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ABSTRACT 

THE NEURAL COMPUTATIONS IN THE CAUDATE NUCLEUS FOR REWARD-

BIASED PERCEPTUAL DECISION-MAKING  

Yunshu Fan 

Long Ding and Joshua I. Gold 

Decision-making is a complex process in which our brain has to combine 

different sources of information, such as noisy sensory evidence and expected reward, 

in appropriate ways to obtain the outcome that satisfies the decision-maker. Despite 

various studies on perceptual decision-making and value-based decision making, it is 

still unclear how the brain combines sensory and reward information to make a complex 

decision. A prime candidate for mediating this process is the basal ganglia pathway. This 

pathway is known to make separate contributions to perceptual decisions based on the 

interpretation of uncertain sensory evidence and value-based decisions that select 

among outcome options. To begin to investigate what computations are performed by 

the brain, particularly in the basal ganglia, we trained monkeys to perform a reward-

biased visual motion direction discrimination task and performed single-unit extracellular 

recordings in the caudate nucleus, the input station in the basal ganglia. Fitting the 

monkeys’ behaviors to a drift-diffusion model, we found that the monkeys used a rational 

heuristic to combine sensory and reward information. This heuristic is suboptimal but 

leads to good-enough outcomes. We also found that the monkeys’ reward biases were 

sensitive to the changes in the reward functions from session to session. This adaptive 

adjustment could be a possible reason underlying the individual variability in their 

decision strategies. By recording in the caudate nucleus, we found that it is involved in 
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both the decision-formation and evaluation: before the monkey started accumulating 

sensory evidence, the caudate neurons represented the reward context that could be 

used to form a reward bias; during decision-formation, some caudate neurons jointly 

represented sensory evidence and reward information, which could facilitate the 

combining of sensory and reward information appropriately. After a decision is made, 

caudate nucleus represented both decision confidence and reward expectation, two 

evaluation-related quantities that influence the monkeys’ subsequent decision behaviors.  
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Chapter 1: Introduction 

Yunshu Fan, Joshua I Gold, Long Ding 

Decision-making often requires combining evidence for and against different 

options and their expected outcomes. For example, when we decide “should I eat more 

chocolate”, and encounter a claim that “chocolate is healthy”, the decision could be 

influenced by whether the claim is from a peer-reviewed research article or tabloid, and 

by the desired outcome: “I hope it is true because I love chocolate!” Similarly, when we 

decide whether to keep staying in academia, and encountered advice that “a faculty 

position is harder to get nowadays”, the decision could be influenced by whether the 

advice is written based on nation-wide statistical studies of faculty applicants or on 

anecdotes from postdocs who failed to get faculty positions several times in a row, and 

by an internal preference: “I really like doing research.” The ability of our brain to perform 

computations that collect and interpret evidence with various levels of reliability and 

combine that with our internal preference for specific outcomes gives us the capacity to 

make complex decisions.   

In this introduction, I will begin by reviewing computational frameworks used for 

studying decision-making driven by sensory evidence (perceptual decision-making) and 

decision-making driven by outcomes (value-based decision-making) and how the two 

could be combined. I will then turn to the caudate nucleus in the basal ganglia, a brain 

region that may play a key role in combining sensory evidence and reward outcomes in 

decision-making, with a focus on the anatomical and neurophysiological findings that 

support this role. 
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Computational framework for perceptual decision-making 

A perceptual decision is a categorical judgment about the state of the 

environment based on the noisy data provided by the sensory system. We usually make 

such decisions without even realizing it. For example, before crossing a road, we judge 

whether a car is approaching us; on a trail, we might judge the wind direction based on 

the fluttering leafs on a tree; an experienced cook might decide whether a steak is 

cooked based on the sizzling sound; when tuning a guitar, we decide whether the pitch 

is higher or lower than the standard; a hungry kid might know whether dinner is ready by 

sniffing the air. In each case, the sensory inputs, like motion, pitch, odor, etc. that are 

usually noisy. Therefore, the decision is not a simple reflex, but the result of a 

deliberative process. 

According to the signal detection theory (SDT, Green and Swets, 1966), the 

perceptual decision-making process could be formalized as a form of statistical 

inference. The possible alternatives corresponding to the different states of the world 

could be thought of as hypotheses (H), and the sensory input as evidence (e). A 

decision is made by selecting the most probable hypothesis supported by the evidence; 

i.e., the posterior probability given the sensory input ( ). When there are two 

alternatives, H1 and H2, the selection process is equivalent to comparing the ratio of the 

posteriors. When , it suggests that H1 is more accurate than H2, thus H1 

should be chosen; conversely, when , H2 is more likely to be true, therefore 

should be chosen. We can define a decision variable (DV) as follows: 
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According to Bayes Rule,  , where  is the likelihood of 

observing the specific evidence if that hypothesis is true. If the evidence supports one 

alternative, say H1, more than the other, its likelihood under H1 should be much larger 

than its likelihood under H2.  is the preconceived probability of Hi being true, and 

 is the probability of observing the evidence regardless of any particular hypothesis 

being true. These quantities are also referred to as Priors. The prior over the evidence 

 is canceled out when computing the DV as in Eq. 1: 

 

Consequently, in perceptual decision-making, a decision is influenced by the 

likelihood ratio (  and the prior ratio ( ).  

Eq.2 assumes that there is only one piece of evidence for making the decision. If 

the decision is based on multiple pieces of evidence, and if we assume that each piece 

of evidence is independent from another, then the likelihood of observing all the 

evidence would be the same as the product of the likelihood of observing each piece of 

evidence. Therefore, the likelihood ratio in Eq. 2 can be expanded in the following way: 
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We can take the log on both sides, such that Eq.2 becomes: 

 

We can now redefine the decision variable as the log of the posterior ratio:  

, 

and compare the new DV with 0 when making a decision  

Thus, under the assumption of independence of evidence, Eq. 4 suggests that 

when there are multiple pieces of evidence, a decision maker can simply add all the log 

likelihood ratios together.  

This formulation also gives us an easy way to deal with each new piece of 

evidence. If we think of each piece of evidence as the sensory input at a given time (t), 

accumulating additional piece of evidence at time t+1 is equivalent to update the DV by 

adding the log likelihood ratio of the new evidence and comparing the updated DV with 

0.  

This framework is the basic form of the sequential probability ratio test (SPRT, 

Barnard, 1946; Wald, 1947).  
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If the decision maker only cares about which hypothesis is more probable than 

the other so as to select one option, then the magnitude of DV does not matter. 

However, the magnitude of DV influences accuracy. For example, even though DV = -

0.1 and DV = -1 both support choosing H2, the first suggests a lower certainty (a.k.a., 

accuracy) in the choice than the second.  

If the sensory evidence indeed supports one choice, i.e., there is signal in the 

sensory input (not pure noise), then adding additional evidence can, in theory, increase 

the magnitude of DV, therefore making the decision more accurate. In other words, 

accumulating noisy evidence can strengthen the signal by averaging out sensory noise. 

Therefore, if the decision makers can determine how long to accumulate 

evidence before committing to a decision, they can control the overall accuracy of the 

decision by setting the bounds for DV to reach before committing to one decision or 

another. They can aim for more accuracy by accumulating more evidence, which takes 

longer time, or he/she can aim for less accurate but faster decision by accumulate less 

evidence. This balance is known as the “speed-accuracy trade-off” (Palmer et al., 2005; 

Forstmann et al., 2010; Hanks et al., 2011). 

To summarize, the decision-making process can be described as follows: update 

the DV by accumulating evidence, and compare the DV with the bounds. If the DV 

reaches a bound, stop accumulating and commit to the decision represented by that 

bound; if not, accumulate more evidence. 

When we treat time as a continuous term instead of discrete, this process is 

formulated as the drift-diffusion model (DDM), the model that I will use in the following 

chapters. The DDM was first applied to psychology/neuroscience study to explain the 

memory retrieval process (Ratcliff, 1978). Since then, it has been used to explain the 
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behaviors in a variety of decision-making tasks (ref). Its quantitative framework has 

facilitated the discovery of neural correlates of behavior in many brain areas (ref).  

In the DDM, momentary evidence is modeled as a Gaussian distribution, i.e., 

assuming noise in the sensory input is independent from time to time. The mean of the 

momentary evidence is a monotonic function of the signal strength of the sensory input. 

For example, in a motion discrimination task, momentary evidence is typically modeled 

as the coherence of the moving dots multiplied by a scaling factor (Palmer et al., 2005). 

This way of modeling the momentary evidence is supported by the finding that motion 

sensitive neurons in visual cortex that are involved in motion discrimination scaled their 

responses with coherence (Salzman et al., 1992; Britten et al., 1993). 

The DV is the time integral of the momentary evidence and is constantly 

compared with two bounds that represent the total amount of evidence needed to 

commit to the two options, respectively. The DV will gradually drift to one bound or the 

other over time due to the signal in the sensory input. When the sensory evidence is 

strong, the DV will drift towards and reach a bound faster; when the sensory evidence is 

weaker, the DV will drift towards and reach a bound slower. 

Neural correlates of the momentary evidence should be sensitive to the stimulus 

strength and not change with time. In contrast, neural correlates of the DV should reflect 

both the stimulus strength and the evidence accumulation over time. Neural correlates of 

momentary evidence are often found in sensory areas. For example, visual motion 

evidence is conveyed by the motion sensitive neurons in extrastriate areas MT and MST 

(Britten et al., 1992; Celebrini and Newsome, 1994; Britten et al., 1996). Evidence about 

vibrotactile frequency was found in the primary somatosensory cortex (Mountcastle et 

al., 1990; Salinas et al., 2000). Neurons in the middle-lateral and anterolateral belt 
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region of the auditory cortex encode sound frequency evidence in high/low pitch 

discrimination(Tsunada et al., 2015). Neural correlates of DV have been found in 

sensorimotor or motor-related areas, such as, the lateral intraparietal area (Roitman and 

Shadlen, 2002), frontal eye field(Ding and Gold, 2012a), and the pre-motor 

cortex(Suriya-Arunroj and Gail, 2019). 

So far, I have described computational framework dealing with decision-making 

based on sensory evidence. Next I am going to introduce the computational framework 

dealing with decision-making based on outcomes from choices (value-based decision-

making). 

Computational framework for value-based decision-making 

Value-based decision-making is a process that is primarily driven by different 

outcomes. It is usually studied in tasks where the sensory input does not have ambiguity 

and in the context of economic decisions. A decision is made by comparing the expected 

utility (EU, a.k.a. value) of different outcomes. The expected utility of an option is 

computed by multiplying the subjective estimate of the magnitude of the outcome 

(usually in the form of reward (R)) with the probability of obtaining that outcome (usually 

set ahead of time and therefore does not need computing): 

 

For example, the probability of the rewards might be manipulated as follows: the subject 

is presented with one option that is rewarded 70% of the time, and the other option 50% 

of the time. The magnitude of the reward could also be manipulated so that one option 

appears more favorable than the other. A search for brain regions with neural activity 

that reflects reward magnitude, reward probability or EU, has demonstrated value 
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representation in many brain areas, such as the medial prefrontal cortex, orbitofrontal 

cortex, lateral intraparietal area, caudate nucleus, putamen and ventral striatum 

(Lauwereyns et al., 2002; Samejima et al., 2005; Ding and Hikosaka, 2006; Nakamura 

and Hikosaka, 2006; Padoa-Schioppa and Assad, 2006, 2008; Tom et al., 2007; Lau 

and Glimcher, 2008). 

A possible computational framework that combines perceptual decision-making 

and value-based decision making 

Thus far, I have described computational frameworks for sensory-based and 

value-based decision-making separately. However, as in the example I gave at the very 

beginning, real-world choices usually involve combining sensory evidence with non-

sensory factors, such as the preference driven by outcomes. One way to combine them 

is incorporating the expected utility theory with the DDM. 

If we assume that a decision is made by choosing the option with the larger EU, 

we can still construct a DV that is the log ratio of the expected utilities of the two options 

and compare it with 0. The expected utility of each option can be computed based on 

Eq. 5. We can approximate the probability of obtaining the reward associated with an 

option ( ) with the posterior of the hypothesis of that option being true ( ). In 

this way, the new DV becomes: 
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Eq. 6 suggested that the decision-making process combining sensory and non-

sensory factors could be regarded as a modified version of evidence accumulation. The 

subjective difference between the two rewards ( ) could change the DV independent 

of evidence accumulation. Meanwhile,  could be parsed into individual evidence: 

 

Eq. 7 suggests that the difference in rewards could also lead to misinterpretation 

of the evidence so they all seem to support one of the options more than under neutral 

condition, therefore changing the momentary evidence.  

In the DDM framework, these two changes could be implemented as changes in 

the starting value of the DV and in the momentary evidence.  

When the signal strength in the noisy sensory input is constant, the optimal 

strategy is to adjust only the starting value of the DV; when the signal strength can be 

variable, the optimal strategy is to adjust both the starting value and the momentary 

evidence (Bogacz et al., 2006). When making perceptual decisions that are biased 

towards the percept associated with the larger payoff, human and animal subjects 

showed high individual variations in whether they adjusted the starting value, the 

momentary evidence or both (Voss et al., 2004; Simen et al., 2009; Summerfield and 
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Koechlin, 2010; Leite and Ratcliff, 2011; Mulder et al., 2012; Goldfarb et al., 2014; Cicmil 

et al., 2015). It is unknown what drives a subject’s particular strategy. 

Caudate nucleus and decision-making 

The caudate nucleus is one of the input stations of the basal ganglia, a network 

of interconnected subcortical nuclei. Its anatomical connection and physiological 

properties suggest that it might be involved in combining sensory evidence and reward 

information in decision-making. 

Anatomically, it receives inputs from brain regions that process sensory 

information, as well as regions that carry reward-related information. For example, the 

caudate nucleus receives projections from areas such as the MT, MST, LIP and FEF, 

which have been shown to be involved in an oculomotor decision task by processing the 

visual motion information (Maunsell and Van Essen, 1983; Selemon and Goldman-

Rakic, 1985, 1988; Newsome et al., 1989; Saint‐ Cyr et al., 1990; Britten et al., 1992, 

1996; Salzman et al., 1992; Yeterian and Pandya, 1995; Shadlen and Newsome, 1996; 

Kim and Shadlen, 1999; Roitman and Shadlen, 2002; Ditterich et al., 2003; Hanks et al., 

2006; Ding and Gold, 2012b). It also receives inputs from brain areas carrying reward- or 

value-related signals, such as the medial prefrontal cortex, orbitofrontal cortex (Haber et 

al., 1995; Padoa-Schioppa and Assad, 2006; Kable and Glimcher, 2007). In addition, the 

dopaminergic neurons in the substantia nigra pars compacta (SNc) and the ventral 

tegmental area (VTA) project densely to the caudate nucleus. These dopaminergic 

neurons encode reward-prediction error signals, which could further modulate how 

sensory and reward information are combined, especially during learning (Lak et al., 

2019). 
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Neurophysiological evidence also supports the caudate nucleus’s roles in 

sensory and reward processing. For sensory processing, during a visual decision task 

and an auditory decision task, neural activity in the striatum was found to correlate with 

the strength of the sensory evidence (Ding and Gold, 2010; Seo et al., 2012; Wang et 

al., 2018; Yartsev et al., 2018). Manipulating caudate activity during decision-making in 

both tasks biased the animals’ decisions, suggesting a causal role of the caudate 

nucleus in interpreting sensory information. In the post-decision period, caudate neural 

activity was found to correlate with some aspects of the sensory information in task, 

which could be used as decision monitoring and evaluation (Ding and Gold, 2010; 

Yanike and Ferrera, 2014). It is worth noting that, in these studies, the reward was 

identical for both choices. Therefore, their results cannot inform us how reward 

information and sensory information are combined.  

For reward processing, when monkeys were asked to choose from two options 

with different magnitudes of reward, caudate neurons were found to encode the values 

of the options during decision and the value of the option chosen after decision(Lau and 

Glimcher, 2008). In another experimental paradigm, monkeys were trained to make a 

saccadic eye movement to a target flashed at one of two possible locations, with one 

location associated with large reward, the other small (or one with reward, the other 

without) (Kawagoe et al., 1998; Lauwereyns et al., 2002; Ding and Hikosaka, 2006). The 

monkeys’ reaction time was found to be faster towards the large reward target. Neural 

activity in the caudate nucleus was found to represent the reward-location association. 

Manipulating the neural activity via dopamine antagonists influences the reward-

dependent reaction time(Nakamura and Hikosaka, 2006). In human fMRI studies, 

caudate BOLD signal was found to represent a bias toward the option with higher reward 
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probability (Forstmann et al., 2010; Mulder et al., 2012). However, in those studies with 

reward manipulation, the sensory information was either with 100% certainty (visually 

instructed) or with a constant level of ambiguity, so their findings also cannot address 

how sensory and reward information are combined in the caudate nucleus.  

My thesis examines how the brain combines sensory and reward information 

during decision-making and the computational roles of the caudate nucleus before, 

during and after such decisions. To this aim, I trained monkeys to perform a reward-

biased perceptual decision-making task and recorded in their caudate nucleus while they 

were performing the task. In the first chapter I will present my findings on the strategies 

used by individual monkeys to combine sensory and reward information and the 

common principles underlying their strategies; in the second chapter, I will describe the 

neural representation of information in the caudate nucleus with a focus on how it 

contributes to combining sensory and reward information before, during and after the 

decision-making; in the third chapter, I will focus on the evaluative nature of the post-

decision activity in the caudate nucleus. 
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Introduction 

Normative theory has played an important role in our understanding of how the 

brain forms decisions. For example, many perceptual, memory, and reward-based 

decisions show inherent trade-offs between speed and accuracy. These trade-offs are 

parsimoniously captured by a class of sequential-sampling models, such as the drift-

diffusion model (DDM), that are based on the accumulation of noisy evidence over time 

to a pre-defined threshold value, or bound (Ratcliff, 1978; Gold and Shadlen, 2002; 

Bogacz et al., 2006; Krajbich et al., 2010). These models have close ties to statistical 

decision theory, particularly the sequential probability ratio test that can, under certain 

assumptions, maximize expected accuracy for a given number of samples or minimize 

the number of samples needed for a given level of accuracy (Barnard, 1946; Wald, 

1947; Wald and Wolfowitz, 1948). However, even when these models provide good 

descriptions of the average behavior of groups of subjects, they may not capture the 

substantial variability under different conditions and/or across individual subjects. The 

goal of this study was to better understand the principles that govern this variability, in 

particular how these principles relate to normative theory. 

We focused on a perceptual decision-making task with asymmetric rewards. For 

this task, both human and animal subjects tend to make decisions that are biased 

towards the percept associated with the larger payoff (e.g. Maddox and Bohil, 1998; 

Voss et al., 2004; Diederich and Busemeyer, 2006; Liston and Stone, 2008; Serences, 

2008; Feng et al., 2009; Simen et al., 2009; Nomoto et al., 2010; Summerfield and 

Koechlin, 2010; Teichert and Ferrera, 2010; Gao et al., 2011; Leite and Ratcliff, 2011; 

Mulder et al., 2012; Wang et al., 2013; White and Poldrack, 2014). These biases are 

roughly consistent with a rational strategy to maximize a particular reward function that 
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depends on both the speed and accuracy of the decision process, such as the reward 

rate per trial or per unit time (Gold and Shadlen, 2002; Bogacz et al, 2006). This strategy 

can be accomplished via context-dependent adjustments in a DDM-like decision process 

along two primary dimensions (Figure 2.1A): 1) the momentary sensory evidence, via 

the drift rate; and 2) the decision rule, via the relative bound heights that govern how 

much evidence is needed for each alternative (Ratcliff, 1985). Subjects tend to make 

adjustments along one or both of these dimensions to produce overall biases that are 

consistent with normative theory, but with substantial individual variability (Voss et al., 

2004; Cicmil et al., 2015; Bogacz et al., 2006; Simen et al., 2009; Summerfield and 

Koechlin, 2010; Leite and Ratcliff, 2011; Mulder et al., 2012; Goldfarb et al., 2014).  

To better understand the principles that govern these kinds of idiosyncratic 

behavioral patterns, we trained three monkeys to perform a response-time (RT), 

asymmetric-reward decision task with mixed perceptual uncertainty (Figure 2.1B). Like 

human subjects, the monkeys showed robust decision biases toward the large-reward 

option. These biases were sensitive to not just the reward asymmetry, as has been 

shown previously, but also to experience-dependent changes in perceptual sensitivity. 

These biases were consistent with adjustments to both the momentary evidence and 

decision rule in the DDM. However, these two adjustments favored the large- and small-

reward choice, respectively, leading to nearly, but not exactly, maximal reward rates. We 

accounted for these adjustments in terms of a satisficing, gradient-based learning model 

that calibrated biases to balance the relative influence of perceptual and reward-based 

information on the decision process. Together, the results imply complementary roles of 

normative and heuristic principles to understand how the brain combines uncertain 
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sensory input and internal preferences to form decisions that can vary considerably 

across individuals and task conditions. 

  

 

 

Figure 2.1. Theoretical framework and task design. 

(A) Schematics of the drift-diffusion model (DDM). Motion evidence is modeled as samples from a unit-

variance Gaussian distribution (mean: signed coherence, Coh). Effective evidence is modeled as the 

sum of motion evidence and an internal momentary-evidence bias (me). The decision variable starts at 

value az, where z governs decision-rule bias, and accumulates effective evidence over time with a 

proportional scaling factor (k). A decision is made when the decision variable reaches either bound. 

Reaction time (RT) is assumed to be the sum of the decision time and a saccade-specific non-decision 

time.  

(B) Reaction-time (RT) random-dot visual motion direction discrimination task with asymmetric rewards. 

A monkey makes a saccade decision based on the perceived global motion of a random-dot 

kinematogram. Reward is delivered on correct trials and with a magnitude that depends on reward 

context. Two reward contexts (LR-Left and LR-Right) were alternated in blocks of trials with signaled 

block changes. Motion directions and strengths were randomly interleaved within blocks. 



22 

 

Results 

We trained three monkeys to perform the asymmetric-reward random-dot motion 

discrimination (“dots”) task (Figure 2.2A). All three monkeys were initially trained on a 

symmetric-reward version of the task for which they were required to make fast eye 

movements (saccades) in the direction congruent with the global motion of a random-dot 

kinematogram to receive juice reward. They then performed the asymmetric-reward 

versions that were the focus of this study. Specifically, in blocks of 30–50 trials, we 

alternated direction-reward associations between a “LR-Right” reward context (the large 

reward was paired with a correct rightward saccade and the small reward was paired 

with a correct leftward saccade) and the opposite “LR-Left” reward context. We also 

varied the ratio of large versus small reward magnitudes (“reward ratio”) across sessions 

for each monkey. Within a block, we randomly interleaved motion stimuli with different 

directions and motion strengths (expressed as coherence, the fraction of dots moving in 

the same direction). We monitored the monkey’s choice (which saccade to make) and 

RT (when to make the saccade) on each trial. 

 

The monkeys’ biases reflected changes in reward context and perceptual 

sensitivity 

For the asymmetric-reward task, all three monkeys tended to make more choices 

towards the large-reward option, particularly when the sensory evidence was weak. 

These choice biases corresponded to horizontal shifts in the psychometric function 

describing the probability of making a rightward choice as a function of signed motion 

coherence (negative for leftward motion, positive for rightward motion; Figure 2.2A, plus 

example fits shown in Figure 2.2–figure supplement 1). These functions showed 
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somewhat similar patterns of behavior but some differences in detail for the three 

monkeys. For example, each monkey showed steady increases in perceptual sensitivity 

(steepness of the psychometric function), which initially dropped relative to values from 

the symmetric-reward task then tended to increase with more experience with 

asymmetric rewards (Figure 2.2B, top; H0: partial Spearman’s  of sensitivity versus 

session index after accounting for session-specific reward ratios=0, p<0.01 in all cases, 

except LR-Left for monkey C, for which 0.56). Moreover, lapse rates were near zero 

across sessions (Figure 2.2B, bottom), implying that the monkeys knew how to perform 

the task. However, the monkeys differed in terms of overall bias, which was the smallest 

in monkey F. Nevertheless, for all three monkeys bias magnitude tended to decrease 

over sessions, although this tendency was statistically significant only for monkey C after 

accounting for co-variations with reward rate (Figure 2.2B, middle). There was often a 

negative correlation between choice bias and sensitivity, consistent with a general 

strategy of adjusting bias to obtain more reward (Figure 2.2C; Figure 2–figure 

supplement 2C).  Monkeys F and C used suboptimal biases that were larger than the 

optimal values, whereas monkey A showed greater variations (Figure 2.2D). The 

monkeys showed only negligible or inconsistent sequential choice biases (Figure 2.2–

figure supplement 1), and adding sequential terms did not substantially affect the best-

fitting values of the non-sequential terms in the logistic regression (spearman’s ρ>0.8 

comparing session-by-session best-fitting values of the terms in Eq. (1) with and without 

additional sequential terms from Eq. (2)). Therefore, all subsequent analyses did not 

include sequential choice effects. 
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Figure 2.2. Relationships between sensitivity and bias from logistic fits to choice data.  

(A) For each monkey, the probability of making a rightward choice is plotted as a function of signed 

coherence (–/+ indicate left/right motion) from all sessions, separately for the two reward contexts, as 

indicated. Lines are logistic fits. 

(B) Top row: Motion sensitivity (steepness of the logistic function) in each context as a function of 

session index (colors as in A). Solid lines indicate significant positive partial Spearman correlation after 

accounting for changes in reward ratio across sessions (p<0.05). Black dashed lines indicate each 

monkey’s motion sensitivity for the task with equal rewards before training on this asymmetric reward 

task. Middle row: ΔBias (horizontal shift between the two psychometric functions for the two reward 

contexts at chance level) as a function of session index. Solid line indicates significant negative partial 

Spearman correlation after accounting for changes in reward ratio across sessions (p<0.05). Bottom 

row: Lapse rate as a function of session index (median=0 for all three monkeys). 

(C) ΔBias as a function of motion sensitivity for each reward context (colors as in A). Solid line indicates 

a significant negative partial Spearman correlation after accounting for changes in reward ratio across 

sessions (p<0.05). 

(D) Optimal versus fitted Δbias. Optimal Δbias was computed as the difference in the horizontal shift in 

the psychometric functions in each reward context that would have resulted in the maximum reward per 

trial, given each monkey’s fitted motion sensitivity and experienced values of reward ratio and 

coherences from each session (see Figure 2-figure supplement 2). Solid lines indicate significant 

positive Spearman correlations (p<0.01). Partial Spearman correlation after accounting for changes in 

reward ratio across sessions are also significant for moneys F and C (p<0.05). 

Figure 2.2-figure supplement 1. Monkeys showed minimal sequential choice biases.  

Histogram of the fraction of sessions with 0, 1 or 2 types of sequential choice biases. Colors indicate the 

sequential bias types with respect to the previous reward (Large or Small) and outcome (Correct or 

Error), as indicated. Significant sequential bias effects were identified by a likelihood-ratio test for H
0
: the 

sequential term in the logistic regression=0, p<0.05. 
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To better understand the computational principles that governed these 

idiosyncratic biases, while also taking into account systematic relationships between the 

choice and RT data, we fit single-trial RT data (i.e., we modeled full RT distributions, not 

just mean RTs) from individual sessions to a DDM. We used a hierarchical-DDM 

(HDDM) method that assumes that parameters from individual sessions of the same 

Figure 2.2-figure supplement 2. The optimal bias decreases with increasing sensitivity.  

(A) Identification of the optimal Δbias for an example session using logistic fits. For each reward context 

(blue for LR-Left and red for LR-Right), RTrial was computed as a function of bias values sampled 

uniformly over a broad range, given the session-specific sensitivities, lapse rate, coherences and 

large:small reward ratio. The optimal Δbias was defined as the difference between the bias values with 

the maximal RTrial for the two reward contexts. The fitted Δbias was defined as the difference between 

the fitted bias values for the two reward contexts.  

(B) The optimal bias decreases with increasing sensitivity. The example heatmap shows normalized 

RTrial as a function of sensitivity and bias values in the LR-Right blocks, assuming the same coherence 

levels as used for the monkeys and a large:small reward ratio of 2.3. The black curve indicates the 

optimal bias values for a given sensitivity value. 

(C) Scatterplots of optimal Δbiases obtained via the procedure described above as a function of 

sensitivity for each of the two reward contexts. Same format as Figure 3B. Solid lines indicate significant 

partial Spearman correlation after accounting for changes in reward ratio across sessions (p<0.05). Note 

that the scatterplots of the monkeys’ Δbiases and sensitivities in Figure 2C also show negative 

correlations, similar to this pattern. 
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monkey are samples from a group distribution (Wiecki et al., 2013). The HDDM was fit to 

data from each monkey separately. The HDDM had six parameters for each reward 

context. Four were from a basic DDM (Figure 2.1A): a, the total bound height, 

representing the distance between the two choice bounds; k, a scaling factor that 

converts sensory evidence (motion strength and direction) to the drift rate; and t0 and t1, 

non-decision times for leftward and rightward choices, respectively. The additional two 

parameters provided biases that differed in terms of their effects on the full RT 

distributions (Figure 2.3–figure supplement 1): me, which is additional momentary 

evidence that is added to the motion evidence at each accumulating step and has 

asymmetric effects on the two choices and on correct versus error trials (positive values 

favor the rightward choice); and z, which determines the decision rules for the two 

choices and tends to have asymmetric effects on the two choices but not on correct 

versus error trials (values >0.5 favor the rightward choice). The HDDM fitting results are 

shown in Figure 2.3, and summaries of best-fitting parameters and goodness-of-fit 

metrics are provided in Table 1. A DDM variant with collapsing bounds provided 

qualitatively similar results as the HDDM (Figure 2.3–figure supplement 2). Thus, 

subsequent analyses use the model with fixed bounds, unless otherwise noted. 
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Figure 2.3–figure supplement 1. Qualitative comparison between the monkeys’ RT distribution 

and DDM predictions. 

(A) RT distributions as predicted by a DDM with no bias in decision rule (z) or momentary evidence (me; 

left), with me>0 (middle), and with z>0.5 (right). RT distributions are shown separately for correct (red) 

and error (black) trials and using values corresponding to 20th, 40th, 60th, and 80th percentiles. Note 

that the predictions assumed zero non-decision time to demonstrate effects on RT by only me or z 

biases. Positive/negative coh values indicate rightward/leftward saccades. The values of me and z were 

chosen to induce similar choice biases (~0.075 in coherence units). Note that the me bias induces large 

asymmetries in RT both between the two choices and between correct and error trials, whereas the z 

bias induces a large asymmetry in RT for the two choices, but with little asymmetry between correct and 

error trials. 

(B) The monkeys’ mean RTs for four quantiles for the LR-Right (top) and LR-Left (bottom) reward 

contexts, respectively (same convention as in A). Note the presence of substantial asymmetries between 

correct and error trials for all three monkeys. 
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Figure 2.3. Comparison of choice and RT data to HDDM fits with both momentary-evidence (me) 

and decision-rule (z) biases.  

(A) Psychometric data (points as in Figure 2A) shown with predictions based on HDDM fits to both 

choice and RT data. 

(B) RT data (circles) and HDDM-predicted RT distributions (lines). Both sets of RT data were plotted as 

the session-averaged values corresponding to the 20
th

, 40
 th

, 60
th

, and 80
th

 percentiles of the full 

distribution for the five most frequently used coherence levels (we only show data when >40% of the 

total sessions contain >4 trials for that combination of motion direction, coherence and reward context). 

Top row: Trials in which monkey chose the left target. Bottom row: Trials in which monkeys chose the 

right target. Columns correspond to each monkey (as in A), divided into choices in the large- (left 

column) or small- (right column) reward direction (correct/error choices are as indicated in the left-most 

columns; note that no reward was given on error trials). The HDDM-predicted RT distributions were 

generated with 50 runs of simulations, each run using the number of trials per condition (motion direction 

 coherence  reward context  session) matched to experimental data and using the best-fitting HDDM 

parameters for that monkey 
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Table 2.1 Best fitting DDM parameters. 

  

Monkey F (26079 trials) Monkey C (37161 trials) Monkey F (21089 trials) 

LR-Left LR-Right LR-Left LR-Right LR-Left LR-Right 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

a 1.67 0.16 1.43 0.12 1.77 0.09 1.53 0.13 1.33 0.13 1.36 0.09 

k 10.22 1.87 9.91 2.11 6.58 0.51 5.08 0.92 4.04 0.33 3.45 0.46 

t1 0.31 0.03 0.29 0.03 0.35 0.04 0.33 0.05 0.29 0.04 0.27 0.04 

t0 0.28 0.04 0.31 0.05 0.33 0.04 0.31 0.03 0.21 0.08 0.26 0.04 

z 0.60 0.03 0.57 0.04 0.62 0.03 0.40 0.04 0.57 0.06 0.39 0.04 

me -0.06 0.04 0.08 0.05 -0.14 0.04 0.21 0.06 -0.22 0.05 0.27 0.09 

 

The DDM fits provided a parsimonious account of both the choice and RT data. 

Consistent with the results from the logistic analyses, the HDDM analyses showed that 

the monkeys made systematic improvements in psychometric sensitivity (H0: partial 

Spearman’s  of sensitivity versus session index after accounting for session-specific 

reward ratios=0, p<0.01 in all cases except p=0.06 for LR-Left for monkey A). Moreover, 

there was a negative correlation between psychometric sensitivity and choice bias (H0: 

partial Spearman’s  of sensitivity versus total bias after accounting for session-specific 

Figure 2.3–figure supplement 2. Fits to a DDM with collapsing bounds. 

(A, B) A DDM with collapsing bounds and both momentary evidence (me) and decision rule (z) biases fit 

to each monkey’s RT data. Same format as Figure 3. 

(C) The model that included both me and z adjustments (“full”) had smaller Akaike Information Criterion 

(AIC) values than reduced models (“me” or “z” only) across sessions. Note also the different ranges of 

ΔAIC for the full–me and full–z comparisons. The mean ΔAIC (full-me) and ΔAIC (full-z) values are 

significantly different from zero (Wilcoxon signed rank test, p=0.0007 for Monkey F’s full–me comparison 

and p<0.0001 for all others). 

(D) RT distributions as predicted by the DDM with collapsing bounds, using no bias in z or me (left), 

me>0 (middle), or z>0.5 (right). Same format as Figure 3–figure supplement 1A. 
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reward ratios=0, p<0.001 in all cases). These fits ascribed the choice biases to changes 

in both the momentary evidence (me) and the decision rule (z) of the decision process, 

as opposed to either parameter alone (Table 2). These fits also indicated context-

dependent differences in non-decision times, which were smaller for all large-reward 

choices for all three monkeys except in the LR-Right context for monkeys C and A (t-

test, p<0.05). However, the differences in non-decision times were relatively small 

across reward contexts, suggesting that the observed reward biases were driven 

primarily by effects on decision-related processes.   

 

Table 2.2 Model comparisons. 

The difference in deviance information criterion (DIC) between the full model (i.e., the model that includes 

both me and z) and either reduced model (me-only or z-only), for experimental data and data simulated 

using each reduced model. Negative/positive values favor the full/reduced model. Note that the DIC values 

for the experimental data were all strongly negative, favoring the full model. In contrast, the DIC values for 

the simulated data were all positive, implying that this procedure did not simply prefer the more complex 

model. 

  

Experimental Data Simu: me model Simu: z model 

∆DIC: full me ∆DIC: full z ∆DIC: full me ∆DIC: full z 

Mean Std Mean Std Mean Std Mean Std 

Monkey F -124.6 2.3 -2560.4 5.2 3.1 9.8 0.2 11.8 

Monkey C -1700.4 2.1 -6937.9 1.3 17.5 11.3 1.8 1.3 

Monkey A -793.6 3.4 -2225.7 4.0 25.4 9.0 1.2 3.4 

 

The monkeys’ bias adjustments were adaptive with respect to optimal reward-rate 

functions 

To try to identify common principles that governed these monkey- and context-

dependent decision biases, we analyzed behavior with respect to optimal benchmarks 

based on certain reward-rate functions. We focused on reward per unit time (RR) and 
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per trial (RTrial), which for this task are optimized in a DDM framework by adjusting 

momentary-evidence (me) and decision-rule (z) biases, such that both favor the large-

reward choice. However, the magnitudes of these optimal adjustments depend on other 

task parameters (a, k, t0, and t1, non-bias parameters from the DDM, plus the ratio of the 

two reward sizes and inter-trial intervals) that can vary from session to session. Thus, to 

determine the optimal adjustments, we performed DDM simulations with the fitted HDDM 

parameters from each session, using different combinations of me and z values (Figure 

2.4A). As reported previously (Bogacz et al., 2006; Simen et al., 2009), when the large 

reward was paired with the leftward choice, the optimal strategy used z<0.5 and me<0  

(Figure 2.4B, top panels, purple and orange circles for RR and RTrial, respectively). 

Conversely, when the larger reward was paired with the rightward choice, the optimal 

strategy used z>0.5 and me>0 (Figure 2.4B, bottom panels). 

The monkeys’ adjustments of momentary-evidence (me) and decision-rule (z) 

biases showed both differences and similarities with respect to these optimal predictions 

(Figure 2.4B, black circles; similar results were obtained using fits from a model with 

collapsing bounds, Figure 2.4–figure supplement 1). In the next section, we consider the 

differences, in particular the apparent use of shifts in me in the adaptive direction (i.e., 

favoring the large-reward choice) but of a magnitude that was larger than predicted, 

along with shifts in z that tended to be in the non-adaptive direction (i.e., favoring the 

small-reward choice). Here we focus on the similarities and show that the monkeys’ 

decision biases were adaptive with respect to the reward-rate function in four ways 

(RTrial provided slightly better predictions of the data and thus are presented in the main 

figures; results based on RR are presented in the Supplementary Figures). 
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Figure 2.4. Actual versus optimal adjustments of momentary-evidence (me) and decision-rule (z) 

biases. 

(A) Schematic of the comparison procedure. Choice and RT data from the two reward contexts in a 

given session were fitted separately using the HDDM. These context- and session-specific best-fitting 

me and z values are plotted as the monkey’s data (black circles in B and C). Optimal values were 

determined by fixing parameters a, k, and non-decision times at best-fitted values from the HDDM and 

searching in the me/z grid space for combinations of me and z that produced maximal reward function 

values.  For each me and z combination, the predicted probability of left/right choice and RTs were used 

with actual task information (inter-trial interval, error timeout and reward sizes) to calculate the expected 

reward rate (RR) and average reward per trial (RTrial). Optimal me/z adjustments were then identified to 

maximize RR (purple) or RTrial (orange). 
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First, the best-fitting me and z values from each monkey corresponded to near-

maximal reward rates (Figure 2.5A). We compared the optimal values of reward per trial 

(RTrialmax) to the values predicted from the monkeys’ best-fitting me and z adjustments 

(RTrialpredict). Both RTrialpredict and RTrialmax depended on the same non-bias parameters 

in the HDDM fits that were determined per session (a, k, t0, and t1) and thus are directly 

(B) Scatterplots of the monkeys’ me/z adjustments (black), predicted optimal adjustments for maximal 

RR (purple), and predicted optimal adjustments for maximal Rtrial (orange), for the two reward contexts 

in all sessions (each data point was from a single session). Values of me>0 or z>0.5 produce biases 

favoring rightward choices. 

(C) Scatterplots of the differences in me (abscissa) and z (ordinate) between the two reward contexts for 

monkeys (black), for maximizing RR (purple), and for maximizing RTrial (orange). Positive Δme and Δz 

values produce biases favoring large-reward choices. 

 

Figure 2.4–figure supplement 1. Estimates 

of momentary-evidence (me) and decision-

rule (z) biases using the collapsing-bound 

DDM fits.  

Same format as Figure 4B and C, except here 

only showing fits to the monkeys’ data. As 

with the model without collapsing bounds, the 

adjustments in me tended to favor the large 

reward but the adjustments in z tended to 

favor the small reward. 
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comparable. Their ratios tended to be nearly, but slightly less than, one (mean ratio: 

0.977, 0.984, and 0.983 for monkeys F, C, and A, respectively) and remained relatively 

constant across sessions (H0: slopes of linear regressions of these ratios versus session 

number=0, p>0.05 for all three monkeys). Similar results were also obtained using the 

monkeys’ realized rewards, which closely matched RTrialpredict (mean ratio: 0.963, 0.980 

and 0.974; across-session Spearman’s ρ=0.976, 0.995, and 0.961, for monkeys F, C, 

and A, respectively, p<0.0001 in all three cases). These results reflected the shallow 

plateau in the RTrial function near its peak (Figure 2.5B), such that the monkeys’ actual 

adjustments of me and z were within the contours for 97% RTrialmax in most sessions 

(Figure 2.5C; see Figure 2.5–figure supplement 1 for results using RR). Thus, the 

monkeys’ overall choice biases were consistent with strategies that lead to nearly 

optimal reward outcomes.  

Second, the across-session variability of each monkey’s decision biases was 

predicted by idiosyncratic features of the reward functions. The reward functions were, 

on average, different for the two reward contexts and each of the three monkeys (Figure 

6A). These differences included the size of the near-maximal plateau (red patch), which 

determined the level of tolerance in RTrial for deviations from optimal adjustments in me 

and z. This tolerance corresponded to the session-by-session variability in each 

monkey’s me and z adjustments (Figure 2.6B). In general, monkey F had the smallest 

plateaus and tended to use the narrowest range of me and z adjustments across 

sessions. In contrast, monkey A had the largest plateaus and tended to use the widest 

range of me and z adjustments (Pearson’s  between the size of the 97% RTrial 

contour, in pixels, and the sum of the across-session variances in each monkeys’ me 
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Figure 2.5. Predicted versus optimal 

reward per trial (RTrial). 

(A) Scatterplots of RTrial
predict

:RTrial
max

 ratio 

as a function of session index. Each session 

was represented by two ratios, one for each 

reward context. Mean ratio across contexts 

and sessions: 0.977 for monkey F, 0.984 for 

monkey C, and 0.983 for monkey A.  

(B) 97% RTrial
max

 contours for all sessions, 

computed using the best-fitting HDDM 

parameters and experienced coherences 

and reward ratios from each session. Light 

grey: LR-Left blocks; Dark grey: LR-Right 

blocks. 

(C) The monkeys’ adjustments (blue in LR-

Left blocks, red in LR-Right blocks) were 

largely within the 97% RTrial
max

 contours for 

all sessions and tended to cluster in the me 

over-biased, z under-biased quadrants 

(except Monkey F in the LR-Right blocks). 

The contours and monkeys’ adjustments are 

centered at the optimal adjustments for each 

session. 

 

and z adjustments=0.83, p=0.041). Analyses using the RR function produced 

qualitatively similar results (Figure 2.6–figure supplement 1). 
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Figure 2.5–figure supplement 1. 

Predicted versus optimal reward 

rate (RR). Same format as Figure 5. 

Mean RR
predict

:RR
max

 ratio across 

sessions=0.971 for monkey F, 0.980 

for monkey C, and 0.980 for monkey 

A. 
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Figure 2.6. Relationships between adjustments of momentary-evidence (me) and decision-rule (z) 

biases and RTrial function properties. 

(A) Mean RTrial as a function of me and z adjustments for the LR-Left (top) and LR-Right (bottom) 

blocks. Hotter colors represent larger RTrial values (see legend to the right). RTrial was normalized to 

RTrialmax for each session and then averaged across sessions. 

(B) Scatterplot of the total variance in me and z adjustments across sessions (ordinate) and the area of 

>97% max of the average RTrial patch (abscissa). Variance and patch areas were measured separately 

for the two reward blocks (circles for LR-Left blocks, squares for LR-Right blocks). 

(C, D) The monkeys’ session- and context-specific values of me (C) and z (D) co-varied with the 

orientation of the >97% heatmap patch (same as the contours in Figure 5B). Orientation is measured as 

the angle of the tilt from vertical. Circles: data from LR-Left block; squares: data from LR-Right block; 

lines: significant correlation between me (or z) and patch orientations across monkeys (p<0.05). Colors 

indicate different monkeys (see legend in B). 

(E) Scatterplots of conditionally optimal versus fitted me (top row) and z (bottom row). For each 

reward context, the conditionally optimal me (z) value was identified given the monkey’s best-fitting z 

(me) values. The conditionally optimal me (z) was the difference between the two conditional optimal 

me (z) values for the two reward contexts. Grey lines indicate the range of conditional me (z) values 

corresponding to the 97% maximal RTrial given the monkeys’ fitted z (me) values. 
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Figure 2.6–figure supplement 1. The monkeys’ momentary-evidence (me) and decision-rule (z) 

adjustments reflected RR function properties. Same format as Figure 6, but using RR instead of 

RTrial. 
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Third, the session-by-session adjustments in both me and z corresponded to 

particular features of each monkey’s context-specific reward function. The shape of this 

function, including the orientation of the plateau with respect to z and me, depended on 

the monkey’s perceptual sensitivity and the reward ratio for the given session. The 

monkeys’ me and z adjustments varied systematically with this orientation (Figure 2.6C 

and D for RTrial, Figure 2.6–figure supplement 1C and D for RR). This result was not an 

artifact of the fitting procedure, which was able to recover appropriate, simulated bias 

parameter values regardless of the values of non-bias parameters that determine the 

shape of the reward function (Figure 2.6–figure supplement 2).  

Fourth, the monkeys’ me and z adjustments were correlated with the values that would 

maximize RTrial, given the value of the other parameter for the given session and 

reward context (Figure 2.6E for RTrial, Figure 2.6–figure supplement 1E for RR). These 

correlations were substantially weakened by shuffling the session-by-session reward 

Figure 2.6–figure supplement 2: The HDDM model fitting procedure does not introduce spurious 

correlations between patch orientation and me value. Artificial sessions were simulated with fixed 

me values (±0.1 for the two reward contexts) and different k values.  

(A) Recovered k values from HDDM fitting closely matched k values used for the simulations.  

(B) Recovered me values from HDDM fitting closely matched me values used for simulation and did not 

correlate with RTrial patch orientation. 
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functions (Figure 2.6–figure supplement 3). Together, these results suggest that all three 

monkeys used biases that were adaptively calibrated with respect to the reward 

information and perceptual sensitivity of each session.   

 

 

The monkeys’ adaptive adjustments were consistent with a satisficing, gradient-

based learning process 

Thus far, we showed that all three monkeys adjusted their decision strategies in 

a manner that matched many features of the optimal predictions based on their 

Figure 2.6–figure supplement 3. The correlation between fitted and conditionally optimal 

adjustments was stronger for the real, session-by-session data (red lines) than for unmatched 

(shuffled) sessions (bars).  

(A, C) Momentary-evidence (me) adjustments. (B, D) Decision-rule (z) adjustments. A, B: optimal 

values obtained with the RTrial function. C, D: optimal values obtained with the RR function. Red lines 

indicate the partial Spearman correlation coefficients between the fitted and optimal me or z (obtained 

in the same way as data in Figure 6E) for matched sessions. Bars represent the histograms of partial 

correlation for unmatched sessions, which were obtained by 100 random shuffles of the sessions (i.e., 

comparing the optimal and best-fitting values from different sessions). Note that the histograms for the 

unmatched sessions are centered at positive values, reflecting the non-session-specific tendency 

of reward surfaces to skew towards overly biased me and z values. The correlation values for matched 

sessions (red lines) are at even more positive values (Wilcoxson rank-sum test, p<0.001 for all three 

monkeys and both me and z), suggesting additional session-specific tuning of 

the me and z parameters. 
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idiosyncratic, context-specific reward-rate functions. However, their biases did not match 

the optimal predictions exactly. Specifically, all three monkeys used shifts in me favoring 

the large-reward choice (adaptive direction) but of a magnitude that was larger than 

predicted, along with shifts in z favoring the small-reward choice (non-adaptive 

direction). We next show that these shifts can be explained by a model in which the 

monkeys are initially over-biased, then adjust their model parameters to increase reward 

and stop learning when the reward is high enough, but not at its maximum possible 

value.  

The intuition for this gradient-based satisficing model is shown in Figure 2.7. The 

lines on the RTrial heatmap represent the trajectories of a gradient-tracking procedure 

that adjusts me and z values to increase RTrial until a termination point (for illustration, 

here we used 97% of the maximum possible value). Gradient lines are color-coded 

based on how me and z values at the end points relate to the optimal me and z values. 

For example, consider adjusting me and z by following all of the magenta gradient lines 

until their endpoints. The lines are color-coded by me/z being adaptive vs. non-adaptive, 

regardless of their relative magnitudes to the optimal values. In other words, as long as 

the initial me and z values fall within the area covered by the magenta lines, the positive 

gradient-tracking procedure would lead to a good-enough solution with over-shifted me 

and non-adaptive z values similar to what we found in the monkeys’ data. Figure 2.7 

also illustrates why assumptions about the starting point of this adaptive process are 

important: randomly selected starting points would result in learned me and z values 

distributed around the peak of the reward function, whereas the data (e.g., Figure 2.5C) 

show distinct clustering that implies particular patterns of starting points. 
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We simulated this process using: 1) different starting points; 2) gradients defined 

by the reward function derived separately for each reward context, session, and monkey; 

and 3) a termination rule corresponding to achieving each monkey’s average reward in 

that session (RTrialpredict) estimated from the corresponding best-fitting model parameters 

and task conditions. This process is illustrated for LR-Left blocks in an example session 

from monkey C (Figure 2.8A). We estimated the unbiased me and z values as the 

midpoints between their values for LR-Left and LR-Right blocks (square). At this point, 

Figure 2.7. Relationships between starting and ending values of the satisficing, reward function 

gradient-based updating process. 

Example gradient lines of the average RTrial maps for the three monkeys are color coded based on the 

end point of gradient-based me and z adjustments in the following 

ways: 1) me biases to large reward whereas z biases to small reward (magenta); 2) z biases to large 

reward whereas me biases to small reward (blue); 3) me and z both bias to large reward (green), and 4) 

me and z both bias to small reward (yellow). The gradient lines ended on the 97% RTrialmax contours. 

Top row: LR-Left block; bottom row: LR-Right block. 
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the RTrial gradient is larger along the me dimension than the z dimension, reflecting the 

tilt of the reward function. We set the initial point at baseline z and a very negative value 

of me (90% of the highest coherence used in the session; overshoot in the adaptive 

direction) and referred to this setting as the “over-me” model. The me and z values were 

then updated according to the RTrial gradient (see cartoon insert in Figure 2.8A), until 

the monkey’s RTrialpredict or better was achieved (magenta trace and circle). The 

endpoint of this updating process was very close to monkey C’s actual adjustment (gray 

circle). For comparison, three alternative models are illustrated. The “over-z” model 

selects z as the initial dimension and assumes updating from the baseline me and over-

adjusted z values (blue, initial z set as 0.1 for the LR-Left context and 0.9 for the LR-

Right context). The “over-both” model assumes updating from the over-adjusted me and 

z values (green). The “neutral” model assumes the same updating process but from the 

baseline me and baseline z (black). The endpoints from these alternative models 

deviated considerably from the monkey’s actual adjustment. 

 

Figure 2.7–figure 

supplement 1. RR gradient 

trajectories color-coded by 

the end points of the me/z 

patterns. Same format as 

Figure 7 but using gradients 

based on RR instead of 

RTrial. 
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The “over-me” model produced better predictions than the other three alternative 

models for all three monkeys. Of the four models, only the “over-me” model captured the 

monkeys’ tendency to bias me toward the large-reward choice (positive me) and bias z 

toward the small-reward choice (negative z; Figure 8B). In contrast, the “over-z” model 

predicted small adjustments in me and large adjustments in z favoring the large-reward 

choice; the “over-both” model predicted relatively large, symmetric me and z 

adjustments favoring the large-reward choice; and the “neutral” model predicted 

relatively small, symmetric adjustments in both me and z favoring the large-reward 

choice. Accordingly, for each monkey, the predicted and actual values of both me and 

z were most strongly positively correlated for predictions from the “over-me” model 

Figure 2.8. The satisficing reward function gradient-based model.  

A, Illustration of the procedure for predicting a monkey’s me and z values for a given RTrial function. For 

better visibility, RTrial for the LR-Left reward context in an example session is shown as a heatmap in 

greyscale. Gradient lines are shown as black lines. The square indicates the unbiased me and z 

combination (average values across the two reward contexts). The four trajectories represent gradient-

based searches based on four alternative assumptions of initial values (see table on the right). All four 

searches stopped when the reward exceeded the average reward the monkey received in that session 

(RTrial
predict

), estimated from the corresponding best-fitting model parameters and task conditions. Open 

circles indicate the end values. Grey filled circle indicates the monkey’s actual me and z. Note that the 

end points differ among the four assumptions, with the magenta circle being the closest to the monkey’s 

fitted me and z of that session.  

B, Scatterplots of the predicted and actual me and z between reward contexts. Grey circles here are 

the same as the black circles in Figure 4C. Colors indicate model identity, as in A. 

C, Average regression coefficients between each monkey’s me (left four bars) and z (right four bars) 

values and predicted values for each of the four models. Filled bars: t-test, p < 0.05. 

D, Covariation of me (top) and z (bottom) with the orientation of the >97% RTrial heatmap patch for 

monkeys and predictions of the four models. Blue: data from LR-Left blocks, red: data from LR-Right 

blocks. Data in the “Monkey” column are the same as in Figure 6C and D. Note that predictions of the 

“over-me” model best matched the monkey data than the other models. 
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compared to the other models (Figure 2.8C). The “over-me” model was also the only one 

of the models we tested that recapitulated the measured relationships between both me- 

and z-dependent biases and session-by-session changes in the orientation of the RTrial 

function (Figure 2.8D). Similar results were observed using RR function (Figure 2.7–

figure supplement 1 and Figure 2.8–figure supplement 1). We also examined whether 

the shape of the reward surface alone can explain the monkeys' bias patterns. We 

repeated the simulations using randomized starting points, with or without additional 

noise in each updating step. These simulations could not reproduce the monkeys' bias 

patterns (data not shown), suggesting that using "over-me" starting points is critical for 

accounting for the monkeys' suboptimal behavior.  
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Discussion 

We analyzed the behavior of three monkeys performing a decision task that 

encouraged the use of both uncertain visual motion evidence and the reward context. All 

three monkeys made choices that were sensitive to the strength of the sensory evidence 

and were biased toward the larger-reward choice, which is roughly consistent with 

previous studies of humans and monkeys performing similar tasks (Maddox and Bohil, 

1998; Voss et al., 2004; Diederich and Busemeyer, 2006; Liston and Stone, 2008; 

Serences, 2008; Feng et al., 2009; Simen et al., 2009; Nomoto et al., 2010; Summerfield 

and Koechlin, 2010; Teichert and Ferrera, 2010; Gao et al., 2011; Leite and Ratcliff, 

2011; Mulder et al., 2012; Wang et al., 2013; White and Poldrack, 2014).However, we 

also found that these adjustments differed considerably in detail for the three monkeys, 

in terms of overall magnitude, dependence on perceptual sensitivity and offered 

rewards, and relationship to RTs. We quantified these effects with a logistic analysis and 

a commonly used model of decision-making, the drift-diffusion model (DDM), which 

allowed us to compare the underlying decision-related computations to hypothetical 

benchmarks that would maximize reward. We found that all three monkeys made reward 

context-dependent adjustments with two basic components: 1) an over-adjustment of the 

momentary evidence provided by the sensory stimulus (me) in favor of the large-reward 

Figure 2.8–figure supplement 1. Predictions of a RR gradient-based model. Same format as Figure 

8 but using gradients based on RR instead of RTrial. The overly-biased starting me and 

z values were set as 90% of highest coherence level, and 0.1, respectively,  except for the over-both 

model for one monkey C session (me = 88% * max(coh), z = 0.11) to avoid a local peak in the RR 

surface. Such local peaks at overly biased me and z values can divert the gradient-based updating 

process to even more biased values without ever reaching the monkey's final RR (e.g., the green trace 

at the bottom left corner in monkey C's LR-Left data in Figure 7–figure supplement 1). 
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option; and 2) an adjustment to the decision rule that governs the total evidence needed 

for each choice (z), but in the opposite direction (i.e., towards the small-reward option). 

Similar to some earlier reports of human and monkey performance on somewhat similar 

tasks, our monkeys did not optimize reward rate (Starns and Ratcliff, 2010 and 2012; 

Teichert and Ferrera, 2010). Instead, these adjustments tended to provide nearly, but 

not exactly, maximal reward intake. We proposed a common heuristic strategy based on 

the monkeys’ individual reward functions to account for the idiosyncratic adjustments 

across monkeys and across sessions within the same monkey.  

 

Considerations for assessing optimality and rationality 

Assessing decision optimality requires a model of the underlying computations. 

In this study, we chose the DDM for several reasons. First, it provided a parsimonious 

account of both the choice and RT data (Palmer et al., 2005; Ratcliff et al., 1999). 

Second, as discussed in more detail below, the DDM and related accumulate-to-bound 

models have provided useful guidance for identifying neural substrates of the decision 

process (Roitman and Shadlen, 2002; Ding and Gold, 2010; Ding and Gold, 2012; 

Hanks et al., 2011; Ratcliff et al., 2003; Rorie et al., 2010; Mulder et al., 2012; 

Summerfield and Koechlin, 2010; Frank et al., 2015). Third, these models are closely 

linked to normative theory, including under certain assumptions matching the statistical 

procedure known as the sequential probability ratio test that can optimally balance the 

speed and accuracy of uncertain decisions (Barnard, 1946; Wald, 1947; Wald and 

Wolfowitz, 1948, Edward, 1965). These normative links were central to our ability to use 

the DDM to relate the monkeys’ behavior to different forms of reward optimization. The 

particular form of DDM that we used produced reasonably good, but not perfect, fits to 
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the monkeys’ data. These results support the utility of the DDM framework but also 

underscore the fact that we do not yet know the true model, which could impact our 

optimality assessment. 

Assessing optimality also requires an appropriate definition of the optimization 

goal. In our study, we mainly focused on the goal of maximizing reward rate (per trial or 

per unit of time). Based on this definition, the monkeys showed suboptimal reward-

context-dependent adjustments. It is possible that the monkeys’ were optimizing for a 

different goal, such as accuracy or a competition between reward and accuracy 

(“COBRA,” Maddox and Bohil, 1998). However, the monkeys’ behavior was not 

consistent with optimizing for these goals, either. Specifically, none of these goals would 

predict optimal z adjustment that favors the small reward choice: accuracy maximization 

would require unbiased decisions (me=0 and z=0.5), whereas COBRA would require z 

values with smaller magnitude (between 0.5 and those predicted for reward 

maximization alone), but still in the adaptive direction. Therefore, the monkeys’ 

strategies were not consistent with simply maximizing commonly considered reward 

functions. 

Deviations from optimal behavior are often ascribed to a lack of effort or poor 

learning. However, these explanations seem unlikely to be primary sources of 

suboptimality in our study. For example, lapse rates, representing the overall ability to 

attend to and perform the task, were consistently near zero for all three monkeys. 

Moreover, the monkeys’ reward outcomes (RTrial or RR with respect to optimal values) 

did not change systematically with experience but instead stayed close to the optimal 

values. These results imply that the monkeys understood the task demands and 

performed consistently well over the course of our study. Suboptimal performance has 
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also been observed in human subjects, even with explicit instructions about the 

optimality criteria (Starns and Ratcliff 2010, 2012), suggesting that additional factors 

need to be considered to understand apparent suboptimality in general forms of 

decision-making. More importantly, the monkeys made adjustments that were adapted 

to changes in their idiosyncratic, context-dependent reward functions, which reflected 

session-specific reward ratios and motion coherences and the monkeys’ daily variations 

of perceptual sensitivity and speed-accuracy trade-offs (Figure 2.6, Figure 2.6–figure 

supplement 1). Based on these observations, we reasoned that the seemingly sub-

optimal behaviors may instead reflect a common, adaptive, rational strategy that aimed 

to attain good-enough (satisficing) outcomes.  

The gradient-based, satisficing model we proposed was based on the 

considerations discussed below to account for our results. We do not yet know how well 

this model generalizes to other tasks and conditions, but it exemplifies an additional set 

of general principles for assessing the rationality of decision-making behavior: goals that 

are not necessarily optimal but good enough, potential heuristic strategies based on the 

properties of the utility function, and flexible adaptation to changes in the external and 

internal conditions. 

 

Assumptions and experimental predictions of the proposed learning strategy 

In general, finding rational solutions through trial-and-error or stepwise updates 

requires a sufficient gradient in the utility function to drive learning (Sutton and Barto, 

1998). Our proposed scheme couples a standard gradient-following algorithm with 

principles that have been used to explain and facilitate decisions with high uncertainties, 

time pressures, and/or complexity to achieve a satisficing solution (Simon, 1966; 
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Wierzbicki, 1982; Gigerenzer and Goldstein, 1996; Nosofsky and Palmeri, 1997; 

Goodrich et al., 1998; Sakawa and Yauchi, 2001; Goldstein and Gigerenzer, 2002; 

Stirling, 2003; Gigerenzer, 2010; Oh et al., 2016). This scheme complements but differs 

from a previously proposed satisficing strategy to account for human subjects’ 

suboptimal calibration of the speed-accuracy trade-off via adjustments of the decision 

bounds of a DDM that favor robust solutions given uncertainties about the inter-trial 

interval (Zacksenhouse et al., 2010), In contrast, our proposed strategy focuses on 

reward-biased behaviors for a given speed-accuracy tradeoff and operates on reward 

per trial, which is, by definition, independent of inter-trial-interval.  

Our scheme was based on four key assumptions, as follows. Our first key 

assumption was that the starting point for gradient following was not the unbiased state 

(i.e., me=0 and z=0.5) but an over-biased state. Notably, in many cases the monkeys 

could have performed as well or better than they did, in terms of optimizing reward rate, 

by making unbiased decisions. The fact that none did so prompted our assumption that 

their session-by-session adjustments tended to reduce, not inflate, biases. Specifically, 

we assumed that the initial experience of the asymmetric reward prompted an over-

reaction to bias choices towards the large-reward alternative. In general, such an initial 

over-reaction is not uncommon, as other studies have shown excessive, initial biases 

that are reduced or eliminated with training (Gold et al., 2008; Jones, et al., 2015; 

Nikolaev et al., 2016). The over-reaction is also rational because the penalty is larger for 

an under-reaction than for an over-reaction. For example, in the average RTrial 

heatmaps for our task (Figure 2.6A), the gradient dropped faster in the under-biased 

side than in the over-biased side. This pattern is generally true for tasks with sigmoid-like 

psychometric functions (for example, the curves in Figure 2.2–figure supplement 2). Our 



56 

 

model further suggests that the nature of this initial reaction, which may be driven by 

individually tuned features of the reward function that can remain largely consistent even 

for equal-reward tasks (Figure 2.8–figure supplement 2) and then constrain the end-

points of a gradient-based adjustment process (Figure 2.8), may help account for the 

extensive individual variability in biases that has been reported for reward-biased 

perceptual tasks (Voss et al., 2004; Summerfield and Koechlin, 2010; Leite and Ratcliff, 

2011; Cicmil et al., 2015)). 

 

 

Figure 2.8–figure supplement 2. Dependence of the orientation and area of the near-optimal 

RTrial patch on parameters reflecting internal decision process and external task specifications.  

The top two rows show the RTrial heatmaps with two values of a single parameter indicated above, 

while keeping the other parameters fixed at the baseline values. The third and fourth rows show the 

estimated orientation (the amount of tilt from vertical, in degrees) and area (in pixels), respectively, of the 

image patches corresponding to 97% of RTrial
max

. The baseline values of the parameters are: a=1.5, 

k=6, non-decision times=0.3 sec for both choices, ITI=4 sec, Timeout=8 sec, large-reward (LR): small-

reward (SR) ratio=2. 
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The specific form of initial over-reaction in our model, which was based on the 

gradient asymmetry of the reward function, makes testable predictions. Specifically, our 

data were most consistent with an initial bias in momentary evidence (me), which 

caused the biggest change in the reward function. However, this gradient asymmetry 

can change dramatically under different conditions. For example, changes in the 

subject’s cautiousness (i.e., the total bound height parameter, a) and perceptual 

sensitivity (k) would result in a steeper gradient in the other dimension (the decision rule, 

or z) of the reward function (Figure 2.8–figure supplement 3). Our model predicts that 

such a subject would be more prone to an initial bias along that dimension. This 

prediction can be tested by using speed-accuracy instructions to affect the bound height 

and different stimulus parameters to change perceptual sensitivity (Palmer et al 2005; 

Gegenfurtner and Hawken, 1996).   

Our second key assumption was that from this initial, over-biased state, the 

monkeys made adjustments to both the momentary evidence (me) and decision rule (z) 

that generally followed the gradient of the reward function. The proposed step-wise 

adjustments occurred too quickly to be evident in behavior; e.g., the estimated biases 

were similar for the early and late halves in a block (data not shown). Instead, our 

primary support for this scheme was that the steady-state biases measured in each 

session were tightly coupled to the shape of the reward function for that session. It would 

be interesting to design tasks that might allow for more direct measurements of the 

updating process itself, for example, by manipulating both the initial biases and relevant 

reward gradient that might promote a longer adjustment process. 
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Our third key assumption was that the shallowness of the utility of the function 

around the peak supported satisficing solutions. Specifically, gradient-based 

adjustments, particularly those that use rapid updates based on implicit knowledge of the 

Figure 2.8–figure supplement 3: The joint effect of DDM model parameters a (governing the 

speed-accuracy trade-off) and k (governing perceptual sensitivity) on the shape of the reward 

function. 

(A, B) Example RTrial functions corresponding to steeper gradients along the z (panel A, corresponding 

to the red points in panels C and D) or me (panel B, corresponding to the orange points in panels C and 

D) dimension. The gradient lines (black) stop when RTrial >0.97 of the maximum value. A: a=1, k=5. B: 

a=1, k=40. Large-reward:small-reward ratio = 2.  

(C) Orientation of the patch corresponding to >0.97 maximal RTrial as a function of the product of a and 

k.  

(D) The ratio of the mean gradients along the me and z dimensions as a function of the product of a and 

k. Our model assumes that the initial bias is along the dimension with the steeper gradient according to 

each monkey’s idiosyncratic RTrial function. Note that because me and z have different units, the 

boundary between initial-me and initial-z conditions may not correspond to a gradient ratio of 1. 
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utility function, may be sensitive only to relatively large gradients. For our task, the 

gradients were much smaller around the peak, implying that there were large ranges of 

parameter values that provided such similar outcomes that further adjustments were not 

used. In principle, it is possible to change the task conditions to test if and how subjects 

might optimize with respect to steeper functions around the peak. For example, for 

RTrial, the most effective way to increase the gradient magnitude near the peak (i.e., 

reducing the area of the dark red patch) is to increase sensory sensitivity (k) or 

cautiousness (a; i.e., emphasizing accuracy over speed; Figure 2.8–figure supplement 

2). For RR, the gradient can also be enhanced by increasing the time-out penalty. 

Despite some practical concerns about these manipulations (e.g., increasing time-out 

penalties can decrease motivation), it would be interesting to study their effects on 

performance in more detail to understand the conditions under which satisficing or “good 

enough” strategies are used (Simon, 1956; Simon, 1982). 

Our last assumption was that the monkeys terminated adjustments as soon as 

they reached a good-enough reward outcome. This termination rule produced end points 

that approximated the monkeys’ behavior reasonably well. Other termination rules are 

likely to produce similar end points. For example, the learning rate for synaptic weights 

might decrease as the presynaptic and postsynaptic activities become less variable 

(Aitchison et al., 2017; Kirkpatrick et al., 2017). In this scheme, learning gradually slows 

down as the monkey approaches the plateau on the reward surface, which might 

account for our results. 

The satisficing reward gradient-based scheme we propose may further inform 

appropriate task designs for future studies. For example, our scheme implies that the 

shape of the reward function near the peak, particularly the steepness of the gradient, 
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can have a strong impact on how closely a subject comes to the optimal solution for a 

given set of conditions. Thus, task manipulations that affect the shape of the reward-

function peak could, in principle, be used to control whether a study focuses on more- or 

less-optimal behaviors (Figure 2.8–figure supplement 4). For example, increasing 

perceptual sensitivity (e.g., via training) and/or decisions that emphasize accuracy over 

speed (e.g., via instructions) tends to sharpen the peak of the reward function. According 

to our scheme, this sharpening should promote increasingly optimal decision-making, 

above and beyond the performance gains associated with increasing accuracy, because 

the gradient can be followed closer to the peak of the reward function. The shape of the 

peak is also affected by the reward ratio, such that higher ratios lead to larger plateaus, 

i.e. shallower gradient, near the peak. This relationship leads to the idea that, all else 

being equal, a smaller reward ratio may be more suitable for investigating principles of 

near-optimal behavior, whereas a larger reward ratio may be more suitable for 

investigating the source and principles of sub-optimal behaviors. 
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Figure 2.8–figure supplement 4. Effects 

of the shape of the reward function on 

deviations from optimality.  

(A) Illustration of our heuristic updating 

model and measurement of deviation of the 

end point from optimal. Yellow dot: optimal 

solution. Gray lines: trajectory for gradient 

ascent, ending at 0.97 maximal RTrial. 

Black line: trajectory for updating from the 

starting point (black dot, me=0.54, z=0.5), 

which ended at 0.97 maximal RTrial (blue 

dot). The deviation of the end point from 

optimal is measured as the distance from 

the yellow dot to the blue dot (yellow 

dashed line). The same starting point and 

ending criterion were used for data shown 

in B and C.  

(B) The area of the 0.97 maximal RTrial 

plateau and end-point deviation from 

optimal increase with reward ratio. The 

product of a and k is fixed as 30. 

(C) The area of the 0.97 maximal RTrial 

plateau and end-point deviation from 

optimal decrease with the product of a and 

k. Reward ratio is fixed as 3. 
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Possible neural mechanisms 

The DDM framework has been used effectively to identify and interpret neural 

substrates of key computational components of the decision process for symmetric-

reward versions of the motion-discrimination task. Our study benefitted from an RT task 

design that provided a richer set of constraints for inferring characteristics of the 

underlying decision process than choice data alone (Feng et al., 2009; Nomoto et al., 

2010; Teichert and Ferrera, 2010). The monkeys’ strategy further provides valuable 

anchors for future studies of the neural mechanisms underlying decisions that are biased 

by reward asymmetry, stimulus probability asymmetry, and other task contexts.   

For neural correlates of bias terms in the DDM, it is commonly hypothesized that me 

adjustments may be implemented as modulation of MT output and/or synaptic weights 

for the connections between different MT subpopulations and decision areas (Cicmil, et 

al., 2015). In contrast, z adjustments may be implemented as context-dependent 

baseline changes in neural representations of the decision variable and/or context-

dependent changes in the rule that determines the final choice (Lo and Wang, 2006; 

Rao, 2010; Lo et al., 2015; Wei et al., 2015). The manifestation of these adjustments in 

neural activity that encodes a decision variable may thus differ in its temporal 

characteristics: a me adjustment is assumed to modulate the rate of change in neural 

activity, whereas a z adjustment does not. However, such a theoretical difference can be 

challenging to observe, because of the stochasticity in spike generation and, given such 

stochasticity, practical difficulties in obtaining sufficient data with long decision 

deliberation times. By adjusting me and z in opposite directions, our monkeys’ strategies 

may allow a simpler test to disambiguate neural correlates of me and z. Specifically, a 

neuron or neuronal population that encodes me may show reward modulation congruent 
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with its choice preference, whereas a neuron or neuronal population that encodes z may 

show reward modulation opposite to its choice preference (Figure 2.8–figure supplement 

5). These predictions further suggest that, although it is important to understand if and 

how human or animal subjects can perform a certain task optimally, for certain systems-

level questions, there may be benefits to tailoring task designs to promote sub-optimal 

strategies in otherwise well-trained subjects.  

 

Figure 2.8–figure supplement 5. Hypothetical neural activity encoding a reward-biased perceptual 

decision variable. The blue and red curves depict rise-to-threshold dynamics in favor of a particular 

(say, rightward) choice under the two reward contexts, as indicated. Note that when the rightward choice 

is paired with larger reward: 1) the slope of the ramping process, which corresponds to an adjustment in 

momentary evidence (me), is steeper; and 2) the baseline activity, which corresponds to the decision-

rule (z) adjustment, is lower. 
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Material and Methods 

Subjects 

We used three rhesus macaques (Macaca mulatta), two male and one female, to 

study behavior on an asymmetric-reward reaction-time random-dot motion discrimination 

task (Figure 1B, see below). Prior to this study, monkeys F and C had been trained 

extensively on the equal-reward RT version of the task (Ding and Gold, 2010, 2012b, a). 

Monkey A had been trained extensively on non-RT dots tasks (Connolly et al., 2009; 

Bennur and Gold, 2011), followed by >130 sessions of training on the equal-reward RT 

dots task. All training and experimental procedures were in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the University of Pennsylvania Institutional Animal Care and Use 

Committee (#804726). 

 

Behavioral task  

Our task (Figure 2.1B) was based on the widely used random-dot motion 

discrimination task that typically has symmetric rewards (Roitman and Shadlen, 2002; 

Ding and Gold, 2010). Briefly, a trial started with presentation of a fixation point at the 

center of a computer screen in front of a monkey. Two choice targets appeared 0.5 s 

after the monkey acquired fixation. After a delay, the fixation point was dimmed and a 

random-dot kinematogram (speed: 6 /s) was shown in a 5 aperture centered on the 

fixation point. For monkeys F and C, the delay duration was drawn from a truncated 

exponential distribution with mean=0.7 s, max=2.5 s, min=0.4 s. For monkey A, the 

delay was set as 0.75 s. The monkey was required to report the perceived global motion 

direction by making a saccade to the corresponding choice target at a self-determined 
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time (a 50-ms minimum latency was imposed to discourage fast guesses). The stimulus 

was immediately turned off when the monkeys’ gaze left the fixation window (4, 4, and 3 

square windows for monkey F, C, and A, respectively). Correct choices (i.e., saccades to 

the target congruent with actual motion direction) were rewarded with juice. Error 

choices were not rewarded and instead penalized with a timeout before the next trial 

began (timeout duration: 3 s, 0.5-2 s, and 2.5 s, for monkeys F, C, and A, respectively).  

On each trial, the motion direction was randomly selected toward one of the choice 

targets along the horizontal axis. The motion strength of the kinematogram was 

controlled as the fraction of dots moving coherently to one direction (coherence). On 

each trial, coherence was randomly selected from 0.032, 0.064, 0.128, 0.256, and 0.512 

for monkeys F and C, and from 0.128, 0.256, 0.512, and 0.75 for monkey A. In a subset 

of sessions, coherence levels of 0.064, 0.09, 0.35, and/or 0.6 were also used for monkey 

A.  

We imposed two types of reward context on the basic task. For the “LR-Left” 

reward context, correct leftward saccades were rewarded with a larger amount of juice 

than correct rightward saccades. For the “LR-Right” reward context, correct leftward 

saccades were rewarded with a smaller amount of juice than correct rightward 

saccades. The large:small reward ratio was on average 1.34, 1.91, and 2.45 for 

monkeys F, C, and A, respectively. Reward context was alternated between blocks and 

constant within a block. Block changes were signaled to the monkey with an inter-block 

interval of 5 s. The reward context for the current block was signaled to the monkey in 

two ways: 1) in the first trial after a block change, the two choice targets were presented 

in blue and green colors, for small and large rewards, respectively (this trial was not 

included for analysis); and 2) only the highest coherence level (near 100% accuracy) 
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was used for the first two trials after a block change to ensure that the monkey physically 

experienced the difference in reward outcome for the two choices. For the rest of the 

block, choice targets were presented in the same color and motion directions and 

coherence levels were randomly interleaved.  

We only included sessions in which there are more than 200 trials, more than 8 

coherences and more than 8 trials for each coherence, motion direction and reward 

context (61, 37 and 43 sessions for monkey F, C and A, respectively). 

 

Basic characterization of behavioral performance 

Eye position was monitored using a video-based system (ASL) sampled at 240 

Hz. RT was measured as the time from stimulus onset to saccade onset, the latter 

identified offline with respect to velocity (> 40/s) and acceleration (> 8000/s2). 

Performance was quantified with psychometric and chronometric functions (Figure 2 and 

Figure 3), which describe the relationship of motion strength (signed coherence, Coh, 

which was the proportion of the dots moving in the same direction, positive for rightward 

motion, negative for leftward motion) with choice and RT, respectively. Psychometric 

functions were fitted to a logistic function (Equation (1)), in which 𝞴 is the error rate, or 

lapse rate, independent of the motion information; 𝞪0 and (𝞪0 + 𝞪rew) are the bias terms, 

which measures the coherence at which the performance was at chance level in the LR-

Right and LR-Left reward contexts, respectively. 𝞫0 and (𝞫0 + 𝞫rew) are the perceptual 

sensitivities in the LR-Right and LR-Left reward contexts, respectively.  

   (1) 

Reward-biased drift-diffusion model 
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To infer the computational strategies employed by the monkeys, we adopted the 

widely used accumulation-to-bound framework, the drift-diffusion model (DDM; Figure 

1A). In the standard DDM, motion evidence is modeled as a random variable following a 

Gaussian distribution with a mean linearly proportional to the signed coherence and a 

fixed variance. The decision variable (DV) is modeled as temporal accumulation 

(integral) of the evidence, drifting between two decision bounds. Once the DV crosses a 

bound, evidence accumulation is terminated, the identity of the decision is determined by 

which bound is crossed, and the decision time is determined by the accumulation time. 

RT is modeled as the sum of decision time and saccade-specific non-decision times, the 

latter accounting for the contributions of evidence-independent sensory and motor 

processes.  

To model the observed influences of motion stimulus and reward context on 

monkeys’ choice and RT behavior, we introduced two reward context-dependent terms: 

z specifies the relative bound heights for the two choices and me specifies the 

equivalent momentary evidence that is added to the motion evidence at each 

accumulating step. Thus, for each reward context, six parameters were used to specify 

the decision performance: a: total bound height; k: proportional scaling factor converting 

evidence to the drift rate; t0 and t1: non-decision times for leftward and rightward choices, 

respectively; and z and me. Similar approaches have been used in studies of human 

and animal decision making under unequal payoff structure and/or prior probabilities 

(Voss et al., 2004; Bogacz et al., 2006; Diederich and Busemeyer, 2006; Summerfield 

and Koechlin, 2010; Hanks et al., 2011; Mulder et al., 2012).  

To fit the monkeys’ data, we implemented hierarchical DDM fitting using an open-

source package in Python, which performs Bayesian estimates of DDM parameters 
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based on single-trial RTs (Wiecki et al., 2013). This method assumes that parameters 

from individual sessions are samples from a group distribution. The initial prior 

distribution of a given parameter is determined from previous reports of human 

perceptual performance and is generally consistent with monkey performance on equal 

reward motion discrimination tasks (Ding and Gold, 2010; Matzke and Wagenmakers, 

2009). The posterior distributions of the session- and group-level parameters are 

estimated with Markov chain Monte Carlo sampling. The HDDM was fit to each monkey 

separately. 

For each dataset, we performed 5 chains of sampling with a minimum of 10000 

total samples (range: 10000-20000; burn-in: 5000 samples) and inspected the trace, 

autocorrelation and marginal posterior histogram of the group-level parameters to detect 

signs of poor convergence. To ensure similar level of convergence across models, we 

computed the Gelman-Rubin statistic (R-hat) and only accepted fits with R-hat<1.01.  

To assess whether reward context modulation of both z and me was necessary to 

account for monkeys’ behavioral data, we compared fitting performance between the 

model with both terms (“full”) and reduced models with only one term (“z-only” and “me-

only”). Model selection was based on the deviance information criterion (DIC), with a 

smaller DIC value indicating a preferred model. Because DIC tends to favor more 

complex models, we bootstrapped the expected DIC values, assuming the reduced 

models were the ground truth, using trial-matched simulations. For each session, we 

generated simulated data using the DDM, with single-session parameters fitted by me-

only or z-only HDDM models and with the number of trials for each direction  

coherence  reward context combination matched to the monkey’s data for that session. 
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These simulated data were then re-fitted by all three models to estimate the predicted 

DIC, assuming the reduced model as the generative model.  

To test an alternative model, we also fitted monkeys’ data to a DDM with 

collapsing bounds (Zylberberg et al., 2016). This DDM was constructed as the expected 

first-stopping-time distribution given a set of parameters, using the PyMC module 

(version 2.3.6) in Python (version 3.5.2). The three model variants, “full”, “me-only” and 

“z-only”, and their associated parameters were the same as in HDDM, except that the 

total bound distance decreases with time. The distance between the two choice bounds 

was set as , where  is the initial bound distance,  determines the rate 

of collapsing, and  determines the onset of the collapse. Fitting was performed by 

computing the maximum a posteriori estimates, followed by Markov chain Monte Carlo 

sampling, of DDM parameters given the experimental RT data.  

 

Sequential analysis 

To examine possible sequential choice effects, for each monkey and session we 

fitted the choice data to three logistic functions. Each function was in the same form as 

equation (1) but with one of four possible additional terms describing a sequential effect 

based on whether the previous trial was correct or not, and whether the previous trial 

was to the large or small reward target. The sequential effect was assessed via a 

likelihood-ratio test for H0: the sequential term in Eq. (2)=0, p<0.05 

  (2) 
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Biasseq was determined using indicator variables for the given sequential effect and the 

reward context (e.g., LR-Right context, previous correct LR choice):  Iseq  Irew 𝞪seq, where 

Irew = +/-1 for LR-Right / LR-Left reward contexts. 

Iseq = IprevLR-prevCorrect, IprevLR-prevError, IprevSR-prevCorrect, and IprevSR-prevError for the 4 types of 

sequential effects (note that there were not enough trials to compute previous error SR 

choice). 

 

Optimality analysis 

To examine the level of optimality of the monkeys’ performance, we focused on 

two reward functions: reward rate (RR, defined as the average reward per second) and 

reward per trial (RTrial, defined as the average reward per trial) for a given reward 

context for each session. To estimate the reward functions in relation to me and z 

adjustments for a given reward context, we numerically obtained choice and RT values 

for different combinations of z (ranging from 0 to 1) and me (ranging from -0.6 to 0.6 

coherence unless otherwise specified), given a, k and non-decision time values fitted by 

the full model. We then calculated RR and RTrial, using trial-matched parameters, 

including the actual ITI, timeout, and large:small reward ratio. RRmax and RTrialmax were 

identified as the maximal values given the sampled me-z combinations, using 1000 trials 

for each coherence  direction condition. Optimal me and z adjustments were defined as 

the me and z values corresponding to RRmax or RTrialmax. RRpredict and RTrialpredict were 

calculated with the fitted me and z values in the full model. 
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CHAPTER 3: NEURAL REPRESENTATION OF SENSORY AND REWARD 

INFORMATION IN THE CAUDATE NUCLEUS IN REWARD-BIASED 

PERCEPTUAL DECISION-MAKING 

 

Yunshu Fan, Takahiro Doi, Joshua I. Gold, Long Ding 

 

Part of this chapter is from a manuscript on BioRxiv: Doi T, Fan Y, Gold JI, Ding L (2019) The 

caudate nucleus controls coordinated patterns of adaptive, context-dependent adjustments to 

complex decisions. doi: https://doi.org/10.1101/568733 

 

Introduction 

Decision-making is a complex process in which both human and animals have to 

combine different sources of information, such as noisy sensory evidence and 

preference for a certain option, in appropriate ways to obtain the outcome that the 

satisfies the decision-maker. Previous studies have provided many insights into the 

kinds of computations underlying such adaptive decision-making process, including the 

ones I described in Chapter 2 (Maddox and Bohil, 1998; Voss et al., 2004; Diederich and 

Busemeyer, 2006; Whiteley and Sahani, 2008; Liston and Stone, 2008; Feng et al., 

2009; Summerfield and Koechlin, 2010; Gao et al., 2011; Leite and Ratcliff, 2011; 

Mulder et al., 2012; Fan et al., 2018; Waiblinger et al., 2019). However, it remains 

unclear where and how these computations are implemented in the brain. 

A prime candidate for mediating these computations is the basal ganglia 

pathway, which has been a focus of many modeling studies (Redgrave et al., 1999; 

Bogacz and Gurney, 2007; Kable and Glimcher, 2009; Rao, 2010; Ratcliff and Frank, 
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2012; Summerfield and Tsetsos, 2012; Ding and Gold, 2013; Hikosaka et al., 2014). 

This pathway is known to make separate contributions to perceptual decisions based on 

the interpretation of uncertain sensory evidence and value-based decisions that select 

among outcome options (Hikosaka et al., 1989; Nakamura and Hikosaka, 2006; 

Samejima and Doya, 2007; Lau and Glimcher, 2008; Kimchi and Laubach, 2009; Ding 

and Gold, 2010, 2012a; Cai et al., 2011; Cavanagh et al., 2011; Seo et al., 2012; 

Tachibana and Hikosaka, 2012; Tai et al., 2012; Kim and Hikosaka, 2013; Santacruz et 

al., 2017; Wang et al., 2018; Yartsev et al., 2018). However, its role in combining those 

different sources of information remains speculative. 

To begin to investigate this problem, we performed single-unit extracellular 

recordings in the caudate nucleus, the input station in the basal ganglia, while monkeys 

were performing the reward-biased visual motion discrimination task that we used in 

Chapter 2. In this chapter, I will focus on task- and decision-related information carried 

by the caudate nucleus before, during and after decision, and how they contribute to the 

reward-biased decision behavior. 

 

Results 

 We trained two monkeys to perform the same random-dot visual motion direction 

discrimination task as described in Chapter 2 (Figure 3.1 A). Both monkeys showed 

similar reward-biased behaviors as described in Chapter 2 (Figure 3.1 B). While the 

monkeys were doing the task, we recorded extracellularly from 142 well-isolated units in 

the caudate nucleus. For data analyses, we divided the task into 7 over-lapping epochs 

(indicated by the colored bars below the task timeline): 3 epochs before the sensory 
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stimulus presentation (blue), 2 epochs during decision-making (green) and 2 post-

decision epochs (orange and red). 

 

 

 

 

Figure 3.1 Monkeys showed biases toward choices associated with large reward. 

(A) Task design and timeline. Monkeys reported the perceived motion direction with saccades to one of 

the two choice targets. The motion stimulus was turned off upon detection of saccade. Correct trials 

were rewarded based on the reward context. Error trials were not rewarded. The color bars in the 

timeline indicate epoch definitions for the regression analysis of neural firing rates in Eq. 1.  

(B) Average choice behavior of two monkeys (n = 17,493 trials from 38 sessions for monkey C, 29,599 

trials from 79 sessions for monkey F). Filled and open circles: data from the two reward contexts. Lines:  

logistic fits. 
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Before sensory stimulus presentation, caudate neurons represent reward-context 

information. 

The behavioral task we used was setup so that the reward context (i.e., which 

target is associated with large/small reward) was cued by the colors of the two choice 

targets (blue/green indicated large/small reward) before the starting of a block. Once the 

block started, the color cues were removed and two identical red choice targets 

appeared. This protocol required the monkeys to remember the reward context of the 

block in order to combine this information appropriately with the sensory information 

presented in each trial. Within each block, the reward context remained the same from 

trial to trial, which implies that the information about the reward context should be 

present even before the onset of visual stimulus. 

We found that 26%  of the 142 caudate neurons that we recorded showed 

selective preference for one of the reward contexts (beta coefficient of the reward-

context regressor being significant in Eq. 1, t-test, p<0.05), including 11% that were 

more active in the block in which the contralateral correct choice was paired with large 

reward (such as the example neuron in Figure 3.2 A), and 15% that were more active in 

the block where the ipsilateral correct choice is paired with large reward (such as the 

example neuron in Figure 3.2 B). The proportion of reward-context modulation is higher 

than chance level, which is 5%.  
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Reward context-dependent pre-decision activity has been reported previously 

(Lauwereyns et al., 2002; Ding and Hikosaka, 2006). In the study by Ding and Hikosaka, 

monkeys were asked to make either a contralateral or an ipsilateral saccade toward the 

previously cued position (memory guided saccade (MGS) task). They used the same 

block-wise design of asymmetric-reward paradigm as in our task. They found that ~30% 

of caudate neurons recorded showed preference for one of the two reward context, and 

there were similar proportions of neurons preferring each reward contexts. These 

findings are consistent with ours. Lauwereyns and colleagues used the asymmetric-

reward design in a visually guided saccade (VGS) task, in which the monkey simply 

needed to look at the target located either on the contralateral or the ipsilateral side. The 

Figure 3.2 Reward context representations before visual stimulus onset. 

(A, B) Activity of two example units before visual stimulus onset.  Lines: average firing rate of all trials 

belonging to each of the two reward contexts. Firing rates were computed using a 200 ms running 

window (50-ms steps). Ribbon: standard error. Colors: reward context. Note that the neuron in (A) 

showed preference for the reward context where contralateral target is paired with large reward; the 

neuron in (B) showed preference for the other reward context. 

(C) Fraction of neurons representing the two reward contexts or not carrying reward context 

information. Total number of neurons: 142. Reward context-representing neurons were identified as 

having significant coefficient (t-test; p<0.05) for the reward context regressor in the linear regression 

(Eq.1 in Materials and Methods). 
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VGS task is mentally less challenging than the MGS task because the monkeys do not 

need to remember the saccade target location. Lauwereyns and colleague found a 

higher proportion of neurons showing pre-decision reward context modulation (76%) and 

most of those neurons preferred the context in which the contralateral target is paired 

with reward (they used reward/no reward, rather than large/small reward). The 

differences in percentage of reward context-modulated neurons reported by these three 

studies might due to differences in recording locations and/or sampling bias: for 

example, neurons active in the VGS task and are modulated by reward context might not 

be active in the MGS task or in our task. It is also possible that when a task is more 

cognitively demanding, the proportion of neurons representing the two reward-location 

associations might be more balanced.  

In the two previous studies, the neural activity representing reward context 

information tended to ramp up until the saccade location cue appeared. We saw similar 

ramping activity in only 33% neurons based on visual inspection (e.g. Figure 3.2 A and 

Figure 3.2-figure supplement 1 A and F), but we also saw other patterns (e.g. Figure 3.2 

B and Figure 3.2-figure supplement 1 B-E and G-I). A difference between our study and 

theirs is that, in their studies, the pre-cue period was fixed, so that the monkey could 

predict when the cue would be turned on, whereas in our study, that period was varied. 

This might contribute to a lack of consistent ramping pattern. 
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 In an earlier study using the equal-reward version of our motion-direction 

discrimination task, caudate neural activity before stimulus onset was shown to correlate 

with the monkeys’ bias towards a specific choice, in both correct and error trials(Ding 

and Gold, 2010). The correlation was stronger in low coherence trials, because those 

were the trials where pre-decision bias was less influenced by sensory information. Their 

results suggested that caudate might encode a choice-bias signal for the monkeys’ 

upcoming decision. We examined whether the choice-bias signal also existed in the 

caudate pre-stimulus activity in our task using multiple linear regression (Eq.1) in low 

coherence correct and error trials separately. We found only 1 neuron whose pre-

stimulus activity showed significant choice modulation in both correct and error trials. 

Figure 3.2-figure supplement 1. Diverse temporal dynamics of reward context representations 

before visual stimulus onset. 

(A) - (I) Activity of example units before visual stimulus onset. Same format as (A) and (B) in Figure 3.2. 

Top and bottom rows are neurons representing the two reward contexts. Note that neurons in (A) and 

(F) showed the classical ramping pattern. Neurons in other panels did not show ramping pattern. 
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This suggests that when the monkeys’ bias is more reward-driven, caudate pre-stimulus 

activity appears to represent the reward context, rather than choice bias. 

To summarize, caudate neurons can represent reward context information in 

some neurons before the onset of the sensory stimulus. This reward context information 

can be used to develop a bias towards the larger reward option, and bias the upcoming 

decision process, similar to the bias in the starting point of evidence accumulation. We 

found that the proportions of neurons representing each reward contexts were similar. In 

the basal ganglia, there are direct and indirect pathways that drive and suppress basal 

ganglia output, respectively (Purves, 2001). In the context of our results, it is possible 

that neurons representing the two reward contexts belong to the two separate pathways. 

Consequently, at the output station of basal ganglia, such as the substantia nigra pas 

reticulate (SNr) or the Globus Pallidus internal (GPi), the two pathways form a 

unidirectional bias to increase or decrease the starting point of evidence accumulation in 

the two reward contexts. Alternatively, if there are two accumulators for evidence 

supporting each choice, each of the accumulators could receive the information only 

from neurons representing one of the reward contexts.  

 

During motion-viewing, caudate neurons represent choice, coherence, reward size 

and reward context. 

 During the motion-viewing period, the monkeys were receiving sensory 

information about motion direction and strength and they combined that with the reward 

bias established by the reward context to form their decisions. Because we cued the 

monkey about the reward context in each block, as a decision is formed, the size of the 

reward associated with the choice would also be known. We assessed whether a neuron 
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carries information about the motion strength (i.e., coherence), the reward context, the 

monkey’s choice and the reward size associated with the choice (“reward size” for 

short), using a multiple linear regression (Eq. 2). 

We found that, during this period, the information about reward context was still 

represented in a significant proportion of caudate neurons (second row in Figure 3.3 A: 

the proportions of neurons with significant reward context-modulation (green line and 

circle) during the two motion-viewing epochs were above chance level (dashed line)). 

Reward context-modulation in some neurons was so obvious that one can deduce 

reward context change simply from the raw raster plot (two example neurons are shown 

in Figure 3.3-figure supplement 1). 

Representation about the motion coherence, choice and reward size information 

also emerged during this period (Figure 3.3 A: the proportions of neurons with significant 

modulation by coherence (third row), choice (first row) and reward size (blue line in the 

second row) during the two motion-viewing epochs were above chance level (dashed 

line)). The information was represented in more neurons in the later decision epoch (light 

green) than in the early decision epoch (dark green), consistent with the accumulation of 

sensory evidence and gradual formation of a decision (Roitman and Shadlen, 2002; 

Kiani et al., 2008; Yartsev et al., 2018).  
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Figure 3.3 Caudate activity reflected motion strength, reward context, choice, and the expected 

reward size associated with the choice. 

(A-D) Fractions of neurons showing significant coefficients for task-related regressors in the seven task 

epochs defined in Figure 3.1 A (see Eq. 2 for the formulation of regression). Horizontal dashed lines: 

chance levels. Coh: activity with non-zero coefficients for unsigned coherence values. Coh × Reward: 

activity with non-zero coefficients for the coherence × reward size interaction. Coh + Reward: activity 

with non-zero coefficients for coherence on trials with either choice and non-zero coefficients for either 

reward context or reward size. 

(E, F) Activity of two example neurons. Shades: coherence levels. Colors: reward context (A) and 

reward size (B). Firing rates were computed using a 200 ms running window (50-ms steps). Only correct 

trials were included. 
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During motion-viewing: sensory and reward information are combined in some 

individual caudate neurons, but not in the format of decision variable. 

Previous studies have established the role of caudate nucleus in evidence 

accumulation, reward processing and decision formation (Nakamura and Hikosaka, 

2006; Ding and Gold, 2010, 2012a; Yartsev et al., 2018). Are sensory information and 

reward-related information combined in individual caudate neurons? To answer this 

question, we searched for neurons with joint modulation by coherence and either reward 

context or reward size.  

We found that many neurons with such joint modulation (Figure 3.3 E and F, 

Figure 3.3-figure supplement 2 A-C). For example, the activity of the neuron depicted in 

Figure 3.3E showed three types of modulation: 1) more activity during the blocks when 

the contralateral choice was paired with small reward and the ipsilateral choice was 

Figure 3.3-figure supplement 1. Example neurons with reward context modulation. 

Rasters of the spiking activity of two example neurons. Cyan and red indicat transitions from Contra-

large reward context to Ipsi-large rewrd context and from Contra-large reward context to Ipsi-large rewrd 

context, respectively. It is obvious that the neuron on the left is more active in Ipsi-large reward context; 

the neuron on the right is more active in Contra-large reward context. The change in neural activity 

coincided well with block transitions in both neurons. 
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paired with large reward (green > purple); 2) more activity for trials with stronger versus 

weaker motion evidence (dark shade > light shade; i.e., higher versus lower coherence 

levels, respectively), particularly for trials with contralateral choices; and 3) more activity 

for trials with contralateral versus ipsilateral choices, both during motion viewing and 

around saccade onset (Contra > Ipsi). This neuron’s activity thus reflected a combination 

of reward context, motion strength, and eventual choice. The example neuron depicted 

in Figure 3.3F showed: 1) more activity on trials with higher coherence levels (dark 

shade > light shade); 2) a contralateral choice preference, both during motion viewing 

and around saccade onset (Contra > Ipsi); and 3) more activity when the choice was 

associated with large reward (red > blue). This neuron’s activity thus reflected choice, 

the strength of motion stimulus leading to the choice and the reward size expected for 

the choice. In the caudate population, the presence of neurons with the joint modulation 

was also above chance level (Figure 3.3 D). This suggests that, sensory information and 

reward information are combined in some individual caudate neurons. 

The combination of sensory and non-sensory information has been found in 

other brain areas, such as the lateral intraparietal area (LIP) (Rorie et al., 2010; Hanks et 

al., 2011). Hanks and colleagues found that LIP neural activity during decision-formation 

combined motion-direction evidence and the prior about how often the two alternatives 

could occur. Rorie and colleague found that LIP neural activity during decision-formation 

combined coherence and reward sizes of different options, similar to what we found in 

the caudate nucleus. In both studies, the LIP activity resembled the decision variable in 

the “accumulation to bound” framework. Is it possible that the caudate neural activity 

during decision formation also represents the decision variable? 
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A feature of decision variable in reaction time task is that, it converges to a 

common bound regardless of the sensory evidence strength (illustrated in Figure 3.3-

figure supplement 3 A). Therefore, neural correlates of a decision variable should have 

neural activity reaching a common level when aligned to decision onset, such as 

reported from some neurons in LIP and in the frontal eye field (FEF) (Roitman and 

Shadlen, 2002; Ding and Gold, 2012b). However, we did not find this pattern in the 44 

caudate neurons with joint modulation by coherence and reward based on the visual 

inspection of the neural activity (e.g. Figure 3.3 E and F, Figure 3.3-figure supplement 

C). The absence of the converge-to-bound pattern is consistent with a previous study 

using the same motion discrimination task but with equal reward (Ding and Gold, 2010). 

This suggests that sensory evidence and reward information are combined in the 

caudate nucleus but not in the format of decision variable. So what might be the function 

of such caudate neurons that combine sensory and reward information? 

Figure 3.3-figure supplement 2: Example neurons with different kinds of task-relevant 

modulations. 

Same format as Figure 3.3E and F. Bars above the curves indicate the epochs used for regression 

analysis results. Regression coefficients for each epoch are shown on the right. Bold: t-test, p<0.05. 

Note that colors indicate reward contexts in A-C and reward size in D-E. 

(A) A neuron with activity modulated by choice and coherence, but not reward-related quantities, during 

motion viewing. 

(B) A neuron with activity modulated by choice, reward context, expected reward size, coherence, and 

coherence-reward size interaction in trials with ipsilateral choices. 

(C) A neuron with different modulation patterns for activity during and after motion viewing.  

(D) A neuron with post-decision activity modulated by choice, expected reward size and coherence. 

(E) A neuron with post-decision activity modulated by choice and coherence-reward size interaction in 

trials with ipsilateral choices. 
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The combination of sensory and reward information by the caudate neurons 

might play an important role in the reward-biased perceptual decision-making process. 

To explore this, in a subsequent study, we applied electric micro-stimulation to the 

caudate nucleus during the motion-viewing epoch (Doi et al., 2019). The micro-

stimulation induced changes in the decision behavior that were different in the two 

reward contexts, suggesting that caudate neural activities during decision-making 

directly influences how sensory and reward information are combined. Further modeling 

analyses of the data showed that the micro-stimulation effect could be explained by 

coordinated changes in the drift-rate and the decision rule in the accumulation-to-bound 

framework. Taken together, these results suggest that the caudate nucleus does not 

represent the decision variable that directly links evidence accumulation to specific 

Figure 3.3-figure supplement 3: Comparison between decision variable and caudate neural 

activity. 

(A) Simulated decision variable aligned to decision onset. 

(B) Example neural activity aligned to saccade onset. Same neuron as in Figure 3.3 E. 



95 

 

decisions, but rather modulates the kinds and magnitudes of biases and eventually 

shapes the decisions. 

 

Post-decision: sensory and reward information remains combined in caudate 

neurons, possibly for decision evaluation. 

 During the decision formation epoch, we found that the caudate nucleus 

represented decision-related information, such as coherence, reward context, choice 

and reward size. In the post-decision period, this information was still represented and 

by even larger proportion of caudate neurons (Figure 3.3 A: peri-saccade (orange) and 

post-saccade (red) epochs).  The proportion of neurons with joint modulation by reward 

and coherence was also slightly larger in the post-decision period than in the pre-

decision period (57 and 62 for the peri- and post-saccade epochs, respectively, 

compared to 44 for the decision epoch). Of these neurons, 38% (in both peri- and post-

saccade epochs) preferred high coherence for one choice and low coherence for the 

other (e.g. Figure 3.3-figure supplement 1 C), providing a memory of the amount of 

evidence supporting the specific choice. The other 62% preferred high or low coherence 

for both choices (e.g. Figure 3.3 F and Figure 3.3-figure supplement 1 D). These 

neurons could reflect the difficulty of the decision, because task difficulty is independent 

of the specific choice being made. This kind of choice-independent coherence-

modulation is consistent with the finding in a previous study using the equal-reward 

version of the same task. In addition, we found that, during this time period, a significant 

population of caudate neurons also represented the reaction time (RT) of the decision 

(Figure 3.4). Because reaction time is modulated by both coherence and reward size 
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(Chapter 2), these results suggest that sensory evidence and reward information were 

combined in the post-decision caudate neural activity as well.  

 

 Unlike the neural activity during decision-making, post-decision activity could no 

longer influence the current decision. However, our results, as well those from several 

other studies, have found that caudate nucleus continues representing task- and 

behavior-related variables after decisions, such as task difficulty and choice value (Lau 

and Glimcher, 2008; Ding and Gold, 2010; Yanike and Ferrera, 2014). It is possible that 

information represented during this period could be used for behavioral monitoring and 

evaluation.  

This hypothesis is plausible, because the choice-independent coherence 

modulation, described in the paragraph above, could provide information about task 

difficulty, which is important for evaluation. In RT task, decision accuracy has been found 

to decrease with decision time, because longer decision times tend to associated with 

Figure 3.4 Reaction time (RT) is 

represented in caudate late-

decision and post-decision 

activities. 

Top: Same timeline as in Figure 3.1 

Bottom: Fractions of neurons 

showing significant coefficients for 

RT-related regressors in the seven 

task epochs (see Eq. 3 for the 

formulation of regression). 

Horizontal dashed lines: chance 

levels. 

Note that large proportion of 

caudate neurons showing RT-

modulation in epoch 5, 6 and 7. 



97 

 

more difficult trials(Hanks et al., 2011). Therefore, the RT-modulated neurons could 

provide information about decision accuracy. In addition, reward expectation could be 

computed by combining decision accuracy with the reward size of the choice (which can 

be provided by the reward size-modulated neurons). In sum, sensory evidence and 

reward information were combined in individual caudate neurons, which could be used 

for decision evaluation. 

 

Discussion 

We recorded neural activity in the caudate nucleus of two monkeys making 

reward-biased perceptual decisions. We found that multiple task- and decision-related 

features were represented before, during and after the decision. The emergence of 

these features was consistent with the timeline of the task. For example, reward context 

was always available throughout the trial, and we found reward context-representation 

before, during and after the decision. Motion coherence was only represented after 

motion stimulus onset. Choice and its associated reward size representations emerged 

as sensory evidence was accumulated and combined with reward information to form a 

decision. 

We also found single neurons that jointly represented sensory and reward 

information both during and after decision, which supports the hypothesis that caudate 

combines multiple sources of information in support of a choice.   

 

Information representation before stimulus onset 

We found that before the presentation of sensory information, caudate nucleus 

represented the reward context information, a phenomenon that has also been observed 
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in other studies with a similar block-design for reward context manipulation (Lauwereyns 

et al., 2002; Ding and Hikosaka, 2006). This reward context information could be used to 

establish a bias in the baseline of evidence accumulation, similar to changing the 

starting value or decision threshold in the accumulation-to-bound model. In the context 

of the computational model, similar bias (prior) has been shown to be induced by 

manipulating stimulus probability (Hanks et al., 2011; Mulder et al., 2012), although 

those studies have not recorded from caudate neurons during such manipulation. It 

would be interesting to know whether the caudate nucleus only represents reward-

related bias or could also represent sensory prior. 

 

Information representation during decision 

During decision, we found that sensory evidence and reward information are 

combined in the caudate nucleus, which could be used for decision formation. 

Subsequent micro-stimulation experiments have confirmed the direct involvement of 

caudate nucleus in combining sensory and reward information when making complex 

decisions(Doi et al., 2019). However, as shown in the results section, the activity of 

caudate neurons that jointly represented sensory evidence and reward information did 

not resemble a decision variable that directly links evidence accumulation with specific 

decisions. Meanwhile, other brain areas in the parietal and prefrontal cortex have been 

found to compute decision variables that represent the combination of sensory and non-

sensory information. In monkeys, decision variable-like signals that combines sensory 

evidence with reward-bias or prior, have been found in area LIP(Rorie et al., 2010; 

Hanks et al., 2011). In human, Model-based fMRI studies found decision variable-like 

BOLD signals in areas like the inferior parietal lobule, superior parietal lobule, lateral 



99 

 

frontopolar and orbitofrontal cortices, although without the temporal precision of single-

unit recording(Summerfield and Koechlin, 2010).  

From these findings, it appears that the decision-making process is complex and 

involves multiple brain areas. Our results suggest that the role of the caudate nucleus 

might be to encode non-decision variable information. Such signals could then modulate 

the balance between sensory evidence and reward bias and influence the evolution of 

decision variables in other parts of the brain.   

 

Information representation after decision 

We found that after a decision was made, sensory and reward information were 

still represented in the caudate nucleus. Such information can no longer influence the 

current decision, but they might be used for decision performance evaluation. Examples 

of such evaluation include: (a) computation of task difficulty from neurons with 

coherence-modulation; (b) computation of decision accuracy from neurons with RT-

modulation and (c) computation of reward expectation from neurons with both 

coherence- and reward-modulation.  

In other brain areas, some post-action neural activities have been previously 

reported to represent performance monitoring quantities. For example, in the frontal eye 

field, some neurons’ post-decision activity was found to correlate with the correctness 

and difficulty of current trials in a speed categorization task (Teichert et al., 2014). In a 

motor learning task, the post-action neural activity in monkey area LIP was found to 

encode the error of the motor execution(Zhou et al., 2016). Post-decision neural activity 

in monkey ventral lateral prefrontal cortex (vlPFC) was found to encode information 

related to the current decision as well as choice bias in the next decision in an auditory 
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decision task(Tsunada et al., 2019). Peri-action activity in the prelimbic region of rat 

medial prefrontal cortex (PL) correlated with expected value(Lak et al., 2019). In both 

monkey vlPFC and rat PL, perturbing the neural activity via microstimulation and 

optogenetic silencing, respectively, did not influence the current decision, but influenced 

behavior in subsequent trials, suggesting that these monitoring signal might guide 

behavioral adjustments in the future. It is possible that, like these brain areas, the 

caudate post-decision activity might be used for evaluating current performance and 

adjusting future actions.  

In the next chapter, I will examine this hypothesis in detail by focusing on 

whether and how caudate post-decision activity might represent two evaluative 

quantities—confidence and reward expectation.  

 

Materials and methods 

Subjects 

Two of the three monkeys in Chapter 2 (monkey C and monkey F) were used for the 

experiments in this Chapter. 

Behavioral task  

Same as described in Chapter 2.  

Data acquisition 

Eye position was monitored using a video-based system (ASL) sampled at 240 Hz. 

Single-unit recordings focused on putative project neurons (Ding and Gold, 2010). We 

searched for task-relevant neurons while the monkeys performed the equal-reward 

motion discrimination task with horizontal dots motions and determined the presence of 

task-related modulation of neural activity by visual and audio inspection of ~10–20 trials. 
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For analyses of neural response properties in recording sessions, only well-isolated 

single units were included. Neural signals were amplified, filtered and stored using a 

MAP acquisition system (Plexon, Inc.), along with time-stamped event codes, analog 

eye position signals and trial parameter values. Single unit activity was identified by 

offline spike sorting (Offline Sorter, Plexon, Inc.).  

Neural data analysis 

For each single unit dataset, we computed the average firing rates in seven task epochs 

(Figure 3.1A): three epochs before motion stimulus onset (400 ms window beginning at 

target onset, variable window from target onset to dots onset, and 400 ms window 

ending at motion  onset), two epochs during motion viewing (a fixed window from 100 

ms after motion onset to 100 ms before median RT and a variable window from 100 ms 

after motion onset to 100 ms before saccade onset), a peri-saccade 300 ms window 

beginning at 100 ms before saccade onset, and a post-saccade 400 ms window 

beginning at saccade onset (before feedback and reward delivery).  

 

Identify reward context modulation before motion stimulus onset (Figure 3.2):  

For each unit, the following multiple linear regression was performed on the average 

firing rates in epoch 2 in all trials. 

 (Eq.1) 

where ,  

, 
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. 

Significance of non-zero coefficients was assessed using t-test (criterion: p=0.05). 

 

Identify directly measured decision-related modulations (Figure 3.3 A):  

For each unit, the following multiple linear regression was performed on the average 

firing rates in correct trials for each task epoch separately. 

 

  

,     

 (Eq. 2) 

where ,  

, 

,  

, 

and . 



103 

 

Significance of non-zero coefficients was assessed using t-test (criterion: p=0.05).  

 

Identify RT-related modulations (Figure 3.4): 

For each unit, the following multiple linear regression was performed on the average 

firing rates in all trials for each task epoch separately. 

 
  

  

(Eq. 3) 

where ,  

, 

,  

, 

and . 

Significance of non-zero coefficients was assessed using t-test (criterion: p=0.05).   

RT-modulated neurons were identified as neurons with significant 𝞫RTContra , 𝞫RTIpsi, 

𝞫RewRTContra or 𝞫RewRTIpsi.  

 



104 

 

Behavioral analysis 

A logistic function was fitted to the choice data for all trials: 

 ,    (Eq. 4) 

Where  is the signed motion coherence, 

 , 

, 

, 
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CHAPTER 4: CONFIDENCE AND REWARD EXPECTATION ARE 

REPRESENTED IN CAUDATE POST-DECISION ACTIVITY 

 

Yunshu Fan, Takahiro Doi, Joshua I. Gold, Long Ding 

 

Introduction 

In chapter 3, I discussed the possibility that the caudate post-decision activity 

could carry information for decision monitoring and evaluation. In this chapter, I will focus 

on examining whether the caudate neurons could represent two specific evaluative 

quantities – confidence and reward expectation. 

Confidence is the subjective belief, prior to feedback, that a decision is correct 

(Kiani et al., 2014). It is particularly relevant in the context of making a decision based on 

unreliable or noisy evidence, and it could influence how to act subsequently upon the 

current decision. For example, I see a dark patch on the ground in front of me. Knowing 

that my eyesight is very good, I decide quite confidently that it is some darker-colored 

soil, not a puddle of water, so I know stepping on it would be fine. If my eyesight is pretty 

bad, after staring at it for a while, I might still reach the same conclusion, but my 

confidence of that conclusion would be quite low, and I might recommend people to 

jump over it, in case it is a puddle of water. Studies on confidence in monkeys making 

categorical judgement on noisy sensory stimulus usually set up as such: in some trials, 

in addition to the two perceptual categories, monkeys were given the chance to choose 

a third safe option that guarantees a reward smaller than the amount they would get if 

they pick the correct choice. They found that those monkeys were more likely to choose 
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the option with the guaranteed smaller reward when the monkeys were less confident 

about the stimuli (Kiani and Shadlen, 2009; Fetsch et al., 2014). Other studies in both 

monkeys and rats found that they were more likely to abort an uncertain decision in 

order to reinitiate a new trial (Kepecs et al., 2008; Yanike and Ferrera, 2014). Post-

decision confidence could provide information about how the subject should adjust 

subsequent behavior.   For example, uncertainty could modulate the learning rate used 

for belief updating in changing environments modulate learning rate (Yu and Dayan, 

2005; Nassar et al., 2012).  

Reward expectation is the product of the probability of obtaining a reward and the 

magnitude of the reward. According to the expected utility theory, in value-based 

decision-making paradigm, optimal decision should favor the option with the higher 

reward expectation (Rangel et al., 2008). This theory has been verified in animal 

matching behavior tasks (Lau and Glimcher, 2008). Post-decision reward expectation 

could be used for computing the “reward prediction error”, a key quantity in the 

reinforcement learning framework (Sutton and Barto, 1998; Samejima et al., 2005; Daw 

and Doya, 2006; Schultz, 2015). The reward prediction error, hence reward expectation, 

is also useful for detecting environment change in order to adapt the behavior and 

strategy accordingly (Behrens et al., 2007; Nassar et al., 2010; Mathys et al., 2011; 

Meder et al., 2017).  

Confidence and reward expectation are closely linked, because, from the 

decision maker’s point of view, the probability of getting the reward is essentially the 

estimation of the probability of a decision being made is correct, in other words, 

confidence. Therefore, reward expectation becomes a scaled version of confidence, with 

reward magnitude being the scalar. When there is no internal bias, confidence of 
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choosing each option should be the same. When the two options are associated with the 

same magnitude of reward, confidence and reward expectation are perfectly correlated. 

This perfect correlation between confidence and reward expectation poses challenge to 

distinguish their individual behavior effects and neural correlates. Therefore, confidence 

and reward expectation are usually not distinguished in the same study. 

With our reward-biased visual motion discrimination task (the same task as in 

Chapter 2 and 3), confidence is no longer perfectly correlated with reward expectation, 

thus allowing us to differentiate their individual effects and neural representations. In this 

chapter, I will first present how we compute confidence and reward expectation and key 

features of these quantities under equal-reward, no-bias condition. Then I will show how 

reward asymmetry and reward bias enable us to differentiate confidence from reward 

expectation. Finally, I will examine the behavioral effects of confidence and reward 

expectation in our monkeys and the neural representations of these quantities in the 

caudate nucleus. 

 

Results 

Reward asymmetry-induced bias can help distinguish between confidence and 

reward expectation. 

Because we did not have direct measurements of the monkeys’ confidence 

levels, we first computed confidence and reward expectation from the monkeys’ 

behavioral performance, based on the following assumptions: (1) the monkeys’ decision 

processes were approximated by the drift-diffusion model as described in Chapter 2; (2) 

the monkeys did not have direct access to the motion coherence in each trial, because 

all coherence levels were randomly interleaved; and 3) their confidence depended on 
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the choice they made and the time it took to make that decision, marginalized over all 

possible coherence levels. Reward expectation was computed as a product of 

confidence and reward magnitude of the chosen option (for equal-reward condition, the 

reward magnitudes were set to 1; for asymmetric-reward condition, the reward 

magnitudes were normalized by the magnitude of the small reward). 

We then verify that the confidence we computed follows the same pattern as the 

confidence measured in previous studies. Under the no-bias condition, the confidence 

we computed decreases as a function of decision time and increases as a function of 

motion coherence (Figure 4.1 D and J). These patterns are consistent with previous 

results based on confidence measured directly in human subjects performing an equal-

reward version of our decision task (Kiani et al., 2014: Figure 2) or inferred from 

behavior performance (Kepecs et al., 2008; Kiani and Shadlen, 2009; Kiani et al., 2014; 

Lak et al., 2019). As expected under equal-reward condition, the reward expectation 

follows the same pattern as confidence (Figure 4.1 G and M), making the two quantities 

indistinguishable. 

In contrast, with reward asymmetry-induced biases, confidence and reward 

expectation are no longer perfectly correlated (Figure 4.1 middle and right columns). 

Confidence for small-reward choices is overall higher than that for large-reward choices 

(Figure 4.1E, F, K and L: blue curves are above red curves), because a small-reward 

choice requires more sensory evidence to support it, therefore is more likely to be 

correct. This difference in confidence increases with bias (compare the distance 

between red and blue curves for dark and light shades). Reward expectation, on the 

other hand, can be lower for small-reward choices with high confidence than for large-

reward choices with low confidence, depending on the reward ratio (Figure 4.1 H, I, N 
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and O: the blue curves are under the red curves). Given the same reward ratio, the 

difference in reward expectation may decrease with bias.  These results suggest that, 

the presence of reward-bias in the decision-making process and the difference in reward 

magnitude of the two choices reduce the correlation between confidence and reward 

expectation, making them partially distinguishable in the same experiment. 
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Because reward-bias in the DDM could be generated by two different 

mechanisms: biasing the drift-rate (me-bias) and biasing the decision-rule (z-bias), and 

because the monkeys used both kinds of biasing mechanisms (as shown in Chapter 2), 

we examined how me-bias and z-bias influence confidence and reward expectation 

respectively. For confidence, me-bias tends to magnify the difference between small- 

and large-reward options more at longer decision time and for lower coherences (Figure 

4.1 E and K). In contrast, z-bias tends to increase the confidence difference between 

small- and large-reward options more at shorter decision time and for higher coherences 

(Figure 4.1 F and L). For reward expectation, the patterns are almost the opposite: me-

bias tends to magnify the difference between small- and large-reward options more at 

shorter decision time and for higher coherences (Figure 4.1 H and N), whereas z-bias 

tends to increase the confidence difference between small- and large-reward options 

Figure 4.1. Confidence and reward expectation depended on decision time, motion coherence, 

and reward asymmetry-induced biases.  

(A- C) Psychometric functions of DDM- simulated decision behaviors in three scenarios:  no-bias, equal 

reward (A), me-bias to contralateral (large reward) option (B), z-bias to contralateral (large reward) 

option (C).  Circles indicate the coherence levels that were interleaved in the simulated trials. Black/gray 

color in B and C: larger/smaller reward biases. DDM parameters used are: a=2; k=8; tnd = 0; fixed bound; 

me = 0.08 and 0.15 for smaller and larger me-bias, respectively; z = 0.76 and 0.86 for smaller and larger 

z-bias, respectively. me and z were chosen to generate similar amount of choice-bias (horizontal shift of 

the psychometric function at chance level). 

(D-F) Confidence as a function of decision time, computed from the simulated behaviors in A-C, 

respectively. Red/Blue: trials choosing the large/small reward options. Darker/lighter shades: behavior 

with larger/smaller reward bias (corresponds to the black/gray psychometric functions in B and C).  

(G-I) Reward expectation as a function of decision time. Same format as D-F. LR: large reward; SR: 

small reward. Reward magnitude = 1.5 and 1 for large and small reward options, respectively. 

(J-O) Confidence (in J-L) and reward expectation (in M-O) as a function of motion coherence, computed 

from the simulated behaviors in A-C, respectively. Same format as D-F. 
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more at longer decision time and for lower coherences (Figure 4.1 I and O). These 

different patterns further suggested that confidence and reward expectation are two 

distinguishable quantities in our experiment.  

 

Confidence and reward expectation influenced monkeys’ subsequent decision 

behavior in some sessions 

Confidence and reward expectation can be used in conjunction with 

feedback/reward outcome to evaluate how well the decision was made and whether 

adjustments in subsequent decisions are necessary. Inspired by a recent study 

demonstrating confidence-dependent post-error adjustments in well-trained monkeys 

(Kiani’s post-error paper), we examined whether the monkeys on our task used 

confidence or reward expectation to adjust their subsequent decisions. In other words, 

we assessed the degree to which each evaluative quantity computed from the previous 

trial affected the monkeys’ choice and reaction time for the current trial. Due to the small 

numbers of error trials, we focused our analysis of these sequential effects on only 

decisions following correct trials.   

We used model fitting with logistic functions to measure two potential sequential 

effects on the monkeys’ choice behavior: (1) increase or decrease the tendency to 

choose the large-reward options (“reward bias”), reflected as opposite-direction shifts in 

the psychometric functions of the two reward contexts (Figure 4.2 B, right panel), and (2) 

increase or decrease the tendency to choose the contralateral option, regardless of its 

reward size (“choice bias”), reflected as same-direction shifts in the psychometric 

functions of the two reward contexts (Figure 4.2 C, right panel). We used model fitting 

with linear functions to measure two potential sequential effects on the monkeys’ RT 
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behavior: (1) speed up or slow down the reaction time overall for both large- and small-

reward choices (“baseline RT”), reflected as same-direction shifts (Figure 4.2 D, right 

panel) and (2) increase or decrease the difference in RT between large- and small-

reward choices (“reward bias in RT”), reflected as opposite-direction shifts of the RT 

function for large- and small-reward choices (Figure 4.2 E, right panel). For each of the 

two evaluative quantities, we compared the goodness-of-fits of four models in order to 

identify the specific kinds of sequential effect: 1) “full model”: including effects on choice 

bias, reward bias, baseline RT, and reward bias in RT; 2) “choice-only”: including only 

effects on choice and reward biases; 3) “RT-only”: including only effects on baseline RT 

and reward bias in RT; and 4) “No-seq”: no sequential effects. We then compared the 

best-fitting models with confidence-dependent sequential effects and reward 

expectation-dependent sequential effects to assess whether the sequential effects in the 

monkeys’ behaviors were more likely to be confidence- or reward expectation-related.  

 

 

Of the 117 sessions, we found confidence- and reward expectation-related 

sequential effects in 28 and 39 sessions, respectively. For each session, the sequential 

effect could be on choice alone, RT alone or both (different shades in the middle and 

Figure 4.2 Confidence- and reward expectation-related sequential influence on monkeys’ choice 

and RT.  

Sessions with no sequential effect (top row, black), confidence-related sequential effects (middle row, 

“Conf-seq”) and reward expectation-related sequential effects (bottom row, “RewExp-seq”). Shades: 

sessions with sequential effects on choice alone/ choice and RT/ RT alone.   
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bottom rows in Figure 4.2 A). This suggested that both confidence and reward 

expectation influenced monkeys’ subsequent decisions in subsets and separate 

sessions.  

We then examined if any task or behavior parameter could predict whether the 

monkey had confidence-related, reward expectation-related, or no sequential effects. 

For example, we hypothesized that the monkeys tended to have no sequential effects 

when their perceptual sensitivity is high. To examine this hypothesis, we examine 

whether the cumulative distributions of sessions with no sequential effects (Figure 4.2-

figure supplement 1, red lines in the first column) over a range of perceptual sensitivity is 

different from the cumulative distributions of sessions with confidence-related (orange) 

and reward expectation-related (blue) sequential effects, and is more skewed towards 

high motion sensitivity. We found that in monkey F, the monkey tended to have reward 

expectation-related sequential effects when his motion sensitivity is high (blue curve 

skewed towards right) and no sequential effect when his motion sensitivity is low (the 

blue and red distribution functions are significantly different: two-sample Kolmogorov-

Smirnov test, p<0.05). This monkey could have confidence-related sequential effect 

regardless of whether his motion sensitivity is high or low (the orange distribution 

function is not significantly different from either the red one or the blue one: two-sample 

Kolmogorov-Smirnov test, p>0.05). For monkey C, we did not see any significant 

correlation between the monkey’s motion sensitivity and whether the monkey had 

sequential effect (Figure 4.2-figure supplement 1 bottom left panel. All three distributions 

are the same, Kolmogorov-Smirnov test), which is different from monkey F. Other task 

parameters we examined, including whether being an early or late session, the ratio 

between large and small reward, and the correlation between reward expectation and 
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confidence, could not predict whether the monkeys had sequential effect or not. 

 

 

Despite the difference between the two monkeys, we found that in well-trained 

monkeys, confidence and reward expectation still had influence on their subsequent 

decision behaviors. This suggests that neural correlates of confidence and reward 

expectation should exist somewhere in the brain. Next we examine whether they exist in 

the caudate nucleus. 

  

Figure 4.2-figure supplement 1. Whether a session has no sequential effect (NoSeq), confidence-

related sequential effects (Conf-seq) or reward expectation-related sequential effects (RewExp-

seq), cannot be predicted by the sessions’ motion sensitivity, whether the session was earlier or 

later in data collection, ratio between large and small reward sizes, or the correlation strength 

between confidence and reward expectation.  

X-axes: values of the possible predictors ordered from small to large. Y-axes: empirical cumulative 

distribution functions of the sessions with no sequential effects, confidence-related and reward 

expectation-related sequential effects. 
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Confidence and reward expectation are both represented in caudate post-decision 

activity. 

In chapter 3, Figure 3.3 and Figure 3.4 showed that caudate post-decision 

activity was modulated by motion coherence, reward size and decision time. Figure 4.1 

showed that confidence and reward expectation are also jointly influenced by these 

three parameters. These results motivated us to consider the possibility of caudate 

neurons representing these two specific evaluative quantities.  

Indeed, we found neural correlates of confidence and reward expectation in 

some caudate neurons. Figure 4.3 showed four examples: the neuron in (A) was more 

active when choosing small reward option, it is also more active in high coherence and 

short decision time trials. The neural activity patterns resemble confidence in that 

session. The neuron in (B) behaved almost the opposite, preferring large-reward option, 

low coherence and long decision time, which is similar to the negative of confidence. 

The neuron in (C) was more active when choosing large reward option, and preferred 

high coherence and short decision time, resembling the pattern of reward expectation. 

The neuron in (D) preferred small-reward option, low coherence and long decision time, 

which is similar to the negative of reward expectation in that session.  
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To examine the prevalence of confidence and reward expectation representation 

among the caudate population, we used correlation analysis on the neurons’ post-

decision activity. Because confidence and reward expectation both varies with decision 

time, we first identified the neurons whose post-decision activity to the preferred 

direction showed decision time modulation (57 out of 142 neurons, Spearman correlation 

between epoch-averaged firing rate and decision time, p<0.05). For these neurons, we 

then examined if their firing rate was correlated with confidence or reward expectation. 

Partial-correlations were used to account for the correlation between confidence and 

reward expectation. We found subpopulations that represented the positive and negative 

values of both confidence (red and blue bars in the top row in Figure 4.4 A) and reward 

expectation (red and blue bars in the bottom row in Figure 4.4 A), corresponding to each 

of the examples shown in Figure 4.4. Moreover, confidence and reward expectation 

appear to be predominantly represented by distinct subpopulations of caudate neurons: 

only 17 neurons’ activity showed correlation with both confidence and reward 

expectation (pink circles in Figure 4.4 B), fewer than the number of neurons whose 

Figure 4.3 Example post-decision caudate neural activities that resemble confidence and reward 

expectation. 

Activity of four example neurons that resembles positive reward expectation (A), negative reward 

expectation (B), positive confidence (C) and negative confidence (D). Top row: mean firing rate from 0.2s 

before saccade to 0.4s after saccade. Shades: coherence levels. Colors: reward size. SR: small-reward 

choices; LR: large reward choices. Firing rates were computed using a 200 ms running window (50-ms 

steps). Middle row: average firing rate (left) and confidence or reward expectation (right) as a function of 

coherence. Dots are the coherence levels used in that session. Ribbon: standard error. Bottom row: 

average firing rate (left) and confidence or reward expectation (right) as a function of decision time. 

Decision time was obtained from DDM fits and grouped into five quantiles. The average firing rate (dots) 

and standard error (ribbon) was computed from trial within each quantile. “Preferred” indicate the choice 

with higher firing rate on average. The time window used for computing average firing rate for middle and 

bottom rows are indicated by the green bars on the top row. Only correct trials were included. 



123 

 

activity correlated with only confidence or reward expectation (36 neurons, dark and light 

blue circles in Figure 4.4 B). Therefore, confidence and reward expectation are both 

represented in individual caudate neurons. 

 

 

Although we found sessions with confidence- and reward expectation-related 

sequential effects, and neurons representing confidence and reward expectation, we 

could not find strong link between the neural activity and sequential behavior (Table 4.1): 

in sessions without sequential effect, we recorded both confidence-representing neurons 

and reward expectation-representing neurons, suggesting that the caudate nucleus 

encodes evaluative information even if it is not used behaviorally.  In sessions with 

confidence-related sequential effects, we found neurons representing reward 

Figure 4.4 Confidence and reward expectation correlate with the post-saccade activity in 

subpopulation of caudate neurons.  

(A) Top row: Spearman partial correlation between confidence and post-decision neural activity in the 

preferred direction (FR), accounting for additional correlation with reward expectation (Corr(FR, Conf | 

RewExp)). Bottom row: Spearman partial correlation between reward expectation and post-decision 

neural activity in the preferred direction, accounting for additional correlation with confidence (Corr(FR, 

RewExp | Conf)). Each column in the heatmap corresponds to the same unit. Color bar: Spearman 

correlation coefficient (non-significant correlation coefficients (p>=0.05) are plotted as white.  

(B) Scatterplot of Spearman partial correlation coefficients for the decision time-modulated neurons. 

Colors indicate significant partial correlation between neural activity and confidence (light blue), reward 

expectation (dark blue), both (red) and neither (yellow). 

Filled circles correspond to example neurons in Figure 4.3. 
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expectation in their neural activity. Similarly, in sessions with reward expectation-related 

sequential effects, we found neurons whose activity represented confidence. This 

phenomenon is possible if confidence and reward expectation are represented 

simultaneously. However, this possible explanation needs to be verified using 

simultaneous recording in large caudate populations. 

Table 4.1. Distribution of confidence- and reward expectation-representing neurons in sessions with 

confidence-related sequential effects, reward expectation-related sequential effects and no 

sequential effects. 

 

Sessions with 
Conf-related 

sequential effect 

Sessions with 
RewExp-related 
sequential effect 

Sessions without 
sequential effect 

# of Neurons 
representing Conf 

6 7 9 

# of Neurons 
representing RewExp 

7 4 4 

# of Neurons 
representing both 

2 7 3 

 

Discussion 

Post-decision evaluation is important for learning and adaptive decision-making. 

By comparing the expectation and outcome, one can learn the statistical structure of the 

environment and the most rewarding actions and strategies. Even when a behavior is 

well learned, constant evaluation could help detect changes in the environment or our 

performance level, so that we could make necessary adjustments in time. Meanwhile, 

confidence could provide context in which prediction error can be appropriately 

interpreted. For example, a large prediction error with low confidence could be due to the 

task being difficult, whereas a large prediction error with high confidence might suggest 

changes in the environment (Purcell and Kiani, 2016) 
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Using a perceptual decision task that induced reward-driven biased decision 

behavior, we were able to partially dissociate confidence and reward expectation, two of 

the key evaluative quantities. We found that both confidence and reward expectation 

could influence subsequent decisions. Single-unit extracellular recordings showed that 

these two evaluative quantities were represented in the post-decision activities of 

subpopulation of the caudate nucleus.  

Confidence and reward expectation are usually highly correlated and therefore 

indistinguishable in the same task. We found that the co-presence of reward magnitude 

asymmetry and reward-biased behavior could reduce their correlation, making them 

distinguishable. The key to this decorrelation is that small-reward choices tend link to 

high confidence, but could still lead to low reward expectation, if the reward magnitude is 

too low. However, to what extend are confidence and reward expectation dissociable 

depends on the magnitude of reward bias and the magnitude of reward asymmetry. If 

the difference between large- and small-reward choices is too big, or if the reward 

asymmetry is too small, confidence and reward expectation will still be highly correlated. 

One extreme scenario is when the behavior was biased by prior.  For example, if the 

leftward motion appears more often, but the reward magnitudes of the two choices are 

the same, the subject might develop a prior-driven bias towards the left. In this case, his 

leftward choice would correspond to lower confidence, and the rightward choice would 

correspond to higher confidence. However, because the two choices have the same 

reward size, the leftward choice would also correspond to lower reward expectation, and 

the rightward choice would correspond to higher reward expectation. Therefore, to what 

extend are confidence and reward expectation correlated in the same task requires 
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careful examination. Still, our task provides a paradigm in which the two quantities can 

be distinguished. 

Our results regarding the sequential effects and neural representation of 

confidence and reward expectation hinge on the assumption that the confidence we 

computed approximates the monkeys’ actual confidence. Although the confidence we 

computed showed patterns consistent with previously measured confidence (Kiani et al., 

2014), the study could be improved by having a direct behavioral measurement of 

confidence or reward expectation, against which our computation could be verified. For 

tasks using animal subjects, it might be challenging to instruct monkeys to report their 

confidence on a scale (like in the human study by Kiani et al, 2014). Post-decision wager 

and anticipatory licking could still be used to reflect the animal’s reward expectation 

(Watanabe et al., 2001; Kiani and Shadlen, 2009; Fetsch et al., 2014). The setup with 

direct measurement would also allow us to examine whether the caudate nucleus has 

causal link with confidence or reward expectation computation. 

Although many studies have shown sequential effect and performance 

improvement based on reward prediction error, those are usually in environment with 

hidden structures that needs to be learned by accumulating evidence across trials, or in 

changing environments in which the animal has to figure out when the change happens, 

or when the reward structure needs to be learned (Botvinick et al., 2011; Seo et al., 

2012; Lak et al., 2019). Our task was designed in a way that all the information about the 

task is available in the current trial: the sensory information in each trial is independent 

from the next, and reward context changes were cued to the animals. As a result, in 

many sessions our monkey did not show any sequential effects. However, there could 

be many reasons for the presence of sequential effects in some sessions. First, 
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sequential effects might be hardwired into our behaviors, therefore hard to suppress, 

even if it is not the optimal strategy, such as confirmation bias (Talluri et al., 2018). 

Second, the monkeys could use past confidence and reward expectation to assess their 

performance and adjust their decision strategies when necessary. This is particularly 

possible given that the monkeys needed to calibrate sensory-encoding bias and 

decision-rule bias according to the reward function gradient, and they needed to know 

when is good enough. Finally, the monkeys’ arousal level might be different from session 

to session. It has been shown that arousal level is linked with the balance between 

exploration and exploitation (Stephens and Krebs, 1986; Behrens et al., 2007), as well 

as the level of task engagement (Aston-Jones and Cohen, 2005). It is possible that when 

the animals were more alert, they were more likely to use confidence and reward 

expectation for exploring better strategies.  

Post-decision activity in the caudate nucleus have been found to represent 

various kinds of monitoring- and evaluation-related information, including the value of the 

chosen option in non-perceptual decisions (Cromwell and Schultz, 2003; Lau and 

Glimcher, 2008), the difficulty level of perceptual decisions (Ding and Gold, 2010) and 

categorical decision boundary (Yanike and Ferrera, 2014). Our results added to the 

existing knowledge by showing that caudate nucleus can also carry confidence and 

reward expectation information in different caudate neurons. Future work with large 

population recording would be able to assess whether the neurons representing these 

two quantities coexist in two subpopulations simultaneously, or caudate neurons would 

represent one kind of evaluative signal at a time. If the former scenario is true, given that 

reward expectation is computed from confidence, it would be interesting to know if the 
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transformation from confidence to reward expectation is conducted by the local circuit 

within the caudate nucleus, or elsewhere. 

Outside the caudate nucleus, the midbrain dopaminergic neurons are known to 

encode reward expectation before feedback and reward prediction error after feedback 

(Schultz, 1997; Nomoto et al., 2010; Lak et al., 2019). One study optogenetically 

manipulated dopamine neurons in rats during decision and during reward delivery. They 

found that manipulating dopaminergic neurons during decision does not influence 

ongoing decision or subsequent learning, whereas manipulating the neurons during 

feedback led to behavioral changes that could be modeled by changing the reward 

prediction error (Lak et al., 2019). It suggests that the reward expectation error signal 

might play a causal role in learning, whereas the reward expectation does not. It is 

possible that the reward expectation signal in the dopaminergic neurons were inherited 

from other brain areas, such as the caudate nucleus. In rats, a part of the striatum called 

striosome sends direct projections to dopaminergic neurons in the substantia nigra 

compacta (SNc) (Fujiyama et al., 2011; Watabe-Uchida et al., 2012). The striosome-SNc 

projections could carry the reward expectation signal from the striatum to SNc, which 

could be used for computing reward prediction error upon reward delivery.  

 

Materials and Methods 

Subjects 

Same as in Chapter 3. Only monkey F and monkey C were used. 

 

Behavioral task 

Same as Chapter 3. 
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Data acquisition 

Same as Chapter 3.  

 

DDM model fitting 

Same as Chapter 2.  

 

Computation of confidence and reward expectation 

Computing Confidence 

Because the motion direction and coherence in each trial was pseudo-randomly 

selected and unknown to the monkeys, all the information known to the monkeys at the 

end of a decision were their choice and decision time. Therefore, we define confidence 

as the estimation of their accuracy on average given the current choice and decision 

time, as following:  

   Eq. (1) 

, in which T is the decision time (reaction time minus non-decision time). 

P(correct | Right/Left choice at T) is computed by marginalizing over all possible 

coherences (this can be achieved by having performed the task over and over). For 

example, for rightward choices: 
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  Eq. (2) 

, where cohi is signed coherence (+/ for rightward and leftward motion). We defined a 

choice being correct as the choice being in the same direction as the motion coherence. 

For example, for rightward choices: 

 .   Eq. (3) 

In our task design, each coherence had equal chance of appearance, except that 

coh=0 happened twice as often as the other coherences: 

 .        Eq. (4) 

After plugging equation (3) and (4) into equation (2), what’s left is P(Right choice 

at T|cohi). We assume that the DDM approximates the monkeys’ decision-making 

process. This quantity was obtained by DDM simulation using the best-fitting 

parameters, as illustrated in Figure 4.5. For each coherence, we obtained the probability 

of the decision variable (DV) attaining a value x at time t (P(DV(t) = x), using the best 

fitting DDM parameters of each session and reward context. Then we computed the 

area underneath the probability function when DV > Right bound for rightward choices, 

or DV < Left bound for leftward choices. 
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Computing Reward Expectation 

Reward expectation is the product of the probability of getting a reward (i.e. 

confidence) and the reward size associated with the choice: 

    Eq. (5) 

, where reward size was set to 1 for small-reward choices and was set to the ratio 

between large and small reward for large-reward choices: 

     Eq. (6) 

Figure 4.5 Related to “computing confidence” in Methods: Computing the probability of making 

a rightward choice at time T for a given motion coherence. 

Schematic illustrating how to compute the probability of making a rightward choice at time T for a given 

motion coherence (P(Right choice at T | coh)) using the DDM framework. For each coherence, obtain 

the probability of decision variable (DV) attaining value x at time t (red curve), then compute the area 

underneath the probability function when DV > Right bound (shaded area). For leftward choices, 

compute the area underneath the probability function when V < Left bound. 



132 

 

 

Confidence as a function of coherence 

Eq. (1) shows that confidence is a function of decision time (also see Figure 4.1), 

which is consistent with previous study in which human subject directly reported 

confidence in a reaction-time task (Kiani et. al., 2014). The relationship between average 

confidence and coherence emerges indirectly through the relationship between 

coherence and decision time: 

        Eq. (7) 

, where T is decision time; Conf(T) is confidence at decision time T; P(T | cohi) is the 

probability of making a decision at time T for a given coherence i. Simulation of the 

relationships between mean confidence, mean reward expectation and coherence are 

illustrated in Figure 4.1 J-O.  

 

Neural data analysis 

For each neuron, we computed the average firing rates (FR) in a peri-saccade 

300 ms window beginning at 100 ms before saccade onset and a post-saccade 400 ms 

window beginning at saccade onset (before reward delivery). We compared the mean 

firing rates across trials for the two epochs and applied further analyses on the epoch 

associated with the higher mean firing rate. For the chosen epoch, we compared the 

mean firing rate across trials for the two choice directions. The choice direction 
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associated with higher mean firing rate was identified as the “preferred” direction, and 

the opposite direction was identified as the “null” direction (see examples in Figure 4.3). 

 

Decision time modulation of the post-decision neural activity  

For each neuron, we compute the Spearman correlation between the average 

firing rate in the trials of the preferred direction in the chosen epoch (FRpref) and the 

decision time of those trials. Neurons with significant Spearman correlation coefficients 

(p<0.05) were identified as decision time-modulated neurons.  

 

Correlation between post-decision neural activity and confidence and reward expectation 

For each decision time-modulated neuron, we computed the Spearman partial 

correlation between the average firing rate in the trials of the preferred direction in the 

chosen epoch (FRpref) and the confidence and reward expectation of those trials 

(corr(FR, Conf | RewExp) and corr(FR, RewExp | Conf) in Figure 4.4), to account for the 

correlation between confidence and reward expectation.  

 

Confidence-related and reward expectation-related sequential effects on the 

monkeys’ choice and reaction time 

To examine whether confidence or reward expectation influences the monkeys’ 

behavior in the next trial, we fit logistic function (Eq. 8) and linear function (Eq. 9) to the 

monkeys’ choice and reaction time. Only trials after a correct trial were included.  

For the choice data in each session, we fitted the following function to the choice 

data:  
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   (Eq. 8) 

, where Pcontra is the probability of choose contralateral choice; Coh is signed coherence 

of current trials (+/ for motion towards contralateral/ipsilateral direction); 

; 

; 

Prev is the value of the evaluative quantity (confidence or reward expectation) in the 

previous trials, centered to its mean across trials. 

Sequential reward-bias =  . A positive 

sequential reward-bias means that when the evaluative quantity was high, the monkey 

biased more to the larger-reward option in the next trial. 

Sequential choice-bias = . A positive 

sequential choice-bias means that when the evaluative quantity was high, the monkey 

biased more to the contralateral option in the next trial. 

For the RT data in each session, we fitted the following function to the trials when 

both the previous and the current trial were correct: 

(Eq. 9) 
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, in which Coh is the un-signed motion coherence in the current trials (positive for both 

directions) 

; 

; 

Prev is defined the same way as in the logistic function. 

bPrev is the reward size-independent sequential effect on RT. This term being 

positive/negative means that when the evaluative quantity was high, the monkey tended 

to speed up/slowdown in the next trial. 

bPrevRew is the reward size-dependent sequential effect on RT. This term being 

positive/negative suggests that when the evaluative quantity was high, the monkeys 

tended to speed up/slowdown when choosing the large-reward option and 

slowdown/speed up when choosing the small-reward option in the next trial. 

Log likelihood of a model is the sum of the log likelihoods of the logistic and 

linear fits. For the confidence version (Conf-seq) and the reward expectation version 

(RewExp-seq), we fitted the following three models: 

(1) “Full model”: sequential effect included in both the logistic function and the 

linear function (i.e. 𝞫PrevContraLR, 𝞫PrevContraLR, bPrev and bPrevRew are all included); 

(2) “Choice-only”: sequential effect included in the logistic function but no 

sequential effect in the linear function (i.e. bPrev and bPrevRew are not included);  

(3) “RT-only”: no sequential effect in the logistic function but sequential effect 

included in the linear function (i.e. 𝞫PrevContraLR and 𝞫PrevContraLR are not included). 
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We also fitted a no-sequential effect model (NoSeq)—none of 𝞫PrevContraLR, 

𝞫PrevContraLR, bPrev or bPrevRew is included. 

AIC was used for model comparison. For Conf-seq and RewExp-seq, among the 

three models, we selected the one that has the smallest AIC as the best-fitting model. 

Then we compared the AICs between the best-fitting models in the Conf-seq version 

and the RewExp-seq version, together with the NoSeq model. The model with the 

smallest AIC was used to interpret whether the sequential effects in a session were 

confidence-related or reward expectation related, or did not exist.  
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

 

Yunshu Fan, Joshua I Gold, Long Ding 

 

Using a task that encouraged monkeys to combine sensory and reward 

information for decision-making, I found that the way the monkeys combined sensory 

and reward information generally conformed to a drift-diffusion model (DDM). However, 

the specific biasing strategies they used were suboptimal, and varied from session to 

session and monkey to monkey. By linking the monkeys’ strategies with their individual 

reward functions, we found that the suboptimal and variable strategies were consistent 

with a common rational heuristic. This heuristic is sensitive to the individual variabilities 

of the reward functions across monkeys and sessions, which led to the individual 

variations in the monkeys’ idiosyncratic biasing strategies.  

By recording in the caudate nucleus while the monkeys were performing the 

reward-biased perceptual decision task, we found that the caudate nucleus represented 

information related to the decision process throughout the trial. Specifically, before the 

decision starts, some caudate neurons represented reward context, which could be used 

to establish the reward bias towards a specific option later in the trial, similar to a starting 

value bias in the DDM. During decision formation, both sensory and reward information 

were combined in a subpopulation of individual caudate neurons. This result, together 

with a subsequent study that established the causal role of caudate nucleus in 

combining sensory and reward information using electrical micro-stimulation, suggests 

that caudate neurons may participate in combining sensory and reward information for 

decision formation. After decision, we found that sensory evidence and reward 
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information continued to be represented in individual caudate neurons, but not all of 

them conform to an intuitive “reward expectation” signal. We further found that our task 

design allowed us to disambiguate reward expectation from confidence; these two 

quantities were usually indistinguishable in conventional task designs (Kepecs et al., 

2008; Lak et al., 2019). This allowed us to find out that while some caudate neurons’ 

post-decision activity represented reward expectation, some other caudate neurons’ 

activities represented confidence. We also found that confidence and reward expectation 

each influenced monkeys’ decision behaviors in the future in a subset of sessions, 

suggesting that the confidence-like and reward expectation-like signals encoded in the 

caudate post-decision activity could be used for evaluation.  

These findings open up a number of future directions as follow. 

 

Experimental/Task design 

Importance of carefully designed complex behavior tasks 

Our results highlight how, in the context of studying complex behavior, the task 

design can reveal aspects of behavior that are otherwise hidden. In the context of goal-

directed behavior, the brain can combine multiple sources of information adaptively in 

response to changes in the environment, as well as to changes in internal states. 

Internal states might refer not only to the preference for a specific reward, but also to the 

proficiency to make accurate perceptual judgements. In many asymmetric-reward 

experimental paradigms, the ability to adapt to reward preference leads us to observe 

reward-driven bias in the behavior. Our task added an additional manipulation, i.e., 

either large or small reward was given only when the perception was correct. This 

tapped into the brain’s ability to adapt the reward-driven bias to the proficiency of making 
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accurate perceptual judgements. This design also allowed us to observe that the 

monkeys calibrated their biasing strategy with regard to their motion sensitivity: when 

motion sensitivity was high, i.e., when the monkeys were able to make more accurate 

perceptual decisions, they tended to have less reward bias and their strategies were 

closer to the optimal. In contrast, when motion sensitivity was low, i.e., when the 

monkeys were making less accurate perceptual decisions, they tended to have more 

reward bias, and their strategies were farther from the optimal. This can be understood 

from the reward function’s perspective. When motion sensitivity is high, the peak of the 

reward function is closer to no bias, and the plateau of the reward function is also 

smaller. This will encourage sub-optimal but good enough strategies to be closer to the 

peak, which is also closer to no bias. On the contrary, when motion sensitivity is low, the 

peak of the reward function corresponds to large bias. Meanwhile, the plateau of the 

reward function is big. This will allow more deviation from the optimal strategy to be good 

enough, which magnifies the magnitude of bias. This bias-sensitivity tradeoff not only 

explained the individual variability among our monkeys’ decision behaviors, but could 

also be one of the reasons why many previous studies using similar tasks found that 

subjects appeared to adopt different decision strategies (Voss et al., 2004; Bogacz et al., 

2006; Simen et al., 2009; Summerfield and Koechlin, 2010; Leite and Ratcliff, 2011; 

Mulder et al., 2012; Goldfarb et al., 2014; Cicmil et al., 2015). We were able to uncover 

this relationship between bias and proficiency due to the specific complexity in our task 

design.  

The decisions we make every day are usually complex and are influenced by 

many factors. While simpler tasks are useful in probing the underlying neural 

mechanisms, complex tasks can help discover the effect of some factors that are only 
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revealed during complex behaviors. Our results highlight the importance of using a 

carefully designed complex behavioral task with systematic quantitative modeling and 

analyses to understand various factors that influence adaptive behaviors and strategies. 

 

Task design should allow key variables to be dissociable. 

When some variables are involved in generating the behavior but are not directly 

accessible via measurements, computational modeling is often used to extract these 

latent variables for further hypothesis testing and interpreting neural computations. We 

need to make sure that the task design will allow different latent variables in the model to 

be distinguishable from one another. For example, we were able to examine whether the 

reward biased the monkeys’ sensory-encoding (me-bias) or decision rule-setting (z-bias) 

via DDM fitting, because our task provided reaction time data. The reaction time data is 

crucial because, in DDM, me and z could generate similar choice biases, but the RT 

distributions they generated are qualitatively different, especially when compared 

between error and correct trials (Figure 2.3-figure supplement 1). Similarly, we were able 

to examine the neural correlates of confidence and reward expectation in the same task 

because our task and the reward-biased behavior it induced allow the two variables to 

exhibit different patterns (Figure 4.1). In contrast, many previous studies that use equal-

reward task design were not able to identify if the behavioral effects and neural 

correlates they were studying were related to confidence or reward expectation (Kepecs 

et al., 2008; Lak et al., 2019). If distinguishing two variables is the key to the scientific 

question under study, the behavior task needs to be designed (or redesigned) so that 

the two variables generate qualitatively different behavioral readouts.   
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Task design is an iterative process. 

As a research project develops, preliminary results can inform how a task should 

be modified. My thesis project has shown me that it is hard to predict where the data 

might lead us. Sometimes we might obtain results that were not expected, leading us to 

new analyses to better understand the data. I will highlight this through three examples. 

First, when studying the biasing behavior of the monkeys, we did not start with 

investigating the specific heuristic. This came up because it appeared to better account 

for our monkeys’ behavior patterns. Because our task was not ideally suited to observing 

the “gradient ascent” searching process, we could not know when and how fast this 

process happens. Answers to these questions require modification to our experiments, 

such as: (1) collecting data during learning, and (2) removing the cue of the reward 

context, and making the reward context switching unpredictable so as to increase the 

chance of observing the “gradient ascent” learning and the adjusting process in the 

behavior. A second example relates to a prediction of the rational, satisficing heuristic.  It 

predicts that, if the motion sensitivity is too low, the reward function gradient might be 

steeper along the z dimension than along the me dimension. This would lead to a 

rational suboptimal decision strategy that overly biases z to the adaptive direction and 

compensate with me biased to the small reward direction. This hypothesis cannot be 

tested with our data, because all of the monkeys used in our study have gone through 

years of training on the motion discrimination task. In theory, they belong to the expert 

group whose reward functions all favor the overly biasing me strategy. Whether a 

subject with low motion sensitivity tends to favor an overly biasing z strategy would be 

better tested in subjects with less training. Finally, Chapter 4 focused on two specific 

evaluative signals–confidence and reward expectation, an angle that we did not plan 
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when we designed the task. Therefore our task did not include a behavioral report of the 

monkeys’ confidence levels. Although our task allowed confidence and reward 

expectation to be distinguishable based on the way we computed them, our results 

regarding the neural representation of confidence and reward expectation could have 

been much stronger if we had a direct confidence measurement. Adding the behavioral 

report would also allow us to examine if changes in the neural correlates results in 

changes in confidence, or if manipulating the neural activities that represent confidence 

and reward expectation would lead to corresponding changes in the behavior reports (in 

the spirit of SENSE AND THE SINGLE NEURON: Probing the Physiology of Perception 

(Parker and Newsome, 1998)). These examples illustrate how the task and experiments 

should be adjusted dynamically in the light of new, especially unplanned, results. 

 

Caudate nucleus and reward-biased perceptual decision-making 

Distinct role of the caudate nucleus in combining sensory and reward information.  

We discovered that during decision-formation period, both sensory and reward 

information are represented in individual caudate neurons, but not in the format of a 

decision variable (DV) in the DDM, especially in terms of bound crossing. A subsequent 

study using micro-stimulation in the caudate nucleus during decision making in the same 

task confirmed that the caudate nucleus is causally involved in combining sensory and 

reward information (Doi et al., 2019). Meanwhile, cortical neurons in LIP have been 

found to correlate with a DV that combines sensory evidence and non-sensory reward 

bias and prior bias (Rorie et al., 2010; Hanks et al., 2011). These results suggest that 

caudate nucleus is an intermediate station where sensory and reward information are 

combined, playing a modulatory role, which could feed to the final DV elsewhere in the 
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brain. It is still unclear what exact computations are performed by the caudate nucleus 

and whether and how to they contribute to the DV formation. Previously, computational 

models based on the specific anatomical structure of the basal ganglia have been 

developed for action selection, decision-making and reinforcement learning (Redgrave et 

al., 1999; Bogacz and Gurney, 2007; Samejima and Doya, 2007; Hikosaka et al., 2014; 

Caballero et al., 2018). Adding reward-biasing mechanisms to these models could serve 

as a starting point for understanding the computations performed in the caudate nucleus 

and generally in the basal ganglia. Many of these models involve distinct computations 

in the direct, indirect and hyperdirect pathways and the neural plasticity modulated by 

different dopamine receptors. Given that we also observed diverse patterns of caudate 

neural activity in single-unit recording, it is very likely that different caudate neurons 

might be involved in different pathways or computational units. Future experiments using 

large scale recording, the ability to identify the pathway they are in, and the neuronal 

type (at least in terms of D1 or D2 receptor expression), will allow for a better 

understanding of the specific computations performed by the caudate nucleus within the 

basal ganglia circuitry.  

 

Caudate nucleus in the context of basal ganglia circuitry 

 Meanwhile, the caudate nucleus is only the input station of the interconnected 

basal ganglia circuitry. Information has to go through multiple stages of processing via 

not only different pathways, but also recurrent loops, before sending out to other brain 

areas. Even though we did not observe bound crossing-like activity patterns in the 

caudate nucleus, a decision variable can be formed in downstream areas. Alternatively, 

downstream areas might further modify the information they receive from the caudate 
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nucleus, making the relationship between specific activity in caudate neurons and how 

sensory and reward information are combined behaviorally more complicated. Isolating 

the computational role of caudate nucleus might be similar to looking at one part of a 

very complicated mathematical solution. Recording in caudate and downstream areas 

simultaneously will allow us to understand how sensory and reward information are 

combined in the basal ganglia as a whole and interpret the computational role of each 

individual nucleus within the larger circuit. 

 

Diverse computations in the caudate nucleus and information flow 

 We found that the caudate nucleus represented diverse computational quantities 

before, during and after making a decision. It would be interesting to know whether these 

diverse quantities are sent out separately to distinct targets, or whether they are all sent 

to a range of target regions. For example, decision formation-related information might 

be projected to motor-related areas, such as LIP, FEF and SC (Horwitz and Newsome, 

1999; Roitman and Shadlen, 2002; Ding and Gold, 2012), for execution, whereas 

evaluation-related information might be projected to areas involved in evaluation, error 

signal encoding and metacognition, such as midbrain dopaminergic neurons, anterior 

and posterior cingulate cortex and medial prefrontal cortex (Schultz, 1997; Behrens et 

al., 2007; Matsumoto et al., 2007; Heilbronner and Platt, 2013). Hypotheses like this 

need to be verified by recording in multiple brain areas simultaneously during the same 

task. 
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New theoretical frameworks 

A key foundation of our study is the theoretical framework, i.e., DDM. Even 

thought it might not be implemented in the brain on a physical level, as defined by David 

Marr (Marr and Poggio, 1977), computational models as such still provide us a useful 

angle to examine behavior, neural activity and the links between them. In chapter 2, the 

DDM helped us discover the specific deviation pattern of the monkey and the optimal 

strategy and the link between bias and sensitivity. In chapter 3, it prompted us to 

understand the information representation from the perspective of biases (in terms of 

time-independent z-like, or time-increasing me-like) and decision formation (in terms of 

decision variable). In chapter 4, it provided the method for computing confidence. 

However, our results also pointed out the need for new theoretical frameworks to be 

developed in many aspects as discussed below. 

 

Frameworks and tools to understand individual variability 

Individual variability commonly exists, although it might not be commonly 

reported. Yet, it might sometimes reflect common factors that influence behavior. In 

chapter 2, through examining the biasing strategy in the context of reward function, we 

discovered one plausible mechanism for the individual variability we observed in our 

monkeys – idiosyncratic perceptual sensitivity leads to different adjustments of biases in 

response. However, we still don’t know how general this principle is in other kinds of 

behavioral paradigms. It is very likely that this is only one mechanism underlying 

individual variability. At least one other source of individual difference could come from 

the differences in the mental complexity among subjects, both in terms of model 

complexity (Tavoni et al., 2019) and how much past experience is used to inform future 
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actions (Glaze et al., 2018). Currently there is no unified framework/guideline to 

systematically examine individual variability.  

 

The interaction between evaluation and adaptive decision-making 

Even though we showed that the confidence and reward expectation influenced 

subsequent decision behaviors (Chapter 4), our result was mainly descriptive. Through 

what exact computation do they exert their evaluative role is still unclear. Many previous 

studies on the neural correlates of evaluative signal also largely stayed on the level of 

post-decision neurons representing task-relevant information, without going into how the 

signals were used for the specific behavior. Evaluative signal in terms of reward 

prediction error has been studied in the context of reinforcement learning (Sutton and 

Barto, 1998; Doya, 2007). It has also been applied to link evaluative neural signals with 

behavior in learning paradigms (Lak et al., 2019). In such a setting, the goal of 

evaluation is to update the values in order to figure out the option with the best value. 

However, outside learning, the goal of adaptive decision behaviors might not be reward-

maximization, yet evaluation might still be needed for minor strategy adjustments. In this 

case, we need new theoretical frameworks for specifying what evaluation is needed and 

how it could be used for behavioral adjustments. 

 

Towards computational psychiatry 

Computational modeling can link behavior with underlying neural mechanisms. The 

recently emerged field of computational psychiatry is trying to apply the insights and 

methodology from computational modeling to investigate the links between circuit 

impairments and psychiatric symptoms. This might enhance our understanding of the 
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psychiatric disorders not only on the level of molecular and physiological features (such 

as neurexins mutation in Autism patients (Ching et al., 2010), and hyper-excitability in 

epilepsy patients (Scharfman, 2007)), but also on the level of circuit functions (Wang and 

Krystal, 2014). This could also lead to behavioral diagnosis for circuit dysfunction, more 

effective targeting of the impaired circuit during treatment, and the use of behavioral 

biomarkers for symptom monitoring during and after treatment. Psychiatric disorders 

usually involve complex behaviors. My study described in the thesis assessed such 

complex behaviors. Specifically, our results could open up a new dimension for 

assessing behavior, i.e. the ability to adapt our strategy to our internal proficiency and 

accuracy in performing a task. Even though we did not find the location(s) in the brain 

that link strategy with proficiency, it is possible that damage to such brain structures 

could impair the subjects’ ability to adjust strategies effectively when his/her proficiency 

changes.       
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