
DESIGN, MODELING AND CONTROL OF A TWO-WHEEL BALANCING ROBOT DRIVEN

BY BLDC MOTORS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Mechanical Engineering

by

Charles T. Refvem

December 2019

© 2019

Charles T. Refvem

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Design, Modeling and Control of a Two-wheel Bal-

ancing Robot Driven by BLDC Motors

AUTHOR: Charles T. Refvem

DATE SUBMITTED: December 2019

COMMITTEE CHAIR: William R. Murray, Ph.D.

Professor of Mechanical Engineering

COMMITTEE MEMBER: Charles Birdsong, Ph.D.

Professor of Mechanical Engineering

COMMITTEE MEMBER: John Ridgely, Ph.D.

Professor of Mechanical Engineering

iii

ABSTRACT

Design, Modeling and Control of a Two-wheel Balancing Robot Driven by BLDC

Motors

Charles T. Refvem

The focus of this document is on the design, modeling, and control of a self-balancing two wheel

robot, hereafter referred to as the balance bot, driven by independent brushless DC (BLDC) motors.

The balance bot frame is composed of stacked layers allowing a lightweight, modular, and rigid

mechanical design. The robot is actuated by a pair of brushless DC motors equipped with Hall

effect sensors and encoders allowing determination of the angle and angular velocity of each wheel.

Absolute orientation measurement is accomplished using a full 9-axis IMU consisting of a 3-axis

gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer.

The control algorithm is designed to minimize deviations from a set point specified by an external

radio remote control, which allows the remote operator to steer and drive the bot wirelessly while it

remains balanced. Multiple dynamic models are proposed in this analysis, and the selected model

is used to develop a linear-quadratic regulator based state-feedback controller to perform reference

tracking. Controller tracking performance is improved by incorporating a pre-filter stage between

the setpoint command from the remote control and the state-feedback controller.

Modeling of the actuator dynamics is considered briefly and is discussed in relation to the con-

trol algorithm used to balance the robot. Electrical and software design implementations are also

presented with a focus on effective implementation of the proposed control algorithms.

Simulated and physical testing results show that the proposed balance bot and controller design are

not only feasible but effective as a means of achieving robust performance under dynamic tracking

profiles provided by the remote control.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF LISTINGS . xiii

LIST OF SYMBOLS . xiv

CHAPTER

1 An Introduction to Balancing Robots . 1

1.1 Prior Work . 2

2 Dynamic Modeling . 5

2.1 Modeling Goals . 5

2.1.1 Initial Scope . 5

2.1.2 Revised Scope . 5

2.2 Coordinate System and Parameter Definitions . 6

2.2.1 Two Degree-of-Freedom Model . 6

2.2.2 Three Degree-of-Freedom Model . 7

2.3 System Modeling using Energy Methods . 8

2.4 Two Degree-of-Freedom Model . 9

2.4.1 Potential Energy . 10

2.4.2 Kinetic Energy . 10

2.4.3 Lagrangian . 10

2.5 Three Degree-of-Freedom Model . 11

2.5.1 Potential Energy . 11

2.5.2 Kinetic Energy . 11

2.5.3 Lagrangian . 12

2.6 Linearized Equations of Motion . 13

3 Controlling the Bot . 15

3.1 Cascaded PID Control . 15

3.2 State Feedback Control . 16

v

3.2.1 Pole Placement . 17

3.2.2 Linear Quadratic Regulators . 19

4 Mechanical Design . 21

4.1 Design Overview . 21

4.2 Motor Selection . 21

5 Electronics Design . 27

5.1 Component Selection and Circuit Design . 27

5.1.1 Microcontroller and Development Board . 27

5.1.2 Motor Driver . 28

5.1.3 Current Sensor . 28

5.1.4 Inertial Measurement Unit . 30

5.1.5 Battery and Protection Circuitry . 31

5.1.6 Radio Receiver . 33

5.1.7 Quadrature Encoder . 35

5.1.8 Hall Effect Sensors . 36

5.2 Printed Circuit Board Design . 36

6 Modeling and Simulation . 37

6.1 Two Degree-of-freedom Model . 38

6.1.1 Decoupled EOMs . 38

6.1.2 Linearization . 40

6.1.3 Output Equations . 41

6.1.4 Controllability and Observability . 41

6.2 Three Degree-of-freedom Model . 43

6.2.1 Linearization . 44

6.2.2 Output Equations . 45

6.2.3 Controllability and Observability . 46

7 Controller Design . 48

7.1 Overall Controller Architecture . 48

7.2 Prefilter . 48

7.3 Feedback Gain . 54

vi

7.3.1 Bryson’s Rule . 54

7.3.2 Discretization and the Discrete-time Algebraic Ricatti Equation 55

7.3.3 Gain Calculation with lqrd . 56

7.3.4 Gain Transformation . 56

7.4 Tracking Control with LQR . 57

7.5 Block Commutation and Actuator Modeling . 58

8 Firmware Design . 59

8.1 Tasks . 59

8.2 Interrupt Service Routines . 64

8.2.1 Hall Sensor Interrupts . 64

8.3 RC Radio Interrupts . 65

8.4 Hardware Drivers . 66

8.5 Firmware Documentation . 67

9 Simulation Results . 68

9.1 Animating the Balance Bot . 73

10 Hardware Testing Results . 75

11 Conclusions and Recommendations . 83

11.1 Tracking versus Regulating . 83

11.2 Modeling for Control and Variable Structure Methods 84

11.3 Hardware and Firmware Limitations . 85

BIBLIOGRAPHY . 87

APPENDICES

A Modeling Details . 89

A.1 2-DOF Model - Kinetic Energy Derivation . 89

A.2 2-DOF Model - Equations of Motion Derivation . 93

A.3 3-DOF Model - Kinetic Energy Derivation . 94

A.4 3-DOF Model - Equations of Motion Derivation . 99

B Observability and Controllability Checks . 103

B.1 2-DOF Model Controllability and Observability Confirmation 103

B.2 3-DOF Model Controllability and Observability Confirmation 105

vii

C Printed Circuit Board Revision History . 110

C.1 Revision 0.0 . 110

C.2 Revision 0.1 . 111

C.3 Revision 0.2 . 112

C.4 Revision 1.0 . 114

C.4.1 Additional PCB Tiers . 116

C.4.2 Micro-pitch Connectors . 117

C.5 Revision 1.1 . 118

D Circuit Design . 121

E Simulation Results . 126

E.1 Simulation #1: 2-DOF Open-loop Testing . 126

E.2 Simulation #2: 2-DOF Closed-loop Testing . 130

E.3 Simulation #3: 3-DOF Closed-loop Testing . 134

E.4 Simulation #4: 3-DOF Closed-loop Testing with Prefilter 140

F Software Documentation . 146

viii

LIST OF TABLES

Table Page

4.1 Motor Requirements. 24

4.2 Viable motor choices that meet most or all requirements. 25

6.1 Numerical mass and geometric properties used to model the balance bot. 38

8.1 Hall-effect sensor sector decoding. 64

ix

LIST OF FIGURES

Figure Page

1.1 The robot Handle, created by Boston Dynamics. 2

1.2 A two-wheel balancing robot designed at The University of Western Australia
School of Mechanical Engineering[14]. 3

1.3 A two-wheel balancing robot designed at The Department of Electrical and Com-
puter Engineering, Sri Lanka Institute of Information Technology [11]. 4

2.1 Schematic representation of the 2-DOF balance bot model coordinate definitions. . 6

2.2 Schematic representation of the 3-DOF balance bot model coordinate definitions. . 7

3.1 Pitch controller and position controller in cascaded configuration. 16

4.1 Layout of the balance bot mechanical hardware with main components labeled. . . 22

4.2 Photograph of the completed balance bot hardware; front view shown. 23

4.3 BLY17 Brushless DC motor from Anaheim Automation. 25

5.1 Functional block diagram for DRV8313 BLDC motor driver provided by TI[18]. . . 29

5.2 Functional block diagram for ACS70331 BLDC motor driver provided by Allegro
Microsystems[2] . 30

5.3 Breakout board housing the Bosch BNO055 produced by Adafruit Industries. . . . 31

5.4 Turnigy 3S 700mAh lithium polymer battery. 32

5.5 Battery protection schematic snippet. 33

5.6 TQi RC radio receiver from Traxxas[19]. 34

5.7 RC radio PWM output: full reverse (top); neutral (center); full forward (bottom). 34

5.8 CUI AMT11 modular incremental encoder. 36

7.1 High-level balance bot controller architecture. 48

8.1 State-transition diagram for balance bot controller task. 59

8.2 Arming sequence on RC remote controller. 60

8.3 Histogram showing variance in loop period, ∆t, over 120 [s] interval of testing. . . 62

x

8.4 Fault trigger commands: temporary fault (left); temporary fault with soft reset
(center); latched fault (right). 63

9.1 Open-loop response for 2-DOF model: pitch angle, θ. 69

9.2 Closed-loop response for 2-DOF model: pitch angle, θ. 70

9.3 Closed-loop response for 2-DOF and 3-DOF models: pitch angle, θ. 71

9.4 Throttle command for 3-DOF model in tracking configuration. 73

9.5 Tracking response for 3-DOF model: horizontal displacement, ẋ. 73

9.6 Still frame from animation of open-loop response of 2-DOF model. 74

10.1 Measured system response: motor shaft angle, x̂1. 76

10.2 Measured system response: pitch angle, x̂2. 76

10.3 Measured system response: yaw angle, x̂3. 77

10.4 Measured system response: motor shaft velocity, x̂4. 77

10.5 Measured system response: pitch velocity, x̂5. 78

10.6 Measured system response: yaw velocity, x̂6. 78

10.7 Measured system response: motor shaft angle, x̂1. 79

10.8 Measured system response: pitch angle, x̂2. 80

10.9 Measured system response: yaw angle, x̂3. 80

10.10 Measured system response: motor shaft velocity, x̂4. 81

10.11 Measured system response: pitch velocity, x̂5. 81

10.12 Measured system response: yaw velocity, x̂6. 82

C.1 Render of PCB revision 0.1, created with Autodesk Eagle. 112

C.2 Render of PCB revision 0.2, created with Autodesk Eagle. 113

C.3 Render of PCB revision 1.0, created with Autodesk Eagle; main board shown. . . 115

C.4 Render of PCB revision 1.0, created with Autodesk Eagle; IMU board shown. . . . 116

C.5 Render of PCB revision 1.0, created with Autodesk Eagle; motor board shown. . . 117

C.6 Render of PCB revision 1.1, created with Autodesk Eagle; main board shown. . . 119

C.7 Render of PCB revision 1.1, created with Autodesk Eagle; IMU board shown. . . . 119

C.8 Render of PCB revision 1.1, created with Autodesk Eagle; motor board shown. . . 120

xi

E.1 Block diagram for open-loop 2-DOF model. 126

E.2 Open-loop response for 2-DOF model: horizontal displacement, x. 128

E.3 Open-loop response for 2-DOF model: pitch angle, θ. 128

E.4 Open-loop response for 2-DOF model: horizontal velocity, ẋ. 129

E.5 Open-loop response for 2-DOF model: pitch velocity, θ̇. 129

E.6 Block diagram for closed-loop 2-DOF model. 130

E.7 Closed-loop response for 2-DOF model: horizontal displacement, x. 131

E.8 Closed-loop response for 2-DOF model: pitch angle, θ. 131

E.9 Closed-loop response for 2-DOF model: horizontal velocity, ẋ. 132

E.10 Closed-loop response for 2-DOF model: pitch velocity, θ̇. 132

E.11 Closed-loop response for 2-DOF model: input torque, Tm. 133

E.12 Block diagram for closed-loop 3-DOF model. 134

E.13 Closed-loop response for 3-DOF and 2-DOF models: horizontal displacement, x. . 136

E.14 Closed-loop response for 3-DOF and 2-DOF models: pitch angle, θ. 136

E.15 Closed-loop response for 3-DOF model: yaw angle, ψ. 137

E.16 Closed-loop response for 3-DOF and 2-DOF models: horizontal velocity, ẋ. 137

E.17 Closed-loop response for 3-DOF and 2-DOF models: pitch velocity, θ̇. 138

E.18 Closed-loop response for 3-DOF model: yaw velocity, ψ̇. 138

E.19 Closed-loop response for 3-DOF and 2-DOF models: input torque, Tm. 139

E.20 Block diagram for closed-loop 3-DOF model. 140

E.21 Throttle command for closed-loop 3-DOF model. 141

E.22 Steering command for closed-loop 3-DOF model. 141

E.23 Tracking response for 3-DOF model: horizontal displacement, x. 142

E.24 Tracking response for 3-DOF model: pitch angle, θ. 142

E.25 Tracking response for 3-DOF model: yaw angle, ψ. 143

E.26 Tracking response for 3-DOF model: horizontal velocity, ẋ. 143

E.27 Tracking response for 3-DOF model: pitch velocity, θ̇. 144

E.28 Tracking response for 3-DOF model: yaw velocity, ψ̇. 144

E.29 Tracking response for 3-DOF model: input torque, Tm. 145

xii

LIST OF LISTINGS

8.1 Task timing code snippet. 61

8.2 Heading unwrapping code snippet. 62

8.3 Timer callback code snippet. 66

B.1 Controllability check for 2-DOF system model: controllability 2DOF.m. 103

B.2 Output of controllability check script for 2-DOF system model. 103

B.3 Observability check for 2-DOF system model: observability 2DOF.m. 104

B.4 Output of observability check script for 2-DOF system model. 104

B.5 Controllability check script for 3-DOF system model: controllability 3DOF.m. . . 106

B.6 Output of controllability check script for 3-DOF system model. 106

B.7 Observability check script for 3-DOF system model: observability 3DOF.m. 107

B.8 Output of observability check script for 3-DOF system model. 107

E.1 2-DOF equations of motion function file: EOM 2DOF.m. 127

E.2 3-DOF equations of motion function file: EOM 3DOF.m. 135

xiii

LIST OF SYMBOLS

mw Mass of wheel.

mb Mass of body.

rw Radius of wheel.

rb Distance from center of wheel to c.g. of body.

w Distance between contact points of left and right wheels.

Iw, Iw, Iw,xx, Iw,yy, Iw,zz Centroidal moment of inertia for wheel.

Ib, Ib, Ib,xx, Ib,yy, Ib,zz Centroidal moment of inertia for body.

g Acceleration due to gravity.

x Horizontal displacement of balance bot.

θ Pitch angle: angular displacement of body about axle.

ψ Yaw angle: angular displacement of body about vertical axis.

ẋ Horizontal velocity of balance bot.

θ̇ Pitch velocity: angular velocity of body about axle.

ψ̇ Yaw velocity: angular velocity of body about vertical axis.

T Total kinetic energy in the system.

V Total potential energy in the system.

L Lagrangian, defined as T − V .

qi Generalized coordinate associated with the ith degree of free-

dom.

Qi Generalized, non-conservative, force corresponding to the ith

degree of freedom.

r Raw reference signal from RC remote.

x State vector.

xdes Desired state vector (before prefiltering).

xref Reference state vector (after prefiltering).

x̂ Transformed state vector.

x̂des Transformed desired state vector (before prefiltering).

x̂ref Transformed reference state vector (after prefiltering).

xiv

u Model input vector; composed of

[
Tm

]
for the two degree

of freedom model and composed of

[
Tm,r Tm,l

]>
for the

three degree of freedom model

Q LQR tuning parameter; associates cost with states.

R LQR Tuning Parameter; associates cost with inputs.

K State-feedback gain matrix.

K̂ Transformed state-feedback gain matrix.

xv

Chapter 1

AN INTRODUCTION TO BALANCING ROBOTS

Self-balancing robots have existed for years. Most notably the Segway has been prominent in media

over the last two decades. The principle is simple: a robot is equipped with one or more wheels

allowing it drive forward and backward to compensate as the robot begins to fall. While practical

implementations are limited, balance bots are pertinent in the field of control theory, because they

are naturally unstable systems. In other words, without a closed-loop feedback controller the balance

bot is bound to fall over if given even a slight perturbation from equilibrium. Only through proper

controller design can a stable system be achieved. The same theory used in the development of a

balance bot can be applied to any system that is naturally unstable, such as a rocket or a spacecraft.

In recent years, more attention has been focused on balancing robots as computers have become

more capable and actuators have become more powerful. Several remarkable examples of the recent

attention to balancing robots can be found by looking at the line of products produced by Boston

Dynamics1. Nearly all of their designs require stabilization of otherwise naturally unstable systems.

The robot Handle, produced by Boston Dynamics and shown in Figure 1.1, is an excellent example

of a wheeled balancing robot. Handle is a package handling robot designed to agilely maneuver in

a warehouse moving packages between pallets.

There are many other smaller scale but similar products available, such as the Hoverboard2, the

Sphero3, and the Onewheel4. The Hoverboard and Onewheel even incorporate the human element

as part of the control loop.

1Boston Dynamics is a robotics company started in 1992 that focuses mainly on walking bipedal and quadrupedal
robots. They are most famous for their quadrupedal robot BigDog developed for the US military.

2The Hoverboard is a two wheeled balancing scooter that the rider stands on in an upright, forward-facing, position.
The rider can then apply forward or backward pressure with his or her feet to drive and steer the scooter.

3Sphero is a small spherical robot that moves by rolling its outer shell. Owners can steer and drive the robot
wirelessly.

4The Onewheel is a single wheel scooter that the rider stands on similar to a skateboard. The rider can lean
forward or backward as well as left and right to drive and steer the scooter.

1

Figure 1.1: The robot Handle, created by Boston Dynamics.

1.1 Prior Work

There has been considerable prior work done in the field of balancing robots, both commercially and

academically focused. Since 2018 alone, several thousand scholarly articles regarding two-wheeled

balancing robots have been published. While the field is rather saturated, the project remains

popular among students studying control theory due to the appealing small scale and considerable

depth of study. This section will highlight several notable works over the last two decades.

A researcher at The University of Western Australia School of Mechanical Engineering completed

a master’s thesis titled Balancing a Two-Wheeled Autonomous Robot [14] in 2003. The author

proposes a simplified linear model of the balance bot considering only forward motion and tilting

motion. Several different control algorithms are proposed, including state feedback regulator design

using both LQR and pole placement as well as a tracking controller design using a PID controller.

2

The paper additionally discusses implementation of a Kalman filter to provide usable data from

sensor measurements. The photograph in Figure 1.2 shows the balance bot used in [14].

Figure 1.2: A two-wheel balancing robot designed at The University of Western Aus-
tralia School of Mechanical Engineering[14].

A paper presented at the the 2010 IEEE/RSJ International Conference on Intelligent Robots and

Systems proposes a control algorithm using Backstepping Sliding-Mode Control and Fuzzy Basis

Function Networks[7]. Although no physical implementation was created, simulated testing shows

that the methods proposed in [7] can not only stabilize the balance bot, but also track trajectories

in an X-Y plane. The implementation of Sliding-Mode Control reduces the need to have an accurate

set of parameters describing the system, thereby offering more robust control.

Researchers at the Department of Electrical and Computer Engineering, Sri Lanka Institute of Infor-

mation Technology published a paper surveying implementation techniques for two-wheel balancing

robots in 2019[11]. The work compares multiple controller and filter designs commonly used in

3

balancing robots. The testing results found in this effort suggest that a PD controller is ideal for

developing stability with minimal oscillation. Figure 1.3 shows the balance bot used for validation

in [11].

Figure 1.3: A two-wheel balancing robot designed at The Department of Electrical and
Computer Engineering, Sri Lanka Institute of Information Technology [11].

4

Chapter 2

DYNAMIC MODELING

2.1 Modeling Goals

This chapter covers the dynamic model of a self-balancing robot subject to a set of assumptions

regarding the physical dynamics. The balance bot is reduced to a set of rigid bodies: the wheels

and the body of the robot. The drawings in Figures 2.1 and 2.2 depict schematic representations of

the balance bot.

2.1.1 Initial Scope

The initial scope is to model the system assuming the balance bot has only two degrees of freedom,

or DOF, as indicated in Figure 2.1. Modeling the system with two DOF provides enough freedom

to balance the bot and to drive the bot forward and backward, but without the ability to turn. For

this simplified model, there are four states representing the position and velocity for each degree

of freedom. With these four states, the dynamics of the actuators are ignored; however, additional

states representing the actuator dynamics could be considered allowing the dynamic behavior of the

motors to be included in the system model. Actuator dynamics are considered in greater detail in

Section 7.5.

2.1.2 Revised Scope

The model is extended to include a third DOF: rotation about a vertical axis. This additional DOF

is added to allow the robot to steer while driving and balancing. This extension adds two additional

states to the system: position and velocity for the vertical rotary axis. The actuator models could

be included in this augmented system as well but are not included in the following analysis.

5

x

rb

rw

mw

mb

Figure 2.1: Schematic representation of the 2-DOF balance bot model coordinate def-
initions.

2.2 Coordinate System and Parameter Definitions

2.2.1 Two Degree-of-Freedom Model

The simplified, 2-DOF model of the balance bot considers two rigid bodies: the body and two wheels

connected by an imaginary1 axle. The body, with mass mb is at an angle θ from the vertical axis;

the angle θ is also referred to as the pitch angle. The wheels are lumped together with mass 2mw

and roll on what is assumed to be a flat horizontal surface. The entire system is displaced a distance

x, measured to the center of the imaginary axle connecting the two wheels.

1The 2-DOF model assumes that both wheels are connected by a rigid axle and therefore spin with the same
angular velocity. Physically, the two wheels are free to spin independently; however, if both motors are always driven
with the same duty-cycle, and the wheels remain in contact with the ground, they will remain nearly synchronized.

6

ψ

x

rb

rw

mw

mb

Figure 2.2: Schematic representation of the 3-DOF balance bot model coordinate def-
initions.

2.2.2 Three Degree-of-Freedom Model

The 3-DOF model of the balance bot considers three rigid bodies: the body and the two wheels

considered independently. The body has mass mb and is at a pitch angle θ from the vertical axis

and has rotated by an angle ψ about the vertical axis; the angle ψ is also referred to as the yaw

angle. The wheels each have mass mw and roll on a flat horizontal surface. The entire system is

displaced a distance x measured to the center of the wheels.

7

2.3 System Modeling using Energy Methods

The balance bot models considered here have either two or three DOF. Depending on the selected

model, 2-DOF or 3-DOF, two or three second-order differential equations are necessary to describe

the dynamics of the entire system2.

Using methods from classical mechanics, such as Newton-Euler methods, would lead to the correct

set of equations, but would introduce excess variables and equations in the process; these excess

equations would result from the pin forces and reaction forces that show up when summing moments

and forces for each body. These extra terms can be eliminated through substitution. Instead, other

methods are used in this analysis that do not introduce extra terms in the first place.

Energy methods, such as used in Lagrangian mechanics, provide a solution without consideration

of the pin and reaction forces. Lagrange’s equation, shown in Equation 2.1, is often a more direct

method for finding the system of ODEs constituting the equations of motion.

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi i = 1, 2, . . . (2.1)

Where L is a property called the Lagrangian, qi is a generalized coordinate describing one of the

degrees of freedom in the system, and Qi is a generalized non-conservative force acting on the

generalized coordinate qi. The set of generalized coordinates are the parameters necessary to define

the position and orientation of the system and constrain each degree of freedom.

For the 2-DOF model, there are two generalized coordinates: q1 = x, the horizontal displacement,

and q2 = θ, the pitch angle.

For the 3-DOF model, there are three generalized coordinates: q1 = x, the horizontal displacement,

q2 = θ, the pitch angle, and q3 = ψ, the yaw angle.

The generalized forces represent the non-conservative forces that can do work on the system due to

displacement along each generalized coordinate. For the balance bot, the generalized forces Q1, Q2,

and Q3 come solely from the torque applied by the motors. The proposed model neglects rolling

resistance and bearing friction; if these passive dissipative forces were to be included as part of the

2Two or three second-order differential equations are necessary if the actuator dynamics are ignored. Additional
differential equations are required if the motor modeling is to be incorporated into the complete system model.

8

model, terms representing the friction forces and rolling resistance would appear in Q1, Q2, and Q3

as well.

A systematic way to validate the selection of generalized coordinates is to conceptually freeze all

but one of the selected coordinate axes in succession, while considering the range of motion of the

remaining unfrozen axis. After considering each axis one by one, if each remaining axis is able to

change freely while the others are frozen, then the set of generalized coordinates is valid3.

For the 2-DOF model, if the wheels of the balance bot were frozen to the ground, then the horizontal

displacement, x, would be constrained, but the pitch angle, θ, would be free to change; if the angle

of the body were frozen, then θ would be constrained, but x would free to change. Thus, each axis

is able to move independently of each other axis. Similar conclusions can be made for the 3-DOF

model.

The parameter L is a property of the system called the Lagrangian, which describes the difference

between kinetic energy, T , and potential energy, V .

L = T − V (2.2)

The integral of L with respect to time is called the action. According to the principle of least action,

all physical systems must minimize action over any period of time[9]. Lagrange’s equation, shown

above as Equation 2.1, defines a set of differential equations describing how motion about each

degree of freedom can change with respect to time such that the principle of least action is satisfied.

Lagrange’s equation can be derived using the calculus of variations[9].

2.4 Two Degree-of-Freedom Model

This section covers the derivation of the equations of motion for the 2-DOF model of the balance

bot using the Lagrangian and Lagrange’s equation.

3This validation comes from the idea of holonomic constraints. For a valid set of generalized coordinates the system
constraints must be holonomic.

9

2.4.1 Potential Energy

The potential energy in the system is purely due to the gravitational potential energy of the body

and is defined relative to a datum at the center of the wheel. The potential energy of the wheels

could be considered as well, but the model assumes that the wheels will never change elevation, so

the potential energy of the wheels always remains constant.

V = mbrb cos θ g (2.3)

2.4.2 Kinetic Energy

The kinetic energy in the system is due to the linear and angular velocities of the body and both

wheels. The linear and angular velocities must be expressed in terms of the coordinate systems that

will be used in the Lagrangian so that the kinetic energy T is defined with respect to the generalized

coordinates q1 . . . qn.

T =
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 (2.4)

Where mx is a constant describing the effective composite mass for motion along the x-axis and

Iθ is a constant describing the effective composite inertia for motion about the pitch axis. A full

derivation of Equation 2.4 can be found in Appendix A.

mx = mb + 2mw + 2
Iw,yy
r2w

and Iθ = mbr
2
b + Ib,yy

2.4.3 Lagrangian

In this section the Lagrangian is used with Lagrange’s equation to develop the system of ODEs

describing the equations of motion. The Lagrangian is defined as the difference between kinetic and

potential energy.

L = T − V (2.5)

L =
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 −mbrb cos θ g (2.6)

10

Plugging L into Lagrange’s equation results in a system of two second-order differential equations.

mxẍ+mbrb cos θ θ̈ = −2
1

rw
Tm +mbrb sin θ θ̇2 (2.7)

mbrb cos θ ẍ+ Iθ θ̈ = 2Tm +mbrb sin θ g (2.8)

A derivation for Equations 2.7 and 2.8 can also be found in Appendix A. These two second-order

differential equations are coupled; that is, the highest derivatives, ẍ and θ̈, appear in both equations.

The two coupled equations can be described together in a single matrix equation, which can then

be decoupled using matrix inversion techniques.

 mx mbrb cos θ

mbrb cos θ Iθ

ẍ
θ̈

 =

−2 1
rw
Tm +mbrb sin θ θ̇2

2Tm +mbrb sin θ g

 (2.9)

2.5 Three Degree-of-Freedom Model

This section repeats the analysis determining the equations of motion, but for the 3-DOF model of

the balance bot.

2.5.1 Potential Energy

The potential energy in the system does not change with the additional degree of freedom.

V = mbrb cos θ g (2.10)

2.5.2 Kinetic Energy

The kinetic energy in the system changes considerably with the addition of the third degree of

freedom and becomes significantly more complicated. As above, the linear and angular velocities

must be determined in terms of the generalized coordinates before the kinetic energy can be expressed

in terms of these coordinates.

11

Defining mx as the effective mass for the x-axis, Iθ as the effective inertia for the pitch axis, and Iψ

as the effective inertia for the yaw axis,

T =
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 +
1

2

(
mbr

2
b sin2 θ + Ib,xx sin2 θ + Ib,zz cos2 θ + Iψ

)
ψ̇2. (2.11)

Where,

mx = mb + 2mw + 2
Iw,yy
r2w

,

Iθ = mbr
2
b + Ib,yy,

Iψ = mw
w2

2
+
Iw,yy
r2w

w2

2
+ 2Iw,zz.

A full derivation of Equation 2.11 can be found in Appendix A.

2.5.3 Lagrangian

The Lagrangian is used with Lagrange’s equation to develop the system of ODEs describing the

equations of motion.

mxẍ+mbrb cos θ θ̈ = − 1

rw
Tm,r +

1

rw
Tm,l +mbrb sin θ θ̇2 (2.12)

mbrb cos θ ẍ+ Iθ θ̈ = Tm,r − Tm,l +mbrb sin θ g

+
(
mbr

2
b + Ib,xx − Ib,zz

)
sin θ cos θ ψ̇2 (2.13)

(
mbr

2
b sin2 θ + Ib,xx sin2 θ + Ib,zz cos2 θ + Iψ

)
ψ̈ = − w

2rw
Tm,r −

w

2rw
Tm,l

− 2
(
mbr

2
b + Ib,xx − Ib,zz

)
sin θ cos θ θ̇ψ̇ (2.14)

12

A derivation for Equations 2.12, 2.13, and 2.14 can also be found in Appendix A. These three

equations are coupled together and can be combined into one matrix equation.

mx mbrb cos θ 0

mbrb cos θ Iθ 0

0 0 mbr
2
b sin

2 θ + Ib,xx sin
2 θ + Ib,zz cos

2 θ + Iψ

ẍ

θ̈

ψ̈

 =

f1(q, q̇,u)

f2(q, q̇,u)

f3(q, q̇,u)

 (2.15)

Where f1, f2, and f3 are functions of lower-order terms and input torques.

f1 = − 1

rw
Tm,r +

1

rw
Tm,l +mbrb sin θ θ̇

2 (2.16)

f2 = Tm,r − Tm,l +mbrb sin θ g +
(
mbr

2
b + Ib,xx − Ib,zz

)
sin θ cos θ ψ̇2 (2.17)

f3 = − w

2rw
Tm,r −

w

2rw
Tm,l − 2

(
mbr

2
b + Ib,xx − Ib,zz

)
sin θ cos θ θ̇ψ̇ (2.18)

2.6 Linearized Equations of Motion

The equations derived in the previous sections for the two and three DOF models are in the in-

convenient form M(q)q̈ = f(q, q̇,u) which naturally results from Lagrange’s equation. Here the

vector parameter u defines the external inputs to the system. The equations can be decoupled by

multiplying each side of the equation by M(q)−1. Any system of ODEs determined by Lagrange’s

equation can be decoupled in this manner because the matrix M(q) is, in general, invertible4 for

systems with non-zero mass associated with each axis.

In order to design a controller for the system, it is desired to rearrange the equations to the form

ẋ = a(x)+b(x)u which is a set of first order differential equations that are nonlinear with respect to

the state variables but are linear with respect to the inputs5. This decoupling can be accomplished

with the following substitutions if the function f(q, q̇,u) is linear with respect to u, which is the

case for both balance bot models.

4It is straightforward to prove that M(q) is invertible by considering an alternate representation of the kinetic
energy T . Consider the quadratic form T = 1

2
q̇>M(q)q̇ relating the time rate-of-change of the generalized coordinates

to the kinetic energy in the system. By definition, kinetic energy is always greater than or equal to zero; further, the
kinetic energy in the system can only be zero when there is no motion. That is, T = 0 if and only if q̇ = 0. Therefore
the matrix M(q) must be positive definite. Positive definite matrices are invertible, therefore the mass matrix must
also be invertible.

5Representing the equations of motion in the form ẋ = a(x) + b(x)u sets the stage for linearization in order to
develop the standard linear time-invariant state-space representation ẋ = Ax +Bu.

13

x =

q
q̇

 (2.19)

a(x) =

 q̇(x)

M(q(x))−1f(q(x), q̇(x),0)

 (2.20)

b(x) =

 0

M(q(x))−1
(
∂f(q(x),q̇(x),u)

∂u

)
 (2.21)

With the equations of motion decoupled, it is straightforward to linearize the system about an

operating point using the Jacobian matrix ∂a(x)
∂x . In order to develop control laws using linear

control theory, a linearized model of the system is required. In operation, the balance bot does

not remain fixed at its operating point, but with proper control does remain near enough to the

operating point that the linearized model still represents the dynamics of the system.

It is generally required that the selected operating point is also an equilibrium point for the system.

The equilibrium point requirement is because the linearization method proposed here relies on

a Taylor series expansion, where the Jacobian matrix represents the first-order component of the

expansion. In order for the dynamics to rely fundamentally on the first-order component, the zeroth-

order components must be negligible, which is only the case when the operating point is very near

to an equilibrium point.

A =
∂a(x)

∂x

∣∣∣∣
x=x0

(2.22)

B = b(x)|x=x0
(2.23)

If x0 is selected as an equilibrium point, the matrices A and B satisfy ẋ = Ax+Bu to O((x−x0)2).

These transformations can be excessively tedious to solve symbolically, particularly due to the inverse

of the large matrix M . Accordingly, these transformations can be completed numerically using the

measured system properties determined from the final design implementation.

14

Chapter 3

CONTROLLING THE BOT

One of the first things to do in designing a control system is to choose the structure or topology of the

controller. The two principal forms of controller are classical controllers and state-space controllers.

Classical controllers, such as PID1 controllers, are designed for single-input, single-output (SISO)

systems. However, the balance bot is inherently a multi-input, multi-output (MIMO) system2, for

which controllers are more easily designed using state-space approaches.

The focus of this chapter is state-feedback controller design; however, for completeness, PID control

is covered briefly.

3.1 Cascaded PID Control

An effective workaround to control SIMO systems with classical controllers is to split the system

model into subsystems, and apply a SISO controller to each subsystem in a cascaded fashion. An

example of a simple cascaded controller design for the 2-DOF balance bot model is shown in Figure

3.1. In this controller design, the inner loop is tuned to balance the robot by regulating the pitch

angle, θ. The outer loop is tuned to control the displacement of the robot by tracking a position

set point using the inner loop as if it were an actuator. The position of the balance bot can be

controlled by changing the setpoint of the inner loop such that the bot will try to drive toward the

disturbance in order to regain balance.

Special care must be taken when tuning cascaded feedback controllers to guarantee that the inner

and outer loops work together as intended. In most cases the inner loop should be tuned more

aggressively than the outer loop so that the inner loop dynamics occur faster than the outer loop

dynamics[4]. In the case of the balance bot, an aggressive inner loop means that the robot will favor

balancing over driving, thus maintaining an upright posture as the outer loop tries to command the

inner loop.

1The term PID controller refers to a proportional-integral-derivative controller, a very common structure for
controlling single-input, single-output systems.

2The 2-DOF model is actually a single-input, multi-output system because both motors are driven with the same
duty-cycle.

15

Figure 3.1: Pitch controller and position controller in cascaded configuration.

Consider the previous example of a cascaded control structure for the 2-DOF balance bot model

in the case where both the inner loop and outer loop are configured as PD controllers. In this

configuration, the feedback parameters represent all system states. If all of the state variables are

measured and fed back to the controller, then the cascaded PID is equivalent to a state feedback

controller[4].

3.2 State Feedback Control

Controller design should start with a simple approach and only grow in complexity as the need

arises. As such, a simple feedback controller is a logical starting place for a MIMO system such as

the balance bot. Additionally, linear control methods should be investigated before more advanced

nonlinear methods are pursued.

For a system in the linear state-space form,

ẋ = Ax +Bu, (3.1)

an input can be defined that will modify the dynamics of the closed-loop system to produce the

desired performance. Such an input can be defined as

u = −Kx, (3.2)

16

where K is a feedback gain matrix used to determine the input u. If Equation 3.2 is substituted

into Equation 3.1, a new homogeneous linear system is created.

ẋ = Ax−BKx (3.3)

ẋ = (A−BK)x (3.4)

3.2.1 Pole Placement

The poles of the new system can be selected by choosing the appropriate values for the elements

composing K such that the matrix A − BK has desirable time-domain or frequency-domain char-

acteristics. Many methods exist for finding gains that will produced desired pole locations. Some

examples may be: Ackerman’s formula[6], conversion to canonical controllable form[6], characteristic

polynomial matching[6], or by directly solving the eigenvalue problem on the matrix A−BK[6].

3.2.1.1 Pole Locations

The locations of the system poles for the linearized model dictate the dynamic response of the system

near the operating point. One method of controller design is to select desired pole locations and

then to determine the gain required to achieve these pole locations. It is challenging to select pole

locations for systems with order higher than two, such as the fourth-order system representing the

2-DOF balance bot. Instead, it may be useful to approximate the system as second-order in an

effort to select dominant poles that dictate the driving dynamics of the system.

3.2.1.2 Dominant Pole Approximation

Consider the characteristic equation for a second-order system parameterized in terms of natural

frequency, ωn, and damping ratio, ζ. Compare the parameterized characteristic equation to the

characteristic equation for a factored second-order system.

(s− λ1)(s− λ2) = 0 (3.5)

s2 − (λ1 + λ2)s+ λ1λ2 = 0 (3.6)

s2 + 2ζωns+ ω2
n = 0 (3.7)

17

By equating the coefficients for each order of s in Equations 3.6 and 3.7 and solving for λ1 and λ2,

the dominant pole locations can be determined as functions of the desired natural frequency, ωn,

and damping ratio, ζ, for the approximated second-order system.

λ1 = −ωn
(
ζ −

√
ζ2 − 1

)
(3.8)

λ2 = −ωn
(
ζ +

√
ζ2 − 1

)
(3.9)

There exist many metrics for selecting a natural frequency and a damping ratio such as the time-

domain characteristics rise time, tr, peak time, tp, settling time, ts, and maximum overshoot MP .

tr =
1

ωn
√

1− ζ2

(
π − arctan

(√
1− ζ2
ζ

))
(3.10)

tp =
π

ωn
√

1− ζ2
(3.11)

ts =
4

ζωn
(within 2% of final value) (3.12)

MP = exp

(
− ζπ√

1− ζ2

)
(3.13)

The remaining pole locations can be made non-dominant by choosing them to be negative and have

significantly larger magnitude than the real parts of λ1 and λ2. Selecting large values for the non-

dominant poles will force the dynamics associated with the non-dominant poles to decay rapidly

compared to the dynamics of the dominant poles.

‖λ3‖ � ‖max(Re(λ1), Re(λ2))‖ (3.14)

‖λ4‖ � ‖max(Re(λ1), Re(λ2))‖ (3.15)

The feedback gain, K, is dependent on the matrices A and B and the desired pole locations λ1

through λ4. The most straight forward method for computing K is to equate the characteristic

polynomial of the system to the desired characteristic polynomial. For a system with four states like

the 2-DOF balance bot model, this process should result in four equations with four unknowns, K1

through K4.

There also exist functions in MATLAB® that perform pole placement such as place() and acker().

In practice, it is often more convenient to use numerical methods provided by software like MATLAB®

18

than to perform pole-placement analytically. Numerical methods such as implemented by the

place() command in MATLAB® are designed to be numerically stable and allow the designer

to rapididly iterate while the controller is being tuned.

3.2.2 Linear Quadratic Regulators

Another method for determining the feedback gainK is through design of a linear quadratic regulator

(LQR). Consider a quadratic cost function that, when minimized over an interval of time [0 tf], will

yield the desired system performance.

J = x(tf)>F x(tf) +

∫ tf

0

(
x>Qx + u>Ru + 2x>Nu

)
dt (3.16)

J is a cost function that can be adjusted by the user to select the desired performance criteria.

There are four main parameters contributing to the cost function.

• F penalizes error in the states at the final time tf .

• Q penalizes error in the states during the transient response.

• R penalizes controller effort, often referred to as fuel consumption.

• N penalizes the product of states and controller input.

In many applications it is useful to consider the “infinite horizon” case; that is, tf →∞. Typically

the first term x(tf)>Fx(tf) is dropped in the infinite horizon case because the second term x>Qx

naturally includes penalty for steady state error as t→ tf . The feedback gain K can be determined

by solving the continuous-time algebraic Ricatti equation (CARE) for a matrix P , and then using

P to determine K. One expression for the CARE is:

A>P + PA− (PB +N)R−1(B>P +N>) +Q = 0 (3.17)

With:

K = R−1(B>P +N>). (3.18)

19

The derivation for the CARE is not included in this document for conciseness but can be found in

[6]. The CARE can be solved analytically, using the Hamiltonian, or in programs like MATLAB®

using the command care(A,B,Q,R,N). It is also possible to get the gain K directly from MATLAB®

using the command lqr(A,B,Q,R,N).

20

Chapter 4

MECHANICAL DESIGN

4.1 Design Overview

The balance bot hardware consists of multiple tiers connected together using standoffs. Consider

Figure 4.1 which depicts a layout of the balance bot mechanical design with major components

labeled. The stacked design allows the separation and number of tiers in the design to be easily

adjusted during the design process.

Each tier in the design is made from a printed circuit board, usually referred to as a PCB. Modern

manufacturers can produce PCBs with positional tolerances of less than 5 [mil] at very low cost and

are typically made from a type of fiberglass called FR4. Fiberglass is considerably more rigid than

other viable materials such as polycarbonate or acrylic. The low cost, high level of manufacturability,

and large stiffness make PCBs the ideal choice for each tier. Furthermore, the electronics can be

mounted directly onto the PCBs, further reducing the overall cost and number of components.

The mechanical hardware is designed to be as small as possible without limiting component avail-

ability or introducing problems during manufacturing and assembly. The balance bot measures

200 [mm] in height1, 180 [mm] in width, and 90 [mm] in depth. The wheel diameter of 90 [mm] is

selected to be as large as possible while fitting the scale of the other components. The entire system

has a mass of 960 [g]. The small scale design reduces the component cost and facilitates convenient

storage when the device is not in use.

4.2 Motor Selection

Motor selection for the balance bot design is critical for good performance. There are three major

requirements that constrain the available motor choices in addition to several non-critical require-

ments.

1The stated height of 200 [mm] does not include the antenna which extends an additional 300 [mm] from the top
of the balance bot.

21

Nucleo L476RG
BNO055

LiPo Battery

BLY17
BLDC Motor

BLY17
BLDC Motor

A
M

T
11

2S

A
M

T
112S

TQi
Receiver

Figure 4.1: Layout of the balance bot mechanical hardware with main components
labeled.

• The first critical constraint is the torque requirement for the bot to balance properly. Simula-

tion results suggest that a combined maximum peak torque of 0.4 [N ·m] is required from both

drive motors acting together; this peak torque requirement suggests that motors with stall

torque specifications exceeding 0.2 [N ·m] or 200 [mN ·m] would be viable choices. Simulation

results also indicate that a continuous torque of around 50 [mN ·m] would be necessary for

the balance bot to perform over an extended period of time without the motor overheating.

• The second critical constraint comes from the need for the motor output torque to change

direction repeatedly as the bot attempts to maintain orientation. In order to eliminate play in

the mechanical design, it is necessary to select a direct-drive setup so that there is no backlash

between the motor and the wheels. In practice, a small amount of backlash could be accounted

22

Figure 4.2: Photograph of the completed balance bot hardware; front view shown.

for by the control algorithm; however, to promote increased performance and stability, a direct-

drive setup is selected nonetheless. In a larger-scale design it may be infeasible to select motors

that perform as desired in direct-drive.

• The final critical constraint is the size and form-factor of each motor. A maximum envelope

of 50× 50× 75 [mm] per motor is sufficient to keep the design compact and the motors small

in comparison to the remaining components.

• The motor must be able to interface with a position sensor such as a set of Hall effect sensors

or a quadrature encoder. Position sensors are needed to perform feedback control and, in the

23

case of brushless DC motors, provide information to commutate the motor properly. To satisfy

the position sensor requirement, the motor must be internally equipped with a position sensor

or allow external mounting of a position sensor through a secondary output shaft extending

from the rear of the motor.

• For this particular application, speed was not a driving constraint because nearly all brushed

and brushless DC motors operating in direct drive will have sufficient velocity for the bot to

drive as desired. Simulation results show that a speed of several hundred RPM is sufficient to

drive the balance bot at reasonable speeds.

• For convenience and safety, a nominal voltage range of 8− 24 [V] is selected as an additional

requirement. This nominal voltage range allows the usage of batteries with few cells in series,

reducing the physical size and cost of the batteries. Furthermore, DC voltages less than

≈ 40 [V] are safe for human interaction and have low risk of electric shock.

Table 4.1 summarizes the motor requirements.

Table 4.1: Motor Requirements.

Stall Torque (Minimum) 250 [mN ·m]
Rated Torque (Minimum) 50 [mN ·m]
Gear Reduction Direct drive
Rated Speed (Minimum) 200 [RPM]
Dimensions (Maximum) 50× 50× 75 [mm]
Cost Ea. (Maximum) $100
Sensor Hall effect or quad. encoder

From these requirements, several motor choices were considered. Initial research pointed toward

brushless DC (BLDC) motors due to the large torque-to-size ratio needed to balance the bot properly.

Even so, brushed DC (BDC) motors were considered as well. Table 4.2 shows a list of viable choices

that were considered.

The ECi 30 or ECi 40, both available from Maxon, would be excellent choices as well, but come at

a much higher cost making them infeasible for this project.

The bottom two motors in the list, manufactured by Turnigy, are both designed for multirotor

applications2. Accordingly, the motors are out-runners, meaning that the permanent magnets are

on the outside of the motor rather than the inside. Out-runners typically have larger torque and

2A multirotor or multicopter is any rotorcraft with more than two rotors. Quadcopters are the most common
example of multirotors.

24

Table 4.2: Viable motor choices that meet most or all requirements.

Manufacturer Model Stall Rated Speed Price Dimensions
Torque Torque

[mN ·m] [mN ·m] [RPM] [mm]

Maxon Motors DCX26L 384 52.3 4600 $224.30 �26 × 57
Maxon Motors EC32 355 47.2 9450 $324.71 �32 × 60
Maxon Motors EC Max 30 458 60.7 8040 $201.22 �30 × 64
Maxon Motors EC Max 40 497 89.6 6250 $275.92 �40 × 58
Maxon Motors EC 4Pole 30 1270 68.8 16300 $622.40 �30 × 47
Maxon Motors ECi 30 811 63.8 7030 $203.13 �30 × 42
Maxon Motors ECi 40 858 64.6 6520 $232.87 �40 × 26
Maxon Motors EC 45 Flat 253 54.8 2940 $80.95 �43.2 × 16.5
Anaheim Automation BLY171D-24V-1400 225 67.1 1400 $65.00 42× 42× 42
Trinamic QBL4208-41-04-006 467 62.5 4000 $86.06 42 × 42 × 42
NMB 36P16A 338 56.0 4355 $154.48 �36.2 × 33.6
Turnigy Multistar Elite 3508 1626 81.0 6432 $35.30 �41.2 × 32
Turnigy Multistar 4014 4163 208.0 7680 $51.09 �45 × 32

lower speed due to a longer moment arm within the motor. However, multirotor motors do not come

with internal Hall effect sensors making them practical only in sensorless3 applications.

Additionally, multirotor motors are wound “hot”, meaning that they are intentionally designed to

draw a lot of current in order to produce a lot of power. Hot windings are ideal for multirotor

applications because during flight there is forced convection cooling the motors due to the attached

propellers. However, in an application such as the balance bot, there will be no forced cooling and

the motors will pull more current than desired. Finally, multirotor motors come with significant

cogging torque4, which would interfere with the balance of the bot.

Figure 4.3: BLY17 Brushless DC motor from Anaheim Automation.

3BLDC motor commutation is referred to as sensored or sensorless depending on the means of determining rotor
orientation. If a Hall effect sensor or an encoder is used to determine rotor orientation then the commutation is
sensored. If the back-EMF of the motor is used to determine the rotor orientation then the commutation is sensorless.

4Cogging torque is caused by the reluctance in the iron core within the BLDC motor. The “teeth” inside the motor,
around which the windings are formed, are attracted to the permanent magnets even when no current is applied to
the windings. This attraction causes the rotor to align with the stator in an orientation that minimizes reluctance
such that the magnetic flux from the permanent magnets is minimally impeded. High quality motors have cogging
reduction measures such as skewed stator laminations to reduce this undesirable effect.

25

The BLY171D-24V-1400 is a satisfactory choice for the balance bot as it meets all of the minimum

requirements and comes at a low cost. Figure 4.3 shows the BLY17 motor selected for use in the

balance bot. The BLY17 is not the smallest motor in the list, but it is one of the lowest cost choices.

The selected motor also comes with a dual shaft allowing an external encoder to be easily mounted.

The BLY17 comes in a variety of different winding configurations; the 1D-24V-1400 suffix specifies

a 24 [V] nominal voltage and a 1400 [RPM] rated speed, which is the configuration that provides

the most torque per amp. Additionally, the motor comes with internal Hall effect sensors that can

be used to measure the orientation of the rotor for electronic commutation5.

5BLDC motors are not truly DC motors. BLDC Motors require electronic commutation due to the lack of me-
chanical commutation through brushes.

26

Chapter 5

ELECTRONICS DESIGN

5.1 Component Selection and Circuit Design

This section describes the component selection process for the electronic portion of the design.

5.1.1 Microcontroller and Development Board

The microcontroller selection is constrained based on compatibility with MicroPython and easy in-

terface with the hardware used in the senior level mechatronics course at Cal Poly. The compatibility

constraints all but force the design to use the Nucleo L476RG[16] development board produced by

ST Microelectronics. The Nucleo is a breakout board designed for development with STM32 mi-

crocontrollers. The L476RG variant of the Nucleo has an STM32L476RG[17] microcontroller which

runs at 80 [MHz] and includes 64 pins, barely sufficient for this design implementation.

The Nucleo development board facilitates very easy programming and debugging. The MicroPython

firmware uses USB to implement a flash storage device on any PC or laptop computer. The flash

device makes loading of code as simple as dragging the python files onto the enumerated flash storage

device on the PC. The USB interface also emulates a standard serial port, allowing debugging and

real-time interaction through a text based serial terminal such as PuTTY. The Nucleo provides

power management for the microcontroller and supports hot-swap between an external 7 − 12 [V]

supply and USB power.

The STM32L476RG microcontroller is a valid selection for this project because it provides sufficient

clock speed, native floating point support, and enough timers to interface with all of the hardware

peripherals in the design. The microcontroller is limited by pin count however, so some additional

functionality desired for future revisions will be prohibited without rearranging pin selection or

choosing a new microcontroller.

An important consideration for microcontroller selection is the number of timers available. The

balance bot design requires seven different multi-channel timer modules: one timer per motor for

27

PWM, one timer per motor for Hall sensor input capture, one timer per motor for quadrature

encoder counting, and one additional timer for input capture to interface with the radio receiver.

An additional consideration is the need for native I2C communication with the inertial measurement

unit (IMU) used for orientation sensing.

The final constraint on microcontroller selection is the need for free ADC pins available to read data

from six current sensors, one for each motor phase.

5.1.2 Motor Driver

Preliminary design efforts focused on motor “pre-drivers” which require external MOSFETs to build

the three half-bridges necessary to drive each BLDC motor. This configuration is standard for high-

power motors, but was eliminated early once the motor current was deemed low enough to select a

fully integrated monolithic motor driver IC.

The DRV8313[18], shown in Figure 5.1, is a 2.5 [A] triple half-bridge motor driver IC with integrated

gate drivers and fault protection. The DRV8313 also performs in a sufficient range of voltages

to accommodate a single power source for the Nucleo and Motors. This motor drive IC allows

independent control of each half-bridge with PWM frequencies up to 250 [KHz], allowing any style

of commutation. The DRV8313 also comes in a conveniently small package with a relatively large

thermal pad on the bottom of the IC allowing it to cool effectively even under full load; the enhanced

thermal package eliminates the need for external heat sinking.

5.1.3 Current Sensor

Current sensors are implemented on each phase of each motor allowing independent measurement

of bidirectional current through each winding individually. Current sensing allows the possibility

of performing torque control on the BLDC motors if actuator dynamics were added to the system

model. Even without extending the system model to include actuator dynamics, information about

the motor current is useful for diagnostics and fault prevention.

In theory, only two current sensors are required per motor, as the three phase currents must sum to

zero. However, the additional current sensor reduces software complexity and provides additional,

28

Figure 5.1: Functional block diagram for DRV8313 BLDC motor driver provided by
TI[18].

if redundant, data. Redundant data could be useful for improved fault detection in future software

revisions.

The ACS70331EESATR-2P5B3[2] is chosen as it provides a satisfactory measurement range of

±2.5 [A] and has the bandwidth needed to measure the AC waveforms required to commutate

the motor at high speeds. The ACS70331, shown in Figure 5.2, is a GMR1 based current sensor that

provides a ratiometric voltage output proportional to the bidirectional current flowing through the

sensor. Six sensors are used, one directly in series with each phase of each motor. The ACS70331

datasheet claims a nominal primary conductor resistance of 1.1 [mΩ], which is sufficiently small to

prevent burdening the motors or motor drivers. Under full load of 2.5 [A] there is only a burden

voltage of 2.75 [mV] per sensor, which is inconsequential compared to the nominal supply voltage

of 12 [V].

1GMR stands for “giant magnetoresistive”; GMR based senors work similarly to Hall effect based senors allowing
electrically isolated current measurement.

29

Figure 5.2: Functional block diagram for ACS70331 BLDC motor driver provided by
Allegro Microsystems[2]

5.1.4 Inertial Measurement Unit

For this design, the main motivation in IMU selection is the ability to off-load the task of data-

fusion to the IMU itself. Most modern IMUs provide 9-axis measurement data measured with a

3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. While it would be a valid

academic exercise to implement a data fusion algorithm to produce properly filtered orientation

data, it is well outside the scope of this project. Additionally, it would require more computing

power than available, potentially overburdening the STM32 microcontroller2.

The BNO055[5] produced by Bosch is a MEMS based 9-axis IMU with its own integrated ARM

Cortex M0 microcontroller running a proprietary data fusion algorithm3. Additionally, the BNO055

provides a register based I2C communication protocol that is easily handled in Micropython.

The BNO055 is sold on a breakout board by Adafruit Industries; Figure 5.3 shows a photograph of

the breakout board. This breakout board is relocatable allowing adjustment of the location of the

sensor relative to the balance bot. The sensor should ideally be mounted in the axis of the wheels of

the balance bot, so that the acceleration measured by the IMU is as close as possible to gravitational

acceleration with minimal effects due to the motion of the balance bot. A larger acceleration will be

2The IMU data fusion algorithms need to run around 100 [Hz] and require real-time trigonometric calculations.
This may be feasible to implement in C or C++ but in Micropython this would be unnecessarily computationally
expensive for the selected Nucleo.

3Kalman filters and particle filters are likely choices for a data fusion algorithm as they can re-tune on the fly as
the quality of each measurement changes during operation

30

measured due to the dynamic movement of the balance bot when the IMU is mounted far from the

wheel axis. However, rotating magnetic fields produced by the BLDC motors also have a negative

effect on the magnetometer within the IMU, causing oscillatory disturbances which can lead to

instability in the heading measurement. To accommodate these competing location constraints, the

sensor is mounted near the wheel axis, but elevated slightly to increase the air-gap between the

sensor and the motors.

Figure 5.3: Breakout board housing the Bosch BNO055 produced by Adafruit Indus-
tries.

The BNO055 allows a variety of operation modes using varying subsets of the nine available axes.

The nine-degree-of-freedom (NDOF) fusion mode is selected, as it provides the most robust output

and allows absolute orientation measurement using the magnetometer.

5.1.5 Battery and Protection Circuitry

For this project it is important that the battery be sufficiently small to avoid adding unnecessary

mass to the body of the balance bot. However, it is also import that the battery be able to supply the

necessary voltage, current, and run-time for the balance bot to operate. To accommodate all of these

concerns, a 700 [mA · h] three cell lithium polymer battery is selected. Lithium polymer batteries,

like the one shown in Figure 5.4 are typically referred to as LiPo batteries and have comparatively

31

large power and energy density, especially with respect to alkaline batteries. Additionally, they come

in a variety of form factors, cell configurations, and capacities.

The selected battery provides 12.6 [V] when fully charged and 11.1 [V] when discharged. It has a

small form factor with dimensions of 73×35×18 [mm] and comes with the popular XT30 polarized

plug. With a nominal capacity of 700 [mA · h] the battery provides around an hour of continuous

operation before needing to be recharged4. The battery is also equipped with a balance charging

plug that is required to maintain uniform cell voltages during recharging.

Figure 5.4: Turnigy 3S 700mAh lithium polymer battery.

There are three layers of battery protection implemented in the PCB design. The first layer is a

fast-acting fuse rated for 5 [A] directly in series with the positive battery terminal. This fuse is

only intended to prevent catastrophic battery failure in the case of a short circuit or stalled rotor

condition. The LiPo batteries selected for the design can output hundreds of amps in short circuit

conditions, creating a potential fire hazard.

The second layer of battery protection is a reverse polarity protection circuit implemented with a P-

Channel MOSFET (PN AOD417[3]) in series with the positive battery terminal. When the battery

is plugged in with the correct orientation, the MOSFET will switch on and conduct with an added

4A 700 [mA · h] battery can supply 700 [mA] continuously for 1 hour. However, in operation the battery will
pull more or less current than that depending on the throttle and steering commands from the radio module. The
balance bot require less than one Ampere to balance, but can pull multiple Amperes during periods of highly dynamic
operation.

32

resistance of only 27 [mΩ]. However, when the battery is plugged in with incorrect orientation, the

MOSFET will not conduct and will prevent a reverse polarity condition.

The third layer of battery protection is a resistor network used to measure the battery voltage to

estimate state of charge. The nominal 12 [V] battery voltage is divided to provide a nominal 3 [V]

signal to an available ADC pin on the STM microcontroller. Measuring the state of charge allows the

software to prevent the battery from overdischarging, which is important for LiPo battery health.

The schematic snippet shown in Figure 5.5 includes all three layers of battery protection. The battery

connects to the PCB through the polarized connector CN8. Fuse F1 is in series with the positive

battery terminal. The P-Channel MOSFET Q2 then prevents reverse polarity. To guarantee that

the MOSFET switches on and off properly, the gate is tied to ground through a 10 [KΩ] resistor.

Finally, the resistor network composed of R3, R6, and R9 divides the battery voltage from 12 [V]

to 3 [V] to be read by the microcontroller.

Figure 5.5: Battery protection schematic snippet.

There is no functionality to prevent a battery with incorrect voltage from being connected to the

PCB through CN8. Therefore, it is the operator’s responsibility to connect only batteries with a

nominal voltage in the range of 8− 12 [V].

5.1.6 Radio Receiver

For simplicity, a two channel radio receiver from a remote control car is selected. The TQi radio

transmitter and receiver, shown in Figure 5.6, from Traxxas[19] are selected due to availability and

ease of use.

33

Figure 5.6: TQi RC radio receiver from Traxxas[19].

RC receivers are simple to interface because they output a pulse width modulated signal. The

PWM signal can be read easily using input capture with one of the timer modules present in the

STM32L476RG microcontroller. Consider the signals in Figure 5.7, which depicts the convention

for one channel of PWM output from the TQi receiver. The PWM signal is of constant5 20 [ms]

period with a pulse width ranging from 1 [ms] to 2 [ms]. The throttle and steering commands are

encoded in the pulse widths, not in the duty-cycle of the PWM signal.

1ms

1.5ms

2ms

20ms

Figure 5.7: RC radio PWM output: full reverse (top); neutral (center); full forward
(bottom).

5A period of 20 [ms] is most common but some radios follow the same protocol with a faster update rate as low
as 2.08 [ms] (a of 480 [Hz]).

34

The signal indicates zero when the pulse width is 1.5 [ms]; longer or shorter pulses represent positive

or negative steering or throttle command. The duration of the pulse can be measured by triggering

input capture interrupts on the rising and falling edge of the signal. The difference in timer count

between rising and falling edges can be used to determine the duration of the pulse. It is often

useful for the data to be converted from timer count units to a range from -1 to 1. One convenient

way to do this conversion is to select an appropriate prescaler for the timer and then apply a bit of

arithmetic. The STM32L476RG has a base clock of 80 [MHz], so selecting a prescaler of 80 results

in a time-base of 1 [µs/tick]. This time-base allows the normalized signal to be computed as

r =
(tfall − trise)− 1500 [µs]

500 [µs]
(5.1)

Where r represents the dimensionless input signal from either the throttle or steering channel on

the radio and trise and tfall represent the timer count as measured on the rising and falling edges

respectively. It is necessary to perform modular arithmetic when finding the difference tfall − trise

in case the timer count has overflowed and reset.

5.1.7 Quadrature Encoder

In order to precisely measure the speed and angle of the motor shafts, each shaft has been equipped

with a quadrature encoder. The selected encoder is the AMT112S shown on the right in Figure 5.8.

The AMT11 is a capacitive encoder produced by CUI that produces incremental quadrature output.

The AMT11 series is selected because it can be reconfigured in software to produce a variety of

different resolutions ranging from 48 to 4096 pulses per revolution per channel. Additionally, the

encoder has a configurable index channel that can be relocated with a serial command, which allows

the index channel of the encoder to be aligned with a particular orientation if desired6.

6In some situations it is useful to align the index channel on the encoder with one of the Hall effect sensor
transitions. This feature allows the encoder count to be used for commutating the motor.

35

Figure 5.8: CUI AMT11 modular incremental encoder.

5.1.8 Hall Effect Sensors

The BLDC motors selected for this project come equipped with Hall sensors mounted in a standard

120◦ configuration. Hall sensors are used to detect the sector7 of the motor to use for commutation.

Hall effect sensors are typically in an open-collector configuration and therefore require pull-up

resistors to generate a proper square wave. The STM32 microcontroller has built-in internal pull-

up resistors that can be enabled in software. In testing, these internal pull-ups have proven to be

sufficient to create stable waveforms from the Hall sensors.

5.2 Printed Circuit Board Design

During the development of the balance bot many revisions were designed, assembled, and tested. A

detailed revision history can be found in Appendix C. The full circuit schematic is also available in

Appendix D.

7In the context of BLDC motors, sector refers to the orientation of the rotor relative to the stator and indicates
which of the three motor phases should source or sink current in a given orientation.

36

Chapter 6

MODELING AND SIMULATION

This chapter covers the model used to design the control laws and to simulate the system in

MATLAB®. Both the two degree-of-freedom and three degree-of-freedom models are utilized further

in this document and are discussed below.

Recall that both the 2-DOF and 3-DOF models are originally of the form M(q)q̈ = f(q, q̇,u). Each

model can be expressed in the form ẋ = a(x)+b(x)u because the models are nonlinear with respect

to the states but linear with respect to the inputs.

x =

q
q̇

 (6.1)

a(x) =

 q̇(x)

M(q(x))−1f(q(x), q̇(x),0)

 (6.2)

b(x) =

 0

M(q(x))−1
(
∂f(q(x),q̇(x),u)

∂u

)
 (6.3)

In order to compute the feedback gain, K, and to simulate the system in MATLAB®, it is necessary

to have numerical values for each of the parameters defining the model. These parameters are listed

in Table 6.1 shown below. Each of these parameters comes from a measurement of the completed

hardware design.

37

Table 6.1: Numerical mass and geometric properties used to model the balance bot.

Parameter Value

rw 45× 10−3 [m]

rb 25× 10−3 [m]

w 120× 10−3 [m]

mw 80× 10−3 [kg]

mb 800× 10−3 [kg]

Iw,xx 1.25× 10−6 [kg ·m2]

Iw,yy (Iw) 2.50× 10−6 [kg ·m2]

Iw,zz 1.25× 10−6 [kg ·m2]

Ib,xx 5.80× 10−3 [kg ·m2]

Ib,yy (Ib) 5.80× 10−3 [kg ·m2]

Ib,xx 2.90× 10−3 [kg ·m2]

g 9.81 [m/s2]

6.1 Two Degree-of-freedom Model

The two degree of freedom model results in a fourth-order system. Recall the result from Lagrange’s

equation as derived in the balance bot modeling chapter.

q =

x
θ

 (6.4)

M(q) =

 mx mbrb cos θ

mbrb cos θ Iθ

 (6.5)

f(q, q̇,u) =

−2 1
rw
Tm +mbrb sin θ θ̇2

2Tm +mbrb sin θ g

 (6.6)

6.1.1 Decoupled EOMs

These parameters are now used to find the state-vector and the time rate-of-change of the state-

vector x and ẋ as well as the non-linear state-space model parameters a(x), and b(x). First, x and

ẋ are found.

38

x =

q
q̇

 =

x

θ

ẋ

θ̇

ẋ =

ẋ

θ̇

ẍ

θ̈

And then a(x) is found.

a(x) =

 q̇(x)

M(q(x))−1f(q(x), q̇(x),0)

 (6.7)

a(x) =

ẋ

θ̇

1
mxIθ−m2

br
2
b cos θ

2

(
Iθmbrb sin θ θ̇2 −m2

br
2
b sin θ cos θ g

)
1

mxIθ−m2
br

2
b cos θ

2

(
−m2

br
2
b sin θ cos θ θ̇2 +mxmbrb sin θ g

)

(6.8)

And finally, b(x) is found.

b(x) =

 0

M(q(x))−1
(
∂f(q(x),q̇(x),u)

∂u

)
 (6.9)

b(x) =

0

0

1
mxIθ−m2

br
2
b cos θ

2

(
−2 Iθrw − 2mbrb cos θ

)
1

mxIθ−m2
br

2
b cos θ

2

(
2mbrb cos θrw

− 2mx

)

(6.10)

39

6.1.2 Linearization

Now that a(x) and b(x) have been found, it is possible to linearize the system to find A and B. The

operating point used for linearization is x0 =
[
0 0 0 0

]>
; that is the operating point is defined

by the bot balancing upright and motionless. The selected operating point is an equilibrium point,

but an unstable equilibrium point.

With the operating point selected, A is found by linearizing a(x).

A =
∂a(x)

∂x

∣∣∣∣
x=x0

(6.11)

A =

0 0 1 0

0 0 0 1

0 A3,2 0 0

0 A4,2 0 0

(6.12)

Where, A3,2 and A4,2 are coefficients too large to neatly display in the A matrix as shown below.

A3,2 =
−m2

br
2
bg

mxIθ −m2
br

2
b

(6.13)

A4,2 =
mxmbrbg

mxIθ −m2
br

2
b

(6.14)

And then B is found.

B = b(x)|x=x0
(6.15)

B =

0

0

1
mxIθ−m2

br
2
b

(
−2 Iθrw − 2mbrb

)
1

mxIθ−m2
br

2
b

(
2mbrbrw

+ 2mx

)

(6.16)

40

6.1.3 Output Equations

In the preceding analysis, only the system model was discussed without consideration of the output

equations relating the system states and input parameters to the measurable system outputs. In

the derivation of the equations of motion for the 2-DOF model, the first generalized coordinate was

selected as q1 = x. This coordinate was a logical selection during modeling; but, in implementation,

sensors will measure the motor angle, θm, which is the angle between the wheel and the body. The

output is defined such that the output vector y contains the measurable system parameters; the

output vector is defined as

y =

θm

θb

θ̇m

θ̇b

, (6.17)

where θm is the motor shaft angle and θb = θ is the pitch angle of the balance bot. The specified

output can be defined as a linear combination of the system states and inputs using an output

equation of the form y = Cx +Du.

θm

θb

θ̇m

θ̇b

=

1
rw

−1 0 0

0 1 0 0

0 0 1
rw

0

0 0 0 1

x

θ

ẋ

θ̇

+

0

0

0

0

[
Tm

]
(6.18)

For the balance bot model, the output y is only a function of the state variables and there is no

direct feed-through component from the input u.

6.1.4 Controllability and Observability

The controllability of the system is evaluated about the operating point using the A and B matrices

by forming the controllabilty Gramian C and computing its rank. The controllability of the system

is a measure of how well the input can affect the states of the system. A fully controllable system

satisfies rank(C) = rank(A), indicating that the input u is able to affect each and every state of the

system.

41

C =
[
B AB A2B A3B

]
(6.19)

C =

0 B3 0 A3,2B4

0 B4 0 A3,2B4

B3 0 A3,2B4 0

B4 0 A4,2B4 0

(6.20)

rank(C) = 4 (6.21)

The rank of the controllability Gramian determines whether or not the system is fully controllable.

For unique non-zero coefficients A3,2, A4,2, B3, and B4, the Gramian is full rank for the 2-DOF

balance bot; therefore, the model is considered fully controllable near its operating point.

The observability Gramian, O, can also be considered, but is nearly trivial in this implementation

because the matrix C is full rank; that is, the observability Gramian must be full rank because a

full rank matrix composes the top four rows.

O =

C

CA

CA2

CA3

(6.22)

rank(O) = 4 (6.23)

The observability matrix O is cumbersome to display within the body of this text and can be found

fully expanded in Appendix B.

42

6.2 Three Degree-of-freedom Model

This section repeats the decoupling and linearization steps for the 3-DOF model.

q =

x

θ

ψ

 (6.24)

M(q) =

mx mbrb cos θ 0

mbrb cos θ Iθ 0

0 0 mbr
2
b sin2 θ + Ib,xx sin2 θ + Ib,zz cos2 θ + Iψ

 (6.25)

f(q, q̇,u) =

− 1
rw
Tm,r + 1

rw
Tm,l +mbrb sin θ θ̇2

Tm,r − Tm,l +mbrb sin θ g +mbr
2
b sin θ cos θ ψ̇2 + Ib,xx sin θ cos θ ψ̇2 − Ib,zz sin θ cos θ ψ̇2

− w
2rw

Tm,r − w
2rw

Tm,l −
(

2mbr
2
b sin θ cos θ θ̇ + 2Ib,xx sin θ cos θ θ̇ − 2Ib,zz sin θ cos θ θ̇

)
ψ̇

 (6.26)

x =

q
q̇

 =

x

θ

ψ

ẋ

θ̇

ψ̇

ẋ =

ẋ

θ̇

ψ̇

ẍ

θ̈

ψ̈

43

a(x) =

q̇(x)

M(q(x))−1f(q(x), q̇(x),0)

 (6.27)

a(x) =

ẋ

θ̇

ψ̇

1
mxIθ−m2

b
r2
b
cos θ 2

(
Iθmbrb sin θ θ̇2 −m2

br
2
b sin θ cos θ g +

(
−m2

br
3
b −mbrbIb,xx +mbrbIb,zz

)
sin θ cos θ ψ̇2

)
1

mxIθ−m2
b
r2
b
cos θ 2

(
mxmbrb sin θ g −m2

br
2
b sin θ cos θ θ̇2 +

(
mxmbr

2
b +mxIb,xx −mxIb,zz

)
sin θ cos θ ψ̇2

)
1

mbr
2
b
sin θ 2+Ib,xx sin θ 2+Ib,zz cos θ 2+Iψ

(
−2
(
mbr

2
b + Ib,xx − Ib,zz

)
sin θ cos θ θ̇ψ̇

)

(6.28)

b(x) =

 0

M(q(x))−1
(
∂f(q(x),q̇(x),u)

∂u

)
 (6.29)

b(x) =

0 0

0 0

0 0

1
mxIθ−m2

br
2
b cos θ

2

(
−Iθ
rw
−mbrb cos θ

)
1

mxIθ−m2
br

2
b cos θ

2

(
Iθ
rw

+mbrb cos θ
)

1
mxIθ−m2

br
2
b cos θ

2

(
mbrb cos θ

rw
+mx

)
1

mxIθ−m2
br

2
b cos θ

2

(
−mbrb cos θ

rw
−mx

)
1

mbr2b sin θ
2+Ib,xx sin θ 2+Ib,zz cos θ 2+Iψ

(
−w
2rw

)
1

mbr2b sin θ
2+Ib,xx sin θ 2+Ib,zz cos θ 2+Iψ

(
−w
2rw

)

(6.30)

6.2.1 Linearization

Now that a(x) and b(x) have been found, it is possible to linearize the system to find A and B. The

operating point used for linearization is x0 =
[
0 0 0 0 0 0

]>
; that is the operating point is

defined by the bot balancing upright and motionless. First A can be found.

44

A =
∂a(x)

∂x

∣∣∣∣
x=x0

(6.31)

A =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 A4,2 0 0 0 0

0 A5,2 0 0 0 0

0 0 0 0 0 0

(6.32)

Where, A4,2 and A5,2 are coefficients too large to display in the A matrix as shown below.

A4,2 =
−m2

br
2
bg

mxIθ −m2
br

2
b

(6.33)

A5,2 =
mxmbrbg

mxIθ −m2
br

2
b

(6.34)

And then B can be found.

B = b(x)|x=x0
(6.35)

B =

0 0

0 0

0 0

1
mxIθ−m2

br
2
b

(
−Iθ
rw
−mbrb

)
1

mxIθ−m2
br

2
b

(
Iθ
rw

+mbrb

)
1

mxIθ−m2
br

2
b

(
mbrb
rw

+mx

)
1

mxIθ−m2
br

2
b

(
−mbrb
rw

−mx

)
1

Ib,zz+Iψ

(
−w
2rw

)
1

Ib,zz+Iψ

(
−w
2rw

)

(6.36)

6.2.2 Output Equations

In the preceding analysis, only the system model was discussed without consideration of the output

equations relating the system states and input parameters to the measurable system outputs. In

the derivation of the equations of motion for the 3-DOF model, the first generalized coordinate was

45

selected as q1 = x. This coordinate was a logical selection during modeling; but, in implementation,

sensors will measure the motor angle, θm, which is the angle between the wheel and the body. The

output is defined such that the output vector y contains the measurable system parameters; the

output vector is defined as

y =

θm

θb

ψ

θ̇m

θ̇b

ψ̇

. (6.37)

where θm is the motor shaft angle, θb = θ is the pitch angle of the balance bot, and ψ is the yaw

angle of the balance bot. The specified output can be defined as a linear combination of the system

states and inputs using an output equation of the form y = Cx +Du.

θm

θb

ψ

θ̇m

θ̇b

ψ̇

=

1
rw

−1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
rw

−1 0

0 0 0 0 1 0

0 0 0 0 0 1

x

θ

ψ

ẋ

θ̇

ψ̇

+

0 0

0 0

0 0

0 0

0 0

0 0

Tm,r
Tm,l

 (6.38)

For the balance bot model, the output y is only a function of the state variables and there is no

direct feed-through component from the input u.

6.2.3 Controllability and Observability

The controllability of the system can be evaluated about the operating point using the A and B

matrices by forming the controllabilty Gramian C and computing its rank.

C =
[
B AB A2B A3B A4B A5B

]
(6.39)

rank(C) = 6 (6.40)

46

The rank of the controllability Gramian determines whether or not the system is fully controllable.

For the 3-DOF system model the controllability Gramian is a [6× 12] matrix too large to fit neatly

in the body of this document. Please refer to Appendix B for the fully expanded controllability

Gramian. The Gramian is full rank for the 3-DOF system model indicating that the balance bot

can be considered fully controllable at its operating point.

The observability Gramian is also considered, but is nearly trivial in this implementation because

the state-to-output coupling matrix C composing the top six rows of O is full rank. It is clear that

the observability Gramian must be full rank because the observability Gramian contains a full rank

matrix as the top six rows.

O =

C

CA

CA2

CA3

CA4

CA5

(6.41)

rank(O) = 6 (6.42)

The fully expanded observability Gramian is shown in Appendix B.

47

Chapter 7

CONTROLLER DESIGN

This chapter focuses on the control architecture for the entire system. The LQR controller presented

in Chapter 3 is modified slightly to improve tracking performance. Additionally, the commutation

scheme for the selected motors is discussed.

7.1 Overall Controller Architecture

This section covers the high-level controller architecture as implemented on the balance bot. The

architecture shown in Figure 7.1 is able to successfully control the desired states of the balance bot

based on the throttle and steering commands from the RC car remote.

thr_cmd

str_cmd

x_ref

Prefilter System

1
Throttle Command

2
Steering Command

u x

Balance Bot Dynamics

K

Feedback
Gain

xx_meas

Sensors

u_des u_phys

Block Commutation

Reference States Error States

Measured States

Physical StatesPWMMotor Torques

Figure 7.1: High-level balance bot controller architecture.

The throttle and steering inputs from the remote control are first filtered and augmented to produce

reference values for all of the state variables. The reference states are then used with the measured

state values to determine error states for the system. The error states are then fed through the

linear feedback gain matrix, K, to determine the desired torques for each motor. The torque values

are then used to determine the appropriate duty cycle to be applied to each phase of each motor.

Finally, the state of the system is measured through the sensors and scaled in software to represent

appropriate units.

7.2 Prefilter

The prefilter stage of the controller has two purposes. First, the prefilter applies a low-pass filter to

the throttle and steering input commands, so that the controller does not have to react to instanta-

48

neous changes in command values. Second, the prefilter converts the filtered throttle and steering

commands to desired states using an approximated inverse model of the balance bot equations.

The prefilter stage is implemented using a discrete state-space model; however, the model is de-

veloped as a continuous model and then discretized mathematically using the sample time of the

filter.

The inputs to the prefilter are the reference commands from the remote, rthr and rstr, which each

range from −1 to 1. The throttle and steering reference commands are scaled by αthr and αstr

respectively to find the desired values for the linear velocity, ẋdes, and pitch rate, ψ̇des.

ẋdes = αthrrthr (7.1)

ψ̇des = αstrrstr (7.2)

The desired values for the horizontal velocity and yaw rate are filtered using a first-order low-pass

filter. The gains βx and βψ tune the response time of the low-pass filter. The values of βx and βψ

are tuned through testing after initially selecting βx and βψ as the desired cutoff frequencies for the

throttle and steering filters, respectively.

d

dt
ẋref = βx (ẋdes − ẋref) (7.3)

d

dt
ψ̇ref = βψ

(
ψ̇des − ψ̇ref

)
(7.4)

The reference horizontal displacement and yaw angle are then found by integrating the reference

horizontal velocity and yaw rate.

d

dt
xref = ẋref (7.5)

d

dt
ψref = ψ̇ref (7.6)

49

The four ODEs in Equations 7.3 through 7.6 compose a fourth-order linear system. To estimate

the remaining two reference states, the pitch angle and pitch velocity, the model of the balance bot

is manipulated to algebraically relate the reference linear acceleration to the reference pitch angle

and pitch velocity. This step requires a significant number of assumptions, and is only meant to

approximate the reference pitch angle and pitch rate.

The prefilter causes the reference values for the pitch and pitch rate to change in correspondence

with the desired linear acceleration so that the bot is not trying to remain balanced during dynamic

motion. In other words, this part of the prefilter is intended to cause the balance bot to tilt in the

direction of the desired acceleration to allow a better response to changing input.

To determine the relationship between θref and ẍref , the model for the 2-DOF system is manipulated

assuming that θ̈ref = 0, θ̇ref = 0, and θref ≈ 0 leading to a small angle approximation.

The 2-DOF system model is repeated below.

 mx mbrb cos θ

mbrb cos θ Iθ

ẍ
θ̈

 =

−2 1
rw
Tm +mbrb sin θ θ̇2

2Tm +mbrb sin θ g

 (7.7)

After applying the aforementioned assumptions, a relationship between ẍref and θref is determined

by solving for the motor torque Tm in both equations and then eliminating Tm.

(mxrw +mbrb) ẍref = mbrbgθref (7.8)

θref =
mxrw +mbrb

mbrbg
ẍref (7.9)

θref =
mxrw +mbrb

mbrbg
βx (ẋdes − ẋref) (7.10)

50

An estimate for θ̇ref is found by differentiationg θref and assuming ẍdes = 0.

d

dt
θref =

d

dt

(
mxrw +mbrb

mbrbg
βx (ẋdes − ẋref)

)
(7.11)

θ̇ref =
mxrw +mbrb

mbrbg
βx (ẍdes − ẍref) (7.12)

θ̇ref = −mxrw +mbrb
mbrbg

βxẍref (7.13)

θ̇ref = −mxrw +mbrb
mbrbg

β2
x (ẋdes − ẋref) (7.14)

For the sake of notation, an approximate parameter, σ, is defined as

σ =
mxrw +mbrb

mbrbg
. (7.15)

All aspects of the prefilter are combined into a single continuous state-space representation.

d

dt

xref

ψref

ẋref

ψ̇ref

=

0 0 1 0

0 0 0 1

0 0 −βx 0

0 0 0 −βψ

xref

ψref

ẋref

ψ̇ref

+

0 0

0 0

βxαthr 0

0 βψαstr

rthr
rstr

 (7.16)

xref

θref

ψref

ẋref

θ̇ref

ψ̇ref

=

1 0 0 0

0 0 −σβx 0

0 1 0 0

0 0 1 0

0 0 σβ2
x 0

0 0 0 1

xref

ψref

ẋref

ψ̇ref

+

0 0

σβxαthr 0

0 0

0 0

−σβ2
xαthr 0

0 0

rthr
rstr

 (7.17)

51

This continuous state-space representation can also be expressed symbolically.

ẋref = Arefxref +Brefr (7.18)

yref = Crefxref +Drefr (7.19)

The system is ready to be discretized using the sampling period ts, equal to 0.025 [s] for the balance

bot, to be of the form xk+1 = Adxk+Bduk and yk = Cxk+Duk. Discretization can be achieved by

considering the response of the system when a zero-order hold is applied to the input parameter u.

The discretized matrices, Ad and Bd, are found by making use of the matrix exponential function:

Ad = eAts , (7.20)

and

Bd =
(
eAts − I

)
A−1B. (7.21)

A derivation for this discretization process can be found in [6].

Discretization is important in the proposed controller implementation for the balance bot due to

the slow loop closure rate of 40 [Hz]. The controller is too slow to assume that the system will

behave like the proposed continuous model. Discretization allows a better performing controller to

be designed using slower hardware.

As discussed briefly in the modeling chapter of this document, the sensors on the balance bot measure

the motor angle, θm, and not the horizontal displacement, x. In order to use the prefilter defined

above, it is necessary to apply a transformation T to the matrices Cref and Dref in order for the

reference states to match the measured outputs. This transformation is exactly what the output

equation y = Cx + Du does in the linearized model; therefore, T = C, where C refers to the

state-to-output coupling matrix for the 3-DOF system model. The transformation T is applied to

the prefilter output equation yref = Crefxref +Drefr to represent a new output, ŷref in terms of

the reference states xref and command inputs r.

52

ŷref = Tyref (7.22)

ŷref = T (Crefxref +Drefr) (7.23)

ŷref = TCrefxref + TDrefr (7.24)

ŷref = Ĉrefxref + D̂refr (7.25)

The transformed output ŷref can be computed directly from the un-transformed state, xref , and

command input, r, if the transformation is applied to the Cref and Dref matrices to get Ĉref and

D̂ref .

Ĉref = TCref (7.26)

Ĉref =

1
rw

0 σβx 0

0 0 −σβx 0

0 1 0 0

0 0 1
rw

0

0 0 −σβ2
x 0

0 0 σβ2
x 1

(7.27)

D̂ref = TDref (7.28)

D̂ref =

−σβxαthr 0

σβxαthr 0

0 0

σβ2
xαthr 0

−σβ2
xαthr 0

0 0

(7.29)

53

7.3 Feedback Gain

The feedback gain K is found by iterating on gains initially computed through a linear quadratic

regulator design. Bryson’s rule is used to select Q and R matrices for use in the LQR design. The

LQR gain is only an initial starting point; the system must also be tuned manually to improve

performance.

The loop-closure rate of the controller is only 40 [Hz] in implementation, so gains for a discretized

controller are found by use of the lqrd command in MATLAB®. This command designs a discrete

LQR for a continuous linear system, accounting for the sample time of the controller.

The LQR designed was an infinite horizon discrete time linear-quadratic regulator. The most general

cost function for a controller of this type is

J =

∞∑
k=0

(
x>k Qxk + u>k Ruk + 2x>k Nuk

)
(7.30)

Where Q is a matrix that penalizes non-zero state variables, R is a matrix that penalizes non-zero

inputs, and N is a matrix that penalizes the interaction between the states and inputs. For many

LQR designs N is set to zero and Q and R are selected as diagonal matrices.

7.3.1 Bryson’s Rule

Bryson’s Rule is one method for selecting the Q and R matrices to create a satisfactory controller.

With this method, the Q and R matrices are selected as diagonal matrices where each element on

the diagonal represents the inverse square of the maximum acceptable value for the corresponding

state or input. Consider the matrices below for the three degree-of-freedom model with six states,

x1 . . . x6 and two inputs, u1 and u2.

54

Q =

1
x2
1,max

0 0 0 0 0

0 1
x2
2,max

0 0 0 0

0 0 1
x2
3,max

0 0 0

0 0 0 1
x2
4,max

0 0

0 0 0 0 1
x2
5,max

0

0 0 0 0 0 1
x2
6,max

(7.31)

R =

 1
u2
1,max

0

0 1
u2
2,max

 (7.32)

These Q and R matrices are intended to normalize the states based on their maximum acceptable

values so that the LQR will effectively regulate all of them with similar priority.

7.3.2 Discretization and the Discrete-time Algebraic Ricatti Equation

Discretization is mentioned in the preceding discussion of the prefilter, but must be applied to the

controller as well. The behavior of a digital control loop implemented with a microcontroller is

fundamentally discrete in nature. Furthermore, at the onset of controller design it may not be

apparent how quickly the controller will run in hardware implementation1. A general rule-of-thumb

is that if the control loop runs at least an order of magnitude faster than the desired closed-loop

system dynamics, the controller can be assumed to behave like a continuous controller; however,

even with a fast controller, treating the controller as continuous is an approximation. Furthermore,

when designing an LQR, the designer does not directly select the system pole locations, making it

challenging to estimate the speed of the closed-loop dynamics.

Therefore, the controller is first developed as a continuous-time LQR, but in implementation the

controller runs discretely. For a discrete-time controller, the gain K can be determined from the Q

and R matrices by solving the Discrete-time Algebraic Ricatti Equation (DARE) rather than the

Continuous-time Algebraic Ricatti Equation (CARE). The DARE, shown in Equation 7.33, is an

1In hardware implementation the minimal loop period is found to be 25 [ms] during data collection, but as low as
10 [ms] if data collection is disabled.

55

algebraic matrix equation that can be solved for the matrix X, sometimes called P , which can in

turn be used to determine the gain K. A derivation for the DARE can be found in [6] or [12].

A>XA−X −
(
A>XB

) (
B>XB

)−1 (
A>XB

)
+Q = 0 (7.33)

One approach for finding X is to define the symplectic matrix Z and use the stable Eigenvectors of

Z to determine X. Once X is determined, the feedback gain K can be found by manipulating the

matrix X found from the DARE[12].

K =
(
R+B>XB

)−1
B>XA (7.34)

7.3.3 Gain Calculation with lqrd

For large systems with many states and inputs it quickly becomes impractical or infeasible to solve

the DARE manually. Further, to design a discrete controller for a continuous plant, the continuous

system must first be discretized before the LQR can be designed. The lqrd function in MATLAB®

first does a continuous-to-discrete-time conversion on a state-space system and then computes the

LQR gains for the discretized systems according to the specified Q and R matrices.

7.3.4 Gain Transformation

In implementation it is convenient to feedback the measured signals through a gain matrix rather

than manipulating the measured signals to represent state variables only to feed those back through

a matrix. In essence, this implies that u = −K̂y, where K̂ is a transformed gain matrix that

simultaneously transforms the output into state variables, and then computes the input vector u in

one step. That is,

56

u = −K̂y (7.35)

u = −K̂Cx (7.36)

u = −
(
K̂C

)
x, (7.37)

which implies that

K̂C = K (7.38)

K̂ = C−1K. (7.39)

The transformed gains are more useful in firmware, because the transformed gains apply directly to

the measured parameters coming from the sensors. Application of K̂ requires only one step whereas

state transformation followed by application of the original gain K would require multiple steps.

7.4 Tracking Control with LQR

A traditional linear-quadratic regulator is meant to reduce the value of each state to zero. A tracking

controller is meant to force each state to match its corresponding reference state. To reconcile these

notions, the LQR must be made to act on error states rather than the system states directly. That

is, rather than defining the input as u = −Kx, the input is instead defined as

u = −Kxerr (7.40)

u = −K (x− xref) (7.41)

u = K (xref − x) , (7.42)

which drives the error in each state to zero instead of the states themselves. An intuitive way to

consider the change to error states to is to consider the vector space representing the state variables.

Using error states in the gain calculation is equivalent to translating the origin of the state-space to

the desired state value. Thus, the LQR will regulate the state to the desired state value rather than

to zero.

57

7.5 Block Commutation and Actuator Modeling

The balance bot is designed to include hardware allowing any kind of commutation of the BLDC

motors used for balancing. In practice it is evident that simple block commutation, also called trape-

zoidal commutation, is more than sufficient for the balance bot application. No further commutation

techniques are investigated, but the hardware is able to support other commutation techniques if

further work aims to investigate field-oriented control2 using sinusoidal or space-vector commutation.

The controller assumes that the torque on each wheel is the true input to the open loop system and

can be instantaneously and arbitrarily selected. Naturally, this assumption is false, but it allows

a much simpler model. To motivate this assumption consider the electrical time constant of the

BLDC motor. The line-to-line resistance and inductance of the motor windings are R = 8.00 [Ω] and

L = 10.50 [mH] respectively. The resulting time constant, τRL = L/R, is only 1.3 [mS]. The largest

Eigenvalue in the open-loop system is 5.77 [rad/s]. This Eigenvalue can be used to approximate an

effective time constant for the open-loop system dynamics. τOL ≈ 2π
λmax

. Using this approximation,

the time constant for the system is on the order of 1.0 [s]. Comparison of τRL ≈ 1.3 [mS] and

τOL ≈ 1.0 [s] illustrates that the dynamics associated with building the magnetic field in the motor

windings are many times faster than the dynamics associated with the balance bot. Therefore it is

valid to assume that the actuator dynamics do not need to be included in the system model used to

develop a closed-loop controller.

2Field-oriented control (FOC) was developed to improve torque control of BLDC and PMS motors. FOC allows the
phase currents to be controlled directly so that the magnetic field generated by the stator windings always interacts
with the magnetic field moving with the rotor to produce optimal torque. While FOC does not produce more torque
than standard block commutation, it does eliminate some of the torque ripple associated with block commutation.

58

Chapter 8

FIRMWARE DESIGN

8.1 Tasks

The firmware design is very simple and can be considered as a single task implemented as a finite-

state machine with five states. The focus of this project was on balancing the bot and performing

proper commutation of the two BLDC motors. Accordingly, the firmware design is simple and

requires little multitasking. Future implementations may require more sophisticated, task-based,

design; but, for the purpose of this project a single task was sufficient.

Start State 0:
Init

State 1:
Calibrate[SKIP_CAL != TRUE]

State 2:
Wait for arming[SKIP_CAL == TRUE]

[CAL != 0xFF]

[CAL == 0xFF]

State 3:
Balance

[ARMING_SEQ == VALID]

[RESET_SEQ == VALID]

State 4:
Fault

[ESTOP_SEQ == VALID]

[RESTART_SEQ == VALID]

Figure 8.1: State-transition diagram for balance bot controller task.

State 0: Initialization

The Initialization state is responsible for configuring all of the firmware drivers and start-

ing several interrupt driven services that will take place behind the scenes while the main task

is running. The interrupt driven services will be discussed in a section below.

State 1: Calibrate

The Calibrate state is responsible for calibration of the BNO055 inertial measurement unit.

The IMU runs a sophisticated and proprietary algorithm to fuse data from a 3-axis accelerom-

eter, a 3-axis gyroscope, and a 3-axis magnetometer to determine the absolute orientation of

59

the sensor. As part of the algorithm, the IMU is continuously recalibrated. However, the cal-

ibration requires manipulation of the IMU in all three dimensions that may not occur during

typical operation.

In the Calibrate state, the firmware keeps all motors off and waits for the user to physically

manipulate the balance bot until the IMU indicates that calibration has been successful. Only

after this calibration occurs can the output data of the sensor be used reliably. If the data is

used without calibration then the data is prone to drift, primarily due to the inherent drift

problems associated with MEMS gyroscopes.

Once calibration is complete, it is possible to store the calibration coefficients in non-volatile

storage on the main microcontroller. This allows the user to bypass the calibration step and

instead write the calibration values directly to the IMU on startup. Implementation of the

calibration bypass was necessary to facilitate rapid development.

State 2: Wait for arming

An arming sequence has been defined using the throttle input to the RC radio receiver; this

sequence is depicted in Figure 8.2. After the calibration is complete or the calibration has

been bypassed, the system will wait for a particular sequence from the throttle trigger on the

RC remote. The user must pull the trigger to full throttle and then full brake to arm the

system. Once this sequence has been performed, 500 [mS] later, the device begins operation

and transitions to the Balance state.

Figure 8.2: Arming sequence on RC remote controller.

State 3: Balance

The task spends the majority of the time in the Balance state. In this state, the system

runs the state-feedback controller previously described in the Controller Implementation sec-

tion at a rate of 40 [Hz]. This loop closure rate was found to provide an optimal balance

60

between performance and reliability. A faster controller could, in theory, perform better, but

with sacrificed reliability due to firmware speed limitations

The timing of this state was dictated by a simple scheme similar to how output-compare is

performed in timer peripherals. The following snippet of python shows how the timekeeping

works.

Listing 8.1: Task timing code snippet.

1 while True:
2 cur_ticks = utime.ticks_us ()
3 if cur_ticks >= next_ticks :
4

5 # Control loop code here
6

7 next_ticks = utime.ticks_add(next_ticks , ticks_period)

The variable cur ticks contains the number of microseconds elapsed since the microcontroller

was last reset. This parameter is updated continuously such that it can be used as a free-

running counter. The variable next ticks indicates the timestamp for the next iteration of

the Balance state. As soon as cur ticks exceeds next ticks, the content of the state is

executed and next ticks is incremented by the period of the control loop, 25 [ms].

Setting up the timing this way guarantees that the duration of the task is not added to the

desired period for the task; that is, the period specifies the time between the start of each loop

and not between the end of one loop and the start of the next.

Due to the nature of MicroPython and the number of interrupt service routines running in

the background, it is not guaranteed that the Balance state will always take the same amount

of time to execute. This time-keeping method has been shown to work reliably, running the

task at the scheduled time with a standard deviation in loop period of less than 2 [ms]. The

time-keeping is benchmarked by collecting time-stamped data over a test period of 120 [s].

Consider Figure 8.3, which shows a histogram of the recorded loop period over the 120 [s]

interval. The standard deviation over the 120 [s] data window is 1.65 [ms].

During each iteration of the Balance state, the system performs the following actions:

1. Query the sensors or retrieve the buffered sensor data waiting from the most recent ISR.

2. “Unwrap” any sensor values that represent angles. This prevents issues caused by turning

the bot more than one full revolution. For example, the heading output of the IMU is

used as a measurement of the yaw angle of the balance bot. The heading is bounded

between −180◦ and 180◦ and wraps around when the heading exceeds these bounds. The

61

20 22.5 25 27.5 30
0

0.05

0.1

0.15

0.2

0.25

Figure 8.3: Histogram showing variance in loop period, ∆t, over 120 [s] interval of
testing.

firmware accounts for the heading wrap by checking if the change in heading exceeds

180◦. Consider the following snippet of Python code:

Listing 8.2: Heading unwrapping code snippet.

1 # Get the raw heading from the IMU
2 raw_heading = -imu.get_heading ()
3

4 # Find the change in heading since the last measurement
5 delta_heading = raw_heading - last_heading
6

7 # If the change exceeds half the available range assume that the
8 # heading has wrapped
9 if delta_heading > 180:

10 delta_heading -= 360
11 elif delta_heading < -180:
12 delta_heading += 360
13

14 # Accumulate the change in heading to find the unwrapped heading
15 heading += delta_heading
16

17 # Record the last raw value so that the change can be computed
18 # next iteration
19 last_heading = raw_heading

3. Scale the sensor data to represent state variables for use in the control loop by performing

appopriate unit conversions.

4. Retrieve the most recently buffered input from the RC remote and normalize to ±1 to be

used as input to the prefilter.

5. Apply the prefilter to the normalized input values from the RC remote.

6. Saturate the output of the prefilter to guarantee that the reference values for the tracking

controller are in bounds. Saturation prevents the throttle or steering commands from

requesting unattainable accelerations or velocities from the balance bot.

62

7. Compute the duty-cycle associated with each BLDC motor using the output of the state-

feedback controller.

8. Saturate the duty-cycles to remain in bounds.

9. Update the duty-cycle command associated with each BLDC motor.

10. Transmit a packet of information over Bluetooth to a host PC for data collection.

State 4: Fault

The Fault state has been implemented to handle the case when something goes wrong, par-

ticularly, when the bot falls over. The system may enter this state due to multiple causes. In

the case the pitch angle, θ, ever exceeds ± 3π
8 [rad], the bot will automatically enter the Fault

state until the angle is returned to the acceptable range. This allows the operator to manu-

ally restore the orientation of the balance bot and for the bot to then automatically resume

balancing.

Most often the Fault state is entered when triggered by the RC remote controller by the

operator if the robot goes out-of-control or if a test is being performed. The user can trigger

the Fault state deliberately by pushing the throttle to full brake. In this case, the Fault state

is entered temporarily and the system returns to the Balance state as soon as the trigger is

released. If the bot is in the Fault state and the user turns the steering knob all the way to

the right, the bot will perform a soft-reset when exiting the Fault state, zeroing the system

states used for the control loop. Alternately, if the bot is in the Fault state and the user

turns the steering knob on the remote all the way to the left, the bot will latch the fault state

permanently until a full system reset occurs. This is useful because it allows the user to cease

data collection after performing a test. All three trigger commands are shown graphically in

Figure 8.4.

Figure 8.4: Fault trigger commands: temporary fault (left); temporary fault with soft
reset (center); latched fault (right).

63

8.2 Interrupt Service Routines

The firmware design for the balance bot relies on several interrupt driven services to interface with

the motors and to receive low latency sensor data.

8.2.1 Hall Sensor Interrupts

Each BLDC motor has a set of three Hall sensors internally mounted to determine rotor orientation

during operation. The input-capture feature of the timer module in the STM32L476 is used to

trigger interrupts when any of the six Hall sensors change state. The main purpose of this interrupt

is to decode which sector a given motor is in when a Hall effect sensor changes state. There are eight

possible combinations for each set of Hall sensors; these eight combinations are listed in table 8.1.

Table 8.1: Hall-effect sensor sector decoding.
Hall A Hall B Hall C Sector

0 0 0 Invalid Sector
0 0 1 Sector 4
0 1 0 Sector 6
0 1 1 Sector 5
1 0 0 Sector 2
1 0 1 Sector 3
1 1 0 Sector 1
1 1 1 Invalid Sector

Of the eight possible combinations, two are invalid and indicate a hardware fault. The other six

combinations each indicate that a certain sector has been reached. Once the sector has been deter-

mined, if the sector is valid the Hall sensor interrupt determines if a valid transition has occurred.

Between any two Hall sensor interrupts, only one sensor should change state. If more than one Hall

sensor changes state, then a sector has been skipped. If either an invalid combination is found, or

an invalid change in sector is determined, the motor is disabled and an exception is thrown.

When a valid sector transition is determined, the new sector dictates which phases of the motor will

receive PWM. This is implemented in Python using three object references representing the timer

channels associated with the inactive, positive, and negative phases for a given sector. The Hall

sensor interrupts update the references to point at the appropriate timer channel objects, so that

when the control loop computes a new duty cycle, the set duty() function does not need to decode

the sector to determine which phases to commutate. This effectively reduces overhead, because in

standard operation, the control loop updates faster than the Hall sensor interrupts occur. Therefore,

64

the sectors are decoded exactly one time for each state transition, instead of redundantly when the

set duty function is called.

The final operation that occurs within each Hall sensor interrupt is an estimation of the motor speed.

The six sector transitions per revolution can be used to determine relative displacement. However,

unlike most encoders, the resolution is too poor to use effectively with normal speed determination

methods. With typical encoders, the number of transitions per unit of time is measured to get an

approximation of speed over that interval of time. For low resolution encoders, or BLDC Hall effect

sensors, it is instead necessary to compute the amount of time between adjacent transitions. This

method allows the measurement to have much higher resolution, but causes other problems, namely

with the timer required to measure the duration between edges. With standard 16-bit timers it can

be challenging to find a proper prescaler that will result in good resolution at high speeds, without

causing timer overflow at low speeds.

A detail that further complicates speed estimation is misalignment of the Hall sensors. The set of

three Hall sensors should be evenly spaced, such that when the motor is spinning at constant velocity,

a phase shift of exactly 120◦ would be expected. Unfortunately, some motors have misaligned Hall

sensors that cause phase misalignment. Further complications occur when the Hall sensors do not

generate square waves of 50% duty cycle, which is also typical of common BLDC motors. The

workaround for these issues is to measure the amount of time between like transitions, for instance

between rising edges on Hall channel A. This comes at a penalty though, as it increases the latency

of the measurement by a factor of six.Latency is a small issue at high speeds or at constant speeds,

but at low dynamic speeds the measurement can be considerably late.

Fortunately, the addition of quadrature encoders to the design eliminates the need to use the Hall

sensor speed estimate for control purposes. However, in a reduced cost version of this project, it

may be feasible to use the Hall sensors nonetheless.

8.3 RC Radio Interrupts

The command inputs to the balance bot come from an RC radio receiver attached to the STM32L476

microcontroller. The PWM output of the receiver is discussed in detail in Section 5.1.6. To interpret

the PWM output properly, input capture interrupts are used. A driver class called RX was written,

that allows the user to easily interface with a radio receiver with up to four channels.

65

The following code snippet illustrates the logic used within the callback function for channel 1 to

determine the pulse width of the signal coming from the receiver.

Listing 8.3: Timer callback code snippet.

1 def cb1(self ,tim):
2 self.cur_ticks1 = tim.channel (1).capture ()
3 if not self.ch1.value():
4 # Falling edge
5 self.width1 = self.cur_ticks1 - self.last_ticks1
6 if self.width1 < 0:
7 self.width1 += 0x10000
8 self.last_ticks1 = self.cur_ticks1

Each time an interrupt occurs, the current tick value from the free-running counter is stored in a

variable cur ticksn, where n is 1, 2, 3, or 4 depending on the channel. Then, the ISR callback

determines if the ISR trigger was a rising or falling edge. Whenever a falling edge is found, the

difference between the current tick count and the previous tick count is computed. The variable

widthn contains the duration of the pulse-width in microseconds

8.4 Hardware Drivers

Each hardware peripheral has its own associated driver. Drivers are implemented for the following

sets of components:

• BLDC motor with Hall sensors (class BLDC Hall)

• Quadrature Encoder (class QuadEncoder)

• BNO055 Inertial Measurement Unit (class BNO055)

• Radio Receiver with PWM output (class RX)

Separation of the hardware drivers into separate classes allows the designer to easily interface with

the hardware in main without too much clutter, and also allows code reuse for devices such as the

BLDC motors and encoders.

66

8.5 Firmware Documentation

The preceding discussion is meant only to cover the general operation of the firmware. All of the

code is documented thoroughly through a utility called Doxygen; detailed firmware documentation

can be found in Appendix F.

67

http://www.doxygen.nl/

Chapter 9

SIMULATION RESULTS

Preliminary testing was performed through simulation using MATLAB® and Simulink®. Simulated

testing was broken down into four main simulations. These four simulations verify that the model

behaves properly, clearing the way for physical hardware testing. For each simulation mentioned

below, a full set of plots is available in Appendix E.

Simulation #1: 2-DOF open-loop response

The first simulation aims to validate the open-loop 2-DOF model of the system, as derived in

Chapter 2. This test shows that the simulated response of the system matches the physical

behavior expected from the 2-DOF model when there is no control action.

The initial conditions for simulation #1 represent a stationary balance bot, nearly upright,

with a small deviation in pitch angle. The initial conditions are defined as

x0 =

0

π
24

0

0

.

Consider Figure 9.1 which depicts the pitch angle from the 2-DOF open-loop response of sim-

ulation #1. In open-loop, the balance bot behaves similar to an inverted pendulum, resulting

in steady oscillation about a mean pitch angle of π [rad]; the steady oscillations are visible in

Figure 9.1. The system model does not include any damping or friction, so there is no energy

dissipation and therefore no reduction in amplitude as the balance bot oscillates.

See Section E.1 for a complete set of results for simulation #1.

68

Figure 9.1: Open-loop response for 2-DOF model: pitch angle, θ.

Simulation #2: 2-DOF closed-loop response

The second simulation aims to validate the 2-DOF closed-loop model of the system, as pre-

sented in Chapter 3. This test shows that the 2-DOF model can be regulated effectively using

a linear-quadratic regulator. This test additionally shows that even though the linearized

model is used to calculate controller gains, the LQR is still effective when applied to the non-

linear model of the balance bot when the system state is near the equilibrium point used for

linearization.

The initial conditions for simulation #2 are equal to those of simulation #1 and are defined

as

x0 =

0

π
24

0

0

.

Consider Figure 9.2 which depicts the pitch angle of the balance bot from the 2-DOF closed-

loop response of simulation #2. In closed-loop, the balance bot does not oscillate; instead, the

state-feedback controller regulates the states of the 2-DOF model, reducing the states to zero

as time progresses.

69

Figure 9.2: Closed-loop response for 2-DOF model: pitch angle, θ.

See Section E.2 for a complete set of results for simulation #2.

70

Simulation #3: 3-DOF closed-loop response

The third test aims to confirm the equivalence of the 2-DOF and 3-DOF models in closed-loop.

That is, the test shows that when only the horizontal and pitch axes are considered, the 3-DOF

model reduces to the 2-DOF model. This test additionally illustrates the independence of the

yaw axis from the horizontal and pitch axes.

The initial conditions for simulation #3 are equivalent to those of simulations #1 and #2, but

are augmented to represent all six states present in the 3-DOF model. The initial conditions

are defined as

x0 =

0

π
24

0

0

0

0

.

Consider Figure 9.3 which depicts the pitch angle of the balance bot from both the 2-DOF and

the 3-DOF closed-loop responses of simulation #3. It is clearly evident from this plot that the

results from the 2-DOF and 3-DOF models are consistent.

Figure 9.3: Closed-loop response for 2-DOF and 3-DOF models: pitch angle, θ.

See Section E.3 for a complete set of results for simulation #3.

71

Simulation #4: 3-DOF tracking response

The final simulation aims to show that the prefilter is effective. The prefilter does two things:

apply a low-pass filter to the input signals from the throttle and steering commands, and ma-

nipulate the filtered throttle and steering commands to produce a reference state corresponding

to each state variable.

The initial conditions for simulation #4 are all zero. That is, the initial conditions are defined

as

x0 =

0

0

0

0

0

0

.

Consider Figure 9.4 and Figure 9.5. Figure 9.4 depicts the throttle command used as the

tracking profile for simulation #4 and Figure 9.5 depicts the filtered throttle command and

the horizontal velocity response from simulation #4.

The prefilter dramatically attenuates the high-frequency components of the throttle command.

To follow the filtered throttle command, the balance bot requires comparatively less acceler-

ation and therefore less torque, than would be required to follow the unfiltered throttle com-

mand. The reduction in required torque allows the balance bot to more easily achieve the

desired reference profile.

See Section E.4 for a complete set of simulation results.

72

Figure 9.4: Throttle command for 3-DOF model in tracking configuration.

Figure 9.5: Tracking response for 3-DOF model: horizontal displacement, ẋ.

9.1 Animating the Balance Bot

Considerable intuition can be gained by creating an animation to portray the time-dependent sim-

ulation results. The response from each simulation is used to produce an animation showing the

real-time motion of the balance bot. These animations are produced by using the advanced plot

73

functions in MATLAB® within a loop. A single frame of one animation is shown in Figure 9.6. The

animation is an effective way to qualitatively and visually evaluate the simulation results1.

Figure 9.6: Still frame from animation of open-loop response of 2-DOF model.

1The animation results help confirm intuition. Of course this supposed confirmation can be misleading because
sometimes real physical systems behave in counter-intuitive ways. When rapidly iterating through modeling changes,
the animation can be an easy visual way to see the overall change in behavior.

74

Chapter 10

HARDWARE TESTING RESULTS

This final chapter covers the hardware testing performed with the fully-assembled balance bot. To

facilitate data collection, an external Bluetooth module was added to the balance bot to perform

serial transmission of data back to a host PC. During data collection, the host PC received the serial

data through a terminal window in PuTTY. Each set of data collected on the PC was then saved

as a time-stamped CSV file. Each CSV file was loaded into MATLAB® to generate plots of the

system response. This method of data collection was used throughout the tuning process to rapidly

iterate on gain selection while viewing the system response plots on the host PC.

Note: The data presented in this chapter represents the transformed states. That is, the plots show

the values of x̂1 . . . x̂6, which are the state variables as measured by the physical hardware. Refer to

Section 7.2 for additional details on the transformed state vector x̂.

Consider the testing results shown in Figures 10.1 through 10.6. These figures show 100 [s] of

collected data during remotely controlled operation. During the remotely operated testing, the

balance bot was subject to external influences and disturbances such as uneven and dirty flooring.

Even with the external disturbances, the key tracking results are visible in Figure 10.1 and Figure

10.3. These two figures depict the tracking results for the motor angle and yaw angle, respectively.

Examination of these plots clearly shows that the controller successfully tracks the desired throttle

and steering commands provided by the RC remote control.

75

0 20 40 60 80 100
0

100

200

300

400

Figure 10.1: Measured system response: motor shaft angle, x̂1.

0 20 40 60 80 100

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 10.2: Measured system response: pitch angle, x̂2.

76

0 20 40 60 80 100
-10

-5

0

5

10

15

Figure 10.3: Measured system response: yaw angle, x̂3.

0 20 40 60 80 100
-10

-5

0

5

10

15

20

Figure 10.4: Measured system response: motor shaft velocity, x̂4.

77

0 20 40 60 80 100

-5

0

5

10

Figure 10.5: Measured system response: pitch velocity, x̂5.

0 20 40 60 80 100
-10

-5

0

5

10

Figure 10.6: Measured system response: yaw velocity, x̂6.

78

Consider the plots shown in Figures 10.7 through 10.12. These figures show the same collection of

data as the previous plots, but focus on only 30 [s] of data during the middle of the test duration.

The zoomed-in plots more clearly show the behavior of the balance bot during steady periods of

motion.

Consider Figure 10.10 specifically: at first it may not appear that the results track effectively.

However, recognizing that the bot must actively move to remain upright, the results are reasonable.

The plot shows the transformed state x̂4 representing the motor shaft velocity. The transformed

state vector x̂4 includes effects of the pitch velocity, θ̇, which are effectively overlaid on top of the

horizontal velocity. From this perspective Figure 10.10 shows well performing tracking results with

overlaid oscillation due to the active balancing.

30 35 40 45 50 55 60
50

100

150

200

250

Figure 10.7: Measured system response: motor shaft angle, x̂1.

79

30 35 40 45 50 55 60
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 10.8: Measured system response: pitch angle, x̂2.

30 35 40 45 50 55 60
-8

-6

-4

-2

0

2

Figure 10.9: Measured system response: yaw angle, x̂3.

80

30 35 40 45 50 55 60
-10

-5

0

5

10

15

20

Figure 10.10: Measured system response: motor shaft velocity, x̂4.

30 35 40 45 50 55 60
-5

0

5

10

Figure 10.11: Measured system response: pitch velocity, x̂5.

81

30 35 40 45 50 55 60
-5

0

5

10

Figure 10.12: Measured system response: yaw velocity, x̂6.

82

Chapter 11

CONCLUSIONS AND RECOMMENDATIONS

Simulation and hardware testing show the effectiveness of the balance bot, but do not portray

the dynamic quality that can only be observed by witnessing the bot balance remain upright while

driving and steering. This chapter discusses brief qualitative analysis of the balance bot performance

flaws and recommends areas for further research and testing.

In summary, the balance bot described in this document is able to stably balance and track external

steering commands both in simulation and through physical testing. The hardware design supports

many different possible controller architectures and can be used in the future to investigate other

types of modern control theory. The prefilter is a novel introduction through this effort and effectively

attenuates the high frequency components of the input command signals, improving the tracking

response.

Nonetheless, listed below are several recommendations for future work that would benefit the balance

bot.

11.1 Tracking versus Regulating

One of the main shortcomings of the balance bot is inconsistent operation across a wide range of

input commands for a given set of controller gains. In order to track a reference profile commanded

wirelessly by the operator, the feedback controller must be aggressively tuned in order to quickly

adapt to fast changes in setpoint.

An aggressively tuned tracking controller does not perform well when the controller is used to

regulate the state of the system back to zero. When the operator provides no throttle or steering

commands, the tracking controller effectively reduces to a regulator; in these circumstances, the

aggressive tuning causes small oscillations about the setpoint. For the controller to work effectively

as a regulator, the gains must be reduced to such a degree that tracking performance suffers.

The prefilter, discussed in detail in Chapter 7, mitigates some performance problems by filtering out

abrupt changes in user input, allowing the controller to be tuned more conservatively without losing

83

performance. The prefilter could be adjusted to remove even more high-frequency content from the

input commands, but then the operator may experience lag in the response from the balance bot.

One recommended solution is gain scheduling. Gain scheduling is a method that allows the tuning

of the controller to change depending on the current operating state of the system. Gain scheduling

would let the controller behave aggressively when the input commands are highly dynamic, while

allowing the controller to relax when the input commands are less dynamic.

11.2 Modeling for Control and Variable Structure Methods

The methods proposed previously in this document focus entirely on the application of linear control

theory to a nonlinear system. Linear control theory is powerful, but comes with many restrictions

and can be very limiting when it comes to controlling nonlinear systems.

Many other approaches exist for control of nonlinear systems, but one method proposed in [1] has

significant promise for the balance-bot application. The proposed method combines many nonlinear

modeling and control methods into one.

With the method proposed in [1], the controller design is considered during the modeling phase.

When modeling for control purposes, the model becomes approximate and includes several uncertain

parameters that are estimated in real time as the controller runs. The approximate system model is

defined such that the model is in nonlinear controller canonical form; that is, the model is described

such that the states form an integrator chain where the lowest-order state is the parameter to be

controlled. All of the system states are derivatives of the control parameter and all of the system

dynamics are associated with only the highest-order derivative of the control parameter.

As an example, consider how the 2-DOF model of the balance bot could be described in nonlinear

controller canonical form. For the following example let the control parameter be the horizontal

displacement of the center of mass of the balance bot body. That is, y = x + rb sin θ. With this

control parameter, the model for control would be of the following form:

84

d

dt

x1

x2

x3

x4

=

x2

x3

x4

a(x,p)

+

0

0

0

b(x,p)

[
u

]
(11.1)

[
y

]
=
[
x1

]
(11.2)

Where the vector p contains uncertain parameters about the system determined by an estimation

algorithm.

With the approximate model in controller canonical form, a controller can be designed that combines

approaches from the following areas of modern control theory:

• Feedback linearization

• Feedforward control

• State-estimation and data-fusion

• Sliding mode control and model order reduction

• Generalized Lyapunov functions for stability analysis and switching control

• Nonlinear controller constraints such as actuator saturation

The methods proposed in [1] may greatly improve tracking performance and allow additional features

out of the scope of linear control theory such as a controlled “flip up” in which the balance bot flips

itself up from a resting position to automatically begin balancing under closed-loop control. Such

a maneuver would be impossible with a linear controller due to the very large deviation from the

operating point used during linearization.

11.3 Hardware and Firmware Limitations

The selected hardware implementation is able to effectively actuate the BLDC motors, read from

sensors, and keep the bot balancing; however, there are some lingering issues in the final hardware

85

implementation. As mentioned in Appendix C, a final revision is designed but unassembled and

untested. The final hardware iteration aims to eliminate the remaining problems associated with

the hardware revision used for testing and data collection. A brief summary of pending changes is

listed below:

• Many connectors must be adjusted to allow the cables to exit vertically from the bottom of

the PCB to route through the internals of the bot. This will reduce the likelihood of damaging

the cabling in the event the bot falls over.

• A resistor network for battery voltage measurement is needed.

• The top silkscreen must be adjusted to include a location where the RC receiver will be

mounted.

The firmware has been implemented exclusively in MicroPython. MicroPython is an excellent choice

because it accelerates firmware development and allows the design to focus more heavily on the

control algorithm itself and less on the implementation of the control algorithm. However, significant

timing constraints are present due to the selection of MicroPython. Re-implementation in a language

such as C or C++ could improve the controller timing significantly and allow more sophisticated

controller implementations and better multi-tasking if additional features are to be added.

86

BIBLIOGRAPHY

[1] Variable-Structure Approaches: Analysis, Simulation, Robust Control and Estimation of

Uncertain Dynamic Processes. 2016.

[2] Allegro Microsystems. High Sensitivity, 1 MHz, GMR-Based Current Sensor IC in

Space-Saving, Low Resistance QFN and SOIC-8 Packages, May 2019. Rev. 3.

[3] Alpha & Omega Semiconductor. AOD417 P-Channel Enhancement Mode Field Effect

Transistor, September 2008. Rev. 1.

[4] K. J. Astrom. PID Controllers: Theory, Design, and Tuning. 2 edition, 1995.

[5] Bosch Sensortec. Intelligent 9-axis absolute orientation sensor, June 2016. Rev. 1.4.

[6] W. L. Brogan. Modern Control Theory. 3 edition, 1991.

[7] S.-Y. J. Ching-Chih Tsai and S.-M. Hsieh. Trajectory tracking of a self-balancing two-wheeled

robot using backstepping sliding-mode control and fuzzy basis function networks. 2010.

[8] Diodes Incorporated. Low Power Hall Effect Switch, November 2009. Rev. 8.

[9] R. Feynman. The principle of least action. 19, 2006.

[10] J. F. Gieras and M. Wing. Permanent Magnet Motor Technology. 1997.

[11] D. Jayakody and K. Sucharitharathna. Control unit for a two-wheel self-balancing robot.

XIX, 2019.

[12] P. Lancaster and L. Rodman. Algebraic Riccati Equations. 01 2002.

[13] K. H. Nam. AC Motor Control and Electric Vehicle Applications. 2010.

[14] R. C. Ooi. Balancing a two-wheeled autonomous robot. Master’s thesis, 2003.

[15] D. Rowell and D. N. Wormley. System Dynamics. 1 edition, October 1996.

[16] ST Microelectronics. STM32 Nucleo-64 boards (MB1136), April 2019. Rev. 13.

[17] ST Microelectronics. Ultra-low-power Arm Cortex-M4 32-bit MCU+FPU, 100DMIPS, up to

1MB Flash, 128 KB SRAM, USB OTG FS, LCD, ext. SMPS, June 2019. Rev. 8.

87

[18] Texas Instruments. DRV8313 2.5-A Triple 1/2-H Bridge Driver, April 2016.

[19] Traxxas. TQi Top Qualifier Owners Manual, 2012.

88

APPENDICES

Appendix A

MODELING DETAILS

This appendix shows the detailed derivation of the Lagrangian and equations of motion for both the

2-DOF and 3-DOF system models.

A.1 2-DOF Model - Kinetic Energy Derivation

This section focuses on the derivation of Equation 2.4, which expresses the kinetic energy used in

the derivation for the 2-DOF balance bot model. The kinetic energy must be expressed solely in

terms of q and q̇ to use Lagrange’s equation, so the kinematics must be worked out in terms of q

and q̇ as well.

The linear velocity at the center of the wheel is only due to the velocity in the x direction.

vw =

ẋ

0

0

 (A.1)

The angular velocity at the center of each wheel is due to the wheel rolling without slip on a

horizontal surface.

vw = ωw × rw (A.2)
ẋ

0

0

 =

rwωw,y

0

0

 (A.3)

ωw =

0

ẋ
rw

0

 (A.4)

89

The angular velocity of the body is due to the pitch velocity.

ωb =

0

θ̇

0

 (A.5)

The linear velocity of the body is due to the velocity of the wheel and the relative velocity of the

body with respect to the wheel.

vb = vw + vb/w (A.6)

vb = vw + ωb × rb/w (A.7)

vb =

ẋ

0

0

+

rb cos θ θ̇

0

−rb sin θ θ̇

 (A.8)

vb =

ẋ+ rb cos θ θ̇

0

−rb sin θ θ̇

 (A.9)

The kinetic energy depends not only on the velocity of each body, but also the mass moment of

inertia of each body. The moment of inertia is trivial for the wheels because they are each rotating

about an axis of symmetry and are themselves bodies of revolution.

Iw =

Iw,xx 0 0

0 Iw,yy 0

0 0 Iw,zz

 (A.10)

The mass moment of inertia of the body is more complicated. The principal axes of the body are

assumed to be aligned with the body, therefore when the pitch angle θ is nonzero, the moment of

inertia tensor must be rotated by θ using a coordinate transformation.

90

Ib = Rθ (Ib)xyz R
>
θ (A.11)

Ib =

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

Ib,xx 0 0

0 Ib,yy 0

0 0 Ib,zz

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 (A.12)

Ib =

Ib,xx cos2 θ + Ib,zz sin2 θ 0 −Ib,xx sin θ cos θ + Ib,zz sin θ cos θ

0 Ib,yy 0

−Ib,xx sin θ cos θ + Ib,zz sin θ cos θ 0 Ib,xx sin2 θ + Ib,zz cos2 θ

 (A.13)

91

The kinetic energy in the system can be computed using the linear and angular velocities and

moment of inertia tensors defined above.

T =
1

2
mb v

>
b vb +

1

2
ω>b Ibωb + 2

(
1

2
mw v>wvw +

1

2
ω>w Iwωw

)
(A.14)

T =
1

2
mb

[
ẋ+ rb cos θ θ̇ 0 −rb sin θ θ̇

]
ẋ+ rb cos θ θ̇

0

−rb sin θ θ̇

+
1

2

[
0 θ̇ 0

]
Ib,xx cos

2 θ + Ib,zz sin
2 θ 0 −Ib,xx sin θ cos θ + Ib,zz sin θ cos θ

0 Ib,yy 0

−Ib,xx sin θ cos θ + Ib,zz sin θ cos θ 0 Ib,xx sin
2 θ + Ib,zz cos

2 θ

0

θ̇

0

+mw

[
ẋ 0 0

]
ẋ

0

0

+

[
0 ẋ

rw
0

]
Iw,xx 0 0

0 Iw,yy 0

0 0 Iw,zz

0

ẋ
rw

0

 (A.15)

T =
1

2
mb

(
ẋ+ rb cos θ θ̇

)2
+

1

2
mb

(
−rb sin θ θ̇

)2
+

1

2
Ib,yy θ̇

2

+mwẋ
2 + Iw,yy

(
ẋ

rw

)2

(A.16)

T =
1

2
mbẋ

2 +mbrbẋθ̇ cos θ +
1

2
mbr

2
b cos

2 θ θ̇2 +
1

2
mbr

2
b sin

2 θ θ̇2 +
1

2
Ib,yy θ̇

2

+mwẋ
2 +

Iw,yy
r2w

ẋ2 (A.17)

T =
1

2

(
mb + 2mw + 2

Iw,yy
r2w

)
ẋ2 +mbrb cos θ ẋθ̇ +

1

2

(
mbr

2
b + Ib,yy

)
θ̇2 (A.18)

T =
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 (A.19)

Where,

mx = mb + 2mw + 2
Iw,yy
r2w

,

Iθ = mbr
2
b + Ib,yy

92

A.2 2-DOF Model - Equations of Motion Derivation

This section covers the derivation of the 2-DOF equations of motion using Lagrange’s equation.

Recall that the Lagrangian is defined as the difference between kinetic and potential energy; that is,

L = T − V . The potential energy in the system is due to the elevation of the body of the balance

bot and can be expressed as V = mbrb cos θ g. With the Lagrangian defined, Lagrange’s equation is

used to find the equations of motion.

The Lagrangian is defined as the difference between kinetic and potential energy.

L = T − V (A.20)

L =
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 −mbrb cos θ g (A.21)

L is first differentiated with respect to x.

∂L

∂x
=

∂

∂x

(
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 −mbrb cos θ g

)
(A.22)

∂L

∂x
= 0 (A.23)

Then, L is differentiated with respect to ẋ.

∂L

∂ẋ
=

∂

∂ẋ

(
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 −mbrb cos θ g

)
(A.24)

∂L

∂ẋ
= mxẋ+mbrb cos θ θ̇ (A.25)

d

dt

(
∂L

∂ẋ

)
=

d

dt

(
mxẋ+mbrb cos θ θ̇

)
(A.26)

d

dt

(
∂L

∂ẋ

)
= mxẍ+mbrb cos θ θ̈ −mbrb sin θ θ̇2 (A.27)

And then with respect to θ.

∂L

∂θ
=

∂

∂θ

(
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 −mbrb cos θ g

)
(A.28)

∂L

∂θ
= −mbrb sin θ ẋθ̇ +mbrb sin θ g (A.29)

93

And finally with respect to θ̇.

∂L

∂θ̇
=

∂

∂θ̇

(
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 −mbrb cos θ g

)
(A.30)

∂L

∂θ̇
= mbrb cos θ ẋ+ Iθ θ̇ (A.31)

d

dt

(
∂L

∂θ̇

)
=

d

dt

(
mbrb cos θ ẋ+ Iθ θ̇

)
(A.32)

d

dt

(
∂L

∂θ̇

)
= mbrb cos θ ẍ−mbrb sin θ ẋθ̇ + Iθ θ̈ (A.33)

The first equation of motion is for the x-axis and can be determined using Lagrange’s equation

applied to the q1 coordinate.

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= Qx (A.34)

mxẍ+mbrb cos θ θ̈ −mbrb sin θ θ̇2 = −2
1

rw
Tm (A.35)

mxẍ+mbrb cos θ θ̈ = −2
1

rw
Tm +mbrb sin θ θ̇2 (A.36)

The second equation of motion is for the pitch axis and can be determined using Lagrange’s equation

applied to the q2 coordinate.

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= Qθ (A.37)

mbrb cos θ ẍ−mbrb sin θ ẋθ̇ + Iθ θ̈ +mbrb sin θ ẋθ̇ −mbrb sin θ g = 2Tm (A.38)

mbrb cos θ ẍ+ Iθ θ̈ = 2Tm +mbrb sin θ g (A.39)

A.3 3-DOF Model - Kinetic Energy Derivation

For the 3-DOF model, the linear velocity of the wheel is also due to the velocity in the x direction,

but has an additional component due to the yaw rotation about the vertical axis. For the right

wheel:

94

vw,r = vc + vw,r/c (A.40)

vw,r = vc + ωw,r × rw,r/c (A.41)

vw,r =

ẋ

0

0

+

w
2 ψ̇

0

0

 (A.42)

vw,r =

ẋ+ w

2 ψ̇

0

0

 (A.43)

And similarly for the left wheel:

vw,r =

ẋ− w

2 ψ̇

0

0

 (A.44)

The angular velocities of the right wheel is due to the wheels rolling without slip and the rotation

about the vertical axis.

vw,r = ωw,r × rw,r (A.45)
ẋ+ w

2 ψ̇

0

0

 =

rwωw,r,y

0

0

 (A.46)

ωw,r =

0

ẋ+w
2 ψ̇

rw

ψ̇

 (A.47)

95

Similar analysis can be performed for the left wheel.

ωw,l =

0

ẋ−w2 ψ̇
rw

ψ̇

 (A.48)

The angular velocity of the body is due to both the pitch angular velocity and the yaw angular

velocity.

ωb =

0

θ̇

ψ̇

 (A.49)

The linear velocity of the body is due to the velocity of the wheel and the relative velocity of the

body with respect to the wheel.

vb = vc + vb/ cos θ (A.50)

vb = vc + ωb × rb/ cos θ (A.51)

vb =

ẋ

0

0

+

rb cos θ θ̇

rb sin θ ψ̇

−rb sin θ θ̇

 (A.52)

vb =

ẋ+ rb cos θ θ̇

rb sin θ ψ̇

−rb sin θ θ̇

 (A.53)

96

The kinetic energy can be determined using the linear and angular velocities derived above.

T =
1

2
mb v

>
b vb +

1

2
ω>b Ibωb

+
1

2
mw v>w,rvw,r +

1

2
ω>w,rIwωw,r

+
1

2
mw v>w,lvw,r +

1

2
ω>w,lIwωw,l (A.54)

T =
1

2
mb

[
ẋ+ rb cos θ θ̇ rb sin θ ψ̇ −rb sin θ θ̇

]

ẋ+ rb cos θ θ̇

rb sin θ ψ̇

−rb sin θ θ̇

+
1

2

[
0 θ̇ ψ̇

]

Ib,xx cos2 θ + Ib,zz sin2 θ 0 −Ib,xx sin θ cos θ + Ib,zz sin θ cos θ

0 Ib,yy 0

−Ib,xx sin θ cos θ + Ib,zz sin θ cos θ 0 Ib,xx sin2 θ + Ib,zz cos2 θ

0

θ̇

ψ̇

+
1

2
mw

[
ẋ+ w

2 ψ̇ 0 0

]

ẋ+ w

2 ψ̇

0

0

+
1

2

[
0

ẋ+w
2 ψ̇

rw
ψ̇

]

Iw,xx 0 0

0 Iw,yy 0

0 0 Iw,zz

0

ẋ+w
2 ψ̇

rw

ψ̇

+
1

2
mw

[
ẋ− w

2 ψ̇ 0 0

]

ẋ− w

2 ψ̇

0

0

+
1

2

[
0

ẋ−w2 ψ̇
rw

ψ̇

]

Iw,xx 0 0

0 Iw,yy 0

0 0 Iw,zz

0

ẋ−w2 ψ̇
rw

ψ̇

 (A.55)

97

T =
1

2
mb

((
ẋ+ rb cos θ θ̇

)2
+
(
rb sin θ ψ̇

)2
+
(
−rb sin θ θ̇

)2)
+

1

2

(
Ib,yy θ̇

2 + Ib,xx sin2 θ ψ̇2 + Ib,zz cos2 θ ψ̇2
)

+
1

2
mw

(
ẋ+

w

2
ψ̇
)2

+
1

2

Iw,yy (ẋ+ w
2 ψ̇

rw

)2

+ Iw,zzψ̇
2

+

1

2
mw

(
ẋ− w

2
ψ̇
)2

+
1

2

Iw,yy (ẋ− w
2 ψ̇

rw

)2

+ Iw,zzψ̇
2

 (A.56)

T =
1

2
mbẋ

2 +mbrb cos θ ẋθ̇ +
1

2
mbr

2
b cos2 θ θ̇2 +

1

2
mbr

2
b sin2 θ ψ̇2 +

1

2
mbr

2
b sin2 θ θ̇2

+
1

2
Ib,yy θ̇

2 +
1

2
Ib,xx sin2 θ ψ̇2 +

1

2
Ib,zz cos2 θ ψ̇2

+
1

2
mwẋ

2 +mw
w

2
ẋψ̇ +

1

2
mw

w2

4
ψ̇2

+
1

2

Iw,yy
r2w

ẋ2 +
Iw,yy
r2w

w

2
ẋψ̇ +

1

2

Iw,yy
r2w

w2

4
ψ̇2 +

1

2
Iw,zzψ̇

2

+
1

2
mwẋ

2 −mw
w

2
ẋψ̇ +

1

2
mw

w2

4
ψ̇2

+
1

2

Iw,yy
r2w

ẋ2 − Iw,yy
r2w

w

2
ẋψ̇ +

1

2

Iw,yy
r2w

w2

4
ψ̇2 +

1

2
Iw,zzψ̇

2 (A.57)

T =
1

2
mbẋ

2 +mbrb cos θ ẋθ̇ +
1

2
mbr

2
b θ̇

2 +
1

2
mbr

2
b sin2 θ ψ̇2

+
1

2
Ib,yy θ̇

2 +
1

2
Ib,xx sin2 θ ψ̇2 +

1

2
Ib,zz cos2 θ ψ̇2

+mwẋ
2 +mw

w2

4
ψ̇2

+
Iw,yy
r2w

ẋ2 +
Iw,yy
r2w

w2

4
ψ̇2 + Iw,zzψ̇

2 (A.58)

T =
1

2
mbẋ

2 +mwẋ
2 +

Iw,yy
r2w

ẋ2

+mbrb cos θ ẋθ̇

+
1

2
mbr

2
b θ̇

2 +
1

2
Ib,yy θ̇

2

+
1

2
mbr

2
b sin2 θ ψ̇2 +

1

2
Ib,xx sin2 θ ψ̇2 +

1

2
Ib,zz cos2 θ ψ̇2 +mw

w2

4
ψ̇2 +

Iw,yy
r2w

w2

4
ψ̇2 + Iw,zzψ̇

2

(A.59)

98

T =
1

2

(
mb + 2mw + 2

Iw,yy
r2w

)
ẋ2

+mbrb cos θ ẋθ̇

+
1

2

(
mbr

2
b + Ib,yy

)
θ̇2

+
1

2

(
mbr

2
b sin2 θ + Ib,xx sin2 θ + Ib,zz cos2 θ +mw

w2

2
+
Iw,yy
r2w

w2

2
+ 2Iw,zz

)
ψ̇2 (A.60)

T =
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 +
1

2

(
mbr

2
b sin2 θ + Ib,xx sin2 θ + Ib,zz cos2 θ + Iψ

)
ψ̇2 (A.61)

Where,

mx = mb + 2mw + 2
Iw,yy
r2w

,

Iθ = mbr
2
b + Ib,yy,

Iψ = mw
w2

2
+
Iw,yy
r2w

w2

2
+ 2Iw,zz.

A.4 3-DOF Model - Equations of Motion Derivation

This section covers the derivation of the 3-DOF equations of motion using Lagrange’s equation.

Recall that the Lagrangian is defined as the difference between kinetic and potential energy; that is,

L = T − V . The potential energy in the system is due to the elevation of the body of the balance

bot and can be expressed as V = mbrb cos θ g. With the Lagrangian defined, Lagrange’s equation is

used to find the equations of motion.

The Lagrangian is defined as the difference between kinetic and potential energy.

L = T − V (A.62)

L =
1

2
mxẋ

2 +mbrb cos θ ẋθ̇ +
1

2
Iθ θ̇

2 +
1

2

(
mbr

2
b sin

2 θ + Ib,xx sin
2 θ + Ib,zz cos

2 θ + Iψ
)
ψ̇2 −mbrb cos θ g

(A.63)

L is first differentiated with respect to x.

∂L

∂x
=

∂

∂x

(
1

2
mxẋ

2
+mbrb cos θ ẋθ̇ +

1

2
Iθ θ̇

2
+

1

2

(
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̇

2 −mbrb cos θ g
)

(A.64)

∂L

∂x
= 0 (A.65)

99

Then, L is differentiated with respect to ẋ.

∂L

∂ẋ
=

∂

∂ẋ

(
1

2
mxẋ

2
+mbrb cos θ ẋθ̇ +

1

2
Iθ θ̇

2
+

1

2

(
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̇

2 −mbrb cos θ g
)

(A.66)

∂L

∂ẋ
= mxẋ+mbrb cos θ θ̇ (A.67)

d

dt

∂L

∂ẋ
=

d

dt

(
mxẋ+mbrb cos θ θ̇

)
(A.68)

d

dt

∂L

∂ẋ
= mxẍ+mbrb cos θ θ̈ −mbrb sin θ θ̇2 (A.69)

And with respect to θ.

∂L

∂θ
=

∂

∂θ

(
1

2
mxẋ

2
+mbrb cos θ ẋθ̇ +

1

2
Iθ θ̇

2
+

1

2

(
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̇

2 −mbrb cos θ g
)

(A.70)

∂L

∂θ
= −mbrb sin θ ẋθ̇ +mbr

2
b sin θ cos θ ψ̇

2
+ Ib,xx sin θ cos θ ψ̇

2 − Ib,zz sin θ cos θ ψ̇2
+mbrb sin θ g (A.71)

And with respect to θ̇.

∂L

∂θ̇
=

∂

∂θ̇

(
1

2
mxẋ

2
+mbrb cos θ ẋθ̇ +

1

2
Iθ θ̇

2
+

1

2

(
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̇

2 −mbrb cos θ g
)

(A.72)

∂L

∂θ̇
= mbrb cos θ ẋ+ Iθ θ̇ (A.73)

d

dt

∂L

∂θ̇
= −mbrb sin θ ẋθ̇ +mbrb cos θ ẍ+ Iθ θ̈ (A.74)

And with respect to ψ.

∂L

∂ψ
=

∂

∂ψ

(
1

2
mxẋ

2
+mbrb cos θ ẋθ̇ +

1

2
Iθ θ̇

2
+

1

2

(
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̇

2 −mbrb cos θ g
)

(A.75)

∂L

∂ψ
= 0 (A.76)

And finally with respect to ψ̇.

∂L

∂ψ̇
=

∂

∂ψ̇

(
1

2
mxẋ

2
+mbrb cos θ ẋθ̇ +

1

2
Iθ θ̇

2
+

1

2

(
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̇

2 −mbrb cos θ g
)

(A.77)

∂L

∂ψ̇
=
(
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̇ (A.78)

d

dt

∂L

∂ψ̇
=

d

dt

((
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̇
)

(A.79)

d

dt

∂L

∂ψ̇
=
(
mbr

2
b sin

2
θ + Ib,xx sin

2
θ + Ib,zz cos

2
θ + Iψ

)
ψ̈ (A.80)

+
(
2mbr

2
b sin θ cos θ θ̇ + 2Ib,xx sin θ cos θ θ̇ − 2Ib,zz sin θ cos θ θ̇

)
ψ̇ (A.81)

100

The first equation of motion is for the horizontal axis and can be determined using Lagrange’s

equation applied to the q1 coordinate.

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= Qx (A.82)

mxẍ+mbrb cos θ θ̈ −mbrb sin θ θ̇2 =
1

rw
(−Tm,r + Tm,l) (A.83)

mxẍ+mbrb cos θ θ̈ = − 1

rw
Tm,r +

1

rw
Tm,l +mbrb sin θ θ̇2 (A.84)

101

The second equation of motion is for the pitch axis and can be determined using Lagrange’s equation

applied to the q2 coordinate.

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= Qθ (A.85)

(
mbrb cos θ ẍ−mbrb sin θ ẋθ̇

+ Iθ θ̈ +mbrb sin θ ẋθ̇ −mbr
2
b sin θ cos θ ψ̇2

− Ib,xx sin θ cos θ ψ̇2 + Ib,zz sin θ cos θ ψ̇2 −mbrb sin θ g
)

= Tm,r − Tm,l (A.86)

mbrb cos θ ẍ+ Iθ θ̈ = Tm,r − Tm,l

+mbrb sin θ g

+
(
mbr

2
b + Ib,xx − Ib,zz

)
sin θ cos θ ψ̇2

(A.87)

The third and final equation of motion is for the yaw axis and can be determined using Lagrange’s

equation applied to the q3 coordinate.

d

dt

(
∂L

∂ψ̇

)
− ∂L

∂ψ
= Qψ (A.88)

((
mbr

2
b sin

2 θ + Ib,xx sin
2 θ + Ib,zz cos

2 θ + Iψ
)
ψ̈

+
(
2mbr

2
b sin θ cos θ θ̇ + 2Ib,xx sin θ cos θ θ̇ − 2Ib,zz sin θ cos θ θ̇

)
ψ̇

)
=

w

2rw
(−Tm,r − Tm,l) (A.89)

(
mbr

2
b sin

2 θ + Ib,xx sin
2 θ + Ib,zz cos

2 θ + Iψ
)
ψ̈ = − w

2rw
Tm,r −

w

2rw
Tm,l

− 2
(
mbr

2
b + Ib,xx − Ib,zz

)
sin θ cos θ θ̇ψ̇

(A.90)

102

Appendix B

OBSERVABILITY AND CONTROLLABILITY CHECKS

This brief appendix covers confirmation of the system controllability and observability for the 2-DOF

and 3-DOF system models.

B.1 2-DOF Model Controllability and Observability Confirmation

The controllability and observability of the 2-DOF system model are confirmed using features of

the symbolic toolbox in MATLAB®. Consider the code shown in Listings B.1 and B.3 which

symbolically calculate the controllability and observability Gramians from the matrices A, B, and

C.

Listing B.1: Controllability check for 2-DOF system model: controllability 2DOF.m.

1 % Define symbolic variables for matrix A
2 syms A_32 A_42
3

4 % Define the matrix A
5 A = [0 0 1 0
6 0 0 0 1
7 0 A_32 0 0
8 0 A_42 0 0];
9

10 % Define symbolic variables for matrix B
11 syms B_3 B_4
12

13 % Define the matrix B
14 B = [0
15 0
16 B_3
17 B_4];
18

19 % Compute the controllability Gramian
20 ctrl = [B A*B A^2*B A^3*B];
21

22 % Check the rank of the Gramian
23 rank(ctrl)

Listing B.2: Output of controllability check script for 2-DOF system model.

>> controllability_2DOF

ans =

4

103

Listing B.3: Observability check for 2-DOF system model: observability 2DOF.m.

1 % Define symbolic variables for matrix A
2 syms A_32 A_42
3

4 % Define the matrix A
5 A = [0 0 1 0
6 0 0 0 1
7 0 A_32 0 0
8 0 A_42 0 0];
9

10 % Define symbolic variables for matrix C
11 syms C_11 C_33
12

13 % Define the matrix C
14 C = [C_11 -1 0 0
15 0 1 0 0
16 0 0 C_33 -1
17 0 0 0 1];
18

19 % Compute the controllability Gramian
20 obsv = [C
21 C*A
22 C*A^2
23 C*A^3];
24

25 % Check the rank of the Gramian
26 rank(obsv)

Listing B.4: Output of observability check script for 2-DOF system model.

>> observability_2DOF

ans =

4

Both the controllability Gramian, C, and the observability Gramian, O, are of full rank indicating

that the 2-DOF system model is fully controllable and observable. The controllability Gramian is

shown below in Equation B.1 and the observability Gramian is shown below in Equation B.2.

C =

0 B3 0 A3,2B4

0 B4 0 A3,2B4

B3 0 A3,2B4 0

B4 0 A4,2B4 0

(B.1)

104

O =

C1,1 −1 0 0

0 1 0 0

0 0 C3,3 −1

0 0 0 1

0 0 C1,1 −1

0 0 0 1

0 A3,2C3,3 −A4,2 0 0

0 A4,2 0 0

0 A3,2C1,1 −A4,2 0 0

0 A4,2 0 0

0 0 0 A3,2C3,3 −A4,2

0 0 0 A4,2

0 0 0 A3,2C1,1 −A4,2

0 0 0 A4,2

0 A3,2A4,2C3,3 −A4,2
2 0 0

0 A4,2
2 0 0

(B.2)

B.2 3-DOF Model Controllability and Observability Confirmation

The controllability and observability of the 3-DOF system model are confirmed using features of

the symbolic toolbox in MATLAB®. Consider the code shown in Listings B.5 and B.7 which

symbolically calculate the controllability and observability Gramians from the matrices A, B, and

C.

105

Listing B.5: Controllability check script for 3-DOF system model:
controllability 3DOF.m.

1 % Define symbolic variables for matrix A
2 syms A_42 A_52
3

4 % Define the matrix A
5 A = [0 0 0 1 0 0
6 0 0 0 0 1 0
7 0 0 0 0 0 1
8 0 A_42 0 0 0 0
9 0 A_52 0 0 0 0

10 0 0 0 0 0 0];
11

12 % Define symbolic variables for matrix B
13 syms B_41 B_42 B_51 B_52 B_61 B_62
14

15 % Define the matrix B
16 B = [0 0
17 0 0
18 0 0
19 B_41 B_42
20 B_51 B_52
21 B_61 B_62];
22

23 % Compute the controllability Gramian
24 ctrl = [B A*B A^2*B A^3*B A^4*B A^5*B];
25

26 % Check the rank of the Gramian
27 rank(ctrl)

Listing B.6: Output of controllability check script for 3-DOF system model.

>> controllability_3DOF

ans =

6

106

Listing B.7: Observability check script for 3-DOF system model: observability 3DOF.m.

1 % Define symbolic variables for matrix A
2 syms A_42 A_52 B_41
3

4 % Define the matrix A
5 A = [0 0 0 1 0 0
6 0 0 0 0 1 0
7 0 0 0 0 0 1
8 0 A_42 0 0 0 0
9 0 A_52 0 0 0 0

10 0 0 0 0 0 0];
11

12 % Define symbolic variables for matrix C
13 syms C_11 C_44
14

15 % Define the matrix C
16 C = [C_11 -1 0 0 0 0
17 0 1 0 0 0 0
18 0 0 1 0 0 0
19 0 0 0 C_44 -1 0
20 0 0 0 0 1 0
21 0 0 0 0 0 1];
22

23 % Compute the controllability Gramian
24 obsv = [C
25 C*A
26 C*A^2
27 C*A^3
28 C*A^4
29 C*A^5];
30

31 % Check the rank of the Gramian
32 rank(obsv)

Listing B.8: Output of observability check script for 3-DOF system model.

>> observability_3DOF

ans =

6

Both the controllability Gramian, C, and the observability Gramian, O, are of full rank indicating

that the 3-DOF system model is fully controllable and observable. The controllability Gramian is

shown below in Equation B.3 and the observability Gramian is shown below in Equation B.4.

107

C
=

 0
0

B
4
,1

B
4
,2

0
0

A
4
,2
B

5
,1

A
4
,2
B

5
,2

0
0

A
4
,2
A

5
,2
B

5
,1

A
4
,2
A

5
,2
B

5
,2

0
0

B
5
,1

B
5
,2

0
0

A
5
,2
B

5
,1

A
5
,2
B

5
,2

0
0

A
5
,2

2
B

5
,1

A
5
,2

2
B

5
,2

0
0

B
6
,1

B
6
,2

0
0

0
0

0
0

0
0

B
4
,1

B
4
,2

0
0

A
4
,2
B

5
,1

A
4
,2
B

5
,2

0
0

A
4
,2
A

5
,2
B

5
,1

A
4
,2
A

5
,2
B

5
,2

0
0

B
5
,1

B
5
,2

0
0

A
5
,2
B

5
,1

A
5
,2
B

5
,2

0
0

A
5
,2

2
B

5
,1

A
5
,2

2
B

5
,2

0
0

B
6
,1

B
6
,2

0
0

0
0

0
0

0
0

0
0

(B

.3
)

108

O =

C1,1 −1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 C4,4 −1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 C1,1 −1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 A4,2 C4,4 − A5,2 0 0 0 0

0 A5,2 0 0 0 0

0 0 0 0 0 0

0 A4,2 C1,1 − A5,2 0 0 0 0

0 A5,2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 A4,2 C4,4 − A5,2 0

0 0 0 0 A5,2 0

0 0 0 0 0 0

0 0 0 0 A4,2 C1,1 − A5,2 0

0 0 0 0 A5,2 0

0 0 0 0 0 0

0 A4,2 A5,2 C4,4 − A5,2
2 0 0 0 0

0 A5,2
2 0 0 0 0

0 0 0 0 0 0

0 A4,2 A5,2 C1,1 − A5,2
2 0 0 0 0

0 A5,2
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 A4,2 A5,2 C4,4 − A5,2
2 0

0 0 0 0 A5,2
2 0

0 0 0 0 0 0

0 0 0 0 A4,2 A5,2 C1,1 − A5,2
2 0

0 0 0 0 A5,2
2 0

0 0 0 0 0 0

0 A4,2 A5,2
2 C4,4 − A5,2

3 0 0 0 0

0 A5,2
3 0 0 0 0

0 0 0 0 0 0

(B.4)

109

Appendix C

PRINTED CIRCUIT BOARD REVISION HISTORY

Throughout the development of this project, several revisions have been made to the printed circuit

board design. This section will summarize the design development through the revision history.

C.1 Revision 0.0

Initial development began without a custom PCB design. This “zeroth” revision was used to validate

the feasibility of operating a BLDC motor using the Nucleo hardware running Micropython as

originally there were concerns regarding the precise timing necessary to commutate the BLDC

motor.

This revision consisted of the Nucleo development board and an off-the-shelf motor driver devel-

opment board designed for the Nucleo. The X-NUCLEO-IHM04A1 is a development board that

breaks out a L6206 dual DC motor driver from ST-Microelectronics. The dual motor driver includes

two full H-bridges, which is enough to drive two DC motors. One full bridge, and half of the other

full bridge were used together to test commutation of a BLDC motor.

Revision 0.0 ended up showing that the timing was possible, but provided very poor performance

due to limitations in the L6206. The full-bridges within the L6206 may be disabled, but not on an

individual half-bridge basis. This meant that it was impossible to let just one of the motor phases

float at a time preventing proper block commutation. It was possible to commutate effectively

enough to produce torque and get the motor to spin, but the commutation was very inefficient and

produced very large torque ripple.

This revision also proved that the microcontroller could run input capture interrupts to measure the

time duration between edges on the hall sensor signals.

110

C.2 Revision 0.1

The next revision, R0.1, was the first revision with a custom PCB design, as shown in Figure C.1.

This first revision includes the majority of the components listed above in the section on Component

Selection. This board had several problems that were addressed in revisions 0.2 and 1.0. The board

measured 98× 69 [mm].

• The pads in the footprint for the DRV8313 were too large to solder effectively by hand making

the board prone to short circuits underneath the motor driver ICs.

• The screw terminals allowing connection to the motors and sensors were unreachable when the

Nucleo was stacked on the PCB.

• The jumper JP1 was intended to allow the additional USB pins meant for auto-detection and

identification to be selected instead of the PWM signal used for motor commutation. This

ended up being unnecessary because the USB pins are only utilized when the USB-OTG is in

host mode.

• The routing on this board was done with the Autorouter tool available in Autodesk Eagle in

order to rapidly produce and test the initial PCB design. Therefore, the trace routing was

nonoptimal.

• The screw terminals labelled Li3s were intended to allow two batteries to be used in series,

providing a 24 [V] rail to supply the motors. The motors ended up being sufficiently powerful

running at 12 [V] so the second battery port was removed in R1.0.

• This revision did not include the ACS70331 current sensors selected to measure the BLDC

motor phase currents.

• The E5V pin providing power to the Nucleo from the USB port was connected to the wrong

pin and needed to be adjusted with a wire modification.

• The battery fuse was not included in this revision.

111

Figure C.1: Render of PCB revision 0.1, created with Autodesk Eagle.

C.3 Revision 0.2

The next revision, R0.2, was intended as a quick fix for the issues in R0.1 that prevented proper

testing of the balance bot. The board dimensions increased slightly to 100 × 71 [mm]. There were

several small changes in this circuit board design compared to R0.1 that allowed the device to be

tested, but there were no major changes in circuit design.

• The routing of every trace was redone manually. The main goal of this effort was to prevent

fragmentation of the ground plane on the top and bottom of the PCB. Additionally, the high

speed USB traces were impedance matched, although the necessity of this change has not been

confirmed.

• The pads on the DRV8313 footprint were made smaller to prevent short circuits underneath

the IC.

• The dimensions of the board were extended and the Nucleo headers were relocated slightly to

allow access to the screw terminals while the Nucleo was stacked.

• The E5V pin was connected properly to the USB power eliminating the need for a wire mod-

ification.

112

• The jumper allowing USB-OTG functionality was removed as that feature was deemed unnec-

essary for this project.

• Several components were spread out to make assembly and hand soldering easier.

Figure C.2: Render of PCB revision 0.2, created with Autodesk Eagle.

Even with all of these changes, there were still many issues that motivated a significant amount of

redesign in R1.0.

• Assembly and testing required frequent connection and disconnection from the external com-

ponents. The screw terminals ended up being a nuisance in this regard because they required

a lot of time and attention to connect properly. The screenprint labeling each pin was also

difficult to see when the Nucleo was stacked.

• During testing it was verified that the motors would provide sufficient torque operating at half

their nominal voltage making the dual battery configuration unneeded.

• Even though there is built in reverse polarity protection in R0.1 and R0.2, the unpolarized

screw terminals were not ideal. The ‘+’ and ‘-’ symbols were difficult to see when the Nucleo

was stacked.

• The RC radio header was awkwardly placed and hard to reach when the Nucleo was stacked.

113

• Neither R0.1 nor R0.2 supported interfacing with quadrature encoders. At the time, testing

was indicating that the speed and position measurements coming from the Hall sensors were

insufficiently precise to effectively control the balance bot.

• After rerouting the traces manually the ground plane fragmentation was reduced, but not

eliminated satisfactorily. The nature of the Nucleo pinout unavoidably forces traces to cross

all over the board which inevitably slices up the ground planes.

• The battery fuse was still not included in this revision and it was getting to the point where

battery testing was necessary and the lab supply had to be put away.

C.4 Revision 1.0

The remaining problems from R0.2 were addressed in R1.0 resulting in a board that was able to

make the bot balance successfully for the first time. Unfortunately this revision was significantly

different from R0.2 and required a considerable amount of time to prepare compared to the changes

from R0.1 to R0.2. The board size was increased slightly to 109 × 71 [mm] to accommodate some

changes in the mechanical design.

• One of the bigger changes was the switch from a 2-layer PCB to a 4-layer PCB. This greatly

improved the routing on the board and entirely prevented the ground plane fragmentation

issues in R0.1 and R0.2.

• All of the screw terminals and headers were replaced by polarized connectors. This proved to

be convenient in some ways but a big problem in other ways that will be addressed shortly.

This allowed the polarized battery connector to be plugged directly into the PCB, avoiding

the risk of incorrect orientation entirely.

• The dual battery configuration was abandoned so that the whole system may run off of the

single three cell LiPo battery.

• Current sensors were added to each phase of each motor.

• The battery protection fuse was integrated now that battery testing was absolutely necessary.

• Additional connectors were added allowing interface with two quadrature encoders. Unfortu-

nately this change required significant shuffling of pins compared to R0.1 and R0.2.

114

• The remaining unused GPIO pins, of which there were now only 6, were exposed through

test-points in case further functionality was to be investigated once the bot was balancing.

Figure C.3: Render of PCB revision 1.0, created with Autodesk Eagle; main board
shown.

As with any design, there are as many lingering problems as their are revisions. While R1.0 fixed

many problems from R0.2, it unfortunately introduced one very significant problem: micro-pitch

connector assembly. Micro-pitch connectors will be considered below in their own subsection.

Aside from the cabling trouble, there were still some remaining issues in R1.0 of the PCB design.

• The new connectors all exit the top of the PCB horizontally, creating strain relief issues and

locating the cables in such a way that they are easily damaged when the balance bot falls over.

If the connectors were replaced with vertical connectors on the bottom of the board, all wiring

could be internal and provide significantly less risk of damage in the event of the bot falling

over.

• The footprints for the current sensors have a very fine pitch of 0.5 [mm] making them extremely

challenging to solder by hand. The fine pitch issue is compounded by the fact that the 4-layer

PCB sinks heat more rapidly than standard 2-layer PCBs. While testing, the current sensors

were abandoned and were replaced by jumpers for the time-being.

115

C.4.1 Additional PCB Tiers

As covered in the mechanical design chapter, the balance bot was designed to be composed of

multiple tiers separated by standoffs. Originally the PCB was to be one of the many tiers, and all

others were to be fabricated from polycarbonate.

As part of the changes in R1.0, it was decided that all of the tiers in the balance bot would be

constructed from PCBs. Modern PCB manufacturing is rapid, extremely precise, and very low

cost; together these benefits make PCBs ideal choices for the tiered balance bot design. As an added

bonus, the material PCBs are constructed from is FR4, which is a type of fiberglass that is extremely

rigid and long lasting compared to other materials considered such as polycarbonate and aluminum.

The R1.0 design of the balance bot is composed of three unique PCBs stacked conveniently to hold

all of the required components. Below, Figures C.4 and C.5 show the additional PCBs other than

the main board shown in figure C.3.

The IMU board, shown in Figure C.4, allows interface with the BNO055 module.

Figure C.4: Render of PCB revision 1.0, created with Autodesk Eagle; IMU board
shown.

The motor board does not actually contain any electronic components, and is used only for mechan-

ical purposes. The primary role of this board is to connect with the motor brackets.

116

Figure C.5: Render of PCB revision 1.0, created with Autodesk Eagle; motor board
shown.

C.4.2 Micro-pitch Connectors

The decision to move away from screw terminals and toward connectors required selection of con-

nectors with sufficiently small pitch to allow enough edge space on the board to squeeze in all the

connectors. To accomplish this, several connector families were selected, mainly from JST.

The battery connection is through a XT30PW male connector which allows the XT30 female plug

on the battery to connect directly to the PCB. XT30 connectors are standard among hobby-grade

batteries of the scale used in this project.

The JST-XH connector line was selected for the motor phase connections, as they offer a continuous

current rating of 3 [A], which is sufficient for the selected motors. The JST-XH line has a pitch

of 2.5 [mm] which is also wide enough to support the 22AWG wire used for the motor phases

connections.

For all other connections, the JST-ZH line was selected. All remaining connections were of low

current requirements so a fine pitch connector like the 1.5 [mm] pitch JST-ZH seemed like a good

choice. In terms of the PCB design and assembly, these connectors were a great choice. However, the

switch to these connectors forced the mating cables to all be assembled manually. The hand crimp

tools produced by JST for the ZH line range from $500 to $1100, considerably outside the budget

117

for this project. Hand crimp tools from other manufacturers are of much lower cost in the $20 to

$100 range but are not designed with the proper geometry to crimp the ZH connectors reliably.

Many attempts were made to produce reliable cabling for the many wiring assemblies needed for

this project, but the incorrect crimp tools ended up producing cables that were prone to failure. To

mitigate this issue, wherever possible pre-crimped cables were ordered and re-pinned to avoid the

need to crimp manually. In many cases this was impossible though; the motors came with flying

leads that had to be crimped manually.

At the time of writing, this issue with micro-pitch crimping is the biggest cause of unreliability in

the balance bot design.

C.5 Revision 1.1

The most recent revision, R1.1, has not been ordered or assembled yet but includes some pending

changes to overcome the issues with R1.0. The main board only has a few minor changes.

• Many connectors have been adjusted to allow the cables to exit vertically from the bottom of

the PCB to rout through the internals of the bot. This will reduce the likelihood of damaging

the cabling in the event the bot falls over.

• The resistor network for battery voltage measurement has been added.

• The top silkscreen has been adjusted to include a location where the RC receiver will be

mounted.

The IMU board has one main change. A slot has been added to allow the cabling from the main

board to more easily route to the motors at the bottom of the balance bot.

The motor board has also been adjusted slightly. The slot accommodating the motor cabling has

been enlarged, and additional slots have been added that will be used with Velcro straps to secure

the battery.

118

Figure C.6: Render of PCB revision 1.1, created with Autodesk Eagle; main board
shown.

Figure C.7: Render of PCB revision 1.1, created with Autodesk Eagle; IMU board
shown.

119

Figure C.8: Render of PCB revision 1.1, created with Autodesk Eagle; motor board
shown.

120

Appendix D

CIRCUIT DESIGN

The following schematic is for the final design implementation of the balance bot PCB as described

in C.

121

Appendix E

SIMULATION RESULTS

E.1 Simulation #1: 2-DOF Open-loop Testing

An open-loop free-response is a logical first simulation as it allows the underlying dynamic model

to be considered by itself. Consider the plots shown in Figures E.2 through E.5 which depict the

2-DOF system model’s free response due to initial conditions of x = 0, θ = π/24, ẋ = 0, and θ̇ = 0.

These initial conditions represent a configuration where the balance bot is motionless and nearly

upright, with a deviation of 15◦ from vertical.

Given these initial conditions, one would expect the balance bot to fall downward under gravity and

begin oscillating, similar to a pendulum, about a downward hanging position1. As the balance bot

swings back and forth, the wheels also roll forward and backward such that the composite center of

mass for the entire system moves very little in the horizontal direction.

All of the 2-DOF open-loop plots were produced using data from Simulink®; a screen capture of

the block diagram used for the 2-DOF open-loop simulation is shown in Figure E.1.

Figure E.1: Block diagram for open-loop 2-DOF model.

The ‘Matlab Function’ block titled EOM 2DOF is used to implement the equations of motion for the

balance bot. The contents of this function are shown below in the following code listing:

1If this test were performed with the physical hardware the bot would fall until it hits the surface it is driving on.
The system model does not consider the driving surface, so in simulation the balance bot can hang upside down.

126

Listing E.1: 2-DOF equations of motion function file: EOM 2DOF.m.

1 function xd = EOM_2DOF(u,x,p)
2 % u = [Tm]
3 %
4 % x = [x
5 % th
6 % xd
7 % thd]
8 %
9 % p = data structure containing model constants

10

11 c = cos(x(2));
12 s = sin(x(2));
13

14 M = [1 0 0 0
15 0 1 0 0
16 0 0 p.mx p.mb*p.rb*c
17 0 0 p.mb*p.rb*c p.Ith];
18

19 b = [x(3)
20 x(4)
21 -2/p.rw*u + p.mb*p.rb*s*x(4)^2
22 2*u + p.mb*p.rb*s*p.g];
23

24 xd = M\b;

127

Figure E.2: Open-loop response for 2-DOF model: horizontal displacement, x.

Figure E.3: Open-loop response for 2-DOF model: pitch angle, θ.

128

Figure E.4: Open-loop response for 2-DOF model: horizontal velocity, ẋ.

Figure E.5: Open-loop response for 2-DOF model: pitch velocity, θ̇.

129

E.2 Simulation #2: 2-DOF Closed-loop Testing

Once the open-loop testing was finished, testing proceeded toward closed-loop simulation. Closed-

loop simulation validates the proposed control laws. The open-loop Simulink® model was modified

for state-feedback and is shown in Figure E.6. The ‘Matlab Function’ block titled EOM 2DOF is

unchanged for this simulation.

Figure E.6: Block diagram for closed-loop 2-DOF model.

Consider Figures E.7 through E.11 which depict results from a closed-loop simulation with the same

initial conditions as those for the open-loop test shown above.

130

Figure E.7: Closed-loop response for 2-DOF model: horizontal displacement, x.

Figure E.8: Closed-loop response for 2-DOF model: pitch angle, θ.

131

Figure E.9: Closed-loop response for 2-DOF model: horizontal velocity, ẋ.

Figure E.10: Closed-loop response for 2-DOF model: pitch velocity, θ̇.

132

Figure E.11: Closed-loop response for 2-DOF model: input torque, Tm.

133

E.3 Simulation #3: 3-DOF Closed-loop Testing

Now that the 2-DOF model is validated, the 3-DOF model is run in closed-loop with the same initial

conditions as the previous 2-DOF tests. The plots shown in Figures E.13 through E.19 compare the

2-DOF results with the new 3-DOF results to confirm that the two models are consistent. One key

takeaway from these plots is the negligible affect that balancing has on the yaw angle ψ and yaw

velocity ψ̇; close consideration of Figure E.15 and Figure E.18 shows that the yaw angle and yaw

velocity are only affected on the order of 10−15 [rad], which clearly shows that the yaw axis is nearly

uncoupled from the pitch and horizontal axes. In fact, after linearization, the motion in the yaw

axis is entirely uncoupled from the motion in other axes, suggesting that near the operating point

the non-linear model will be nearly uncoupled as well.

Figure E.12: Block diagram for closed-loop 3-DOF model.

The 2-DOF closed-loop Simulink® model was modified for the 3-DOF model and is shown in Figure

E.12. The ‘Matlab Function’ block titled EOM 3DOF is updated for the 3-DOF model as well. The

contents of this function are shown below in the following code listing:

134

Listing E.2: 3-DOF equations of motion function file: EOM 3DOF.m.

1 function xd = EOM_3DOF(u,x,p)
2 % u = [Tmr
3 % Tml]
4 %
5 % x = [x
6 % th
7 % psi
8 % xd
9 % thd

10 % psid]
11 %
12 % p = data structure containing model constants
13

14 c = cos(x(2));
15 s = sin(x(2));
16

17 M = [1 0 0 0 0 0
18 0 1 0 0 0 0
19 0 0 1 0 0 0
20 0 0 0 p.mx p.mb*p.rb*c 0
21 0 0 0 p.mb*p.rb*c p.Ith 0
22 0 0 0 0 0 p.mb*p.rb^2*s^2+p.Ibxx*s^2+p.Ibzz*c^2+p.Ips];
23

24 b = [x(4)
25 x(5)
26 x(6)
27 -1/p.rw*u(1) + 1/p.rw*u(2) + p.mb*p.rb*s*x(5)^2
28 u(1) - u(2) + p.mb*p.rb*s*p.g + (p.mb*p.rb^2 + p.Ibxx - p.Ibzz)*s*c*x(6)^2
29 -p.w/(2*p.rw)*u(1)-p.w/(2*p.rw)*u(2) -2*(p.mb*p.rb^2+p.Ibxx -p.Ibzz)*s*c*x(5)*x(6)];
30

31 xd = M\b;

135

Figure E.13: Closed-loop response for 3-DOF and 2-DOF models: horizontal displace-
ment, x.

Figure E.14: Closed-loop response for 3-DOF and 2-DOF models: pitch angle, θ.

136

Figure E.15: Closed-loop response for 3-DOF model: yaw angle, ψ.

Figure E.16: Closed-loop response for 3-DOF and 2-DOF models: horizontal velocity,
ẋ.

137

Figure E.17: Closed-loop response for 3-DOF and 2-DOF models: pitch velocity, θ̇.

Figure E.18: Closed-loop response for 3-DOF model: yaw velocity, ψ̇.

138

Figure E.19: Closed-loop response for 3-DOF and 2-DOF models: input torque, Tm.

139

E.4 Simulation #4: 3-DOF Closed-loop Testing with Prefilter

Both the 2-DOF and 3-DOF system models have been validated in closed-loop, but both models

only regulate the states back to zero. The final simulation shows that the system can not only

regulate the system states, but also track a desired trajectory. The plots in Figures E.23 through

E.29 show the reference states coming from the prefilter in addition to the tracking results from

the 3-DOF model. For this simulation the initial conditions are all set to zero, but time-dependent

throttle and steering commands are present. The throttle and steering commands are both driven

by rectangular pulses.

The 3-DOF closed-loop Simulink® model was modified for the 3-DOF tracking model and is shown

in Figure E.20. The ‘Matlab Function’ block titled EOM 3DOF remains unchanged for this simulation.

Figure E.20: Block diagram for closed-loop 3-DOF model.

The throttle command, shown in Figure E.21, is a rectangular pulse with a width of 2 [s] and a

height of 1 [m/s] occurring 1 [s] after the simulation begins. This command will cause the bot to

drive forward 2 [m] over a duration of 2 [s].

The steering command, shown in Figure E.22, is a rectangular pulse with a width of 2 [s] and a

height of π [rad/s] occurring 11 [s] after the simulation begins. This command will cause the bot

to pivot counter-clockwise one full revolution over a duration of 2 [s].

140

Figure E.21: Throttle command for closed-loop 3-DOF model.

Figure E.22: Steering command for closed-loop 3-DOF model.

141

Figure E.23: Tracking response for 3-DOF model: horizontal displacement, x.

Figure E.24: Tracking response for 3-DOF model: pitch angle, θ.

142

Figure E.25: Tracking response for 3-DOF model: yaw angle, ψ.

Figure E.26: Tracking response for 3-DOF model: horizontal velocity, ẋ.

143

Figure E.27: Tracking response for 3-DOF model: pitch velocity, θ̇.

Figure E.28: Tracking response for 3-DOF model: yaw velocity, ψ̇.

144

Figure E.29: Tracking response for 3-DOF model: input torque, Tm.

145

Appendix F

SOFTWARE DOCUMENTATION

The source code and documentation for the entire project can be found online at https://bitbucket.

org/charlierefvem/balancebot.

146

https://bitbucket.org/charlierefvem/balancebot
https://bitbucket.org/charlierefvem/balancebot

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF LISTINGS
	LIST OF SYMBOLS
	1 An Introduction to Balancing Robots
	1.1 Prior Work

	2 Dynamic Modeling
	2.1 Modeling Goals
	2.1.1 Initial Scope
	2.1.2 Revised Scope

	2.2 Coordinate System and Parameter Definitions
	2.2.1 Two Degree-of-Freedom Model
	2.2.2 Three Degree-of-Freedom Model

	2.3 System Modeling using Energy Methods
	2.4 Two Degree-of-Freedom Model
	2.4.1 Potential Energy
	2.4.2 Kinetic Energy
	2.4.3 Lagrangian

	2.5 Three Degree-of-Freedom Model
	2.5.1 Potential Energy
	2.5.2 Kinetic Energy
	2.5.3 Lagrangian

	2.6 Linearized Equations of Motion

	3 Controlling the Bot
	3.1 Cascaded PID Control
	3.2 State Feedback Control
	3.2.1 Pole Placement
	3.2.2 Linear Quadratic Regulators

	4 Mechanical Design
	4.1 Design Overview
	4.2 Motor Selection

	5 Electronics Design
	5.1 Component Selection and Circuit Design
	5.1.1 Microcontroller and Development Board
	5.1.2 Motor Driver
	5.1.3 Current Sensor
	5.1.4 Inertial Measurement Unit
	5.1.5 Battery and Protection Circuitry
	5.1.6 Radio Receiver
	5.1.7 Quadrature Encoder
	5.1.8 Hall Effect Sensors

	5.2 Printed Circuit Board Design

	6 Modeling and Simulation
	6.1 Two Degree-of-freedom Model
	6.1.1 Decoupled EOMs
	6.1.2 Linearization
	6.1.3 Output Equations
	6.1.4 Controllability and Observability

	6.2 Three Degree-of-freedom Model
	6.2.1 Linearization
	6.2.2 Output Equations
	6.2.3 Controllability and Observability

	7 Controller Design
	7.1 Overall Controller Architecture
	7.2 Prefilter
	7.3 Feedback Gain
	7.3.1 Bryson's Rule
	7.3.2 Discretization and the Discrete-time Algebraic Ricatti Equation
	7.3.3 Gain Calculation with lqrd
	7.3.4 Gain Transformation

	7.4 Tracking Control with LQR
	7.5 Block Commutation and Actuator Modeling

	8 Firmware Design
	8.1 Tasks
	8.2 Interrupt Service Routines
	8.2.1 Hall Sensor Interrupts

	8.3 RC Radio Interrupts
	8.4 Hardware Drivers
	8.5 Firmware Documentation

	9 Simulation Results
	9.1 Animating the Balance Bot

	10 Hardware Testing Results
	11 Conclusions and Recommendations
	11.1 Tracking versus Regulating
	11.2 Modeling for Control and Variable Structure Methods
	11.3 Hardware and Firmware Limitations

	BIBLIOGRAPHY
	A Modeling Details
	A.1 2-DOF Model - Kinetic Energy Derivation
	A.2 2-DOF Model - Equations of Motion Derivation
	A.3 3-DOF Model - Kinetic Energy Derivation
	A.4 3-DOF Model - Equations of Motion Derivation

	B Observability and Controllability Checks
	B.1 2-DOF Model Controllability and Observability Confirmation
	B.2 3-DOF Model Controllability and Observability Confirmation

	C Printed Circuit Board Revision History
	C.1 Revision 0.0
	C.2 Revision 0.1
	C.3 Revision 0.2
	C.4 Revision 1.0
	C.4.1 Additional PCB Tiers
	C.4.2 Micro-pitch Connectors

	C.5 Revision 1.1

	D Circuit Design
	E Simulation Results
	E.1 Simulation #1: 2-DOF Open-loop Testing
	E.2 Simulation #2: 2-DOF Closed-loop Testing
	E.3 Simulation #3: 3-DOF Closed-loop Testing
	E.4 Simulation #4: 3-DOF Closed-loop Testing with Prefilter

	F Software Documentation

