# EVALUATING URBAN DOWNTOWN ONE-WAY TO TWO-WAY STREET CONVERSION USING MICROSCOPIC TRAFFIC SIMULATION

#### A Thesis

presented to

the Faculty of California Polytechnic State University,
San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Civil and Environmental Engineering

by

Bernice Liu

December 2019

© 2019

Bernice Liu

ALL RIGHTS RESERVED

#### **COMMITTEE MEMBERSHIP**

TITLE: Evaluating Urban Downtown One-Way to

Two-Way Street Conversion Using

Microscopic Traffic Simulation

AUTHOR: Bernice Liu

DATE SUBMITTED: December 2019

COMMITTEE CHAIR: Anurag Pande, Ph.D

Associate Professor of Civil and

**Environmental Engineering** 

COMMITTEE MEMBER: Amirarsalan Molan, Ph.D

Postdoctoral Teaching Fellow of Civil and

**Environmental Engineering** 

COMMITTEE MEMBER: Alireza Shams, Ph.D

Postdoctoral Teaching Fellow of Civil and

**Environmental Engineering** 

#### **ABSTRACT**

# Evaluating Urban Downtown One-Way to Two-Way Street Conversion Using Microscopic Traffic Simulation

#### Bernice Liu

Located in the heart of Silicon Valley, Downtown San Jose is attracting new residents, visitors, and businesses. Clearly, the mobility of these residents, visitors, and businesses cannot be accommodated by streets that focus on the singleoccupancy automobile mode. To increase the potential for individuals to use nonsingle-occupancy modes of travel, the downtown area must have a cohesive plan to integrate multimodal use and public life. Complete streets are an integral component of the multi-modal transport system and more livable communities. Complete streets refer to roads designed to accommodate multiple modes, users, and activities including walking, cycling, transit, automobile, and nearby businesses and residents. A one-way to two-way street conversion is an example of a complete streets project. Similarly, tactical urbanism can provide cost-effective modifications (e.g., through temporary road closures for events like the farmers' market) that enrich the public life in an urban environment. The ability to serve current and future transportation needs of residents, businesses and visitors through the creation of pleasant, efficient, and safe multimodal corridors is a guiding principle of a smart city.

This research project addressed questions that guide the implementation of this overarching principle. These questions relate to travel patterns and potential network impacts of the conversion of the corridor(s) into complete streets. Towards

that end, core network in downtown San Jose is simulated via a validated VISSIM

model for 2015 traffic conditions (i.e., the base case or Scenario 0). Three

scenarios are then modeled as variations to this model. The relevant model

outputs from the base and scenario models provide easily digestible information

the City can convey various impacts and trade-offs to partners and stakeholders

prior to implementation of these plans. The scenarios modeled are based on

stakeholder input.

Microsimulation allows for detailed modeling and visualization of the transportation

networks including movements of individual vehicles and pedestrians. The results

based on 2040 traffic volumes provided by the city based on their long-range travel

demand model clearly demonstrate that the existing network cannot support the

projected level of travel demand. It indicates that the city needs an aggressive

travel demand management program to curb the growth of automobile traffic. The

output also includes 3-D animations of the traffic flow that can be used in public

forums for community outreach. A discussion for such a campaign based on best

practices around using these visualizations for public outreach is also provided.

Keywords: Complete Streets, Tactical Urbanism, VISSIM, Microsimulation,

Traffic Simulation, Multimodal Network, Measures of Performance, Decision

Making, Street Conversion

#### **ACKNOWLEDGMENTS**

I would like to gratefully acknowledge and thank the Mineta Transportation Institute (MTI) for their generous support in funding this research. I also wish to acknowledge the support of the City of San Jose, especially Doug Moody, Augustin Cuello Leon, and Wilson Tam from, in providing the data used in this research as well as valuable feedback on the research plan. In addition, I would like to extend my sincerest gratitude to my thesis committee chair, Dr. Pande, committee members, Dr. Molan and Dr. Shams, and transportation professors, Dr. Mastako and Dr. Voulgaris, for their constant guidance, mentoring, and expertise. Thank you also to Alex Hughes and Serena Alexander from the San Jose State University who provided local knowledge of the area and helped with literature review. Many thanks also to Jonathan Howard, a fellow Cal Poly student, who worked with me in developing this large network. Further thanks to Alex Chambers, a Cal Poly alumnus, whose knowledge of VISSIM and introduction of VHelper greatly helped the project. Finally, thank you to my family, boyfriend, Kyle Tom, and friends from the ITE Student Chapter, for their support and encouragement.

# TABLE OF CONTENTS

|                                                                      | Page |
|----------------------------------------------------------------------|------|
| LIST OF TABLES                                                       | ix   |
| LIST OF FIGURES                                                      | X    |
|                                                                      |      |
| CHAPTER                                                              |      |
| 1. INTRODUCTION                                                      | 1    |
| 1.1 Study Area: Downtown San Jose                                    | 2    |
| 1.2 Study Objectives                                                 |      |
| 1.3 Report Organization                                              |      |
| 2. LITERATURE REVIEW                                                 | 6    |
| 2.1 Traffic Simulation                                               | 6    |
| 2.2 Simulation Model Choices                                         |      |
| 2.3 Advantages and Disadvantages of Traffic Simulation               |      |
| 2.4 Simulation Study Steps                                           |      |
| 2.5 Development of Large-Scale Microscopic Traffic Simulation Model. | 15   |
| 2.6 Complete Streets                                                 | 16   |
| 2.6.1 One-way to Two-way Street Conversions                          | 17   |
| 2.6.2 Road Diet                                                      | 18   |
| 2.6.3 Complete Street Effects on Neighboring Streets                 |      |
| 2.7 Tactical Urbanism                                                |      |
| 2.7.1 Pop-up Bikeways                                                |      |
| 2.8 Conclusions from Literature Review                               | 23   |
| 3. NETWORK MODELING                                                  | 25   |
| 3.1 Creating the Network                                             | 26   |
| 3.1.1 Road Network                                                   | 26   |
| 3.1.2 Vehicle Data and Composition                                   | 27   |
| 3.1.3 Speed Data                                                     | 28   |
| 3.1.4 Conflict Areas                                                 | 29   |
| 3.1.5 Signal Timing Data                                             |      |
| 3.1.6 Vehicle Routes                                                 |      |
| 3.1.7 Transit                                                        |      |
| 3.1.8 Cyclists                                                       |      |
| 3.1.9 Pedestrians Cyclists                                           |      |
| 3.2 Origin – Destination Matrix                                      |      |
| 3.3 Calibrating the Network                                          |      |
| 3.3.1 Driving Behavior Parameters                                    |      |
| J.J.Z YEHIGE INEGUIU DAIA                                            | 30   |

| 3.3.3 Validating the Network                                                                                                                           | 39    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.3.4 Seed Numbers                                                                                                                                     |       |
| 3.3.5 GEH Statistics Validation for Turning Movement Counts                                                                                            | 40    |
| 3.3.6 Speed Validation                                                                                                                                 | 41    |
| 3.3.7 Travel Time Validation                                                                                                                           | 42    |
| 3.4 Results from Network Modeling                                                                                                                      | 43    |
| 3.4.1 Analysis and Network Measures of Effectiveness                                                                                                   | 44    |
| 4. ALTERNATIVE SCENARIOS                                                                                                                               | 45    |
| 4.1 2040 Traffic Volumes                                                                                                                               | 45    |
| 4.2 Scenario 1: Almaden Boulevard Conversion w/ 2015 Demand Lev                                                                                        | el 46 |
| 4.2.1 Assumptions                                                                                                                                      | 46    |
| 4.2.2 Vehicle Routes                                                                                                                                   | 47    |
| <ul><li>4.2.3 Analysis and Network Measures of Effectiveness (MOEs)</li><li>4.3 Scenario 2: Almaden Boulevard Conversion and Increase Automo</li></ul> |       |
| Demand 5%                                                                                                                                              | 50    |
| 4.3.1 Assumptions                                                                                                                                      | 50    |
| 4.3.2 Analysis and Network Measures of Effectiveness (MOEs)                                                                                            | 51    |
| 4.4 Scenario 3: Almaden Boulevard Conversion and Increase Automo                                                                                       | bile  |
| Demand 10%                                                                                                                                             | 53    |
| 4.4.1 Assumptions                                                                                                                                      | 53    |
| 4.4.2 Analysis and Network Measures of Effectiveness (MOEs)                                                                                            | 54    |
| 4.5 Scenario Visuals and Public Outreach                                                                                                               | 56    |
| 5. CONCLUSION                                                                                                                                          | 59    |
| 5.1 Summary and Evaluation of Results                                                                                                                  | 59    |
| 5.2 Reliability of Data                                                                                                                                |       |
| 5.3 Recommendation for Improvement and Further Research                                                                                                | 61    |
| ENDNOTES                                                                                                                                               | 63    |
| BIBLIOGRAPHY                                                                                                                                           | 68    |
| APPENDICES                                                                                                                                             |       |
| A. Origin-Destination Matrix                                                                                                                           | 76    |
| B. GEH Statistics                                                                                                                                      |       |
| C. Network Evaluation Performance Measures                                                                                                             |       |
| D. Travel-Time                                                                                                                                         |       |
| E. Speed Data                                                                                                                                          |       |
| F. Peak Hour Traffic Counts                                                                                                                            |       |
| G Vehicle Routes Adjusted for Almaden Conversion                                                                                                       |       |

# LIST OF TABLES

| Table                                                                  | Page |
|------------------------------------------------------------------------|------|
| 1. HCM Simulation Model Analysis                                       | 12   |
| 2. Cyclists Corridors                                                  | 33   |
| 3. Intersections with Significant Pedestrian Traffic                   | 34   |
| 4. Data Collectors, Queue Counters, and Travel Time Corridor Locations | 38   |
| 5. Existing Baseline Speed Summary                                     | 42   |
| 6. Existing Baseline Travel Time Summary                               | 43   |
| 7. Existing Baseline Network Measures of Effectiveness                 | 44   |
| 8. Almaden Conversion Speed Summary                                    |      |
| 9. Almaden Conversion Travel Time Summary                              | 49   |
| 10. Almaden Conversion Network Measures of Effectiveness               | 50   |
| 11. Almaden Conversion plus 5% Demand Speed Summary                    | 51   |
| 12. Almaden Conversion plus 5% Demand Travel Time Summary              | 52   |
| 13. Almaden Conversion plus 5% Demand Network Measures of              |      |
| Effectiveness                                                          | 53   |
| 14. Almaden Conversion plus 10% Demand Speed Summary                   | 54   |
| 15. Almaden Conversion plus 10% Demand Travel Time Summary             | 55   |
| 16. Almaden Conversion plus 10% Demand Network Measures of             |      |
| Effectiveness                                                          | 56   |

# LIST OF FIGURES

| Figure                                                                       | Page |
|------------------------------------------------------------------------------|------|
| 1: Study Area Map                                                            | 3    |
| 2. Illustration of Before (Left) and After (Right) Complete Street Conversio | n 17 |
| 3. Typical Road Diet Basic Design from FHWA                                  | 19   |
| 4. Scott Street Pop-up Bikeway Demonstration                                 | 22   |
| 5. Different Complete Street Treatments in Downtown San Jose                 | 23   |
| 6. Map with Downtown San Jose Core and Frame                                 | 25   |
| 7. VISSIM Model for the Downtown Core                                        | 27   |
| 8. Speed Distribution for Vehicles                                           | 29   |
| 9. Ring Barrier Controller Timing Interface for VISSIM                       |      |
| 10. Route Decision from Google Maps and its Coding in the Network            | 32   |
| 11. Driving Behavior Parameter for the Model                                 | 36   |
| 12. Zones for the OD Matrices (Year 2015 and 2040)                           | 45   |
| 13. Before (Left) and After (Right) of Almaden Street Conversion             | 47   |

### 1. INTRODUCTION

As economies grow and populations rise in major cities, city streets focusing on single occupancy vehicles will be unable to support residents, tourists, and businesses. Rather, these streets ought to be designed for everyone – whether young or old, on foot or on the bicycle, in a car or on a bus<sup>i</sup>. According to a recent Future of Transportation National Survey, 66% of Americans want more transportation options so they have the freedom to choose how to get where they need to go, 73% currently feel they have no choice but to drive as much as they do, and 57% would like to spend less time in the car. These figures indicate the need for a cohesive plan to integrate multimodal use and public life.

For these multimodal transportation networks to be implemented, public involvement is a key factor in the planning and decision-making process. This process should involve two-way communication between citizens and government, allowing public transportation agencies to notice, inform, and include the public while using the feedback to develop relationships within the community and build better transportation projects. Lack of public participation can lead to minimal community support, resistance from stakeholders and elected officials, and outcries from the public that could end up in costly project delays or even lawsuits<sup>ii</sup>. To encourage interactive transportation decision making, the Safe, Accountable, Flexible, Efficient, Transportation Equity Act: A Legacy for Users (SAFETEA-LU) mandated using visualization techniques for describing plans to the public within transportation planning process<sup>iii</sup> iv. Visual 3-D animations displaying potential

project scenarios, in addition to quantitative analysis and results, can be used to engage and inform the community during public outreach.

This research creates a simulation-based framework to evaluate network-wide implications of a one-way to two-way street conversion. In addition to the quantitative metrics such as travel-time and vehicular throughput, animated 3-D visualizations are also produced for scenarios. Best practices for using these visualizations in the project implementation process is also described.

#### 1.1 STUDY AREA: DOWNTOWN SAN JOSE

Located in the heart of Silicon Valley, San Jose is the 3rd largest city in the state of California and the 10th largest city in the USA, according to the United States Census Bureau<sup>v</sup>. Downtown San Jose continuously attracts new residents, and businesses while experiencing tremendous growth and providing visitors. opportunities to technology professionals and others. As a result, downtown San Jose becomes more crowded by the day. Downtown San Jose also houses several key destinations such as the Diridon station, a crucial central transit hub, and SAP Center, a major event venue. For a city the size of San Jose to be efficient and livable, urban transport systems should be able to accommodate resource-efficient modes of travel such as walking, cycling, and transit more effectively. One such method is to convert one-way streets to two-way streets, which can allow better local access and slow vehicular traffic<sup>vii</sup>. Similarly, tactical urbanism that can improve social interaction and public life can help in creating demand for these more efficient modes and utilize the urban street space more effectively.

The study area (see Figure 1: Study Area Map) consists of approximately 5 square miles concentrated in the core of downtown San Jose. Within the study area freeways, Interstate 280 (I-280) and California State Route 87 (CA 87) serve as important routes of entry and exit into the downtown area. Parking lots represent key destinations, such as residential and commercial buildings.

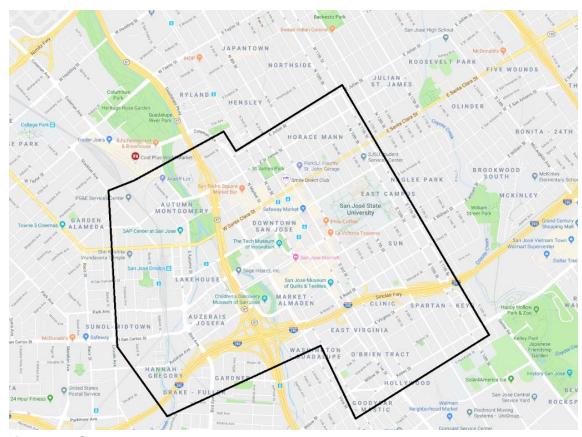



Figure 1: Study Area Map

#### 1.2 STUDY OBJECTIVES

Overall, simulation models can aid transportation planners and designers in assessing the impact of various alternatives on existing systems. The use of simulation can help the City of San Jose visualize and evaluate the collective

behaviors and patterns of the travelers as well as the implications these behaviors have for the whole network. Network performance can be analyzed and compared for before and after scenarios to answer "what-if" questions, specifically for automobiles in which drivers tend to feel adverse effects resulting from conversions.

The objectives of this study are to:

- Assess effects of a one-way to two-way street conversion on automobiles as identified by the city of San Jose through microscopic traffic simulation models.
- Test and refine scenario development techniques and develop a microsimulation evaluation framework that can help be used to evaluate complete streets and tactical urbanism strategies in which other cities may adopt.
- Provide a framework to use the 3-D visualization created from the simulation models for a public information campaign.

#### 1.3 REPORT ORGANIZATION

The remainder of this document presents a literature review of relevant past works, a detailed description of the network's modeling procedure, an analysis of various scenarios, and a conclusion. Chapter 2, the literature review, provides an introduction on traffic simulation, the basis for ultimately choosing VISSIM as the microsimulation model, information on complete streets, specifically one-way to two-way street conversions, and information on tactical urbanism. Chapter 3

outlines the development and coding for the model, detailing the process of data collection, network coding, calibration, and validation for the base conditions. Chapter 4 describes and compares the results for different scenarios for automobile vehicles including the use of 3-D visualizations for public information campaigns. Finally, Chapter 5 contains a summary of conclusions along with recommendations for future work.

### 2. LITERATURE REVIEW

This chapter reviews simulation applications and potential advantages and disadvantages that microsimulation offers. It also discusses complete streets and tactical urbanism within the downtown context and the development of large-scale microscopic traffic simulation models.

#### 2.1 TRAFFIC SIMULATION

Simulation modeling is an increasingly popular and effective tool to analyze the behavior and interactions of traffic systems. Traffic simulation is the mathematical modeling of transportation systems using computer software. These models can provide an understanding of cause-and-effect relationships and satisfy a wide range of applications, including evaluation of alternative treatments, testing new designs, training personnel, safety analysis, and as an element of the design process. Simulation models are useful in studying models too complicated for analytical numerical treatment, where the assumptions underlying a mathematical formulation may affect the results, or where there is a need to view vehicle animation viii. Modern simulation models are based on random vehicular movements that aim to "mimic" driver behaviors. Thus, simulation models can answer "what-if" questions to aid system designers in assessing the impact of various changes on existing systems in a cost-effective way ix. Based on the simulation model for an underlying transportation network, one can obtain

performance measures such as delay, emissions, average speeds, travel time, and others.

#### 2.2 SIMULATION MODEL CHOICES

Depending on the desired level of detail to be studied, simulation models can be classified as microscopic (high fidelity), macroscopic (low fidelity), and mesoscopic (mixed fidelity).

Microscopic models provide a detailed representation of the traffic process, considering the characteristics of individual vehicles and simulating vehicle interactions in the traffic stream based on car-following and lane-changing theories. Microsimulation offers benefits in clarity, accuracy, and flexibility. It can provide a comprehensive real-time visual display to illustrate traffic operations in a readily understandable manner. Individual vehicles make their own decision on speed, lane changing, and route choice. The dynamic evolution of traffic congestion and effectiveness of traffic management strategies can be evaluated with microsimulation. These models are typically used for short term and congestion-related issues. Compared to macroscopic models, microscopic must be kept at a reasonable network size and modeling period due to the high number of data inputs, calibration and validation efforts, and computing power for modeling and analysis ×.

Macroscopic models describe systems and their activities and interactions at a low level of detail. These models utilize land use, socioeconomic demographical data, and travel behaviors to perform operational analysis and long-term forecasting. In

a macroscopic model, trips are loaded simultaneously on a link and share the same speed and time period. Lower-fidelity models are easier and less costly to develop, execute, and maintain. However, due to the low level of detail, their representation of the real-world system may be less accurate. Macroscopic models are more appropriate for regional or large-scale systems and can provide predictions of current and future travel patterns and demand<sup>xi</sup>.

A mesoscopic model is a hybrid of microscopic and macroscopic models. They "generally represent most entities at a high level of detail but describes their activities and interactions at a much lower level of detail than would a microscopic model" xii. These models combine some key components of microscopic simulation, such as intersection operations, with analytical models, such as speed-flow relationships for traffic assignment, to provide more detail than an assignment-only modelxiii.

Models can also be classified by the process represented by the model as deterministic or stochastic. Deterministic models have no random variables and perform the same way for a given set of initial conditions. Stochastic models have processes that include probability functions, introducing randomness into the model. The selection of a model depends on the purposes of the analysis and complexity involved. Microscopic models are useful for preliminary engineering and evaluating alternatives at the local or corridor level. A mesoscopic model may be used to analyze homogeneous transportation elements in small groups, such as vehicle platoon dynamics and household-level travel behavior. Macroscopic planning models are suited for travel demand modeling, conceptual network

planning and design, and performing analysis at a regional or state level. Ultimately, the developer must identify the needed sensitivity of the model's performance to the underlying features of the real-world process<sup>xiv</sup>.

# 2.3 ADVANTAGES AND DISADVANTAGES OF TRAFFIC SIMULATION

Traffic simulation models are powerful tools because they provide relatively inexpensive fast, and risk-free evaluation environments. They not only account for a variety of different scenarios that cannot be practically tested in real-world conditions, but also provide various network performance measures, becoming a very useful and widely accepted tool in transportation engineering applications.

Park, Yun, & Choi<sup>xv</sup> (2004) provided an overview of four microscopic traffic models and evaluated their performances using a case study of modeling a coordinated signal system. CORSIM is a microscopic simulation model developed for the Federal Highway Administration (FHWA) and is used mainly in modeling urban traffic conditions xvi xvii. CORSIM is not a multimodal simulation tool and is difficult to use for obtaining route-based or network-level measures. Paramics, developed by Quadstone Limited, is a suite of high-performance tools that provide, microscopic, time-stepping, and scalable traffic simulation. This software allows an application program interface. However, these are not easily built into the model and the program lacks automatic vehicle diffusion, potentially creating large discrepancy and high variability in data output. SIMTRAFFIC, by Trafficware Inc., is companion software to SYNCHRO, a signal optimization tool, and can only to run

SYNCHRO input files xviii. This software focuses on checking and fine-tuning traffic signal operation. The last program evaluated was VISSIM, created by PTV Vision. VISSIM is a microscopic, time step, and a behavior-based simulation model developed to model urban transportation operations xix. This program falls short in the lack of a built-in actuated controller program and its inability to produce HCM compatible output. CORSIM and SIMTRAFFIC have network limits, while VISSIM and Paramics do not. The study also concluded that VISSIM and Paramics showed relatively consistent performance trends to all signal timing plan cases while SIMTRAFFIC and CORSIM produced inconsistent performance trends.

VISSIM was chosen for this study primarily due to the program's ability to analyze multimodal traffic (i.e., automobile, bicycles, and pedestrians) as well as transit operations under constraints such as lane configuration, traffic composition, traffic signals, transit stops, and other similar criteria, thus making it a useful tool for the evaluation of various alternatives<sup>xx</sup>. VISSIM also allows the interaction of different modes of transportation, including bicycles, transit, automobiles, and pedestrians. This flexibility of modeling interaction between different modes of transportation is ideal to evaluate the network changes expected in our study.

The shortcomings of traffic simulations include unrealistic driver behavior, amount of time needed to develop a good simulation model, difficulty understanding simulation data, and computer limitations.

Table 1 from Chapter 31 of the Highway Capacity Manual (HCM 2000<sup>xxi</sup>) summarizes the strengths and flaws of the simulation approach to traffic modeling.

**Table 1. HCM Simulation Model Analysis** 

|                                                                           | -                                            |
|---------------------------------------------------------------------------|----------------------------------------------|
| Modeling Strengths                                                        | Modeling Shortcomings                        |
| Other analytical approaches may not be                                    | There may be easier ways to solve the        |
| appropriate                                                               | problem                                      |
| Can experiment off-line without using an on-line trial-and-error approach | Simulation models require considerable       |
|                                                                           | input characteristics and data, which may    |
|                                                                           | be difficult or impossible to obtain         |
|                                                                           | Simulation models may require verification,  |
| Can experiment with new situations that do                                | calibration, and validation, which, if       |
| not exist today                                                           | overlooked, make such models useless or      |
|                                                                           | not dependable                               |
|                                                                           | Development of simulation models requires    |
| Can provide insight into what variables are                               | knowledge in a variety of disciplines,       |
| important and how they interrelate                                        | including traffic flow theory, computer      |
| ·                                                                         | programming and operation, probability,      |
|                                                                           | decision making, and statistical analysis    |
| Can provide time and space sequence                                       | The simulation model may be difficult for    |
| information as well as means and                                          | analysts to use because of the lack of       |
| variances                                                                 | documentation for unique computer facilities |
| One attacks assistant in mod                                              |                                              |
| Can study system in real-                                                 | Some users may apply simulation models       |
| time, compressed time, or expanded time                                   | and not understand what they represent       |
| Can conduct potentially                                                   | Some users may apply simulation models       |
| unsafe experiments without risk to system                                 | and not know or appreciate model             |
| users                                                                     | limitations and assumptions                  |
| Can replicate base conditions for equitable                               | Results may vary slightly each time a        |
| comparison of improvement alternatives                                    | model is run                                 |
| Can study the effects of changes on the                                   |                                              |
| operation of a system                                                     |                                              |
| Can handle interacting queuing processes                                  |                                              |
| Can transfer unserved queued from one                                     |                                              |
| time period to the next                                                   |                                              |
| Can vary demand over time and space                                       |                                              |
| Can model unusual arrival and service                                     |                                              |
| patterns that do not follow more traditional                              |                                              |
| mathematical distributions                                                |                                              |

#### 2.4 SIMULATION STUDY STEPS

Understanding a model's operations and input data is necessary to successfully utilize a model. Lieberman and Rathi<sup>xxii</sup> suggested the following process to build and apply traffic simulation models:

- 1. Define the problem and model objectives.
- 2. Define the system to be studied.
- 3. Develop the model.
- 4. Calibrate the model.
- 5. Verify the model.
- 6. Validate the model.
- 7. Document activities.

The first step in any study is to identify and describe the scope of the problem. This step includes stating the purpose and information needed from the model, such as travel time, travel volume, and queue lengths.

The next step is to determine model boundaries, data input, and control environment. This may include city streets, state highways, highway geometrics, peak hour factor, intersection volumes, and speed data.

After defining the problem, goals, and system, model development begins. This step identifies the type of model that should be used depending on the level

of complexity needed to satisfy the objectives. At this point, a model (microscopic, macroscopic, mesoscopic, deterministic, or stochastic) and corresponding software are also selected. Calibration requirements and a logical structure for integrating components are established.

To calibrate the model, the data needed to calibrate the model is collected and introduced into the model. Details such as signal timing, satellite imagery, vehicle composition, speeds, and traffic are all inputted to complete the simulation model. A small area of the model is tested to calibrate the model. This step entails adjusting simulation factors, for instance, perception time, headway allocations, and traffic control device locations, and determines whether the calibration is accurate and adequate.

Verification of the model may include a visual check to monitor for any unrealistic and unusual network behavior. The software may replicate a model component properly as designed but the performance varies with the theoretical expectations or empirical observations. If this occurs, one must determine whether step four of calibration is adequate and accurate.

The following step is to validate the model by collecting, reducing, and organizing data from the model to compare to actual data. At this step, the model is established to describe the real system at an acceptable level of accuracy by applying rigorous statistical tests. Validation is extremely crucial because future results are dependent on replicating the real-world traffic setting with the model. Therefore, one must be attentive to the proper representation of vital processes within the overall model, errors in the input data, reasonable output developed from

simulation trials, and potential "bugs" in the model and algorithms utilized. A detailed inspection of the animation is an excellent tool for observing the traffic setting and interpreting the simulation output. Validation often occurs alongside calibration and verification.

The final step described by Liberman and Rathi includes summarizing steps taken to create the model, creating a user manual, and documenting algorithms and software used. Documentation provides future users with a guide to critique and understand the built model and analysis.

# 2.5 DEVELOPMENT OF LARGE-SCALE MICROSCOPIC TRAFFIC SIMULATION MODEL

Large-scale traffic simulation models require data from many sources in detail, as well as proper calibration and validation. Small errors in microscopic models are exponentially magnified in large networks<sup>xxiii</sup>.

Jha et al.xxiv developed and calibrated a microscopic traffic simulation model, using MITSIMLab, for the entire metropolitan area of Des Moines, lowa. OD pairs were assigned with zone aggregations, generating 19,000 to 21,000 OD pairs. Parameters and inputs to be calibrated for this model included parameters of the driving behavior model, parameters of the route choice model, OD flows, and habitual travel times. Although these should all be ideally calibrated jointly, the scale of the model, led them to calibrate driving behavior parameters separately from others. An iterative process was used to calibrate the remaining parameter and inputs. Ultimately, the paper noted that calibration and validation results were promising.

More recently, Bartin et al.xxx calibrated and validated a large-scale traffic simulation network with a case study in New Jersey. Their model was developed using PARAMICS and calibrated and validated using throughput, queue lengths, and travel times at selected key locations in the network. Bartin et al. described the calibration and validation process as an iterative process including error-checking, demand estimation, capacity calibration, route choice calibration, and system performance calibration. This paper details the modeling effort required to build a large-scale traffic simulation model, including the available data requirements, generating and OD demand matrix and the results of the calibration and validation process.

Sharma and Edara<sup>xxvi</sup> developed a large-scale traffic simulation model for hurricane evacuation for a case study of Virginia's Hampton roads region using VISSIM. Their approach to the OD demand matrix utilized the ATM (Abbreviated Transportation Model), which is based on tracts and population data from the 2000 U.S. Census. ATM tables are prepared by the U.S. Army Corps of Engineers and referred to for evacuating population of destination. Total evacuating traffic demand and routing assignment were obtained from the ATM.

#### 2.6 COMPLETE STREETS

Complete streets refer to roads designed to accommodate multiple modes, users, and activities including walking, cycling, public transit, automobile, nearby businesses and residents. An example of a downtown street before and after

conversion to a complete street is shown in Figure 2\*xvii. In the 'before' illustration the bus stop is obstructed by an illegally parked car. In the 'after' illustration, a bus bulb is provided to address the issue. It is one example of how complete street conversion supports more efficient modes of travel. There are numerous studies that document the benefits of complete street conversions; however, literature has also noted that the benefits depend heavily on the local context\*xxviii.



Figure 2. Illustration of Before (Left) and After (Right) Complete Street Conversion<sup>xxix</sup>

## 2.6.1 One-way to Two-way Street Conversions

One-way streets to two-way street conversions allow for better local access and reduced speeds\*\*\*. The most common reasons for converting one-way to two-way streets include less confusing circulation patterns, increased business exposure and access to passing motorists, slower traffic speeds, and improved pedestrian and bicycle safety. Sisiopiku and Chemmannur\*\*\* studied the conversion of one-way street pairs to two-way operations in downtown Birmingham using Synchro and CORSIM. A comparison of the existing condition baseline against the existing condition with the conversion indicated no major

impacts on traffic circulation, such as unfavorable delays or spillbacks. A multiple resolution simulation and assignment approach, entailing a logical integration of two traffic simulation assignment methods, dynamic traffic assignment and microscopic traffic simulation model, was developed by Chiu, Zhou, and Hernandezxxxiii to estimate traffic and environmental impacts resulting from downtown traffic flow conversions. Their study consisted of a case-study in the City of El Paso, concluding that two-way configurations do not necessarily bring forth desirable traffic performance. However, it was also shown that if carefully analyzed and designed, opportunities exist in order to make a two-way configuration a desirable option.

#### 2.6.2 Road Diet

Road diet conversions are a type of complete street conversion. According to the Federal Highway Administration (FHWA)xxxiii, road diets are "generally described as removing travel lanes from a roadway and utilizing the space for other uses and travel modes." Road diet reconfigurations typically consist of converting an undivided four-lane roadway to a three-lane undivided roadway made up of two through lanes and a center two-way left-turn lane, as seen in Figure 3. Research on an urban arterial street noted that while road diet conversion may increase travel time due to capacity reduction, the benefits associated with the reduction in traffic crashes overwhelming exceed the costs of delayxxxiv. In addition to reducing overall crashes, road diets improve safety by reducing vehicle speed differential and vehicle interactions. The reduction of one lane per direction of traffic limits the speed differential to the speed of the lead

vehicle<sup>xxxv</sup>. Litman<sup>xxxvi</sup> has also mentioned that post- road diet conversion offpeak traffic may move slower but peak-period traffic may move faster. Nixon et al.<sup>xxxvii</sup>, however, noted the need to study the impact of the road diet programs on the diet location as well as on the neighborhood streets.

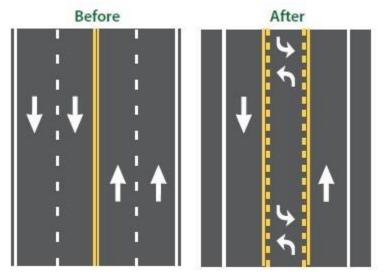



Figure 3. Typical Road Diet Basic Design from FHWAxxxviii

# 2.6.3 Complete Street Effects on Neighboring Streets

As previously mentioned, numerous studies demonstrate the benefits of complete streets conversions. However, these studies are restricted to the corridor of the conversion with the exception of Nixon et al.xxxix and did not analyze the effects on the surrounding network including neighboring streets. These effects are critical to compare to assess if traffic and safety issues have migrated to adjacent streets. Smart Growth America showcased a project in Seattle, Washington where the redesign of Stone Way North dropped speeds, increased bicycle traffic, and decreased collisions while peak traffic volumes citywide remained consistent and no traffic diversion to parallel streets

occurred<sup>xl</sup>. Zhu et al. xli studied the effects of complete streets on travel behavior, specifically in the Los Angeles area, by comparing complete to incomplete streets. Zhu and Wang noted that "three out of six sites had lower total traffic volume on the complete streets compared with the incomplete streets, while two other sites showed just the opposite, and one site showed no significant difference." Their study suggests that the differences between complete and incomplete streets are site-specific and results can vary greatly depending on the location and function of complete streets. Barnes at 2019 Western District ITE Meetingxlii noted in a case study in Oakland, California that a complete street project on Telegraph Avenue resulted in a 6% decrease on trips along Telegraph Avenue, a 5% increase on trips on the adjacent west freeway, and 1% increase on trips on the adjacent east corridor. This study demonstrates the shift in traveler choice as a result of a complete street project. In their recommendation for the evaluation of any road diet project Nixon et al.xiii noted the need to examine the impact on the surrounding street network. These studies indicate that a pre-implementation assessment of network effects of complete street conversion may support agencies contemplating these changes.

#### 2.7 TACTICAL URBANISM

Tactical urbanism refers to low-cost, temporary interventions such as temporary street closures for farmers markets and/or public pedestrian plazas, intended to improve local neighborhoods and city gathering places<sup>xliv</sup>. More specifically,

the Street Plans Collaborative defines "tactical urbanism" as an approach to urban change that features the following five characteristics:

- 1. A deliberate phased approach to instigating change;
- 2. The offering of local solutions for local planning challenges;
- 3. Short-term commitment and realistic expectations;
- 4. Low risks, with a possibility of high reward; and
- 5. The development of social capital between citizens and the building of organizational capacity between public-private institutions, non-profits, and their constituents.

Examples of tactical urbanism include ad hoc conversion of on-street parking spaces to dining or seating areas and filling of awkward corners where the excess pavement is unused among others<sup>xlv</sup>. The cities see the benefits that these projects bring to communities and appreciate their relatively low cost and impact. Tactical urbanism projects also generate data and public feedback of built out strategies. This allows cities and the public to test out and improve upon ideas before they invest in more costly, permanent solutions.

# 2.7.1 Pop-up Bikeways

Pop-up bikeways are temporary bikeways installed as a result of community interest and/or to gather community feedback on new bike infrastructure. The Scott Street Pop-up Bikeway Demonstration in May 2016 resulted from residents and business owners in West San Carlos and South Bascom Urban Villages of San Jose calling for streets that are safer for people walking and biking.

Community members and partners created a 2-day "demonstration project" showing what a safer Scott Street could look like<sup>xlvi</sup>. The two-day project featured temporary sharrow markings on the street created with sidewalk chalk, as shown in Figure 4, free bike repair, bicycle safety classes, and free yoga, and games for families.



Figure 4. Scott Street Pop-up Bikeway Demonstration

To evaluate the long-term goal to have a series of protected bikeways, the City of San Jose had another "pop-up" bikeway in 2017. From August 7 to August 13, the City created a protected bikeway, shown in Figure 5. 4<sup>th</sup> Street and bikers were encouraged to fill out brief surveys about their experience xivii. Overall, survey results indicate that most respondents had an overall positive impression of the bikeway, including 61% of respondents who experienced the bikeway by automobile xiviii.



Figure 5. Different Complete Street Treatments in Downtown San Josexlix

#### 2.8 CONCLUSIONS FROM LITERATURE REVIEW

This literature review provides preliminary information on the development of a traffic simulation model and complete street strategies. Complete streets are an integral component of the multi-modal transport systems and more livable communities. Tactical urbanism provides a low-cost, temporary solution for local planning challenges. Microsimulation allows for detailed modeling and visualization of the transportation networks. Based on the recommendation from Nixon et al. <sup>1</sup> it is clear that complete street conversions have a network-wide impact and some recent research has started examining the network-wide impacts post-implementation. The simulation approach allows for studying the network-wide impacts of complete street strategies. Studying network-wide impacts is critical to assess the potential migration of safety and traffic issues onto

neighboring streets. Our study aims to provide network output evaluation metrics on one-way to two-way street conversions before the project implementation to help agencies select optimal strategies for their downtown plan.

## 3. NETWORK MODELING

The investigators worked with the City's transportation planning and traffic engineering division to create the model for downtown San Jose. Towards that end, the city identified the downtown core to be modeled in VISSIM.

To replicate the most congested period downtown San Jose experiences, the downtown core network was modeled with the weekday afternoon peak hour travel demand. This chapter explains the network modeling procedure, including data collection, model building, and calibration and validation. The peak hour counts for different modes were obtained from the city. Figure 6 shows the map for the downtown core and frame.

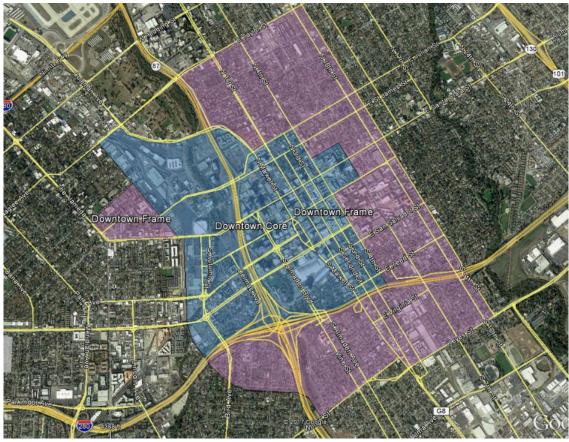



Figure 6. Map with Downtown San Jose Core and Frame

#### 3.1 CREATING THE NETWORK

#### 3.1.1 Road Network

VISSIM has built-in satellite imagery from Microsoft's Bing Maps, which was used as a basis for tracing the traffic network for the City of San Jose downtown core. Specific lane geometry, including those for automobile and bike lanes, was verified through satellite images and street views in Google Maps. Cars and heavy good vehicles (HGV) were prohibited from Class 1 and 2 bike lanes. The complete network consisted of 104 intersections, 1,264 links, and 2,303 connectors for a total length of 571,000 feet in the network shown in Figure 7. Since the focus was to model complete street strategies in the downtown, freeways mainline segments were not included in the model. In addition to parking lots, off-ramps and on-ramps to the regional freeways that connected with the downtown core served as origins and destinations in the VISSIM model.

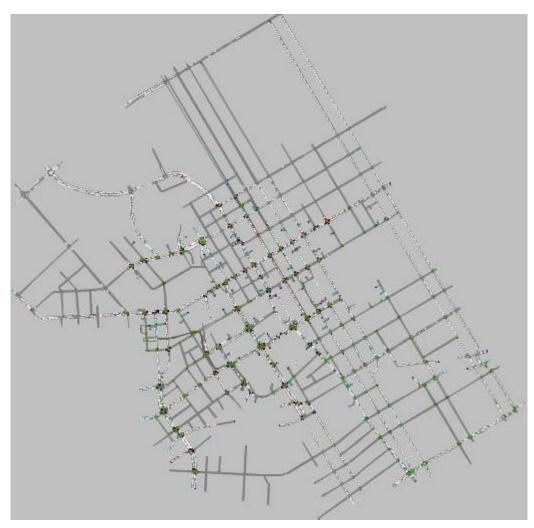



Figure 7. VISSIM Model for the Downtown Core

# 3.1.2 Vehicle Data and Composition

To create an accurate existing baseline PM peak scenario model, the City of San Jose provided intersection turning movement data for downtown surface streets and a list of parking lots within the downtown area. The number of parking spaces in the lot was used as preliminary volume inputs at the parking lot exits. In addition, off-ramp volumes provided by Caltrans in the forms of ADT

were converted to the peak hour volumes using Equation 1 for preliminary volume inputs.

Peak Hour Volume=
$$(ADT)*(K-factor)$$
 (1)

where:

ADT: Annual daily traffic

K-factor: Peak factor

The methodology for determining preliminary input volumes in VISSIM involved the following steps:

- Convert off-ramp ADT to peak hour volumes using Equation 1, assuming a K-factor of 10%
- 2. For parking lots, use 50% of available parking spaces as PM peak hour volume input.

Based on the discussions with the city staff, vehicle compositions remained as VISSIM default values of 98% cars and 2% HGVs (heavy goods vehicles or Trucks).

# 3.1.3 Speed Data

VISSIM requires speed distributions to be defined for all vehicle classes. Speed survey data (see Appendix E) was provided for key corridors in downtown San Jose. Using this data, a minimum speed, 15<sup>th</sup> percentile speed, 85<sup>th</sup> percentile

speed mph, and a maximum desired speed was set for each corridor (see Figure 8 for an example input for the speed profile in VISSIM).

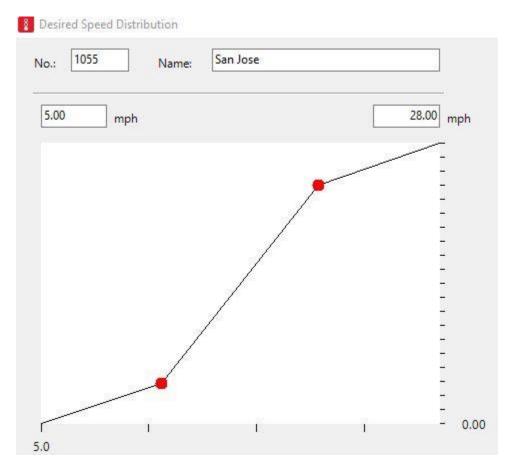



Figure 8. Speed Distribution for Vehicles

### 3.1.4 Conflict Areas

Conflict areas are areas of overlapping links and connectors within the VISSIM network. To prevent vehicles, cyclists, and pedestrians from appearing to be colliding or moving over each other in simulation; conflict areas need to be managed by assigning the prioritized movements. These movement priorities were assigned at merge points for vehicles exiting the parking lots and at intersections for left and right turn movements yielding

to through traffic. Conflict area priorities were also assigned at locations where the tram line intersected the road, giving priority to the tram transit vehicles.

## 3.1.5 Signal Timing Data

After setting up the network geometry, vehicle inputs and composition, speed data, and conflict areas, the next step involved setting up the traffic signals with signal timing sheets provided by the City of San Jose. All signals were modeled by as Ring Barrier Controller (RBC) in VISSIM, which can model actuated signal timing pattern as well as coordination. Signal heads and signal controllers were created and assigned to each other through the RBC interface of VISSIM. This type of controller fulfilled our needs of protecting left turns, vehicle extensions, and vehicle detections. A total of 90 signal controllers were added to the model. Figure 9 shows an example of a standard signal timing template. Coordination was added to the corridors where the signal systems operate on a coordinated signal timing plan during afternoon peak-hour.

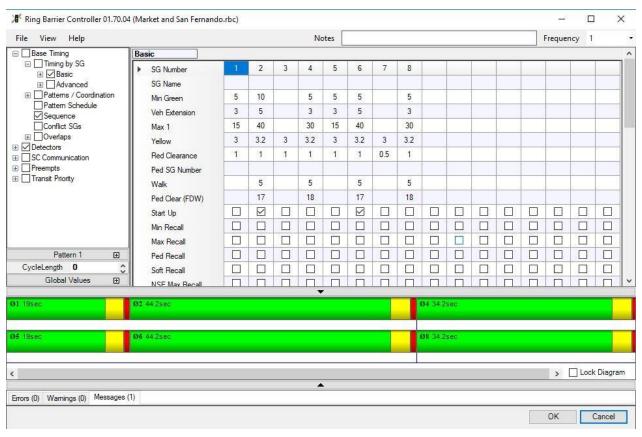



Figure 9. Ring Barrier Controller Timing Interface for VISSIM

#### 3.1.6 Vehicle Routes

With parking lots and on-ramps as origins and the same parking lots and off-ramps as destinations, routing decisions were generated using travel time from Google Maps for a Wednesday between 5:00 – 6:00 PM, the PM peak period. Google Maps produced a minimum of one and maximum of three possible routes with every origin-destination pair and their travel time. The total input flow at the origins to destinations was divided into all routes based on travel time. Routes between OD pairs that utilized a freeway mainline were not coded into the network since the network of interest did not have any freeways. All other routes provided by Google Maps were coded into

the network. Figure 10 shows an example of a route decision generated by Google Maps and how it was coded into the network.



Figure 10. Route Decision from Google Maps and its Coding in the Network

### 3.1.7 Transit

Public transport lines were incorporated into the model in the same manner as static vehicle routes. According to PTV VISSIM<sup>II</sup>, "a PT (Public Transport) line consists of buses or trams serving a fixed sequence PT stops according to a timetable."

# 3.1.8 Cyclists

Cyclists were coded into the model as their own vehicle class and routed through corridors with Class 2 bike lanes, listed in Table 2. These corridors were identified based on the data provided by the city. An estimate of 30 cyclists per hour for each corridor was coded into the network. Cyclists' speed ranged from 9.32 to 12.43 MPH.

## **Table 2. Cyclists Corridors**

## Streets with most significant bicycle traffic

San Fernando Street
3rd Street
4th Street
7th Street

Paseo de San Antonio

## 3.1.9 Pedestrians Cyclists

Pedestrians were coded into the model using pedestrian areas and inputs. Pedestrian signal heads and detectors were placed at each end of the footpath link crosswalk and OD matrices for each individual intersection. An estimate of 100 pedestrians per hour per origin was coded into the network. Pedestrian input composed of 50% males (1022: IMO-M 30-50) and 50% females (1023: IMO-F 30-50) with speeds ranging from 2.17-3.62 MPH and 1.59-2.66 MPH, respectively. Pedestrians were coded in the intersections listed in Table 3 based on turning movement counts data obtained from the city.

**Table 3. Intersections with Significant Pedestrian Traffic** 

#### Intersections with Pedestrians

1st Street/Santa Clara Street
1st Street/St. John Street
1st Street/St. John Street
1st Street/St. James Street
2nd Street/Santa Clara Street
2nd Street/San Fernando Street
2nd Street/St. John Street
2nd Street/St. John Street
3nd Street/St. James Street
3rd Street/Santa Clara Street
3rd Street/Santa Clara Street
4th Street/Santa Clara Street
4th Street/San Fernando Street

#### 3.2 ORIGIN – DESTINATION MATRIX

An origin-destination matrix (OD matrix) is a trip table displaying the number of trips going from each origin to each destination. This is how VISSIM assigns traffic to the network. As previously mentioned, vehicle routes were generated for a weekday PM peak with Google Maps, utilizing parking lot exits and off-ramps as origins and the same parking lot entrances and on-ramps as destinations. Appendix A: Origin-Destination Matrices shows the final OD matrices for the base network. The process for obtaining the final OD matrix is described in the next section.

#### 3.3 CALIBRATING THE NETWORK

As the most prominent user of the network, results from this network focused on the automobile mode. Drivers gravitate toward negative feelings regarding such conversions and are often very vocal during public outreach. Thus, to reassure these stakeholders, the study was aimed at the automobile mode.

Calibration and validation are necessary steps to ensure the model's reliability and accuracy. Calibrating involves polishing and adjusting the network to replicate observed traffic conditions<sup>[ii]</sup>. In conjunction with validation, calibration is an iterative process that adjusts the network and compares actual traffic information to the simulated traffic information for various links of the network till measures of performance, such as turning movement volumes, car-following model parameters, traffic speeds, and travel times, are satisfied. A well-calibrated model is essential to the studied system because it increases reliability of the predicted traffic patterns and scenarios. Calibration efforts included comparing the model's traffic volumes to those of the City of San Jose, comparing the model's average speed to the distribution of speed observed in the real world, and comparing estimated travel times to the distribution of the travel times observed on Google Maps. Behavior parameters were iteratively modified such that the model's data closely resemble the actual data.

## 3.3.1 Driving Behavior Parameters

The network consisted only of local streets that utilized one driving behavior parameter set. This set used the unaltered "Urban (motorized)" driving behavior default values in VISSIM. Figure 11 below shows a screenshot of the final parameter set for the city of San Jose network.

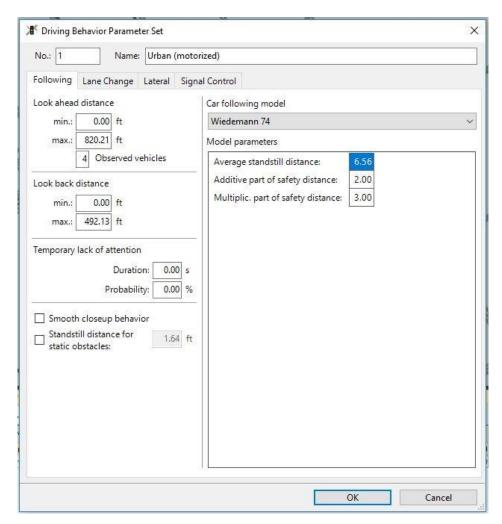



Figure 11. Driving Behavior Parameter for the Model

#### 3.3.2 Vehicle Record Data

The validation was based on traffic data from the VISSIM model using elements named "data collection points", "queue counters", and "travel time

measurements". Data collection points and queue counters were placed at study area intersections while travel time measurements were placed on key corridor segments. These three data collection methods and measures were initially selected as best suited to measure the modeled network's similarity to the realworld data collected in San Jose. Data collectors tallied every vehicle passing through it for the analysis period of 3600 seconds. The analysis period did not involve the first 1500 seconds of warm-up or seeding time and final 900 seconds of clearing time, as suggested by the Maryland Department of Transportation (MDOT)<sup>liii</sup>. Data collectors also measured spot speed for each individual vehicle passing through their location and output the average spot speed. VHelper, a VISSIM utility program, was used as a preliminary calibration and validation tool to catch coding mistakes and estimate/visualize intersection turning volumes liv. Although not used as a validation measure due to the lack of actual data, queue counters provide average queue length, maximum queue length, and number of vehicle-stops within the queue as outputs. Queues are counted from the location of the queue counter on the link upstream to the final vehicle that is in queue condition. If the queue backs up from multiple different approaches, the total queue will be the sum for all of queues at all approaches and be reported as the longest maximum queue length. Travel times are measured as the average travel time, including waiting or dwell times, for vehicles to cross the first (start) and second (destination) cross-sections specified for the travel time measurement placed on the key corridors. Delay can be found for any selected segment where travel time is measured. A delay time

measurement determines the mean time delay calculated from all vehicles observed on a single or several link sections. Table 4 displays the locations of data collectors, queue counters, and travel time corridors.

Table 4. Data Collectors, Queue Counters, and Travel Time Corridor Locations

| Data Collectors                             | Queue Counters                              | Travel / Delay<br>Time    |
|---------------------------------------------|---------------------------------------------|---------------------------|
|                                             |                                             | Corridors                 |
| Market Street/Santa Clara Street            | Market Street/Santa Clara Street            | EB Santa Clara<br>Street  |
| Market Street/San Fernando<br>Street        | Market Street/San Fernando<br>Street        | WB Santa Clara<br>Street  |
| Market Street/San Carlos Street             | Market Street/San Carlos Street             | NB Market Street          |
| 3rd Street/Santa Clara Street               | 3rd Street/Santa Clara Street               | SB Market Street          |
| 3rd Street/San Fernando Street              | 3rd Street/San Fernando Street              | NB 3rd Street             |
| 3rd Street/San Carlos Street                | 3rd Street/San Carlos Street                | SB 4th Street             |
| 3rd Street/San Salvador Street              | 3rd Street/San Salvador Street              | EB San Fernando<br>Street |
| 3rd Street/Reed Street                      | 3rd Street/Reed Street                      | WB San Fernando<br>Street |
| 4th Street/Santa Clara Street               | 4th Street/Santa Clara Street               | NB Almaden                |
| 4th Street/San Fernando Street              | 4th Street/San Fernando Street              | SB Almaden                |
| 4th Street/San Carlos Street                | 4th Street/San Carlos Street                |                           |
| 4th Street/William Street                   | 4th Street/William Street                   |                           |
| 4th Street/San Salvador Street              | 4th Street/San Salvador Street              |                           |
| 4th Street/Reed Street                      | 4th Street/Reed Street                      |                           |
| Almaden Boulevard (W)/Santa<br>Clara Street | Almaden Boulevard (W)/Santa<br>Clara Street |                           |
| Almaden Boulevard (E)/Santa<br>Clara Street | Almaden Boulevard (E)/Santa<br>Clara Street |                           |

Almaden Boulevard/San Fernando Street

Almaden Boulevard/Park Avenue

Almaden Boulevard/San Carlos Street

Almaden Boulevard/Woz Way

Almaden Boulevard/San Fernando Street

Almaden Boulevard/Park Avenue

Almaden Boulevard/San Carlos

Street

Almaden Boulevard/Woz Way

## 3.3.3 Validating the Network

The validation process compares output data for automobiles from multiple runs of the well-calibrated network to the data from the real-world. This process requires estimation of the GEH statistic<sup>IV</sup>. A validated network justifies the simulation's usage in different future scenarios.

#### 3.3.4 Seed Numbers

Validation requires multiple runs of the simulation model at different seed numbers. Random seed numbers in VISSIM affect the start values of random generators used internally in the model. These values influence the arrival times of vehicles in the networks and stochastic variability of the driving behaviors, allowing for the comparison of daily changes in traffic patterns at the same location<sup>[vi]</sup>. Running the simulation with the same seed number would produce the same exact data for volumes, speeds, queue lengths, and travel times at all network locations. Changing the seed number would output differing results based on the actual values of the driving behavior parameters derived from the specified distribution for these parameters. For this project, validation of the base network was based on 10 simulation runs. MDOT recommends a minimum

of 5 simulation runs and up to 15 runs before average outputs of all runs can be used for analysis<sup>|vii|</sup>.

## 3.3.5 GEH Statistics Validation for Turning Movement Counts

The Geoffrey E. Havers (GEH) Statistic is a formula commonly used in transportation analysis to compare two sets of traffic volumes. The GEH Statistic was used to compare field counts by the City of San Jose found in Appendix F to simulation turning volumes. The empirically derived formula is defined by Equation 2.

$$GEH = \sqrt{\frac{2(M-C)^2}{M+C}} \tag{2}$$

where:

M: Traffic count from the simulation model

C: Traffic count observed in the real world

The GEH statistic is useful in comparing traffic volumes because the formula does not follow a linear pattern, avoiding common pitfalls witnessed in using simple percentage comparisons<sup>lviii</sup>. For traffic modeling work in the existing base scenario, a GEH of less than 5.0 is considered a good match between the model and observed volumes. The measurements with GEHs in the range 5.0 to 10.0 have a medium chance of error and those with GEHs greater than 10.0 have a high probability of error<sup>lix</sup>. Data collected from model runs using 10 different seed number runs were averaged and used to calculate the GEH statistic for each turning movement of the previously identified key intersections.

With 75.78% of GEH statistics lower than 5.0 and 5.81% of GEH statistics more than 10.0, as well as accounting for the large size of the network, these values are consistent with the following approach derived from the Washington State Department of Transportation (WSDOT)<sup>lx</sup>:

- A minimum of two-thirds of GEH statistics for turning movements less than
- 2. A minimum of ninety percent of GEH statistics for turning movements less than 10.0

Complete statistics detailing average vehicle counts for turning movements from 10 different seed number runs, the field data values, and the corresponding calculated GEH statistic can be found in Appendix B.

## 3.3.6 Speed Validation

The City of San Jose provided peak hourly average speed data on key corridors. This information was compared and matched with spot speed data from VISSIM to ensure the replication of the drivers' behavior. As a calibration target, the average speed of straight-through movements at intersections in the corridor must fall in the range of speeds provided by the City. Table 5 summarizes average speed data from 10 runs compared to corridor speed data from the City. Speed data provided by the City can be found in Appendix E.

**Table 5. Existing Baseline Speed Summary** 

|                    | Average from Model (mph) | Range from City Data (mph) |
|--------------------|--------------------------|----------------------------|
| Market Street      | 11.8                     | 7-18                       |
| Almaden Boulevard  | 12.0                     | 10-16                      |
| 3rd Street         | 12.4                     | 12-25                      |
| 4th Street         | 8.9                      | 6-16                       |
| San Carlos Street  | 13.9                     | 5-11                       |
| St. James Street   | 10.2                     | 8-20                       |
| Santa Clara Street | 11.7                     | 11-23                      |

### 3.3.7 Travel Time Validation

In addition to the GEH statistic for traffic counts and speed validation, travel times were recorded for key corridors. Since no real travel time data was available, 'actual' travel times for comparison were obtained from Google Maps during a Wednesday PM peak. 80% of travel times along the key corridors are within Google Maps' estimated travel time range. Table 6 summarizes travel times in the model and from Google Maps. Travel time for each run can be found in Appendix D.

**Table 6. Existing Baseline Travel Time Summary** 

| Travel Time Corridors  | Vehicles | Existing<br>Baseline<br>(min) | Google<br>Range<br>(min) |
|------------------------|----------|-------------------------------|--------------------------|
| EB Santa Clara Street  | 134      | 6.9                           | 4 - 12                   |
| WB Santa Clara Street  | 141      | 5.9                           | 2 - 8                    |
| NB Market Street       | 2        | 6.1                           | 3 - 9                    |
| SB Market Street       | 69       | 8.7                           | 4 - 12                   |
| NB 3rd Street          | 83       | 6.2                           | 2 - 7                    |
| SB 4th Street          | 288      | 12.3                          | 3 - 8                    |
| EB San Fernando Street | 52       | 13.7                          | 5                        |
| WB San Fernando Street | 15       | 7.1                           | 3 - 6                    |
| NB Almaden             | 57       | 5.0                           | 2 - 6                    |
| SB Almaden             | 235      | 8.7                           | 2 - 8                    |

### 3.4 RESULTS FROM NETWORK MODELING

Based on the validation data, the base model was well-calibrated based on the guidelines derived from WSDOT. In certain locations, there are some specific movements that did not calibrate guite as well, including:

- EB movements at 4<sup>th</sup> Street/San Fernando Street modeled travel times
  were much longer than observed travel times, likely due to queues on San
  Fernando Street resulting from modeled vehicles waiting to change lanes
  to turn right.
- SB movements on 4<sup>th</sup> Street– modeled travel times were much longer than observed travel times, likely due to queues on 4<sup>th</sup> Street resulting from vehicle slowdown in conflict areas despite having priority.

The travel times that did not calibrate have a lower, yet, acceptable volume and are less-critical movements from a network perspective. As such, these discrepancies are not anticipated to have a significant impact on the analysis for future scenarios discussed in forthcoming chapters.

## 3.4.1 Analysis and Network Measures of Effectiveness

Table 7 shows the network measures of effectiveness (MOEs), including vehicles, travel time, speed, delay, and stops, derived from the Existing Condition Baseline VISSIM model. Network measures of effectiveness for each run can be found in Appendix C.

**Table 7. Existing Baseline Network Measures of Effectiveness** 

| Network                 |           |  |  |
|-------------------------|-----------|--|--|
| Number of Vehicles      | 15,250    |  |  |
| Total Travel Time (h)   | 9,325,456 |  |  |
| Total Distance (mi)     | 16,647    |  |  |
| Total Delay (h)         | 5,171,654 |  |  |
| Per Vehicle             |           |  |  |
| Average Speed (mph)     | 6         |  |  |
| Average Delay (s)       | 286       |  |  |
| Average Number of Stops | 6         |  |  |
| Average Stop Delay (s)  | 157       |  |  |

The numbers in Table 7 are compared to the scenarios discussed in the next chapter to assess the network-wide impacts of the multimodal/complete street strategies evaluated in the next section.

## 4. ALTERNATIVE SCENARIOS

After calibrating and validating the existing condition baseline, referred to as Scenario 0 in the remainder of this report, complete street conversion scenarios were discussed with the city and implemented in VISSIM to analyze changes in the overall MOEs listed in Table 7. The impact of complete street conversions on the overall network is a major contribution of the study.

### 4.1 2040 TRAFFIC VOLUMES

The initial plan was to test each of the conversion scenarios with 2015 and 2040 volumes. The city provided the 2040 volume from the travel demand forecasting models. These traffic volumes were in the form of zonal OD matrices. The zones for the city of San Jose are shown in the figure below.

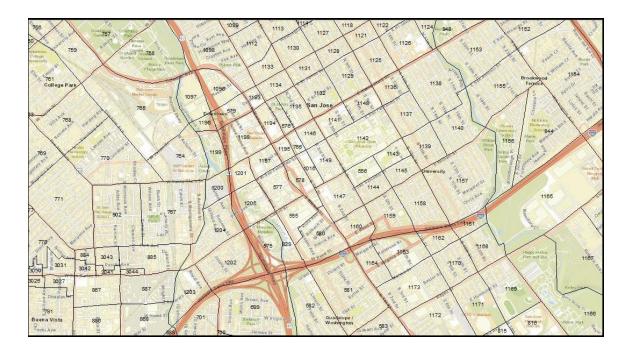



Figure 12. Zones for the OD Matrices (Year 2015 and 2040)

Note that the region shown in Figure 12 is larger than the downtown core modeled in VISSIM. In comparing the OD matrices for the year 2015 (Scenario 0) vs. 2040 it was apparent that the city's travel demand model is forecasting a large increase in automobile traffic. Several zones according to the model are expected to have the automobile volume increase by a factor as much as 20. Clearly, the projected increase in automobile travel demand is not sustainable. Inputting traffic volumes anywhere close to that in the VISSIM O-D led to complete gridlock in the scenario network.

The alternative approach adopted for this work was then to model the scenario provided with varying traffic volume to provide the city with an estimate on what the network might look like with a modest increase (in the range of 5 to 10%) in automobile demand. A total of four scenarios are analyzed in this report (including scenario 0 which is the base case). Each scenario is described along with the network metrics collected using VISSIM for it in the subsequent sections of this chapter.

# 4.2 SCENARIO 1: ALMADEN BOULEVARD CONVERSION W/ 2015 DEMAND LEVEL

# 4.2.1 Assumptions

In the existing condition baseline (Scenario 0), Almaden Boulevard between St.

John Street and Santa Clara Street is a one-way southbound street. This

scenario converted this 770-foot section of Almaden Boulevard to a two-way

street, allowing left and right turns from Santa Clara Street to Almaden Boulevard (Figure 13). Additional turning movements added include right turns onto Carlysle Street and St. John Street. Literature has shown that converting streets from one way to two-way operations has a positive impact on the livability of a community<sup>lxi</sup>.



Figure 13. Before (Left) and After (Right) of Almaden Street Conversion

### 4.2.2 Vehicle Routes

A total of 56 vehicle routes were adjusted to utilize the added northbound

Almaden Boulevard between St. John Street and Santa Clara Street. The routes

were also selected for adjustment based on the vehicles' ability to traverse more effectively to their destination. Appendix G lists routes adjusted for the Almaden Boulevard Conversion scenario. Modifications to the routes allow us to examine the impact of the conversion on the overall network beyond just the street corridor being converted.

## 4.2.3 Analysis and Network Measures of Effectiveness (MOEs)

Table 8 below shows the network measures of effectiveness for Scenario 1 and compares it to the base case (Scenario 0). It may be observed that the conversion of Almaden Street to the two-way operation has no noticeable impact on the average speeds at key data collection locations and in fact, some of the peak hour speeds have marginally increased (e.g., at St. James Street) potentially due to smoother flow of traffic.

**Table 8. Almaden Conversion Speed Summary** 

|                    | Almaden<br>Conversion (mph) | Existing<br>Baseline (mph) |
|--------------------|-----------------------------|----------------------------|
| Market Street      | 12.3                        | 11.8                       |
| Almaden Boulevard  | 12.0                        | 12.0                       |
| 3rd Street         | 12.3                        | 12.4                       |
| 4th Street         | 8.9                         | 8.9                        |
| San Carlos Street  | 14.2                        | 13.9                       |
| St. James Street   | 12.8                        | 10.2                       |
| Santa Clara Street | 11.7                        | 11.7                       |

**Table 9. Almaden Conversion Travel Time Summary** 

| Travel Time Corridors  | Almaden<br>Conversion<br>(min) | Existing<br>Baseline<br>(min) |
|------------------------|--------------------------------|-------------------------------|
| EB Santa Clara Street  | 6.6                            | 6.9                           |
| WB Santa Clara Street  | 5.8                            | 5.9                           |
| NB Market Street       | 6.1                            | 6.1                           |
| SB Market Street       | 8.5                            | 8.7                           |
| NB 3rd Street          | 6.1                            | 6.2                           |
| SB 4th Street          | 12.2                           | 12.3                          |
| EB San Fernando Street | 13.4                           | 13.7                          |
| WB San Fernando Street | 7.1                            | 7.1                           |
| NB Almaden             | 4.7                            | 5.0                           |
| SB Almaden             | 9.3                            | 8.7                           |

Table 9 shows the travel-time comparisons and it may be observed that travel time average for Scenario 1 and Scenario 0 on all major corridors of the downtown core are essentially unchanged.

**Table 10. Almaden Conversion Network Measures of Effectiveness** 

|                            | Network            |                          |
|----------------------------|--------------------|--------------------------|
|                            | Almaden Conversion | <b>Existing Baseline</b> |
| Number of Vehicles         | 15,177             | 15,250                   |
| Total Travel Time (h)      | 9,264,036          | 9,325,456                |
| Total Distance (mi)        | 16,531             | 16,647                   |
| Total Delay (h)            | 5,137,334          | 5,171,654                |
|                            | Per Vehicle        |                          |
|                            | Almaden Conversion | <b>Existing Baseline</b> |
| Average Speed (mph)        | 6                  | 6                        |
| Average Delay (s)          | 285                | 286                      |
| Average Number of<br>Stops | 6                  | 6                        |
| Average Stop Delay (s)     | 156                | 157                      |

Table 10 shows the average delays for automobile traffic, which on average is not adversely affected by the conversion.

# 4.3 SCENARIO 2: ALMADEN BOULEVARD CONVERSION AND INCREASE AUTOMOBILE DEMAND 5%

# 4.3.1 Assumptions

In this scenario, Scenario 1, Almaden Boulevard Conversion, was replicated with input volume increasing by 5% throughout the network to evaluate how the network may look like with a modest increase in automobile demand. Demand was increased by 5% increments to identify the demand points in which the

network would break down. As future growth trends become readily available, the city may experiment with increasing demand based on those trends.

# 4.3.2 Analysis and Network Measures of Effectiveness (MOEs)

As shown in Table 11, travel time mostly increased on EB Santa Clara and NB 3<sup>rd</sup> St by nearly 12%.

**Table 11. Almaden Conversion plus 5% Demand Speed Summary** 

|                    | Almaden plus 5%<br>Demand (mph) | Almaden<br>Conversion<br>(mph) | Existing<br>Baseline (mph) |
|--------------------|---------------------------------|--------------------------------|----------------------------|
| Market Street      | 12.2                            | 12.3                           | 11.8                       |
| Almaden Boulevard  | 12.0                            | 12.0                           | 12.0                       |
| 3rd Street         | 12.3                            | 12.3                           | 12.4                       |
| 4th Street         | 8.7                             | 8.9                            | 8.9                        |
| San Carlos Street  | 14.1                            | 14.2                           | 13.9                       |
| St. James Street   | 12.8                            | 12.8                           | 10.2                       |
| Santa Clara Street | 11.4                            | 11.7                           | 11.7                       |

Table 12. Almaden Conversion plus 5% Demand Travel Time Summary

| Travel Time Corridors  | Almaden<br>Conversion plus<br>5% Demand<br>(min) | Almaden<br>Conversion<br>(min) | Existing<br>Baseline<br>(min) |
|------------------------|--------------------------------------------------|--------------------------------|-------------------------------|
| EB Santa Clara Street  | 7.4                                              | 6.6                            | 6.9                           |
| WB Santa Clara Street  | 5.8                                              | 5.8                            | 5.9                           |
| NB Market Street       | 6.5                                              | 6.1                            | 6.1                           |
| SB Market Street       | 8.7                                              | 8.5                            | 8.7                           |
| NB 3rd Street          | 6.9                                              | 6.1                            | 6.2                           |
| SB 4th Street          | 13.1                                             | 12.2                           | 12.3                          |
| EB San Fernando Street | 14.5                                             | 13.4                           | 13.7                          |
| WB San Fernando Street | 7.0                                              | 7.1                            | 7.1                           |
| NB Almaden             | 4.6                                              | 4.7                            | 5.0                           |
| SB Almaden             | 9.4                                              | 9.3                            | 8.7                           |

Table 13 below shows that the network-level indicators have deteriorated due to increased automobile demand with average delay per vehicle increasing from 285 s to 310 s, an almost 9% increase. It is apparent that while the speed at some of the locations is reduced by a small amount; the overall network can handle 5% increase in automobile demand. The same pattern is observed in terms of travel time in Table 12 (above) even as increases in corridor travel times are not as severe. The highest percentage increase compared to Scenario 1 is on EB Santa Clara and NB 3<sup>rd</sup> Street, with 12% and 13%, respectively.

Table 13. Almaden Conversion plus 5% Demand Network Measures of Effectiveness

| Network                    |                           |           |                   |  |
|----------------------------|---------------------------|-----------|-------------------|--|
|                            | Almaden plus 5%<br>Demand | Almaden   | Existing Baseline |  |
| Number of Vehicles         | 15,527                    | 15,177    | 15,250            |  |
| Total Travel Time (h)      | 10,031,002                | 9,264,036 | 9,325,456         |  |
| Total Distance (mi)        | 16,937                    | 16,531    | 16,647            |  |
| Total Delay (h)            | 5,799,015                 | 5,137,334 | 5,171,654         |  |
|                            | Per Vehi                  | cle       |                   |  |
|                            | Almaden plus 5%<br>Demand | Almaden   | Existing Baseline |  |
| Average Speed (mph)        | 6                         | 6         | 6                 |  |
| Average Delay (s)          | 310                       | 285       | 286               |  |
| Average Number of<br>Stops | 6                         | 6         | 6                 |  |
| Average Stop Delay (s)     | 174                       | 156       | 157               |  |

# 4.4 SCENARIO 3: ALMADEN BOULEVARD CONVERSION AND INCREASE AUTOMOBILE DEMAND 10%

## 4.4.1 Assumptions

In this scenario, Scenario 1: Almaden Boulevard Conversion was replicated with automobile demand increasing by 10%.

# 4.4.2 Analysis and Network Measures of Effectiveness (MOEs)

Table 14 below shows the speed summary for Scenario 3. It is apparent that the average speed at key network locations is affected and is reduced by a small amount.

Table 14. Almaden Conversion plus 10% Demand Speed Summary

|                      | Almaden<br>plus 10 %<br>Demand<br>(mph) | Almaden plus<br>5% Demand<br>(mph) | Almaden<br>Conversion<br>(mph) | Existing<br>Baseline<br>(mph) |
|----------------------|-----------------------------------------|------------------------------------|--------------------------------|-------------------------------|
| Market Street        | 12.0                                    | 12.2                               | 12.3                           | 11.8                          |
| Almaden<br>Boulevard | 11.8                                    | 12.0                               | 12.0                           | 12.0                          |
| 3rd Street           | 12.2                                    | 12.3                               | 12.3                           | 12.4                          |
| 4th Street           | 8.6                                     | 8.7                                | 8.9                            | 8.9                           |
| San Carlos Street    | 14.1                                    | 14.1                               | 14.2                           | 13.9                          |
| St. James Street     | 9.8                                     | 12.8                               | 12.8                           | 10.2                          |
| Santa Clara Street   | 11.4                                    | 11.4                               | 11.7                           | 11.7                          |

**Table 15. Almaden Conversion plus 10% Demand Travel Time Summary** 

| Travel Time Corridors  | Almaden<br>Conversion<br>plus 10%<br>Demand<br>(min) | Almaden<br>Conversion<br>plus 5%<br>Demand<br>(min) | Almaden<br>Conversion<br>(min) | Existing<br>Baseline<br>(min) |
|------------------------|------------------------------------------------------|-----------------------------------------------------|--------------------------------|-------------------------------|
| EB Santa Clara Street  | 7.6                                                  | 7.4                                                 | 6.6                            | 6.9                           |
| WB Santa Clara Street  | 6.1                                                  | 5.8                                                 | 5.8                            | 5.9                           |
| NB Market Street       | 5.7                                                  | 6.5                                                 | 6.1                            | 6.1                           |
| SB Market Street       | 8.7                                                  | 8.7                                                 | 8.5                            | 8.7                           |
| NB 3rd Street          | 6.1                                                  | 6.9                                                 | 6.1                            | 6.2                           |
| SB 4th Street          | 13.5                                                 | 13.1                                                | 12.2                           | 12.3                          |
| EB San Fernando Street | 16.5                                                 | 14.5                                                | 13.4                           | 13.7                          |
| WB San Fernando Street | 7.2                                                  | 7.0                                                 | 7.1                            | 7.1                           |
| NB Almaden             | 4.5                                                  | 4.6                                                 | 4.7                            | 5.0                           |
| SB Almaden             | 9.4                                                  | 9.4                                                 | 9.3                            | 8.7                           |

As shown in Table 15, travel time has increased by two whole minutes on Fernando St compared to the 5% traffic volume increase scenario. The network-wide metrics in Table 16 show that the average delay for this scenario has increased by 14.2% compared to the base case.

Table 16. Almaden Conversion plus 10% Demand Network Measures of Effectiveness

|                            |                               | Network                      |           |                      |
|----------------------------|-------------------------------|------------------------------|-----------|----------------------|
|                            | Almaden<br>plus 10%<br>Demand | Almaden<br>plus 5%<br>Demand | Almaden   | Existing<br>Baseline |
| Number of Vehicles         | 14,801                        | 15,527                       | 15,177    | 15,250               |
| Total Travel Time (h)      | 9,949,705                     | 10,031,002                   | 9,264,036 | 9,325,456            |
| Total Distance (mi)        | 16,142                        | 16,937                       | 16,531    | 16,647               |
| Total Delay (h)            | 5,901,180                     | 5,799,015                    | 5,137,334 | 5,171,654            |
|                            | Р                             | er Vehicle                   |           |                      |
|                            | Almaden<br>plus 10%<br>Demand | Almaden<br>plus 5%<br>Demand | Almaden   | Existing<br>Baseline |
| Average Speed (mph)        | 5.8                           | 6.1                          | 6.4       | 6.4                  |
| Average Delay (s)          | 326.5                         | 310.7                        | 285.1     | 285.9                |
| Average Number of<br>Stops | 7.1                           | 6.8                          | 6.4       | 6.2                  |
| Average Stop Delay (s)     | 186.2                         | 173.9                        | 156.4     | 157.4                |

### 4.5 SCENARIO VISUALS AND PUBLIC OUTREACH

It is clear from scenarios and the analysis of the data from the 2040 Envision San Jose Plan<sup>|xii|</sup> that the conversion scenarios success may depend on the TDM measures the city is able to adopt. In this case, the public outreach is even more critical to the success of realizing a multimodal downtown core. The Safe, Accountable, Flexible, Efficient, Transportation Equity Act: A Legacy for Users (SAFETEA-LU) mandated using visualization techniques for describing plans to the public within the transportation planning process<sup>|xiii| |xiv|</sup>. Accordingly, the agencies (e.g., cities, and Metropolitan Planning Organizations (MPOs)) involved

in the implementation of projects, similar to the ones modeled for various scenarios in this chapter, organize a public meeting to publicize plans and get feedback from them. For each of the scenarios tested in the report, a 3D video was developed that may be used in public meetings prior to real-world implementation. Difference between scenarios with varying demands may be used to get stakeholders' buy-in for the transportation demand management programs. Previous studies lxv lxvi indicated that visualization techniques are useful for public and most participants want transportation agencies to spend more time and budget on video simulation and public involvement. Visualization helps audience to picture transportation plans and associated impacts, using composite images, video overlay, and animations.

There is some evidence in the literature for a lower participation rate of female and young residents in public meetings, therefore conducting outreach activities at schools, youth centers, shopping malls, etc. could increase the rate of female and young resident participation. The internet would be an effective medium to keep the younger participants involved lxvii.

To increase the public involvement, the city of San Jose may leverage from the credibility of individual(s) who play the role of a bridge between residents and other project partners viii, such as superintendent of schools and/or San Jose State University faculty. Also, articles or advertisements in a neighborhood newspaper as well as use of social media could increase public engagement.

Finally, it is not only about public opinion, but also the deliberation on the course of action through partnership and communication that could gather

multidisciplinary organizations with diverse interests to provide a robust strategy and practical action plan<sup>lxix</sup>. Communicating with planners, designers, and developers at early conceptual stage maximizes the benefits of the project, because both planners and designers are more open to modify plans before making considerable design changes. The city is welcome to use the videos provided for any of its outreach plans. Moreover, since the modeled networks for each scenario have been provided to the city, they can create appropriate scenarios and create customized videos to use for public outreach.

## 5. CONCLUSION

### 5.1 SUMMARY AND EVALUATION OF RESULTS

This study addressed the needs identified by the City of San Jose and the project team has been in direct contact with the City. The City can use the results from the model to a) evaluate the strategies specifically evaluated and tested as part of this effort; b) demonstrate the transportation network operations before and after implementation of the strategies to stakeholders, including the community and businesses, via 3D animation; and c) run and evaluate future scenarios through the simulation model provided to the City by the project team. The evaluation focused on the automobile mode because these stakeholders are adversely affected in complete street projects. To the broader research community, the proposed effort will provide a framework to evaluate combinations of strategies aimed at improved multimodal mobility and public life. The research will help communities around North America that have been reluctant to develop scenarios due to the lack of resources, capacity, or expertise by offering a more effective method to illustrate the impact of policy/planning changes. According to FHWA guidelines for applying microscopic traffic simulation x, to develop a reliable model one needs to "evaluate the calibration and fidelity of the model to real-world conditions present in the project analysis study area."

### 5.2 RELIABILITY OF DATA

For the 2015 base case model, the speed from the VISSIM model was within the range of the data provided by the city. Travel time through major corridors in the city were also well-validated. GEH statistics for turning movement counts at intersections were also in the acceptable range and within the guidance provided by organizations such as the WSDOT. Hence, we are confident that the model is capturing the real-world OD patterns as well as road user behavior in the base case appropriately. The evaluation for the 2040 data was based on the city's output from the regional travel demand model. It accounts for the Envision San Jose 2040 general plan. Based on the regional travel demand model, the automobile demand estimated and inputted into traffic model overwhelmed the network. Therefore, the project team recommends to the city the need to reduce automobile demand through extensive TDM measures.

# 5.3 RECOMMENDATION FOR IMPROVEMENT AND FURTHER RESEARCH

This research provided a framework to examine the network-wide impacts of oneway to two-way street conversions. Most of the previous research focused on the impact only on the streets being converted. For the broader research community, the research shows the way to move towards evaluation of complete networks and not just complete streets. The abrupt ending of sidewalks and lack of integration of pedestrian routes is often cited as a reason for low pedestrian travel mode share and only complete networks can help address this issue. Although only results for the automobile mode were analyzed in this study, the model has the capability to produce measures of performance for all other modes included in the network (i.e. busses, trams, bicycles, and pedestrians). For the key stakeholders, the city of San Jose, the added value of this work is in the results documented in this report and the VISSIM models provided to the city. The city staff can use the downtown core network provided by the research team and address future scenarios as they are proposed. This will be especially critical for future tactical urbanism strategies that the city develops for using city streets for public interactions during events such as a street fair or farmer's market.

Future scenarios may also include autonomous vehicles as they grow in popularity. Zielder et al. simulated autonomous vehicles based on Wiedemann's car following modeling in PTV Vissim and found that the simulation reproduced behavior of autonomous vehicles communicating with leading vehicles well<sup>lxxi</sup>. CoEXist, a

European project, has also documented a micro-simulation guide for automated vehicles using VISSIM |xxii|.

With more data, consideration may also be given to other calibration and validation methods for the model, such as calibrating headway/time gap as recommended by Dong et al. Dong et al.

#### **ENDNOTES**

- i "Introduction to Complete Streets."
- ii Childress, "How Transit Agencies Can Improve the Public Involvement Process to Deliver Better Transportation Solutions."
- "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)"; Cheu et al., "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning."
- iv Cheu et al., "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning."
- <sup>v</sup> Bureau, American Community Survey.
- vi Ehrenfeucht and Loukaitou-Sideris, "Planning Urban Sidewalks."
- vii "One-Way/Two-Way Street Conversions."
- viii Lieberman and Rathi, "Traffic Simulation."
- ix Yang, Koutsopoulos, and Ben-Akiva, "Simulation Laboratory for Evaluating Dynamic Traffic Management Systems."
- \* Rousseau et al., "An Implementation Framework for Integrating Regional Planning Model with Microscopic Traffic Simulation."
- xi Rousseau et al.
- xii Lieberman and Rathi, "Traffic Simulation."
- xiii Luk, Stewart, and Walsh, "Microsimulation Traffic Models-Usage, Limitations and Applications."

- xiv Lieberman and Rathi, "Traffic Simulation."
- \*V Park, Yun, and Choi, "Evaluation of Microscopic Simulation Tools for Coordinated Signal System Deployment."
- xvi "Paramics Microsimulation."
- xvii Choa, Milam, and Stanek, "Corsim, Paramics, and Vissim."
- xviii "Trafficware, a CUBIC Company A Tradition of Innovation."
- xix "PTV Vissim."
- xx Vision, "VISSIM 7, User Manual."
- xxi HCM, HCM 2000.
- xxii Lieberman and Rathi, "Traffic Simulation."
- xxiii Jha et al., "Development and Calibration of a Large-Scale Microscopic Traffic Simulation Model."
- xxiv Jha et al.
- xxv Bartin et al., "Calibration and Validation of Large-Scale Traffic Simulation Networks."
- xxvi Edara, Sharma, and McGhee, "Development of a Large-Scale Traffic Simulation Model for Hurricane Evacuation—Methodology and Lessons Learned." xxvii Officials, *Urban Street Design Guide*.
- xxviii Le Vine, "How Overwhelming Is the Evidence in Favor of Road Diets?"
- xxix Officials, Urban Street Design Guide.
- xxx "One-Way/Two-Way Street Conversions."

- xxxi Sisiopiku and Chemmannur, "Conversion of One-Way Street Pairs to Two-Way Operations in Downtown Birmingham."
- way Street Conversion Using Multiple Resolution Simulation and Assignment Approach."
- \*\*\*\*\*\*\*\*\* "Road Diets (Roadway Reconfiguration) Safety | Federal Highway Administration."
- xxxiv Noland et al., "Costs and Benefits of a Road Diet Conversion."
- xxxv Knapp et al., "Road Diet Informational Guide."
- xxxvi Litman, Toward More Comprehensive and Multi-Modal Transport Evaluation.
- xxxvii Nixon, Agrawal, and Simons, "Designing Road Diet Evaluations."
- \*\*\*\*\*\*\*\*\*\* "Road Diets (Roadway Reconfiguration) Safety | Federal Highway Administration."
- xxxix Nixon, Agrawal, and Simons, "Designing Road Diet Evaluations."
- xl "Introduction to Complete Streets."
- xli Zhu and Wang, "Effects of Complete Streets on Travel Behavior and Exposure to Vehicular Emissions."
- xlii "ITE Western District Annual Meeting 2019 | Fehr & Peers."
- xliii Nixon, Agrawal, and Simons, "Slimming the Streets."
- xliv Pfeifer, "The Planner's Guide to Tactical Urbanism."
- xlv Pande and Wolshon, Traffic Engineering Handbook.

- xlvi Nixon, "Evaluating San José's 4th Street Pop-up Bikeway."
- xlvii Nixon.
- xlviii Nixon.
- xlix Nixon.
- <sup>1</sup> Nixon, Agrawal, and Simons, "Slimming the Streets."
- ii Vision, "VISSIM 7, User Manual."
- iii Rrecaj and MBombol, "Calibration and Validation of the VISSIM Parameters-State of the Art."
- iiii "VISSIM Modeling Guidance 9-12-2017.pdf."
- liv "VHelper."
- <sup>IV</sup> Balakrishna et al., "Calibration of Microscopic Traffic Simulation Models."
- lvi Vision, "VISSIM 7, User Manual."
- Ivii "VISSIM Modeling Guidance 9-12-2017.pdf."
- <sup>Iviii</sup> Kilbert, "A Microsimulation of Traffic, Parking, and Emissions at California Polytechnic State University-San Luis Obispo."
- lix "Protocol for VISSIM Simulation."
- lx "Protocol for VISSIM Simulation."
- lxi Riggs and Gilderbloom, "Two-Way Street Conversion."
- lxii "San Jose, CA Official Website Envision San José 2040 General Plan."
- "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)."

lxiv Cheu et al., "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning."

lxv Cheu et al.

lxvi Howard and Gaborit, "Using Virtual Environment Technology to Improve Public Participation in Urban Planning Process."

Involvement Process in Transportation Planning."

lxviii Geraghty et al., "Partnership Moves Community toward Complete Streets."

lxix Geraghty et al.

lxx Dowling, Skabardonis, and Alexiadis, "Traffic Analysis Toolbox Volume III."

lxxi Zeidler et al., "Simulation of Autonomous Vehicles Based on Wiedemann's Car Following Model in PTV Vissim."

lxxii Sukennik, "D2.5 Micro-Simulation Guide for Automated Vehicles."

lxxiii Dong et al., "VISSIM Calibration for Urban Freeways."

Mobile Phone Network." Caceres, Wideberg, and Benitez, "Deriving Origin–Destination Data from a

#### **BIBLIOGRAPHY**

- Balakrishna, Ramachandran, Constantinos Antoniou, Moshe Ben-Akiva, Haris N. Koutsopoulos, and Yang Wen. "Calibration of Microscopic Traffic Simulation Models: Methods and Application." *Transportation Research Record* 1999, no. 1 (2007): 198–207.
- Bartin, Bekir, Kaan Ozbay, Jingqin Gao, and Abdullah Kurkcu. "Calibration and Validation of Large-Scale Traffic Simulation Networks: A Case Study." *Procedia Computer Science* 130 (2018): 844–849.
- Bureau, US Census. *American Community Survey*. US Department of Commerce, Economics and Statistics Administration, US Census Bureau Washington, DC, 2010.
- Caceres, N., J.P. Wideberg, and F.G. Benitez. "Deriving Origin—Destination Data from a Mobile Phone Network." *IET Intelligent Transport Systems* 1, no. 1 (2007): 15. https://doi.org/10.1049/iet-its:20060020.Cheu, Ruey Long, Marilyn Valdez, Srivatsava Kamatham, and Raed Aldouri. "Public Preferences on the Use of Visualization in the Public Involvement Process in Transportation Planning." *Transportation Research Record* 2245, no. 1 (2011): 17–26.
- Childress, Brandi. "How Transit Agencies Can Improve the Public Involvement Process to Deliver Better Transportation Solutions." MS Thesis, Thesis. San Jose University, 2007. Transweb. sjsu. edu. Mineta ..., 2007.

- Chiu, Yi-Chang, Xuesong Zhou, and Jessica Hernandez. "Evaluating Urban Downtown One-Way to Two-Way Street Conversion Using Multiple Resolution Simulation and Assignment Approach." *Journal of Urban Planning and Development* 133, no. 4 (2007): 222–232.
- Choa, Fred, Ronald T. Milam, and David Stanek. "Corsim, Paramics, and Vissim:

  What the Manuals Never Told You." In Ninth TRB Conference on the

  Application of Transportation Planning MethodsTransportation Research

  BoardLouisiana Transportation Research CenterLouisiana Department of

  Transportation and DevelopmentLouisiana Planning Council, 2004.
- Dong, Jing, Andrew Jeremy Houchin, Navid Shafieirad, Chaoru Lu, and Neal R Hawkins. "VISSIM Calibration for Urban Freeways," n.d., 106.
- Dowling, Richard, Alexander Skabardonis, and Vassili Alexiadis. "Traffic Analysis

  Toolbox Volume III: Guidelines for Applying Traffic Microsimulation

  Modeling Software." Washington D.C.: Federal Highway Administration,

  2004. http://trid.trb.org/view.aspx?id=794930.
- Edara, Praveen, Siddharth Sharma, and Catherine McGhee. "Development of a Large-Scale Traffic Simulation Model for Hurricane Evacuation—Methodology and Lessons Learned." *Natural Hazards Review* 11, no. 4 (2010): 127–139.
- Ehrenfeucht, Renia, and Anastasia Loukaitou-Sideris. "Planning Urban Sidewalks: Infrastructure, Daily Life and Destinations." *Journal of Urban Design* 15, no. 4 (2010): 459–471.

- Geraghty, Anne B., Walt Seifert, Terry Preston, Christopher V. Holm, Teri H. Duarte, and Steve M. Farrar. "Partnership Moves Community toward Complete Streets." *American Journal of Preventive Medicine* 37, no. 6 (2009): S420–S427.
- HCM. *Highway Capacity Manual 2000*. Washington DC: Transportation Research Board, 2000.
- Howard, Toby LJ, and Nicolas Gaborit. "Using Virtual Environment Technology to Improve Public Participation in Urban Planning Process." *Journal of Urban Planning and Development* 133, no. 4 (2007): 233–241.
- Smart Growth America. "Introduction to Complete Streets." Accessed November

  1, 2019. https://smartgrowthamerica.org/resources/introduction-to-complete-streets/.
- "ITE Western District Annual Meeting 2019 | Fehr & Peers." Accessed November 2, 2019. https://www.fehrandpeers.com/ite-western-district-annual-meeting-2019/.
- Jha, Mithilesh, Ganesh Gopalan, Adam Garms, Bhanu P. Mahanti, Tomer Toledo, and Moshe E. Ben-Akiva. "Development and Calibration of a Large-Scale Microscopic Traffic Simulation Model." *Transportation Research Record* 1876, no. 1 (2004): 121–131.

- Kilbert, Steven Michael. "A Microsimulation of Traffic, Parking, and Emissions at California Polytechnic State University-San Luis Obispo." California Polytechnic State University, San Luis Obispo, 2011. http://digitalcommons.calpoly.edu/theses/452/.
- Knapp, Keith, Brian Chandler, Jennifer Atkinson, Thomas Welch, Heather Rigdon,Richard Retting, Stacey Meekins, Eric Widstrand, and Richard J. Porter."Road Diet Informational Guide." United States. Federal HighwayAdministration. Office of Safety, 2014.
- Le Vine, Scott. "How Overwhelming Is the Evidence in Favor of Road Diets? A Note on the Cost-Benefit Methodology Proposed by Noland et al.(2015)."

  Case Studies on Transport Policy 5, no. 1 (2017): 143–149.
- Lieberman, Edward, and Ajay K. Rathi. "Traffic Simulation." *Traffic Flow Theory*, 1997.
- Litman, Todd. *Toward More Comprehensive and Multi-Modal Transport Evaluation*. Victoria Transport Policy Institute, 2012. http://newmobilitywest.org/wp-content/uploads/2014/11/Expand-Definition-of-LOS.pdf.
- Luk, James, David Stewart, and Dennis Walsh. "Microsimulation Traffic Models-Usage, Limitations and Applications." In Research into Practice: 22nd ARRB ConferenceARRB Group Limited, 2006.
- Nixon, Hilary. "Evaluating San José's 4th Street Pop-up Bikeway: What Does the Public Think?," 2018.

- Nixon, Hilary, Asha Weinstein Agrawal, and Cameron Simons. "Designing Road Diet Evaluations: Lessons Learned from San Jose's Lincoln Avenue Road Diet," 2017.
- ——. "Slimming the Streets: Best Practices for Designing Road Diet Evaluations." *ITE Journal* 88, no. 3 (2018).
- Noland, Robert B., Dong Gao, Eric J. Gonzales, and Charles Brown. "Costs and Benefits of a Road Diet Conversion." *Case Studies on Transport Policy* 3, no. 4 (2015): 449–458.
- Officials, National Association of City Transportation. *Urban Street Design Guide*. Island Press, 2013.
- "One-Way/Two-Way Street Conversions." Accessed November 2, 2019. https://safety.fhwa.dot.gov/saferjourney1/library/countermeasures/13.htm.
- Pande, Anurag, and Brian Wolshon. *Traffic Engineering Handbook*. John Wiley & Sons, 2016.
  - https://books.google.com/books?hl=en&lr=&id=V1XKCQAAQBAJ&oi=fnd &pg=PR17&dq=Pande+and+wolshon&ots=TYiYZOzeMY&sig=T\_rf3SkAb wFDtb6FV\_J5Jli7Jj0.
- "Paramics Microsimulation." Accessed November 1, 2019. https://www.paramics.co.uk/en/.
- Park, Byungkyu, Ilsoo Yun, and Keechoo Choi. "Evaluation of Microscopic Simulation Tools for Coordinated Signal System Deployment." *KSCE Journal of Civil Engineering* 8, no. 2 (2004): 239–248.

- Pfeifer, Laura. "The Planner's Guide to Tactical Urbanism." *Montereal, Canada Page*, 2013.
- "Protocol for VISSIM Simulation." Washington State Department of Transportation, n.d.
- "PTV Vissim." Accessed November 1, 2019. http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/.
- Riggs, William, and John Gilderbloom. "Two-Way Street Conversion: Evidence of Increased Livability in Louisville." *Journal of Planning Education and Research* 36, no. 1 (2016): 105–118.
- "Road Diets (Roadway Reconfiguration) Safety | Federal Highway

  Administration." Accessed November 2, 2019.

  https://safety.fhwa.dot.gov/road\_diets/.
- Rousseau, Guy, Wolfgang Scherr, Fang Yuan, and Cherry Xiong. "An Implementation Framework for Integrating Regional Planning Model with Microscopic Traffic Simulation." In Logistics: The Emerging Frontiers of Transportation and Development in China, 3816–3825, 2009.
- Rrecaj, Arlinda Alimehaj, and Kristi MBombol. "Calibration and Validation of the VISSIM Parameters-State of the Art." *TEM Journal* 4, no. 3 (2015): 255.
- "Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU)." Accessed September 28, 2019. https://www.fhwa.dot.gov/safetealu/.

- "San Jose, CA Official Website Envision San José 2040 General Plan."

  Accessed November 2, 2019.

  https://www.sanjoseca.gov/index.aspx?nid=1737.
- Sisiopiku, Virginia P., and Jugnu Chemmannur. "Conversion of One-Way Street Pairs to Two-Way Operations in Downtown Birmingham." In *Metropolitan Conference on Public Transportation Research, Chicago, Illinois*, 2008.
- Sukennik, Peter. "D2.5 Micro-Simulation Guide for Automated Vehicles," October 31, 2018. https://www.h2020-coexist.eu/wp-content/uploads/2018/11/D2.5-Micro-simulation-guide-for-automated-vehicles.pdf.
- "Trafficware, a CUBIC Company A Tradition of Innovation." Accessed November 1, 2019. https://www.trafficware.com/.
- "VHelper." Accessed November 2, 2019.

  http://www.trananswers.com/vhelper/vhelper.html.
- Vision, P. T. V. "VISSIM 7, User Manual." PTV Vision. (2015). VISSIM 8 (2013).
- "VISSIM Modeling Guidance 9-12-2017.Pdf." Maryland Department of Transportation State Highway Administration, August 2017. https://www.roads.maryland.gov/OPPEN/VISSIM%20Modeling%20Guidance%209-12-2017.pdf.

- Yang, Qi, Haris N. Koutsopoulos, and Moshe E. Ben-Akiva. "Simulation Laboratory for Evaluating Dynamic Traffic Management Systems."

  \*\*Transportation Research Record 1710, no. 1 (2000): 122–130.
- Zeidler, Verena, H. Sebastian Buck, Lukas Kautzsch, Peter Vortisch, and Claude Marie Weyland. "Simulation of Autonomous Vehicles Based on Wiedemann's Car Following Model in PTV Vissim," 2019. https://trid.trb.org/view/1638609.
- Zhu, Yifang, and Rui Wang. "Effects of Complete Streets on Travel Behavior and Exposure to Vehicular Emissions," 2017, 111.

## **APPENDICES**

# **APPENDIX A. ORIGIN-DESTINATION MATRIX**

#### Origin-Destination Matrix from Off-Ramps to Parking Lots

|                                                    | F. Bird<br>Ave/<br>SB 280<br>Off | G. S<br>10th<br>St/ EB<br>280 Off | H.<br>Grant<br>St/ EB<br>280 Off | I. S 6th<br>St/ EB<br>280 Off | J. Bird<br>Ave/<br>WB<br>280 Off | K. S<br>11th<br>St/ WB<br>280 Off | L.<br>Margaret<br>St/ WB<br>280 Off | M. W<br>Santa<br>Clara<br>St/ NB<br>87 Off | N. Woz<br>Way/<br>NB 87<br>Off | O. W<br>Julian<br>St/ NB<br>87 Off | P. Park<br>Ave/<br>SB 87<br>Off | Q. W<br>Julian<br>St/ SB<br>87 Off |
|----------------------------------------------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------------|----------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------|------------------------------------|
| 1. San Jose Water Lot #2 (East)                    | 11.0                             | 7.6                               | 17.8                             | -                             | 17.2                             | -                                 | 6.7                                 | 17.9                                       | 16.6                           | 10.7                               | 17.4                            | 6.9                                |
| 2. SJ State University 7th Street                  | -                                | 28.3                              | 8.9                              | 16.0                          | 7.6                              | 57.0                              | 17.0                                | 38.7                                       | 42.0                           | 23.9                               | 28.0                            | 11.8                               |
| 3. SJ State University 10th Street Garage          | -                                | 135.0                             | 5.3                              | 94.4                          | -                                | 53.7                              | 41.3                                | 24.6                                       | 12.6                           | 17.7                               | 18.3                            | 11.4                               |
| 4. Caltrain Parking Lot #2                         | 7.9                              | -                                 | 7.1                              | -                             | 13.8                             | -                                 | -                                   | 29.9                                       | 13.1                           | 7.7                                | 14.1                            | 4.9                                |
| 5. Autumn St. Lot (Akatiff Lot)                    | 4.8                              | -                                 | -                                | -                             | 8.3                              | -                                 | -                                   | 10.9                                       | 7.2                            | 4.6                                | 8.6                             | 3.0                                |
| 6. City Hall Garage                                | 3.2                              | 17.9                              | 3.6                              | 26.6                          | 5.6                              | 13.8                              | 11.0                                | 7.3                                        | 4.8                            | 3.1                                | 5.7                             | 2.0                                |
| 7. (City View Plaza Garage) Park<br>Center Plaza I | -                                | 2.3                               | 10.7                             | 6.7                           | 12.9                             | 4.7                               | 17.0                                | 24.0                                       | 10.2                           | 10.2                               | 0.4                             | 6.6                                |
| 8. 10 Almaden                                      | -                                | 6.0                               | 8.9                              | 4.5                           | 6.2                              | -                                 | 7.5                                 | 16.2                                       | -                              | 3.4                                | 1.3                             | 4.4                                |
| 9. Comerica - 333 W. Santa Clara                   | 5.7                              | 1.5                               | 3.6                              | -                             | 9.4                              | 2.7                               | 6.7                                 | 1.1                                        | 5.5                            | 5.5                                | 7.0                             | 3.5                                |
| 10. Opus West - 225 W. Santa Clara                 | 7.7                              | -                                 | 5.3                              | -                             | 4.8                              | -                                 | 5.2                                 | 1.6                                        | 3.4                            | 7.5                                | 15.2                            | 4.8                                |
| 11. Victory Parking Lot                            | 4.2                              | 16.6                              | 8.9                              | 11.2                          | 7.4                              | -                                 | 6.7                                 | 8.1                                        | 6.4                            | 4.1                                | 7.5                             | 2.6                                |
| 12. 3rd Street Garage                              | -                                | 33.2                              | 6.2                              | 7.5                           | 14.0                             | 27.6                              | 9.4                                 | 18.4                                       | 10.3                           | 7.8                                | 13.0                            | 5.0                                |
| 13. Koll Building Garage                           | -                                | 6.0                               | 16.6                             | 20.2                          | 13.4                             | 63.7                              | 10.1                                | 17.6                                       | 9.1                            | 7.5                                | 10.3                            | 4.8                                |
| 14. 160 W. Santa Clara                             | 5.1                              | 1.5                               | 0.9                              | -                             | 8.9                              | -                                 | 5.0                                 | 11.6                                       | 5.2                            | 4.9                                | 9.1                             | 3.2                                |
| 15. Hyatt Place Hotel Garage                       | 2.1                              | 5.0                               | 5.2                              | 4.2                           | 22.0                             | 2.9                               | 2.3                                 | 6.1                                        | 1.0                            | 0.7                                | 15.3                            | 0.4                                |
| 16. Market & San Carlos (Block 8)                  | 1.2                              | 8.6                               | 11.5                             | 9.5                           | 2.0                              | 5.0                               | 4.0                                 | 2.6                                        | 1.7                            | 1.1                                | 44.1                            | 0.7                                |
| 17. Pavilion Parking Garage                        | 3.2                              | 8.3                               | 17.8                             | 8.3                           | 5.5                              | 13.7                              | 7.8                                 | 7.3                                        | 4.8                            | 9.2                                | 5.7                             | 2.0                                |
| 18. Riverpark                                      | 1.4                              | 3.0                               | 8.9                              | 12.4                          | 45.9                             | 3.4                               | 1.5                                 | 2.7                                        | 20.3                           | 6.5                                | 0.4                             | 4.5                                |

#### Origin-Destination Matrix from Off-Ramps to Parking Lots

|                                            | F. Bird<br>Ave/<br>SB 280<br>Off | G. S<br>10th<br>St/ EB<br>280 Off | H.<br>Grant<br>St/ EB<br>280 Off | I. S 6th<br>St/ EB<br>280 Off | J. Bird<br>Ave/<br>WB<br>280 Off | K. S<br>11th<br>St/ WB<br>280 Off | L.<br>Margaret<br>St/ WB<br>280 Off | M. W<br>Santa<br>Clara<br>St/ NB<br>87 Off | N. Woz<br>Way/<br>NB 87<br>Off | O. W<br>Julian<br>St/ NB<br>87 Off | P. Park<br>Ave/<br>SB 87<br>Off | Q. W<br>Julian<br>St/ SB<br>87 Off |
|--------------------------------------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------------|----------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------|------------------------------------|
| 19. San Fernando & South Second Street Lot | 1.5                              | 11.4                              | 11.8                             | 10.6                          | 2.7                              | 6.7                               | 5.3                                 | 3.5                                        | 2.3                            | 5.5                                | 6.4                             | 3.7                                |
| 20. 4th Street Garage                      | 7.2                              | 42.3                              | 19.6                             | 5.3                           | 12.6                             | 30.9                              | 10.4                                | 16.4                                       | 10.8                           | 6.9                                | 7.7                             | 4.5                                |
| 21. Ernst & Young Garage                   | 3.9                              | -                                 | 1.8                              | 2.2                           | 6.7                              | -                                 | 0.7                                 | 6.6                                        | 5.8                            | 3.7                                | 6.9                             | 2.4                                |
| 22. Almaden Bl & Woz Wy Lot                | -                                | 1.5                               | 3.6                              | 8.0                           | 6.5                              | 1.3                               | 10.0                                | 0.5                                        | 7.5                            | 3.6                                | 6.7                             | 0.7                                |
| 23. 2nd & San Carlos Garage                | -                                | 9.1                               | 19.6                             | 8.3                           | 8.5                              | 14.2                              | 11.0                                | 11.1                                       | 7.4                            | 4.7                                | 10.3                            | 116.2                              |
| 24.Colonnade (201 S. Fourth)               | 1.4                              | 10.1                              | 13.9                             | 6.4                           | 4.7                              | 10.7                              | 4.7                                 | 4.8                                        | 2.1                            | 1.3                                | 6.4                             | 0.9                                |
| 25. Sentry Lot (nw c/o Notre Dame/         | 0.5                              | -                                 | 3.7                              | -                             | 0.8                              | -                                 | 1.7                                 | 1.1                                        | 0.7                            | 0.5                                | 0.9                             | 0.3                                |
| 26. Community Towers                       | 0.7                              | 5.0                               | 5.2                              | -                             | 1.2                              | 2.9                               | 2.3                                 | 1.5                                        | 1.2                            | 0.7                                | 1.2                             | 0.4                                |
| 27. Valley Title                           | -                                | 17.5                              | 19.6                             | 18.0                          | 5.1                              | 12.4                              | 8.0                                 | 6.6                                        | 4.4                            | 5.2                                | 5.2                             | 9.8                                |
| 28. Fountain Alley                         | 1.8                              | 13.5                              | 22.2                             | 3.0                           | 9.6                              | 7.9                               | 6.3                                 | 4.2                                        | 2.8                            | 1.8                                | 23.6                            | 1.1                                |
| 29. 95 S. Market Street                    | 0.9                              | 4.9                               | 7.1                              | 5.7                           | 1.6                              | 4.0                               | 3.2                                 | 2.1                                        | 1.4                            | 0.9                                | 1.7                             | 0.6                                |
| 30. San Jose Hilton Towers and Garage      | 1.9                              | 8.7                               | 7.1                              | 11.9                          | 3.4                              | 1.3                               | 6.6                                 | 4.4                                        | 2.9                            | 1.9                                | 3.4                             | 1.2                                |
| 31. I-280/1st St                           | 1.1                              | 8.1                               | 8.3                              | 6.7                           | 1.9                              | 4.7                               | 3.8                                 | 6.1                                        | 1.6                            | 57.6                               | 1.9                             | -                                  |
| 32. Adobe Systems Inc Garage               | 2.4                              | 1.5                               | 1.8                              | 9.8                           | 4.1                              | 1.3                               | 5.5                                 | 0.5                                        | 3.6                            | 2.3                                | 4.2                             | 1.5                                |
| 33. 4th & St. John Garage                  | -                                | 48.2                              | 3.6                              | 3.0                           | 18.7                             | 35.1                              | 12.2                                | 24.5                                       | 11.5                           | 10.4                               | 12.5                            | 6.7                                |
| 34. Convention Center                      | -                                | 22.7                              | 8.9                              | 23.7                          | 11.3                             | 9.4                               | 17.9                                | 16.3                                       | 0.4                            | 35.6                               | 18.3                            | 24.2                               |
| 35. Woz/87 Surface Lot                     | -                                | 14.1                              | 1.8                              | 15.7                          | 4.5                              | -                                 | 1.0                                 | 5.9                                        | 3.9                            | 2.5                                | 4.6                             | 1.6                                |
| 36. Almaden/Balbach Lot                    | -                                | 3.2                               | 3.3                              | 2.7                           | 0.8                              | 1.9                               | 4.8                                 | 1.0                                        | 0.7                            | 1.8                                | 0.8                             | 0.3                                |
| 37. Fairmont Plaza Garage                  | 0.3                              | 3.0                               | 14.2                             | 5.6                           | 10.2                             | 7.4                               | 7.9                                 | -                                          | 9.5                            | 7.1                                | 9.5                             | 4.6                                |
| 38. 1st & San Salvador Lot                 | -                                | 5.0                               | 2.6                              | 2.1                           | 0.6                              | 12.7                              | 8.0                                 | 3.3                                        | 0.5                            | 1.8                                | 1.3                             | 22.2                               |

#### Origin-Destination Matrix from Off-Ramps to Parking Lots

|                                  | F. Bird<br>Ave/<br>SB 280<br>Off | G. S<br>10th<br>St/ EB<br>280 Off | H.<br>Grant<br>St/ EB<br>280 Off | I. S 6th<br>St/ EB<br>280 Off | J. Bird<br>Ave/<br>WB<br>280 Off | K. S<br>11th<br>St/ WB<br>280 Off | L.<br>Margaret<br>St/ WB<br>280 Off | M. W<br>Santa<br>Clara<br>St/ NB<br>87 Off | N. Woz<br>Way/<br>NB 87<br>Off | O. W<br>Julian<br>St/ NB<br>87 Off | P. Park<br>Ave/<br>SB 87<br>Off | Q. W<br>Julian<br>St/ SB<br>87 Off |
|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-------------------------------|----------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------|--------------------------------|------------------------------------|---------------------------------|------------------------------------|
| 39. Arena Lot D                  | 1.9                              | -                                 | 5.3                              | 11.9                          | 3.4                              | -                                 | -                                   | 4.4                                        | 2.9                            | 1.9                                | 3.4                             | 1.2                                |
| 40. Arena Lots A, B and C        | 6.0                              | -                                 | 3.6                              | -                             | 10.4                             | -                                 | -                                   | 81.5                                       | 9.1                            | 5.8                                | 10.7                            | 3.7                                |
| 41. South Hall Surface Lot       | -                                | 6.3                               | 11.4                             | 9.2                           | 2.6                              | 6.4                               | 9.5                                 | 3.4                                        | 2.3                            | 1.4                                | 2.7                             | 1.3                                |
| 42. Financial Plaza Garage       | 4.1                              | 10.6                              | 8.9                              | -                             | 7.1                              | -                                 | 2.2                                 | 9.4                                        | 5.9                            | 4.6                                | 7.3                             | 2.6                                |
| 43. Notre Dame/Carlyse Lot       | 2.1                              | 1.5                               | 1.8                              | -                             | 3.7                              | -                                 | 8.6                                 | 4.9                                        | 3.2                            | 2.1                                | 3.8                             | 1.3                                |
| 44. Park and Go                  | -                                | 4.6                               | 6.2                              | 3.8                           | 2.3                              | 7.8                               | 9.6                                 | 1.4                                        | 2.5                            | 2.7                                | 7.0                             | 0.4                                |
| 45. Market & San Pedro Garage    | -                                | 15.1                              | 11.0                             | 19.1                          | 23.4                             | -                                 | 1.0                                 | 27.2                                       | 20.3                           | 13.0                               | 12.4                            | 8.4                                |
| 46. Second and San Salvador Lot  | 0.6                              | 4.3                               | 4.4                              | 3.6                           | 6.6                              | 7.0                               | 2.5                                 | 1.3                                        | 0.9                            | 2.6                                | 1.3                             | 0.4                                |
| 47. Second and St. James Lot     | 1.3                              | -                                 | 15.9                             | 8.1                           | 4.0                              | 5.7                               | 4.5                                 | 3.0                                        | 2.0                            | 1.3                                | 2.3                             | 0.8                                |
| 48. Third and Santa Clara Garage | -                                | 10.9                              | 4.9                              | 4.0                           | 2.3                              | 8.0                               | 11.2                                | 1.5                                        | 2.5                            | 2.7                                | 7.1                             | 1.5                                |

|                                       | 1. San<br>Jose<br>Water<br>Lot #2<br>(East) | 2. SJ<br>State<br>Universi<br>ty 7th<br>Street | 3. SJ<br>State<br>Univers<br>ity 10th<br>Street<br>Garage | 4.<br>Caltrain<br>Parking<br>Lot #2 | 5.<br>Autumn<br>St. Lot<br>(Akatiff<br>Lot) | 6. City<br>Hall<br>Garage | 7. (City<br>View<br>Plaza<br>Garage<br>) Park<br>Center<br>Plaza I | 8. 10<br>Almade<br>n | 9.<br>Comerica<br>- 333 W.<br>Santa<br>Clara | 10.<br>Opus<br>West -<br>225 W.<br>Santa<br>Clara | 11.<br>Victory<br>Parkin<br>g Lot | 12. 3rd<br>Street<br>Garage |
|---------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------------------------------|-------------------------------------|---------------------------------------------|---------------------------|--------------------------------------------------------------------|----------------------|----------------------------------------------|---------------------------------------------------|-----------------------------------|-----------------------------|
| R: S 1st St/ EB 280 On                | 10.9                                        | 24.0                                           | 3.8                                                       | 25.5                                | -                                           | 11.9                      | 84.3                                                               | 38.5                 | 23.0                                         | 17.0                                              | 259.7                             | 12.5                        |
| S: S 7th St/ EB 280 On                | 21.1                                        | 105.6                                          | 57.9                                                      | 16.4                                | -                                           | 21.0                      | 3.8                                                                | 8.1                  | -                                            | -                                                 | 5.1                               | 22.5                        |
| T: S 11th St/ EB 280 On               | -                                           | 39.0                                           | 83.8                                                      | -                                   | -                                           | 26.5                      | -                                                                  | -                    | -                                            | -                                                 | 0.7                               | 63.6                        |
| U: Bird Ave/ EB 280 On                | 16.2                                        | -                                              | -                                                         | 24.7                                | 28.0                                        | -                         | 30.6                                                               | 32.4                 | 24.0                                         | 9.1                                               | -                                 | -                           |
| V: S 10th St/ WB 280 On               | 26.4                                        | 50.0                                           | 83.1                                                      | 40.4                                | 24.8                                        | 26.3                      | 3.8                                                                | 0.8                  | -                                            | -                                                 | 22.2                              | 48.9                        |
| W: E Reed St/ WB 280 On               | 22.5                                        | 207.1                                          | 46.3                                                      | 26.4                                | 26.3                                        | 22.4                      | 30.6                                                               | 2.4                  | 9.4                                          | 40.8                                              | 23.4                              | 20.5                        |
| X: Vine St/ WB 280 On                 | 16.6                                        | 23.7                                           | 3.8                                                       | 36.9                                | 23.1                                        | 11.7                      | 3.8                                                                | 13.0                 | 31.3                                         | 48.0                                              | 6.5                               | 15.7                        |
| Y: Bird Ave/ WB 280 On                | 28.0                                        | -                                              | -                                                         | 42.8                                | 48.4                                        | -                         | 26.8                                                               | 16.2                 | 10.4                                         | 0.9                                               | 2.9                               | 68.4                        |
| Z: Park Ave/ NB 87 On                 | 11.2                                        | 12.9                                           | 0.6                                                       | 17.2                                | 11.4                                        | 9.1                       | 19.2                                                               | 18.3                 | 7.3                                          | 12.7                                              | 14.4                              | 3.0                         |
| AA: W Julian St/ NB 87<br>On          | 13.6                                        | 16.7                                           | 43.0                                                      | 20.8                                | 23.5                                        | 9.1                       | 3.8                                                                | 5.7                  | 5.2                                          | 61.4                                              | 18.5                              | 44.1                        |
| AB: W Julian St/ SB 87<br>On 1 (Loop) | 15.0                                        | 21.5                                           | 46.9                                                      | 22.9                                | 25.9                                        | 10.5                      | 7.7                                                                | 22.2                 | 1.0                                          | 67.7                                              | 15.5                              | 48.5                        |
| AC: W Julian St/ SB 87<br>On 2        | 8.4                                         | 18.0                                           | 28.2                                                      | 13.2                                | 14.5                                        | 8.3                       | 7.7                                                                | 3.2                  | 14.9                                         | 37.8                                              | 13.4                              | 27.1                        |
| AD: Delmas Ave/ SB 87<br>On           | 10.1                                        | 13.5                                           | 2.5                                                       | 16.9                                | 19.1                                        | 9.1                       | 49.8                                                               | 23.1                 | 23.4                                         | 4.5                                               | 17.7                              | -                           |

|                                       | 13. Koll<br>Building<br>Garage | 14. 160<br>W.<br>Santa<br>Clara | 15.<br>Hyatt<br>Place<br>Hotel<br>Garage | 16.<br>Market<br>& San<br>Carlos<br>(Block<br>8) | 17.<br>Pavilion<br>Parking<br>Garage | 18.<br>Riverpark | 19. San<br>Fernan<br>do &<br>South<br>Second<br>Street<br>Lot | 20. 4th<br>Street<br>Garage | 21. Ernst<br>& Young<br>Garage | 22.<br>Almade<br>n Bl &<br>Woz Wy<br>Lot | 23. 2nd<br>& San<br>Carlos<br>Garage | 24.Colo<br>nnade<br>(201 S.<br>Fourth) |
|---------------------------------------|--------------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------------|------------------|---------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------|--------------------------------------|----------------------------------------|
| R: S 1st St/ EB 280 On                | 28.1                           | 16.7                            | 2.2                                      | 4.1                                              | 38.1                                 | 4.4              | 3.3                                                           | 16.5                        | 22.4                           | 12.7                                     | 16.6                                 | 4.4                                    |
| S: S 7th St/ EB 280 On                | 28.5                           | 32.5                            | 4.2                                      | 3.8                                              | 61.0                                 | 10.1             | 6.5                                                           | 47.1                        | 31.8                           | 45.2                                     | 32.3                                 | -                                      |
| T: S 11th St/ EB 280 On               | 35.4                           | 24.5                            | -                                        | 4.8                                              | 46.0                                 | -                | 8.2                                                           | 41.2                        | -                              | -                                        | 30.2                                 | 1.0                                    |
| U: Bird Ave/ EB 280 On                | -                              | 24.9                            | 3.2                                      | 3.1                                              | -                                    | 13.5             | 5.0                                                           | -                           | 33.4                           | 34.6                                     | -                                    | -                                      |
| V: S 10th St/ WB 280 On               | 17.7                           | 17.5                            | -                                        | 4.8                                              | 40.7                                 | 3.8              | 10.4                                                          | 93.1                        | 11.3                           | 0.7                                      | 30.1                                 | 12.7                                   |
| W: E Reed St/ WB 280 On               | 14.1                           | 25.8                            | 4.9                                      | 8.4                                              | 40.3                                 | 10.5             | 7.6                                                           | 53.0                        | 9.1                            | 13.3                                     | 58.2                                 | 9.1                                    |
| X: Vine St/ WB 280 On                 | 21.0                           | 40.6                            | 3.3                                      | 8.4                                              | 27.1                                 | 7.3              | 10.3                                                          | 10.0                        | 34.2                           | 35.5                                     | 33.9                                 | 6.7                                    |
| Y: Bird Ave/ WB 280 On                | -                              | 27.6                            | 5.6                                      | 5.4                                              | -                                    | 19.2             | 8.6                                                           | 1.8                         | 0.4                            | -                                        | -                                    | -                                      |
| Z: Park Ave/ NB 87 On                 | 7.7                            | 9.0                             | 2.2                                      | 2.2                                              | 16.9                                 | 37.2             | 5.4                                                           | 14.2                        | 27.0                           | 24.1                                     | 18.0                                 | 9.8                                    |
| AA: W Julian St/ NB 87<br>On          | 8.3                            | 15.7                            | 2.7                                      | 5.4                                              | 28.5                                 | 0.4              | 4.2                                                           | 57.3                        | 1.2                            | 1.1                                      | 30.6                                 | 8.5                                    |
| AB: W Julian St/ SB 87<br>On 1 (Loop) | 5.9                            | 12.6                            | 3.0                                      | 5.6                                              | 8.7                                  | 0.5              | 4.6                                                           | 11.8                        | 4.6                            | 0.7                                      | 26.8                                 | 9.8                                    |
| AC: W Julian St/ SB 87<br>On 2        | 10.1                           | 7.8                             | 1.7                                      | 2.0                                              | 23.6                                 | 2.8              | 2.6                                                           | -                           | 1.7                            | 3.3                                      | 58.6                                 | 4.6                                    |
| AD: Delmas Ave/ SB 87<br>On           | 23.3                           | 8.8                             | 2.2                                      | 2.1                                              | 26.1                                 | 15.4             | 3.4                                                           | 14.1                        | 22.8                           | 23.7                                     | 18.6                                 | 120.5                                  |

|                                       | 25.<br>Sentry<br>Lot (nw<br>c/o<br>Notre<br>Dame/ | 26.<br>Commu<br>nity<br>Towers | 27.<br>Valley<br>Title | 28.<br>Fountai<br>n Alley | 29. 95 S.<br>Market<br>Street | 30. San<br>Jose<br>Hilton<br>Towers<br>and<br>Garage | 31. I-<br>280/1st<br>St | 32.<br>Adobe<br>System<br>s Inc<br>Garage | 33. 4th &<br>St. John<br>Garage | 34.<br>Convent<br>ion<br>Center | 35.<br>Woz/87<br>Surfac<br>e Lot | 36.<br>Almade<br>n/Balba<br>ch Lot |
|---------------------------------------|---------------------------------------------------|--------------------------------|------------------------|---------------------------|-------------------------------|------------------------------------------------------|-------------------------|-------------------------------------------|---------------------------------|---------------------------------|----------------------------------|------------------------------------|
| R: S 1st St/ EB 280 On                | 3.0                                               | 2.1                            | 15.6                   | 5.4                       | 2.4                           | 9.5                                                  | 2.9                     | 7.5                                       | 33.4                            | 57.1                            | 6.6                              | 5.3                                |
| S: S 7th St/ EB 280 On                | 2.4                                               | 4.0                            | 30.4                   | 10.4                      | 4.6                           | 6.3                                                  | 5.6                     | 14.6                                      | 112.8                           | 78.1                            | 30.8                             | 3.4                                |
| T: S 11th St/ EB 280 On               | -                                                 | 5.1                            | 18.5                   | 13.2                      | 0.2                           | 14.0                                                 | 7.0                     | -                                         | 120.4                           | 13.4                            | -                                | 2.4                                |
| U: Bird Ave/ EB 280 On                | 1.9                                               | -                              | -                      | 3.9                       | 3.5                           | -                                                    | 4.3                     | 11.2                                      | -                               | -                               | 11.0                             | -                                  |
| V: S 10th St/ WB 280 On               | 3.1                                               | 5.0                            | 6.9                    | 13.1                      | 5.7                           | 10.5                                                 | 8.1                     | 5.0                                       | 123.1                           | 9.3                             | 13.1                             | 2.4                                |
| W: E Reed St/ WB 280 On               | 2.6                                               | 4.5                            | 25.0                   | 11.1                      | 4.9                           | 10.5                                                 | 14.1                    | 9.4                                       | 288.6                           | 17.8                            | 0.6                              | 2.0                                |
| X: Vine St/ WB 280 On                 | 1.9                                               | 3.0                            | 9.9                    | 8.2                       | 5.2                           | 6.0                                                  | 4.4                     | 20.7                                      | 39.0                            | 11.8                            | 61.6                             | 1.5                                |
| Y: Bird Ave/ WB 280 On                | 3.2                                               | -                              | -                      | -                         | 6.1                           | -                                                    | -                       | 19.3                                      | -                               | -                               | 17.2                             | -                                  |
| Z: Park Ave/ NB 87 On                 | 1.3                                               | 2.1                            | 9.2                    | 5.6                       | 4.9                           | 8.2                                                  | 1.6                     | 7.8                                       | 16.9                            | 24.5                            | 0.6                              | 1.0                                |
| AA: W Julian St/ NB 87<br>On          | 1.6                                               | 2.6                            | 12.6                   | 6.7                       | 3.0                           | 9.9                                                  | 3.6                     | 3.4                                       | 78.1                            | 38.2                            | 0.7                              | 1.2                                |
| AB: W Julian St/ SB 87<br>On 1 (Loop) | 1.7                                               | 2.9                            | 0.8                    | 7.4                       | 3.3                           | 10.9                                                 | 4.0                     | 6.6                                       | 95.3                            | 18.5                            | 0.9                              | 1.4                                |
| AC: W Julian St/ SB 87<br>On 2        | 1.0                                               | 1.6                            | 12.1                   | 4.1                       | 1.8                           | 6.1                                                  | -                       | 5.8                                       | 37.4                            | 3.8                             | 0.5                              | 0.8                                |
| AD: Delmas Ave/ SB 87<br>On           | 1.3                                               | 2.1                            | 10.1                   | 5.5                       | 2.4                           | 8.0                                                  | 1.1                     | 10.9                                      | 20.0                            | 37.3                            | 5.4                              | 1.0                                |

|                                       | 37.<br>Fairmon<br>t Plaza<br>Garage | 38. 1st &<br>San<br>Salvado<br>r Lot | 39.<br>Arena<br>Lot D | 40.<br>Arena<br>Lots A,<br>B and C | 41.<br>South<br>Hall<br>Surface<br>Lot | 42.<br>Financial<br>Plaza<br>Garage | 43.<br>Notre<br>Dame/<br>Carlyse<br>Lot | 44.<br>Park<br>and Go | 45.<br>Market &<br>San<br>Pedro<br>Garage | 46.<br>Second<br>and San<br>Salvado<br>r Lot | 47.<br>Second<br>and St.<br>James<br>Lot | 48.<br>Third<br>and<br>Santa<br>Clara<br>Garage |
|---------------------------------------|-------------------------------------|--------------------------------------|-----------------------|------------------------------------|----------------------------------------|-------------------------------------|-----------------------------------------|-----------------------|-------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------------|
| R: S 1st St/ EB 280 On                | 24.3                                | 1.2                                  | 5.6                   | 23.6                               | 12.9                                   | 13.2                                | 7.6                                     | 3.8                   | 63.8                                      | 6.6                                          | 8.1                                      | 4.0                                             |
| S: S 7th St/ EB 280 On                | 15.4                                | 1.0                                  | 5.2                   | -                                  | 13.9                                   | 6.7                                 | 0.7                                     | 2.8                   | 34.2                                      | 9.4                                          | 7.3                                      | 4.5                                             |
| T: S 11th St/ EB 280 On               | 18.8                                | 1.7                                  | -                     | -                                  | -                                      | -                                   | 7.4                                     | 3.5                   | 99.3                                      | 13.1                                         | 9.2                                      | 3.6                                             |
| U: Bird Ave/ EB 280 On                | -                                   | -                                    | 8.4                   | 35.1                               | -                                      | 19.7                                | -                                       | -                     | 51.5                                      | -                                            | -                                        | -                                               |
| V: S 10th St/ WB 280 On               | 15.0                                | 1.7                                  | 13.8                  | -                                  | 0.2                                    | 17.5                                | 18.5                                    | 3.5                   | 55.0                                      | 12.5                                         | 9.2                                      | 3.5                                             |
| W: E Reed St/ WB 280 On               | 14.3                                | 2.0                                  | 11.7                  | 48.8                               | 6.8                                    | 17.6                                | 10.2                                    | 3.0                   | 71.8                                      | 12.0                                         | 7.8                                      | 3.0                                             |
| X: Vine St/ WB 280 On                 | 51.2                                | 3.4                                  | 11.4                  | 20.5                               | 19.7                                   | 51.3                                | 22.9                                    | 2.2                   | 51.6                                      | 6.7                                          | 5.8                                      | 2.2                                             |
| Y: Bird Ave/ WB 280 On                | -                                   | -                                    | 14.6                  | 60.8                               | 1.1                                    | 34.1                                | 1.8                                     | 3.7                   | 42.2                                      | -                                            | -                                        | 3.8                                             |
| Z: Park Ave/ NB 87 On                 | 11.0                                | 2.4                                  | 4.2                   | 15.7                               | 13.4                                   | 13.7                                | 7.9                                     | 1.5                   | 39.4                                      | 5.4                                          | 3.9                                      | 1.9                                             |
| AA: W Julian St/ NB 87<br>On          | 24.3                                | 0.9                                  | 7.1                   | 29.6                               | 6.0                                    | 5.4                                 | 9.5                                     | 1.8                   | 34.1                                      | 5.5                                          | 4.7                                      | 1.8                                             |
| AB: W Julian St/ SB 87<br>On 1 (Loop) | 39.3                                | 1.0                                  | 7.8                   | 32.6                               | 1.3                                    | 13.3                                | 10.5                                    | 2.0                   | 57.5                                      | 6.0                                          | 5.2                                      | 2.0                                             |
| AC: W Julian St/ SB 87<br>On 2        | 16.2                                | 1.5                                  | 4.4                   | 18.2                               | 0.9                                    | 10.2                                | 5.9                                     | 1.9                   | 49.3                                      | 3.4                                          | 2.9                                      | 1.1                                             |
| AD: Delmas Ave/ SB 87<br>On           | 32.1                                | 0.7                                  | 5.8                   | 25.6                               | 1.3                                    | 11.5                                | 7.7                                     | 2.2                   | 46.4                                      | 4.4                                          | 3.8                                      | 2.0                                             |

### **APPENDIX B. GEH STATISTICS**

### **GEH Statistic Existing Baseline Summary**

|                  |                               | `              |            |                      | usung      | Dusc       |            | aiiiiia        | ı y            |                |                |                |                |                |
|------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                  | NBL                           | 44             | 69         | 3.33                 | 50         | 42         | 44         | 39             | 47             | 41             | 39             | 52             | 46             | 39             |
|                  | NBT                           | 228            | 225        | 0.20                 | 224        | 231        | 221        | 230            | 213            | 229            | 245            | 204            | 256            | 232            |
|                  | NBR                           | 24             | 80         | 7.77                 | 14         | 24         | 29         | 31             | 31             | 20             | 30             | 16             | 21             | 22             |
|                  | EBL                           | 61             | 65         | 0.50                 | 56         | 70         | 62         | 64             | 64             | 56             | 57             | 58             | 64             | 58             |
|                  | EBT                           | 524            | 591        | 2.84                 | 526        | 512        | 512        | 520            | 531            | 550            | 536            | 498            | 534            | 530            |
| Market/San       | EBR                           | 82             | 93         | 1.18                 | 77         | 110        | 77         | 65             | 78             | 88             | 75             | 84             | 82             | 73             |
| ta Clara         | SBL                           | 169            | 161        | 0.62                 | 191        | 174        | 163        | 161            | 161            | 158            | 170            | 183            | 163            | 167            |
|                  | SBT                           | 711            | 820        | 3.94                 | 709        | 757        | 764        | 716            | 706            | 723            | 714            | 651            | 661            | 705            |
|                  | SBR                           | 100            | 109        | 0.88                 | 101        | 92         | 109        | 83             | 84             | 105            | 97             | 105            | 121            | 104            |
|                  | WBL                           | 26             | 78         | 7.21                 | 23         | 24         | 30         | 24             | 22             | 26             | 31             | 30             | 26             | 23             |
|                  | WBT                           | 421            | 400        | 1.04                 | 418        | 394        | 414        | 420            | 439            | 429            | 405            | 425            | 441            | 431            |
|                  | WBR                           | 55             | 81         | 3.15                 | 51         | 63         | 57         | 61             | 51             | 68             | 54             | 47             | 45             | 62             |
|                  | NBL                           | 39             | 32         | 1.17                 | 42         | 34         | 38         | 37             | 41             | 34             | 51             | 32             | 41             | 31             |
|                  | NBT                           | 208            | 226        | 1.22                 | 219        | 217        | 179        | 202            | 202            | 212            | 210            | 216            | 213            | 186            |
| Market/San       | NBR                           | 47             | 34         | 2.04                 | 57         | 48         | 48         | 50             | 40             | 28             | 52             | 45             | 52             | 36             |
| Fernando         | EBL                           | 52             | 37         | 2.25                 | 41         | 52         | 47         | 64             | 59             | 51             | 69             | 31             | 55             | 49             |
|                  | EBT                           | 205            | 234        | 1.96                 | 220        | 206        | 186        | 245            | 230            | 163            | 226            | 138            | 234            | 209            |
|                  | EBR                           | 56             | 129        | 7.59                 | 62         | 54         | 52         | 56             | 69             | 40             | 69             | 39             | 64             | 60             |
|                  | =                             |                |            |                      |            |            |            |                |                |                |                |                |                |                |

|                      |                               |                | GEH St     | atistic Ex           | isting     | Base       | line S     | umma           | ıry            |                |                |                |                |                |
|----------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n     | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                      | SBL                           | 57             | 98         | 4.66                 | 46         | 60         | 74         | 57             | 55             | 50             | 54             | 48             | 68             | 51             |
|                      | SBT                           | 854            | 918        | 2.15                 | 873        | 922        | 890        | 863            | 856            | 886            | 831            | 783            | 778            | 826            |
|                      | SBR                           | 43             | 49         | 0.88                 | 41         | 41         | 42         | 39             | 42             | 54             | 38             | 37             | 50             | 43             |
|                      | WBL                           | 46             | 54         | 1.13                 | 51         | 53         | 41         | 48             | 33             | 54             | 50             | 31             | 57             | 45             |
|                      | WBT                           | 131            | 177        | 3.71                 | 130        | 116        | 145        | 125            | 122            | 139            | 138            | 109            | 153            | 136            |
|                      | WBR                           | 19             | 54         | 5.79                 | 15         | 11         | 42         | 19             | 6              | 26             | 16             | 11             | 22             | 33             |
|                      | NBL                           | 95             | 112        | 1.67                 | 84         | 85         | 96         | 109            | 93             | 89             | 96             | 101            | 98             | 111            |
|                      | NBT                           | 255            | 246        | 0.57                 | 273        | 266        | 238        | 242            | 244            | 259            | 251            | 256            | 264            | 259            |
|                      | NBR                           | 10             | 15         | 1.41                 | 11         | 10         | 12         | 13             | 8              | 10             | 14             | 9              | 7              | 11             |
|                      | EBL                           | 78             | 67         | 1.29                 | 99         | 68         | 67         | 73             | 88             | 65             | 82             | 70             | 86             | 35             |
|                      | EBT                           | 329            | 270        | 3.41                 | 329        | 332        | 332        | 326            | 309            | 315            | 354            | 332            | 330            | 109            |
| Market/San<br>Carlos | EBR                           | 153            | 188        | 2.68                 | 152        | 152        | 162        | 161            | 149            | 154            | 158            | 135            | 151            | 55             |
| <b>C</b> a <b>c</b>  | SBL                           | 72             | 62         | 1.22                 | 76         | 59         | 72         | 72             | 98             | 67             | 70             | 55             | 81             | 63             |
|                      | SBT                           | 729            | 938        | 7.24                 | 772        | 794        | 740        | 737            | 721            | 734            | 690            | 707            | 666            | 705            |
|                      | SBR                           | 62             | 108        | 4.99                 | 67         | 59         | 63         | 59             | 65             | 68             | 70             | 44             | 62             | 84             |
|                      | WBT                           | 165            | 169        | 0.31                 | 136        | 167        | 159        | 181            | 162            | 181            | 179            | 142            | 175            | 156            |
|                      | WBR                           | 53             | 31         | 3.39                 | 59         | 40         | 57         | 52             | 68             | 54             | 46             | 43             | 54             | 44             |
| 3rd/Santa            | NBL                           | 99             | 86         | 1.35                 | 98         | 86         | 107        | 86             | 114            | 104            | 99             | 98             | 95             | 89             |
| Clara                | NBT                           | 230            | 289        | 3.66                 | 213        | 243        | 208        | 231            | 238            | 225            | 252            | 211            | 248            | 228            |

|                     |                               |                | GEH St     | atistic Ex           | isting     | Base       | line S     | umma           | ry             |                |                |                |                |                |
|---------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n    | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                     | NBR                           | 45             | 174        | 12.33                | 44         | 41         | 51         | 37             | 46             | 54             | 35             | 49             | 47             | 57             |
|                     | EBL                           | 82             | 74         | 0.91                 | 90         | 72         | 72         | 91             | 81             | 86             | 95             | 73             | 75             | 71             |
|                     | EBT                           | 611            | 749        | 5.29                 | 603        | 589        | 596        | 574            | 636            | 609            | 668            | 585            | 643            | 603            |
|                     | WBT                           | 431            | 483        | 2.43                 | 436        | 438        | 408        | 437            | 437            | 448            | 417            | 438            | 424            | 480            |
|                     | WBR                           | 72             | 67         | 0.60                 | 77         | 69         | 73         | 72             | 83             | 55             | 80             | 67             | 71             | 82             |
|                     | NBL                           | 88             | 80         | 0.87                 | 89         | 63         | 85         | 88             | 100            | 93             | 82             | 105            | 86             | 88             |
|                     | NBT                           | 388            | 489        | 4.82                 | 380        | 383        | 372        | 350            | 396            | 422            | 392            | 393            | 403            | 386            |
| 2.1/2               | NBR                           | 201            | 255        | 3.58                 | 212        | 193        | 188        | 187            | 220            | 202            | 208            | 195            | 202            | 155            |
| 3rd/San<br>Fernando | EBL                           | 25             | 67         | 6.19                 | 22         | 22         | 24         | 30             | 30             | 20             | 28             | 19             | 31             | 28             |
|                     | EBT                           | 201            | 223        | 1.51                 | 191        | 179        | 176        | 231            | 226            | 162            | 245            | 181            | 222            | 195            |
|                     | WBT                           | 140            | 226        | 6.36                 | 147        | 130        | 132        | 121            | 137            | 139            | 177            | 129            | 144            | 136            |
|                     | WBR                           | 14             | 85         | 10.09                | 12         | 16         | 17         | 17             | 19             | 7              | 17             | 10             | 13             | 20             |
|                     | NBL                           | 67             | 65         | 0.25                 | 60         | 84         | 64         | 54             | 69             | 75             | 62             | 75             | 64             | 79             |
|                     | NBT                           | 505            | 501        | 0.18                 | 488        | 492        | 513        | 462            | 528            | 547            | 488            | 503            | 521            | 483            |
|                     | NBR                           | 48             | 89         | 4.95                 | 51         | 35         | 49         | 57             | 41             | 44             | 48             | 50             | 53             | 55             |
| 3rd/San<br>Carlos   | EBL                           | 175            | 176        | 0.08                 | 191        | 178        | 178        | 164            | 153            | 165            | 192            | 184            | 171            | 83             |
| <b>C</b> 4.100      | EBT                           | 95             | 76         | 2.05                 | 98         | 88         | 89         | 100            | 104            | 100            | 98             | 82             | 98             | 65             |
|                     | WBT                           | 23             | 72         | 7.11                 | 27         | 17         | 29         | 23             | 31             | 22             | 27             | 11             | 16             | 22             |
|                     | WBR                           | 16             | 71         | 8.34                 | 17         | 5          | 14         | 16             | 24             | 18             | 30             | 8              | 14             | 6              |

|                     |                               |                | GEH St     | atistic Ex           | cisting    | Base       | line S     | umma           | ıry            |                |                |                |                |                |
|---------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n    | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                     | NBL                           | 11             | 36         | 5.16                 | 10         | 11         | 10         | 5              | 16             | 10             | 11             | 8              | 14             | 13             |
|                     | NBT                           | 468            | 412        | 2.67                 | 445        | 469        | 459        | 425            | 497            | 503            | 442            | 489            | 487            | 471            |
|                     | NBR                           | 22             | 31         | 1.75                 | 28         | 25         | 23         | 26             | 17             | 21             | 21             | 16             | 24             | 25             |
| 3rd/San<br>Salvador | EBL                           | 56             | 55         | 0.13                 | 73         | 56         | 66         | 49             | 59             | 64             | 46             | 44             | 51             | 40             |
| Caivagoi            | EBT                           | 99             | 107        | 0.79                 | 106        | 101        | 97         | 88             | 93             | 100            | 110            | 95             | 98             | 74             |
|                     | WBT                           | 152            | 172        | 1.57                 | 145        | 164        | 164        | 156            | 156            | 121            | 163            | 157            | 143            | 139            |
|                     | WBR                           | 95             | 136        | 3.81                 | 79         | 83         | 92         | 106            | 91             | 101            | 100            | 102            | 97             | 103            |
|                     | NBL                           | 44             | 22         | 3.83                 | 38         | 48         | 42         | 42             | 42             | 54             | 52             | 43             | 31             | 48             |
|                     | NBT                           | 238            | 278        | 2.49                 | 218        | 238        | 247        | 224            | 278            | 256            | 227            | 239            | 212            | 239            |
|                     | NBR                           | 189            | 201        | 0.86                 | 191        | 183        | 223        | 207            | 190            | 191            | 163            | 180            | 169            | 191            |
| 3rd/Reed            | EBL                           | 27             | 28         | 0.19                 | 25         | 33         | 30         | 26             | 21             | 26             | 24             | 31             | 31             | 24             |
|                     | EBT                           | 264            | 219        | 2.90                 | 283        | 255        | 257        | 276            | 270            | 254            | 264            | 243            | 278            | 250            |
|                     | WBT                           | 510            | 554        | 1.91                 | 494        | 526        | 552        | 511            | 496            | 527            | 508            | 466            | 511            | 466            |
|                     | WBR                           | 169            | 148        | 1.67                 | 157        | 160        | 150        | 156            | 182            | 184            | 162            | 175            | 191            | 172            |
|                     | EBT                           | 465            | 705        | 9.92                 | 475        | 453        | 460        | 421            | 455            | 461            | 505            | 461            | 491            | 475            |
|                     | EBR                           | 192            | 192        | 0.00                 | 177        | 183        | 202        | 186            | 215            | 210            | 178            | 185            | 191            | 187            |
| 4th/Santa<br>Clara  | SBL                           | 91             | 151        | 5.45                 | 112        | 87         | 110        | 98             | 80             | 68             | 89             | 71             | 102            | 87             |
| Olara               | SBT                           | 731            | 805        | 2.67                 | 731        | 779        | 727        | 726            | 760            | 712            | 704            | 719            | 723            | 720            |
|                     | SBR                           | 26             | 114        | 10.52                | 26         | 30         | 32         | 22             | 28             | 24             | 27             | 19             | 24             | 29             |

|                     |                               | •              | GEH St     | atistic Ex           | cisting    | Base       | line S     | umma           | ry             |                |                |                |                |                |
|---------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n    | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                     | WBL                           | 89             | 114        | 2.48                 | 77         | 83         | 88         | 98             | 99             | 91             | 94             | 93             | 78             | 95             |
|                     | WBT                           | 476            | 430        | 2.16                 | 487        | 473        | 464        | 485            | 485            | 489            | 454            | 487            | 457            | 532            |
|                     | EBT                           | 201            | 286        | 5.45                 | 190        | 185        | 191        | 227            | 214            | 161            | 236            | 197            | 206            | 172            |
|                     | EBR                           | 179            | 194        | 1.10                 | 180        | 166        | 156        | 178            | 209            | 172            | 193            | 157            | 202            | 159            |
|                     | SBL                           | 26             | 109        | 10.10                | 22         | 17         | 25         | 30             | 32             | 26             | 33             | 18             | 28             | 27             |
| 4th/San<br>Fernando | SBT                           | 810            | 990        | 6.00                 | 822        | 825        | 815        | 836            | 872            | 801            | 781            | 787            | 755            | 830            |
| remando             | SBR                           | 88             | 112        | 2.40                 | 79         | 85         | 65         | 127            | 131            | 74             | 102            | 53             | 77             | 105            |
|                     | WBL                           | 129            | 193        | 5.04                 | 135        | 126        | 119        | 117            | 132            | 125            | 170            | 115            | 125            | 124            |
|                     | WBT                           | 89             | 212        | 10.03                | 84         | 84         | 81         | 99             | 77             | 79             | 102            | 86             | 105            | 75             |
|                     | EBR                           | 90             | 159        | 6.18                 | 91         | 93         | 88         | 90             | 97             | 89             | 91             | 78             | 93             | 67             |
| 4th/San<br>Carlos   | SBT                           | 979            | 1252       | 8.17                 | 994        | 962        | 967        | 102<br>4       | 103<br>8       | 971            | 963            | 940            | 954            | 954            |
|                     | SBR                           | 38             | 149        | 11.48                | 40         | 23         | 42         | 38             | 55             | 40             | 55             | 19             | 27             | 28             |
|                     | EBT                           | 146            | 115        | 2.71                 | 153        | 140        | 129        | 155            | 131            | 157            | 151            | 165            | 132            | 142            |
|                     | EBR                           | 29             | 54         | 3.88                 | 27         | 21         | 25         | 24             | 35             | 36             | 31             | 31             | 32             | 27             |
| 4th/William         | SBL                           | 68             | 84         | 1.84                 | 67         | 62         | 61         | 78             | 66             | 70             | 61             | 79             | 70             | 65             |
| S                   | SBT                           | 1011           | 1273       | 7.75                 | 100<br>3   | 101<br>0   | 103<br>2   | 103<br>8       | 103<br>2       | 100<br>9       | 101<br>3       | 977            | 986            | 100<br>6       |
|                     | SBR                           | 17             | 55         | 6.33                 | 17         | 17         | 22         | 16             | 20             | 7              | 21             | 17             | 19             | 10             |

|                     |                               |                | GEH St     | atistic Ex           | cisting    | Base       | line S     | umma           | ry             |                |                |                |                |                |
|---------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n    | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                     | WBL                           | 13             | 66         | 8.43                 | 23         | 15         | 10         | 8              | 7              | 11             | 16             | 10             | 15             | 10             |
|                     | WBT                           | 104            | 123        | 1.78                 | 99         | 111        | 92         | 106            | 123            | 108            | 88             | 101            | 110            | 123            |
|                     | EBT                           | 70             | 101        | 3.35                 | 77         | 75         | 59         | 73             | 67             | 67             | 80             | 62             | 69             | 55             |
|                     | EBR                           | 51             | 38         | 1.95                 | 58         | 51         | 58         | 41             | 42             | 54             | 50             | 50             | 57             | 43             |
|                     | SBL                           | 182            | 229        | 3.28                 | 170        | 198        | 200        | 176            | 189            | 186            | 169            | 169            | 181            | 181            |
| 4th/San<br>Salvador | SBT                           | 879            | 1254       | 11.48                | 888        | 875        | 850        | 911            | 926            | 868            | 880            | 850            | 860            | 842            |
|                     | SBR                           | 61             | 125        | 6.64                 | 65         | 46         | 70         | 74             | 64             | 49             | 64             | 59             | 62             | 65             |
|                     | WBL                           | 185            | 196        | 0.80                 | 158        | 199        | 186        | 188            | 184            | 170            | 202            | 200            | 177            | 177            |
|                     | WBT                           | 165            | 208        | 3.15                 | 151        | 167        | 194        | 169            | 150            | 182            | 151            | 164            | 154            | 189            |
|                     | EBT                           | 115            | 151        | 3.12                 | 111        | 105        | 109        | 110            | 132            | 125            | 118            | 117            | 109            | 110            |
|                     | EBR                           | 342            | 276        | 3.75                 | 369        | 329        | 373        | 364            | 336            | 329            | 321            | 317            | 340            | 332            |
|                     | SBL                           | 168            | 242        | 5.17                 | 168        | 166        | 151        | 190            | 184            | 140            | 177            | 151            | 181            | 147            |
| 4th/Reed            | SBT                           | 786            | 989        | 6.81                 | 773        | 802        | 801        | 759            | 792            | 802            | 785            | 776            | 786            | 786            |
|                     | SBR                           | 192            | 263        | 4.71                 | 164        | 167        | 218        | 198            | 183            | 198            | 214            | 182            | 201            | 143            |
|                     | WBL                           | 171            | 207        | 2.62                 | 187        | 159        | 179        | 161            | 155            | 181            | 173            | 201            | 146            | 212            |
|                     | WBT                           | 495            | 399        | 4.54                 | 492        | 519        | 503        | 475            | 496            | 512            | 469            | 474            | 513            | 491            |
|                     | EBT                           | 663            | 884        | 7.95                 | 669        | 638        | 621        | 669            | 693            | 696            | 677            | 630            | 672            | 610            |
|                     | EBR                           | 223            | 268        | 2.87                 | 231        | 250        | 220        | 196            | 234            | 202            | 215            | 236            | 225            | 195            |

|                   |                               | (              | GEH St     | atistic Ex           | cisting    | Base       | line S     | umma           | ry             |                |                |                |                |                |
|-------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n  | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                   | SBL                           | 29             | 30         | 0.18                 | 28         | 33         | 28         | 34             | 31             | 26             | 35             | 22             | 20             | 20             |
| Almaden/S         | SBT                           | 249            | 191        | 3.91                 | 229        | 261        | 270        | 247            | 245            | 246            | 255            | 249            | 236            | 216            |
| anta Clara<br>(W) | SBR                           | 59             | 76         | 2.07                 | 61         | 67         | 56         | 54             | 49             | 67             | 54             | 72             | 54             | 43             |
| ,                 | WBT                           | 416            | 472        | 2.66                 | 428        | 381        | 387        | 401            | 393            | 416            | 436            | 424            | 481            | 410            |
|                   | NBL                           | 90             | 92         | 0.21                 | 101        | 102        | 86         | 87             | 75             | 89             | 86             | 77             | 104            | 89             |
|                   | NBT                           | 201            | 194        | 0.50                 | 184        | 234        | 171        | 223            | 225            | 192            | 248            | 104            | 229            | 171            |
|                   | NBR                           | 40             | 95         | 6.69                 | 41         | 51         | 37         | 41             | 49             | 31             | 44             | 22             | 48             | 42             |
| Almaden/S         | EBL                           | 143            | 101        | 3.80                 | 135        | 142        | 148        | 142            | 141            | 155            | 149            | 144            | 134            | 117            |
| anta Clara<br>(E) | EBT                           | 548            | 806        | 9.92                 | 560        | 532        | 501        | 564            | 581            | 564            | 568            | 509            | 554            | 518            |
| (-/               | WBL                           | 120            | 118        | 0.18                 | 122        | 127        | 135        | 106            | 119            | 120            | 106            | 108            | 138            | 125            |
|                   | WBT                           | 324            | 385        | 3.24                 | 323        | 277        | 302        | 311            | 313            | 324            | 349            | 344            | 370            | 322            |
|                   | WBR                           | 138            | 111        | 2.42                 | 140        | 136        | 140        | 119            | 172            | 125            | 130            | 140            | 140            | 136            |
|                   | NBL                           | 5              | 21         | 4.44                 | 5          | 5          | 5          | 7              | 5              | 4              | 10             | 1              | 5              | 5              |
|                   | NBT                           | 210            | 275        | 4.17                 | 196        | 244        | 172        | 268            | 260            | 164            | 240            | 85             | 257            | 155            |
| Almaden/S         | NBR                           | 103            | 123        | 1.88                 | 95         | 92         | 102        | 128            | 120            | 95             | 129            | 47             | 121            | 102            |
| an                | EBL                           | 27             | 27         | 0.00                 | 33         | 28         | 29         | 24             | 20             | 26             | 36             | 17             | 28             | 23             |
| Fernando          | EBT                           | 163            | 107        | 4.82                 | 159        | 174        | 152        | 187            | 179            | 138            | 181            | 108            | 185            | 158            |
|                   | EBR                           | 93             | 162        | 6.11                 | 95         | 87         | 77         | 114            | 106            | 72             | 113            | 74             | 97             | 83             |
|                   | SBL                           | 64             | 101        | 4.07                 | 72         | 57         | 54         | 69             | 78             | 49             | 64             | 66             | 69             | 48             |

|                  |                               | (              | GEH St     | atistic Ex           | cisting    | Base       | line S     | umma           | ry             |                |                |                |                |                |
|------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                  | SBT                           | 512            | 499        | 0.58                 | 498        | 557        | 551        | 482            | 513            | 498            | 494            | 502            | 510            | 414            |
|                  | SBR                           | 24             | 10         | 3.40                 | 21         | 21         | 32         | 19             | 23             | 23             | 23             | 28             | 25             | 16             |
|                  | WBL                           | 109            | 256        | 10.88                | 93         | 103        | 124        | 119            | 115            | 107            | 114            | 88             | 119            | 110            |
|                  | WBT                           | 125            | 148        | 1.97                 | 132        | 103        | 115        | 128            | 128            | 120            | 145            | 99             | 157            | 127            |
|                  | WBR                           | 35             | 46         | 1.73                 | 35         | 32         | 33         | 28             | 38             | 34             | 51             | 27             | 38             | 33             |
|                  | NBL                           | 56             | 58         | 0.26                 | 54         | 70         | 56         | 56             | 65             | 51             | 64             | 26             | 59             | 59             |
|                  | NBT                           | 187            | 183        | 0.29                 | 191        | 227        | 155        | 217            | 200            | 174            | 208            | 93             | 221            | 122            |
|                  | NBR                           | 15             | 17         | 0.50                 | 22         | 18         | 17         | 16             | 14             | 13             | 13             | 5              | 16             | 6              |
|                  | EBL                           | 124            | 95         | 2.77                 | 124        | 124        | 136        | 137            | 140            | 107            | 137            | 78             | 135            | 108            |
|                  | EBT                           | 94             | 75         | 2.07                 | 91         | 84         | 110        | 101            | 108            | 88             | 71             | 82             | 110            | 69             |
| Almaden/P        | EBR                           | 93             | 148        | 5.01                 | 104        | 80         | 99         | 94             | 87             | 95             | 104            | 79             | 96             | 58             |
| ark              | SBL                           | 30             | 39         | 1.53                 | 30         | 32         | 24         | 28             | 39             | 30             | 35             | 21             | 30             | 24             |
|                  | SBT                           | 655            | 887        | 8.36                 | 683        | 655        | 626        | 641            | 671            | 658            | 657            | 704            | 600            | 475            |
|                  | SBR                           | 120            | 106        | 1.32                 | 115        | 120        | 132        | 115            | 125            | 113            | 123            | 119            | 117            | 109            |
|                  | WBL                           | 147            | 195        | 3.67                 | 157        | 140        | 151        | 150            | 140            | 159            | 169            | 102            | 155            | 115            |
|                  | WBT                           | 190            | 154        | 2.74                 | 188        | 196        | 193        | 183            | 214            | 191            | 216            | 152            | 178            | 167            |
|                  | WBR                           | 33             | 55         | 3.32                 | 29         | 29         | 32         | 41             | 47             | 30             | 34             | 18             | 37             | 23             |
| Almaden/S        | NBL                           | 41             | 61         | 2.80                 | 38         | 43         | 38         | 49             | 46             | 49             | 35             | 29             | 39             | 22             |
| an Carlos        | NBT                           | 190            | 196        | 0.43                 | 208        | 204        | 188        | 190            | 192            | 206            | 182            | 126            | 211            | 92             |

|                     |                               | (              | GEH St     | atistic Ex           | cisting    | Base       | line S     | umma           | ry             |                |                |                |                |                |
|---------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n    | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                     | NBR                           | 106            | 61         | 4.92                 | 119        | 113        | 97         | 104            | 106            | 107            | 115            | 73             | 123            | 53             |
|                     | EBL                           | 91             | 116        | 2.46                 | 94         | 89         | 98         | 95             | 92             | 84             | 103            | 65             | 93             | 53             |
|                     | EBT                           | 440            | 458        | 0.85                 | 455        | 437        | 427        | 445            | 432            | 415            | 452            | 431            | 463            | 229            |
|                     | EBR                           | 126            | 142        | 1.38                 | 103        | 119        | 150        | 119            | 149            | 115            | 135            | 107            | 134            | 54             |
|                     | SBL                           | 104            | 137        | 3.01                 | 116        | 98         | 116        | 104            | 93             | 102            | 115            | 85             | 106            | 48             |
|                     | SBT                           | 696            | 1102       | 13.54                | 720        | 681        | 678        | 689            | 724            | 693            | 704            | 727            | 651            | 511            |
|                     | SBR                           | 68             | 63         | 0.62                 | 71         | 66         | 66         | 67             | 61             | 83             | 65             | 60             | 72             | 62             |
|                     | WBL                           | 80             | 98         | 1.91                 | 76         | 85         | 77         | 83             | 85             | 97             | 81             | 64             | 73             | 80             |
|                     | WBT                           | 186            | 232        | 3.18                 | 172        | 167        | 189        | 206            | 187            | 178            | 197            | 170            | 204            | 208            |
|                     | WBR                           | 86             | 68         | 2.05                 | 88         | 103        | 73         | 94             | 86             | 82             | 100            | 53             | 91             | 98             |
|                     | NBL                           | 60             | 36         | 3.46                 | 54         | 54         | 68         | 59             | 65             | 68             | 54             | 52             | 66             | 57             |
|                     | NBT                           | 276            | 175        | 6.73                 | 315        | 288        | 258        | 263            | 278            | 274            | 267            | 265            | 279            | 211            |
|                     | NBR                           | 76             | 63         | 1.56                 | 76         | 84         | 62         | 75             | 66             | 86             | 83             | 83             | 66             | 55             |
| Almaden/W<br>oz Way | EBL                           | 46             | 25         | 3.52                 | 52         | 37         | 45         | 54             | 41             | 51             | 45             | 42             | 45             | 38             |
| UZ VVay             | EBT                           | 140            | 184        | 3.46                 | 137        | 136        | 138        | 148            | 134            | 125            | 138            | 151            | 151            | 112            |
|                     | EBR                           | 234            | 224        | 0.66                 | 244        | 214        | 239        | 237            | 215            | 268            | 213            | 236            | 242            | 244            |
|                     | SBL                           | 73             | 110        | 3.87                 | 71         | 80         | 80         | 84             | 76             | 54             | 78             | 65             | 72             | 63             |

|                  |                               |                | GEH St     | atistic Ex           | cisting    | Base       | line S     | umma           | ry             |                |                |                |                |                |
|------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                  | SBT                           | 822            | 1179       | 11.29                | 835        | 822        | 806        | 799            | 868            | 850            | 850            | 828            | 737            | 583            |
|                  | SBR                           | 11             | 14         | 0.85                 | 8          | 18         | 12         | 10             | 10             | 10             | 14             | 7              | 10             | 9              |
|                  | WBL                           | 78             | 168        | 8.12                 | 82         | 73         | 72         | 65             | 106            | 77             | 77             | 81             | 72             | 59             |
|                  | WBT                           | 71             | 45         | 3.41                 | 70         | 62         | 72         | 64             | 82             | 71             | 70             | 69             | 78             | 47             |
|                  | WBR                           | 33             | 47         | 2.21                 | 28         | 37         | 21         | 32             | 33             | 35             | 32             | 31             | 45             | 27             |

|                        |                               | GE             | EH Stat    | istic Alm            | aden (     | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|------------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n       | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                        | NBL                           | 45             | 69         | 3.18                 | 50         | 51         | 41         | 45             | 36             | 47             | 41             | 40             | 53             | 43             |
|                        | NBT                           | 220            | 225        | 0.34                 | 216        | 236        | 236        | 217            | 229            | 214            | 217            | 231            | 193            | 237            |
|                        | NBR                           | 24             | 80         | 7.77                 | 14         | 14         | 24         | 29             | 31             | 31             | 18             | 28             | 24             | 28             |
|                        | EBL                           | 59             | 65         | 0.76                 | 52         | 57         | 68         | 63             | 65             | 69             | 60             | 56             | 49             | 62             |
|                        | EBT                           | 504            | 591        | 3.72                 | 497        | 508        | 499        | 518            | 523            | 530            | 547            | 544            | 422            | 529            |
| Market/San             | EBR                           | 75             | 93         | 1.96                 | 65         | 75         | 112        | 78             | 67             | 76             | 88             | 77             | 59             | 72             |
| ta Clara               | SBL                           | 160            | 161        | 0.08                 | 159        | 186        | 169        | 162            | 164            | 151            | 153            | 178            | 141            | 158            |
|                        | SBT                           | 712            | 820        | 3.90                 | 593        | 692        | 756        | 769            | 736            | 698            | 718            | 724            | 731            | 687            |
|                        | SBR                           | 98             | 109        | 1.08                 | 74         | 102        | 96         | 110            | 86             | 81             | 106            | 97             | 110            | 108            |
|                        | WBL                           | 25             | 78         | 7.39                 | 21         | 23         | 24         | 30             | 24             | 22             | 27             | 32             | 22             | 31             |
|                        | WBT                           | 414            | 400        | 0.69                 | 410        | 409        | 393        | 419            | 428            | 445            | 426            | 399            | 398            | 431            |
|                        | WBR                           | 57             | 81         | 2.89                 | 51         | 51         | 64         | 57             | 63             | 49             | 68             | 53             | 55             | 62             |
|                        | NBL                           | 41             | 32         | 1.49                 | 39         | 43         | 35         | 40             | 36             | 42             | 33             | 50             | 43             | 43             |
|                        | NBT                           | 203            | 226        | 1.57                 | 205        | 217        | 218        | 181            | 202            | 206            | 213            | 208            | 193            | 198            |
|                        | NBR                           | 48             | 34         | 2.19                 | 51         | 53         | 45         | 56             | 51             | 47             | 35             | 52             | 45             | 46             |
| Market/San<br>Fernando | EBL                           | 50             | 37         | 1.97                 | 39         | 39         | 56         | 49             | 64             | 57             | 44             | 64             | 37             | 63             |
| i Gilialiuu            | EBT                           | 206            | 234        | 1.89                 | 213        | 204        | 213        | 197            | 254            | 219            | 159            | 198            | 200            | 204            |
|                        | EBR                           | 55             | 129        | 7.72                 | 56         | 59         | 54         | 54             | 59             | 64             | 37             | 58             | 58             | 49             |
|                        | SBL                           | 52             | 98         | 5.31                 | 38         | 46         | 58         | 75             | 57             | 54             | 51             | 53             | 46             | 47             |

|                      |                               | GE             | EH Stat    | istic Alm            | aden (     | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|----------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n     | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                      | SBT                           | 852            | 918        | 2.22                 | 676        | 859        | 905        | 912            | 883            | 840            | 872            | 848            | 870            | 835            |
|                      | SBR                           | 40             | 49         | 1.35                 | 30         | 39         | 41         | 43             | 40             | 37             | 54             | 36             | 41             | 43             |
|                      | WBL                           | 46             | 54         | 1.13                 | 48         | 61         | 61         | 42             | 47             | 32             | 56             | 50             | 35             | 42             |
|                      | WBT                           | 129            | 177        | 3.88                 | 138        | 153        | 117        | 141            | 122            | 117            | 117            | 129            | 113            | 157            |
|                      | WBR                           | 17             | 54         | 6.21                 | 18         | 24         | 9          | 38             | 17             | 6              | 17             | 13             | 9              | 22             |
|                      | NBL                           | 90             | 112        | 2.19                 | 85         | 87         | 84         | 95             | 107            | 91             | 90             | 97             | 80             | 92             |
|                      | NBT                           | 251            | 246        | 0.32                 | 268        | 268        | 267        | 234            | 247            | 247            | 261            | 250            | 243            | 236            |
|                      | NBR                           | 10             | 15         | 1.41                 | 11         | 10         | 10         | 13             | 13             | 8              | 9              | 14             | 7              | 10             |
|                      | EBL                           | 81             | 67         | 1.63                 | 92         | 101        | 69         | 64             | 75             | 88             | 63             | 84             | 85             | 82             |
|                      | EBT                           | 336            | 270        | 3.79                 | 329        | 340        | 330        | 333            | 324            | 310            | 330            | 355            | 362            | 317            |
| Market/San<br>Carlos | EBR                           | 151            | 188        | 2.84                 | 146        | 149        | 154        | 154            | 154            | 152            | 155            | 150            | 149            | 145            |
| Carlos               | SBL                           | 73             | 62         | 1.34                 | 70         | 81         | 61         | 76             | 71             | 92             | 66             | 71             | 64             | 84             |
|                      | SBT                           | 722            | 938        | 7.50                 | 590        | 747        | 777        | 758            | 762            | 713            | 732            | 691            | 723            | 726            |
|                      | SBR                           | 64             | 108        | 4.74                 | 56         | 75         | 57         | 64             | 59             | 64             | 68             | 69             | 65             | 66             |
|                      | WBT                           | 164            | 169        | 0.39                 | 144        | 145        | 172        | 163            | 181            | 154            | 177            | 171            | 170            | 158            |
|                      | WBR                           | 52             | 31         | 3.26                 | 55         | 60         | 38         | 59             | 51             | 65             | 55             | 46             | 40             | 61             |
| - 1/6                | NBL                           | 98             | 86         | 1.25                 | 101        | 101        | 84         | 108            | 85             | 112            | 101            | 99             | 91             | 103            |
| 3rd/Santa<br>Clara   | NBT                           | 219            | 289        | 4.39                 | 216        | 217        | 248        | 228            | 234            | 239            | 215            | 255            | 174            | 214            |
| Olara                | NBR                           | 46             | 174        | 12.20                | 43         | 43         | 40         | 52             | 39             | 48             | 53             | 35             | 54             | 43             |

|                     |                               | GE             | EH Stat    | istic Alm            | aden       | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|---------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n    | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                     | EBL                           | 80             | 74         | 0.68                 | 88         | 94         | 79         | 64             | 90             | 82             | 82             | 91             | 65             | 83             |
|                     | EBT                           | 590            | 749        | 6.14                 | 595        | 635        | 593        | 577            | 588            | 621            | 640            | 670            | 495            | 585            |
|                     | WBT                           | 433            | 483        | 2.34                 | 432        | 425        | 428        | 415            | 433            | 435            | 449            | 409            | 433            | 470            |
|                     | WBR                           | 71             | 67         | 0.48                 | 77         | 76         | 69         | 74             | 72             | 82             | 56             | 78             | 68             | 65             |
|                     | NBL                           | 85             | 80         | 0.55                 | 89         | 87         | 64         | 91             | 87             | 101            | 83             | 81             | 80             | 93             |
|                     | NBT                           | 370            | 489        | 5.74                 | 383        | 384        | 380        | 397            | 348            | 390            | 373            | 399            | 313            | 387            |
|                     | NBR                           | 197            | 255        | 3.86                 | 199        | 200        | 192        | 200            | 189            | 211            | 191            | 221            | 185            | 194            |
| 3rd/San<br>Fernando | EBL                           | 24             | 67         | 6.37                 | 19         | 22         | 26         | 25             | 31             | 29             | 22             | 21             | 22             | 24             |
| Terriariae          | EBT                           | 193            | 223        | 2.08                 | 175        | 184        | 195        | 179            | 235            | 216            | 149            | 224            | 194            | 183            |
|                     | WBT                           | 142            | 226        | 6.19                 | 149        | 149        | 133        | 127            | 122            | 131            | 142            | 173            | 142            | 148            |
|                     | WBR                           | 16             | 85         | 9.71                 | 12         | 13         | 21         | 17             | 17             | 17             | 7              | 16             | 20             | 11             |
|                     | NBL                           | 68             | 65         | 0.37                 | 63         | 64         | 83         | 63             | 53             | 72             | 74             | 62             | 65             | 79             |
|                     | NBT                           | 503            | 501        | 0.09                 | 504        | 507        | 484        | 512            | 465            | 529            | 545            | 484            | 505            | 491            |
|                     | NBR                           | 45             | 89         | 5.38                 | 48         | 53         | 35         | 45             | 51             | 37             | 41             | 43             | 46             | 50             |
| 3rd/San<br>Carlos   | EBL                           | 173            | 176        | 0.23                 | 179        | 192        | 177        | 176            | 163            | 153            | 167            | 190            | 160            | 184            |
| Janos               | EBT                           | 101            | 76         | 2.66                 | 98         | 100        | 95         | 92             | 104            | 103            | 97             | 100            | 108            | 110            |
|                     | WBT                           | 25             | 72         | 6.75                 | 35         | 35         | 24         | 28             | 22             | 27             | 20             | 25             | 19             | 26             |
|                     | WBR                           | 14             | 71         | 8.74                 | 23         | 23         | 9          | 15             | 14             | 19             | 12             | 20             | 5              | 13             |
|                     | NBL                           | 10             | 36         | 5.42                 | 11         | 11         | 11         | 10             | 5              | 16             | 10             | 11             | 9              | 12             |

|                    |                               | GE             | EH Stat    | istic Alm            | aden (     | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|--------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n   | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                    | NBT                           | 466            | 412        | 2.58                 | 463        | 468        | 466        | 457            | 424            | 499            | 505            | 444            | 469            | 463            |
|                    | NBR                           | 23             | 31         | 1.54                 | 25         | 29         | 25         | 24             | 24             | 16             | 22             | 21             | 26             | 18             |
| 3rd/San            | EBL                           | 61             | 55         | 0.79                 | 73         | 73         | 55         | 66             | 49             | 58             | 64             | 46             | 65             | 54             |
| Salvador           | EBT                           | 99             | 107        | 0.79                 | 103        | 109        | 100        | 103            | 84             | 91             | 100            | 106            | 103            | 84             |
|                    | WBT                           | 154            | 172        | 1.41                 | 147        | 145        | 168        | 163            | 156            | 158            | 121            | 164            | 150            | 174            |
|                    | WBR                           | 91             | 136        | 4.22                 | 79         | 77         | 84         | 89             | 102            | 87             | 100            | 95             | 88             | 109            |
|                    | NBL                           | 44             | 22         | 3.83                 | 45         | 45         | 48         | 42             | 42             | 42             | 55             | 52             | 41             | 32             |
|                    | NBT                           | 249            | 278        | 1.79                 | 249        | 249        | 237        | 246            | 223            | 278            | 255            | 227            | 260            | 260            |
|                    | NBR                           | 195            | 201        | 0.43                 | 204        | 205        | 176        | 220            | 210            | 196            | 193            | 159            | 201            | 176            |
| 3rd/Reed           | EBL                           | 26             | 28         | 0.38                 | 27         | 24         | 33         | 26             | 26             | 21             | 27             | 24             | 31             | 19             |
|                    | EBT                           | 261            | 219        | 2.71                 | 269        | 255        | 261        | 253            | 272            | 271            | 258            | 260            | 248            | 274            |
|                    | WBT                           | 524            | 554        | 1.29                 | 499        | 510        | 566        | 534            | 510            | 504            | 507            | 524            | 534            | 537            |
|                    | WBR                           | 163            | 148        | 1.20                 | 155        | 157        | 164        | 149            | 155            | 184            | 184            | 162            | 165            | 155            |
|                    | EBT                           | 447            | 705        | 10.75                | 466        | 496        | 449        | 443            | 445            | 431            | 472            | 505            | 378            | 452            |
|                    | EBR                           | 186            | 192        | 0.00                 | 180        | 175        | 182        | 192            | 190            | 215            | 215            | 186            | 172            | 172            |
| 4th/Santa          | SBL                           | 93             | 151        | 5.25                 | 108        | 109        | 92         | 106            | 98             | 80             | 71             | 89             | 87             | 101            |
| 4th/Santa<br>Clara | SBT                           | 732            | 805        | 2.63                 | 712        | 723        | 789        | 713            | 715            | 734            | 728            | 702            | 731            | 774            |
|                    | SBR                           | 27             | 114        | 10.36                | 26         | 26         | 30         | 31             | 22             | 27             | 25             | 27             | 25             | 30             |
|                    | WBL                           | 86             | 114        | 2.80                 | 75         | 75         | 76         | 88             | 101            | 104            | 89             | 96             | 84             | 72             |

|                     |                               | GI             | EH Stat    | istic Alm            | aden (     | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|---------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n    | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                     | WBT                           | 477            | 430        | 2.21                 | 486        | 483        | 471        | 466            | 482            | 487            | 477            | 450            | 472            | 503            |
|                     | EBT                           | 194            | 286        | 5.94                 | 178        | 186        | 187        | 193            | 229            | 207            | 146            | 233            | 192            | 192            |
|                     | EBR                           | 177            | 194        | 1.25                 | 175        | 178        | 181        | 163            | 179            | 201            | 170            | 190            | 168            | 173            |
|                     | SBL                           | 26             | 109        | 10.10                | 23         | 23         | 24         | 27             | 30             | 27             | 25             | 30             | 29             | 22             |
| 4th/San<br>Fernando | SBT                           | 823            | 990        | 5.55                 | 849        | 833        | 878        | 803            | 819            | 856            | 798            | 770            | 807            | 838            |
| Terriando           | SBR                           | 98             | 112        | 1.37                 | 128        | 100        | 115        | 70             | 125            | 117            | 67             | 96             | 87             | 84             |
|                     | WBL                           | 133            | 193        | 4.70                 | 137        | 136        | 127        | 119            | 116            | 132            | 125            | 168            | 133            | 141            |
|                     | WBT                           | 85             | 212        | 10.42                | 84         | 84         | 82         | 82             | 100            | 76             | 79             | 100            | 85             | 78             |
|                     | EBR                           | 95             | 159        | 5.68                 | 95         | 95         | 93         | 89             | 92             | 95             | 89             | 95             | 93             | 111            |
| 4th/San<br>Carlos   | SBT                           | 989            | 1252       | 7.86                 | 100<br>9   | 100<br>0   | 102<br>3   | 950            | 100<br>8       | 102<br>8       | 969            | 953            | 966            | 100<br>3       |
|                     | SBR                           | 39             | 149        | 11.35                | 55         | 57         | 32         | 43             | 36             | 45             | 30             | 45             | 24             | 38             |
|                     | EBT                           | 144            | 115        | 2.55                 | 146        | 151        | 141        | 128            | 154            | 131            | 157            | 154            | 140            | 140            |
|                     | EBR                           | 29             | 54         | 3.88                 | 27         | 25         | 22         | 25             | 24             | 36             | 35             | 31             | 36             | 23             |
| 44la AA/:II: a raa  | SBL                           | 64             | 84         | 2.32                 | 63         | 66         | 61         | 60             | 73             | 72             | 70             | 62             | 51             | 73             |
| 4th/William<br>s    | SBT                           | 1023           | 1273       | 7.38                 | 103<br>1   | 101<br>4   | 105<br>9   | 101<br>0       | 102<br>6       | 101<br>6       | 102<br>7       | 101<br>4       | 101<br>5       | 102<br>8       |
|                     | SBR                           | 17             | 55         | 6.33                 | 20         | 18         | 17         | 22             | 15             | 20             | 7              | 22             | 18             | 12             |
|                     | WBL                           | 14             | 66         | 8.22                 | 23         | 23         | 15         | 12             | 8              | 7              | 11             | 16             | 16             | 12             |

|                     |                               | GI             | EH Stat    | istic Alm            | aden (     | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|---------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n    | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                     | WBT                           | 102            | 123        | 1.98                 | 97         | 97         | 108        | 92             | 107            | 123            | 107            | 87             | 104            | 94             |
|                     | EBT                           | 72             | 101        | 3.12                 | 72         | 82         | 77         | 65             | 67             | 66             | 67             | 77             | 79             | 58             |
|                     | EBR                           | 50             | 38         | 1.81                 | 57         | 58         | 49         | 57             | 41             | 42             | 54             | 50             | 51             | 44             |
|                     | SBL                           | 188            | 229        | 2.84                 | 182        | 179        | 208        | 195            | 178            | 186            | 182            | 167            | 204            | 188            |
| 4th/San<br>Salvador | SBT                           | 888            | 1254       | 11.18                | 915        | 902        | 917        | 841            | 900            | 902            | 888            | 875            | 863            | 898            |
|                     | SBR                           | 60             | 125        | 6.76                 | 66         | 64         | 48         | 67             | 69             | 56             | 45             | 59             | 62             | 64             |
|                     | WBL                           | 184            | 196        | 0.87                 | 161        | 157        | 203        | 185            | 189            | 188            | 170            | 200            | 178            | 219            |
|                     | WBT                           | 165            | 208        | 3.15                 | 154        | 150        | 169        | 189            | 169            | 153            | 182            | 152            | 165            | 162            |
|                     | EBT                           | 108            | 151        | 3.78                 | 103        | 100        | 108        | 106            | 113            | 131            | 126            | 121            | 86             | 110            |
|                     | EBR                           | 349            | 276        | 4.13                 | 377        | 364        | 331        | 361            | 366            | 342            | 332            | 304            | 363            | 336            |
|                     | SBL                           | 171            | 242        | 4.94                 | 179        | 177        | 176        | 148            | 187            | 179            | 149            | 175            | 178            | 159            |
| 4th/Reed            | SBT                           | 798            | 989        | 6.39                 | 797        | 787        | 832        | 806            | 760            | 794            | 817            | 779            | 801            | 799            |
|                     | SBR                           | 196            | 263        | 4.42                 | 171        | 180        | 202        | 200            | 206            | 193            | 182            | 220            | 197            | 206            |
|                     | WBL                           | 175            | 207        | 2.32                 | 186        | 186        | 163        | 178            | 160            | 161            | 182            | 174            | 174            | 183            |
|                     | WBT                           | 494            | 399        | 4.50                 | 492        | 488        | 522        | 496            | 476            | 513            | 499            | 472            | 497            | 484            |
|                     | _                             | 57             | -          |                      | 55         | 55         | 56         | 51             | 56             | 50             | 64             | 58             | 56             | 72             |
|                     | EBT                           | 597            | 884        | 10.55                | 598        | 600        | 569        | 571            | 606            | 635            | 632            | 610            | 574            | 599            |
|                     | EBR                           | 222            | 268        | 2.94                 | 225        | 227        | 247        | 219            | 196            | 236            | 202            | 218            | 221            | 228            |

|                         |                               | GI             | EH Stat    | istic Alm            | aden (     | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|-------------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n        | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                         | SBL                           | 12             | 30         | 3.93                 | 10         | 10         | 12         | 4              | 18             | 15             | 8              | 14             | 13             | 10             |
| Almaden/S<br>anta Clara | SBT                           | 247            | 191        | 3.78                 | 240        | 240        | 247        | 276            | 252            | 248            | 245            | 249            | 242            | 231            |
| ania Ciara<br>(W)       | SBR                           | 58             | 76         | 2.20                 | 64         | 63         | 64         | 56             | 55             | 48             | 67             | 53             | 53             | 67             |
| ,                       | WBT                           | 401            | 472        | 3.40                 | 407        | 421        | 387        | 379            | 388            | 387            | 411            | 426            | 384            | 439            |
|                         |                               | 57             |            |                      | 57         | 55         | 62         | 49             | 54             | 56             | 48             | 65             | 60             | 64             |
|                         | NBL                           | 121            | 92         | 2.81                 | 126        | 128        | 139        | 103            | 119            | 97             | 115            | 112            | 123            | 149            |
|                         | NBT                           | 178            | 194        | 1.17                 | 154        | 162        | 207        | 142            | 189            | 193            | 150            | 178            | 195            | 188            |
|                         | NBR                           | 45             | 95         | 5.98                 | 41         | 42         | 54         | 44             | 41             | 48             | 31             | 40             | 51             | 49             |
| Almaden/S               | EBL                           | 70             | 101        | 3.35                 | 62         | 63         | 59         | 72             | 70             | 73             | 77             | 73             | 77             | 65             |
| anta Clara<br>(E)       | EBT                           | 539            | 806        | 10.30                | 548        | 551        | 528        | 502            | 554            | 576            | 569            | 560            | 496            | 546            |
| (-/                     | WBL                           | 117            | 118        | 0.09                 | 113        | 115        | 125        | 135            | 101            | 117            | 117            | 104            | 118            | 119            |
|                         | WBT                           | 336            | 385        | 2.58                 | 337        | 348        | 309        | 325            | 321            | 349            | 337            | 374            | 322            | 356            |
|                         | WBR                           | 117            | 111        | 0.56                 | 116        | 118        | 112        | 120            | 103            | 138            | 113            | 107            | 121            | 121            |
|                         | NBL                           | 5              | 21         | 4.44                 | 6          | 7          | 3          | 5              | 7              | 4              | 3              | 8              | 6              | 4              |
|                         | NBT                           | 214            | 275        | 3.90                 | 192        | 221        | 263        | 167            | 259            | 246            | 152            | 193            | 216            | 228            |
| Almaden/S               | NBR                           | 104            | 123        | 1.78                 | 91         | 96         | 108        | 109            | 129            | 117            | 83             | 97             | 99             | 111            |
| an<br>Fernando          | EBL                           | 29             | 27         | 0.38                 | 33         | 33         | 28         | 30             | 25             | 18             | 26             | 34             | 27             | 35             |
| rernando                | EBT                           | 164            | 107        | 4.90                 | 164        | 162        | 175        | 158            | 190            | 173            | 128            | 178            | 156            | 169            |
|                         | EBR                           | 99             | 162        | 5.51                 | 93         | 94         | 92         | 86             | 115            | 98             | 78             | 116            | 107            | 100            |

|                  |                               | GE             | EH Stat    | istic Alm            | aden (     | Conve      | ersion     | Sumn           | nary           |                |                |                |                |                |
|------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                  | SBL                           | 64             | 101        | 4.07                 | 71         | 70         | 58         | 53             | 72             | 80             | 47             | 63             | 64             | 62             |
|                  | SBT                           | 504            | 499        | 0.22                 | 484        | 500        | 540        | 558            | 478            | 508            | 491            | 490            | 497            | 504            |
|                  | SBR                           | 24             | 10         | 3.40                 | 21         | 22         | 22         | 32             | 19             | 23             | 23             | 23             | 23             | 28             |
|                  | WBL                           | 103            | 256        | 11.42                | 99         | 105        | 93         | 120            | 121            | 99             | 94             | 97             | 96             | 112            |
|                  | WBT                           | 121            | 148        | 2.33                 | 133        | 146        | 100        | 114            | 126            | 117            | 115            | 122            | 114            | 133            |
|                  | WBR                           | 36             | 46         | 1.56                 | 34         | 35         | 31         | 31             | 29             | 36             | 34             | 48             | 34             | 49             |
|                  | NBL                           | 66             | 58         | 1.02                 | 64         | 64         | 74         | 63             | 55             | 67             | 54             | 70             | 68             | 80             |
|                  | NBT                           | 191            | 183        | 0.59                 | 194        | 203        | 223        | 163            | 209            | 198            | 160            | 185            | 176            | 212            |
|                  | NBR                           | 16             | 17         | 0.25                 | 24         | 24         | 18         | 18             | 16             | 14             | 13             | 12             | 11             | 14             |
|                  | EBL                           | 133            | 95         | 3.56                 | 101        | 123        | 126        | 141            | 138            | 142            | 108            | 130            | 159            | 133            |
|                  | EBT                           | 93             | 75         | 1.96                 | 89         | 99         | 84         | 111            | 100            | 106            | 87             | 73             | 88             | 100            |
| Almaden/P        | EBR                           | 97             | 148        | 4.61                 | 89         | 106        | 81         | 101            | 94             | 91             | 92             | 110            | 103            | 100            |
| ark              | SBL                           | 33             | 39         | 1.00                 | 31         | 34         | 32         | 29             | 28             | 39             | 29             | 34             | 33             | 38             |
|                  | SBT                           | 622            | 887        | 9.65                 | 601        | 635        | 675        | 637            | 620            | 672            | 691            | 576            | 564            | 603            |
|                  | SBR                           | 120            | 106        | 1.32                 | 106        | 111        | 117        | 131            | 111            | 118            | 108            | 115            | 138            | 126            |
|                  | WBL                           | 151            | 195        | 3.35                 | 150        | 155        | 138        | 155            | 154            | 138            | 143            | 167            | 149            | 158            |
|                  | WBT                           | 192            | 154        | 2.89                 | 166        | 187        | 197        | 196            | 177            | 214            | 183            | 217            | 197            | 179            |
|                  | WBR                           | 34             | 55         | 3.15                 | 37         | 29         | 31         | 36             | 41             | 46             | 26             | 30             | 34             | 32             |
|                  | NBL                           | 43             | 61         | 2.50                 | 42         | 39         | 44         | 40             | 48             | 46             | 42             | 35             | 47             | 37             |

|                  |                               | GI             | EH Stat    | istic Alm            | aden       | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                  | NBT                           | 195            | 196        | 0.07                 | 208        | 211        | 202        | 190            | 187            | 195            | 202            | 181            | 174            | 222            |
|                  | NBR                           | 110            | 61         | 5.30                 | 124        | 120        | 116        | 97             | 105            | 104            | 107            | 117            | 108            | 107            |
|                  | EBL                           | 94             | 116        | 2.15                 | 87         | 94         | 99         | 95             | 89             | 97             | 85             | 102            | 92             | 107            |
|                  | EBT                           | 442            | 458        | 0.75                 | 417        | 456        | 437        | 421            | 447            | 428            | 428            | 460            | 456            | 459            |
|                  | EBR                           | 127            | 142        | 1.29                 | 102        | 103        | 118        | 158            | 122            | 151            | 112            | 134            | 142            | 115            |
| Almaden/S        | SBL                           | 108            | 137        | 2.62                 | 107        | 113        | 100        | 107            | 102            | 99             | 101            | 114            | 110            | 118            |
| an Carlos        | SBT                           | 663            | 1102       | 14.78                | 634        | 689        | 710        | 677            | 667            | 730            | 708            | 635            | 605            | 630            |
|                  | SBR                           | 73             | 63         | 1.21                 | 68         | 69         | 65         | 70             | 70             | 65             | 78             | 63             | 82             | 90             |
|                  | WBL                           | 85             | 98         | 1.36                 | 71         | 77         | 89         | 78             | 82             | 86             | 97             | 79             | 93             | 84             |
|                  | WBT                           | 178            | 232        | 3.77                 | 169        | 181        | 170        | 198            | 203            | 179            | 169            | 193            | 162            | 173            |
|                  | WBR                           | 91             | 68         | 2.58                 | 88         | 88         | 100        | 76             | 95             | 85             | 80             | 97             | 98             | 91             |
|                  | NBL                           | 60             | 36         | 3.46                 | 50         | 55         | 53         | 69             | 59             | 65             | 69             | 53             | 59             | 72             |
|                  | NBT                           | 280            | 175        | 6.96                 | 319        | 315        | 289        | 258            | 258            | 282            | 274            | 268            | 258            | 306            |
|                  | NBR                           | 78             | 63         | 1.79                 | 76         | 76         | 83         | 62             | 76             | 67             | 86             | 83             | 93             | 68             |
| Almaden/W        | EBL                           | 46             | 25         | 3.52                 | 53         | 59         | 38         | 45             | 54             | 45             | 46             | 43             | 45             | 37             |
| oz Way           | EBT                           | 135            | 184        | 3.88                 | 114        | 132        | 144        | 139            | 146            | 131            | 125            | 136            | 142            | 135            |
|                  | EBR                           | 231            | 224        | 0.46                 | 259        | 258        | 220        | 242            | 225            | 227            | 223            | 200            | 238            | 210            |
|                  | SBL                           | 71             | 110        | 4.10                 | 65         | 77         | 81         | 78             | 82             | 76             | 59             | 69             | 66             | 63             |

|                  |                               | GI             | EH Stat    | istic Alm            | aden (     | Conve      | rsion      | Sumn           | nary           |                |                |                |                |                |
|------------------|-------------------------------|----------------|------------|----------------------|------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Intersectio<br>n | Movem<br>ent<br>Directio<br>n | Simulati<br>on | Actu<br>al | GEH<br>Statist<br>ic | See<br>d 1 | See<br>d 4 | See<br>d 7 | See<br>d<br>10 | See<br>d<br>13 | See<br>d<br>16 | See<br>d<br>19 | See<br>d<br>22 | See<br>d<br>25 | See<br>d<br>28 |
|                  | SBT                           | 787            | 1179       | 12.50                | 651        | 790        | 840        | 821            | 765            | 854            | 862            | 798            | 757            | 759            |
|                  | SBR                           | 10             | 14         | 1.15                 | 5          | 9          | 17         | 12             | 10             | 10             | 10             | 15             | 7              | 8              |
|                  | WBL                           | 76             | 168        | 8.33                 | 74         | 81         | 75         | 73             | 66             | 107            | 77             | 76             | 67             | 71             |
|                  | WBT                           | 72             | 45         | 3.53                 | 64         | 71         | 63         | 72             | 64             | 83             | 73             | 70             | 76             | 80             |
|                  | WBR                           | 31             | 47         | 2.56                 | 28         | 28         | 39         | 20             | 32             | 33             | 35             | 30             | 32             | 33             |

| Intersection | Movement<br>Direction<br>NBL<br>NBT | Simulation 42 | Actual | GEH<br>Statistic | Seed | Seed | Seed |
|--------------|-------------------------------------|---------------|--------|------------------|------|------|------|
|              |                                     | 42            |        | _                | 1    | 4    | 7    |
|              | NBT                                 |               | 69     | 3.62             | 30   | 54   | 43   |
|              |                                     | 216           | 225    | 0.61             | 169  | 238  | 242  |
|              | NBR                                 | 17            | 80     | 9.05             | 15   | 13   | 24   |
|              | EBL                                 | 60            | 65     | 0.63             | 45   | 62   | 74   |
|              | EBT                                 | 503           | 591    | 3.76             | 413  | 555  | 541  |
| Market/Santa | EBR                                 | 89            | 93     | 0.42             | 65   | 81   | 122  |
| Clara        | SBL                                 | 165           | 161    | 0.31             | 139  | 194  | 162  |
|              | SBT                                 | 632           | 820    | 6.98             | 548  | 663  | 684  |
|              | SBR                                 | 92            | 109    | 1.70             | 81   | 103  | 93   |
|              | WBL                                 | 24            | 78     | 7.56             | 22   | 25   | 24   |
|              | WBT                                 | 416           | 400    | 0.79             | 372  | 445  | 431  |
|              | WBR                                 | 51            | 81     | 3.69             | 39   | 54   | 61   |
|              | NBL                                 | 40            | 32     | 1.33             | 32   | 50   | 38   |
|              | NBT                                 | 218           | 226    | 0.54             | 179  | 240  | 234  |
|              | NBR                                 | 45            | 34     | 1.75             | 40   | 58   | 36   |
| Market/San   | EBL                                 | 36            | 37     | 0.17             | 23   | 36   | 49   |
| Fernando     | EBT                                 | 175           | 234    | 4.13             | 127  | 199  | 198  |
|              | EBR                                 | 53            | 129    | 7.97             | 47   | 58   | 55   |
|              | SBL                                 | 55            | 98     | 4.92             | 47   | 51   | 67   |
|              | SBT                                 | 774           | 918    | 4.95             | 654  | 817  | 851  |

| G                    | EH Statistic A     | Almaden Plus | 10% Co | nversion S       | Summar    | у         |           |
|----------------------|--------------------|--------------|--------|------------------|-----------|-----------|-----------|
| Intersection         | Movement Direction | Simulation   | Actual | GEH<br>Statistic | Seed<br>1 | Seed<br>4 | Seed<br>7 |
|                      | SBR                | 41           | 49     | 1.19             | 38        | 40        | 45        |
|                      | WBL                | 41           | 54     | 1.89             | 27        | 49        | 47        |
|                      | WBT                | 119          | 177    | 4.77             | 119       | 131       | 106       |
|                      | WBR                | 7            | 54     | 8.51             | 4         | 12        | 5         |
|                      | _<br>NBL           | 86           | 112    | 2.61             | 72        | 93        | 94        |
|                      | NBT                | 273          | 246    | 1.68             | 249       | 286       | 285       |
|                      | NBR                | 10           | 15     | 1.41             | 7         | 10        | 14        |
|                      | EBL                | 85           | 67     | 2.06             | 69        | 110       | 75        |
|                      | EBT                | 358          | 270    | 4.97             | 330       | 371       | 372       |
| Market/San<br>Carlos | EBR                | 157          | 188    | 2.36             | 143       | 161       | 168       |
| Carlos               | SBL                | 66           | 62     | 0.50             | 59        | 73        | 65        |
|                      | SBT                | 649          | 938    | 10.26            | 540       | 706       | 701       |
|                      | SBR                | 63           | 108    | 4.87             | 60        | 71        | 57        |
|                      | WBT                | 164          | 169    | 0.39             | 162       | 146       | 185       |
|                      | WBR                | 51           | 31     | 3.12             | 50        | 60        | 43        |
|                      | NBL                | 91           | 86     | 0.53             | 86        | 99        | 87        |
|                      | NBT                | 226          | 289    | 3.93             | 202       | 208       | 267       |
| 3rd/Santa<br>Clara   | NBR                | 43           | 174    | 12.58            | 38        | 49        | 42        |
| Olara                | EBL                | 80           | 74     | 0.68             | 63        | 96        | 82        |
|                      | EBT                | 594          | 749    | 5.98             | 499       | 651       | 631       |

| GE                  | EH Statistic A     | Almaden Plus | 10% Co | nversion S       | Summar    | у         |           |
|---------------------|--------------------|--------------|--------|------------------|-----------|-----------|-----------|
| Intersection        | Movement Direction | Simulation   | Actual | GEH<br>Statistic | Seed<br>1 | Seed<br>4 | Seed<br>7 |
|                     | WBT                | 430          | 483    | 2.48             | 366       | 458       | 466       |
|                     | WBR                | 69           | 67     | 0.24             | 59        | 80        | 68        |
|                     | NBL                | 74           | 80     | 0.68             | 83        | 67        | 72        |
|                     | NBT                | 379          | 489    | 5.28             | 367       | 349       | 420       |
| 0.1/0               | NBR                | 192          | 255    | 4.21             | 176       | 192       | 207       |
| 3rd/San<br>Fernando | EBL                | 21           | 67     | 6.93             | 19        | 22        | 23        |
| romanao             | EBT                | 171          | 223    | 3.70             | 158       | 187       | 169       |
|                     | WBT                | 136          | 226    | 6.69             | 115       | 162       | 132       |
|                     | WBR                | 11           | 85     | 10.68            | 13        | 8         | 12        |
|                     | NBL                | 73           | 65     | 0.96             | 68        | 57        | 95        |
|                     | NBT                | 495          | 501    | 0.27             | 457       | 498       | 530       |
|                     | NBR                | 37           | 89     | 6.55             | 25        | 50        | 36        |
| 3rd/San Carlos      | EBL                | 185          | 176    | 0.67             | 163       | 202       | 190       |
|                     | EBT                | 99           | 76     | 2.46             | 92        | 105       | 101       |
|                     | WBT                | 17           | 72     | 8.24             | 12        | 22        | 18        |
|                     | WBR                | 8            | 71     | 10.02            | 9         | 10        | 5         |
|                     | NBL                | 9            | 36     | 5.69             | 7         | 9         | 10        |
| 3rd/San             | NBT                | 469          | 412    | 2.72             | 438       | 446       | 523       |
| Salvador            | NBR                | 26           | 31     | 0.94             | 21        | 30        | 27        |
|                     | EBL                | 67           | 55     | 1.54             | 55        | 84        | 62        |

| G                   | EH Statistic A     | Almaden Plus | 10% Co | nversion S       | Summar    | у         |           |
|---------------------|--------------------|--------------|--------|------------------|-----------|-----------|-----------|
| Intersection        | Movement Direction | Simulation   | Actual | GEH<br>Statistic | Seed<br>1 | Seed<br>4 | Seed<br>7 |
|                     | EBT                | 97           | 107    | 0.99             | 75        | 110       | 107       |
|                     | WBT                | 150          | 172    | 1.73             | 131       | 150       | 170       |
|                     | WBR                | 72           | 136    | 6.28             | 57        | 80        | 80        |
|                     | NBL                | 39           | 22     | 3.08             | 34        | 33        | 50        |
|                     | NBT                | 217          | 278    | 3.88             | 200       | 196       | 255       |
|                     | NBR                | 178          | 201    | 1.67             | 171       | 176       | 188       |
| 3rd/Reed            | EBL                | 30           | 28     | 0.37             | 21        | 27        | 41        |
|                     | EBT                | 260          | 219    | 2.65             | 202       | 301       | 278       |
|                     | WBT                | 510          | 554    | 1.91             | 455       | 503       | 573       |
|                     | WBR                | 174          | 148    | 2.05             | 165       | 173       | 185       |
|                     | EBT                | 462          | 705    | 10.06            | 393       | 515       | 477       |
|                     | EBR                | 176          | 192    | 0.00             | 153       | 183       | 192       |
|                     | SBL                | 89           | 151    | 5.66             | 74        | 109       | 85        |
| 4th/Santa<br>Clara  | SBT                | 688          | 805    | 4.28             | 552       | 733       | 778       |
| Olara               | SBR                | 27           | 114    | 10.36            | 25        | 26        | 29        |
|                     | WBL                | 84           | 114    | 3.02             | 84        | 83        | 86        |
|                     | WBT                | 465          | 430    | 1.65             | 385       | 514       | 496       |
| /-                  | EBT                | 184          | 286    | 6.65             | 177       | 184       | 190       |
| 4th/San<br>Fernando | EBR                | 160          | 194    | 2.56             | 143       | 166       | 171       |
| Fernando            | SBL                | 16           | 109    | 11.76            | 19        | 15        | 13        |

| GE             | EH Statistic A     | Almaden Plus | 10% Co | nversion S       | Summar    | у         |           |
|----------------|--------------------|--------------|--------|------------------|-----------|-----------|-----------|
| Intersection   | Movement Direction | Simulation   | Actual | GEH<br>Statistic | Seed<br>1 | Seed<br>4 | Seed<br>7 |
|                | SBT                | 743          | 990    | 8.39             | 623       | 779       | 826       |
|                | SBR                | 62           | 112    | 5.36             | 61        | 50        | 76        |
|                | WBL                | 127          | 193    | 5.22             | 103       | 148       | 130       |
|                | WBT                | 84           | 212    | 10.52            | 80        | 91        | 81        |
|                | EBR                | 90           | 159    | 6.18             | 81        | 96        | 94        |
| 4th/San Carlos | SBT                | 882          | 1252   | 11.33            | 747       | 939       | 960       |
|                | SBR                | 25           | 149    | 13.29            | 21        | 32        | 23        |
|                | EBT                | 150          | 115    | 3.04             | 132       | 169       | 148       |
|                | EBR                | 25           | 54     | 4.61             | 22        | 30        | 23        |
|                | SBL                | 54           | 84     | 3.61             | 39        | 65        | 57        |
| 4th/Williams   | SBT                | 964          | 1273   | 9.24             | 839       | 997       | 1055      |
|                | SBR                | 14           | 55     | 6.98             | 14        | 13        | 16        |
|                | WBL                | 19           | 66     | 7.21             | 16        | 25        | 16        |
|                | WBT                | 116          | 123    | 0.64             | 125       | 108       | 114       |
|                | EBT                | 72           | 101    | 3.12             | 56        | 81        | 79        |
|                | EBR                | 52           | 38     | 2.09             | 40        | 58        | 57        |
| 4th/San        | SBL                | 179          | 229    | 3.50             | 162       | 173       | 202       |
| Salvador       | SBT                | 809          | 1254   | 13.86            | 702       | 852       | 872       |
|                | SBR                | 46           | 125    | 8.54             | 32        | 61        | 44        |
|                | WBL                | 177          | 196    | 1.39             | 156       | 169       | 206       |

| GE            | EH Statistic A     | Almaden Plus | 10% Co | nversion S       | Summar    | у         |           |
|---------------|--------------------|--------------|--------|------------------|-----------|-----------|-----------|
| Intersection  | Movement Direction | Simulation   | Actual | GEH<br>Statistic | Seed<br>1 | Seed<br>4 | Seed<br>7 |
|               | WBT                | 166          | 208    | 3.07             | 153       | 167       | 179       |
|               | EBT                | 113          | 151    | 3.31             | 101       | 117       | 122       |
|               | EBR                | 328          | 276    | 2.99             | 273       | 364       | 346       |
|               | SBL                | 145          | 242    | 6.97             | 112       | 154       | 169       |
| 4th/Reed      | SBT                | 765          | 989    | 7.56             | 667       | 810       | 817       |
|               | SBR                | 173          | 263    | 6.10             | 167       | 141       | 210       |
|               | WBL                | 166          | 207    | 3.00             | 138       | 203       | 157       |
|               | WBT                | 516          | 399    | 5.47             | 446       | 550       | 552       |
|               | _                  | 62           | N/A    |                  | 63        | 59        | 64        |
|               | EBT                | 605          | 884    | 10.23            | 517       | 651       | 647       |
|               | EBR                | 248          | 268    | 1.25             | 203       | 261       | 279       |
| Almaden/Santa | SBL                | 10           | 30     | 4.47             | 8         | 10        | 12        |
| Clara (W)     | SBT                | 227          | 191    | 2.49             | 198       | 227       | 255       |
|               | SBR                | 61           | 76     | 1.81             | 52        | 63        | 68        |
|               | WBT                | 398          | 472    | 3.55             | 325       | 438       | 430       |
|               |                    | 55           | N/A    |                  | 46        | 57        | 61        |
|               | NBL                | 121          | 92     | 2.81             | 84        | 132       | 146       |
| Almaden/Santa | NBT                | 148          | 194    | 3.52             | 113       | 143       | 188       |
| Clara (E)     | NBR                | 40           | 95     | 6.69             | 30        | 35        | 55        |
|               | EBL                | 67           | 101    | 3.71             | 66        | 65        | 70        |

| GI           | EH Statistic A     | Almaden Plus | 10% Co | nversion S       | Summar    | у         |           |
|--------------|--------------------|--------------|--------|------------------|-----------|-----------|-----------|
| Intersection | Movement Direction | Simulation   | Actual | GEH<br>Statistic | Seed<br>1 | Seed<br>4 | Seed<br>7 |
|              | EBT                | 545          | 806    | 10.04            | 459       | 592       | 585       |
|              | WBL                | 113          | 118    | 0.47             | 94        | 121       | 124       |
|              | WBT                | 329          | 385    | 2.96             | 289       | 363       | 336       |
|              | WBR                | 113          | 111    | 0.19             | 94        | 125       | 119       |
|              | NBL                | 2            | 21     | 5.60             | 1         | 2         | 4         |
|              | NBT                | 170          | 275    | 7.04             | 108       | 165       | 237       |
|              | NBR                | 70           | 123    | 5.40             | 40        | 86        | 85        |
|              | EBL                | 26           | 27     | 0.19             | 16        | 34        | 27        |
|              | EBT                | 146          | 107    | 3.47             | 119       | 156       | 163       |
| Almaden/San  | EBR                | 84           | 162    | 7.03             | 66        | 96        | 89        |
| Fernando     | SBL                | 70           | 101    | 3.35             | 64        | 81        | 64        |
|              | SBT                | 491          | 499    | 0.36             | 400       | 504       | 568       |
|              | SBR                | 24           | 10     | 3.40             | 20        | 23        | 28        |
|              | WBL                | 97           | 256    | 11.97            | 67        | 116       | 107       |
|              | WBT                | 113          | 148    | 3.06             | 103       | 136       | 101       |
|              | WBR                | 34           | 46     | 1.90             | 42        | 32        | 29        |
|              | NBL                | 60           | 58     | 0.26             | 54        | 54        | 73        |
| Almadan/Dark | NBT                | 163          | 183    | 1.52             | 120       | 153       | 216       |
| Almaden/Park | NBR                | 17           | 17     | 0.00             | 13        | 20        | 17        |
|              | EBL                | 102          | 95     | 0.71             | 73        | 116       | 118       |

| GEH Statistic Almaden Plus 10% Conversion Summary |                    |            |        |                  |           |           |           |  |  |  |  |
|---------------------------------------------------|--------------------|------------|--------|------------------|-----------|-----------|-----------|--|--|--|--|
| Intersection                                      | Movement Direction | Simulation | Actual | GEH<br>Statistic | Seed<br>1 | Seed<br>4 | Seed<br>7 |  |  |  |  |
|                                                   | EBT                | 84         | 75     | 1.01             | 70        | 95        | 86        |  |  |  |  |
|                                                   | EBR                | 89         | 148    | 5.42             | 78        | 102       | 88        |  |  |  |  |
|                                                   | SBL                | 28         | 39     | 1.90             | 22        | 28        | 35        |  |  |  |  |
|                                                   | SBT                | 597        | 887    | 10.65            | 518       | 652       | 620       |  |  |  |  |
|                                                   | SBR                | 111        | 106    | 0.48             | 89        | 127       | 118       |  |  |  |  |
|                                                   | WBL                | 135        | 195    | 4.67             | 103       | 151       | 152       |  |  |  |  |
|                                                   | WBT                | 180        | 154    | 2.01             | 150       | 184       | 206       |  |  |  |  |
|                                                   | WBR                | 23         | 55     | 5.12             | 14        | 26        | 30        |  |  |  |  |
|                                                   | NBL                | 36         | 61     | 3.59             | 34        | 36        | 38        |  |  |  |  |
|                                                   | NBT                | 198        | 196    | 0.14             | 164       | 213       | 217       |  |  |  |  |
|                                                   | NBR                | 110        | 61     | 5.30             | 84        | 118       | 127       |  |  |  |  |
|                                                   | EBL                | 90         | 116    | 2.56             | 71        | 95        | 103       |  |  |  |  |
|                                                   | EBT                | 466        | 458    | 0.37             | 425       | 499       | 473       |  |  |  |  |
| Almaden/San                                       | EBR                | 112        | 142    | 2.66             | 103       | 104       | 130       |  |  |  |  |
| Carlos                                            | SBL                | 111        | 137    | 2.33             | 100       | 120       | 115       |  |  |  |  |
|                                                   | SBT                | 633        | 1102   | 15.92            | 552       | 699       | 649       |  |  |  |  |
|                                                   | SBR                | 70         | 63     | 0.86             | 60        | 74        | 77        |  |  |  |  |
|                                                   | WBL                | 82         | 98     | 1.69             | 76        | 76        | 92        |  |  |  |  |
|                                                   | WBT                | 170        | 232    | 4.37             | 164       | 168       | 177       |  |  |  |  |
|                                                   | WBR                | 83         | 68     | 1.73             | 61        | 80        | 109       |  |  |  |  |

| GI           | EH Statistic A     | Almaden Plus | 10% Co | nversion S       | Summar    | у         |           |
|--------------|--------------------|--------------|--------|------------------|-----------|-----------|-----------|
| Intersection | Movement Direction | Simulation   | Actual | GEH<br>Statistic | Seed<br>1 | Seed<br>4 | Seed<br>7 |
|              | NBL                | 56           | 36     | 2.95             | 49        | 54        | 64        |
|              | NBT                | 306          | 175    | 8.45             | 240       | 346       | 331       |
|              | NBR                | 83           | 63     | 2.34             | 76        | 84        | 89        |
|              | EBL                | 41           | 25     | 2.79             | 32        | 55        | 37        |
|              | EBT                | 134          | 184    | 3.97             | 111       | 140       | 152       |
| Almaden/Woz  | EBR                | 193          | 224    | 2.15             | 160       | 230       | 189       |
| Way          | SBL                | 69           | 110    | 4.33             | 51        | 75        | 81        |
|              | SBT                | 739          | 1179   | 14.21            | 633       | 795       | 788       |
|              | SBR                | 12           | 14     | 0.55             | 7         | 10        | 18        |
|              | WBL                | 75           | 168    | 8.44             | 57        | 87        | 80        |
|              | WBT                | 64           | 45     | 2.57             | 52        | 70        | 70        |
|              | WBR                | 36           | 47     | 1.71             | 41        | 29        | 37        |

### APPENDIX C. NETWORK EVALUATION PERFORMANCE MEASURES

|                         |                      |           |           |           | Network     |           |           |           |           |           |           |
|-------------------------|----------------------|-----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
|                         | Existing<br>Baseline | Seed 1    | Seed 4    | Seed 7    | Seed 10     | Seed 13   | Seed 16   | Seed 19   | Seed 22   | Seed 25   | Seed 28   |
| Number of Vehicles      | 15,250               | 15,274    | 15,123    | 15,171    | 15,252      | 15,586    | 15,242    | 15,387    | 14,876    | 15,337    | 14,161    |
| Total Travel Time (h)   | 9,325,456            | 9,144,229 | 9,179,212 | 9,457,626 | 9,057,988   | 9,403,192 | 9,565,522 | 8,953,946 | 9,765,196 | 9,402,190 | 9,753,426 |
| Total Distance (mi)     | 16,647               | 16,699    | 16,583    | 16,474    | 16,672      | 16,998    | 16,562    | 16,875    | 16,204    | 16,751    | 15,677    |
| Total Delay (h)         | 5,171,654            | 4,972,059 | 5,043,151 | 5,342,906 | 4,894,770   | 5,139,563 | 5,448,645 | 4,755,920 | 5,729,112 | 5,218,762 | 5,839,475 |
|                         |                      |           |           |           | Per Vehicle |           |           |           |           |           |           |
|                         | Existing<br>Baseline | Seed 1    | Seed 4    | Seed 7    | Seed 10     | Seed 13   | Seed 16   | Seed 19   | Seed 22   | Seed 25   | Seed 28   |
| Average Speed (mph)     | 6.4                  | 6.6       | 6.5       | 6.3       | 6.6         | 6.5       | 6.2       | 6.8       | 6.0       | 6.4       | 5.8       |
| Average Delay (s)       | 285.9                | 275.0     | 282.1     | 294.5     | 272.5       | 280.0     | 300.7     | 263.4     | 317.8     | 287.2     | 330.8     |
| Average Number of Stops | 6.2                  | 6.0       | 6.4       | 6.5       | 6.1         | 6.3       | 6.3       | 5.9       | 6.3       | 6.3       | 6.0       |
| Average Stop Delay (s)  | 157.4                | 152.6     | 154.0     | 165.2     | 141.2       | 145.9     | 172.3     | 139.1     | 193.9     | 152.4     | 205.6     |
|                         |                      |           |           |           | Network     |           |           |           |           |           |           |
|                         | Almaden              | Seed 1    | Seed 4    | Seed 7    | Seed 10     | Seed 13   | Seed 16   | Seed 19   | Seed 22   | Seed 25   | Seed 28   |
| Number of Vehicles      | 15,177               | 14,788    | 15,337    | 15,345    | 15,240      | 15,316    | 15,452    | 15,147    | 15,267    | 14,917    | 15,222    |
| Total Travel Time (h)   | 9,264,036            | 9,246,354 | 9,131,078 | 9,002,356 | 9,465,632   | 8,993,877 | 9,312,797 | 9,449,477 | 9,155,768 | 9,410,976 | 9,325,102 |
| Total Distance (mi)     | 16,531               | 16,238    | 16,766    | 16,741    | 16,482      | 16,666    | 16,825    | 16,418    | 16,671    | 16,238    | 16,562    |
| Total Delay (h)         | 5,137,334            | 5,189,846 | 4,947,629 | 4,827,375 | 5,350,491   | 4,834,328 | 5,090,650 | 5,365,567 | 5,001,494 | 5,354,637 | 5,194,021 |
|                         |                      |           |           |           | Per Vehicle |           |           |           |           |           |           |
|                         | Almaden              | Seed 1    | Seed 4    | Seed 7    | Seed 10     | Seed 13   | Seed 16   | Seed 19   | Seed 22   | Seed 25   | Seed 28   |
| Average Speed (mph)     | 6.4                  | 6.3       | 6.6       | 6.7       | 6.3         | 6.7       | 6.5       | 6.3       | 6.6       | 6.2       | 6.4       |
| Average Delay (s)       | 285.1                | 290.6     | 272.8     | 268.1     | 294.3       | 269.2     | 279.3     | 297.7     | 278.1     | 297.6     | 290.9     |

| Average Number of<br>Stops | 6.4   | 6.1   | 6.2   | 6.3   | 6.7   | 6.2   | 6.4   | 6.4   | 6.3   | 6.4   | 6.7   |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Average Stop Delay (s)     | 174.0 | 171.0 | 148.2 | 139.9 | 161.9 | 138.6 | 146.1 | 172.1 | 150.0 | 166.1 | 159.8 |

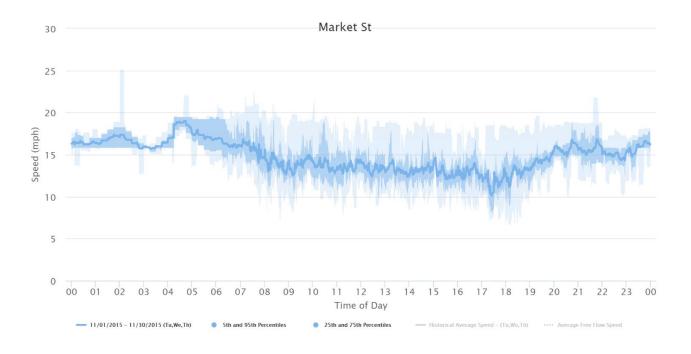
|                           |                              |            |           |            | Network    |            |           |            |           |           |            |
|---------------------------|------------------------------|------------|-----------|------------|------------|------------|-----------|------------|-----------|-----------|------------|
|                           | Almaden<br>plus 5%<br>Demand | Seed 1     | Seed 4    | Seed 7     | Seed 10    | Seed 13    | Seed 16   | Seed 19    | Seed 22   | Seed 25   | Seed 28    |
| Number of<br>Vehicles     | 15,527                       | 15,385     | 15,532    | 15,441     | 15,706     | 14,968     | 15,973    | 15,243     | 15,584    | 15,663    | 15,776     |
| Total Travel Time<br>(h)  | 10,031,002                   | 10,114,041 | 9,689,818 | 10,073,770 | 9,530,102  | 10,547,546 | 9,934,489 | 10,481,100 | 9,835,387 | 9,862,602 | 10,241,164 |
| Total Distance (mi)       | 16,937                       | 16,855     | 16,960    | 16,748     | 16,997     | 16,575     | 17,356    | 16,790     | 17,055    | 17,018    | 17,013     |
| Total Delay (h)           | 5,799,015                    | 5,899,757  | 5,451,437 | 5,887,399  | 5,279,649  | 6,385,346  | 5,574,348 | 6,304,735  | 5,583,058 | 5,619,505 | 6,004,922  |
|                           |                              |            |           |            | Per Vehicl | е          |           |            |           |           |            |
|                           | Almaden<br>plus 5%<br>Demand | Seed 1     | Seed 4    | Seed 7     | Seed 10    | Seed 13    | Seed 16   | Seed 19    | Seed 22   | Seed 25   | Seed 28    |
| Average Speed (mph)       | 6.1                          | 6.0        | 6.3       | 6.0        | 6.4        | 5.7        | 6.3       | 5.8        | 6.2       | 6.2       | 6.0        |
| Average Delay (s)         | 310.7                        | 314.8      | 294.6     | 317.0      | 285.4      | 341.3      | 293.5     | 337.7      | 299.9     | 303.8     | 319.4      |
| Average Number of Stops   | 6.8                          | 6.7        | 6.7       | 7.0        | 6.6        | 6.6        | 6.8       | 7.1        | 6.6       | 6.9       | 7.1        |
| Average Stop<br>Delay (s) | 173.9                        | 184.2      | 160.5     | 178.9      | 147.9      | 205.6      | 154.4     | 197.1      | 167.4     | 166.6     | 176.5      |

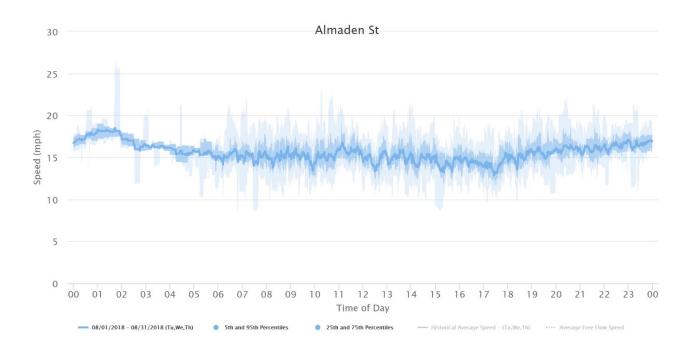
| Network |                            |        |        |        |  |  |  |  |  |
|---------|----------------------------|--------|--------|--------|--|--|--|--|--|
|         | Almaden plus<br>10% Demand | Seed 1 | Seed 4 | Seed 7 |  |  |  |  |  |

| Number of Vehicles         | 14,801                     | 12,832    | 15,685     | 15,887     |
|----------------------------|----------------------------|-----------|------------|------------|
| Total Travel Time (h)      | 9,949,705                  | 8,809,378 | 10,689,781 | 10,349,955 |
| Total Distance (mi)        | 16,142                     | 14,009    | 17,152     | 17,266     |
| Total Delay (h)            | 5,901,180                  | 5,278,483 | 6,393,010  | 6,032,048  |
|                            | Per Ve                     | hicle     |            |            |
|                            | Almaden plus<br>10% Demand | Seed 1    | Seed 4     | Seed 7     |
| Average Speed (mph)        | 5.8                        | 5.7       | 5.8        | 6.0        |
| Average Delay (s)          | 326.5                      | 329.5     | 332.4      | 317.6      |
| Average Number of<br>Stops | 7.1                        | 7.0       | 7.1        | 7.1        |
| Average Stop Delay (s)     | 186.2                      | 188.9     | 194.3      | 175.3      |

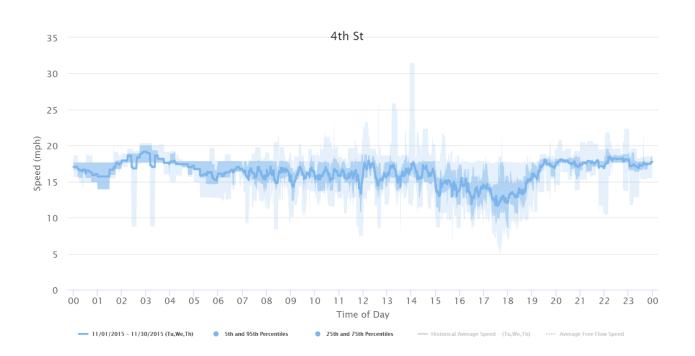
### **APPENDIX D. TRAVEL-TIME**

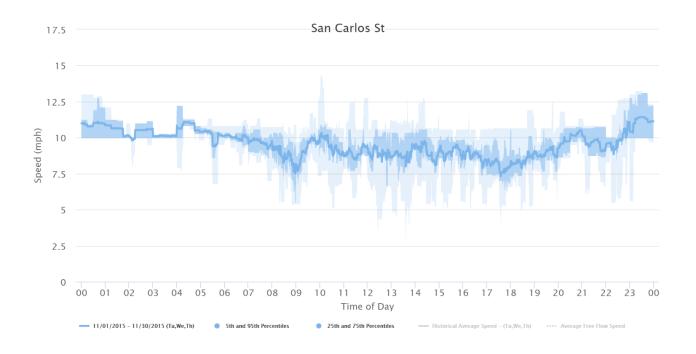
| Travel Time<br>Corridors  | Existing<br>Baseline<br>(min) | Google<br>Range<br>(min) | Seed<br>1 | Seed<br>4 | Seed<br>7 | Seed<br>10 | Seed<br>13 | Seed<br>16 | Seed<br>19 | Seed<br>22 | Seed<br>25 | Seed<br>28 |
|---------------------------|-------------------------------|--------------------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|
| EB Santa Clara<br>Street  | 6.9                           | 4 - 12                   | 6.8       | 6.6       | 6.6       | 6.4        | 7.4        | 7.1        | 7.4        | 7.1        | 6.7        | 6.8        |
| WB Santa Clara<br>Street  | 5.9                           | 2 - 8                    | 6.0       | 5.6       | 6.0       | 6.1        | 5.9        | 5.8        | 5.8        | 5.6        | 6.1        | 5.7        |
| NB Market Street          | 6.1                           | 3 - 9                    | 4.8       | 5.8       | 6.5       | 5.5        | 6.0        | 8.9        | 5.1        | 6.2        | 6.1        | 5.7        |
| SB Market Street          | 8.7                           | 4 - 12                   | 9.8       | 8.5       | 8.8       | 8.3        | 9.2        | 8.5        | 8.0        | 8.3        | 8.9        | 8.2        |
| NB 3rd Street             | 6.2                           | 2 - 7                    | 5.6       | 5.6       | 8.0       | 5.2        | 6.0        | 8.9        | 5.6        | 5.7        | 5.4        | 5.7        |
| SB 4th Street             | 12.3                          | 3 - 8                    | 12.0      | 13.3      | 12.5      | 11.5       | 10.5       | 12.8       | 11.7       | 14.6       | 12.2       | 13.4       |
| EB San Fernando<br>Street | 13.7                          | 5                        | 13.9      | 14.4      | 11.8      | 11.4       | 12.5       | 14.8       | 10.8       | 21.7       | 12.2       | 12.8       |
| WB San Fernando<br>Street | 7.1                           | 3 - 6                    | 7.3       | 7.6       | 7.3       | 6.7        | 7.2        | 6.3        | 7.6        | 7.2        | 7.0        | 6.0        |
| NB Almaden                | 5.0                           | 2 - 6                    | 5.6       | 5.4       | 6.3       | 4.0        | 4.2        | 4.0        | 4.3        | 6.7        | 4.5        | 4.7        |
| SB Almaden                | 8.7                           | 2 - 8                    | 7.9       | 8.5       | 10.4      | 9.4        | 8.3        | 8.5        | 8.1        | 7.5        | 10.0       | 10.4       |


| Travel Time<br>Corridors | Almaden<br>Conversion<br>(min) | Google<br>Range<br>(min) | Seed<br>1 | Seed<br>4 | Seed<br>7 | Seed<br>10 | Seed<br>13 | Seed<br>16 | Seed<br>19 | Seed<br>22 | Seed<br>25 | Seed<br>28 |
|--------------------------|--------------------------------|--------------------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|
| EB Santa Clara<br>Street | 6.6                            | 4 - 12                   | 6.5       | 6.3       | 6.3       | 6.4        | 6.5        | 7.1        | 6.2        | 7.2        | 6.4        | 7.1        |
| WB Santa Clara<br>Street | 5.8                            | 2 - 8                    | 5.8       | 6.1       | 5.7       | 5.7        | 5.9        | 5.8        | 5.6        | 5.6        | 5.7        | 5.9        |


| NB Market Street                                                                             | 6.1                              | 3 - 9                                       | 6.2                       | 5.5                      | 5.4                                           | 6.4                      | 5.4                      | 5.3                      | 9.2                      | 5.1                      | 5.8                                                                  | 6.6                      |
|----------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------|---------------------------|--------------------------|-----------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------------------------------------|--------------------------|
| SB Market Street                                                                             | 8.5                              | 4 - 12                                      | 8.3                       | 9.7                      | 8.3                                           | 8.7                      | 8.2                      | 8.7                      | 8.5                      | 7.8                      | 8.1                                                                  | 9.1                      |
| NB 3rd Street                                                                                | 6.1                              | 2 - 7                                       | 6.2                       | 5.8                      | 5.3                                           | 6.3                      | 5.5                      | 5.9                      | 7.9                      | 5.8                      | 5.9                                                                  | 6.9                      |
| SB 4th Street                                                                                | 12.2                             | 3 - 8                                       | 12.1                      | 11.7                     | 11.8                                          | 12.8                     | 11.2                     | 11.3                     | 13.1                     | 12.3                     | 12.8                                                                 | 12.2                     |
| EB San Fernando<br>Street                                                                    | 13.4                             | 5                                           | 13.5                      | 12.8                     | 15.0                                          | 12.6                     | 11.3                     | 13.9                     | 15.3                     | 14.2                     | 13.1                                                                 | 13.2                     |
| WB San Fernando<br>Street                                                                    | 7.1                              | 3 - 6                                       | 7.1                       | 7.2                      | 7.5                                           | 7.6                      | 6.6                      | 7.3                      | 6.5                      | 7.4                      | 7.0                                                                  | 7.2                      |
| NB Almaden                                                                                   | 4.7                              | 2 – 6                                       | 4.4                       | 6.0                      | 4.2                                           | 4.5                      | 4.0                      | 4.1                      | 3.9                      | 4.9                      | 4.8                                                                  | 5.5                      |
| SB Almaden                                                                                   | 9.3                              | 2 - 8                                       | 9.5                       | 8.3                      | 8.1                                           | 10.2                     | 9.6                      | 8.1                      | 8.5                      | 10.2                     | 10.2                                                                 | 9.7                      |
| Travel Time                                                                                  | Almaden Conversion               | Google                                      | Seed                      | Seed                     | Seed                                          | Seed                     | Seed                     | Seed                     | Seed                     | Seed                     | Seed                                                                 | Seed                     |
| Corridors                                                                                    | plus 5%<br>Demand<br>(min)       | Range<br>(min)                              | 1                         | 4                        | 7                                             | 10                       | 13                       | 16                       | 19                       | 22                       | 25                                                                   | 28                       |
|                                                                                              | Demand                           | _                                           |                           |                          |                                               |                          |                          |                          |                          |                          |                                                                      |                          |
| Corridors  EB Santa Clara                                                                    | Demand<br>(min)                  | (min)                                       | 1                         | 4                        | 7                                             | 10                       | 13                       | 16                       | 19                       | 22                       | 25                                                                   | 28                       |
| EB Santa Clara<br>Street<br>WB Santa Clara                                                   | Demand<br>(min)                  | (min)<br>4 - 12                             | 6.5                       | 7.0                      | 6.9                                           | 6.5                      | 8.2                      | 7.8                      | 6.9                      | 7.9                      | <b>25</b> 6.9                                                        | 9.4                      |
| EB Santa Clara<br>Street<br>WB Santa Clara<br>Street                                         | Demand (min)  7.4  5.8           | (min)<br>4 - 12<br>2 - 8                    | 6.5<br>5.9                | 7.0<br>6.1               | <b>7</b> 6.9 5.5                              | 6.5<br>6.1               | 8.2<br>5.7               | 7.8<br>5.7               | 6.9<br>5.5               | 7.9<br>5.7               | <ul><li><b>25</b></li><li>6.9</li><li>5.6</li></ul>                  | 9.4<br>6.2               |
| EB Santa Clara<br>Street<br>WB Santa Clara<br>Street<br>NB Market Street                     | Demand (min)  7.4  5.8  6.5      | (min)<br>4 - 12<br>2 - 8<br>3 - 9           | 6.5<br>5.9<br>4.7         | 7.0<br>6.1<br>4.8        | <ul><li>6.9</li><li>5.5</li><li>6.6</li></ul> | 6.5<br>6.1<br>5.7        | 8.2<br>5.7<br>5.9        | 7.8<br>5.7<br>7.7        | 6.9<br>5.5<br>7.3        | 7.9<br>5.7<br>7.9        | <ul><li>25</li><li>6.9</li><li>5.6</li><li>5.8</li></ul>             | 9.4<br>6.2<br>8.3        |
| EB Santa Clara<br>Street<br>WB Santa Clara<br>Street<br>NB Market Street<br>SB Market Street | Demand (min)  7.4  5.8  6.5  8.7 | (min)<br>4 - 12<br>2 - 8<br>3 - 9<br>4 - 12 | 6.5<br>5.9<br>4.7<br>10.3 | 7.0<br>6.1<br>4.8<br>8.5 | 6.9<br>5.5<br>6.6<br>9.2                      | 6.5<br>6.1<br>5.7<br>8.2 | 8.2<br>5.7<br>5.9<br>8.5 | 7.8<br>5.7<br>7.7<br>8.7 | 6.9<br>5.5<br>7.3<br>8.3 | 7.9<br>5.7<br>7.9<br>7.8 | <ul><li>25</li><li>6.9</li><li>5.6</li><li>5.8</li><li>8.3</li></ul> | 9.4<br>6.2<br>8.3<br>9.7 |

| WB San Fernando<br>Street | 7.0 | 3 - 6 | 6.9 | 7.1 | 6.5  | 6.9 | 6.8  | 7.5 | 6.8 | 7.3  | 7.7  | 6.7 |
|---------------------------|-----|-------|-----|-----|------|-----|------|-----|-----|------|------|-----|
| NB Almaden                | 4.6 | 2 – 6 | 4.1 | 4.6 | 4.0  | 4.2 | 5.2  | 4.2 | 5.0 | 4.2  | 6.5  | 4.3 |
| SB Almaden                | 9.4 | 2 - 8 | 8.5 | 8.4 | 10.2 | 9.1 | 10.2 | 9.0 | 8.6 | 11.6 | 10.5 | 8.4 |


| Travel Time<br>Corridors  | Almaden<br>Conversion<br>plus 10%<br>Demand<br>(min) | Google<br>Range<br>(min) | Seed<br>1 | Seed<br>4 | Seed<br>7 |
|---------------------------|------------------------------------------------------|--------------------------|-----------|-----------|-----------|
| EB Santa Clara<br>Street  | 7.6                                                  | 4 - 12                   | 7.1       | 7.5       | 8.2       |
| WB Santa Clara<br>Street  | 6.1                                                  | 2 - 8                    | 6.0       | 6.3       | 5.9       |
| NB Market Street          | 5.7                                                  | 3 - 9                    | 5.8       | 5.4       | 5.8       |
| SB Market Street          | 8.7                                                  | 4 - 12                   | 8.6       | 9.2       | 8.3       |
| NB 3rd Street             | 6.1                                                  | 2 - 7                    | 6.3       | 6.4       | 5.7       |
| SB 4th Street             | 13.5                                                 | 3 - 8                    | 13.7      | 13.6      | 13.1      |
| EB San Fernando<br>Street | 16.5                                                 | 5                        | 18.5      | 14.0      | 16.9      |
| WB San Fernando<br>Street | 7.2                                                  | 3 - 6                    | 6.7       | 7.4       | 7.5       |
| NB Almaden                | 4.5                                                  | 2 - 6                    | 4.3       | 4.6       | 4.8       |
| SB Almaden                | 9.4                                                  | 2 - 8                    | 9.4       | 8.9       | 9.8       |


## **APPENDIX E. SPEED DATA**















# APPENDIX F. PEAK HOUR TRAFFIC COUNTS

| Node | Intersection               | Period | Peak          | No  | rthbou | ınd | Ea  | astbou | ınd | Sc  | uthbou | ınd | We  | estbou | nd | Count    |
|------|----------------------------|--------|---------------|-----|--------|-----|-----|--------|-----|-----|--------|-----|-----|--------|----|----------|
| Noue | mersection                 | Pellou | Hour          | L   | Т      | R   | L   | Т      | R   | L   | Т      | R   | L   | Т      | R  | Date     |
| 3249 | ALMADEN /PARK              | PM     | 5:00-<br>6:00 | 162 | 352    | 107 | 90  | 582    | 380 | 101 | 1160   | 66  | 266 | 334    | 36 | 10/18/16 |
| 3061 | ALMADEN /SAN<br>CARLOS     | PM     | 5:00-<br>6:00 | 107 | 198    | 22  | 48  | 351    | 253 | 65  | 920    | 108 | 0   | 187    | 32 | 10/18/16 |
| 3251 | ALMADEN/SAN<br>FERNANDO    | PM     | 4:45-<br>5:45 | 36  | 175    | 63  | 25  | 184    | 224 | 110 | 1179   | 14  | 168 | 45     | 47 | 10/25/16 |
| 3252 | ALMADEN/SANTA<br>CLARA (E) | PM     | 5:00-<br>6:00 | 21  | 275    | 123 | 27  | 107    | 162 | 101 | 499    | 10  | 256 | 148    | 46 | 5/5/15   |
| 3253 | ALMADEN/SANTA<br>CLARA (W) | РМ     | 5:00-<br>6:00 | 0   | 0      | 0   | 0   | 143    | 173 | 85  | 404    | 56  | 95  | 128    | 0  | 5/5/15   |
| 3244 | ALMADEN/WOZ                | РМ     | 5:00-<br>6:00 | 81  | 131    | 186 | 0   | 207    | 52  | 35  | 246    | 32  | 134 | 363    | 0  | 5/12/15  |
| 4087 | BALBACH/MARKET             | РМ     | 5:00-<br>6:00 | 26  | 103    | 37  | 81  | 321    | 78  | 0   | 0      | 0   | 0   | 206    | 24 | 12/6/16  |
| 3077 | BIRD/SAN CARLOS            | РМ     | 5:00-<br>6:00 | 6   | 119    | 34  | 11  | 68     | 5   | 17  | 28     | 34  | 12  | 107    | 67 | 10/14/14 |
| 3513 | FIRST/SANTA CLARA          | РМ     | 5:00-<br>6:00 | 72  | 120    | 72  | 65  | 793    | 0   | 0   | 0      | 0   | 0   | 540    | 38 | 3/4/14   |
| 3506 | FIRST/REED                 | PM     | 4:30-<br>5:30 | 68  | 198    | 16  | 210 | 598    | 64  | 174 | 333    | 187 | 11  | 412    | 32 | 5/12/15  |
| 3510 | FIRST/SAN CARLOS           | PM     |               | 0   | 0      | 0   | 0   | 0      | 159 | 0   | 1252   | 149 | 0   | 0      | 0  | 5/12/15  |
| 3511 | FIRST/SAN<br>FERNANDO      | PM     | 5:00-<br>6:00 | 0   | 0      | 0   | 0   | 613    | 212 | 96  | 730    | 97  | 163 | 414    | 0  | 5/25/17  |

| No do | Intersection            | Daviad | Peak          | No  | rthbou | ınd | Eastbound |     |     | So  | uthbou | ınd | Westbound |     |     | Count   |
|-------|-------------------------|--------|---------------|-----|--------|-----|-----------|-----|-----|-----|--------|-----|-----------|-----|-----|---------|
| Node  |                         | Period | Hour          | L   | Т      | R   | L         | Т   | R   | L   | Т      | R   | L         | Т   | R   | Date    |
| 3512  | FIRST/SAN<br>SALVADOR   | PM     | 4:50-<br>5:50 | 0   | 0      | 0   | 0         | 705 | 175 | 151 | 805    | 114 | 155       | 430 | 0   | 2/25/14 |
| 3537  | FOURTH /REED            | PM     | 4:15-<br>5:15 | 34  | 88     | 29  | 51        | 653 | 60  | 121 | 550    | 47  | 55        | 346 | 30  | 2/18/16 |
| 3538  | FOURTH /SAN<br>CARLOS   | PM     | 5:00-<br>6:00 | 0   | 0      | 0   | 155       | 78  | 384 | 106 | 903    | 0   | 0         | 0   | 0   | 5/19/15 |
| 3540  | FOURTH /SAN<br>SALVADOR | PM     | 4:30-<br>5:30 | 108 | 365    | 0   | 0         | 0   | 0   | 0   | 492    | 5   | 430       | 286 | 158 | 5/19/15 |
| 3545  | FOURTH /WILLIAM         | PM     | 4:30-<br>5:30 | 131 | 281    | 43  | 71        | 565 | 88  | 184 | 861    | 166 | 0         | 0   | 0   | 2/27/18 |
| 3539  | FOURTH/SAN<br>FERNANDO  | PM     | 5:00-<br>6:00 | 84  | 325    | 64  | 9         | 163 | 276 | 4   | 303    | 24  | 20        | 115 | 10  | 9/12/17 |
| 3541  | FOURTH/SANTA<br>CLARA   | PM     | 5:00-<br>6:00 | 0   | 0      | 0   | 0         | 222 | 139 | 49  | 564    | 107 | 72        | 122 | 0   | 11/3/16 |
| 3107  | MARKET/SAN<br>CARLOS    | PM     | 5:00-<br>6:00 | 80  | 489    | 255 | 67        | 223 | 0   | 0   | 0      | 0   | 0         | 226 | 85  | 2/25/14 |
| 3669  | MARKET /SAN<br>SALVADOR | PM     | 5:00-<br>6:00 | 36  | 412    | 31  | 55        | 107 | 0   | 0   | 0      | 0   | 0         | 172 | 136 | 5/12/15 |
| 3667  | MARKET/SAN<br>FERNANDO  | PM     | 4:45-<br>5:45 | 0   | 0      | 0   | 0         | 714 | 139 | 55  | 267    | 74  | 106       | 494 | 0   | 3/4/14  |
| 3670  | MARKET/SANTA<br>CLARA   | PM     | 4:45-<br>5:45 | 0   | 250    | 344 | 257       | 263 | 218 | 408 | 610    | 0   | 0         | 0   | 0   | 3/17/16 |
| 3671  | MARKET/ST JAMES         | PM     | 5:00-<br>6:00 | 29  | 225    | 69  | 7         | 279 | 192 | 10  | 123    | 6   | 27        | 111 | 13  | 11/9/16 |

| Node | Intersection            | Period | Peak          | Northbound |      |     | Eastbound |     |     | Sc  | uthbou | We  | estbou | Count |     |          |
|------|-------------------------|--------|---------------|------------|------|-----|-----------|-----|-----|-----|--------|-----|--------|-------|-----|----------|
| node |                         | Penou  | Hour          | L          | Т    | R   | L         | T   | R   | L   | Т      | R   | L      | Т     | R   | Date     |
| 3731 | PARK/WOZ                | PM     | 5:00-<br>6:00 | 27         | 1337 | 85  | 44        | 134 | 0   | 0   | 0      | 0   | 0      | 75    | 337 | 9/12/17  |
| 3750 | REED/SECOND             | PM     | 5:00-<br>6:00 | 20         | 36   | 24  | 34        | 695 | 33  | 136 | 153    | 17  | 33     | 374   | 17  | 10/20/16 |
| 3751 | REED/SEVENTH            | PM     | 5:00-<br>6:00 | 1          | 202  | 0   | 0         | 0   | 0   | 0   | 904    | 665 | 36     | 291   | 114 | 5/19/15  |
| 3753 | REED/THIRD              | PM     | 5:00-<br>6:00 | 35         | 194  | 0   | 74        | 0   | 330 | 0   | 1216   | 48  | 0      | 0     | 0   | 10/28/15 |
| 3766 | SAN CARLOS /THIRD       | PM     | 4:45-<br>5:45 | 71         | 112  | 51  | 49        | 159 | 83  | 20  | 28     | 35  | 22     | 132   | 48  | 11/9/16  |
| 3764 | SAN<br>CARLOS/SECOND    | PM     | 5:00-<br>6:00 | 57         | 220  | 25  | 112       | 94  | 166 | 53  | 860    | 105 | 195    | 133   | 60  | 2/13/13  |
| 3763 | SAN CARLOS/WOZ          | PM     | 5:00-<br>6:00 | 70         | 229  | 14  | 103       | 64  | 112 | 31  | 739    | 110 | 181    | 138   | 37  | 2/6/13   |
| 3770 | SAN<br>FERNANDO/SECOND  | PM     | 5:00-<br>6:00 | 21         | 251  | 146 | 29        | 105 | 139 | 111 | 454    | 22  | 280    | 154   | 55  | 2/13/13  |
| 3773 | SAN<br>FERNANDO/THIRD   | PM     | 5:00-<br>6:00 | 55         | 269  | 130 | 34        | 101 | 163 | 97  | 443    | 43  | 264    | 152   | 47  | 2/5/13   |
| 3779 | SAN<br>SALVADOR/SECOND  | PM     | 5:00-<br>6:00 | 0          | 0    | 0   | 0         | 884 | 268 | 30  | 191    | 76  | 0      | 472   | 0   | 3/12/13  |
| 4111 | SAN<br>SALVADOR/SEVENTH | PM     | 5:00-<br>6:00 | 99         | 314  | 72  | 0         | 0   | 184 | 51  | 1313   | 88  | 297    | 0     | 117 | 7/17/13  |
| 3781 | SAN<br>SALVADOR/THIRD   | PM     | 5:00-<br>6:00 | 0          | 0    | 0   | 0         | 268 | 178 | 88  | 978    | 113 | 214    | 180   | 0   | 3/19/13  |

| Node | Intersection          | Period | Peak<br>Hour  | Northbound |     |    | Eastbound |     |    | Sc  | uthbou | Westbound |     |     | Count |          |
|------|-----------------------|--------|---------------|------------|-----|----|-----------|-----|----|-----|--------|-----------|-----|-----|-------|----------|
| Noue |                       |        |               | L          | Т   | R  | L         | Т   | R  | L   | Т      | R         | L   | Т   | R     | Date     |
| 3785 | SANTA CLARA/10TH      | PM     | 5:00-<br>6:00 | 0          | 0   | 0  | 0         | 74  | 47 | 194 | 1205   | 115       | 158 | 218 | 0     | 3/19/13  |
| 3782 | SANTA<br>CLARA/SECOND | PM     | 5:00-<br>6:00 | 0          | 0   | 0  | 0         | 115 | 54 | 84  | 1273   | 55        | 66  | 123 | 0     | 3/12/13  |
| 3786 | SANTA CLARA/THIRD     | PM     | 5:00-<br>6:00 | 3          | 273 | 45 | 7         | 3   | 17 | 67  | 1009   | 32        | 76  | 9   | 68    | 3/20/13  |
| 3797 | SECOND/WILLIAM        | РМ     | 4:45-<br>5:45 | 0          | 0   | 0  | 0         | 85  | 35 | 90  | 482    | 71        | 63  | 130 | 0     | 10/17/13 |
| 3805 | SEVENTH/WILLIAM       | PM     | 5:00-<br>6:00 | 0          | 0   | 0  | 0         | 106 | 44 | 65  | 492    | 32        | 61  | 62  | 0     | 10/17/13 |
| 3827 | THIRD/WILLIAM         | PM     | 5:00-<br>6:00 | 27         | 361 | 52 | 25        | 123 | 0  | 0   | 0      | 0         | 0   | 89  | 66    | 3/12/13  |

# APPENDIX G. VEHICLE ROUTES ADJUSTED FOR ALMADEN CONVERSION

| Adjusted Routes |
|-----------------|
| 1-19            |
| 7-36            |
| 8-36            |
| 13-16           |
| 13-28           |
| 13-31           |
| 13-35           |
| 17-35           |
| 18-34           |
| 22-34           |
| 23-34           |
| 27-32           |
| 35-34           |
| 37-34           |
| 40-34           |
| 50-26           |
| 51-34           |
| 66-18           |
| 66-30           |
| 66-7            |
| 68-13           |
| 70-13           |
| 70-15           |
| 70-16           |
| 70-50           |
| 70-51           |
| 70-68           |
| 70-88           |
| 72-12           |
|                 |

- 72-13
- 72-53
- 73-15
- 73-16
- 73-41
- 73-42
- 73-74
- 73-9
- 74-24
- 75-57
- 76-112
- 76-19
- 76-21
- 76-22
- 76-62
- 76-65
- 77-54
- 66-5
- 67-9
- 70-12
- 70-14
- 71-8
- 71-9
- 74-20
- 74-21
- 74-22
- 76-18