

extended” even if sleep opportunity appears normal; restriction of sleep opportunity 

would therefore increase sleep efficiency and perhaps potentiate sleep ability.  

 

Modeling SRT in neurodegenerative and psychiatric disorders 

Poor sleep has long been appreciated as a comorbidity of aging and 

neurodegeneration (Mander et al. 2017; Ju et al. 2014), but more recently identified as a 

potential modifiable risk factor for neurodegenerative disease progression (Kang et al. 

2009; Roh et al. 2012; Ju et al. 2014). In flies, pharmacologic and genetic approaches to 

improve sleep have been shown to ameliorate memory deficits in an Alzheimer’s 

Disease model (Dissel et al., 2017); similarly, altering the sleep-Ab interaction by 

modulating neuronal excitability with a pharmacotherapy prolongs lifespan in Ab-
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expressing flies (Tabuchi et al., 2015). We find that increased sleep efficiency through 

compression of sleep opportunity is alone sufficient to extend lifespan in Ab-expressing 

flies. An intriguing future direction is that behavioral approaches to treating insomnia 

could slow progression of disease, consistent with evidence in humans demonstrating 

that CBT-I in older adults with mild cognitive impairment improves cognitive function 

(Cassidy-Eagle et al., 2018).  

Most pharmacological treatments in psychiatry are based on drugs discovered 

serendipitously over a half century ago (Insel, 2012). In recent years, significant 

advances in treating mental illness have been behavioral interventions (Hofmann et al., 

2012), yet little is known regarding the mechanistic basis of such interventions. How can 

behavioral therapies be studied at a molecular level? This fly model of behavioral sleep 

modification can be used to generate such granular insights. Our initial results 

demonstrate that therapeutic sleep restriction does not require a functional molecular 

clock, and that manipulating light:dark cycles to enhance sleep drive requires canonical 

light sensory pathways. Future work will use this model to define the neural circuits 

required for, and molecular changes occurring with, sleep restriction, with the goal of 

identifying new insomnia treatment targets that are conceptually based on the 

established efficacy of CBT-I.  
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Figures 
 

 
 

Figure 1.  Sleep opportunity extension impairs sleep in Drosophila. 

(A) Schematic of sleep degradation with mismatch of sleep opportunity and sleep ability.  (B) Diagram of 

experimental extension of dark time from 12 hours (12:12 LD) to 14 hours (10:14 LD) or 16 hours (8:16 LD). 

(C) Representative sleep traces of wild type iso31 flies under 12:12 LD (top panel), 10:14 LD (middle panel) 

or 8:16 LD conditions (bottom panel). Gray shading indicates dark phase. Quantification of sleep efficiency 

(D), sleep bout duration (E), sleep bout number (F), total sleep time (G), sleep latency (H), and wake after 

sleep onset (I) following 3 nights of sleep opportunity extension in wild type iso31 flies (n = 48 flies per 

condition). (J) Analysis of sleep efficiency based on time within the dark period. For all figures, error bars 

represent SEM; *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 2.  Sleep opportunity restriction enhances sleep in fumin mutants. 

(A) Schematic of hypothesis that sleep opportunity restriction aligns sleep opportunity and sleep ability, 

leading to efficient sleep. (B) Diagram of experimental protocol for restriction of sleep opportunity by 

manipulating the dark period. (C-E) Representative sleep traces of fumin mutants under 12:12 LD conditions 

(C, gray shading indicates dark phase), sleep restriction protocol (D, blue shading indicates dark phase), 

and both plots overlaid (E). (F-K) Quantification of sleep measures with restriction of sleep opportunity in 

fumin mutants (n = 551 flies for 12:12 LD; n = 192 for 20:4 LD; n = 204 for 18:6 LD; n = 199 for 16:8 LD; and 

n = 55 for 14:10 LD). (L) Sleep efficiency in fumin mutants with 18:6 LD dark period restriction occurring at 

different times of night (n = 53 for 9p-3a, n = 172 for 12a-6a, n = 105 for 3a-9a). 
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Figure 3.  Sleep opportunity restriction improves sleep in multiple short-sleeping mutants.  

Representative sleep traces under 12:12 LD conditions (top panel, gray shading indicates dark phase), 

compressed sleep opportunity (middle panel, blue shading indicates dark phase) and overlaid plots (bottom 

panel) for sleepless (A), redeye (F), and wide awake (K) mutants. Quantification of sleep efficiency (B,G,L), 

sleep bout duration (C,H,M), sleep latency (D,I,N), and wake after sleep onset (E,J,O) for each genotype 

(sleepless: n = 210 for 12:12 LD, n = 64 for 20:4 LD, n = 69 for 18:6 LD, n = 68 for 16:8 LD, and n = 33 for 

14:10 LD; redeye: n = 63 for 12:12 LD, n = 60 for 16:8 LD, n = 58 for 14:10 LD; wide awake: n = 62 for 12:12 

LD, n = 62 for 14:10 LD). (P) Arousal threshold of wide awake mutants following mechanical stimulation (n = 

246 sleep episodes in 96 flies for 12:12 LD and n = 250 sleep episodes in 96 flies for 14:10 LD). 
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Figure 4.  Response to sleep restriction requires ongoing environmental cues. 

(A) Representative sleep traces under 12:12 LD conditions (top panel, gray shading indicates dark phase), 

18:6 LD dark time restriction (middle panel, blue shading indicates dark phase) and overlaid plots (bottom 

panel) for per01; fumin mutants. Quantification of sleep efficiency (B), bout duration (C), and sleep latency 
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(D) in per01; fumin mutants (n = 61 for 12:12 LD, n = 62 for 18:6 LD). (E) Representative sleep traces in 

fumin mutants under constant dark (DD) conditions (top panel, gray indicates 26°C) or with compressed 

sleep opportunity using temperature change (TC; middle panel, blue indicates 18°C). Quantification of sleep 

efficiency (F), bout duration (G), and sleep latency (H) in fumin mutants under DD conditions with sleep 

opportunity restriction using temperature changes (n = 144 for DD, n = 62 for 20:4 TC, n = 56 for 18:6 TC, n 

= 28 for 16:8 TC). (I) Sleep efficiency in fumin mutants with sleep restriction via tapered protocol versus 

sleep restriction initiated with the indicated dark period (n = 54,33 for 18:6 LD, n = 25,24 for 16:8 LD, n = 

54,54 for 14:10 LD). (J) Sleep efficiency in fumin mutants under 18:6 LD conditions and after shift back to 

12:12 LD (n = 32). (L-O) Sleep opportunity restriction in light processing mutants. Overlaid sleep traces of 

fumin;glass3 (L) and fumin;cry02 (M). Black traces indicate 12:12 LD (gray shading indicates dark period); 

blue traces indicate sleep restriction (blue shading indicates dark period).  Quantification of sleep efficiency 

(N) and sleep latency (O; n = 48 for fumin;glass3, n = 54 for fumin;cry02). 
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Figure 5.  Sleep opportunity restriction improves sleep degradation associated with aging and Aβ 

accumulation 

(A) Histogram of sleep bout durations of aged flies (53 days old) under 12:12 LD (black bars, n = 75), 12:12 

LD+TC (26°C:18°C, gray bars, n = 78), or 14:10 LD+TC conditions (blue bars, n = 77). (B) Number of eggs 

laid by aged female flies under 12:12 LD, 12:12 LD plus 10 hours of low temperature during the light phase, 

or 14:10 LD+TC conditions (n = 100 flies per condition). (C) Representative sleep traces in flies with pan-

neuronal overexpression of AβArctic under 12:12 LD conditions (top panel; gray shading indicates dark 

phase), sleep opportunity restriction (middle panel; blue shading indicates dark phase) and overlaid plots 

(bottom panel). (D-I) Quantification of sleep measures for elav-Gal4/+ (n = 60), UAS-AbArctic/+ (n = 53), and 

elav-Gal4/UAS-AbArctic flies under 12:12 LD (n = 59) or 14:10 LD conditions (n = 60). (J) Arousal threshold 

of elav-Gal4/UAS-AbArctic flies following mechanical stimulation (n = 149 sleep episodes in 32 flies for 

12:12 LD and n = 147 sleep episodes in 32 flies for 14:10 LD). (K) Survival curves with pan-neuronal 

overexpression of AβArctic or genetic controls under 12:12 LD or 14:10 LD conditions (n=100 males for 

each condition; elav-Gal4/+: 12:12 LD (light green) and 14:10 LD (dark green); UAS-AbArctic/+: 12:12 LD 

(light red) and 14:10 LD (dark red); elav-Gal4>UAS-AbArctic: 12:12 LD (gray) and 14:10 LD restriction 

(blue). Inset shows enlarged survival curves of elav-Gal4>UAS-AbArctic flies under each condition.  
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Supplementary Figures 

 

Supplementary Figure 1.  Sleep opportunity extension in wild type flies and period mutants. 

Quantification of sleep efficiency, sleep bout duration, number of sleep bouts, total sleep time, sleep latency, 

and wake after sleep onset for Canton S (A-F, n = 48 flies) and w1118 (G-L, n = 48) under 12:12 LD 

conditions (black bars) or sleep opportunity extension (gray bars). 
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Supplementary Figure 2.  Binned time-of-day analysis of sleep opportunity extension in wild type 

flies. 

Comparison of sleep measures in 4-hour windows at different times of night for iso31 (A-C, n = 48 flies) 

under 12:12 LD conditions or with sleep opportunity extension (14 or 16 hour dark period). (D-H) 

Quantification of sleep efficiency, sleep bout duration, number of sleep bouts, sleep latency, and wake after 

sleep onset for per01 under 12:12 LD conditions (black bars) or sleep opportunity extension (gray bars, n = 

48). 
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Supplementary Figure 3.  Response to sleep opportunity restriction in fumin and wild type flies. 

Sleep efficiency (A-D) and sleep bout number (E) with sleep opportunity restriction (light gray bars) 

comparing equivalent time period under 12:12 LD conditions (dark gray bars) or entire 12-hour night (black 

bars) in fumin mutants (n = 551 for 12:12 LD, n = 192 for 20:4 LD, n = 204 for 18:6 LD, n = 199 for 16:8 L, 

and n = 55 for 14:10 LD). Quantification of sleep efficiency (F), sleep bout duration (G), and number of sleep 

bouts in iso31 wild-type flies (n = 32 for each condition) with restriction of sleep opportunity. (I) Rebound 

sleep in 6 hours after lights on in iso31 flies (n = 32) following sleep restriction (gray bars). Activity index (J), 

total beam breaks per hour (K), and rebound sleep in 6 hours after lights on (L) in fumin flies (n = 551 for 

12:12 LD, n = 192 for 20:4 LD, n = 204 for 18:6 LD, n = 199 for 16:8 L, and n = 55 for 14:10 LD). (M) Sleep 

latency in fumin mutants under 18:6 LD conditions with the dark period occurring at different times (n = 53 

for 9p-3a, n = 172 for 12a-6a, n = 105 for 3a-9a). 
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Supplementary Figure 4.  Daytime changes to sleep with nocturnal sleep opportunity restriction. 

Quantification of sleep efficiency (A), total sleep time (B), sleep bout duration (C), and number of sleep bouts 

(D) during a 12-hour daytime period (9AM-9PM) in fumin flies.  (E) Representative sleep trace and 

comparison of sleep efficiency between 12-hour daytime period and 6-hour siesta period in fumin flies. 

Quantification of sleep measures during siesta period (12p-6p) in fumin flies with nocturnal sleep restriction 

(n = 551 for 12:12 LD, n = 204 for 18:6 LD, n = 199 for 16:8 L, and n = 55 for 14:10 LD). 
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Supplementary Figure 5.  Response to sleep opportunity restriction in short-sleeping mutants. 

Comparison of sleep efficiency with sleep opportunity restriction (light gray bars), equivalent time in 12:12 

LD (dark gray bars), or entire 12-hour night (black bars) in sleepless (A; n = 210 for 12:12 LD, 64 for 20:4 

LD, 69 for 18:6 LD, 68 for 16:8 LD, and 33 for 14:10 LD), redeye (D; n = 63 for 12:12 LD, 60 for 16:8 LD, 58 

for 14:10 LD), and wide awake mutants (G, n = 62 for 12:12 LD, n = 62 for 14:10 LD). Quantification of 

number of sleep bouts (B,E,H), and total sleep time during the dark period (C,F,I) for each mutant.    
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Supplementary Figure 6.  Sleep opportunity restriction with alternative sleep-promoting paradigms 

and temporal dynamics of sleep response.  

(A) Schematic of experimental paradigm of sleep-permissive temperature increase during daytime and 

control at constant temperature. Sleep efficiency (B) and sleep bout duration (C) of fumin mutants with 
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restricted high temperature exposure during daytime under 12:12 LD conditions (n = 60 for constant 

temperature, n = 56 for high temperature). (D) Quantification of sleep efficiency for sleep restriction therapy 

(SRT) using coincident light and temperature cues (n = 551 for 12:12 LD, n = 204 for 18:6 LD, n = 53 for 

18:6 TC, and n = 52 for 18:6 LD+TC). Sleep bout duration (E) and number of sleep bouts (F) in fumin 

mutants with sleep restriction via tapered protocol (Fig. 2B) versus sleep restriction initiated with the 

indicated dark period (n = 54,33 for 18:6 LD, n = 25,24 for 16:8 LD, n = 54,54 for 14:10 LD). Day-by-day 

quantification of sleep efficiency (G) and sleep latency (H) following initiation of sleep restriction in fumin 

mutants (n = 32).  
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Supplementary Figure 7.  Sleep opportunity restriction in aged flies and AbArctic females. 

(A) Representative sleep traces of aged iso31 female flies under 12:12 LD conditions (black line, gray 

shading indicates dark phase) and 14:10 LD dark time restriction (blue line, blue shading indicates dark 

phase). (B) Sleep efficiency of aged iso31 wild type flies under 12:12 LD (black bar, n = 75), 12:12 LD+TC 

(26°C:18°C, dark gray bar, n = 78), or 14:10 LD+TC conditions (light gray bar, n = 77). (C) Sleep efficiency 

with sleep opportunity restriction (light gray bar) comparing equivalent time period under 12:12 LD conditions 

(dark gray bars) or entire 12-hour night (black bar) with overexpression of AβArctic (n = 59 for 12:12 LD and 

n = 60 for 14:10 LD). (D) Quantification of daytime sleep efficiency for overexpression of AβArctic or genetic 

controls (n = 60 for elav-Gal4/+, n = 53 for UAS-AbArctic/+, n = 59 for elav-Gal4/UAS-AbArctic flies under 

12:12 LD, and n = 60 for elav-Gal4/UAS-AbArctic under 14:10 LD conditions (n = 60). (E) Survival curves 

with pan-neuronal overexpression of AβArctic or genetic controls under 12:12 LD or 14:10 LD conditions 

(n=100 females for each condition; elav-Gal4/+: 12:12 LD (light green) and 14:10 LD (dark green); UAS-

AbArctic/+: 12:12 LD (light red) and 14:10 LD (dark red); elav-Gal4>UAS-AbArctic: 12:12 LD (gray) and 

14:10 LD restriction (blue). Inset shows enlarged survival curves of elav-Gal4/UAS-AbArctic flies under each 

condition.  
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Abstract 
 

With an aging world population, the rate of neurodegenerative disease diagnoses is 

steadily increasing.  Surprisingly, despite an array of more prominent cognitive 

symptoms, sleep disturbances are a large contributor to the decreased quality of life of 

both patients and caregivers.  Sleep disturbances have been well-characterized in some 

neurodegenerative diseases; sleep disturbance can even be used as a predictor of 

disease in some cases, as sleep symptoms can precede the onset of cognitive 

symptoms by a decade.  Here, we find that overexpression of human TDP-43, the 

protein deposited in intracellular inclusions in ALS and FTD, causes profound sleep 

disturbances.  Overexpression of the Drosophila homolog of TDP-43 similarly shows 

sleep deficits. We demonstrate that Ataxin 2, a known modifier of TDP-43 toxicity, also 

modifies the sleep phenotype.  A candidate-based RNAi screen for modifiers of TDP-43 

toxicity identified YT5-21B, a nuclear reader of m6a modifications on RNA, as a novel 

suppressor of TDP-43 toxicity.  YT5-21B knockdown increases sleep time and improves 

sleep continuity, while extending longevity and improving climbing ability in TDP-43 

overexpressing flies.  Finally, we demonstrate that a paradigm of Sleep Restriction 

Therapy that improves sleep in Drosophila models of insomnia serves to consolidate 

sleep and improve sleep quality in TDP-43 overexpressing flies.  Improving sleep causes 

extension of longevity as well in these flies.  This work describes novel sleep phenotypes 

in a model of ALS/FTD, establishes this platform for identifying novel modifiers of TDP-

43 toxicity, and demonstrates benefits of improving sleep these models.   
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Introduction 
 
 With an aging world population, the rate of neurodegenerative disease diagnoses 

is steadily increasing (Reitz, Brayne and Mayeux, 2011; Ascherio and Schwarzschild, 

2016).  Despite an array of more prominent cognitive symptoms, sleep disturbances are 

a large contributor to the decreased quality of life of both patients and caregivers 

(McCurry et al., 1999; Petrovsky et al., 2018).  Sleep disturbances have been well-

characterized in some neurodegenerative diseases; idiopathic REM Behavior Disorder is 

considered a risk factor for the development of an a-synucleinopathy, including 

Parkinson’s disease (PD), dementia with Lewy Bodies, and multiple system atrophy 

(Schenck, Bundlie and Mahowald, 1996; Iranzo et al., 2006; Postuma et al., 2009; 

Schenck, Boeve and Mahowald, 2013).  In fact, diagnosis with REM Behavior Disorder 

can be used as a predictor of PD subtype and disease course, as REM Behavior 

Disorder can precede the onset of cognitive symptoms by a decade (Kumru et al., 2007; 

Postuma et al., 2008; Lin and Chen, 2018).  Significant sleep disturbances and EEG 

abnormalities have also been reported in progressive supranuclear palsy (Aldrich et al., 

1989; Gama et al., 2010; Malhotra, 2018).  Moreover, recent work suggests a 

bidirectional relationship between sleep and Alzheimer’s disease (AD) pathology, where 

accumulation of the pathogenic proteins tau and b-amyloid (Ab) worsen sleep while poor 

sleep accelerates tau and Ab accumulation (Kang et al., 2009; Jee Hoon Roh et al., 

2012; Y. E. S. Ju, Lucey and Holtzman, 2014; Holth et al., 2019).  This association has 

been linked to the clearance of misfolded or aggregating proteins preferentially during 

sleep, via a process called glymphatic flow (Achariyar et al., 2017).  Illustrating the close 

relationship between sleep features and dementia, serial cognitive testing is common in 

the workup of parasomnias, and is often responsible for early diagnosis of 
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neurodegenerative diseases (Gagnon et al., 2009, 2010).  Additionally, sleep 

disturbances are beginning to be recognized in the disease course of amyotrophic lateral 

sclerosis and frontotemporal dementia (ALS/FTD).  Long considered a disease that 

solely affected motor neurons, recent work has implicated cognitive and autonomic 

dysfunction as being involved in the disease (Congiu et al., 2017).  Moreover, recent 

work indicates sleep is significantly disrupted in ALS/FTD patients, despite subjective 

reports of no sleep disturbance (Congiu et al., 2019; Panda, Gourie-Devi and Sharma, 

2019).  Therefore, elucidating the cellular mechanisms that couple neurodegenerative 

diseases to sleep disruption could reveal new treatment avenues. 

 Many neurodegenerative diseases feature the aberrant accumulation of proteins 

in cellular compartments that induce toxicity to neurons and glia.  Animal models should 

recapitulate these cellular phenomena, while also displaying the behavioral sequalae 

experienced by patients suffering from disease.  Drosophila models of 

neurodegenerative diseases have been well-established (K. Iijima et al., 2004; Estes et 

al., 2013; Zhan et al., 2013; Tabuchi et al., 2015; Sun et al., 2016; Dissel et al., 2017; Ito 

et al., 2017; Buhl, Higham and Hodge, 2019), and their genetic tractability has enabled 

large-scale screens that have identified novel modifiers of disease (Zhan et al., 2013; 

Kim et al., 2014; Pons et al., 2017; C. Y. Chung et al., 2018; McGurk et al., 2018).  The 

robust sleep behavior of flies makes them an excellent system to explore the relationship 

between sleep and neurodegeneration (Keene and Joiner, 2015; Tabuchi et al., 2015; 

Chakravarti, Moscato and Kayser, 2017).  Previous work has identified sleep deficits in 

Drosophila models of Alzheimer’s disease (Tabuchi et al., 2015; Dissel et al., 2017), 

tauopathy(Buhl, Higham and Hodge, 2019), ALS/FTD (Estes et al., 2013), and 

Parkinson’s disease (Sun et al., 2016; Ito et al., 2017).   
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Furthermore, several groups have demonstrated that sleep improvement has positive 

behavioral outcomes in neurodegeneration models, whether by pharmacotherapy 

(Dissel et al., 2017) or behavioral sleep therapy adapted from human techniques (Belfer 

et al., 2019).  Here, we took a candidate-based approach to analyze sleep in protein 

overexpression models of neurodegenerative disease, and found that TDP-43 

overexpression causes severe sleep deficits.  Some known modifiers of TDP-43 toxicity 

also modified sleep behavior, while sleep restriction therapy, a behavioral approach 

modeled after human techniques (Belfer et al., 2019), was capable of modifying sleep 

despite accumulation of TDP-43.  We used this approach to conduct a screen for genetic 

modifiers of the TDP-43 overexpression sleep phenotype. We discovered that 

knockdown of m6a nuclear reader protein YT5-21B significantly improved sleep, 

concurrently rescuing locomotor deficits and extending lifespan.  Our findings 

demonstrate that sleep disturbances are closely associated with models of ALS/FTD, 

and utilizes this platform to identify novel modifiers of TDP-43 toxicity. 

  

Methods 
 
Fly Strains 

Iso31, pdf-Gal4, and Daughterless-GS flies were obtained from A. Sehgal. UAS:AbArctic 

flies were obtained from M. Wu. UAS:APP, UAS:BACE flies were obtained from D. 

Marenda.  UAS-dAtx2.1B and UAS-dAtx2.4 were obtained from T. Satterfield.   All of 

these lines were outcrossed at least 5x into the iso31 background. Elav-Gal4 (#458) and 

all RNAi lines were obtained from the Bloomington Drosophila Stock Center. Flies were 

maintained on standard yeast/cornmeal-based medium at 25 degrees on a 12hr:12hr 

light:dark cycle. 
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RU486 Food Preparation 

To prepare a 50mM stock solution, 215mg RU486 (Fisher) was dissolved in 10mL 100% 

Ethanol. 100mL of standard food or sucrose agar was melted, and 1mL of RU486 or 

EtOH was added and mixed once cooled.  Molten solution was poured into empty 

Polystyrene vials (Genessee Scientific) or used to fill DAM tubes (Trikinetics). 

 

Sleep Analysis 

Male and female flies were collected at 1-3 days old and aged in group housing. Flies 

were then loaded at the appropriate age into glass tubes containing 5% sucrose and 2% 

agar and RU486 or EtOH as described above. Locomotor activity was monitored using 

the Drosophila Activity Monitoring (DAM) system (Trikinetics, Waltham MA). Activity was 

measured in 1 min bins and sleep was defined as 5 minutes of consolidated 

inactivity(Gilestro, 2012). Data was processed using PySolo software(Gilestro and 

Cirelli, 2009). Sleep latency (SL) was determined by time (minutes) until first sleep 

episode following lights off. Activity index was calculated as the average number of 

beam breaks per minute of wake time. For all experiments, the first day of data following 

loading was discarded. Male flies were used for all experiments.  

 

Sleep Restriction Therapy 

SRT was performed as previously described(Belfer et al., 2019).  Briefly, Da-GS>UAS-

TDP-4337M male flies were collected at day 1-3 post eclosion, aged 6 days on RU486, 

and loaded into incubators with light schedules of 12:12 LD (9AM-9PM),18:6 LD (12AM-

6AM), 16:8 LD (11PM-7AM), or 14:10 LD (10PM-8AM, Figure 3A).  Days 2-3 day of the 

new LD cycle was used for analysis.  
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Longevity Assay 

Ten replicate vials, each containing 10 male and 5 female flies, were established for 

each condition. Female flies were not assessed for longevity. Flies were transferred to 

fresh standard food containing RU486 or EtOH vials daily (Figure 3), or every other day 

(Figure 4), at which time dead flies were removed and recorded. Assays were conducted 

at least twice per genotype.  

 

Negative Geotaxis Assay 

Five replicate vials, containing 10 male flies, were established on RU486 or EtOH vials 

and aged for 5 days.  Flies were transferred to empty vials, and gently tapped down to 

the bottom after which they were video recorded.  After 5 seconds, videos were scored 

such that each fly received a score of 0-6 corresponding to centimeters climbed.  

Individual fly scores were averaged for each vial and three trials were averaged to obtain 

a performance index.  Assays were conducted at least twice per genotype. 

 

Western Blotting 

Adult male fly heads (6-7 days old, 5 days on RU486) were homogenized in Laemmli 

sample buffer (Bio-Rad) with βME, boiled and centrifuged to remove debris. NuPAGE 4–

12% Bis-Tris gel (ThermoFisher) was used to run the samples. Proteins were transferred 

to nitrocellulose membrane by the iBlot blotting system (ThermoFisher). Primary 

antibodies used were anti-TDP-43 rabbit polyclonal antibody (1:5000; Proteintech; 

#10782-2-AP) and anti-α-tubulin rabbit polyclonal antibody conjugated with horseradish 

peroxidase (HRP) (1:1000; Cell Signaling; #9099). The secondary antibodies used were 

goat anti-rabbit IgG-HRP (1:5000; Milipore, #AP307P) and goat anti-mouse (1:5000; 

Jackson ImmunoResearch; #115-035-146). All blocking and antibody incubations were 
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done in 5% milk in phosphate-buffered saline (PBS) overnight (O/N) at 4 °C for primary 

and 1 h at room temperature (RT) for secondary. Signals were developed by ECL plus 

(ThermoFisher) or ECL prime (GE healthcare) western blotting reagents. The images 

were scanned by Amersham Imager 600 (GE healthcare), and quantification was 

performed using ImageJ.  

 

Statistical Analysis and Data Reproducibility 

Analysis was done using Prism (GraphPad Software). ANOVA with Tukey’s test was 

used in Figure 1A, B, I, J; Figure 2B, C; Figure 3H, I, K; Figure 4C, D; Supplementary 

Figure 1F; Supplementary Figure 2A; Supplementary Figure 3L; and Supplementary 

Figure 4C. Student’s t-test was used in Figure 1G, H; Figure 3D, E, F; Supplementary 

Figure 1A, C, D, E; Supplementary Figure 3F, H, I, J; and Supplementary Figure 4A.  

Log-rank test was used in Figure 3G and Figure 4F. Fisher’s Exact Test was used in 

Figure 4E; and Supplementary Figure 4D. For significance: *p≤0.05; **p<0.01; 

***p<0.001. Each experiment was generated from a minimum of 3 independent 

biological replicates. Samples were allocated based on genotype or experimental 

manipulation and statistics performed on aggregated data.  Variance was similar 

between groups that were statistically compared. Preliminary experiments and previous 

work were used to assess variance and determine adequate sample sizes in advance of 

conducting experiments (Kayser, Yue and Sehgal, 2014; Dilley et al., 2018). 
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Results 

TDP-43 overexpression impairs sleep in Drosophila 

 In aiming to elucidate the relationship between neurodegeneration and sleep 

impairment, we examined sleep in a number of established Drosophila models of 

neurodegenerative diseases.  To avoid developmental effects of these lines and to 

ensure broad expression, we utilized the inducible GeneSwitch driver under control of 

the daughterless promoter (Da-GS).  We examined sleep after 7 days of Da-GS 

activation on RU486 in adults.  We did not observe significant changes in total sleep 

time or sleep bout duration for most models of neurodegeneration (Figure 1A,B). 

However, ectopic expression of TDP-43, the major pathological protein in ALS/FTD, 

caused a loss of ~200 minutes of sleep during the dark period (542.6±10.1 min for Da-

GS/+ vs. 316.2±23.66 min for Da-GS>UAS-TDP-43, Figure 1A), and increased sleep 

fragmentation as evidenced by a nearly 3-fold reduction in the length of the average 

sleep bout (44.94±2.53 min for EtOH control vs. 17.37±1.97 min for RU486, Figure 1D).  

The finding that increased TDP-43 levels can induce sleep changes is consistent with 

previous work in Drosophila models with mutations in TDP-43 (Estes et al., 2013).  To 

confirm the result of this initial screen, we measured sleep in fly lines with two separate 

insertions of UAS-TDP-43: one line with medium-strength expression (UAS-TDP-4337M) 

and one line with strong expression (UAS-TDP-4352S).  Both lines demonstrated similar 

sleep deficits; overexpression of UAS-TDP-4337M caused reduction of sleep by days 7-10 

on RU486, whereas overexpression of UAS-TDP-4352S caused decreased sleep by days 

4-6 on RU486, while much of the population was dead by days 7-10 (Figure 1 D-E).  

Both lines showed significant decreases in total sleep time and sleep continuity on 
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RU486 when compared to EtOH control (Figure 1G-H, Supplementary Figure 1A).  We 

also confirmed the sleep phenotype of Da-GS>UAS-TDP-4337M flies using a higher 

spatial resolution sleep assay (Supplementary Figure 1B-D).  This assay uses 17 distinct 

infrared beams to more finely detect position and movement of flies in the monitoring 

apparatus.  As TDP-43 overexpressing flies have been demonstrated to have motor 

deficits (Kim et al., 2014), we were concerned that a locomotor phenotype could account 

for the observed sleep changes.  Importantly, locomotor impairments would likely result 

in less movement and therefore be interpreted as increased sleep in our system, yet our 

TDP-43 overexpression model demonstrates reduced sleep.  Moreover, no change to 

the waking activity of flies was observed in our analysis (Supplementary Figure 1E).  

This indicates that flies are able to move normally in the Drosophila Activity Monitoring 

system, and that previously described motor deficits are not responsible for sleep 

changes.  

We asked if overexpression of TBPH, the Drosophila ortholog of human TDP-43, 

in adult flies would mirror the sleep changes observed with overexpression of TDP-43. 

TBPH overexpression induced severe toxicity, and most flies were dead by day 5 

(unpublished observations).  However, flies began to exhibit sleep changes by the 

second day on RU486, and prominent decreases in total sleep time and sleep 

fragmentation could be observed by day 3 (Figure 1E,G-H).  Mutations in the fused in 

sarcoma (FUS) gene is one of the most common causes of familial ALS (Mathis et al., 

2019).  Importantly, FUS protein aggregates in inclusions that resemble pathologic 

findings in human ALS brains (Sun et al., 2011).  Overexpression of FUS in flies also 

caused decreased TST, while fragmenting sleep as well (Figure 1F-H).  Together, these 

results suggest that overexpression models of ALS/FTD in Drosophila cause decreased 

total sleep and sleep fragmentation. 
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 To determine whether the sleep deficits observed were a result of neuronal 

functions, we expressed UAS-TDP-4352S using the pan-neuronal drivers elav-Gal4 and 

nsyb-Gal4.  Elav-Gal4, but not nsyb-Gal4, caused a decrease in total sleep time, but 

both neuronal drivers caused significant fragmentation of sleep during the dark period 

(Figure 1I-J).  We next asked if motor neuron toxicity was responsible for sleep changes, 

as motor neuron degeneration is the primary mechanism of pathology in human ALS, as 

well as locomotor deficits in Drosophila models (Estes et al., 2013).  We actually 

observed a slight increase in total sleep time, and no change to sleep fragmentation 

using motor neuron driver D42-Gal4 to drive UAS-TDP-4352S (Figure 1I-J), suggesting 

sleep changes were not a direct result of motor neuron toxicity.  These results 

demonstrate that neuronal overexpression of TDP-43, but not motor neuron 

overexpression, is sufficient to induce sleep changes.  

 

Ataxin 2, a known modifier of TDP-43 toxicity, modifies sleep phenotype 

 To examine whether impaired sleep with TDP-43 overexpression is directly tied 

to TDP-43 cellular toxicity, we asked whether sleep is changed with modulation of Ataxin 

2, a known modifier of TDP-43 (Elden et al., 2010).  Coincident upregulation of Atx2 and 

TDP-43 in Drosophila worsens retinal degeneration and severely truncates lifespan, 

beyond that of expressing Atx2 or TDP-43 alone (Elden et al., 2010).  Moreover, genetic 

knockouts of Atx2 ameliorate TDP-43 toxicity and cellular inclusions in mouse models 

(Becker et al., 2017). Therefore, we asked if modulation of Atx2 levels in Drosophila 

would affect sleep in a TDP-43 overexpression background.  To test whether 

overexpression of both TDP-43 and Atx2 would worsen sleep, we used the Da-GS driver 

to express both UAS-TDP-4352S and UAS-Atx2.1B.  All flies died within 2 days of being 
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placed on RU486, preventing sleep analysis.  We then asked if RNAi-mediated 

knockdown of Atx2 would ameliorate sleep deficits observed in Da-GS>UAS-TDP-4352S.  

Using this approach, we observed a twofold increase in total sleep time during the dark 

period in each of three distinct RNAi lines when compared to mCherry RNAi (Figure 2A-

B).  Moreover, Atx2 knockdown caused increases in sleep bout duration in most lines 

and decreases in the number of sleep bouts in all lines, indicating consolidation of sleep 

(Figure 2B, Supplementary Fig 2A).  We next asked what effect Atx2 knockdown has on 

sleep in the absence of TDP-43 overexpression.  Driving Atx2 RNAi expression with Da-

GS did not change total sleep time, nor was any significant change observed to sleep 

fragmentation (Supplementary Figure 2B).  Taken together, this suggests Atx2 

knockdown suppresses sleep deficits caused by TDP-43.   

  

Sleep screen for genetic modifiers of TDP-43 toxicity reveals novel hits 

 Following the finding that TDP-43 overexpression decreased sleep time and 

continuity, we initiated a screen to search for modifiers of TDP-43 sleep degradation 

(Supplementary Fig 3A).  We utilized the Drosophila TRiP RNAi collection to disrupt 

expression of selected genes (Perkins et al., 2015).  Using Da-GS as a driver, our 

screen was designed to detect modifiers of sleep in adults, as activation of the inducible 

driver occurred after eclosion.  We initially selected RNAi lines for genes previously 

identified as enhancers or suppressors of TDP-43 neurotoxicity in the eye (Elden et al., 

2010; Kim et al., 2014; C. Y. Chung et al., 2018; McGurk et al., 2018).  Surprisingly, 

most of these lines demonstrated no enhancement or suppression of sleep degradation 

when compared to control mCherry RNAi expression (Supplementary Figure 3B-E).  

This finding was intriguing, as perhaps a novel behavioral output would reveal novel 
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modifiers of TDP-43 pathology.  We next decided to broaden our screen by selecting 

RNAi transgenic lines by gene ontogeny searches of terms of interest (Supplementary 

Table 1).  These terms were selected by associations to sleep or to TDP-43 pathology.  

Of the 825 RNAi transgenes assayed, 141 produced significant changes to sleep upon 

the initial screening compared to mCherry RNAi controls (Figure 3A).  Of these initial 

screen hits, 86 RNAi lines subsequently reproduced sleep effects upon rescreening 

(Figure 3B).   

 

m6a nuclear reader YT5-21B is a novel suppressor of TDP-43 toxicity 

One of the surprising results of the screen was that knockdown of YT5-21B, a 

reader of N6-methyl adenosine (m6A) RNA modifications that is found only in the 

nucleus, significantly suppressed TDP-43 sleep deficits (Figure 3C).  m6A modifications 

are the most abundant and evolutionarily-conserved of post-transcriptionally added 

modifications to RNA (Berlivet et al., 2019).  m6A readers bind to RNA; this can increase 

affinity of RNA-binding proteins for particular RNA residues, or can alter the RNA 

structure to promote binding in what has been called a “m6A switch.” (Roost et al., 2015)  

Drosophila has one m6A reader protein in the nucleus, called YT5-21B, and another in 

the cytoplasm, CG6422. In our screen YT5-21B RNAi transgene expression in the 

setting of TDP-43 overexpression produced a twofold increase in total sleep time over 

the 24 hour day, including an increase of nearly 200 minutes during the dark period 

(Figure 5D-E).  Moreover, YT5-21B knockdown consolidated sleep via a threefold 

increase in sleep bout duration and corresponding decrease in total bouts (Figure 3F, 

Supplementary Figure 3F).  No sleep change was observed when YT5-21B knockdown 

occurred in the absence of TDP-43 overexpression, indicating that sleep improvement is 
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likely a result of the interaction between these proteins (Supplementary Figure 3G).  

Conversely, RNAi knockdown of cytoplasmic m6A reader protein CG6422 in flies 

overexpressing TDP-43 showed only a small increase in total sleep time.  This was a 

result of trying to initiate more sleep bouts, not due to increased bout duration 

(Supplementary Figure 3H-J).  Together, these findings indicating a unique role of the 

nuclear m6A reader YT5-21B in affecting sleep.  

Is YT5-21B knockdown causing reversal of the sleep deficit by reducing levels of 

TDP-43?  To test this possibility, we performed western blotting for TDP-43 protein, and 

observed no change in total TDP-43 compared to control mCherry RNAi levels (Figure 

3J-K). We next asked whether rescue of sleep due to RNAi knockdown of YT5-21B 

would have other beneficial behavioral effects.  TDP-43 overexpression models exhibit 

severely truncated lifespan (Kim et al., 2014; Berson et al., 2017; McGurk et al., 2018), 

so we tested whether YT5-21B knockdown would affect longevity in this model.  

Comparing flies expressing YT5-21B RNAi transgene to controls expressing mCherry 

RNAi, we found that knockdown of YT5-21B significantly extended lifespan of male flies 

(Figure 3G). Median survival was extended by approximately 2 days, a 20% extension 

compared to control flies.  Disturbances in climbing ability have been previously 

characterized in TDP-43 overexpression models (Kim et al., 2014).  We wondered if 

knockdown of YT5-21B would rescue climbing dysfunction as well.  As expected, we 

observed severe deficits in climbing performance of Da-GS>UAS-TDP-43 flies after 5 

days on RU486 compared to controls of the same genetic background on EtOH (Figure 

3H).  Climbing ability was partially rescued by YT5-21B RNAi transgene expression, 

showing a threefold increase in both performance index and percentage of flies climbing 

6 cm in a 5-second window.  Taken together, YT5-21B knockdown improves sleep, while 

rescuing other behavioral deficits incurred by TDP-43 overexpression.   
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While our data suggest a nuclear role of TDP-43 in its degradation of sleep, 

cytoplasmic stress granules have been commonly associated with neurotoxicity (Mann 

et al., 2019). Stress granules are membraneless organelles that sequester mRNA, 

ribosomal subunits, and RNA-binding proteins, including TDP-43 (Molliex et al., 2015).  

Stress granule formation is activated during cellular stress, so we asked whether stress 

due to sleep deprivation was sufficient to induce further SG formation.  Levels of eIF2a 

phosphorylation are directly correlated with SG amount, as these phosphorylated 

proteins accumulate in cytoplasmic granules (Kim et al., 2014).  Therefore, we extracted 

protein from the heads of TDP-43 overexpressing flies under 12:12 LD control conditions 

or 12- or 24-hr mechanical sleep deprivation, and measured phosphorylated eIF2a 

levels.  We found that sleep deprivation of either duration did not significantly affect the 

amount of phosphorylated eIF2a protein by Western blot (Supplementary Fig 3K-L), 

arguing against a cytoplasmic stress granule etiology coupling sleep and TDP-43.  

Taken together, these results propose a nuclear role for TDP-43-mediated sleep 

degradation. 

 

Sleep Restriction Therapy improves sleep in Drosophila model of ALS/FTD 

 Cognitive Behavioral Therapy for Insomnia is the first-line therapy for insomnia in 

human patients, a key component of which is Sleep Restriction Therapy (SRT) 

(Riemann et al., 2015).  SRT enables poor sleepers to effectively match limited sleep 

ability to sleep opportunity by reducing the amount of time spent in bed, thereby 

maximizing sleep drive.  Previous work has demonstrated that SRT can be adapted to 

improve sleep in Drosophila models of insomnia and neurodegeneration (Belfer et al., 

2019).  In humans undergoing SRT, the amount of sleep opportunity is determined 
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based on an individual’s total sleep time (TST); further compression can result in sleep 

rebound during the subsequent day. Applying this approach to Da-GS>UAS-TDP-4337M, 

whose sleep time is 300-400 minutes (Figure 1H), dark time was compressed from the 

baseline 12 hours light:12 hours dark (12:12 LD) cycle by initially contracting dark time to 

6 hours (18:6 LD, Figure 4A-B).  Importantly, no homeostatic rebound sleep was 

observed in the 2 hours following lights on in flies under 18:6 LD conditions 

(Supplementary Figure 4A).  These flies are capable of rebound sleep following sleep 

deprivation (Supplementary Figure 4B), indicating that the sleep homeostat is intact in 

these animals.  Next, we compared three different durations of SRT (18:6 LD, 16:8 LD, 

and 14:10 LD) to determine the optimal matching of sleep opportunity to the sleep ability 

of TDP-43 overexpressing flies (Figure 4A).  Previous work has demonstrated that 

optimal matching maximizes sleep continuity (long bout duration, few bouts), while not 

affecting total sleep time (Belfer et al., 2019).  We observed that flies under 18:6 LD 

cycles had less total sleep during the dark period than under 12:12 LD conditions, but no 

change in sleep amount was observed under either 16:8 LD or 14:10 LD conditions 

(Figure 4C).  This indicates that flies were able to compress their typical sleep amount 

into a smaller time window, increasing sleep efficiency.  The enhancement of sleep 

efficiency was coupled with an increase in sleep consolidation under 18:6 LD and 16:8 

LD conditions, evidenced by an increase in sleep bout duration and decrease in number 

of total bouts (Figure 4D, Supplementary Figure 4A). Consolidation of sleep in flies 

under 14:10 LD conditions was unchanged from 12:12 LD controls.  These results 

suggest that 16:8 LD presents the optimal matching of sleep opportunity and sleep 

ability in flies with TDP-43 overexpression, as flies at this LD cycle show increased sleep 

continuity while demonstrating no change to total sleep time.  
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Do SRT-induced changes to sleep consolidation in TDP-43 overexpressing flies 

correspond to increased depth of sleep?  To answer this question, we exposed flies 

under 12:12 LD or 16:8 LD cycles to mechanical stimuli designed to arouse flies from 

sleep.  While 69% of flies under 12:12 LD conditions were aroused from this stimulus, 

significantly fewer sleeping flies under SRT were aroused (49%, Figure 4E). This 

indicates that improvements in sleep quality due to SRT correspond with increased 

sleep depth.  

 

Discussion 

The link between sleep and neurodegeneration has been well-established, but 

the exact molecular mechanisms that underly effects to cellular toxicity have not been 

fully established.  Adequate sleep is increasingly viewed as a modifiable risk factor for 

many neurodegenerative diseases, as sleep begins to deteriorate decades before the 

onset of cognitive decline.  Increasingly, sleep’s role in disease is being elucidated; flow 

through glymphatic fluid transport system robustly increases during sleep versus wake 

(Achariyar et al., 2017).  This finding proposes sleep as a privileged time for increased 

flow and clearance of accumulated toxins that localize to the extracellular space.  While 

Alzheimer’s disease feature extracellular Ab plaques in brain pathology that can flow out 

of the brain through the glymphatic system, ALS/FTD pathological findings are 

predominantly intracellular.  What effects might sleep be having on this different etiology 

of neurodegeneration? 

 Research in Drosophila has yielded numerous insights into basic sleep 

neurobiology as well as an understanding of molecular mechanisms of 

neurodegenerative disease.  Here, we have leveraged this model system to develop a 
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tractable model to study sleep deficits associated with TDP-43 accumulation, common to 

ALS and FTD.  We observe that sleep deteriorated with broad overexpression of TDP-

43, and toxicity is suppressed by knockdown Ataxin 2, consistent with previously 

identified mechanisms of disease (Elden et al., 2010).  We utilized this platform for 

discovery of novel modifiers of TDP-43 toxicity to sleep.  Using a candidate-based 

approach, we identified that YT5-21B, a nuclear reader of the RNA modification m6a 

was a modifier of TDP-43 toxicity.  Knockdown of this protein was sufficient to improve 

sleep in a TDP-43 overexpression background.  Finally, we previously developed a 

paradigm that adapts tenets of human behavioral therapy to improve sleep in flies with 

short sleep phenotypes.  Application of this paradigm to TDP-43 overexpressing flies 

served to improve sleep and extend lifespan in this Drosophila model of ALS/FTD.  

These data establish a novel platform for identifying modifiers of TDP-43 cellular toxicity, 

as well as identifying a behavioral output that reflects the progression of disease. 

 

Toward understanding the effect of TDP-43 on sleep 

 In recent years, sleep deficits have been characterized in human patients with 

ALS (Congiu et al., 2019; Panda, Gourie-Devi and Sharma, 2019).  These patients 

feature sleep fragmentation and nighttime awakenings as prominent symptoms, and 

these studies suggest that sleep disturbances are underreported in this population.  In 

Drosophila, previous work has identified that mutated forms of TDP-43 in motor neurons 

can induce small changes in sleep (Estes et al., 2013).  In contrast, our overexpression 

model shows a near 40% reduction in total sleep time, as well as dramatic degradation 

in sleep continuity.  Additionally, our work indicates that neuronal TDP-43 expression is 

sufficient to induce a sleep phenotype, but expression in motor neurons alone has no 

effect on total sleep time or sleep continuity.   
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 Intriguingly, previous work has shown that depletion and overexpression of TDP-

43 cause similar gene expression changes (Vanden Broeck et al., 2013), implying that 

manipulation of TDP-43 levels in either direction may be activating similar pathways 

(McGurk, Berson and Bonini, 2015).  Our data supports this notion, showing that 

overexpression of TDP-43 produces significant short sleeping phenotypes, and adding 

to previous work with TDP-43 mutations.  How then might TDP-43 affect sleep levels?  

There is evidence from other neurodegenerative models that accumulation of 

aggregating proteins serves to promote hyperexcitability in neurons.  Do TDP-43 

accumulations cause these same intracellular effects?  Further investigation into the 

mechanisms of TDP-43 accumulation on in vivo neurons in flies is necessary to 

elucidate these potential effects. 

 

A novel screening platform for modifiers of disease 

 Modifiers of TDP-43 toxicity have been previously identified by looking for 

suppressors and enhancers of neurodegeneration in the Drosophila eye (Kim et al., 

2014; Berson et al., 2017; C. Y. Chung et al., 2018; McGurk et al., 2018).  While this 

method has been fruitful in identifying modifiers, behavioral outputs provide an additional 

high-throughput way to discover novel interactions.  To this end, Ataxin 2 knockdown 

ameliorated sleep deficits in our assay, recapitulating its effects on eye degeneration.  

However, other previously-identified modifiers of TDP-43 toxicity produced no sleep 

changes in our assay.  Further inquiry is necessary to determine why known modifiers of 

eye toxicity do not manifest in sleep changes.  This screening platform identified that 

YT5-21B, a nuclear reader of m6a modifications on RNA, is a suppressor of TDP-43 

toxicity.  Surprisingly, the cytoplasmic m6a reader produced limited effects on sleep.  

While the leading hypotheses support cytoplasmic stress granules driving TDP-43 
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toxicity, our findings suggest a nuclear etiology may also be contributing to sleep 

changes.  Further work will isolate RNA binding proteins downstream of YT5-21B 

interactions with m6a-tagged RNA, seeking to elucidate the mechanism by which this 

protein improves sleep.   

Importantly, sleep improvement correlates with increased climbing ability and 

extended lifespan with knockdown of YT5-21B.  This again supports a powerful role of 

improved sleep in ameliorating neurodegenerative processes occurring with TDP-43 

overexpression.  Future work will include broadening our screen to identify additional 

suppressors and enhancers of TDP-43 toxicity, hoping to identify new treatment targets 

for this disease. 

 

Behavioral Sleep Therapy for the treatment of neurodegenerative disease 

 We have previously demonstrated that by applying the tenets of human Cognitive 

Behavioral Therapy for Insomnia to Drosophila models of neurodegeneration that feature 

short sleeping phenotypes, we could improve sleep and extend longevity of these 

animals (Belfer et al., 2019).  Here, we demonstrate in another model of 

neurodegenerative disease that sleep is modifiable via sleep restriction therapy.  

Furthermore, rescuing sleep continuity improves lifespan, indicating that there are 

beneficial effects of improved sleep for the entire organism. 

 This fly model of behavioral sleep modification can be used to generate granular 

insights into the dynamic interplay between sleep and neurodegenerative disease.  

Future work will use this model to define the neural circuits required for, and molecular 

changes occurring with, sleep restriction, with the goal of identifying new treatment 

targets that are conceptually based on the established efficacy of CBT-I.   
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Figures 
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Figure 1.  TDP-43 overexpression causes sleep deterioration. 

Screen of sleep phenotypes of overexpression models of neurodegenerative diseases.  Quantification of 

total sleep time (A) and sleep bout duration (B, n >32 flies per condition).  (C-F) Representative sleep traces 

of ALS models on ethanol (gray traces) or RU486 (gray traces). Day of assay was determined based on 

toxicity of transgene expression.  Quantification of total sleep time (G), and sleep bout duration (H) for ALS 

models (n > 32 flies per condition). (H-I) Sleep analysis with limited overexpression of UAS-TDP-43 to all 

neurons or neuronal subpopulation.  Quantification of total sleep time (H) and sleep bout duration (I). n > 32 

flies. For all figures, error bars represent SEM; *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 2.  Ataxin 2 knockdown modifies sleep phenotype with TDP-43 overexpression. 

(A-C) Representative sleep traces of Da-GS>UAS-TDP-4352S flies, also expressing Ataxin2 RNAi after 5 

days on RU486 food. Quantification of total sleep time (B) and sleep bout duration (C) with Ataxin2 RNAi 

expression (n = 24 flies). 
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Figure 3.  TDP-43 modifier screen identifies m6a nuclear reader YT5-21B as a suppressor of toxicity.  

(A) Summary of total sleep time distribution of 825 screened RNAi lines. Pink points represent mCherry 

RNAi controls for each day of screening.  Pink shading indicates range of control sleep.  Suppressors and 
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enhancers identified from primary screen were rescreened to ensure durability of sleep phenotype (B).       

(C) Representative sleep trace of Da-GS>UAS-TDP-4352S, YT5-21B RNAi after 4 days on RU486.  

Quantification of total sleep time in 24 hours (D), during 12 hours of night (E), and sleep bout duration at 

night (F).  (G) Survival curves of Da-GS>UAS-TDP-4352S, mCherry RNAi (pink, n = 200 males) and Da-

GS>UAS-TDP-4352S, YT5-21B RNAi (green, n = 200 males).  Measurements of negative geotaxis 

performance index (H) and % of flies climbing 6cm in 5 seconds after tapping down.  Western blot (J) and 

total protein quantification (K) of TDP-43 in Da-GS>UAS-TDP-4352S, mCherry RNAi or Da-GS>UAS-TDP-

4352S, YT5-21B RNAi heads (n = 20 male heads).  
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Figure 4.  Sleep Restriction Therapy improves sleep and longevity in TDP-43 overexpression model 

of ALS. 

(A) Schematic of experimental protocol for determining optimal light:dark cycle for Sleep Restriction Therapy 

by manipulating the dark period. (B) Representative sleep traces of Da-GS>UAS-TDP-4337M flies under 

12:12 LD conditions (top, gray shading indicates dark), 18:6 LD SRT conditions (middle, blue shading 

indicates dark), and overlaid plots (bottom).  Quantification of total sleep time (D), and sleep bout duration 

(D, n > 32 flies) for different light:dark cycle durations of SRT. (E) Percentage of flies aroused from a 

mechanical stimulus delivered during dark period. (F) Survival of male flies on RU486 under 12:12 LD 

conditions (gray) or 16:8 LD SRT conditions (blue, n = 100 flies). 
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Supplementary Figures 

 

 
 
 

Supplementary Figure 1.  TDP-43 overexpression models of ALS cause sleep deficits. 

(A) Quantification of number of sleep bouts for several ALS models.  (B) Representative trace of multibeam 

sleep analysis of  Da-GS>UAS-TDP-43 37M.  Quantification of total sleep time (C), sleep bout duration (D), 

and number of beam crosses per minute of wake time (E), for Da-GS>UAS-TDP-43 37M under single beam 

and multibeam analysis.  (F) Quantification of number of sleep bouts upon restriction of expression of UAS-

TDP-43 to neurons or neuronal subpopulations. 
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Supplementary Figure 2.  Ataxin 2 knockdown improves sleep only in TDP-43 overexpression. 

(A) Quantification of number of sleep bouts for Da-GS>UAS-TDP-4352S flies, also expressing Ataxin2 RNAi 

after 5 days on RU486 food.  (B) Representative trace of Da-GS>Ataxin2 RNAi BL44012 in multibeam analysis 

(without expression of UAS-TDP-43).  
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Supplementary Figure 3.  Results of modifier screen. 

(A) Schematic of screening approach.  (B-D) Representative sleep traces RNAi lines found to be modifiers 

of TDP-43 toxicity in measures of eye neurodegeneration. (E) Table of fold change of total sleep time of 

known modifiers of TDP-43.  Pink shading indicates significant enhancer and green shading indicates 

significant suppressor of TDP-43 sleep toxicity. (F) Quantification of number of sleep bouts for Da-GS>UAS-

TDP-4352S, mCherry RNAi (black) and Da-GS>UAS-TDP-4352S, YT5-21B RNAi (green).  Quantification of 

m6a cytoplasmic reader CG6422 RNAi total sleep time (H), sleep bout diration (I), and number of sleep 

bouts (J).  Western blots (K) and total protein quantification (L) of phosphorylated eIF2a. 
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Supplementary Figure 4.  SRT improves sleep in TDP-43 overexpression model of ALS. 

(A) Quantification of sleep in 2 hours after lights on to assess rebound sleep following 12:12 LD cycle or 

16:8 LD SRT cycle in Da-GS/+ (left) or Da-GS>UAS-TDP-4337M (right). (B) Recovered minutes of sleep after 

sleep deprivation in Da-GS/+ (black) or Da-GS>UAS-TDP-4337M (gray). (C) Quantification of number of 

sleep bouts for different light:dark cycle durations of SRT.  (D) Percentage of flies aroused from a 

mechanical stimulus delivered during dark period, broken down by time of stimulation. 
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Supplementary Table 1 - Table of TRiP RNAi Lines Screened for Modifiers of TDP-43 Toxicity

Flybase GO Term "Sleep" +  Adult Stage, "circadian sleep/wake cycle" "autophagy" "synapse organization" "nucleocytoplasmic transport"
Genes Sh EndoA Top3β αKap4

Ilp2 Wdr24 fz2 Kap-α1
Ktl PEK dlp Kap-α3
wake Drp1 Tbce Pen
TfAP-2 stj Nlg1 Cse1
Clk Ras85D HSPC300 emb
Ih Traf-like p120ctn RanGAP
qvr Traf6 nsl1 Fs(2)Ket
Fbxl4 Rheb Tip60 Nxt1
CanA1 GlyS wrapper Rcc1
Hk Hsc70-4 RtGEF tho2
Nipped-B lt DIP-α Ntf-2
EcR Snap29 caz nxf2
per Uvrag plum Hel25E
Pp2B-14D park Nf1 sbr
bgm scny Sec8 ZC3H3
homer RagA-B beag Nup58
CanB Atg4b Cul2 Mtor
5-HT1A hep Ten-a Nup62
CrebB Fer2 smt3 Ns3
Cul3 Vps16A Cals Nup93-1
Shab comt Liprin-α e(y)2
Pdf Sec61α dbo Arts
Dh31 Doa Lar RanBP3
Oamb wrd atl Nup214
InR Ubc6 DIP-γ Nup93-2
cry RagC-D RhoGAP100F Nup98-96
Hsc70-3 daw pum cdm
SIFa sima Mob4 Moe
Gabat Nprl2 Thor edl
sra sesB gbb mbo
cyc Acn Src42A Impβ11
VGAT raptor TBPH Clbn
Hsp83 Vha100-1 Rab11 Torsin
cv-c Cdk8 Ulp1 Aladin
Nlg4 Atg2 mGluR Vhl
Pka-C1 srp ena Nup153
ITP Atg1 tkv sqd
Ilp3 Pi3K92E Nedd4 LTV1
Acer Pink1 dpr20 Nup154
Shaw Pten Smn swm
rut Rae1 DIP-β Tnpo
Dop1R2 Atg16 nmo SF2
Ilp5 Raf Prosap Nup50
cue Atg18a aPKC Su(fu)
Pdfr wts cin Nup160
DAT Vps25 mr msk
tara Fkbp39 DIP-θ fu
Rdl Buffy ND-20 Ran-like
Men Smox wnd pix
inc Atg8a Src64B thoc7
Fmr1 Trpml spin Mapmodulin
Trh Vps15 Med sta
tim Atg18b velo xmas
mld Chc S6kII Gp210
AANAT1 Cpsf6 mys Sem1
Ets96B Atg14 dpr12 chinmo
BTBD9 TER94 unc-13 Nup35
sand Dronc dpr8 Gle1
Sik3 Toll-7 DIP-ζ ebo

Rab21 Pak Nup54
Lrrk dpr9 Sec13
Fis1 Liprin-γ hh
shrb drpr Nup358
AP-2α Adf1 Ranbp9
Tango5 Imp thoc5
cac Octβ1R U2af50
Desat1 RhoGAP92B Ntf-2r
lqf Yip1d1 Nup133
Gyf wg Ran
br Akt1 Tnpo-SR
rl Octβ2R cos
sigmar CASK
Atg6 Gαs
DOR Fsn
Sod2 BOD1
p53 GluRIIA
Rab32 cpx
hiw Synd
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Pax spict
Sec61β SiaT
Rack1 brat
Sec61γ Nrx-IV
Sesn Srpk79D
Sod1 Rac1
ctp Ank2
mask SkpA
Rab23 dpr14
Vps13D cpb
Ccz1 Snx16
Pi3K59F Act57B
ca nos
gig futsch
l(3)76BDm α-Spec
sqa Arp3
Myc sff
Syx17 AGO1
Atg9 C1GalTA
mts Syn2
Synj Ten-m
Atg3 Nrx-1
Tsc1 Cdk5
Tak1 nwk
car unc-104
bsk Sin1
lft baz
Vamp7 DIP-ι
foxo dlg1
Sbf par-1
Atg8b Syx18
babo Nup75
Nup44A comm
Nprl3 slo
ago Abl
Epg5 CCKLR-17D1
Atg17 Dad
Aduk Aplip1
Atg13 WASp
CycC Acsl
CstF64 Gli
Pp2A-29B Elp3
SNF4Aγ Tl
Atg12 dpr18
Ubi-p63E par-6
Atg101 cup
SREBP Kat60
Atg4a veli
Hsp67Bc Spn
ref(2)P Eps-15
Lerp Dysb
Dcp-1 Sac1
mio Hem
S6k Nlg3
Debcl brp
Mitf Gs2
wdb repo
Eip74EF LIMK1
Vps39 simj
dor Appl
Bruce ewg
Atg10 DIP-η
fab1 metro
Tor Neto
Vps4 Syp
shi Nrg
AMPKα β-Spec
Cpsf160 Cip4
AP-1-2β jeb
Uba1 Frq2
Atg7 caps
Atg5 stau
Utx Sema1a
SH3PX1 Fas2

mtg
Rab8
spas
ben
Nmnat
Gem3
Jra
PI4KIIIα
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Rab3
pros
trio
Sra-1
kay
Gad1
rictor
CaMKII
ICA69
Sar1
rg
bchs
Upf2
Nlg2
Syn1
shv
nonC
Atpα
scb
lbm
Dsk
RhoGAP68F
Itgbn
sgg
Pak3
mnb
Ada2b
PICK1
dpr1
stai
Gαo
dpr10
Lrp4
cmpy
pod1
Abp1
DIP-ε
LanA
Syx4
drl
sax
Grip
Vap33
Syn
Fur1
Ca-β
Fak
Patr-1
Cdc42
dpr17
stan
kis
Pdk1
Rab2
Frq1
Cul5
spartin
Ube3a
Rab1
Nsf2
Smu1
nej
Mical
Blos1
ppk30
PIP5K59B
Sdc
dpr5
Rbp
Abi
Nos
wit
klg
Strip
dpr19
p38b
Mad
Arp2
Got2
Liprin-β
lon
miro
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Conclusions and Future Directions 
 
 

 

רתלאל ןשיו ותוא ןיקלמ םימי השלש ןשיא אלש העובש ןנחוי יבר ר מאהו  
 

 

“But didn’t Rabbi Yoḥanan say that if one says: ‘I hereby take an oath that I will not sleep 

for three days,’ the court flogs him for taking an oath in vain … as he is incapable of 

fulfilling his oath?“ 

- Babylonian Talmud, Tractate Nedarim 15a 

 

 

 Sleep is an essential behavior to humans, such that swearing off of sleep has 

always been an impossible feat.  In all species studied, sleep is present in organisms’ 

behavioral repertoires, and regulation of sleep is conducted according to the same broad 

set of rules.  While jellyfish and humans might have disparate cellular and molecular 

functions that occur with sleep, the unanimity of sleep across the animal kingdom points 

to a critical underlying function.  Studying the mechanisms by which sleep becomes 

disturbed is therefore imperative; if sleep becomes inefficient, so too might the cellular 

processes occurring during this privileged time, leading to physiological sequalae.  

Supporting this notion, the millions of people affected by insomnia have increased rates 

of mental illness, diabetes, and cardiovascular disease (Taylor, Lichstein and Durrence, 

2003; Depner, Stothard and Wright, 2014; Javaheri and Redline, 2017).  Cognitive 

Behavioral Therapy for Insomnia (CBT-I) is remarkably effective at treating disrupted 

sleep, and there is some evidence to suggest that it may be effective at improving 

comorbid depression, PTSD, and bipolar disorder as well (Kaplan and Harvey, 2013; Ho, 
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Chan and Tang, 2016; Cunningham and Shapiro, 2018).  Despite its broad efficacy, 

CBT-I classically depends upon availability of trained practitioners, and therapy can last 

longer than 12 weeks.  This places an outsized burden on the patient; behavioral 

therapy requires a significant commitment of time and financial resources that most 

patients cannot afford.   Sleep restriction therapy (SRT) – a key component of CBT-I – 

addresses mismatch between sleep opportunity and ability by restricting time in bed to 

an amount equal to average sleep ability, leading to enhanced sleep drive and 

consolidation. Remarkably, studies show that SRT alone is sufficient to gain most of the 

benefits of CBT-I (Miller et al., 2014).  Using innovative methods that apply principles of 

human sleep biology to Drosophila, I have taken steps toward delineating the molecular 

and neural basis of SRT.   

 

Modeling Behavioral Sleep Therapy in Drosophila 

 How effective is our model at mirroring the effects of human CBT-I?  There are 

numerous features of Drosophila SRT that mirror tenets of human behavioral therapy for 

insomnia.  This model, like its human therapy counterpart, is effective across various 

etiologies of short sleep, and can be tailored to address the severity of each genotype’s 

sleep deficit (Chapter 2, Figure 3). Furthermore, its kinetics are similar; maximal 

improvements in sleep are not observed immediately upon restricting sleep opportunity.  

Rather, sleep efficiency increases as sleep drive mounts (Chapter 2, Supplementary 

Figure 6G-H).   
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Limitations of Drosophila model 

Not all elements of human therapy are replicated by the Drosophila model.  In 

human patients, SRT begins by restricting patients to their total amount of time slept, 

which could be as few as 6 hours spent in bed. Over several weeks, sleep opportunity is 

slowly titrated to increase sleep time, while maintaining consolidated sleep. In 

Drosophila, a therapy of this duration would be unwieldy.  Furthermore, our work 

indicates that restriction of opportunity to 6 hours of dark time achieves the same 

treatment response as restricting to 4 hours and titrating to 6 hours of dark time after 

several days (Chapter 2, Figure 4I) .  There are several potential reasons for this 

discrepancy.  First, it is possible that our measurement of the effect of titration in 

Drosophila lacked the resolution to observe changes to sleep.  Our model extended 

sleep amount by 2 hours every other day; perhaps this was too drastic of a change to 

assess the effects of titration.  To test this theory, I could further examine the results I 

obtained from fumin mutants under 16:8 LD cycles, where I observed significantly 

increased sleep efficiency and decreased fragmentation, and 14:10 cycles, which 

demonstrated no change in sleep metrics (Chapter 2, Figure 2).  I propose starting with 

8 hours dark time and extending dark time by only 20 min every other day to assess for 

changes to sleep.  If this slower titration technique allows sleep to remain efficient when 

dark time reaches 10 hours, I would conclude that titration is necessary to maximize 

sleep time in a given window of opportunity.  It is possible, however, that upon reaching 

10 hours, flies are unable to consolidate their sleep given the abundance of opportunity, 

regardless of the slow titration.  One way this could be explained is by the undeniable 

differences between human and fly longevity.  The need for sleep titration over weeks for 

an organism whose life spans many decades may not be necessary in a model system 

that must adapt in much shorter windows of time, with a lifespan of only 60-90 days.  
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Another possibility is that fly sleep is studied in an environment idealized for sleep and 

devoid of outside influences that are known to significantly alter sleep behavior (fear of 

predation, limited food availability, social interaction).  Therefore, “true” sleep ability is 

easy to assess, and titration to obtain appropriate matching of sleep opportunity is 

unnecessary.  While human sleep behavioral studies are also conducted in a controlled 

environment, it is impossible to eliminate stressors that affect sleep.  Perhaps it is the 

amelioration of acute stressors over several weeks of titration, in addition to the 

elimination of perpetuating factors, that allows for the measurement of a patients’ “true” 

sleep ability, and appropriate matching of sleep opportunity.  While this hypothesis is 

difficult to carefully assess, if studies were designed to limit outside influences as is done 

in flies (several consecutive nights of observation, ideal environmental settings for sleep, 

the absence of confounding medications/substances, limiting anxiety wherever possible) 

perhaps the need for titration of sleep opportunity in human patients would become less 

critical.  Might sleep titration in humans be possible on a shorter time scale?  While this 

question has not been addressed by formal studies, piloting this technique in people 

suffering from chronic insomnia would significantly reduce the duration of treatment, 

alleviating some of the burden for patients. 

 

The contribution of SRT to efficacy of CBT-I 

 The simplification of the Drosophila SRT model poses an intriguing question: is 

sleep restriction therapy the only component of human CBT-I necessary to achieve 

efficient sleep?  There is some evidence in human patients that SRT is sufficient to 

achieve the effectiveness of full course of CBT-I (Miller et al., 2014).  In contrast, 

stimulus control therapy alone has shown modest effects in decreasing sleep onset 

latency (Baillargeon, Demers and Ladouceur, 1998).  Furthermore, sleep hygiene 
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education alone shows a small positive effect in treating of chronic insomnia, but is less 

effective than complete CBT-I (K. F. Chung et al., 2018).  The fact that these 

monotherapies, with the notable exception of SRT, are less effective than 

comprehensive CBT-I, indicates that they contribute to, but are not responsible for, CBT-

I’s efficacy in treating insomnia.  Is there a way to unify the observation that SRT is as 

effective as CBT-I, but still value the modest effects of other elements of CBT-I? I 

propose that the mounting physiological drive to sleep associated with SRT induces 

broader effects on other maladaptive sleep behaviors.  An insomnia patient with 

increased sleep drive may be less likely to embrace ingrained habits of doing other 

activities during bed time and practice elements of good sleep hygiene even if not part of 

their typical bedtime routine.  Experiencing improved sleep may serve to restructure 

negative emotions surrounding sleep as well.  In this way, SRT may induce effects of 

other parts of CBT-I even without explicit therapy.  To assess this hypothesis, I propose 

measuring the persistence of habits associated with poor sleep hygiene and stimulus 

dysregulation, as well as the emotions surrounding sleep before and after a course of 

SRT monotherapy.  If these maladaptive habits ameliorate with the improvement in 

sleep quality, I would conclude that these effects were the result of behavioral change 

associated with increased sleep drive, and therefore could be attributed to SRT. 

 

Technology and CBT-I: Impact on future therapy 

 One of the great strengths of CBT-I treatment is that it can be carefully tailored to 

a patient’s individual needs.  For example, patients who have anxiety about a large 

decrease in the amount of time in bed required for SRT can utilize a compression 

technique which slowly restricts sleep opportunity over several weeks (Boland et al., 

2019).  For patients who prefer group therapy, CBT-I in group settings has showed 
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durable treatment responses (Koffel, Koffel and Gehrman, 2015).  Technology-assisted 

behavioral therapy regimens are poised to add another dimension how behavioral 

therapy is administered.  The trend toward utilizing mobile applications, internet 

modules, and online telecommunication for therapy has opened CBT-I to new patients 

who previously could not access care.  Digital platforms now can be utilized to track daily 

activity, administer serial sleep surveys, record sleep diaries, and pair with at-home 

polysomnography kits (Choi et al., 2018).  Furthermore, initial trials of individualized 

digital CBT-I platforms have shown efficacy for long durations after treatment (Espie et 

al., 2012; Horsch et al., 2017; Ritterband et al., 2017; Hagatun et al., 2019).  Traditional 

CBT-I, while effective, is limited by the availability of trained practitioners and long 

duration of therapy that requires a significant commitment of time and financial 

resources.  Digital CBT-I can bridge this gap and make treatment affordable and 

accessible.  Will this mean the end of CBT-I in traditional therapy settings?  The 

evidence supports a lasting role of trained practitioners even in predominantly-digital 

therapy.  The inclusion of weekly emails from a practitioner in otherwise-unguided digital 

CBT-I significantly increased improvement in most sleep measures (Lancee et al., 

2013).  Integrating practitioners with ever-evolving digital applications to maximize 

therapeutic gains remains an ongoing challenge for this field. 

Clearly, technological advances are enabling CBT-I to reach previously 

inaccessible patients. Why, then, is it critical to model CBT-I in model organisms in an 

attempt to understand this therapy on a mechanistic level?  I posit that there is 

tremendous power in cellular and molecular insight into mechanisms underlying 

behavioral sleep therapy.  Sleep disturbances are nearly ubiquitous across diseases, 

and development of novel therapies should be considered a priority given the breadth of 

patients who might use them.  Additionally, insight how behavioral therapies can affect 
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neural circuits is an exciting open area of research.  Modeling this therapy in a model 

system with tractable genetic tools enables the careful dissection of circuit-level 

mechanics, and the findings can be extrapolated to more complex systems. 

 

Revisiting the 3P behavioral model of insomnia 

Our model of SRT in the Drosophila model system beckons a reanalysis of 

traditional models of insomnia.  The 3P behavioral model states that predisposing, 

precipitating, and perpetuating factors are the underlying causes of chronic insomnia 

(Spielman, 1986; Figure 1-1). Foremost, our results support the universality of the 3P 

behavioral model across species. However, in the Drosophila model of SRT, there are 

no precipitating factors of insomnia.  Instead, the short sleeping phenotype is caused by 

a combination of predisposing factors that 

consist of genetic, epigenetic, and 

environmental conditions unique to a given 

population of isogenic flies.  Additionally, I 

have shown that amount of sleep opportunity 

is an important contributor to sleep efficiency, 

thereby demonstrating that perpetuating 

factors of insomnia contribute to fly sleep 

disturbance.  Furthermore, in addition to 

treating the perpetuating factors associated 

with sleep extension, our results raise the possibility that sleep restriction therapy also 

targets predisposing genetic factors, by better matching intrinsic sleep ability with 

opportunity. In other words, humans with a genetic predisposition to insomnia might be 

sleep “over-extended” even if sleep opportunity appears normal.  I posit that restriction of 
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sleep opportunity therefore increases sleep efficiency and potentiates sleep ability. In 

this way, SRT targets not only perpetuating factors of chronic insomnia, but the 

underlying predisposing factors that previous iterations of the 3P model had viewed as 

static and immutable (Perlis et al. 2014).  I have incorporated these changes to contrast 

with the traditional 3P model in Figure 4-1. 

 

Sleep homeostasis and SRT 

 The Drosophila SRT model corroborates the importance of building homeostatic 

drive for efficient sleep.  Flies undergoing SRT do not reach maximal sleep efficiency 

until day 3 of restricted opportunity, indicating that several sleep/wake cycles are needed 

to increase overall sleep drive (Chapter 2, Supplementary Figure 6G-H) .  Additionally, 

timing of the dark period – beginning, middle, or end of the night – is inconsequential, 

indicating that it is the amount of total sleep opportunity, and not when that opportunity is 

presented, that is critical to efficient sleep (Chapter 2, Figure 2L).  With homeostatic 

sleep drive serving such a pivotal role in producing consolidated sleep, what cellular and 

molecular mechanisms govern the homeostatic regulation of sleep remains an important 

open question.  Previous work has identified several cellular loci and molecular targets 

that are involved in the functioning of a putative sleep homeostat (Naidoo et al., 2012; 

Donlea, Pimentel and Miesenböck, 2014; Liu et al., 2016).  This work has primarily 

leveraged total sleep deprivation to activate the homeostatic drive to sleep.  Other work 

in rodents has interrogated homeostatic mechanisms by using a chronic sleep restriction 

paradigm that limits healthy animals to fewer-than-necessary sleep hours (Zhu et al., 

2018).  I speculate that the mechanisms underlying homeostatic response to total sleep 

deprivation are different than those governing response to chronic sleep restriction or 

our therapeutic SRT model.  Supporting this idea, there is evidence that even within 
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studies of total sleep deprivation, whether animals are kept awake by manual stimulation 

or by genetically activating wake-promoting centers produces homeostatic responses of 

different magnitudes (Seidner et al., 2015; Dubowy et al., 2016).  If two modalities of 

total sleep deprivation elicit different responses from sleep homeostat circuitry, it is likely 

that there are other discoverable differences between sleep deprivation and therapeutic 

SRT.  I propose that our model of TDP-43 overexpression is ideally suited to search for 

similarities and discrepancies within these circuits.  Using the robust literature in 

Drosophila to generate a list of candidate genes, I propose a candidate-based RNAi 

modifier screen of homeostatic responses in TDP-43 overexpressing flies.  This screen 

will concurrently measure sleep responses following total sleep deprivation by manual 

stimulation, and response to SRT.  I hypothesize that I will uncover genes that modulate 

both homeostatic responses, and others that will modulate one sleep response, but 

leave the other unaffected.  In this way, it will be possible to untangle the differences in 

response to different means of activating the homeostatic drive for sleep, while 

simultaneously revealing conserved molecular targets that govern all output from the 

sleep homeostat.  

 

Overcoming wake-promoting cues using SRT 

 While I argue that SRT is an accurate model of CBT-I in humans, there remains 

outstanding work to truly understand the conditions upon which this Drosophila model is 

effective.  Is SRT sufficient to overcome continuous exposure to hyperarousal and allow 

animals to sleep despite these conditions?  While mutants with chronic dopamine 

activation may begin to answer this question, other manipulations could give a more 

complete picture.  Caffeine intake is carefully considered when treating humans with 

insomnia, and can be fed directly to flies to cause wakefulness (Hendricks et al., 2000; 
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Shaw et al., 2000; Nall et al., 2016).  Furthermore, recent work has identified small 

subgroups of cells in the fly brain whose activity control arousal states. Experimental 

activation of dopaminergic neurons, a small cluster of octopaminergic neurons, or well-

described populations of neuropeptidergic cells each induces sustained wakefulness 

(Parisky et al., 2008; Crocker et al., 2010; Liu et al., 2012; Ueno et al., 2012).  I 

hypothesize that while constitutive activation of these wake-promoting centers produce 

strong short-sleeping phenotypes, SRT can overcome this activation to allow for 

consolidated sleep.  SRT’s ability to produce consolidated sleep despite hyperarousal 

via pharmacology or constitutive activation of wake-promoting neurons would lend even 

more evidence to the broad application of CBT-I to all etiologies of insomnia. 

 

Alternative stimuli as cues for sleep 

 I have demonstrated that restriction of opportunity of sleep-permissive cues is 

sufficient to induce changes to sleep, whether with darkness or low temperature.  

However, other cues may also be sleep-permitting.  Food availability has been shown to 

modulate sleep in flies (Slocumb et al., 2015), and adult flies show a place preference of 

sleeping near a food source during daytime sleep (Hendricks et al., 2000; Donelson et 

al., 2012; Dilley et al., 2018).  Furthermore, social interaction between flies has been 

found to have an impact on subsequent sleep (Ganguly-Fitzgerald, Donlea and Shaw, 

2006; Lone et al., 2016).  I propose that utilizing temporally-restricted opportunities of 

food availability and social interaction can cue flies to consolidate sleep during these 

windows, and hypothesize that these manipulations can be optimized to produce similar 

effect sizes to those observed with light and temperature manipulation.   
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Understanding cellular circuits governing SRT 

The diversity in pro-sleep cues is interesting on a phenomenological level, but 

also holds a critical function in understanding the circuits governing SRT’s effects.  Our 

results suggesting dark and cold temperature cues are each sufficient to produce 

consolidated sleep has led us to hypothesize that sensory information is collected in the 

peripheral sensory neurons and communicated to central brain regulators of sleep/wake 

states. I hypothesize that SRT requires 4 intact sites of signaling: 1) sensory input 

centers, 2) an integrator of sensory input that determines whether the environment is 

conducive to sleep or wakefulness, 3) central sleep-regulating centers that consolidate 

information about environment, circadian timing, and homeostatic drive for sleep and 

determine whether to sleep or promote wakefulness, 4) motor output neurons that 

dictate rest or activity.  The processing of sensory information has been well-described 

for several sensory modalities in Drosophila (Nériec and Desplan, 2016; Scott, 2018). I 

hypothesize that this sensory information converges on an integrator that relays 

information about environmental suitability for sleep.  One compelling candidate for an 

integrator of sensory information is a subset of dorsal clock neurons, the DN1s.  These 

clock neurons are thought to be wake promoting in the morning, while sleep promoting 

during midday siesta and at night (Guo et al., 2016; Lamaze et al., 2017).  DN1s also 

demonstrate direct contacts with other core pacemaker neurons, inhibiting sLNv and 

LNd cells that modify sleep (Guo et al., 2016).  This is critical as DN1s are therefore 

capable of promoting or preventing sleep.  Furthermore, DN1 neurons have been found 

to form direct synaptic connections with two distinct sets of temperature-sensitive 

neurons (Lamaze et al., 2017), while its own activity increases with warm temperatures 

(Guo et al., 2016).  DN1s also are capable of integrating light information, as they are 

necessary for modulating behavior in response to acute changes in light/dark state 
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(Head et al., 2015).  Finally, the integration of information in DN1 neurons is not limited 

to external cues, as DN1 activity differs based on circadian timing and sex (Guo et al., 

2016; Liang, Holy and Taghert, 2016).  The input of several internal and external 

sensory cues onto DN1s, as well as its privileged position to exert influence on 

sleep/wake state, leads us to hypothesize that DN1 neurons are critically involved in this 

circuit.  Because the TDP-43 overexpression model features such a robust response to 

SRT, this fly provides a perfect platform upon which to interrogate the integrator function 

of DN1 neurons.  I propose the use of two different binary expression systems: the 

Gal4/UAS system to express TDP-43 in all somatic cells causing short sleep, and the 

LexA/LexAop system to block synaptic transmission from DN1 cells by expressing a 

dominant negative allele of shibire.  I hypothesize that if DN1 neurons are indeed an 

integrator of sensory information critical for SRT, blocking signaling from these neurons 

will prevent consolidation of sleep.  If DN1 silencing does not prevent sleep 

improvement, recent evidence has linked other clock neurons to adaptation in response 

to changing light:dark schedules (Schlichting et al., 2019).  I therefore propose silencing 

small populations of other core clock and sleep-controlling neurons, searching for an 

occluded response to SRT.    

Another approach to identifying integrators of sensory cues that govern SRT 

response is to identify common neurons downstream of both visual and temperature-

sensing pathways.  GFP Reconstitution Across Synaptic Partners (GRASP) is a 

technique that has been useful in interrogating connections between neurons involved in 

sleep and sensation of sensory cues (Lamaze et al., 2017; Schlichting et al., 2019).  

GRASP involves the targeting of two split-GFP fragments to separate neuronal 

populations.  If these neurons form synaptic connections, GFP will be reconstituted, and 

be visible with fluorescent imaging.  I propose labelling 2nd order visual system neurons 
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with one GFP fragment, and PDF-positive clock neurons with the other fragment, and 

carefully recording the anatomic loci of fluorescence.  Repeating this procedure with 

temperature-sensing neurons replacing visual system neurons will potentially reveal 

anatomical loci that are downstream of both sensory input modalities.  These cells would 

represent good candidates for being integrators in this system.  If these potential 

integrator cells could be isolated genetically, they could be interrogated for their ability to 

occlude SRT response via the neuron silencing approach described above. 

If no core clock neurons were confirmed as integrators, trans-Tango labeling 

could be used to identify all post-synaptic targets in an unbiased way (Talay et al., 

2017).  This approach could be utilized to create complete anatomical maps of neurons 

downstream of visual or temperature-sensing systems, thereby expanding the search for 

integrators beyond known circadian clock or sleep-related neurons. 

 

The Purpose of Sleep  

There have been many proposed hypotheses to explain sleep’s importance 

across phylogeny.  These hypotheses take four general forms: (1) that sleep is 

controlled by neurons for neuronal purposes, that (2) sleep is controlled by neurons for 

overall bodily health, (3) that sleep is controlled by the body for neuronal purposes, and 

that (4) the body controls sleep for its own sake.  While categorization of the role of 

sleep in this manner is inherently reductive, it allows for distillation of core functions of 

this behavior. 

One widely-debated idea that falls into the first category above is the synaptic 

homeostasis hypothesis (SHY).  SHY posits that the number of synaptic connections 

increases with experiences during wake.  Sleep, as a respite from waking experience, is 
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a privileged time where homeostatic processes at the synapse can occur.  This includes 

the pruning of some synapses and the strengthening of others, plasticity that enables 

learning of important phenomena while preventing neuronal resources from being 

wasted on trivial ones (Tononi and Cirelli, 2006).  Evidence for this process includes 

increased synapse number and size with wake duration in flies (Bushey, Tononi and 

Cirelli, 2011), and recent electron microscopy findings of decreased size of the axon 

spine interface in cortical synapses of mice, indicative of downscaling (de Vivo et al., 

2019).  This hypothesis has clear implications for learning and memory, as long-term 

potentiation of synapses that characterize learning occurs over periods of hours to days, 

a window that often includes sleep.  But the evidence for sleep as a time of consolidation 

of memories is not purely theoretical.  While many studies indicate sleep loss is 

detrimental to memory formation and retention, studies have also shown that sleep 

induction is essential for the restoring memory function to mutants (Dissel et al., 2015), 

or to block forgetting (Berry et al., 2015).  Our work has built on findings in short sleeping 

mutants that have known memory deficits (Kume et al., 2005; Koh et al., 2008; Liu et al., 

2014; Shi et al., 2014), demonstrating that it is possible to consolidate sleep in these 

flies.  I hypothesize that improved sleep vis SRT also improves memory function in these 

mutants. Technical hurdles have prevented work on this question; interrogating memory 

following sleep improvement requires an assay with sensitivity to small changes, while 

also having the ability to correlate an individual fly’s memory with its sleep behavior on 

the previous night.  I posit that short sleeping mutants and neurodegenerative models 

that feature progressively worsening sleep provide fertile ground to test this hypothesis 

and lend support to synaptic restructuring as a core function of sleep. 

Another proposed function of sleep is as a time of low energy expenditure.  Wake 

time is expensive in terms of energy use, and having a period of inactivity could serve as 
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an energy-conserving mechanism.  A corollary to this energy homeostasis theory is that 

once organisms had optimized their expenditure of energy across the day (expend lots 

of energy during wake, and feature sleep for many hours per day as a way to 

compensate), other behaviors became attached to sleep once energy production and 

use were curtailed. For example, in humans, parasympathetic processes like digestion 

occur at all times of day, but activity in this system peaks overnight.  Alternatively, net 

energy use may remain constant throughout the day, but the onset of sleep allocates 

energy to different functions than during wake (Schmidt et al., 2017; Anafi, Kayser and 

Raizen, 2019).  In either case, disruption of this rhythm when overnight shift workers 

consume meals and are active throughout the night are potential explanations for the 

high rates of metabolic syndrome and microbiome composition in this population (Wang 

et al., 2014).  To this end, I expect that since short-sleeping animals display greater 

activity over the course of the day, this is likely reflected in greater energy expenditure.  

Further, there is evidence to suggest that metabolic signatures in flies change in 

response to sleep amount.  Therefore, I propose profiling of the metabolome of short 

sleeping flies and neurodegenerative disease models to look for common signatures of 

short sleep.  Additionally, improving sleep with SRT may restore some, but not all, of the 

changed metabolites.  Understanding how metabolic profiles reflect acute sleep need or 

reflect past sleep behavior could be important in understanding the dynamic interplay of 

sleep and metabolism. 

Another compelling hypothesis for a role of sleep is as a time for clearance of 

toxins from the brain.  Recent work in mammals indicates that the brain is optimized to 

increase clearance of damaging proteins during sleep (Holth et al., 2019).  Can flux of 

toxic protein accumulations from neurons into blood (or hemolymph) be observed in 

Drosophila?  The blood-brain barrier of the fly is well described (Schwabe et al., 2005; 
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Stork et al., 2008), and glia that form or associate with the blood brain barrier have been 

shown to modulate sleep amount (Farca Luna, Perier and Seugnet, 2017).  Further 

connecting sleep with flow across the blood-brain barrier, disturbance of vesicular 

trafficking at this site increases sleep, while sleep promotes endocytosis in barrier cells 

(Artiushin et al., 2018).  Moreover, efflux in transporters located at the blood-brain barrier 

are under circadian control, such that xenobiotic permeability to the brain is increased at 

night (Zhang et al., 2018).  However, observing aggregated protein efflux from 

Drosophila neurons has been elusive.  Recent work has described fluorescence-labeled 

proteins, such as TDP-43, accumulating in brain tissues (Estes et al., 2013), while head-

fixed imaging from behaving flies has become possible in recent years (Seelig et al., 

2010; Kallman, Kim and Scott, 2015). I hypothesize that, harnessing these tools in 

combination, it is possible to visualize accumulated proteins in vivo.  Furthermore, 

similar to published findings in animal models and of xenobiotics in Drosophila, I 

hypothesize that these proteins will be shuttled through the blood-brain barrier during 

sleep at higher rates than wake.  Finally, I propose that clearance efficiency will change 

based on the quality of sleep of that organism.  Specifically, I predict that short sleeping 

flies will have decreased clearance of accumulating extracellular proteins and that 

improving sleep will improve flow.  I thereby speculate that sleep depth will correlate with 

toxic protein clearance in flies. 

 

Behavioral Therapies in Animal Models 

Lessons from fear extinction 

 Virtually all pharmacological treatments in psychiatry are based on drugs 

discovered serendipitously over a half century ago, standing in stark contrast to 
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treatment in other areas of medicine (Insel, 2012).  In recent years, many of the greatest 

advances in treating mental illness have been behavioral interventions, yet little is known 

regarding the mechanistic basis of such interventions (Hofmann et al., 2012).  How can 

behavioral therapies be studied at a molecular level?  While new pharmacotherapies are 

developed and easily tested in animal models, whether it is possible to assess novel 

behavioral therapies in animal models is much less clear.  There are some examples, 

however, when animal models of behavioral therapy have informed mechanisms of 

human disease, such as in PTSD and specific phobia.  In humans with these diseases, 

persistent fears of an object, situation, or salient memory causes behavioral change that 

impacts everyday life (Garcia, 2017).  Symptoms can include avoidance of new or 

unpredictable environments that impact interpersonal relationships and negatively affect 

career trajectory in those affected.  Like insomnia, the preferred treatment for this 

disorder is a form of behavioral therapy, namely prolonged exposure therapy.  The focus 

of this therapeutic tactic is fear deconditioning, in which repeated exposures to a fear-

inducing stimulus will eventually ameliorate the strong fear response associate with that 

stimulus.  Along with relaxation exercises and education about PTSD symptoms, 

prolonged exposure therapy requires patients to recount the memory in detail (imaginal 

therapy), while also approaching situations that remind the patient of their trauma 

(Lancaster et al., 2016).  By exposing themselves to these reminders of trauma in a safe 

context, a majority of patients experience reliable reductions in PTSD symptoms (Rauch 

et al., 2009).   

The mechanisms underlying the efficacy of prolonged exposure therapy have 

been elucidated by decades of work on acquisition, consolidation and maintenance of 

fear memories in model systems.  Rodent models can be conditioned to experience fear 

by pairing a neutral cue (auditory tone) with an aversive stimulus (foot shock).  By 
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continuously repeating the pairing, the cue takes on the fear-inducing properties of the 

aversive stimulus, and animals will fear the cue as if it was the aversive stimulus itself.  

By using rodent models to study fear, the lateral amygdala has been identified as a locus 

for formation and storage of fear memories.  Intriguingly, the lateral amygdala can 

influence behavior by initiating fear responses only after a memory is acquired; it has no 

role in the learning of fear responses (Johansen et al., 2011).  Memories are stored via 

synaptic changes at this site as well (Apergis-Schoute et al., 2005).  In the majority of 

cases, the site of fear extinction is not the same as the sites of memory acquisition or 

consolidation (Furini, Myskiw and Izquierdo, 2014).  While a cellular locus has not been 

isolated, NMDA receptors have been known to affect fear extinction for many years 

(Falls, Miserendino and Davis, 1992).  The success of this rodent model has been 

highlighted by the discovery that NMDA blockade by an FDA-approved drug D-

cycloserine enhanced extinction of fear in rats (Walker et al., 2002).  Due to its already 

approved status, human studies followed and demonstrated enhanced extinction in 

patients as well (Davis et al., 2006).  D-cycloserine is one of the fastest-translated 

central nervous system therapeutics on record (Furini, Myskiw and Izquierdo, 2014), and 

this is solely due to mechanistic work modeling an existing behavioral therapy in a robust 

model of disease. 

 

Lessons from SRT 

Using innovative methods that apply principles of human sleep biology to 

Drosophila models of insomnia, I too have contributed to the understanding of behavioral 

therapies, by uncovering a path towards delineating the molecular and neural basis of 

behavioral sleep modification. Short sleeping Drosophila mutants discovered through 

screens are arguably the best animal models of insomnia.  Flies recapitulate not only 
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reductions in sleep, but also changes to sleep continuity common to patients with 

insomnia.  These deficits are coupled with memory problems, and in some cases 

truncated lifespan.  Modeling SRT in fly models of insomnia has already yielded 

important insights; I conclude that sleep improvement by SRT does not rely on a 

molecular circadian clock, can be regulated by light:dark and temperature rhythms, and 

is effective at improving sleep in numerous etiologies of short-sleeping phenotypes 

(Chapter 2).  I have also demonstrated that it can be used to improve sleep in 

Drosophila models of neurodegenerative disease (Chapters 2 & 3). This platform is 

poised for further contributions to the understanding of CBT-I.  Above, I describe an 

experimental approach for mapping the circuits controlling SRT.  Below, I detail a 

forward genetic screen protocol for identifying molecular modifiers of SRT.  I posit that 

modeling behavioral therapies that have already demonstrated their efficacy in human 

patients in simpler animal models is a way to develop new techniques and 

pharmacotherapeutics in psychiatry.  Compelling models of human disease have been 

developed in both invertebrates and vertebrates.  Recent innovations in gene editing 

have brought the ability to introduce individual polymorphisms of unknown clinical 

significance into animal models to demonstrate how they affect behavior (Babačić et al., 

2019).  With these innovations, animal modeling of human behavioral therapies 

becomes even more critical to assess the potential efficacy of existing therapies 

particularly when several options exist.  

 

Future outlook 

While I propose that the benefits of CBT-I are primarily derived from sleep 

restriction therapy, by what mechanisms is Cognitive Behavioral Therapy effective for 

treating generalized anxiety, depression, and other psychiatric diseases in which there is 
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compelling evidence for its efficacy?  I anticipate that the mechanisms of these 

behavioral therapies are capable of being understood by modeling these diseases in 

Drosophila, rodent models, or any other models that appropriately recapitulate treatment 

strategies.  As these therapies have large cognitive components, creative paradigms will 

be necessary to effectively model these interventions.  By extrapolating the conclusions 

to human patients, psychiatry will benefit with new understanding, and potentially new 

targets to direct efforts of drug development.  

 

Sleep and Neurodegeneration 

 Our work contributes to mounting evidence that neurodegenerative processes 

can alter sleep quality in Drosophila (Tabuchi et al., 2015; Dissel et al., 2017; Buhl, 

Higham and Hodge, 2019).  This corroborates evidence from human patients that sleep 

disturbance is a major factor in decreased quality of life due to neurodegenerative 

disease in patients and their caretakers.  The question of how these processes affect 

sleep remains an open one.  One hypothesis for how sleep changes with progression of 

disease is that pathogenic proteins aggregate in sleep-controlling neurons in the brain.  

As damage occurs to these cells and neuronal death follows, sleep becomes 

unregulated and disordered, leading to the observed sleep phenotypes in Drosophila 

models of Alzheimer’s disease and ALS/FTD.  Surprisingly, preliminary data indicates 

that overexpression of TDP-43 in wake-promoting dopaminergic, octopaminergic, 

peptidergic, or PDF-positive clock neurons is insufficient to produce sleep degradation.  

Similarly, overexpression in sleep-promoting fan-shaped body, ellipsoid body, or 

mushroom body neurons alone does not have significant impacts on sleep. Furthermore, 

in a Drosophila Alzheimer’s disease model, Tabuchi et. al. failed to observe sleep 
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changes when UAS-AbArctic was overexpressed using a sleep-promoting mushroom 

body driver (Tabuchi et al., 2015).  This work also found that neurons expressing 

AbArctic are hyperexcitable (Tabuchi et al., 2015).  Is global hyperexcitability responsible 

for the sleep disruption associated with models of neurodegenerative disease?  As more 

wake-promoting neurons than sleep promoting neurons have been discovered in flies 

and mammals (Eban-Rothschild, Appelbaum and De Lecea, 2018), perhaps brain-wide 

excitability pushes the sleep/wake balance in favor of wakefulness?  To test this 

hypothesis, I propose expressing AbArctic in large populations of wake-promoting 

neurons, namely dopaminergic and mushroom body neurons.  If hyperexcitability in 

these wake-promoting centers is responsible for sleep degradation, I expect that this 

should recapitulate pan-neuronal expression (Chapter 2, Figure 5C-I). 

If global hyperexcitability is not responsible for sleep deterioration, perhaps the 

brain has mechanisms of detecting the level of burden of accumulating proteins.  When 

the burden of protein aggregation reaches a certain threshold brain-wide, changes in 

sleep centers would result in sleep disruption.  To examine this hypothesis, I could test 

the level of sleep disruption by inducing TDP-43 overexpression using drivers that 

express in progressively larger populations of neurons.  If sleep disturbance was 

reflective of brain-wide protein burden, I would expect that sleep disruption should scale 

with broadness of the driver used.  When there is protein aggregation throughout the 

brain, and therefore sufficient burden to produce a sleep response, must there also be 

pathology specifically in sleep centers to observe sleep deterioration?  To test this 

theory, I will broadly express TDP-43 in all somatic cells, but exclude wake-promoting 

populations of neurons (dorsal fan-shaped body, ellipsoid body, and mushroom body) 

using a Gal80 to block Gal4/UAS expression in only those neurons.  If exclusion of these 
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known sleep centers does not cause sleep deterioration, it would indicate that these 

neurons are necessary, but not sufficient, for TDP-43 induced sleep changes.     

 

 

Cellular localization of pathology 

In which cellular or extracellular compartments might protein accumulations be 

acting to affect neuronal integrity?  This question may not have a consistent answer, but 

rather may vary with the specific nature of the accumulating protein.  In human 

pathology, tau forms intracellular tangles, enriched in axonal segments as they interact 

with microtubules involved in cellular transport, while amyloid forms extracellular 

plaques.  However, to think of these processes as independent is erroneous; toxic tau 

enhances Ab accumulation via a feedback loop, intertwining the mechanisms of cellular 

disturbance of tau and Ab (Bloom, 2014).  TDP-43 is most well-known to form 

cytoplasmic inclusions called stress granules, accumulating RNA, misfolded protein 

products, and other cellular waste.  Stress granules are then walled off from other 

cytoplasmic components by liquid-liquid phase separation (Wheeler et al., 2016).  While 

RNA-bound TDP-43 forms protective cytoplasmic stress granules, RNA-deficient TDP-

43 form neurotoxic cytoplasmic inclusions (Mann et al., 2019).  Recent work, however, 

has pointed to nuclear accumulations as the site of some pathology related to ALS 

(Udan-Johns et al., 2014).  Our work supports a nuclear role of TDP-43 accumulation 

that affects sleep.  A screen for modifiers of TDP-43 toxicity identified that knockdown of 

YT5-21B, a reader of N6-methyl adenosine (m6A) RNA modifications that is found only in 

the nucleus, significantly suppressed sleep deficits (Chapter 3, Figure 3C).  Conversely, 

the cytoplasmic m6A reader had a limited effect on sleep. m6A modifications are the 
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most abundant and evolutionarily-conserved of post-transcriptionally added 

modifications to RNA (Berlivet et al., 2019).  m6A readers bind to RNA; this can increase 

affinity of RNA-binding proteins for particular RNA residues, or can alter the RNA 

structure to promote binding in what has been called a “m6A switch” (Roost et al., 2015).  

Knockdown of m6a reader protein YT5-21B in a TDP-43 overexpression line does not 

just rescue sleep behavior, but extends longevity and improves negative geotaxis 

behavior, indicating broad effects on the health of animals.  This finding argues that a 

change in the processing of m6a-tagged RNAs in the nucleus leads to suppression of 

TDP-43 toxicity.  m6A markers on RNAs are known to be a critical component of the 

response to stress (Zhou et al., 2015, 2018; Engel et al., 2018), and stress signals have 

occasionally been found to be maladaptive to survival in flies (Figard et al., 2019).  Could 

transcription of stress-related RNAs be attributing to TDP-43 toxicity, and knockdown of 

YT5-21B prevent the appropriate localization of these RNAs?  If this hypothesis were 

correct, I would expect the toxicity-suppressing effects of YT5-21B knockdown to be 

apparent in a variety of stressful stimuli.  I plan to assess this hypothesis by exposing 

TDP-43 overexpressing flies to other forms of cellular stress, including heat shock, 

paraquat exposure, and UV irradiation, with and without expression of YT5-21B RNAi.  If 

YT5-21B knockdown was repressing stress signal transcription I would expect increased 

survival following all of these stressors.   

m6A readers permit binding by RNA-binding proteins to previously inaccessible 

residues on RNA (Roost et al., 2015).  Knockdown of appropriate RNA-binding proteins 

may therefore be able to recapitulate suppression of TDP-43 toxicity to sleep.  To test 

this hypothesis, I will screen RNAi transgenes to RNA-binding protein genes.  If there 

are RNAi lines that cause improvement of sleep, I will see if dual knockdown of YT5-21B 

and the RNA-binding protein further improves sleep.  I hypothesize that knockdown of 
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these two genes will act in the same pathway, and therefore not be able to further 

improve sleep.  Further work is necessary to clarify the association between m6a and 

sleep in the context of TDP-43 overexpression. 

 The screen I conducted used a candidate-based approach to identify modifiers of 

TDP-43 toxicity.  The robust response to SRT of TDP-43 overexpressing flies poses an 

intriguing possibility: could modifiers of sleep restriction therapy be found by using this 

same RNAi transgene approach?  I propose using this platform to identify RNAi lines 

that occlude or enhance the robustness of response to SRT.  I hypothesize that proteins 

that have known roles in homeostatic regulation of sleep will alter the effectiveness of 

SRT, but I hope to identify novel pathways involved in modifying SRT as well. 

 

Concluding Remarks 

 The work presented here describes the efficacy of a Drosophila model for sleep 

restriction therapy, an important component of human Cognitive Behavioral Therapy for 

Insomnia.  I have demonstrated that this model is effective for broad use in numerous 

etiologies of short sleep, and demonstrated far-reaching behavioral effects of improved 

sleep in models of insomnia and aging.  Our work also elucidates the relationship 

between degraded sleep and neurodegenerative decline; improving sleep serves to 

improve behavior and longevity in Drosophila models of Alzheimer’s disease and 

ALS/FTD.  Using this platform, I have identified novel modifiers of sleep behavior in a 

TDP-43 overexpression background that also modify disease course.  Future work is 

poised to use this model for further insights into how TDP-43 pathology affects sleep 

function, while also elucidating cellular loci and molecular mechanisms of SRT.  Our 

work, building on existing data, places sleep disturbance at the forefront of important 
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symptoms to address in human patients, while highlighting potential therapeutic gains 

upon restoring consolidated and efficient sleep. 
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