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ABSTRACT 
 

HARNESSING THE PRO-APOPTOTIC FUNCTION OF MYC TO IMPROVE THERAPEUTIC 

RESPONSES IN CHEMORESISTANT B-CELL LYMPHOMA 

Colleen Theobald Harrington 

Andrei Thomas-Tikhonenko, Ph.D. 

 

Therapeutic targeting of initiating oncogenes is the mainstay of precision medicine. 

Considerable efforts have been expended toward silencing MYC, which drives many human 

cancers including Burkitt lymphomas (BL). Yet, the effects of MYC silencing on standard-of-care 

therapies are poorly understood.  Here we found that inhibition of MYC transcription renders B-

lymphoblastoid cells refractory to chemotherapeutic agents. This suggested that in the context of 

chemotherapy, stabilization of Myc protein could be more beneficial than its inactivation. We tested 

this hypothesis by pharmacologically inhibiting glycogen synthase kinase 3 (GSK-3), which 

normally targets Myc for proteasomal degradation. We discovered that chemorefractory BL cell 

lines responded better to doxorubicin and other anti-cancer drugs when Myc was thus stabilized. 

In vivo, GSK3 inhibitors (GSK3i) enhanced doxorubicin-induced apoptosis in BL patient-derived 

xenografts (BL-PDX) as well as in murine MYC-driven lymphoma allografts. This enhancement was 

accompanied by and required deregulation of several key genes acting in the extrinsic, death 

receptor-mediated apoptotic pathway. Consistent with this mechanism of action, GSK3i also 

facilitated lymphoma cell killing by a death ligand TRAIL and by a death receptor agonist 

mapatumumab. Thus, GSK3i synergizes with both standard chemotherapeutics and direct 

engagers of death receptors and could improve outcomes in patients with refractory lymphomas. 
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CHAPTER 1: Introduction 

 

Introduction to Myc as an Oncogene 

 

Myc is a nuclear transcription factor that belongs to a family that includes N-Myc and L-

Myc. Myc controls and regulates cellular processes critical for normal cell growth and proliferation. 

As such, transcriptional targets of Myc encapsulate cellular functions such as cell cycle control, 

metabolism, signaling, protein biosynthesis, and apoptosis. MYC is deregulated in over half of all 

cancers, making it the most frequently altered oncogene 1. Like many oncogenes, Myc was 

discovered through studying retroviruses found in animal cancers. In the case of Myc, early studies 

on chicken tumors caused by retroviruses identified the oncogene v-myc 2,3. Soon after, the human 

homolog of v-myc was identified as c-myc 4. MYC was first identified to function as an oncogene 

through the observation that the chromosomal region harboring MYC participates in balanced 

chromosomal rearrangements in Burkitt lymphoma (BL) (Fig. 1) 5,6.  

 

 

 
 
Figure 1. Chromosomal translocation involving MYC found in Burkitt lymphoma. 
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Transcriptional Function of Myc  

 

The Myc protein structure contains two conserved Myc boxes (I and II) located in the N-

terminal transcriptional regulatory domain, followed by boxes III and IV, a nuclear localization 

signal, and at the C-terminus, a basic HLH-Zip domain. It is this C-terminal domain that is critical 

for Myc to heterodimerize with its binding partner Max, which allows for association with E-box DNA 

sequences (CACGTG) and transcription activation 7. The MYC-MAX heterodimer activates 

transcription through multiple mechanisms. Firstly, the MBII binding protein TRRAP associates with 

this complex, and through TRRAP, Myc is able to recruit histone acetyltransferases, such as TIP60, 

CBP/P300 and GCN5, to chromatin 8,9. Furthermore, Myc regulates chromatin conformation by 

interacting with members of the SWI-SNF chromatin remodeling complex such as INI1 10. Myc also 

promotes transcription by recruiting RNA polymerase II and influencing RNA polymerase II C-

terminal phosphorylation through recruitment of CDK-9, leading to transcriptional elongation 11,12.  

In addition to the well-established role as a transcriptional activator, Myc can function as a 

transcriptional repressor. One such early piece of evidence was the finding that exogenous Myc is 

able to repress endogenous MYC, and that the domains required for this repression were the same 

domains required for oncogenic transformation 13,14. Further evidence supporting this 

transcriptional repressor model came from the finding that Myc could repress activity at promoters 

independently of the E-box Myc binding sites 15. Identification of direct Myc-repressed target genes 

aided in understanding Myc’s role as a repressor, as did genome-wide analyses that revealed that 

as many Myc targets are repressed as are activated. Current models of Myc mediated 

transcriptional repression depict a model where the MYC-MAX heterodimer binds to transcriptional 

activators bound to DNA, and displaces other co-activators to instead favor recruitment of co-

repressors 16,17. 
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Breakthroughs in deciphering how Myc promotes tumorigenesis came from the 

identification of Myc target genes and gene networks. Myc targets began being identified using a 

model where MYC was fused to the estrogen receptor (ER) to allow for controlled regulation of Myc 

activity 18. Some of these early targets induced by Myc activity included PMTA and ODC1 19,20. 

MYC null model systems were also utilized to identify some of the first Myc-repressed target genes 

such as GADD45A 21. With the advances in genome sequencing technologies and high-throughput 

chromatin immunoprecipitation techniques, whole genome evaluations of the Myc target gene 

network could be performed. Myc was found to bind to 10-15% of human genes and regulate both 

protein-coding and non-coding RNA genes, suggesting that it acts as a global transcriptional 

regulator 22,23. A large proportion of the genes that Myc regulates are beneficial for tumor growth 

and survival. This includes genes that control the cell cycle, cell growth, metabolism, and protein 

synthesis, as well as genes that block differentiation and promote stem-cell self-renewal. Other 

processes represented in the network of Myc target genes are cell adhesion and migration, 

angiogenesis, DNA breaks, chromosomal instability, and cellular transformation. These pathways 

all contribute to Myc mediated transformation of cells into cancer.  
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Regulation of MYC Expression  

 

The levels of Myc mRNA and protein are under tight regulatory control in the cell. The half-

life of both MYC mRNA and protein are extremely short, averaging around 10 minutes for mRNA 

and 30 minutes for protein 24,25. Presumably these short half-lives allow for cells to rapidly respond 

to external mitogenic stimuli by appropriately adjusting the level of Myc and growth signaling 

downstream of Myc. MYC mRNA induction and mitogenic stimuli have previously been linked 26. 

Early studies on the regulation of Myc in the cell focused on the transcriptional control of the MYC 

gene. MYC was the first gene identified to be controlled via the process of transcriptional 

elongation, which is often lost in cancer 27,28. Similarly, with MYC mRNA turnover, there are both 

translation dependent and independent mechanisms that regulate mRNA expression. These 

mechanisms can also be disrupted in cancer as is evidenced by the ability of increased MYC mRNA 

to drive cancer formation 29.  

Myc protein regulation has been well studied, particularly the phosphorylation of residues 

Thr58 and Ser62, which are important for Myc protein stability and Myc activity 30,31. Ser62 

phosphorylation by kinases such as mitogen-activated protein kinase (MAPK), c-JUN N-terminal 

kinase (JNK), and cyclin-dependent kinase 1 (CDK1) is a pre-requisite for Thr58 phosphorylation 

32. GSK-3β is the kinase responsible for phosphorylation of Thr58; Thr58 phosphorylation marks 

Myc for recognition by the E3 ubiquitin ligase FBXW7, which will result in SCFFBXW7 complex 

recruitment, and subsequent Myc ubiquitination and degradation 33,34. The importance of the Thr58 

residue for normal regulation of Myc protein levels is underscored by the documentation of frequent 

cancer-associated Thr58 mutations that were shown to increase the oncogenic transformation 

potential of Myc 35,36. In addition to SCFFBXW7 complex degradation of Myc protein, the SCFSKP2 

complex has also been shown to contribute to Myc protein regulation, however no phosphorylation 

signal on Myc has been shown to be required for this interaction, unlike Thr58 for FBXW7 37. 

Studies have also suggested that prior to proteasome-mediated degradation, the SCFSKP2 complex 
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interaction with Myc stimulates Myc transcriptional activity, although it is not yet known how this 

stimulation of Myc function might occur 38 .   

Myc protein can also be acetylated at certain lysine residues, such as Lys323 or Lys417. 

It is not yet clear what the function of acetylation at these lysine residues is for Myc activity or 

regulation, or whether they could act as docking sites for other proteins. However, lysine residues 

that can be acetylated can also be ubiquitinated. An inverse relationship has been established 

between an increase in Myc acetylation and a decrease in ubiquitination, which results in an 

increase in Myc stability 39,40. Thus, many signaling pathways and mechanisms contribute to the 

complex regulation of Myc levels in cells.  
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MYC Deregulation in Cancer 

 

Since the discovery that MYC is a driver of cancer through chromosomal translocation, 

MYC deregulation has been found to occur by various other means, including gene amplification, 

point mutations, or activation of upstream signaling pathways that lead to elevated Myc expression. 

41,42. Following analysis of more than 12 different cancer types, the frequency of MYC amplification 

was estimated to be around 14% 1,43. In lung squamous cell carcinoma, breast, and ovarian 

cancers, MYC amplification is the most common copy-number alteration 44. MYC point mutations, 

while being relatively uncommon, have been identified, mostly in the highly conserved MYC 

Homology Box I (MBI). In Burkitt lymphoma, the MYC T58 residue of MYC is frequently mutated, 

amongst other hotspot mutations 45. Mutations in the T58 residue increase Myc stability, suggesting 

that this increase in protein stability is a mechanism of oncogenic transformation 46. Mouse model 

studies of the T58A mutation suggested that in fact the tumorigenic potential of this mutation is 

found in the inability to upregulate the pro-apoptotic protein BIM 47.  

Aside from alterations to the MYC gene itself, there are many signaling pathways involved 

in the initiation and progression of cancer that consequently result in Myc activation. Mutations in 

the PI3K/AKT pathway can increase Myc stability through hyper-activation of AKT, which 

decreases GSK3 mediated proteasomal degradation of Myc 48,49. The MAPK pathway also 

regulates Myc. Signaling through the RAS oncoprotein leads to activation of the effector protein 

ERK which is directly responsible for regulating Myc stability and activity by phosphorylation of Myc 

on S62, and may phosphorylate other Myc residues that contribute to the regulation of protein 

stability 50,51. RAS family members such as KRAS and BRAF are frequently mutated in cancer, 

leading to unregulated MAPK signaling and increased Myc protein stability and expression. These 

are only a few examples of how dysregulated signaling pathways in cancer lead to Myc activation. 

Other implicated pathways include BCR-ABL1 signaling, ER signaling in breast cancer, the WNT 

pathway, and NOTCH signaling in T-cell acute lymphoblastic leukemia 52. The multiple means by 
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which Myc is deregulated in cancer all result in growth-factor independent expression of Myc and 

uncontrolled Myc activity that is no longer regulated by cellular and extracellular signals. 
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Inhibition of MYC as a Cancer Therapeutic Strategy 

 

Numerous studies have established that Myc plays an important role not only in tumor 

initiation, but also in tumor maintenance 53,54. Early on, Myc was shown to drive tumorigenesis in 

multiple transgenic mouse models 29,55. Then later on, MYC inactivation was found to lead to 

regression of established tumors 56,57. For this reason, considerable efforts have been made to 

inhibit Myc function. However, transcription factors are notoriously challenging to target 

pharmacologically due to their lack of hydrophobic pockets and large interaction surface areas, 

which are at odds with the standard binding models of small drug molecules 58. Therefore, 

additional efforts have been made to inhibit MYC expression and to target signaling pathways that 

activate Myc.   

BET bromodomain family members have a high affinity for P-TEFb complexes containing 

CDK-9 59; it was thus hypothesized that these proteins might function in the recruitment of CDK-9 

to sites of highly acetylated chromatin and contribute to Myc-mediated transcriptional elongation. 

BET inhibition down-regulates the Myc transcriptional program, but also down-regulates the MYC 

gene itself 60. Following the discovery that the BET transcriptional regulator BRD4 can bind to the 

MYC promoter and regulate MYC expression, investigators have begun to explore the therapeutic 

use of BRD4 inhibitors to treat cancer; however, this strategy may not be suitable for all cancer 

types 61. In addition to BET proteins, Myc also interacts with histone acetyltransferase enzymes 

such as TIP60, CBP/P300, and GCN5. These interactions promote Myc stability and activity, thus 

inhibiting this group of enzymes could serve as another path to inhibiting Myc in cancer. 

A Myc dominant-negative peptide named Omomyc was developed as an alternative to 

disrupting MYC transcription 62–64. The peptide, which binds Myc and prevents Myc:Max 

heterodimerization, and has anti-tumor activity in experimental models of non-small cell lung cancer 

65. Finally, numerous upstream signaling pathways deregulate Myc activity, such as Notch, WNT, 
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PI3K, and MAPK pathways, for which small molecule inhibitors exist and are currently undergoing 

pre-clinical and clinical trials 66.   
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Contribution of MYC to Apoptosis  

 

 Although efforts are being made to inhibit Myc activity due to its contribution to tumor 

initiation and maintenance, paradoxically it has long been appreciated that Myc can also promote 

cell death. For example, in a Myc-driven cancer such as Burkitt lymphoma, tumor cells are highly 

proliferative but at the same time also display high levels of cell death 67. Early studies revealed 

that Myc can trigger apoptosis, a form of cell death 68,69. Later studies found that Myc deregulation 

leads to apoptosis through activation of the tumor suppressor p53 via ARF upregulation. To avoid 

this consequence of Myc activity, many Myc-driven tumors inactivate this pro-apoptotic pathway, 

as was seen in MYC-driven murine transgenic lymphomas that inactivate Arf or p53 70,71. This 

disabling of the p53 pro-apoptotic pathway is a mechanism by which MYC-driven tumors can 

survive with such high levels of Myc without triggering cell death. The disabling of Myc-driven 

apoptosis can be crucial for tumor initiation and progression, as demonstrated by the robust 

acceleration in tumorigenesis upon loss of the ARF-MDM2-p53 pathway in mouse models of MYC-

driven cancers 72,73.  Although p53 is the main effector of Myc-mediated apoptosis, p53-

independent mechanisms have also been identified; however, the different means by which Myc 

triggers p53-independent cell death are not completely understood. In E-Myc murine lymphomas, 

Myc suppresses the anti-apoptotic proteins BCL-2 and BCL-XL 74,75. Myc also activates the pro-

apoptotic proteins BAX and BIM in different models of Myc-driven cancers 76–78.  

In addition to amplifying intrinsic or mitochondrial cell death, Myc also modulates extrinsic, 

or death-receptor mediated cell death. Myc can sensitize cells to signaling though the death 

receptor CD95/Fas 79. Many extrinsic apoptosis genes are in fact direct transcriptional targets of 

Myc, as is the case with CFLAR/FLIP, which is directly repressed by Myc, or Fas ligand, which is 

directly upregulated by Myc 80,81. Alternatively, extrinsic apoptosis genes can be indirectly affected 
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by Myc expression, as with the TRAIL receptor DR5, which is upregulated at the cell surface upon 

Myc activation 82.  

A full understanding of Myc-driven apoptosis brings with it the potential to re-engage Myc-

driven apoptosis for therapeutic benefit. It is imperative to understand what factors determine 

whether Myc will act in a pro-survival or a pro-apoptotic manner. In vivo studies with a finely 

controlled Myc allele suggest that there are thresholds for Myc activity- a modest increase in the 

level of Myc led to oncogenesis, but a much larger increase was required to trigger apoptosis 83. 

This would suggest that in the context of cancer, there could be a certain threshold for Myc that 

when reached, could activate cell death.      
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Chemotherapy and Apoptosis 

 

 Almost all cancer therapies exert their anti-tumor effect by triggering apoptosis in tumor 

cells 84,85. Apoptosis is a well characterized form of cell death that features morphological hallmarks 

such as nuclear DNA fragmentation, membrane blebbing, and decrease in cell size 86. Although 

different cancer therapies enact their anti-tumor effect through various means, ultimately DNA 

damage is a critical common component. DNA damage followed by cellular stress response 

signaling through molecules such as c-Jun N-terminal kinase (JNK), mitogen-activated, protein 

kinase (MAPK)/extracellular signal-regulated protein kinase (ERK), nuclear factor kappa B (NF-kB) 

eventually lead to activation of caspases, the effector molecules of apoptosis 87–89. Caspases are 

activated following cleavage at specific aspartate residues, and once a caspase is activated it can 

cleave and further activate other caspases, thereby propagating the apoptotic signal. Two main 

pathways upstream of caspases lead to caspase activation-- the intrinsic, or mitochondrial, 

apoptotic pathway, and the extrinsic, or death receptor, apoptotic pathway (Fig. 2) 90.  

 As suggested in the pathway name, extrinsic apoptosis is initiated from the cell surface by 

extracellular ligands binding to death receptors. Death receptors are part of the tumor necrosis 

factor (TNF) receptor gene superfamily. Four death receptors have been well studied so far: 

CD95/Fas, TNF receptor 1 (TNFRI), TNF-related apoptosis-inducing ligand-receptor 1 and 2 

(TRAIL-R1/DR4 and TRAIL-R2/DR5); their corresponding ligands are as follows: CD95 ligand 

(CD95L/FasL), TNF-α, and TRAIL 91. All death receptors are composed of an extracellular ligand-

binding domain, a membrane-spanning region, and an intracellular domain. This cytosolic domain 

contains a characteristic ~80 amino acid sequence known as the death domain, which is required 

for induction of apoptosis 92. Upon ligand binding in the extracellular domain, the receptor 

undergoes a conformational change that leads to the recruitment of adaptor proteins such as Fas-

associated protein with death domain (FADD) 93. Adaptor proteins like FADD contain a death 

domain that allows for association with the receptor, and also death effector domains that facilitate 
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the recruitment of initiator caspases like caspase-8. At this stage, caspase-8 is still in its 

procaspase, inactive form, but upon formation of this so called death-inducing signaling complex 

(DISC), procapase-8 undergoes auto-catalytic cleavage and now becomes activated 94. Activation 

of caspase-8 at the DISC can be inhibited by the short or long form of the cellular FLICE/caspase 

8-like inhibitory protein (cFLIPs or cFLIPL). These inhibitory proteins contain death effector domains 

that allow for their recruitment into the DISC and blocking of caspase-8 processing and activation 

95. The main cleavage targets of caspase-8 are the effector caspases (3, 6, and 7), which when 

activated will cleave and degrade critical cellular proteins, marking the beginning of the biological 

and morphological changes of an apoptotic cell.  

Cytotoxic stimuli converge on the mitochondria to initiate intrinsic, or mitochondrial, 

apoptosis by permeabilization of the outer mitochondrial membrane 96,97. Bax and Bak are pro-

apoptotic proteins that oligomerize and assist in forming pores in the mitochondrial outer 

membrane. Following disruption of the outer membrane, proteins found in between the outer and 

inner membranes are released. This includes cytochrome c, which when released will directly 

activate caspase-3 by formation of an apoptosome complex with Apaf-1 and caspase-9 98. Anti-

apoptotic proteins of the Bcl-2 family, such as Bcl-2, Bcl-xL, Bcl-w, and Mcl-1, are responsible for 

antagonizing intrinsic apoptosis 99.  

There can be convergence between these two apoptotic pathways. Following activation in 

the DISC, caspase-8 can cleave Bid, a pro-apoptotic Bcl-2 family protein, which then induces 

oligomerization of Bax and Bak and leads to the release of cytochrome c from the mitochondria 100. 

Another intersection between these pathways is the ability of caspase-9, which gets activated 

downstream of the mitochondria, to activate death receptor mediated apoptosis by cleavage of 

caspase-8 101. 
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Figure 2. Extrinsic and intrinsic apoptotic pathways. 
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Mechanisms of Chemotherapy Resistance 

 

 Inherent frequency of resistance to a tumor-targeting drug falls between one in one million 

or one in one billion cells. Tumor cells frequently develop resistance to chemotherapy by disrupting 

both intrinsic and extrinsic apoptotic pathways. With regards to the death receptor pathway, there 

have been documentations of chemotherapy-resistant leukemia and neuroblastoma 

downregulating CD95/Fas expression 102,103. In fact, mutations in Fas have been identified in 

multiple solid and hematologic cancers 104. In colon cancer, inhibition of DR4 and DR5 

transportation to the plasma membrane is a mechanism of resistance to the death ligand TRAIL 

105. Chromosome 8p, the region that contains DR4 and DR5, is a region of common loss of 

heterozygosity (LOH) in cancer, and many cancers that have this LOH event will delete or mutate 

the other copy of DR4 or DR5 resulting in a complete loss of these death receptors 106–108. As 

mentioned previously, isoforms of cFLIP can block extrinsic apoptosis. Therefore, many tumors 

harbor high levels of FLIP, which has been correlated with a resistance to apoptosis following 

TRAIL, FasL, and chemotherapy 109,110.  

In addition to these common, cancer-associated alterations in the extrinsic pathway, 

intrinsic apoptosis genes are also frequently mutated or altered in cancer and associated with 

chemotherapy resistance. The Bcl-2 oncogene is translocated and overexpressed in many 

cancers. High Bcl-2 expression is found in multiple hematologic malignancies, including follicular 

lymphoma where ~90% of patients have a chromosomal translocation involving Bcl-2 111,112. High 

Bcl-2 expression has also been found in solid tumors including those of the prostate, breast, and 

lung 113. Inactivating mutations in the pro-apoptotic gene BAX have also been identified in colon 

cancer and some hematologic malignancies, and deletions in the region of the genome harboring 

BIM, another pro-apoptotic Bcl-2 family member, have been found in cases of mantle cell 

lymphoma 114–116. Mutations in the tumor suppressor TP53, the most common genetic feature of 

human cancers, is a major source of chemotherapy resistance. Other mechanisms of 
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chemotherapy resistance exist in addition to the ones described here. Once example is the ability 

of ATP-binding cassette (ABC) transporters to pump anti-cancer drugs out of the cell, leading to 

multi-drug resistance 117. These mechanisms and others oppose the potential efficacy of cancer 

chemotherapy.   
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Summary  

 

In this study, we aim to leverage Myc-driven apoptosis to improve the response of 

chemoresistant tumors. For our model system, we have employed Myc-driven Burkitt lymphoma 

(BL). BL is an aggressive subtype of non-Hodgkin’s lymphoma that arises from germinal center B-

cells 118. The cytogenetic hallmark of BL is the t(8;14) chromosomal translocation that results in a 

fusion between Myc coding sequence and the immunoglobulin heavy locus (IgH) enhancer. Less 

commonly MYC is translocated to the immunoglobulin light chain loci, IgK or IgL 119. Given the 

prevalence of Myc as an oncogenic driver in BL and other cancers 120, numerous efforts have been 

made to develop Myc-targeting therapeutics 121. However, in pre-clinical and clinical settings, such 

compounds are usually tested as monotherapies, often ignoring the question of their interactions 

with existing standards of care.  

The interplay between Myc-targeting compounds and other anti-cancer modalities is made 

more complicated by the fact that Myc, while driving enhanced growth and proliferation, can also 

trigger cell death 122,123. This occurs primarily through p53, a well-established tumor suppressor that 

activates intrinsic/mitochondrial apoptosis 70. P53 inactivating mutations and Myc deregulation co-

occur in >30% of BL tumor samples 124, essentially abrogating this signaling axis and conferring 

chemoresistance. Not surprisingly, doxorubicin (Dox)-based EPOCH-R (etoposide, prednisone, 

vincristine, cyclophosphamide, and doxorubicin with rituximab) and similar regimens, which are 

standards of care for Burkitt and other aggressive B-lymphomas, fail to cure a significant number 

of patients, especially those with relapsed or refractory disease 125. Nevertheless, p53-independent, 

Myc-driven cell death has been reported by several laboratories [reviewed in 122]. 

In principle, the pro-apoptotic activity of Myc could be leveraged for improved treatment 

outcomes even in chemoresistant tumors. However, apoptosis is triggered by much higher Myc 

levels than proliferation (Fig. 3) 83. Thus, there could be proliferation without apoptosis but not 
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apoptosis without proliferation. A potential solution to this problem is to transiently increase Myc 

levels immediately prior to chemotherapy, reap therapeutic benefits, and then allow Myc to return 

to baseline.  

We and others have reported that strengthening the CD19-PI3K-AKT axis is a reliable 

method to boost Myc protein stability in B-lymphoid cells 126–128. This finding is consistent with the 

propensity of glycogen synthase kinase 3 beta (GSK-3β), which is inhibited by Akt, to phosphorylate 

Myc at Thr-58, which marks Myc for recognition by the E3 ubiquitin ligase Fbxw7 and subsequent 

degradation [reviewed in 129]. Here we report that adding GSK-3 inhibitors to Dox significantly 

improves therapeutic apoptosis in B-cell lymphomas with inactive p53 and dissect the underlying 

molecular mechanisms. 

 

 
 
 
Figure 3. Model of MYC thresholds for proliferation versus apoptosis. 
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CHAPTER 2: Materials and Methods 
 

Cell Culturing 

 
Burkitt lymphoma and B-lymphoid cell lines were cultured and maintained in RPMI 1640 

medium supplemented with 10% fetal bovine serum (FBS), 2mM L-glutamine, 

penicillin/streptomycin (p/s) at 37°C and 5% CO2. P493-6 cells and Burkitt lymphoma cell lines 

Ramos, Daudi, Raji, and Mutul were acquired from Drs. Chi Dang and Riccardo Dalla-Favera. 

P493-6 cells were authenticated in 2010 through targeted resequencing of the 

transgenic MYC allele. P53ER/MYC cells were established and cultured as described previously 

130–133. PDX MAP-GR-C95-BL-1 cells were cultured in RPMI 1640 medium supplemented with 2% 

FBS, 2mM L-glutamine, p/s, and 2% glucose at 37°C and 5% CO2. HT-29 colorectal 

adenocarcinoma cells were cultured in DMEM supplemented with 10% FBS, p/s, and 1% non-

essential amino acids (NEAA).  

 

siRNA Knockdowns and Viral Infections 

 
SMARTpool siRNA for Fadd or RIPK1 (Dharmacon) were transfected at 300 nM or 200 

nM, respectively, into Ramos cells by electroporation using the AMAXA system program 0-006 and 

Reagent V (Lonza). siRNA knock-down efficiency was measured 24h after transfection by RT-

qPCR. For infection of Ramos cells with pMx-Ires-FLIP and MIGR1-Bcl2, retroviral particles were 

generated by transfection of 293GP cells with Lipofectamine-2000 (Invitrogen). Viral supernatants 

were harvested 24h, 36h and 48h after transfection and used to infect cells in the presence of 

polybrene (4 μg/ml). Selection of infected cells was done with 4 ug/ml Blasticidin over 1.5 weeks 

for pMx-Ires-FLIP or by cell sorting for GFP positive cells for MIGR1-Bcl2. For infection of P493-6 

cells with two different p53shRNA constructs, lentiviral particles were generated by transfection of 

293GP cells with Lipofectamine-2000 (Invitrogen). Viral supernatants were harvested 3 and 5 days 
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after transfection and were concentrated using Amicon centrifugal filters (UFC901024). 

Concentrated virus was used to infect cells in the presence of polybrene (2 μg/ml). Selection of 

infected cells was done with 2 ug/ml Puromycin over 1.5 weeks.   

 

Drug Treatments 

 
Tetracycline HCL (Sigma T7660), CHIR99021 (Biovision #1677-5), lithium chloride 

(Amresco K445), tamoxifen (Sigma H6278), Dox or vincristine (CHOP Pharmacy), mafosfamide 

(Santa Cruz sc-211761) and TRAIL (Calbiochem 616374) were added to cell culture medium as 

indicated. Mapatumumab was provided under the Material Transfer Agreement with Human 

Genome Sciences. For mRNA stability experiments, cells were treated with Actinomycin D (Sigma 

A9415) at a concentration of 3.5 μg/ml. For protein stability experiments, cells were treated with 20 

μg cycloheximide (Sigma, C4859). For Myc transcription inhibition experiments, cells were treated 

with iBet-151 as described in the text. For a position control detection of necroptosis, Z-VAD-FMK 

(R&D FMK001), SM-164 (APExBio A8815), and TNF-α (R&D 210-TA-005) was added to cell 

culture media as indicated.  

 

Cytotoxicity and Caspase Activity Assays 

 
For cytotoxicity assays, 8 x 104 cells or 5 x 105 cells (for p493-6 p53shRNA and p493-6 

p53KO) per well of a 96-well plate were treated in triplicate with DMSO, 3 µM CHIR, or 5 ng/mL 

tetracycline and indicated concentrations of chemotherapeutic drugs, TRAIL, or mapatumumab. 

After 48-72 hours, cell viability was measured using CellTiter-Glo (Promega, G7570) according to 

the manufacturer’s protocol. Luminescent signal was read using a Synergy 2 plate reader (BioTek 

Instruments, Winooski, VT, USA). GraphPad Prism software (version 7) was used for log-

transformed nonlinear regression curve fitting (4 parameter analysis). For caspase activity assays, 
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cells were treated with DMSO or 3 µM CHIR and indicated concentrations of Dox or vincristine. 5 

x 104 cells were plated in triplicate in a 96-well plate and caspase activity was measured using 

Caspase-Glo 3/7 Assay (Promega, G8091). Signals were analyzed in a Synergy 2 plate reader. 

 

Allograft and Xenograft Studies 

 
Syngeneic tumors of P53ER/MYC cells were established in flanks of F1 hybrid B6129PF1/J 

6-8 week old female mice (Jackson Laboratories stock no. 100492) as described previously 130–133. 

Administration of drugs was started once tumors were palpable. 8 mg/kg Dox was delivered via 

intraperitoneal injection. CHIR99021 was dissolved in 10% DMSO, 45% polyethylene glycol 400 

(Fisher Scientific, P167-1) and 45% of .9% NaCl (Sigma S8776) and delivered via intraperitoneal 

injection (100 mg/kg). All animal work was conducted under a protocol approved by the Children’s 

Hospital of Philadelphia Animal Care and Use Committee (protocol IAC 15-000902) and by the 

Gustave Roussy Animal Care and Use Committee (protocol APAFIS#9399-

2017032714402416v3). Xenograft tumors of PDX-MAP-GR-C95-BL-1 cells were established in 

flanks of ATHYM-Foxn1nu/nu 5-6 week old male mice. Once tumors became palpable, mice were 

treated with CHIR99021 and/or Dox as described above. The model was developed in female NSG 

mice of 6–8 weeks at engraftment within the project Development of Pediatric PDX Models, 

approved by the experimental ethic committee 26 (CEEA26—Gustave Roussy) under the number 

2015032614359689v7, and in accordance with European legislation, as ancillary study of the 

clinical MAPPYACTS trial (ClinicalTrials.gov identifier NCT02613962).  

 

CRISPR Constructs and Genome Editing 

 
LentiCRISPRv2GFP was a gift from David Feldser (Addgene plasmid 82416) 134. sgRNAs 

for TNFRSF10A (DR4), TNFRSF10B (DR5), and Fas were designed to target exons in the first half 
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of the gene using the Genetic Perturbation Platform (https://portals.broadinstitute.org/gpp/public/) 

to minimize off-target effects in the human genome. sgRNAs were cloned into the 

LentiCRISPRv2GFP vector via Golden Gate assembly using BsmBI (New England BioLabs 

#R0580S). The sgRNA sequences are as follows:  

Tnfrsf10A: 5’- CTTCAAGTTTGTCGTCGTCG-3’, 5’-CCCATGTACAGCTTGTAAAT-3’,            

5’-AGGTCAAGGATTGTACGCCC-3’ 

Tnfrsf10B: 5’- GCAAATATGGACAGGACTAT-3’, 5’-TGTGCCGGAAGTGCCGCACA-3’,              

5’-TGCAGCCGTAGTCTTGATTG-3’ 

Fas: 5’-GCATCATGATGGCCAATTCT-3’, 5’-TAGGGACTGCACAGTCAATG-3’,                         

5’-ATGTGAACATGGAATCATCA-3’ 

The scrambled sequence used is 5’-GCACTACCAGAGCTAACTCA-3’. For infection of Ramos 

cells with LentiCRISPRv2GFP plasmids, lentiviral particles were generated by transfection of 

293GP cells with Lipofectamine-2000 (Invitrogen). Viral supernatants were harvested 24h, 36h and 

48h after transfection and used to infect the Ramos cell lines in the presence of polybrene (4 μg/ml). 

After one week GFP positive cells were sorted and collected, and receptor knockout was confirmed 

by flow cytometry and western blot.   

For CRISPR knockout of p53 in p493-6 cells, 1 x 10^6 cells were electroporated with 1 µg 

each of p53-Cas9 knockout plasmid (Santa Cruz sc-416469) and p53-homology directed repair 

(HDR) plasmid (Santa Cruz sc-416469-HDR) using the AMAXA system program M-013 and 

Reagent V (Lonza). Each knockout plasmid mixture contains a mix of three plasmids targeting 

TP53, and each HDR plasmid mixture contains a mix of three plasmids with homology arms specific 

for each of the knockout plasmids. Upon homology arm-directed recombination, puromycin is 

inserted at the site of CRISPR editing. Following electroporation with the plasmids, edited cells 

were selected for with puromycin (1 μg/ml) for two weeks.  

 

https://portals.broadinstitute.org/gpp/public/
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Retroviral and Lentiviral Constructs 

 
pLKO-p53-shRNA-427 and pLKO-p53-shRNA-941 were gifts from Todd Waldman 

(Addgene plasmid 25636, 25637) 135. Human CFLAR cDNA was purchased from Dharmacon 

(MHS6278-202828910) and digested into a 1.1 kb piece using BamHI/XhoI restriction enzymes 

and a 865 bp piece using BamHI digestion. A retroviral construct expressing FLIP cDNA was 

generated by digestion of pMX-IRES-Blasticidin vector (RTV-016, Cell Biolabs) with BamHI/XhoI 

restriction enzymes followed by ligation of the 1.1 kb piece. This plasmid was then digested with 

BamHI restriction enzyme followed by ligation of the 865 bp piece to generate the pMx-Ires-FLIP 

plasmid. The BCL2-expressing retrovirus was generated using MIGR1 as a backbone.    

 

Flow Cytometry 

 
Live cells were stained with Annexin V and propidium iodide (BD Pharmingen 556547 and 

556463), Yo-Pro (Invitrogen Y3607), TMRE (Enzo Life Sciences ENZ-52309) or antibodies against 

cleaved caspase-3 (Cell signaling 9603), APC anti-DR4 (BioLegend 307207), APC anti-DR5 

(BioLegend 307407), and APC anti-FAS (Thermo Fischer Scientific MA1-10313) and analyzed in 

an AccuriC6 cytometer as previously described 136.   

 

Western Blotting and Antibodies 

 
Whole cell protein lysates were prepared in RIPA buffer (0.15 M NaCl:l% (w/v) sodium 

deoxycholate:0.1 % (w/v) sodium dodecyl sulfate: 1%(v/v) Triton X-100:1 mM phenylmethylsulfonyl 

fluoride in 0.05 M Tris-HCl, pH 7.4) containing protease and phosphatase inhibitors (Pierce Halt 

Inhibitor Cocktail, Thermo Scientific). Protein concentrations were estimated by Biorad colorimetric 

assay (BCA). Immunoblotting was performed as described previously 126. Signals were detected 

by ECL (Pierce) or by Odyssey Infrared Imager (LI-COR Biosciences). The following primary 
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antibodies were used: P53, Santa Cruz sc-6243; Actin, Sigma A3853; Myc 9E10, Calbiochem 

OP10; Myc XP, Cell Signaling 5605; Myc T58, Abcam ab28842; β-catenin, BD Transduction Labs 

610153; GAPDH, Abcam ab8245; PARP, Cell Signaling 9542; Caspase 3/Cleaved Caspase-3, Cell 

Signaling 9665; Bcl2, Cell Signaling 15071; Cleaved Caspase-8, Cell signaling 9496; CFLAR/c-

FLIP, Enzo Life Sciences ALX-804-961-0100; RIPK1, BD Biosciences 610458; MLKL, Cell 

Signaling 14993; Phospho-MLKL (Ser358), Cell Signaling, 91689; DR4, Prosci 1139; DR5, Abcam 

ab181846; Fas, Santa Cruz sc-1023. The following secondary antibodies were used: goat anti-

rabbit-HRP, GE Healthcare NA934V; goat anti-mouse HRP, GE Healthcare NA931V; goat anti-

mouse-680, Licor 925-32220; donkey anti-rabbit-800, Licor 926-32213. 

 

RNA Isolation and Reverse Transcriptase (RT)-qPCR 

 
Total RNA was isolated using TRIzol ® (Invitrogen). cDNAs were prepared with random 

hexamers using High Capacity cDNA RT kit (Life Technologies). RT-qPCR was performed using 

PowerSYBR Green PCR Master Mix (Life Technologies) and gene-specific oligo pairs. Quantitative 

PCR reactions were performed on an Applied Biosystems Viia7 machine and analyzed with Viia7 

RUO software (Life Technologies). The following Forward (F) and Reverse (R) primers were used: 

Bax F- CGTGTCTGATCAATCCCCGAT | R- TGAGCAATTCCAGAGGCAGT 

Bak F- GGCACCTCAACATTGCATGG | R- CAGTCTCTTGCCTCCCCAAG 

Bim F- AGACAGAGCCACAAGCTTCC | R- ATACCCTCCTTGCATAGTAAGCG 

Noxa F- ATTACCGCTGGCCTACTGTG | R- ATGTGCTGAGTTGGCACTGA 

DR4 F- TTGCTTGCCTCCCATGTACAG | R- CAGGGACTTCTCTCTTCTTCA 

DR5 F- TGTCGCCGCGGTCCT | R- TGGGTGATCAGAGCAGACTCAG 

Fas F- GGGCATCTGGACCCTCCTAC | R- GATAATCTAGCAACAGACGTAAGAACCA 

TNFR1 F- CCCGAGTCTCAACCCTCAAC | R- ATTCCCACCAACAGCTCCAG 
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TNF F- ATCCTGGGGGACCCAATGTA | R- AAAAGAAGGCACAGAGGCCA 

TRAIL F- TATGATGGAGGTCCAGGGGG | R- CTGCAGGAGCACTGTGAAGA 

FLIP F- TTTACCACCCAGAGACACGC | R- AGAACCTCTGCCTGCTGAAC 

Fadd F- CACAGACCACCTGCTTCTGA | R- CTGGACACGGTTCCAACTTT 

RIPK1 F- AGTCCTGGTTTGCTCCTTCCC | R- GCGTCTCCTTTCCTCCTCTCTG 

MLKL F- CTCTTTCCCCACCATTTGAA | R- TCATTCTCCAGCATGCTCAC 

 

RNA-Sequencing 

 
Biological triplicates of Ramos cells treated with 0, 3, or 6 hours of 3 µM CHIR99021 were 

subjected to RNA-sequencing. Raw RNA-seq reads were aligned using GSNAP (version 2016-04-

01) 137 and quantified with htseq-count 138 using the Ensembl genome and gene annotation 

(GRCh37 release 75) 139. After filtering low expressed genes, differential expression was 

determined using the voom method in the bioconductor package limma (version 3.30.0) 140,141. The 

volcano plot was generated using R (version 3.3.2 (2016-10-31)) package ggplot2 (version 2.2.0) 

and genes annotated in the apoptosis pathway as annotated in the KEGG PATHWAY database 

(hsa04210) 142,143. Data was uploaded to GEO under accession number GSE126529. 

 

Immunohistochemistry 

 
Following excision, flank tumors were fixed in 10% buffered formalin and transferred to 

PBS the following day. Tissue was dehydrated, embedded in paraffin and sectioned by the CHOP 

Pathology Core. Immunohistochemical staining for cleaved caspase-3 was carried out on paraffin-

embedded tumor sections using R&D Systems antibody AF835 following standard procedures.  

Positive staining for cleaved caspase-3 analysis was performed using Aperio Positive Pixel Count 

Algorithm (version 9.1; Leica, Buffalo Grove, IL). Normal tonsils and Burkitt lymphoma clinical 
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samples were immunohistochemically stained for DR4 (TNFRSF10A) with the LSBio antibody LS-

B2073-50 following standard procedures. 

 

Statistical Analysis 

 

Statistical analysis was performed on GraphPad Prism software (version 7) by unpaired 

student’s t-test for two group comparisons or one-way ANOVA correcting for multiple comparisons, 

with similar variance between groups being compared. Error bars represent s.e.m. ± SD, and 

P<0.05 was considered statistically significant. For these experiments, each group is made up of 

at least three samples to achieve 80% power. No randomization nor blinding of investigators was 

performed. 
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CHAPTER 3: Results 

 

Myc Sensitizes B-lymphoid cells to Doxorubicin  

 

To address the role of Myc in responses to chemotherapy, we utilized the B-lymphoid cell 

model p493-6, which expresses a tetracycline-repressible Myc allele and endogenous Myc 144. 

However, these cells are TP53 wild-type and do not recapitulate the genetics of BL where p53 is 

mutated at a frequency of ~30% 124.To make these cells a more suitable model of r/r BL, we infected 

cells with lentiviruses encoding two different p53-directed shRNA hairpins and selected the best 

knockdown for further use (Fig. 4A, arrow). In response to Dox treatment, p53shRNA-infected cells 

exhibited impaired induction of p53 and also displayed a higher IC50 for Dox following 72 hours of 

treatment (Fig. 4B, C), making them representative of r/r BL. Of note, in the absence of a 

chemotherapeutic agent, we observed minimal cleavage of PARP in both ‘high Myc’ and ‘low Myc’ 

states, indicating the ability of this B-lymphoid cell model to tolerate fluctuations in Myc levels. 

Furthermore, in the ‘high Myc’ state, therapeutic apoptosis was quite robust, as evidenced by 

elevated levels of cleaved PARP (Fig. 5A, left two lanes). To our surprise, in the ‘low Myc’ state 

(Fig. 5A, right two lanes), there was minimal cleavage of PARP in response to Dox.  

We wanted to measure the effect of manipulating Myc levels on apoptosis quantitatively, 

so we treated cells with vehicle or tetracycline and increasing concentrations of Dox for 72 hours 

and found that ‘low Myc’ cells (+ tetracycline) were much more resistant to Dox as measured by a 

1-log increase in the IC50 (Fig. 5B). To determine whether sustained Myc expression is required 

for Dox sensitivity or whether acute Myc activation would suffice, we started with cells in a ‘low Myc’ 

state and, at the time of plating/Dox treatment, washed off tetracycline from half the cells, to allow 

for a quick accumulation of Myc. We found that cells with acute Myc activation (“high Myc”) were 

much more sensitive to Dox as measured by a >1-log decrease in the IC50 (Fig. 5C).  
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We then asked what the contribution of Myc would be to therapeutic apoptosis in a model 

system completely lacking p53. To do this, we electroporated p493-6 cells with a pool of three p53-

targeting CRISPR/Cas9 plasmids and a pool of three homology directed repair (HDR) template 

plasmids that insert puromycin at the site of editing. Once knockout (KO) cells were selected for 

with purmocyin treatment, p53 wild-type (WT) and knockout cell lines were treated for 24 hours 

with Dox. Western blotting confirmed that there was no induction of p53 expression in the KO line 

following Dox, and furthermore, that there was minimal induction of apoptosis compared to WT 

cells, as measured by greatly reduced cleaved PARP expression after 24 hours of treatment (Fig. 

6A). To further demonstrate the Dox resistance in the KO cell line, WT and KO cells were treated 

with increasing concentrations of Dox for 72 hours. KO cells were vastly more resistant to Dox, as 

demonstrated by a roughly 1-log increase in IC50 compared to WT cells (Fig. 6B). To establish the 

role of Myc in this highly Dox-resistant, p53-null model, cells were treated as in Fig. 5C. Cells in a 

‘low Myc’ state (+ tetracycline) either had tetracycline washed off, to allow for a quick accumulation 

of Myc at the time of Dox addition, or were kept in a low Myc state for the duration of the experiment. 

Just as in the p53shRNA model, acute accumulation of Myc (a “high Myc” state) led to a drastic 

increase in sensitivity to Dox, as seen by the > 1 log decrease in Dox IC50 (Fig. 6C). These 

counterintuitive data indicate that high Myc, while clearly oncogenic, is essential for Dox-mediated 

apoptosis. This finding prompted us to investigate how Myc could be pushed beyond the apoptotic 

threshold in r/r BL cells under normal growth conditions or upon exposure to chemotherapy. 
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Figure 4. Generation and characterization of P493-6 p53shRNA cell line. 
A) P493-6 cells were infected with two p53shRNA at two viral concentrations. P53 knockdown 
was assessed by western blotting. B) P493-6 WT and p53shRNA cells were treated for 5 hours 
with .25 μM doxorubicin. Induction of p53 was assessed by western blotting. C) 72 hour Dox dose 
response curve of p493-6 WT and p53shRNA cells; survival was assessed using CellTiter-Glo 
and plotted using GraphPad Prism.  
 

A B
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Figure 5. Myc is critical for doxorubicin sensitivity in Myc-repressible p53shRNA B-lymphoid 
model.  
A) P493-6 p53shRNA cells were treated with vehicle (high Myc) or 5 ng/mL tetracycline (low Myc) 
for 5 hours and doxorubicin as indicated. Western blotting was performed for cleaved PARP, Myc, 
p53 and actin loading control. Levels of cleaved PARP (indicated below) were quantified using 
Image J software and plotted with GraphPad Prism. B) 72 hour Dox dose response curve of p493-
6 p53shRNA cells treated with 5 ng/mL tetracycline or vehicle; survival was assessed using 
CellTiter-Glo and plotted on GraphPad Prism. Cells were harvested at day 0 and day 3 to assess 
Myc levels by western blotting. C) P493-6 p53shRNA cells were treated with 5 ng/mL tetracycline 
or vehicle overnight. The next day, tet was removed from half of the cells. Cells were harvested 
at day 0, after overnight tet, and 48 hours after tet wash-off to assess Myc levels by western 
blotting.  All cells were then treated with increasing concentrations of doxorubicin for 48 hours 
and cell survival was measured as in B).  
 

A B

C

(mM)

(mM)



 
31 

 

  

 
 
Figure 6. Myc is critical for doxorubicin sensitivity in Myc-repressible p53 knockout B-lymphoid 
model.  
A) P493-6 p53 WT and KO cells were treated for 4 or 24 hours with .25 μM doxorubicin. Western 
blotting was performed for cleaved PARP, p53 and actin loading control. B) 72 hour Dox dose 
response curve of p493-6 WT and p53 KO cells; survival was assessed using CellTiter-Glo and 
plotted using GraphPad Prism. C) P493-6 p53KO cells were treated with 5 ng/mL tetracycline or 
vehicle overnight. The next day, tet was removed from half of the cells. All cells were then treated 
with increasing concentrations of doxorubicin for 48 hours and cell survival was measured as in 
B).  
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GSK-3 inhibition stabilizes Myc in Burkitt lymphoma cell lines 

 

Since Myc is regulated post-translationally by GSK-3β phosphorylation on the Thr58 

residue, we reasoned that treating B-lymphoid cells with GSK-3 inhibitors such as lithium chloride 

145 or the more specific small molecule CHIR99021 146 would elevate Myc to levels sufficient to 

trigger cell death (Fig. 7A). We first treated a panel of BL cell lines bearing wild-type or Thr58-

mutant Myc with CHIR99021. β-catenin, a well-known GSK-3β target 147 was stabilized in all cell 

lines irrespective of Myc status and thus was used as a readout for GSK-3 inhibition in subsequent 

experiments (Fig. 7B). In contrast, only wild-type Myc was transiently stabilized by CHIR99021 

treatment (Fig. 7B). This stabilization was accompanied by the loss of the inhibitory Myc-Thr58 

phosphorylation. We also observed Myc stabilization in the Ramos cell line (p53 mutant, Myc wild-

type) upon GSK-3 inhibition with lithium chloride (Fig. 7C). To determine the mechanism of Myc 

transient stabilization, we pre-treated Ramos cells with DMSO or CHIR99021, then blocked new 

mRNA synthesis with actinomycin D. We found no apparent difference in mRNA stability between 

treatment conditions (Fig. 8A). Ramos cells pre-treated with DMSO or CHIR99021 were then 

exposed to cycloheximide to inhibit new protein synthesis. In DMSO treated cells, Myc protein was 

rapidly degraded, with almost all pre-existing protein disappearing after 80 minutes (Fig. 8B, DMSO 

lanes). In contrast, Myc protein in CHIR99021-treated cells was stable over 80 minutes (Fig. 8B, 

CHIR lanes). Thus, increased protein stability underlies CHIR99021-mediated increases in Myc.  

Both Myc and β-catenin are able to promote cell cycle progression and in some cases 

survival, thus we considered the possibility that treatment with CHIR99021 alone could promote 

neoplastic growth. To address this, CHIR99021-treated Ramos cells were assessed for cell cycle 

distribution, nuclear membrane integrity, and mitochondrial membrane depolarization using flow 

cytometry for propidium iodide (PI) uptake, Annexin V, and TMRE, respectively. We found no 

differences in cell cycle distribution or apoptosis (Fig. 8C), suggesting that while short-term 
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treatment with CHIR99021 is unlikely to accelerate cancer progression, it will not be effective as a 

monotherapy either and would have to be combined with cytotoxic drugs. 
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Figure 7. GSK-3 inhibition results in a transient increase in Myc Thr58 wild-type protein.  
A) Model of Myc protein regulation by GSK-3. B) Myc wild type (left) & Thr58 mutant (right) Burkitt 
lymphoma cell lines were treated with 3 μM CHIR99021 for a 6 hour time course. Western blotting 
was performed for β-catenin, Myc, MycThr58 phosphorylation and actin control, with Myc 
quantification using ImageJ below. C) Ramos cells were treated with LiCl as indicated. Western 
blotting was performed for β-catenin, Myc, and MycThr58 phosphorylation.  
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Figure 8. GSK-3 inhibition leads to an increase in Myc levels through transient stabilization of 
Myc at the protein level.  
A) Ramos cells were treated with DMSO or 3 μM CHIR99021 for 16 hours followed by 
actinomycin D. Bar graphs show qRT-PCR for Myc mRNA. B) Ramos cells were treated as in B) 
but followed by cycloheximide treatment. Western blotting was performed for Myc, β-catenin, and 
GAPDH control. C) Ramos cells were treated with DMSO or 3 μM CHIR99021 for 16 hours, then 
stained with PI, Yo-Pro, or TMRE (left, middle, and right columns), and analyzed by flow 
cytometry. Percentage of cells in each phase of cell cycle are shown (left column). Positive and 
negative cells are shown for Yo-Pro and TMRE staining.  
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GSK-3 inhibition aids chemotherapy in BL by a Myc-dependent mechanism 

 

To determine whether GSK-3 inhibition potentiates therapeutic apoptosis, we chose a two-

hour CHIR99021 pre-treatment interval, which coincides with the spike in Myc levels (Fig. 7B). 

Ramos cells pretreated with DMSO or CHIR99021 were exposed to Dox. We found that 

CHIR99021 treatment increased activation of apoptosis as measured by enhanced PARP cleavage 

(Fig. 9A). We also measured apoptosis activation by the Caspase-Glo 3/7 assay, which detects the 

release of aminoluciferin from the cleaved caspase-3/7-specific substrate. We found that 

CHIR99021 boosted the activation of caspases 3/7 in response to Dox (Fig. 9B). As expected, by 

flow cytometric analysis we observed an increase in cleaved caspase-3 staining between Dox 

alone and its combination with CHIR99021 (Fig. 9C). As a result of detecting an increase in 

apoptosis activation, the IC50 for Dox was significantly reduced across multiple experiments (Fig. 

9D). In the Burkitt lymphoma cell line Daudi (p53 mutant, Myc Thr58 wild type), CHIR99021 also 

reduced the IC50 for Dox, albeit to a lesser degree (Fig. 9E). Collectively these data demonstrate 

that GSK-3 inhibition enhances the response of Burkitt lymphoma cells to the chemotherapeutic 

drug doxorubicin. 

Doxorubicin is not the only chemotherapeutic drug that is used to treat Burkitt lymphoma, 

so we wanted to test the cooperation between GSK-3 inhibition and other anti-cancer drugs. We 

combined CHIR99021 pre-treatment with 4 or 7 hours of vincristine in Ramos cells, and similarly 

to the result with Dox, we found that CHIR99021 increased vincristine-induced apoptosis as seen 

by an increase in cleaved PARP (Fig. 10A). Using the Caspase-Glo 3/7 assay, we detected an 

increase in activated caspases 3/7 following CHIR99021 + vincristine compared to DMSO + 

vincristine (Fig. 10B). These measured increases in apoptosis translated to about a half a log 

reduction in the IC50 for vincristine when Ramos cells were also cultured with CHIR99021 for 72 

hours (Fig. 10C). CHIR99021 treatment also lead to a >0.5 log reduction in the IC50 for a different 
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chemotherapeutic drug mafosfamide, a cyclophosphamide analog that does not require hepatic 

activation to induce apoptosis (Fig. 10D).  

Given that GSK-3 has targets other than Myc, we asked to what extent this pro-apoptotic 

effect was due to Myc stabilization. We began by anti-GSK-3 adjuvant therapy on the BL cell lines 

Raji and MutuI that are p53/MycThr58 mutant and did not exhibit a CHIR99021-mediated increase 

in Myc (Fig. 7B). Despite all of the other GSK-3 targets that could be modulated during CHIR99021 

treatment, in both of these cell lines where Myc was not transiently stabilized addition of 

CHIR99021 did not alter the IC50 for Dox (Fig. 11A, B).  

To test the involvement of Myc in a more direct genetic manner, p493-6 p53shRNA cells 

were treated with vehicle or low dose tetracycline to reduce Myc levels, followed by DMSO or 

CHIR99021 and Dox. In vehicle-treated cells, CHIR99021 lead to increased activation of apoptosis 

following Dox (Fig. 12A, ‘Vehicle’ columns). Tetracycline-treated cells expressed around ~50% less 

Myc, and apoptosis following Dox alone was reduced ~50%. Despite this, CHIR99021 no longer 

enhanced the apoptotic response to Dox (Fig. 12A, ‘Tet’ columns).  

In parallel, we pharmacologically inhibited Myc expression in BL cells. Because Myc is 

regulated at the transcriptional level by BRD4 60,61, we employed the BRD4 inhibitor iBet-151 (a.k.a. 

GSK1210151A) 148 to blunt Myc transcription in the context of CHIR99021 treatment. First, we 

treated Ramos cells with increasing concentrations of iBet-151 and determined that 500 nM was 

the lowest dose at which Myc protein levels were adequately suppressed without evidence of cell 

death (Fig. 12B). We then cultured Ramos cells in 500 nM iBet-151 or control media for 24 hours 

followed by anti-GSK-3 adjuvant therapy. We found that when Myc expression was reduced, the 

cooperation between CHIR99021 and Dox was almost fully abrogated, as evidenced by the 

abolishment of apoptosis markers (Fig. 12C). To measure apoptosis quantitatively, we subjected 

cells treated with Dox, iBet-151 + Dox, CHIR + Dox, or all three drugs to flow cytometric analysis 

for apoptosis marker Annexin V. We found that Dox alone did not induce apoptosis very efficiently 
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(<15% Annexin V-positive cells) and adding iBet-151 to Dox made apoptosis even less efficient (-

7% net change). Combining CHIR99021 and Dox more than doubled the percentage of Annexin V 

positive cells as compared to Dox alone (~30%). However, treatment with all three compounds 

completely blocked apoptosis (Fig. 12D). Collectively, these data suggest that Myc is a key GSK-

3 target involved in CHIR99021-facilitated sensitization to chemotherapy. 



 
39 

 

  

 
 
 
Figure 9. GSK-3 inhibition with CHIR99021 increases sensitivity to doxorubicin in Myc wild-type 
Burkitt lymphoma cell lines.  
A) Ramos cells were treated with DMSO or 3 μM CHIR99021 for 2 hours followed by doxorubicin 
as indicated. Western blotting was performed for cleaved PARP, Myc, and actin control. B) Ramos 
cells were treated as described in A). Cleaved caspase-3 expression was analyzed by flow 
cytometry after 6.5 hours of doxorubicin; percentages of positive cells are indicated. C) Ramos 
cells were treated as described in A). Caspase 3/7 Glo assay was performed and luminescence 
data points for each treatment group are plotted. D) Left: Ramos cells were treated with DMSO 
or 3 μM CHIR99021 and increasing concentrations of doxorubicin for 72 hours. Cell survival was 
assessed using CellTiter-Glo and plotted using GraphPad Prism. Right: Graph of means ± SEM 
analyzed by unpaired t-test for experimental repeats. E) Daudi cells were treated and analyzed 
as described in D).  
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GSK-3β inhibition aids chemotherapy in vivo in allograft and PDX models  

 
 
 
Figure 10. GSK-3 inhibition increases sensitivity to additional chemotherapeutic drugs.  
A) Ramos cells were treated with DMSO or 3 μM CHIR99021 for 2 hours followed by vincristine. 

Western blotting was performed for cleaved PARP, Myc
Thr58

 phosphorylation, and actin control. 
B) Ramos cells were treated with DMSO or 3 μM CHIR99021 for 2 hours followed by a 7.5 hour 
time course of .1 μM vincristine. Caspase 3/7 Glo assay was performed and luminescence data 
points plotted. C) Ramos cells were treated with DMSO or 3 μM CHIR99021 and increasing 
concentrations of vincristine for 72 hours. Cell survival was assessed using CellTiter-Glo and 
plotted using GraphPad Prism. D) Ramos cells were treated with DMSO or 3 μM CHIR99021 and 
increasing concentrations of mafosfamide for 72 hours. Cell survival was assessed as described 
in C).  
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Figure 11. GSK-3 inhibition has no effect on doxorubicin sensitivity in Myc
Thr58 

mutant Burkitt 
lymphoma cell lines.  
A) and B) Left: Raji (A) or Mutu1 (B) cells were treated with DMSO or 3 μM CHIR99021 and 
increasing concentrations of doxorubicin for 72 hours. Cell survival was assessed using CellTiter-
Glo and plotted using GraphPad Prism. Right: Graph of means ± SEM analyzed by unpaired t-
test for experimental repeats.  
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Figure 12. Myc is a key target of GSK-3 responsible for CHIR99021-mediated sensitization to 
doxorubicin. 
A) Left: P493-6 p53shRNA cells were treated with vehicle or tetracycline for 5 hours, followed by 
2 hours or DMSO or CHIR and doxorubicin. Western blotting was done for β-catenin, cleaved 

PARP, Myc, Myc
Thr58

 phosphorylation and actin control. Right: Levels of cleaved PARP were 
quantified with Image J software and plotted with GraphPad Prism. B) Ramos cells were treated 
with increasing concentrations of iBet-151 or DMSO for 24-48 hours. Myc repression and cell 
death was assayed by western blotting. C) Ramos cells were treated with 500 nM iBet-151 or 
DMSO for 24 hours followed by 2 hours of 3 μM CHIR99021 and doxorubicin as indicated. 
Western blotting was performed for Myc and markers of cell death. D) Same experiment setup as 
in C). Annexin V expression was analyzed by flow cytometry after 6 hours of doxorubicin. Gates 
were drawn based on untreated cells.  
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GSK-3 inhibition increases sensitivity to chemotherapy in vivo  

 

To test anti-GSK-3 adjuvant therapy in vivo, we first utilized a previously generated non 

transgenic p53 conditionally-deficient B-lymphoma model (dubbed ‘p53ER/MYC’) 130,133 wherein 

bone marrow cells were isolated from p53ERTAM knock-in mice 149 and transduced with retrovirus 

expressing constitutively active Myc 150. We confirmed that CHIR99021 treatment transiently 

stabilized Myc in p53ER/MYC cells (Fig. 13A). In the context of inactive p53 (cells grown without 

the estrogen receptor (ER) agonist 4-OHT), there was a notable increase in cleaved PARP and 

cleaved caspase-3 protein following CHIR + Dox, indicating that Myc stabilization potentiates p53-

independent apoptosis in this cell model in vitro (Fig. 13B). This pro-apoptotic effect of CHIR99021 

was not seen when cells were treated in the context of functional p53 (cells grown in 4-OHT; Fig. 

13C).  Subsequently, p53ER/MYC allografts grown in mice without 4-OHT treatment were 

intraperitoneally injected with increasing doses of CHIR99021. Tumors were harvested at 1.5 and 

3 hours to probe for Myc levels. An increase in total Myc protein and a loss of Myc-Thr58 

phosphorylation was observed at a dose of 100 mg/kg, but not lower doses (Fig. 14A, data not 

shown). For this reason, 100 mg/kg was the selected dose of CHIR99021 to use in further 

experiments. P53ER/MYC allografts were then subjected to anti-GSK-3 adjuvant therapy; mice 

received one intraperitoneal injection of vehicle, CHIR99021, vehicle + Dox, or CHIR99021 + Dox. 

Tumors were harvested 24 hours later and subjected to IHC staining for cleaved caspase-3. We 

noted a significant increase in positive cells after CHIR99021 + Dox treatment compared to Dox 

alone (Fig. 14B, C).  

We also developed a patient-derived xenograft (PDX MAP-GR-C95-BL-1) model 

representing a p53 mutant BL. The model is derived from the pancreatic metastasis of a refractory 

BL with a TP53 p.Cys135Phe mutation and LOH as well as a MYC p.Pro78Ser mutation and the 

subclonal presence of a t(8;14) translocation involving Myc. We confirmed the PDX p53 defect by 

observing minimal induction of p53 protein following Dox (Fig. 15A). We then inhibited GSK-3 in 
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cultured MAP-GR-C95-BL-1 cells with CHIR99021 or LiCl; both resulted in transient Myc 

stabilization similar to other Myc WT BL cell lines tested (Fig. 15B, C). As in Ramos cells, 

CHIR99021 lowered the IC50 for Dox by roughly half a log, and this decrease in IC50 was 

significant across multiple experiments (Fig. 16A). To test this adjuvant therapy in vivo, mice 

bearing MAP-GR-C95-BL-1 flank xenografts were treated with one intraperitoneal injection of 

vehicle, Dox, or CHIR99021 + Dox; tumors were harvested 24 hours later and processed for IHC 

measurement of cleaved caspase-3 positive cells. Upon analysis, CHIR99021 + Dox treated 

tumors were significantly more positive than Dox alone- or vehicle treated tumors (Fig. 16B). These 

findings demonstrate that GSK-3 inhibition with CHIR99021 can enhance in vivo p53-independent 

apoptosis in both allograft and PDX models. 

 

 

 

 

 

 

 

 

 

 



 
45 

 

 

 

 
 
 
 
Figure 13. GSK-3 inhibition enhances p53-independent apoptosis in vitro in murine model of B-
cell lymphoma. 
A) p53ER/MYC cells were treated with CHIR99021 as indicated. Western blotting was performed 
for markers of GSK-3β inhibition. B) Top: p53ER/MYC cells were grown without 4-OHT (p53-
inactive). Cells were treated with DMSO or 3 μM CHIR99021 for 2 hours followed by doxorubicin 
as indicated. Western blotting was performed for markers of GSK-3 inhibition, apoptosis, and 
loading controls. Bottom: Quantification of cleaved PARP and cleaved caspase-3 western blots. 
C) p53ER/MYC cells were treated with DMSO or 3 μM CHIR99021 for 2 hours followed by 250 
nM 4OHT and .025 μM doxorubicin as indicated. Western blotting was performed for markers of 
GSK-3 inhibition, apoptosis, p53ER, and loading control actin.  
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Figure 14. GSK-3β inhibition enhances p53-independent apoptosis in vivo in syngeneic murine 
B-cell neoplasms. 
A) F1 hybrid B6129PF1/J mice bearing p53ER/MYC subcutaneous grafts were intraperitoneally 
injected with vehicle or 100 mg/kg CHIR99021 and tumors were harvested at indicated time 
points. Western blotting was performed for markers of GSK-3β inhibition and actin loading control. 
B) F1 hybrid B6129PF1/J mice bearing p53ER/MYC subcutaneous grafts were intraperitoneally 
injected with vehicle, vehicle + 8 mg/kg doxorubicin, 100 mg/kg CHIR99021, or 100 mg/kg 
CHIR99021 + 8 mg/kg doxorubicin. Tumors were harvested after 18 hours for 
immunohistochemistry (IHC) staining for apoptosis marker cleaved caspase-3. Graph depicts 
aperio positive pixel count quantification of cleaved caspase-3 IHC staining for each treatment 
group (number per group indicated below). Error bars represent mean + SEM analyzed by one-
way ANOVA with correction for multiple comparisons. C) Representative images of cleaved 
caspase-3 stains (brown) are shown for each treatment group from B). 
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Figure 15. GSK-3β inhibition stabilizes Myc protein in p53 mutant Burkitt lymphoma PDX. 
A) PDX MAP-GR-C95-BL-1 cells were treated with doxorubicin as indicated. P53 induction was 
measured by western blotting. B) PDX MAP-GR-C95-BL-1 cells were treated with CHIR99021 as 
indicated. Western blotting was performed for β-catenin and Myc. C) PDX MAP-GR-C95-BL-1 
cells were treated with LiCl as indicated, and Myc levels were assessed by western blotting.  
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Figure 16. GSK-3β inhibition increases sensitivity to doxorubicin in Burkitt lymphoma PDX.            
A) Left: PDX MAP-GR-C95-BL-1 cells were treated with DMSO or 3 μM CHIR99021 and 
increasing concentrations of doxorubicin for 72 hours. Cell survival was assessed using CellTiter-
Glo and plotted using GraphPad Prism. Right: IC50s of multiple experiments were statistically 
analyzed by unpaired t-test. B) Left: ATHYM-Foxn1nu/nu mice bearing MAP-GR-C95-BL-1 
xenografts were intraperitoneally injected with 8 mg/kg doxorubicin or 100 mg/kg CHIR99021 + 8 
mg/kg doxorubicin. Tumors were harvested after 24 hours for immunohistochemistry (IHC). 
Representative images of whole tumors stained for cleaved caspase-3. Right: Aperio positive 
pixel count quantification of cleaved caspase-3 IHC staining of MAP-GR-C95-BL-1 xenografts 
was statistically analyzed by unpaired t-test. 
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Anti-GSK-3 adjuvant therapy modulates members of the extrinsic apoptotic pathway 

 

To determine the underlying mechanism downstream of Myc, we profiled CHIR99021-

mediated transcriptional changes by performing RNA-Seq analysis on Ramos cells treated for 0, 

3, or 6 hours with CHIR99021. We confirmed that there was a relatively equivalent read count 

between biological replicates (Fig. 17A) and that the three treatment groups clustered together 

based on gene expression (Fig. 17B). We then looked for overlap between CHIR99021-induced 

transcriptome changes and previously reported Myc signatures in two datasets pertaining to p493-

6 cells- from microarray profiling (“Psathas Affy” 126) and array-based nuclear run-on (ANRO) assay 

(“Dang NRO” 151). We compared activated genes between the three datasets and found that there 

were highly statistically significant overlaps between the CHIR99021 and Myc datasets, attesting 

to the fact that Myc is a key downstream effector of GSK-3 (Fig. 17C).  

We then further analyzed our RNA-seq dataset at the single gene level to examine how 

apoptosis-related genes were being affected. We confirmed that canonical Myc targets, such as 

ODC1 20, were being modulated as expected (Fig. 17C). We then visualized up or down-regulated 

KEGG apoptosis pathway genes (Fig. 17D). Of the significantly altered genes, many were related 

to extrinsic/death receptor-driven apoptosis, such as up-regulation of RIPK1/TNFR-STK, TRAIL-

R4, Death Receptor 4, and down-regulation of CFLAR/FLIP, the negative regulator of extrinsic 

apoptosis. Extrinsic apoptosis is triggered by binding of death ligands FasLG, TNF, and TRAIL to 

their cognate receptors Fas, TNFR1, and DR4/DR5, which triggers formation of the death-inducing 

signaling complex (DISC) with Fadd and caspase-8, leading to activation of caspase-8 and 

downstream caspases (Fig. 18A). In contrast, intrinsic/mitochondrial apoptotic genes such as BAX, 

BAK, and NOXA, which are pro-apoptotic proteins involved in facilitating cytochrome C release 

from the mitochondria to activate downstream caspases, were not significantly altered.  
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We validated the RNA-sequencing findings in cells treated with both CHIR99021 and Dox 

via qRT-PCR. Once again, we did not observe differential expression in the examined intrinsic 

apoptosis genes (Fig. 18B). We then re-examined expression of death receptors (Fas, TNFR1, 

DR4, and DR5), their cognate ligands (FasLg, TNF, and TRAIL), and CFLAR/FLIP. Largely 

consistent with our RNA-Seq data, we observed up-regulation of DR4 and DR5, and down-

regulation of CFLAR/FLIP (Fig. 18C, yellow arrows); expression of other genes was either absent 

(FASL; data not shown) or unaffected by CHIR99021. Interestingly, with Dox alone we saw robust 

upregulation of Fas and TNF, suggesting that chemotherapy alone might engage extrinsic 

apoptosis to some degree (Fig. 18C).  
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Figure 17. GSK-3β inhibition alters expression of extrinsic apoptosis genes.   
A) RNA-sequencing read counts for 0, 3, and 6 hour biological triplicates. B) Clustering analysis 
of RNA-sequencing samples. C) Left: Venn diagrams showing overlap of activated genes 
between three datasets (CHIR99021, Psathas Affy, and Dang NRO). Right: Change in expression 
level of ODC1 from RNA-sequencing. D) Volcano plot of KEGG apoptosis genes derived from 
RNA-Seq data on Ramos cells treated for 3 hours with 3 μM CHIR99021 in biological triplicates. 
Key apoptotic genes are labeled, with genes in blue being down-regulated, genes in red being 
up-regulated, and genes in green having no significant changes.  
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Figure 18. Anti-GSK-3β adjuvant therapy alters expression of extrinsic, not intrinsic, apoptosis 
genes.   
A) Schematic of the extrinsic apoptotic pathway and its interplay with the intrinsic (mitochondrial) 
pathway. B) qRT-PCR expression analysis for known Myc-dependent intrinsic/mitochondrial 
apoptotic factors was performed on Ramos cells treated for 2 hours with DMSO (blue bars) or 3 
μM CHIR99021 (red bars) followed by a 6 hour time course of .25 μM doxorubicin. C) qRT-PCR 
expression analysis for extrinsic apoptosis factors was performed on Ramos cells treated as in 
B). Notable changes are indicated with yellow arrows. 
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Anti-GSK-3 adjuvant therapy does not depend on intrinsic apoptosis or necroptosis 

 

To define the role of both apoptotic pathways experimentally, we first over-expressed the 

pathway inhibitor Bcl-2 in Ramos cells (Fig. 19A). When we compared CHIR99021-aided apoptosis 

in empty vector and Bcl-2 expressing cells, we observed enhanced PARP cleavage with 

CHIR99021 pre-treatment in both cell lines (Fig. 19B). Furthermore, we saw significant activation 

of caspases-3/7 in both empty vector and Bcl-2 cells treated with CHIR99021 + Dox (Fig. 19C), 

although both basal and GSK3i-aided apoptosis were somewhat reduced by Bcl-2 overexpression, 

attesting to the involvement of the intrinsic pathway.  

We also considered the possibility that necroptosis might be involved in anti-GSK-3 

adjuvant therapy, given that RIPK1 was one of the most robustly and significantly altered genes in 

our RNA-sequencing data from CHIR99021 treated Ramos cells (Fig. 17D). Necroptosis is an 

alternative mode of programmed cell death that bears resemblance to certain features of both 

apoptosis and necrosis. RIPK1 is a kinase that contains a death domain which allows it to associate 

with death receptors in the extrinsic apoptotic pathway, as well as extrinsic apoptosis adaptor 

proteins 152,153. However, it is the association of RIPK1 with RIPK3 and downstream 

phosphorylation of MLKL that triggers necroptosis.  

To evaluate whether necroptosis was playing a role in our experimental system, we first 

looked at the change in RIPK1 RNA following CHIR99021 treatment. From RNA-sequencing, we 

observed a sharp increase in expression at 3 hours of CHIR99021, which began to taper off by 6 

hours (Fig. 20A). This was confirmed by qRT-PCR and western blotting for RIPK1 in Ramos cells 

treated with 3 µM CHIR99021 for a more detailed time course (Fig. 20B top, C). We also observed 

an upregulation of MLKL expression in CHIR99021 treated Ramos cells (Fig. 20B, bottom). We 

then used siRNA to knock down RIPK1 expression in Ramos cells treated with anti-GSK-3 adjuvant 

therapy. Despite an efficient knockdown, loss of RIPK1 expression had no effect on apoptosis, as 
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seen by similar levels of cleaved PARP in the siRNA control vs. RIPK1 samples (Fig. 20D). Given 

that we detected an increase in MLKL expression and that this protein is downstream of RIPK1 in 

the necroptosis pathway, we wanted to look for activated MLKL in CHIR99021 + doxorubicin treated 

cells. As a positive control for necroptosis, we used a well-documented system whereby HT-29 

colon carcinoma cells are treated with 20 µM of the pan-caspase inhibitor Z-VAD, 20 ng/ml of TNF-

α, and 100 nM of the Smac mimetic SM-164, which leads to the induction of necroptosis as 

identified by detection of MLKL phosphorylation at Thr357/Ser358 154. When we ran this positive 

control alongside Ramos cells treated with CHIR99021 followed by doxorubicin, we were able to 

detect phosphorylated MLKL in the positive control but not in the other samples, suggesting that 

necroptosis does not play a contributing role in mediating cell death following anti-GSK-3 adjuvant 

therapy (Fig. 20E).  
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Figure 19. Anti-GSK-3β adjuvant therapy efficacy is unaffected by blocking intrinsic apoptosis.        
A) Western blotting confirming retroviral over-expression of Bcl-2 in Ramos cells. B) Ramos cells 
expressing an empty vector construct or the Bcl-2 construct were treated for 2 hours with DMSO 
or 3 μM CHIR99021 followed by a 6.5 hour time course of .25 μM doxorubicin. Western blotting 

was performed for Myc, Myc
Thr58

 phosphorylation, cleaved PARP, and Bcl-2. C) Caspase 3/7 Glo 
luminescence assay was performed on Ramos empty vector or Bcl-2 expressing cells treated as 
in B). Luminescence was plotted and statistically analyzed by unpaired t-test.  
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Figure 20. Anti-GSK-3β adjuvant therapy does not engage or rely on necroptosis.  
A) Change in expression level of RIPK1 from RNA-sequencing. B) qRT-PCR expression analysis 
for necroptosis pathway members RIPK1 and MLKL in Ramos cells treated with a time course of 
3 µM CHIR99021. C) Western blotting for RIPK1 protein in Ramos cells treated with a time course 
of 3 µM CHIR99021. Also probed for markers of GSK-3β inhibition and actin loading control. D) 
Left: Ramos cells were treated with control or RIPK1 siRNA for 24 hours followed by DMSO or 
CHIR and doxorubicin as indicated. Western blotting was performed for markers of GSK-3β 
inhibition, apoptosis, RIPK1, and actin loading control. Right: qRT-PCR demonstrating 
knockdown of RIPK1 mRNA with RIPK1-directed siRNA. E) Ramos cells were treated with DMSO 
or 3 μM CHIR99021 for 2 hours followed by doxorubicin as indicated. A positive control for 
necroptosis was included (HT-29 cells treated with 20 µM Z-VAD for 30 minutes followed by 7 
hours of 20 ng/ml TNF-α and 100 nM SM-164). Western blotting was performed for MLKL, p-
MLKL Ser358, and actin loading control.  
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Anti-GSK-3 adjuvant therapy engages and relies on extrinsic apoptosis 

 

Given that changes in intrinsic apoptosis had limited effects on therapy efficacy and 

necroptosis was not found to be involved, we tested the contribution of the extrinsic apoptotic 

pathway. First, cleaved caspase-8, which is specific to extrinsic apoptosis, was higher in 

CHIR99021 + Dox treated Ramos cells (Fig. 21A). We also found that CHIR99021 treatment 

downregulated FLIP protein (Fig. 21B). To test the importance of extrinsic apoptosis, we genetically 

manipulated members of this pathway. First, we knocked down the extrinsic adaptor protein Fadd 

mRNA using siRNA and subjected the cells to anti-GSK-3 adjuvant therapy. Despite a modest 

knockdown (~30%, Fig. 21C, left), therapeutic apoptosis was markedly diminished, as evidenced 

by reduced cleaved caspase-8 (Fig. 21C, right). To corroborate this observation, we overexpressed 

caspase-8 competitor CFLAR (a.k.a c-FLIP) in Ramos cells (Fig. 22A). FLIP overexpressing cells 

were functionally tested to have compromised extrinsic apoptosis activity. Compared to empty-

vector cells, FLIP expressing cells displayed blunted expression of cleaved caspases 3 and 8 in 

response to the extrinsic ligand TRAIL (Fig. 22B). In empty-vector cells, apoptosis could be readily 

induced by anti-GSK-3 adjuvant therapy; however, there was an almost complete abrogation of 

apoptosis in CFLAR/FLIP-overexpressing cells, as evidenced by a strong reduction in cleaved 

PARP and cleaved caspase-8 (Fig. 22C). Similarly, we saw no significant increase in activated 

caspases in CFLAR/FLIP expressing cells compared to empty vector (Fig. 22D).  

To analyze individual contributions of death receptors, we used the CRISPR/Cas9 system 

to knock-out Fas, DR4 and DR5. Short guide RNAs (sgRNAs) for Fas, DR4, DR5, and a scrambled 

control sequence were cloned into the LentiCRISPRv2GFP lentiviral vector and stably expressed 

in Ramos cells. GFP-positive cells were isolated and stained for surface expression of the targeted 

extrinsic receptor; the knockout (KO) lines displayed almost a complete loss of surface expression 

of each particular receptor compared to the scrambled control (Fig. 23A). Knockout was confirmed 

by western blot for Fas, DR4, and DR5 protein (Fig. 23B). DR4 and DR5 KO lines were further 
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characterized to be functional knockouts by comparing the IC50s for 72 hours of TRAIL treatment 

and observing that both knockouts, but especially the DR4 KO, were resistant to their cognate 

extrinsic ligand TRAIL compared to the scrambled cell line (Fig. 23C). We began by testing the 

involvement of the Fas receptor, as it was highly upregulated upon both doxorubicin and 

CHIR99021 + doxorubicin (Fig. 18C). However, we found that Fas KO did not abrogate the ability 

of CHIR99021 to sensitize cells to doxorubicin (Fig. 24A). Therefore, we tested the other extrinsic 

death receptor KO lines. The scrambled cell line ‘Scrambled sgRNA’, DR4 and DR5 KO lines were 

treated with DMSO or CHIR and dilutions of Dox for 72 hours. We found that knockout of either 

DR4 or DR5 did not affect the IC50 of DMSO + Dox compared to the scrambled control; however, 

in DR4 or DR5 KO lines, CHIR no longer sensitized cells to Dox, as observed across multiple 

experiments (Fig. 24B).   

Consistent with engagement of extrinsic apoptosis, we found that CHIR99021 lowered the 

IC50 for the DR4/DR5 ligand TRAIL by 1 log (Fig. 25A). Apoptosis in response to TRAIL or CHIR 

+ TRAIL could be blunted by overexpression of FLIP as seen by a reduction in cleaved caspase-3 

and -8 expression in FLIP expressing cells compared to empty-vector cells (Fig. 25B). Additionally, 

we utilized the human DR4 agonist antibody mapatumumab (a.k.a. HGS-ETR1) 155. Similar to the 

results with TRAIL, CHIR99021 sensitized Ramos cells to mapatumumab as seen by a half-log 

reduction in IC50 (Fig. 25C). We wanted to know if DR4 involvement is clinically relevant, so we 

analyzed 10 Burkitt lymphoma clinical samples for IHC expression of DR4 and compared them to 

5 normal tonsils. The tonsillar germinal center showed weak cytoplasmic staining, while the 

lymphoma samples displayed robust membrane and cytoplasmic staining (Fig. 25D). Collectively 

these data demonstrate that GSK-3 inhibition potentiates the apoptotic activity of death receptors 

such as DR4 and reveals the critical dependence of anti-GSK-3 adjuvant therapy on extrinsic 

apoptosis. 
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Figure 21. Extrinsic apoptosis is active during anti-GSK-3β adjuvant therapy which is disrupted 
by knockdown of Fadd. 
A) Ramos cells were treated for 2 hours with DMSO or 3 μM CHIR99021 followed by doxorubicin. 
Cleaved caspase-8 levels were assessed by western blotting. B) Ramos cells were treated with 
a time course of 3 μM CHIR99021 and western blotting was performed for FLIP long and actin 
loading control. C) Left: qRT-PCR demonstrating modest knockdown of FADD mRNA with FADD-
directed siRNA. Right: Ramos cells were treated with control or FADD siRNA for 24 hours followed 
by DMSO or CHIR and doxorubicin as indicated. Western blotting was used to assess activation 
of caspase-8 and Myc levels.  
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Figure 22. Blocking the extrinsic apoptotic pathway abrogates the pro-apoptotic effects of anti-
GSK-3β adjuvant therapy. 
A) Western blotting confirming retroviral over-expression of FLIP in Ramos cells. B) Ramos empty 
vector and FLIP expressing cells were treated with increasing concentrations of the extrinsic 
ligand TRAIL. Cleaved caspase-3 and 8 (CC3 and CC8) expression was analyzed by flow 
cytometry after 6 hours of treatment; percentages of positive cells are plotted. C) Ramos cells 
expressing an empty vector construct or FLIP construct were treated for 2 hours with DMSO or 3 
μM CHIR99021 followed by a 6.5 hour time course of .25 μM doxorubicin. Western blotting was 
performed for markers of GSK3-β inhibition, cell death, and FLIP expression. D) Caspase 3/7 Glo 
luminescence assay was performed on Ramos empty vector or FLIP expressing cells treated as 
in C). Luminescence was plotted and statistically analyzed by unpaired t-test.  
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Figure 23. Generation of death receptor CRISPR knockout cell lines.  
A) Confirmation of CRISPR knockout of death receptors. Ramos derivatives with scrambled, DR4, 
DR5, or Fas gRNA were stained for surface expression of DR4 (left), DR5 (middle), or Fas (right) 
and analyzed with flow cytometry. Gates were set based on scrambled cells stained with IgG-
APC control. B) Western blotting confirming protein knockout of DR4, DR5, and Fas. C) Ramos 
scrambled gRNA and DR4 or DR5 KO cells were treated with increasing concentrations of TRAIL 
for 72 hours. Cell survival was assessed using CellTiter-Glo and plotted using GraphPad Prism.  
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Figure 24. Anti-GSK-3β adjuvant engages and relies on the extrinsic apoptotic pathway. 
A) Ramos Fas KO cells were treated with DMSO or 3 μM CHIR99021 and increasing 
concentrations of doxorubicin for 72 hours. Cell survival was assessed using CellTiter-Glo and 
plotted using GraphPad Prism. B) Left: Ramos derivative cell lines with scrambled gRNA, DR4 
gRNA, and DR5 gRNA were treated and cell survival assessed as in A). IC50s of the curves are 
indicated below. Right: IC50s of multiple experiments as done on the left were statistically 
analyzed by unpaired t-test. 
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Figure 25. GSK-3β inhibition sensitizes to direct engagers of extrinsic apoptosis. 
A) Ramos cells were treated with DMSO or 3 μM CHIR99021 and increasing concentrations of 
TRAIL for 72 hours. Cell survival was assessed using CellTiter-Glo and plotted using GraphPad 
Prism. B) Ramos empty vector and FLIP expressing cells were treated with DMSO or 3 μM 
CHIR99021 and 50 ng/mL TRAIL for 6 hours. Cleaved caspase-8 and 3 (CC8 and CC3) 
expression was analyzed by flow cytometry; percentages of positive cells are plotted. C) Ramos 
cells were treated with DMSO or 3 μM CHIR99021 and increasing concentrations of the DR4 
agonist antibody mapatumumab for 72 hours. Cell survival was assessed and plotted as in A). D) 
Immunohistochemical staining was performed on human Burkitt lymphomas or normal tonsils. 
Representative images of hematoxylin and eosin (H&E) and DR4 stains at indicated 
magnification. 
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Discussion 

 

Our studies using murine allografts, human Burkitt lymphoma cell lines and PDXs 

demonstrate the benefits of adding GSK3 inhibitors to chemotherapeutic drugs in the R-

CHOP/EPOCH-R regimens. They also firmly implicate Myc as the key downstream target of GSK-

3 and a master regulator of chemosensitivity in refractory B-cell lymphomas. Finally, we have 

learned that Myc-dependent chemosensitivity relies on the extrinsic apoptotic pathway, with direct 

involvement of death receptors such as DR4, whose ligands and agonists function better when 

GSK-3 is inhibited and Myc is stabilized (Fig. 26). All three key conclusions would be impossible to 

predict in theory because both GSK-3 and Myc have multitudes of targets with non-overlapping 

and often conflicting functions. 

The literature on the role of GSK-3 in modulating apoptosis is complex, with some evidence 

that GSK-3 inhibits the extrinsic apoptotic pathway [reviewed in 156]. For example, GSK-3β was 

found to localize to extrinsic apoptotic receptors DR5/TRAIL-R2, DR4/TRAIL-R1, and Fas; GSK-3 

was shown to be part of an anti-apoptotic complex that also contained the anti-apoptotic proteins 

DDX3 and cIAP-1, and inhibition of GSK-3 lead to increased apoptosis following extrinsic receptor 

stimulation 157. Conversely, GSK-3 potentiates the intrinsic pathway through mechanisms such as 

facilitating pro-apoptotic disruption of the mitochondria and increasing intrinsic pro-apoptotic family 

members like p53 and Bcl-2 [reviewed in 156]. Thus, its overall contribution to cell survival in the 

face of genotoxic therapy remains controversial and likely cell type-specific. A 2008 study 

demonstrated that GSK-3 inhibition in glioblastoma multiforme results in decreased NF-κB activity 

158. Simultaneously, another group reported the beneficial effects of targeting GSK-3 in a preclinical 

murine model of MLL leukemia, with the underlying mechanism being stabilization of the cyclin-

dependent kinase inhibitor p27 159. Another firmly established GSK-3 target is the tumor suppressor 

PTEN, which is phosphorylated by GSK-3 on Thr-366 and Ser-362 160. While Thr366 
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phosphorylation is thought to lead to PTEN destabilization 161, the contribution of Ser-362 

phosphorylation to PTEN function is not known. Given that this tumor suppressor is known to 

contribute to both intrinsic survival pathways 48 and the extrinsic cell death pathways 162,163, the 

overall effect of GSK-3 inhibition on therapeutic apoptosis in B-lymphoid malignancies would have 

been difficult to predict with certainty. The fact that one of its key targets Myc has manifold effects 

on tumor cell survival only adds to the complexity of this system.  

The role of Myc in cell death has been incompletely understood, despite the large amount 

of published studies. While Myc is best known to induce p53-dependent, intrinsic apoptosis, Myc 

has also been linked to the extrinsic pathway. Notably, it has been shown to participate in apoptosis 

induced by CD95/CD95L (Fas/FasL) 79 as well as TNFα 164. Earlier work from our group in hypoxic 

solid tumors reported the relationship between inhibition of GSK-3β and subsequent increase in 

Myc and enhanced apoptosis in response to TRAIL 165, at least in part through the propensity of 

Myc to directly inhibit the extrinsic apoptosis negative regulator CFLAR/c-FLIP 80,166. In parallel, in 

some solid cancers Myc elevates expression of the death receptors DR4 and DR5 and the extrinsic 

ligand FasL 81,82,167. While these data, in particular regarding CFLAR/c-FLIP, are consistent with 

the pro-apoptotic function of Myc, there are reports challenging the notion that there is a linear 

correlation between FLIP levels and TRAIL resistance [see for example 168]. In addition, our RNA-

Seq experiment demonstrated that in Myc-stabilized cells other transcripts went in the opposite, 

pro-survival direction, with strong downregulation of pro-apoptotic genes TNFR1, Fas, and TRAIL, 

and significant upregulation of anti-apoptotic genes XIAP and the decoy death receptor TRAIL-R4. 

Thus, one could have predicted that stabilization of Myc would limit cell death and by inference 

confer chemoresistance – or that the effects of Myc on the extrinsic pathway would be irrelevant in 

the context of genotoxic chemotherapy. 

Traditionally, chemoresistance is seen as a failure of the intrinsic pathway. This view is 

based on the fact that many pro- and anti-apoptotic members of the intrinsic pathway are altered 

in cancer. For example, IAPs (inhibitors of apoptosis proteins) frequently confer survival to 
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neoplastic cells, especially when overexpressed in tumor cells 169. In pediatric B-cell malignancies, 

IAP has been identified as a valid therapeutic target and inhibitors against this target are being 

investigated in combination with other anti-tumor agents 170. Furthermore, the expression and 

mutation status of Bcl-2 family members is predictive of responses to chemotherapy prognosis: 

both mutations in the pro-apoptotic gene BAX and over-expression of BCL-2 are common in many 

cancer types 171. Therefore, the small molecular inhibitor of Bcl-2 venetoclax has shown 

considerable promise in preclinical and clinical trials, including those involving B-lymphoid 

malignancies 172.  

Despite an established role for intrinsic apoptosis in resistance to chemotherapy, there is 

also a body of evidence that points to the importance of extrinsic apoptosis for responses to 

chemotherapy. Published data show that signaling through the death receptor CD95/Fas is critical 

for chemosensitivity 173. Conversely, resistance to chemotherapy in leukemia and other cancers 

can be attributed to downregulation of this death receptor 102. In addition, mutations in CD95 have 

been identified in many solid and hematopoietic tumors [reviewed in 104].  Finally, upregulation of 

CFLAR/c-FLIP and its increased recruitment to CD95 has been observed in response to various 

chemotherapeutics in B-ALL and in fact is a resistance mechanism to chemotherapy treatment 174. 

Utilizing Ramos Burkitt lymphoma cells, we observed robust upregulation of Fas mRNA in response 

to treatment with Dox, while there were minimal changes in intrinsic apoptosis genes. Over-

expression of Bcl-2 conferred a very modest decrease in Dox induced apoptosis (~30% inhibition 

of caspase 3/7 activity). In contrast, we observed a sharp increase in chemoresistance via 

overexpression of CFLAR/c-FLIP or by CRISPR/Cas9 knockout of extrinsic death receptors DR4 

or DR5. These data support the notion that extrinsic apoptosis is engaged by chemotherapy 

treatment and disruption of this pathway can lead to chemoresistance.  

Data presented throughout the paper suggest that even in the absence of p53, stabilized 

Myc belongs firmly on the “cell death” side. Notably, when we inhibited Myc transcription with the 

Brd4 inhibitor iBet-151 at a sub-lethal concentration, there was actually a reduction in GSK3i-aided 
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apoptosis. Resistance to apoptotic stimuli was also observed when we shut off Myc transcription 

in a cell model bearing tetracycline-repressible Myc. Thus, in the context of chemotherapy 

regimens, inactivation of Myc would be counterproductive, as Myc potentiates doxorubicin-induced 

cell death by engaging extrinsic apoptosis. This observation adds a new wrinkle to the prevailing 

view that Myc contributes to B-lymphoma cell survival in the face of chemotherapy [see for example 

175].  

As established through previous studies, there are thresholds for MYC that govern whether 

it will act in a pro-survival or pro-apoptotic manner. Because MYC stabilization will only enhance 

apoptosis in cells with MYC overexpression, the transient increase in MYC in non-tumor cells 

should not have negative effects. EPOCH-R and other chemotherapy regimens used to treat BL 

can result in both damage to tumor cells but also to dividing normal tissue as well. Doxorubicin in 

particular can induce cardiomyopathy through numerous proposed mechanisms 176. We have 

shown here that GSK-3 inhibition increases sensitivity to doxorubicin, suggesting that lower doses 

of doxorubicin could be used to achieve the same clinical efficacy, thus having less off-tumor 

harmful effects.   
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Figure 26. Model of sensitization of B-cell lymphomas to therapeutic agents by GSK-3 inhibition 
and stabilization of Myc.   
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CHAPTER 4: Conclusion and Future Directions 

 

 

Improving Therapeutic Responses in B-Cell Lymphomas 

 

 Burkitt lymphoma (BL) is an aggressive subtype of Non-Hodgkin lymphoma that arises 

from germinal center B-cells 177. It was first designated as a neoplasm and subtype of lymphoma 

in 1961 178. BL is characterized by translocations involving MYC on chromosome 8 with 

immunoglobulin (Ig) enhancers, typically the Ig heavy chain enhancer on chromosome 14, but less 

commonly to Ig light chain loci, IgK or IgL 119,179. There are three epidemiological variants of BL: 

sporadic, endemic, and HIV associated. HIV-associated BL is infrequently associated with Epstein-

Barr virus (EBV), and sporadic BL even less so (1-2%), however almost all of endemic BLs are 

EBV positive 180. EBV contributes to the pathogenesis and survival of BL cells. It is hypothesized 

that EBV does this through increasing the likelihood of a chromosome translocation involving MYC 

and other genetic changes that drive tumorigenesis. It is also thought that EBV can support 

transformation by promoting the survival of cells bearing mutations that would otherwise lead to 

cell death and also by supporting cell survival in the absence of B-cell receptor survival signals. 

Aside from the MYC translocation, there are other common genetic signatures to Burkitt lymphoma. 

Sequencing of BL tumors identified mutations in P53, a well-established tumor suppressor with a 

role in the development of BL, as well as mutations in other genes that are less well studied or 

unstudied in BL. These include frequent mutations of ID3, chromatin remodelers SMARCA4 and 

ARID1A, and CCND3 45,181. Current studies are underway to evaluate the role of these frequently 

mutated genes in the pathogenesis of BL.   

Clinically, BL is treated with intense, high-dose chemotherapy regimens, which can often 

lead to further toxicities. First line therapy for BL consists of cycles of chemotherapy drugs such as 

cyclophosphamide, vincristine, dexamethasone, and doxorubicin 182. For patients with more 
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advanced disease, treatment regimens will include the addition of methotrexate, cytarabine, and 

occasionally the immunotherapy drug rituximab, a CD20 monoclonal antibody 183. With these 

therapy regimens, a 3-year overall survival rate of over 80% can be achieved 184. Despite the 

success of this first line therapy for most patients, those patients who relapse and become 

refractory to these treatments have a very poor prognosis and dismal survival rates 185,186. 

Therefore, there is an unmet clinical need to identify therapies to improve the survival of this 

chemoresistant patient population.  

The results of this study suggest several new ways to improve upon standard-of-care 

therapies for Myc-driven B-cell lymphomas. First, our data suggest that the addition of a GSK-3 

inhibitor (LiCl, CHIR99021, or tideglusib currently in Phase II clinical trials for Alzheimer’s disease) 

could enhance the response to chemotherapy even in cells where the intrinsic apoptotic pathway 

is suppressed 187. Two such subtypes of B-cell lymphoma associated with poor response to therapy 

are double- and triple hit lymphomas (Myc and Bcl-2/Bcl-6 translocated) 188 as well as non-

translocated lymphomas double-positive for Myc and Bcl-2 189. Double hit lymphomas can present 

with a variety of morphologies including acute lymphoblastic leukemia or lymphoma (ALL), diffuse 

large B-cell lymphoma (DLBCL), and rarely follicular lymphoma (FL) 190,191. For triple-hit 

lymphomas, which are not as prevalent as double-hit, the immunophenotype tends to be that of 

germinal center B-cells, with most cases presenting as DLBCL or an unclassifiable B-cell 

lymphoma that is similar to BL 192. The overall 5 year survival rate for these double and triple hit 

lymphomas fall around 50% 193. Thus, there is much room for clinical improvement in the 

therapeutic targeting of these highly aggressive lymphomas.  

Preliminary data in DLBCL cell lines show that GSK-3 inhibition modestly sensitizes MYC 

rearranged, P53 mutant, and Bcl-2 rearranged OCI-LY8 cells to doxorubicin (Fig. 27A). 

Additionally, in the MYC rearranged, P53 mutant DLBCL cell line Karpas 422, GSK-3β inhibition 

results in Myc stabilization (Fig. 27B) and deregulation of extrinsic apoptosis genes similar to what 

we saw in BL cell lines (Fig. 27C). These preliminary experiments will be expanded upon in further 
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studies, but initially indicate that GSK-3 inhibition could be a viable method to increase 

chemosensitivity in DLBCL.  

  

 

 

 

 

 
 
Figure 27. GSK-3 inhibition in MYC/Bcl-2 double hit lymphomas. A) DLBCL OCI-LY8 cells were 
treated with DMSO or 3 μM CHIR99021 and increasing concentrations of doxorubicin for 72 
hours. Cell survival was assessed using CellTiter-Glo and plotted using GraphPad Prism. B) 
DLBCL Karpas 422 cells were treated with 3 μM CHIR99021 for a 6-hour time course. Western 

blotting was performed for β-catenin, Myc, Myc
Thr58 

phosphorylation and actin control. C) qRT-
PCR expression analysis for extrinsic apoptosis factors performed on Karpas 422 cells treated 
with 3 μM CHIR99021 for a 6-hour time course. 
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Our findings that anti-GSK-3 adjuvant therapy engages extrinsic apoptosis provides a 

rationale for revisiting clinical trials of soluble TRAIL or agonistic antibodies targeting DR4 and DR5. 

Compared to the other extrinsic ligands, tumor cells were found to have a specific sensitivity to 

TRAIL-induced apoptosis over normal tissues 194,195. Trials with recombinant TRAIL demonstrated 

safety and tolerability but there was no observed anti-cancer activity in combination with standard-

of-care for the cancer types treated. Similarly, with trials using agonistic TRAIL receptor antibodies 

in combination with standards-of-care, there was a trend towards anti-cancer activity but no 

statistically significant results 196. However, GSK-3 inhibition and ensuing Myc stabilization could 

make tumor cells more susceptible to the pro-apoptotic actions of TRAIL or death receptor targeting 

antibodies such as mapatumumab 197. The potential to re-purpose the FDA approved GSK-3 

inhibitor lithium chloride makes this adjuvant therapy strategy particularly viable as the process to 

transition this psychiatric drug to cancer therapy would be relatively unchallenging. Long-term 

usage of lithium chloride is not correlated with an increase in cancer incidence so it appears to be 

a safe adjuvant 198.  
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Limitations to Oncogene Targeting as a Therapeutic Strategy 

 

Therapeutic targeting of initiating oncogenes is the mainstay of precision medicine. It is 

thought to be most effective in cancers with a single dominant genetic event, of which Burkitt 

lymphoma is a prime example. The rationale for targeting cancer oncogenes is based on the 

phenomenon known as “oncogene addiction” 199. Oncogene addiction can be described as a 

tumor’s dependency upon one protein or signaling pathway. These oncogenic proteins and 

pathways are poised as valuable therapeutic targets because normal cells should not exhibit this 

cancer-specific dependency; thus, cancer cells can be specifically killed while leaving normal tissue 

mostly unharmed. As one of the first identified oncogenes, tumor cell addiction to Myc has also 

been described such that brief inactivation of Myc leads to a reversal in tumorigenesis 57. Oncogene 

addiction has also been described for other oncogenes like RAS, HER2, and certain kinases that 

are frequently altered in cancer 200. Many tyrosine kinase inhibitors have been clinically approved, 

yet the clinical responses for these targeted therapies are often short-lived and followed by disease 

relapse. Thus, acquired drug resistance to targeted therapies is a frequent short-coming of this 

treatment strategy. Drug resistance tends to arise by two main mechanisms, with the first being the 

acquisition of mutations in the target that preclude binding of the drug 201. An alternate mechanism 

of resistance arises when tumor cells activate a redundant survival pathway to compensate for the 

presence of the oncogene-targeting drug and inhibition of the main pathway being targeted 202.   

In addition to the issue of drug resistance that arises upon targeting of oncogenic pathways, 

one must address the paradoxical nature of oncogenes and their dual promotion of pro-survival 

and pro-apoptotic pathways. Other oncogenes in addition to MYC can promote apoptosis. 

Following premature entry into the S phase of the cell cycle, the transcription factor E2F1 can 

activate apoptosis in conjunction with p53 203. Extensive work has uncovered how RAS induces 

apoptosis with a number of interacting partners 204. In clinical trials for oncogene-targeted therapies, 

compounds are frequently tested as monotherapies. It may be more relevant or realistic to conduct 
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a trial where new therapies are combined with the standard of care to determine how the two will 

function together. In the case of Myc, therapies that aim to inhibit Myc function might have some 

level of efficacy on their own, as exemplified by BRD4 inhibitors currently in clinical trials 205. But 

given what we know about Myc and its ability to engage apoptosis, compounds that inhibit MYC 

could end up having no effect or worsening the effects of standard chemotherapies, which 

inherently rely on engaged apoptotic signaling. Thus, the opposing pro-survival and pro-apoptotic 

nature of many oncogenes complicates the incorporation of targeted therapies into current 

therapeutic regimens and warrants further studies.   

 

 

 

 

 

 

 

 

 

 

 

 



 
75 

 

MYC Stabilization and the Cooperation with Additional Anti-Cancer Agents  

 

In this study we have evaluated the cooperation between Myc stabilization and 

chemotherapy drugs that are part of the clinical regimens for BL, as well as ligands for extrinsic 

apoptosis receptors. However, there are many varieties of chemotherapy and other anti-cancer 

drugs that warrant the evaluation of their interaction with stabilized Myc. Chemotherapy drugs 

target the cell cycle at different points and have different mechanisms of action and could cooperate 

differently with a Myc-driven apoptotic program. Many chemotherapeutics cause cell death by 

inducing DNA damage. Alkylating agents or platinum-based drugs, such as cyclophosphamide and 

cisplatin, add alkyl groups to guanine bases to prevent formation of normal DNA secondary 

structures which leads to DNA damage. Anthracyclines like daunorubicin or doxorubicin intercalate 

into DNA and interfere with DNA replication to induce DNA damage. Topoisomerase inhibitors such 

as irinotecan and etoposide also interfere with DNA replication, but they do so by forming stable 

complexes with topoisomerases. Not all chemotherapy drugs induce DNA damage as their 

mechanism of action. Some examples include mitotic inhibitors, such as vincristine and docetaxel, 

which interfere with mitosis, the enzyme L-asparaginase, which degrades the cancer-essential 

compound asparagine, and the proteasome inhibitor bortezomib. It would be prudent to determine 

the similarities or differences of how Myc stabilization cooperates with these categories of 

chemotherapies. If Myc stabilization via GSK-3 sensitized to certain classes of chemotherapy better 

than others, this could inform clinical decisions about how best to integrate GSK-3 inhibitors into 

current chemotherapy regimens.  

From our studies it is apparent that Myc stabilization can sensitize BL cells to DNA 

damaging compounds, amongst other anti-cancer agents. There are other compounds aside from 

the classes of chemotherapy mentioned above that cause DNA damage and could be worthwhile 

to test in combination with GSK-3 inhibition. One such group of compounds are inhibitors of the 

DNA damage response. The DNA damage response (DDR) is activated when cellular sensors 
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detect unresolved DNA single or double stranded breaks. Upon sensing DNA damage, cell cycle 

checkpoints become activated; Chk1 and Chk2 enzymes become activated and pause the cell 

cycle to allow for repair of the DNA damage. Cancer cells often harbor a compromised DDR 

compared to normal cells; in fact, deficiencies in the DDR can be a driver of oncogenesis. In the 

face of deficiencies in certain DNA repair pathways, of which there are numerous, tumors then 

become more reliant on the remaining intact DNA repair pathways. MYC overexpression has been 

found to drive genomic instability in cancer. Specifically, cells with an overexpression of MYC were 

found to have increased DNA replication stress, which lead to an increase in DNA damage and 

potentially explains why Myc-driven tumors often have chromosomal aberrations such as gene 

amplifications 206,207. Taking these two cancer phenomena together, Myc-driven cancers that lack 

proper DNA damage checkpoints have increased sensitivity to Chk1 inhibitors 208,209. Since it is the 

high level of Myc in Myc-driven tumors like BL or neuroblastoma that sensitize to Chk1 inhibition, it 

is plausible that increasing Myc levels even more via GSK-3 inhibition would render these tumors 

even more sensitive to Chk1 inhibition. Furthermore, GSK-3 inhibitors could potentially be used in 

tumors where Myc is at an intermediate level and not profoundly overexpressed via chromosomal 

translocation like in BL. If Myc levels similar to those found in BL could be achieved in other types 

of tumors, then perhaps these tumors would similarly become as sensitive to Chk1 inhibition due 

to Myc-induced replication stress and DNA damage.  

The fact that Myc-driven tumors are more sensitive to Chk1 inhibition is an example of 

synthetic lethality. Synthetic lethality occurs when two genetic events are compatible with cell 

survival on their own, but when together, leads to cell death. In this example, the two genetic events 

in question are MYC over-expression and Chk1 loss of function. There are other genes aside from 

Chk1 that have been found to be synthetically lethal with MYC over-expression. CDK1 was 

identified from RNAi screens to be synthetically lethal with MYC overexpression and inhibiting 

CDK1 in Myc-driven lymphoma and neuroblastoma models lead to apoptosis and decreased tumor 

growth 210. MYC overexpression has also been found to increase the dependence of tumor cells 
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on exogenous glutamine for survival, such that inhibition of glutamine metabolism selectively 

induced cell death in Myc-driven cancers 211,212. These Myc dependencies could be exploited 

further in non-MYC-driven cancers by Myc stabilization via GSK-3 inhibition.  
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GSK-3 Inhibition in the Era of Immunotherapy 

 

 In this new era of immunotherapy, one should also consider how GSK-3 inhibition might 

cooperate with the immune system and with immunotherapies used to treat BL. Immune 

surveillance for malignant, cancerous cells culminates with immune mediated killing by cytotoxic T 

cells (CTLs) and natural killer (NK) cells. Both of these immune cell types secrete or increase 

membrane abundance of death ligands to induce extrinsic apoptosis in tumor cells and eliminate 

them from the body 213,214.  Immunotherapies to boost the activity of CTLs have been developed 

and are in clinical trials; this strategy is deemed immune checkpoint blockade and is mediated 

through antibody blockade of CTLA-4 or the PD-1/PD-L1 pathway, two pathways that serve to 

inhibit anti-tumor activity of CTLs 215. NK cells also have immune checkpoints for which blocking 

antibodies have been developed and are being tested in clinical trials, including anti-PD-1/PD-L1 

antibodies for a subset of NK cells that express PD-1 216. Increasing extrinsic apoptotic activity via 

GSK-3β inhibition in tumors combined with boosting anti-tumor activity of the immune system via 

checkpoint blockade could result in better immune-mediated elimination of malignant cells.   

One issue with death-receptor agonists as cancer therapy is that there is no specificity for 

binding to the tumor over normal tissue. To combat this, researchers have found a way to target 

TRAIL to the surface of CTLs to increase tumor-specific TRAIL targeting of cancer cells 217. Another 

strategy has been to use bispecific antibodies that recognize both a unique tumor surface protein 

and an extrinsic apoptosis receptor. One aspect of current immunotherapy strategies aims to 

identify so called “tumor neo-antigens”, thus there is more readily available data on membrane 

surface proteins that are either found in normal tissue yet exclusively expressed on the surface of 

tumor cells, or those that arise from tumor-specific mutations and thus are solely found on tumors. 

One such example is the generation of a bispecific antibody for the melanoma-specific MCSP 

protein and DR5 218. Thus, with this one bispecific antibody, DR5 can be stimulated specifically on 

melanoma cells expression MCSP. Therein lies the potential for GSK-3 inhibitors to cooperate with 
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immunotherapy strategies that engage extrinsic apoptosis, as GSK-3 inhibition increases the levels 

of death receptors that are targeted by these tumor-specific immunotherapies, and thus would 

augment the killing of tumor cells. The limitation to this strategy is that it requires the existence of 

tumor-specific surface proteins, which are more abundant in a tumor with a high-mutational burden 

such as melanoma, but less abundant, yet still present, in a tumor with a low-mutational burden as 

is the case with certain types of B-cell lymphoma 219. Finally, CD19-targeted chimeric antigen 

receptor T-cell (CAR-T cell) therapy has revolutionized the treatment of CD19 positive B-cell 

malignancies 220. It is not yet clear what role death receptor signaling may have in CAR-T cell 

mediated cell killing, although a recent study has implicated the disruption of extrinsic apoptosis in 

the tumor as a mechanism of inherent resistance to CAR-T cell killing activity 221. Further studies 

into what influence death receptor signaling has on CAR-T cell function would be worthwhile to fully 

understand what role this apoptotic pathway plays in the tumor and in the CAR-T cell during CAR-

T cell mediated tumor killing.  

 

 

 

 

 

 

 

 



 
80 

 

Future Directions 

 

Further In-Vivo Testing of anti-GSK-3β adjuvant therapy 

An immediate next step of this study is to further evaluate anti-GSK-3 adjuvant therapy in 

vivo by utilizing the numerous tumor models at our disposal. Our group has previously 

characterized the response of p53ER/MYC tumors to cyclophosphamide. One dose of 

cyclophosphamide will lead to tumor regression, followed by tumor reoccurrence after a few days 

130. We have also shown that the addition of the autophagy inhibitor chloroquine can extend this 

time to tumor reoccurrence, which we use as a surrogate for measurements of progression-free 

survival. With this model, we could similarly determine whether the addition of GSK-3 inhibitors can 

extend the time to tumor reoccurrence following treatment with chemotherapy. Preliminary 

experiments have shown that doxorubicin similarly leads to a brief tumor regression followed by 

reoccurrence. Further studies will optimize the treatment regimens such that the additive effect of 

GSK-3 inhibition can be properly evaluated.  Other models that can be tested in vivo include Ramos 

cells labeled with GFP and our BL PDX that we developed. With Ramos-GFP cells, anti-GSK-3 

adjuvant therapy can be tested on a systemic model of Burkitt lymphoma as supposed to the 

subcutaneous models used in our study. The PDX provides the opportunity to test this therapeutic 

combination on a more clinically relevant model of BL. Preliminary studies demonstrate that the 

PDX subcutaneous tumors grown with reproducible kinetics and will serve as a useful model for 

testing anti-GSK-3 adjuvant therapy. If PDX cells can be manipulated to express GFP, they too can 

be used as a systemic BL model upon which we can test our therapeutic regimen.  

 

Drop-out CRISPR screen for sensitizers to doxorubicin  

Another future step for this study is to interrogate what can sensitize tumors to 

chemotherapy in an unbiased manner. In our study detailed here we chose GSK-3 inhibition as a 
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method to chemosensitize tumors based on what we know about Myc biology and its promotion of 

apoptosis. However, there are likely not yet identified pathways or proteins that when inhibited will 

increase apoptosis following chemotherapy. With the development of CRISPR-screening 

methodologies, it is now feasible to perform genome-wide interrogations for chemosensitizers. For 

example, a negative-selection genome wide CRISPR screen was recently used to identify 

mediators of sensitization to temozolomide in glioblastoma stem cells 222. This type of screen is 

referred to as a CRISPR-drop out screen or a negative-selection screen 223. After subjecting cells 

to the CRISPR library, edited cells are cultured with a sub-lethal dose of drug, and following 

treatment, deep genomic sequencing is done on the remaining cells and the represented guide 

RNAs (gRNAs) are compared to the gRNAs of untreated cells. Those gRNAs that are not present, 

or have dropped out, in the chemotherapy treated cells indicate a gene that when present, impedes 

the response to chemotherapy, but when absent, promotes chemosensitivity. By subjecting the 

negatively selected genes to pathway analysis, one can determine if there are certain biological 

pathways that can be inhibited to increase chemosensitivity. It would also be beneficial to cross-

reference the drop-out gene hits to a dataset of FDA-approved inhibitors and/or inhibitors in clinical 

trials to determine if there are clinically targetable present in the drop-out hits. With these steps, 

novel methods to chemosensitize BL would be identified.  

 

Drop-out CRISPR screen for synthetic lethality with MYC transient stabilization 

 CRISPR screening could also be used to identify genes that cooperate or interfere with 

MYC stabilization via GSK-3 inhibition. The experimental workflow would be similar to that of the 

CRISPR drop-out screen- cells subjected to the CRISPR library would be treated with a GSK-3 

inhibitor and the changes in the gRNA pool compared to untreated cells would be assessed. As 

with the drop-out screen in the presence of chemotherapy, genes that have dropped out in this 

screen are genes that when absent reduce cell viability in the presence of GSK-3 inhibition, and 
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when present mediate resistance to GSK-3 inhibition. Enriched gRNAs represent genes that are 

required for apoptosis following GSK-3 inhibition or when inhibited, result in a resistance 

phenotype. This information could be beneficial to know because if knockout of gene X lead to 

GSK-3 inhibitor resistance, then one would want to avoid treating tumors with loss-of-function 

mutations or deletions in this gene lest GSK-3 inhibition actually promote tumor growth.   

  

 

 

 

 

 

 

 

 

 

 

 



 
83 

 

Summary and Final Conclusions 

 

 The work presented here demonstrates the therapeutic potential of targeting GSK-3 and 

transiently stabilizing Myc to improve chemotherapeutic responses of P53-mutant, chemoresistant 

B-cell lymphoma. Myc has been shown to be a critical mediator of doxorubicin-induced apoptosis. 

GSK-3 inhibition with compounds such as lithium chloride or CHIR99021 transiently stabilized wild 

type Myc protein in Burkitt lymphoma cell lines and PDX, yet had no effect on the stability of Myc 

in cell lines with a mutation of Thr58. As such, GSK-3 inhibition with CHIR99021 increased 

sensitivity to chemotherapeutic drugs such as doxorubicin, vincrinstine, and the cyclophosphamide 

analog mafosfmamide in vitro and in vivo. This effect is dependent upon Myc as no sensitization 

was seen in Myc Thr58 mutant cell lines nor when MYC transcription was inhibited in a tetracycline-

repressible MYC model or pharmacologically inhibited in Burkitt lymphoma cells. The mechanism 

of anti-GSK-3 adjuvant therapy was reliant on the extrinsic apoptotic pathway, as extrinsic apoptotic 

pathway family members were altered upon GSK-3 inhibition, unlike intrinsic family members which 

were unchanged. Blocking the intrinsic pathway had no effect on anti-GSK-3 adjuvant therapy, yet 

blocking extrinsic apoptosis completed abrogated the pro-apoptotic effect of anti-GSK-3 adjuvant 

therapy. Furthermore, knockdown or knockout of various extrinsic pathway family members also 

diminished or abrogated apoptosis following treatment with anti-GSK-3 adjuvant therapy. We also 

found that GSK-3 inhibition sensitized Burkitt lymphoma cells to extrinsic apoptosis ligands and 

agonists. This work suggests that GSK-3 inhibition would not only improve the response to 

chemotherapy, but also the response to engagers of extrinsic apoptosis. Finally, this work 

implicates Myc as promoting apoptosis in the absence of functional p53 by engagement of the 

extrinsic apoptotic pathway.  
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